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FIELD THEORIES I

Chairman:

E. Kroner





THE PROBLEM OF NON-LOCALITY IN THE
MECHANICS OF SOLIDS:

REVIEW ON PRESENT STATUS

E. Kroner

Institutfiir Theoretische Physik, Technische Universitdt

Clausthal, Germany

The concept of non-locality, in particular with reference to the

mechanics of solids, is discussed. A brief report is given on the derivation

of the non-local theory of elasticity from atomic lattice theory. In addition

some simple solutions of this theory, concerning the interaction of dilata-

tion centers and wave propagation, are quoted. A generalization of the

theory which would include dislocations is indicated.

Key words: Dilatation centers; lattice statics; non-local theories; solid mechanics;

wave propagation.

I. Introduction

Except for relativistic and nuclear fission effects, quantum electro-

dynamics and quantum mechanics are the correct theories for handling

the problems of solid state physics, including those of dislocations. Since

they have small masses, electrons in a solid move so much faster than the

nuclei that in a rather good approximation— the so-called adiabatic

approximation— the electrons can be considered to be in dynamic equilib-

rium with respect to the configuration of the nuclei at any time. In that

case, a potential energy U exists which depends on the coordinates of the

nuclei alone and which can be obtained in principle from the solution of

the corresponding many-electron problem. The dependence of the po-

tential energy on the nuclei alone is the indispensable basis, for instance,

for the lattice theories presently in use. Since the calculation of U is

extremely invovled, one is often content to work with U assumed on the

ground of experimental observation.

With this potential energy, it is quite simple to establish the quantum

mechanical equations of motion for the nuclei. Quantum mechanics rather

than classical mechanics is necessary to describe the motion of the nuclei

in certain situations, for instance in the cases of interactions among
phonons and of those between phonons and lattice defects. On the other

hand, classical equations of motion should be good enough to describe

Fundaniental Aspects of Dislocation Theory, J. A. Simmons, R. dv Wit, and K. Bulliiu<;li,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubl. 317, H, 1970).

729



730 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

more macroscopic effects at temperatures that are not too low. The inter-

action problem of lattice defects which are some distance apart would

belong to this class of problems.

The above remarks are not novel. They just remind us of the restric-

tions involved from the very beginning in the classical theory of atomic

lattices.

In- recent time several workers— Krumhansl, Mindlin, Toupin, Kunin,

myself, and others— have reconsidered the old problem of deriving con-

tinuum mechanics, in particular elasticity theory, from the atomic lattice

theory. A fundamental insight has been gained in these attempts: The
conventional elasticity theory is a very special case of a more general con-

tinuum elasticity theory. The two effects which are included in this general

elasticity theory, but not in the conventional theory, are:

(1) the non-primitivity (or polar) effect, which is found in non-primitive

crystal lattices. The deformation of such bodies can be described by n

displacement fields if n is the number of atoms in the elementary cell

[1]. In addition to the acoustical branches, one finds the optical branches

of the vibration spectrum which are already known from the calculations

of the lattice theory.

(2) the non-locality effect. This effect takes into account the finite

range of the atomic cohesive forces. It is incorporated in the form of a

non-local constitutive law which gives the response at point r in the body

in dependence on the strain at the points r' all over the body.

Since this paper has been prepared specifically for the session on the

non-local theory, the complications implied by the effect of type (1) above

are omitted. Section II brings some general considerations on non-

locality. Section III contains comments on the derivation of the non-

local continuum theory from the lattice theory. In section IV are reported

results on the solution of "non-local" problems. Some remarks in section

V on possible implications for dislocation theory conclude the report.

II. General Remarks on Non-Locality

Non-local field theories have been used by physicists for about 30

years. The concept of non-locality was introduced in the hope of remov-

ing some of the divergencies which appear in the fundamental physical

theories such as quantum electro-dynamics, meson theories, etc. Such

theories can be based on a Lagrange density, a function of r, which is an

integral over all positions r' of the region. The Lagrange function itself,

and hence also the energy, is then a double volume integral over r and r',

which means that interactions of a certain range play a role in the be-

haviour of the fields.

Let us now consider the response of a body subjected to a deformation.

The cohesive forces are of electrical nature. They act on the nuclei and
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electrons which constitute the body. Assume that one nucleus at point r

suffers a small displacement Uj. According to elasticity theory, another

nucleus at point r' will notice the displacement at r in the moment when
the sound wave emitted by the displacement at r has reached r'. How-

ever, in reality the movement of the nucleus at r will change the electric

fields ' and this change spreads out with the velocity of light. In this way

the nucleus at r' feels the displacement of the nucleus at r after a time

interval which is extremely short compared to those time intervals which

could possibly be of interest in applications of elasticity theory. This

means that the displacement of a nucleus at r leads to a practically in-

stantaneous response at all points r' in the body.

If the foregoing considerations are correct, one is compelled to question

the validity of the conventional elasticity theory. The important point is

that the change in the electric field due to a small displacement of a par-

ticle has a certain range which depends on the particular material. In

some materials this range is of the order of an atomic distance; in others

it is of larger order. To the latter materials belongs the group of the metals,

for instance. One finds that the conventional elasticity theory is good

as long as the true solution of a problem, when given in terms of Fourier

integrals or sums, involves, with essential amplitudes, only such wave-

lengths which are large compared to the range of the cohesive forces.

This is the wavelength interval in which dispersion is negligible.

On the other hand, it is clear that in order to describe phenomena on

an atomic scale no theory can be used which overlooks the discreteness

of the matter. In other words: the non-local continuum theory which

extends the conventional elasticity theory towards shorter wavelengths

ceases to apply where the wavelengths become comparable with the

lattice parameter. Here a lattice type theory must be applied. Since

classical theories usually fail on an atomic scale, it seems that classical

lattice theories do not possess a much larger range of applicability than

classical (non-local) continuum theories.

Another feature of the non-local theory deserves to be mentioned. By

assuming that the response to a displacement of a nucleus is spread out

instantaneously over the range of interaction, one practically eliminates

the electric part from the theory.- The electric parameters are then

comprised into the material tensors by which the various materials are

distinguished.

More exact would be a theory which includes the finiteness of the veloc-

ity of light. In this way electric fields and polarizations would come in.

In addition to stress and strain they describe the state of the body. To

' We think here of the fields on a microscopic scale.

- Hence this theory is not suitable to treat piezo-electric materials in which macroscopic

electric fields are essential state variables.

369-713 OL - 71 - Vol n - 2
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some extent the complication of having more state variables is only

ostensible. In fact, the response of the body is no longer non-local in the

sense that other parts of the body feel instantaneously w^hat happens at

one point in the body. So the combined elasto-electric theory is local; ^

hence one has differential equations instead of the (few^er) integrodif-

ferential equations of the non-local theory. An advantage of the non-

local formulation seems to be that the approximation of infinite

light velocity brings a considerable simplification into the problem.

III. Non-Local Elasticity: Derivation From Atomic Lattice Theory

The non-local theory can be formulated without reference to the

atomic lattice. The derivation from lattice theory leads to the same result,

however with an added advantage: The material tensors appear expressed

in terms of the atomic potentials, which are accessible for quantum

mechanical- calculation or experimental observation. Hence quantitative

predictions can be made about the importance of the nonlocal effects.

The derivation from lattice theory has been treated by several authors

(see, e.g., refs. [2 and 3]). Here I refer to a paper of Dr. Datta and myself

which was prepared for this conference (see p. 737 of these Proceedings).

The theory is developed in linear approximation and for the finite body.

Hence we have not assumed a homogeneous lattice. The crucial point

in such considerations is the application of rigourous mathematical

formulas for converting lattice sums into integrals. Pursuing a suggestion

of J. Kestin,^ we have worked out a three-dimensional version of the Euler-

MacLaurin formula and applied this to the potential energy of the crystal

lattice. The continuized form of the potential energy reads, in cartesian

coordinates,

where (^,j = d;Uj is the displacement gradient (or distortion) and

Cijki{r, r') is the material tensor function which is determined by a set

of differential equations and boundary conditions in which the atomic

coupling parameters appear as the sources. It is shown that the symmetry

relations (observe the dashes)

This is true for ionic and van der Waals crystals but not for metals because in metals

already the i-iectric theory alone is non-local. The reason is that here the electrons travel

long distances.

* Oral comment on a lecture given by the author at Brown University in 1966.

(1)

C/jA-/(r, r') =Cjiu (r, r') =CijiK- (r, r') =Cuij{r\ r) (2)
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can (but need not) be superimposed on the tensor function c/jA/(r, r').

In this case the distortions can be replaced by the strains in eq (1). If

one defines a stress tensor function by cr,j = 6f//6e/j, where e,j is the

strain tensor, one obtains a non-local stress-strain relation in the form

(3)

Since real materials have strong short-range repulsive forces between

neighbour ions, it seems not only mathematically but also physically

sensible to split the tensor function C/jA/(r, r') into a short-range and a

long-range part by setting

C/jA-/(r, r') =C/jA-/(r)6(r, r') ^cfj^.,{r.r') (4)

where 6 is the Dirac's delta function. In this way the stress-strain law

obtains the form of a Fredholm integral equation for the strains e^/, given

the stresses cr,,:

CTijir)=Cij,,{r)e,iM^ j c*.,,(r, r')eu{r)dV' (5)

This equation has a solution for quite general kernels c*yr./ (r, r').

The solution can be written in the form of the inverse constitutive law

€y(r)=S,j,,(r)o-,,(r)+j" s*.,,(r, r')<T„{r')dV' (6)

The existence of this solution seems to be an indispensible requirement

for the physical consistency of the present theory (see the contribution

of Dr. Barnett at this conference).

IV. Solutions of the Non-Local Elasticity Theory

In some generality it can be stated: The determination of the stress for

given stress sources exhibits increasing difficulty in the sequence:

conventional elasticity theory non-local elasticity theory lattice

theory. This observation justifies the application of conventional elasticity

theory in many situations. It justifies the use of non-local elasticity

theory at other occasions.

To give an example: The interaction energy of two dilatation centers

of strength P and Q at distance r=
\
ti' — vq

\
in an infinite isotropic and

homogeneous continuum with non-local response of the form (6) where

S*-,,(r, r')=S,jA7^r*( |r-r'
| ) (7)
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has been calculated to be

-1
X + 2/X

PQgHr) (8)

where X, jx are the Lame's constants. In the case of van der Waals inter-

action between the particles of the body, one finds ^*(r) ~ r"'^. In this

case, the interaction of the two dilatation centers is the same as the van

der Waals interaction of two atoms or molecules in a gas.

Transition to local response implies ^* = 0. So we recover the well-

known result: No interaction of two dilatation centers in an infinite,

isotropic, homogeneous continuum with local response.

It is a quite different question as to what extent such a dilatation center

can be representative for a point defect in a crystal lattice.

The above solution was obtained in a very simple way. Use of computers

was not necessary. The existence of simple solutions can enable one to

find phenomena of a new type which are not observed in continua with

local response.

As an example, I mention the problem of wave propagation in medias

with non-local response. This problem is the subject of the paper of

Kunin and Waisman prepared for this conference. Using Green's function

techniques, the authors find new types of damped and undamped surface

waves. They also obtain dispersion and maximum frequencies for un-

damped waves. Since all these phenomena also occur in the lattice theory,

we see that the non-local continuum theory has incorporated essential

parts of the information of the lattice theory.

V. Reference to Dislocations

In the linearized lattice theory, the potential energy is expressed in

terms of small displacements from an equilibrium state, usually the

perfect crystal state. The potential energy of a dislocated crystal cannot

be given in such a form, since large displacements are necessary to pro-

duce a dislocated state or even a small change of a dislocated state.

Besides this, the displacements during plastic deformation are in a way

less continuous than they are in the situations governed by conventional

lattice theory. In fact, the relative displacement of two lattice planes

adjacent to a glide plane of a dislocation is of higher order of magnitude

than the relative displacement of other neighbouring lattice planes. This

leads to difficulties in the application of the Euler-Maclaurin continuiza-

tion: Neither by this nor by any other procedure one can derive a macro-

scopically continuous displacement field from the displacements of the

nuclei.
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It has been well known for a long time that, in the presence of continuous

distributions of dislocations, the notion of displacement field does not

exist. It is possible to define elastic strains e,j and distortions ^/j, however.

Since the curl of /Sij is equal to the dislocation density, one finds that only

in the absence of dislocations (Bij has the simple form diUj in which it

had appeared in the potential energy eq (1)

U=II2
j

jcij„{r,r')ftuM(^>^iir')dVdV'. (9)

In the cited paper of Dr. Datta and myself, an explicit expression was

given for the material tensor function c,jA/(r, r' ) in terms of the atomic

potentials (eqs (20, 32-34)). It was argued that this Cijki{r, r') can be com-

plemented by an additional c^;^./ (r, r' ) ,
say, which does not contribute

to the energy in eq (9) as long as (Sij is a displacement gradient. It would

contribute, however, if the curl of ftj would not vanish. The potential

energy then would contain a part which can be put into the form

where epmidnifBij was replaced by the dislocation density tensor ain. The

tensor function ainkq (r, r') follows from

C/jA-/(r, r') = ej,)u,eijMid>,>d'painkq{r, r') (11)

where ejmn is the alternating tensor. Hence, apart from surface terms,

the additional potential energy is the mutual interaction energy of the

dislocations. However, in this interpretation, some precaution is necessary.

The point is, that a dislocation element at r', say, feels a small displace-

ment of a dislocation element at r firstly by the change of the electric

field and secondly by the change of the elastic field. Light and sound

velocity are here important as explained in other connection in section

2. Further investigation on this seems necessary.

If we use the decomposition formula

f^ij^diUj + emdkCij ' (12)

in the potential energy (9) and write down a kinetic energy in terms of

the potentials uj and ^y, then we can obtain equations of motion by

application of the Lagrange formalism. Because the motion of dislocations

is always accompanied by irreversible processes, I do not believe in the

Lagrange method when it is applied to dislocations. Notwithstanding,

I think that one point comes out clearly from this consideration: There

are dynamical equations for the potentials uj and ^//. This result shows
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that two types of motions are essential in a dislocated body: The motion

of the matter and the motion of the defects. Both motions possess a spe-

cific inertia. For this reason all the so-called dynamical theories of dis-

locations which work with three equations of motion, are, if not wrong,

at least incomplete.
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In the linear theory of non-local elasticity the strain energy can be writ-

ten as a double volume integral summing up the interactions of pairs of

mass elements. The properties of the material, in this case, are described

by a two-point-tensor function c,jA-/(r,r'). It is found that for finite bodies

CyA:/(r,r') does not have the symmetries of the (Hooke's) elasticity tensor

Cijki of the local theory. However, the symmetries of this tensor function

are sufficient to exclude the rotations from the strain energy expression.

It is shown that with the help of the elastic Green's function one can ex-

press Cy7c/(r,r') in terms of force constants of the lattice. It is also shown
that an infinite homogeneous body is not a suitable model either for the

non-local or for the local theory, because in this case djkiiry) as well as

Cijki obey the Cauchy relations.

Key words: Green's tensor; Hooke's elasticity, non-local elasticity; solid mechanics.

L Introduction

The study of the mechanical behaviour of crystals has from the very

beginning been approached from two different viewpoints, which have

resulted respectively in the phenomenological theory and the atomic

theory. The former is based on the concept that the internal forces of the

body are contact forces and, therefore, the total energy of the solid is

obtainable as the sum of the energies of the individual volume elements

into which it can be subdivided. It is obvious that these conditions can

be incorporated for a crystal with lattice structure only if the volume

elements under consideration are sufficiently large in comparison to the

range of interatomic forces in the solid. The range of applicability of this

theory is, therefore, limited and its results can be expected to be sustain-

able only in relation to phenomena involving large volume elements, such

as the propagation of waves of wavelengths large enough compared to

the range of interatomic forces.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and K. Huiiounii,

Lds. (Nat. Bur. Stand. (U.S.), Spec. Fubl. 317, II, 1970).
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A more faithful description of bodies requires more elaborate continuum

theories, which enable us to explain certain facts which elude the classical

theory altogether. For instance, in the lattice theory of elasticity one

usually deals with frequency versus wavelength curves, dispersion of

waves, surface effects, defect interaction, and so on. To justify a gener-

alized continuum theory of elasticity, then, we must be able to provide

simpler methods for some of the problems that are important in the lattice

theory.

We have shown earlier [1] how a simple and straightforward gener-

alization of the classical theory of elasticity is obtained by converting the

lattice theory of Bravais crystals into a continuum theory. The resulting

theory is of non-local character because the lattice theory takes into

account a finite range of interatomic forces from the very beginning. The

procedure used in our first work (and in that of Kunin [2]) to convert the

discrete lattice theoretical expressions into an integral form used the

idealization -of infinite homogeneous crystals. In real problems, however,

the crystals are finite and therefore inhomogeneous, at least always in

the boundary layer. We shall see in section III that the idealization of

the infinite homogeneous crystal leads to particular difficulties in the

here applied Born-Huang formalism. Hence it should be avoided.

It is the purpose of this paper to investigate the relationship between

the lattice theory and the continuum theory of the elastic behaviour of

finite Bravais crystals.^ In particular we establish the symmetry cor-

respondence between the elastic parameters of the continuum theory and

those obtained from the lattice theory. This is achieved by the same

method which was used by Kriiner [3] in the case of infinite homogeneous

crystals.

II. The Potential Energy in Lattice and Continuum Theory

As is usual in the (harmonic) lattice theory,- we write the potential

energy U of the deformed lattice as a bilinear form in the displacements

t/=| 2 <!>" «,•«/.. (1)

r. r'

Here ui and w/. are Cartesian components of the displacements of the

particles at points r and r' respectively, and the are the coupling

' The complications implied by non-primitiveness of the lattice have recently been dis-

cussed by Baumgarte and Kriiner [4].

-See, e.g., Leii-fried [5].
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parameters. Observe the obvious symmetry of the parameters:

^Jt=^t^. (2)

In order to convert the sum in (1) into an integral, we apply the (rigourous)

Euler-Maclaurin formula, which in the three-dimensional form reads

S/- f^^^^+i f^^^^+^ J V Voir) 2JsSo{r)

Here /(r) is a continuous function which coincides with the discrete

values/*" to be summed at the lattice points r; Fo(r) is the volume of the

elementary cell, which depends on the position it the lattice is inhomo-

geneous; and So(r) is the contribution to the surface of the cell at point

r on the surface.^ Among the terms omitted in eq (3) the Hne integral

and the summation over corner points become effective only if the number

of atoms is very small. The other terms containing the derivatives can be

omitted only if J{r) varies sufficiently slowly. This can be made more

precise as follows. Using Taylor's expansion we have

/(F)=/(r+ a)=/(r)+a,a/+ . . .

where a is the primitive lattice vector and

dXi r= r.

The terms containing the derivatives can be neglected if the condition

\aidjf/fir)\<l (4)

is satisfied. Thus the formula given by (3) can be considered as a generaliza-

tion of trapezoidal rule of integration.

In our appHcation then two assumptions must be valid:

1. The variation of displacement Ui{r) is small, which is the same
thing as saying that the difference in displacements |Au| of two neigh-

bouring atoms should be small when compared with the nearest neighbour

distances. Of course, this is the case in any linear theory.

^ A detailed derivation of eq (3) was worked out by B. K. Datta and is given in D. Kessel [6]

.
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2. We must assume weak inhomogeneity, so that the variation of

<t>ik (r, r'), the continuous counterpart oi is small enough to satisfy

the condition (4).

Applying eq (3) to eq (1) we obtain

1 r f *i;t(r, r')

^ij J F„(r)So(r')

+ 4i//s!(r)F„(r')"''^'"^"''^'''^'^''^'

+
1 / r)sl(r')

".('•)«,.(r')<iS<iS' (5)

Now let us introduce a two-point tensor function Cijki{r, r') defined by
the following set of equations

djdidjki (r, r ) - 17 / x / ,x (6)

n,a,c,.z(r,r (7)

^ '\ 1 c^ik (r, r')
„,a,cy„(r,r)=---p^^^^^ (8)

, 1 <^>it(»'. r')
n,«,c„.,(r,r )=

45^(r)S„(r')

Where nj is the external unit vector normal to the surface S and dj = d/dxj.

Substitution of eqs (6) to (9) in (5) leads to the result

U=
^ j j

co7c/(r, r'}idju^){d[a',)dVdV'.
'

(10)

As is clear from our derivation and from the form (10) of the potential

energy, the two-point tensor function Cijki (r', r) contains the whole

information about the material properties. The dependence on the two

points r and r' expresses the non-local character of the atomic cohesive

forces of the body. Observe the obvious symmetry

Cijki(r, r') = Ckiij {r, r'). (11)
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III. Symmetry of the Material Tensor Cijki{r, r )

It can easily be shown that the tensor functions Ciji^-i are not defined

uniquely by eqs (6) to (9). However, it is clear from our derivation that it

suffices to have any solution of eqs (6) to (9) in order to obtain a workable

theory. A particularly useful choice would be one which satisfies the

additional symmetry relations

Cijki{r. r') = Cjiki{r, r')=cijik{r, r') (12)

because in that case the strains

eo— 1/2 {djui^diuj) ^ {De{)ijkUk (13)

can replace the displacement gradients in eq (10). (Def)ijk in eq (13)

is the deformation operator defined by

(Def)o-A- - 1/2 (dikdj + 8jkdd- (14)

In order to obtain a unique solution, the further restrictions

{lnk)ikmnCijki{r, r') =0, {lnk')jimnCijki (r, r') =0 (15)

will be imposed on Cijki{r, r). Here (Ink)iA;mn is the incompatibility

operator defined as

{lnk)ikmn = €ifjm^kqndpdq. (16)

The restrictions (15) are physically sensible. In fact, any other solution

of eqs (6) to (9), (11), and (12) will differ from the solution which satisfies

eqs (15) by a part which does not contribute to the energy in eq (10).'^

Using the identity

{lnk)ik,n>,{Bei),un,>^0 (17)

it can easily be shown (ref. [7]) that eq (15) has the general solution

Cijkiir, r') = (Def)//fm(Def )j/„a„(„(r, r') (18)

^ It would contribute if the displacement gradients would be replaced by more general

second rank tensors (sometimes called distortions), as it is done in the theory of self stresses,

for instance in the theory of dislocations.
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where due to eq (11) the auxihary potential amnCr, i*') should possess

the symmetry

amn{r,r') =anm{r\r). (19)

In a different notation, eq (18) is rewritten as

Cijkiir, r') =djdiaifc{r, r') -\- didiajkir, r')

+ djdicau{v, r') +aia^a,7(r, r') (20)

In the following we shaU derive a unique solution for the auxihary potential

aikir, r').

First we substitute eq (20) in the set of eqs (6) to (9) and obtain

^i/c(r, r')

D,DkaAr, r') =y-^-y^^ (21)

where

n Ai' I '\ 1 ^ik{r, r') .

D,jN,,aj,{r, r
) =-2V,ir)So(r')

^^^^

NMr,r')=-l^l^^ (23)

NMr, r') (24)

Dij = dijdtndm + didj, Nij = hijUmdm + Tljdi (25)

and the primed D and are the corresponding quantities taken with

respect to the primed operators. Observe that D and are special cases

of the operators

Dik = Cijkidjdi, Nik = Cijkirijdi (26)

which play an important role in the general theory of elasticity, in particu-

lar in the application of Green's method to elastic problems.^ In fact, the

expressions (25) are obtained from (26) if one assumes djki to be an iso-

tropic elasticity tensor with Lame's constants A.= 0, fx=l.

^ See, e.g., the article of A. Seeger in ref. [8] , especially pp. 516 and 517.
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The equations (21) to (24) can be simplified by making the substitution

D'kiajiir, r')=bjkir, r')

Thus we get

and

N'^^ajiir, r')=Cjk{r, r').

A,Mr,r)-^^^^^^^(^,^

AT u t '\- 1 ^ikjr, r )

1 <Dj/c(r, r^)
VijcMv, r

) 2Fo(r)So(r')

^^^^^^^'*''*^-4So(r)So(r')-

(27)

(28)

(29)

Equations (28) (and just as well eq (29)) can be solved by introducing

the Green's function tensor Gj/c(i*, i*") of an elastic body with k=0,
IJL=l which gives the displacement field due to a point force of unit

strength acting at point r" under load free surface condition. G is defined

by

DijQk (r, r")= -8ifc8(r,r")

(30)

For infinite bodies

GAr, r") -

iXj— Xj') (Xk — Xjc')

1677
I

36
r—

r

(31)

For finite bodies a term has to be added which takes care of the correct

boundary values of Gjk. Since the procedures of obtaining Gjk are well-

known in elasticity theory, we need not pursue this further. We rather

consider Gjk as given.

In terms of the Green's function tensor Gja, the solution of eqs (27),

(28), and (29) can be written down immediately
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ajiir, r') =
j

CjA-(r, r"')Cf,i{r\ r"')dS"'

-jbj.ir, v"')Gu{v\v"')dV"'
(32)

here

J V,{T")Vo{v'r''^ '
^

and

+H ^y:;-;U,Kr, r-)^F-. (34)
2j Fo(r )So(r )

These equations inserted into eq (20) provide the unique solution of the

problem stated earlier, namely, to find a solution of eqs (6) to (9) with the

symmetries of Cijf^i (r, r') given by eqs (11) and (12). Using this particular

Cijki{r, r') we can rewrite the potential energy (10) in the form

t/=
| 1 1

cu«(r, r')€ue'„dVdV' (35)

which has been the aim of this investigation.

For the infinite homogeneous medium, ^n,- depends on r— r' alone;

hence 4>Ai, as can be seen from eqs (1) and (2). Then c,jA-/ (r, r') as

obtained in eqs (20) and (32) to (34) has, in addition to (12), the symmetry

djkiir.r') =Ckjii(r^r'), (36)

which means that Cijici (r, r') is totally symmetric in all subscripts. In other

words: The infinite homogeneous Bravais crystal should obey the Cauchy

relations. This result is physically incorrect. It shows that the infinite

homogeneous crystal is an inadmissible idealization within the Born-

iHuang formalism. A similar situation can arise also within the framework

of the local theory, as has been pointed out by Lax [9].
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IV. Conclusion

The local theory is obtained from eq (34) by putting

CijA-/(r, r') =CijA:;6(r, r'),

where Ctjki are the components of the local elasticity tensor. Since

6(r, r')=8(r',r), the tensor C ijki has in addition to the symmetries

C ijki = Cjiki = C ijik

also the symmetry

Cijkl = Cklij-

Hence it has the correct symmetries known from the conventional

elasticity theory.

In Born and Huang's derivation from atomic lattice theory of the

conventional elasticity theory, the correct symmetries of Cijki did not

come out primarily. Rather, extra considerations were needed in order

to establish the correct symmetries. The first proposal was due to Huang

[10]. Later it was shown by Leibfried and Ludwig [11] — and in a somewhat

different way by Kunin [2] — that the condition of rotational invariance

of the potential energy enforces the correct symmetries.

In our derivation, rotational invariance did not occur. Obviously, the

condition of rotational invariance does not suffice to eliminate the rotations

from the potential energy in the non-local theory. The reason is clear: In

this theory a relative rotation of two volume elements does contribute

to the mutual potential energy of these elements. Notwithstanding, it is

possible to eliminate the rotations since the rotation field is functionally

dependent on the strain field. Hence the potential energy is determined

by the strains alone, from which consideration the form (35) of the energy

can be predicted.

Hereafter it is clear that one could work with tensor functions Cijkiir, r')

which do not possess the symmetries (12). Then rotations occur in the

energy. The functional form of these Cijki{r^r' ) , which are correct too,

would be different from the form obtained in our present calculation

(eqs (20, 32-34)).
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The paper contains new results concerning the linear theory of an

elastic medium with non-local interactions:

l.The structure of the general solution of the equations of motion. The
dependence of the general solution on the distribution of energy operator

zeroes. Specific effects of the non-locality: new types of damped and un-

damped waves, the existence of a maximum frequency for the latter ones,

the space dispersion. The Green's function.

I. Approximate models. Two types of approximate models: the long-

wave approximations and the first zeroes approximations. Domains of

their applicability.

III. Boundary value problems. The replacing of the boundary by a

boundary layer of width of the interaction radius. Generalized Green's

formula. Fundamental boundary value problems, their correct formula-

tion for first zeroes approximations. The comparison with couple-stress

theories. Examples of exact and approximate solutions. The existence of

new types of surface waves different from Rayleigh waves.

Key words: Green's tensor; non-local elasticity; solid mechanics; surface waves.

Non-local theories of solids closely connected with the crystal lattice

theory have been developed by Krumhansl [1], Kriiner and Datta [2],

Kriiner [3], Kunin [4, 5], Vdovin and Kunin [6] (see also the survey [7]).

This paper contains new results obtained by the authors in this field.

I. The Structure of the General Solution of the Equations of

Motions

In this section we shall consider a linear elastic medium with non-

local interactions between particles. The non-locality is due to the discrete-

ness of the medium and to long range forces. When the radius of the

interaction is much greater than the distance between particles one can

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and H. Bull<)U{;h,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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neglect the discreteness and consider the non-local theory of the elastic

continuum.

We shall restrict ourselves to the case of a medium with simple struc-

ture [4], i.e., it is assumed that particles have no internal degrees of
freedom.

For the sake of simphcity we shall begin with one-dimensional case.

The corresponding equation of motion has the form [4]

p{x)u{x, 0 +J
x')uix\ t)dx' =q{x, t) (1.1)

Here u and q are displacements and external forces respectively
considered as function of the coordinate x and the time p is the mass
density, x') is the kernel of the elastic energy operator <t> satisfying

the conditions

<t>ix, x')=<t>{x\ x), x')dx' = 0 (1.2)

It follows from this that ^{x,x') is represented in the form

^{x, x') = ilj{x)8{x-x')-^ix,x'), 4f{x) = j'ir{x,x')dx' (1.3)

where ^{x,x') can be interpreted as the rigidity of the elastic coupling

between points x and x' . It is more convenient to use in some cases

^(jc, x') than 0(jc, x') especially when boundary value problems are

considered. We shall assume that the radius of the interaction is limited,

i.e.,

'¥{x,x')=Oii \x-x'\>L

In addition to functions of x, t we shall consider their Fourier-repre-

sentations, for which we shall preserve the same notations but with the

arguments /c, w, for instance

u{k,w)= u(x,t)e''<^''-'''^^dxdt

Then (1.1) can be expressed in the form [4]

-w-jp{k-k')u{k\w)dk'
-\-

j<t^{k, k' )u{k\ w)dk' = qik, w) (1.4)

This equation of motion can describe the elastic continuum with non-

local interactions as well as the discrete medium. In the latter case

Fourier-representations of the field variables must be concentrated in

^-space on the segment \k\^7Tla where a is the distance between

particles.
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In this section we shall consider the case of homogeneous media.

Then p{x)=po, x') = (i>{x- x) , "^U, x')='¥{x-x) and

^{k)=2
j
^^{x) {I- cos kx)dx (1.5)

Consider properties of the function 4) (A;) and its zeroes. It can be shown

that 0(A:) can be expanded in the complex A;-plane as the entire analytic

function of the exponential type. For the absolutely integrable function,

^(x) , function ^(k) is bounded on the real axis. If A:i is a zero {^{ki) =0)
then k\,—k\ and —kx are also zeroes.

Let us assume that all elastic couplings are stable, i.e., ^(x) 2^0.

Then it is easy to show that ^{k) has no zeroes on the real and imaginary

axes except the double zero k= 0. The following representation is valid

<i>(i)=c„yc^n(i-^) (1.6)

where kn are the zeroes in the upper half-plane numbered in the order of

increasing modulus. The constant

c,)=^'x-'^^{x)dx (1.7)

has the meaning of the elastic modulus in the long wave approximation.

Note, that for the discrete model the permissible domain of k is the

complex cylinder |Re A:| ^vr/a. The number of the zeroes is equal to

2A^ where is the number of the interacting neighbours.

The equation of motion (1.4) now takes the form

[-w^p^ + ^(k)'\u(k, w)=q{k, w). (1.8)

A solution of this equation can be obtained by using of the waves

exp [ik{w)x], where kiw) are the zeroes of the function

^Uk)=-w'po^^{k). (1.9)

The characteristic feature of the non-local theory is the existence

of the counting number of the usually complex zeroes k„{w) for a given

w (as it was mentioned above the number of the zeros is finite for the dis-

crete model). In the case of unbounded media the real kn{w) ,
correspond-

ing to undamped waves, are of main interest. They are defined completely

by the dispersive curve w= w{k) (Im A;= 0) and their group velocity

w' (k) depends on k (the space dispersion).
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It is important to note that the boundedness of the 4>(A;) leads to the

existence of the maximum frequency z^max of the undamped waves.

Thus, in spite of wide-spread opinion, this effect exists not only in the

discrete media.

When the dispersion of waves, due to inhomogeneities, and boundary

value problems are considered one must take into account not only real

but also complex hi (w) corresponding to damped waves.

For a fixed w # 0, similar to (L6), we have

^u,ik)=-w'poYl i^-T^)^ lmkn{w)^0 (1.10)

where kl{w) Cq^PoW- when 0.

The general solution of eq (1.8), in {x, w) — representation, has the form

u{x)= Gu{x — x')q{x')dx' + ^ [a„e'''«<"')-^+ )8„e-'^«^"')-^] (1.11)
J tl=0

where the first term is the partial solution constructed with the help of

Green's function Gwix) and a„, (Bn are arbitrary constants.

It follows from (1.10) that Gu {k)=(t>~^{k) is a meromorphic function.

Under some fairly unrestricted conditions we can write {w 0)

^-'^)=2| ^,,,^^^g!.,.^^„ (1.12)

the following estimate for the coefficients being valid

\k„{wW {k„{w))\-' ^ A{w)€-' '"^ ''•"(^^^
(1.13)

In {x, w) — representation

^'"<^) = 2oV(^ (1.14)

When w < w^ax the expression (1.12) takes the form

Gu{k)= V, +2 f ^2^ +Q(^')^ (1-15)
cok— w-po {kn)(k^-kl)

and for the static case we have
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^^"'^ = ~
2Co"^ 2 (1. 16)

where the first term is the usual Green's function.

Note, that multiple zeroes can exist for some frequencies (corre-

sponding, for example, to extreme points of the dispersive curve).

Then the solutions of type jc'" exp [ikn{w)x] must be added to (1.11).

Let us consider now the simplest three-dimensional generalization on

the case of a medium with central interactions. By definition in such a

medium the interaction force between two particles is proportional to the

change of distance and has a direction along a line connecting these

particles.

It can be shown that the kernel of the elastic energy operator has the

form

^«^(r, r') =i//"^(r)8(r-r') -'^"^(r, r'), (1.17)

i//«^(r)= f ^"^(r, r')dr'

where

^"^(r, r')
1

^^^1, ^ ^(r, r') (1.18)
|r— r p

and "^(r, r')=^(r', r) is the rigidity of the elastic coupling between

points r and r'. We shall assume that ^(r, r') =0 when |r— r'| > /.

For a homogeneous isotropic medium

^(r, r')=^(r-r'), ^(r)-^(r) (1.19)

where r= |r|.

The general solution of the equation of motion

[-M;2poS"^ + ^"^(k)]M/3(k,M;) =^"(k, w) (1.20)

can be constructed in a way analogous to the one-dimensional case if the

Green's function is known. Below we shall give an expression for the static

Green's function.

Resolving the energy operator in longitudinal, ^f/), and transverse,

^(P), components we have {k= |k|)

^m = ^^inik). (D,-f(k) = (8«^-^j(D(o(^), (1.21)

where ^(/), ^(,), and ^ are connected by relations
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^(r) =^(0(r) +2^(0 (r), ^(o(r) = j' r-'^{r)dr (1.22)

In accordance with (1.20) we have on resolving the Green's function

Ga/^(k)
kakfi— G(i)ik) + 6q./3

kgk^

k'

here

(1.23)

(1.24)

If the stability condition ^(r) ^ 0 is fulfilled the properties of the entire

analytic functions ^(i,t){k), and in particular the distribution of their

zeroes, are completely analogous to the properties of ^{k) in the one-

dimensional case. It permits one to resolve G(i^t){k) into simple fractions.

For example

,
~.[„(kn){k'-kl)

C(/,=Y (' r-'^,„(r)rfr,

In r-representation we have

Im kn > 0, (1.25)

(1.26)

II. Approximate Models

In this section we shall discuss various types of models taking into

account approximately the main features of the non-local theory.

The simplest models can be obtained if we assume that

^{k)^Cok^Pm{k') (2.1)

where Pm{k^) is the polynomial of 2mth degree. It is equivalent to replac-

ing the integral operator by a differential one.

The equation of motion takes the form

w^pouix, w) -\- CoD^Pmi— D%)u{x, w) =— q{x, w) (2.2)

All phenomenological theories with high order derivatives (couple-stress

theory, multi-polar theory and so on) have equations of motion of such a

type.

These approximate models can be interpreted from two different points

of view. The usual approach is that the polynomial cok^P,„{k'^) coincides
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with first members of the expansion ^{k) in the vicinity of A = 0. If ^{k)

is given, or the behavior of the dispersive curve at small k (long waves) is

known, one can obtain the first approximation assuming Pi (A^) = l-\-PAik^,

where y4i is a suitable non-dimensional constant. It permits one to describe

correctly the dispersion of long waves (the dispersion must be considered

as small).

This approach is known as long-wave approximation and corresponding

models are called media with weak space dispersion. The scale parameter

/ must be considered as small and the theory can not be applied at dis-

tances of the order of / and especially for distances smaller than /.^

If we extrapolate Pi{k^) in the domain of large A (short waves) we can

formally obtain additional eigenfunctiohs corresponding to zeroes of

Pi{k^). However, these functions in general have nothing to do with the

exact ones. Hence this approximation is not suitable for describing the

dispersion of waves on inhomogeneities and formulating the boundary

value problems. Note that w^ax does not exist for any polynomial

approximation.

A different possible approach is based on the idea replacing ^{k) by a

polynomial having the same first zeroes. If the condition ^{x) ^0 is ful-

filled then the first order approximation has the form

<J.,W=c„A-^(l-|J)(l-^) (2.3)

to which corresponds the differential operator of the sixth order.

Evidently the first zeroes approximation when compared with the long-

wave one has a little less exactness at small A but its advantages are as

follows. Firstly a qualitatively correct description of the effects, for which

the waves with length of order / are essential, becomes possible. Secondly

the main terms of the asymptotic solution are preserved. Thirdly the

correct formulation of the approximate boundary value problems (it will

be discussed below) becomes possible.

Assuming w < M^max have

(D.,(A) --M;2po + cDi(A)— M;2po fj {^-]^^) ^2.4)

and the corresponding Green's function is

2 l^ik f^{w)\x\

«=()

^ Unfortunately this misunderstanding is widespread.
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For the static Green's function we have

GW»|c„-|x|-2Im|;^. (2.6)

If the condition "^(x) ^ 0 is omitted the first zeroes of (^{k) can be

situated on the imaginary axis. In this case the differential operator of the

first approximation will be of the fourth order. The equation of motion is

the one-dimensional analogue of the couple-stress theory.

Let us now mention some other possible approximations different from

polynomial ones. Sometimes the approximation of the dispersive curve

by a suitable function of k is of interest (for example, when interpolating

between experimental points). This model is valid for undamped waves

but it can not be extended in the complex /c-plane and hence has nothing

to do with boundary value problems. For the latter purpose models based

on the approximations of the type

,T,/ ^ \ 3col~^ when U| ^ / . /2 , „ ^„,„,„

^*^> =
to when M>/,

^W = V^^«'-^^-"'"^

are valid. We have respectively

<D(A;)=6co/-2(^l-^^), ^{k)=2col-Hl-e-'''^'in

Such models describe correctly all specific effects of non-locality.

III. Boundary Value Problems

Let us assume that the equation of motion (L4), which we can rewrite

in an operator form as

(i>uu ^ {—w^p-^'i>)it = q (3.1)

describes two distinct media connected with elastic couplings and occupy-

ing the regions Fand V*. We can pick out in each medium boundary layers

S and S* (of width / and /* respectively) in which parameters of the

medium are disturbed owing to the interaction. Non-disturbed regions

are denoted by D and D* so that V=D-\-S and K* = Z)* + S*.

The equations of motion of the transition region S + S* have the form

— w^PsUs + S(i>u = qs, —w^ps*iis'i' + S*<i>u = qs'^ (3.2)

where us = Su and so on. Owing to non-locality the terms S<I>w andS*<I>w

cause the connection of these equations both between themselves and

with the equations for the undisturbed regions. Below, the boundary condi-

tions will be derived using eq (3.2).
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To formulate fundamental boundary value problems we resolve the

elastic coupling operator ^ into the sum

^ = ^1 +^v * + "^i F* . (3.3)

Where

The operators ^r, ^r* and "^n * characterize the interaction of the

points inside each medium and between them, respectively.

Correspondingly

0 = <I)F + 0r*+0rK* (3.4)

where, for example,

Or^i//./-^! , ^v{x)=j ^y{x,x')dx' (3.5)

and / is the identical operator.

When the media do not interact then '^i f*= 0 and hence On * = 0.

In this case eq (3.1) resolves into two independent equations. For the

medium in the region V we have

— w'-pU\-\-(i>vU\=qv. (3.6)

Taking into account that

cE),=Z)cI> + r, r= SOr (3.7)

we can replace (3.6) by the equivalent system of equations

D<t>uU = — w''pu,)-\-D<t>u = qi>, (3.8)

TwU^ — w'-pus-i-ru^qs. (3.9)

The first equation connects displacements with given forces in the

D-region. When /^ 0 it turns into the usual equation of motion of local

theory of elasticity. The second equation connects displacements with

given forces in the boundary layer S. When /
—> 0 it turns into the usual

boundary force conditions. These considerations permit one to interpret

eqs (3.8) and (3.9) as the first fundamental boundary value problem of

the non-local theory of elasticity.

For the second fundamental boundary problem we have

(3.10)
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where hix) is given in S.

It can be shown that in the static case both the first and second boundary

value problems can be reduced to the Fredholm's equation with symmetric

kernel.

It is important to emphasize the distinction between the first and the

second problems. The latter can be reduced to the integral equation with

difference-type kernel in the case of the homogeneous medium. But it

is not so for the first problem because of the inhomogeneity of couplings

in the boundary layer. Hence in the non-local theory the solution of the

first boundary value problem is more difficult than that of the second one.

In a manner analogous to that used in the local theory we can introduce

potentials of the simple and double layers and derive the Green's formula

ud = GicQi) + GicQs — Gw r + Us, (3.11)

where Gic is the fundamental solution of eq (3.1) and F,^ is conjugate

to Tic. This formula permits one to formulate mixed boundary value

problems.

As an illustration we shall construct the solution of fundamental static

boundary value problems for the homogeneous half-restricted medium
assuming that D(0^x<^) and S(— /^^<0). We shall start with the

second problem which is the simplest one.

^ <^{x — x')u(x')dx' = q(x) , xeD, (3.12)

us{x)=h(x),<t> xeS. (3.13)

We shall represent the solution as the sum

u = u-\-v (3.14)

where u{x) is the particular solution of eq (3.12) vanishing at x^ ^ and

v{x) is the solution of the homogeneous equation satisfying the boundary

condition Vs — /i — Us.

Let G{x) =G{x) —xI2cq, where G{x) is the static Green's function

defined by eq (1.16), then

u(x)= j^G{x-x')qn{x')dx'. (3.15)

The function v(x) can be written in the form

v{x) = ^v''en{x), (3.16)

n=0

where e„(x) — exp (iknx) and kn are zeroes of <J>(/r) for which Im A„ > 0,
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(A;o = 0). To find the coefficients Vn we shall construct the reciprocal

functional basis e^{x) satisfying the conditions

(em^ e,) ^
I

€'''{x)e'''n'^dx = e'''{k„)=8^. (3.17)

For this purpose one will use the representation

^{k)=^Ak)^.{k), (3.18)

where O + (<!)_) are entire analytic functions having no zeroes in the

upper (lower) half-planes. Their Fourier-preimages ^+{x) and <t>-{x) are

concentrated on intervals (0, /) and (— /, 0) respectively. It can be shown

that

$-(A) =exp
2mj-oc k —k

(ImA<0) (3.19)

and e'"(A) are given by the formula

,f-iy , (3.20)
^-{k,n) [k — km)

Their Fourier-preimages are concentrated on S and have the form

e^'(x)= ,

'
, r ^-(x-x')e-^''m-^'dx\ (3.21)

Finally, for the coefficients v'^ we have

(t;^, e«) = vs{x)e''{x)dx, (3.22)

and that completes the solution of the problem.

In the case of the first zeroes approximation the solution can be obtained

in a similar way. The approximate Green's function is given by eq (2.6)

and

-V-tI'^i} <^'<^) '3.23)

Thus one can obtain the solution in an explicit form.

Note that approximate boundary conditions can be expressed in the

form

the second condition being equivalent to two real ones.

1—^ ji^"^ir ' = {e\h)^ (3.24)
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Consider the force boundary value problem taking now the form

I
^{x-x')u(x')dx' = qo{x), xeD, (3.25)

j r{x, x')uix')dx' = qs{x) , xeS (3.26)

The displacements appearing in the boundary conditions are determined

in the region {—l^x^l). The following decomposition is valid in

this region

u{x) = 2 u"€n{x), (3.27)
?i= 0

eo{x) = l, ei{x)=-^, en{x)=€'^-n^ (ri = 2, 3, . . .), (3.28)

where A:„ — all the zeroes of ^(/). The coefficients are found by using the

reciprocal basis e

M'"==(a, e"0, {e>'\ en)=8'^\ (3.29)

The construction of e'" is performed by the formula analogous to (3.20)

where <^{k) is used as the generating function.

The forces Qs like Ug can also be decomposed in the basis e„ so that the

boundary condition (3.26) can be rewritten as

rnu= I; T,mie'\ u)=qn (^ = 0, 1, . . .), (3.30)

m=\

r„m= (e„, Fern), qn={en,qs)- (3.31)

The exact solution of the formulated problem as it has been mentioned

is much more difficult than the previous one. But in the first zeroes

approximation the problem is essentially simplified. In this case the eq

(2.3) is valid in the D-region. Corresponding boundary conditions can be

easily obtained from (3.30) containing displacement derivatives up to the

fifth order.

Note 1. In contrast to the couple-stress theories the connection between

the approximate boundary conditions and exact ones is given above

and, in particular, the method of calculating moments q,,, through given

forces qs is indicated.
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Note 2, Boundary effects can induce an additional disturbance of elastic

couplings ^ in the boundary layer S. This leads to corresponding changes

in the coefficients r,„,(.

For example

The boundary value problems considered above can be generalized

for the three-dimensional case. For instance, the Green's formula becomes

where the notion will be obvious.

The existence of new types of surface waves can be shown to be a

specific non-local three-dimensional boundary effect. The long surface

waves fade into the boundary layer of order / in contrast to Rayleigh waves.

We have the following specific distinctions of the non-local theory of

elasticity from the local one:

(a) There exists a scale parameter.

(b) There are new types of undamped and damped waves (damped

eigenfunctions in statics).

(c) There is a maximum frequency for undamped waves.

(d) The wave velocity depends on their length.

(e) The boundary is replaced by a boundary layer.

(f) There are new types of surface waves different from classical ones.

The approximate models can take into account some of these effects.

The choice of the approximate model must depend on what effects we

want to preserve. The simplest models are of the polinomial differential

type to which all couple-stress theories belong. The usual approach is

to consider them as long-wave approximations. The alternative approach

is based on the first zeroes approximations. The latter is more adequate

in the cases where boundary value problems and inhomogeneties are

considered.
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A NON-RIEMANNIAN CONSTRUCTION OF VARIA-
TIONAL CRITERIA FOR PLASTIC MANIFOLDS
WITH SPECIAL REFERENCE TO THE THEORY

OF YIELDING

Kazuo Kondo
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Tokyo, Japan

The variational formalism is viewed not as an independent assumption

but as a natural consequence following from a more fundamental penetra-

tion into the recognition of nature and this is shown in regard to the static

aspects of plasticity. The energy is defined as the necessary quantity for

the geometrical construction. With the Riemannian and non-Riemannian

picture, a bridge is sought between the theory of yielding and the theory

of dislocations, as also between the theory of dual yielding and theory of

couple stresses. The standpoint of the theory of yielding and dual yielding

is explained constitutively with a statistical construction to reconfirm the

formulae which have been proposed. The meaning of the plastic constants

involved in the theory is clarified by the construction.

Key words: Continuum mechanics; non-Riemannian theories; plasticity; yielding.

Introduction

A connecting link will be sought in this paper between the continuum

theory of dislocations and the theory of yielding in Riemannian and non-

Riemannian terminology. In order to carry this into effect, the variational

criterion for the mechanical material manifold will be viewed from the

standpoint of the dislocational and dual dislocational picture of the

plastic disturbances. We shall treat the variational energy criterion not

as an independent assumption but construct it as a natural consequence

from an equivalence of two adjacent non-Riemannian configurations.

The important generalizations derived therefrom of the concepts of the

mechanics of plastically deformable continua and a reconfirmation of

some of them are as follows.

1. The Riemannian space of stress and stress function is introduced

as the dual of the Riemannian space of strain and incompatibility, the

possibility of the asymmetric stress and of the couple stress following

spontaneously.

Kundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Biilloufih,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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2. The strain-incompatibility Riemannian metric is modified to an

asymmetric feature by the Lagrangian multipher method.^

3. A constitutional derivation will be made of the fundamental equation

of the theory of yielding and dual yielding including a constructive defini-

tion of the plastic material constants standing in the formula.

Another exposition of the same material but different in minor features

from the present one will also be published elsewhere.

I. Construction of a Variational Criterion

I.l. Tearing of the strain space

The concepts which we call incompatible deformations need to be

considered in order to release all the material elements from the strains.

This is the process which we call the naturalization.

The material in the naturalized state has the Riemannian metric

ds'- = aKKdx^dx^ (/<, X=l,2, 3) (LI)

where x^'s are the coordinates fixed to the material element and can be

made to agree with the rectangular Cartesian coordinates of the point in

space occupied by the material point before the naturalization. The

unnaturalized state has then a Euclidean metric

dz'- = d),^dx'dx^ (k, k=l, 2, 3).

The strain is represented by the difference of the two metrics ds'- — dz-

so that the difference of the two metric tensors referred to the same

coordinate system is an appropriate quantity to express it.

As an invariant expression of the strain, one can adopt

def

exK = — — 2(6xk — oxk), (L2)

which reduces to the ordinary Concept of strain tensor in the special case

in which compatible deformations alone are considered, i.e., when the

metric ds- is also Euclidean.

Obviously, the metric tensor okk has the same dimensionality as the

strain tensor ex^-

The incompatible characters of the strain is represented by the Rie-

mann-Christoffel curvature tensor

if..Mr= 20[„ta*}+{f,|,|}{il]4) (1.3)

' cf. footnote 5, p. 772.
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where

This is to assume a Levi-Civita paralleHsm.

Another metric connection can also be introduced. Its parameters of

connection have the structure

ru={U}^S^->!<-2S,^\, (1.4)

where S^^" is the torsion tensor. The process of introducing such a con-

nection into the metric space will be called a tearing of the given Rie-

mannian manifold (see e.g., [1], [2] etc.). It has been studied elsewhere

that the torsion tensor thus introduced is the analytical representation of

the density of distributed dislocations.

A Riemann-Christoffel curvature tensor of a more general kind than the

foregoing one is also defined and associated with the new connection. It

is given by

There is a specific kind of tearing which will be called the perfect

tearing. This is the one, of which the curvature tensor R'li^x'^ is annulled,

or which constitutes a space of teleparallelism in the mathematician's

terminology. It is related to a specific anholonomic reference frame (k)

in which the foregoing Riemannian metric of the naturalization assumes

the form

ds- = 8K'K'{dx)'<'{dx)^' {k\ A'=1, 2, 3)

and the components of the torsion tensor agrees with the anholonomic

object of the anholonomic transformation from

dx" = A%' {dxY' to {dxY = A^K dx"

so that

Whether the tearing is perfect or imperfect, we shall distinguish the

tearing dependent feature

from K^fxkK and also write

M,,K = /?^A - K^k. K^k = K.^kKd"'^ R^Jik = RrtJikKa'<\

/mx - - l/2/<a^x, A^ma = M^K - l/2M^vx,

K^K^xa^^., M = M^Ka^^.

369-713 OL - 71 - Vol H - 4
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The tensor /^xx is called the Einstein-tensor. In the three-dimensional

problem of incompatible strain, /^tx /i>t=l, 2, 3) is often called the

incompatibility tensor.

For three dimensional problems we also have

where

= A^M«^'^=-1/2M.

1.2. Variation of connection

We shall consider two torn configurations, one real and one virtual,

and we shall require the condition of their macroscopic equivalence.

Let one of the two connection configurations have the parameters such

as (L4). Let this be referred to rectangular coordinates, denoted by

Roman indices, of the unnaturalized state, where

^ ^lK ^mX ^^(a-m)

is a tensor. Then the other in small deviation therefrom, but equivalent

thereto, is defined by

8r;,=s{;iJ + 8r^i'<=o. (1.6)

Here the deviation, indicated by SF^^^ is a tensor because is a

difference of two affine connections.

At any rate, the variation ought to be expressed in terms of tensor

quantities connected with the configurations of connection. The simplest

tensor obtained from F/^x is the torsion tensor. However, this is not suffi-

cient to represent the space characteristics.

The next simplest one is given as the Reimann-Christoffel curvature

tensor or its equivalent in three dimensions the Ricci-tensor. It seems, to

be appropriate to investigate whether or not the condition (L6) is but in

terms of these quantities.

The question is answered in the affirmative as far as the disturbances

represented by Tj^j are sufficiently small so that we have the following:

Equivalence Theorem: As far as the disturbances represented by the

affine connection T'.. are small, the variational criterion.

is approximately equivalent to

(1.7)
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where , .

W^^\c'"">R,nndX, (1.8)

dX is the volume element, R,i,u is the Ricci-tensor and c'^""''s are arbitrary-

coefficients which are not varied.

Henceforth we shall use Roman indices referred to the rectangular

coordinates of the location in space of the point in the unnaturalized state.

The proof of the Equivalence Theorem is given by considering

(V//^H,„)6^,•= 0

where V/ signifies a covariant differentiation. This is a general formula

which needs to hold without any restriction and is equivalent to (1.6) as

far as hj„^ is an arbitrary tensor. Let this be multipUed by the volume

element

dX = a"^3ldx^''dx^dx'^^K

where

a = det (aji),

and be summed in regard to the indices /c, /, m. Then we have

3! jvih'j,,,mdT,^.jidx^'^dx'dx'"'^ = 0 (1.9)

which also needs to hold without any restriction and is equivalent to (1.6).

Since small disturbances have been assumed, (1.9) is simplified to, by

putting a^^- = 1 etc.,

jd[ih'i,,8r,.yidX= 0 {i,j\ /, m=l, 2, 3), (1.9.1)

where

dX= dx^dx'dx^.

By integration by parts, we have

h'J.\n>8r,yiidX,]-j hiji,„d,8r,]jidX= 0

where § . . . dX is the surface integral which is defined on the boundary,

whose element is denoted by dXi, and the volume integral covers the entire

disturbed domain. Since the condition (1.6) holds also on the boundary,

the surface integral is annuled a priori so that in terms of the Eddington

quantity, we have
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which means, as far as the disturbances are small,

where Rikji is the Riemann-Christoffel curvature tensor and

A; = e'>""/i .'J,,,.

Owing to the equivalence of Rikji and Rkj in three dimensions, we have

^Rikji = Hb,i,yr''Rnm)

where bYf.y^'"" may depend on the coordinates, therefore,

k'^Rikji = f^'^"8{b,,j, ""'R,n„)= ll28{c^"''^Rnm)

where

X //( H = O /. ijklk ;/( /( = klp h ij h in ii

and

viz, c^'"" is varied through, and only through, the factor bi',\jj'""'. Anyhow,
^xmn -g varied and the manner of its variation is arbitrary since the

coefficients h'^.j/s and hence also /c'^'^^'s are arbitrary.

Thus (L9) is simplified to

6r=
|
I 3(c>''""Rnm)dX= 0, (LIO)

so that we have defined the quantity

r=|
I

k^"""^-R,,u„dX (L8.1)

in terms of the tearing and we have

Thus the proof is complete.

Moreover, we have

C^'""R)n)i ~ CI {Iinn ~^ ^nm)
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where Inm is the Einstein-tensor of the Riemannian feature representing

the incompatibiHty and

KnmC'""" = Inma'^'"\ MnmC""''" =Nnrntt'
^''^'^

(1.12)

as can easily be calculated.- Hence dW splits into ^

^U= ^8 I
a'^""'InmdX (1.13)

and

1.3 Non-periphractic condition

Owing to the restriction to small disturbances involved in the construc-

tion of the Equivalence Theorem, the incompatibility tensor can be ex-

pressed by
/"'" = l/2€''^-»>eii"didK-aji. (1.15)

Substituting this expression for /'"" in the foregoing relations, and by

integrating by parts, from formula (1.13), we have

(1.16)

where

/'xu= 1/2 e'^'-'^'^'a/a Attorn.

/^'xA-o= l/2e''''"e^"'a/a',^,„, L'""' = \l2e>'^->"e>'"dK-aji. (1.17)

The asymmetric tensor /'"^'^ can be replaced, as far as it stands in (1.16),

by its symmetric part

I^ij^l/2€''''"ei"'d,d,a^nm (1.17.1)

where

See (2.2) below.
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Similarly L'^'^'j can be replaced, as far as it stands in (L16), by

i/2e^i\i'-»>\e>^i»d,a'^^rn'

On the other hand, the quantity L'"'" need not be symmetric with respect

to m and n.

If the material manifold is continuous and simply connected and

extends itself to remote regions where no plastic changes are going on,

the surface integrals in (1.16) are annulled since the variation of the

connection is excluded on the boundary located in such a region. Then

dU equals

^U^ =l^ j I'^'kijidX. (1.16.1)

The variational formula of the Equivalence Theorem is then simplified to

(1.18)

where J'-' is defined by

J'jaji = a'>"""N,„

Henceforth, we shall restrict ourselves to this non-periphractic condi-

tion. Obviously, then from (1.16) and (1.16.1), we have

diU-Ux)=0

and this should be equivalent to (1.18).

(1.18.1)

II. Dual Riemannian Space

II. 1. A dual metric

Under the assumption of non-periphracticity, the roles of flj/ (or a^^)

and (or a^'"") can be exchanged mutually in entirely the dual manner

between (1.15) and (1.17.1), as they stand in the integrands of the dual

expressions U and of one and the same quantity.

Therefore, in order to preserve perfect duality, a new Riemannian space

needs to be defined where aj] and I^'j play the roles of the metric tensor

and of the Einstein-tensor dually to aji and 7'^. This new three-dimensional

Riemannian space having the fundamental metric form

(2.1)
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can be called the dual Riemannian space, which can more realistically

be called a stress-space or stress-function space from the point of view of

section 11.2.

Once ds'^'- has been introduced, the derivation in section 1.2 can now be

repeated for the dual Riemannian manifold in the dual manner. Further-

more, we may preserve only the symmetric part of the tensor aj;^ or a'

because it only enters into the dual metric form defined by (2.1), we
obtain a perfect dual correspondence of:

6r=6(f/+F)=|6
I
aX»-^{Inm + Nnm)dX

=
I

6 jia-'""Inm +Jjia'^)dX (2.2)

and

6rx = 8(t/x + Fx) = |s ^a^^(q+Nji)dX

= \^\ (2.2.1)

where

Now that the two variational criteria,

Sr=0 and 6rx = 0, (2.3)

need to be mutually compatible, where the tensors aj, and a^^ alone are

varied, producing one and the same configuration, it is necessary that

OiInrn=Jl,,,) and q = aj(jn. (2.4)

and hence

aU=V^ and U'< = aV.

Hence the two formulae of (2.3) are unified into

6r-6(t/+F) =6(af/+f/x)/a = 6(F+aF)/a

= S (
FX + [/X

) /a = dJVIa = 0. (2.4. 1)

However, owing to the assumption of the non-periphractic condition

(2.4.1) needs to be in conformance with (1.18.1). Hence

a = -l (2.5)

is required.
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II. 2. Concepts of stress, stress function and energy

The quantities such as t/, F, and W can be given the dimensions of

what we call energy if the quantities, such as I^'J and for J*-' standing as

the coefficient of aji in the integrand of the energy U and/or V need to

have the dimensions of stress since aji has the dimensions of strain. With

such a specialization, we can assume that the variational criterion (2.3)

or (1.18.1) agrees with the principle of conservation of energy at plastic

changes.

The stress I^'j is symmetric and its field is non-divergent as is easily

proved, so that it has especially the character of the stress tensor applica-

ble to problems of statical equilibrium. The stress field having its structure

has been studied by E. Beltrami [3], H. Schaefer [4], etc. We shall call it

the Beltrami feature. The restriction (2.4) under (2.5) i.e., J^j = I^>j may
be called a Beltramization.

The Riemannian deviation of the dual metric tensor,

turns out to be the Beltrami stress function. We have

as the expression of the Beltrami stress in terms of the stress functions.

Its extension to /j.^ will be called the asymmetric Beltrami feature.

III. Energy Criterion for Full Asymmetry

So far only the stress-function metric has been susceptible of a modi-

fication to asymmetry whereas the strain metric has been treated as

symmetric. Full duality could not be claimed until both have been extended

to asymmetry. This will be done next.

III.l. Extension of the strain-incompatibility from symmetry to

asynunetry by an isoperimetric criterion

The antisymmetric part of I'^'j + J'^j did not contribute at all to the

varied energy dW in the formula (1.18) where no finite boundaries come

about. Such a situation is entailed where the isoperimetric condition

(3=1/2 (/' X ['•^1 + J^ij^)k[ji]dX = const. (3. 1)

is imposed with Lagrangian multipliers kji. Under this restriction, without

affecting the fundamental implication, one can substitute for the in

the original formula (1.18) the modified energy
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where

U'^U-\- ll2jr^(>j^kjidX (3.2)

and

V' = V^II2 Jf^j^kjidX. (3.3)

Therefore, without affecting the fundamental imphcation, the variational

formula is modified to:

8W'=^8 1 {r-^^-i-rj)a;,dx=o. 0.4)
where

a}i = aji^kyi]. (3.5)

As is well known, the subsidiary condition such as (3.1) can be neglected

so long as the multipliers such as k\ji] are restricted to certain character-

istic cases which are fixed by the problem itself.^

Once the asymmetric tensor a'jj is so substituted for aji, the entire formal-

ism included in the proof of the Equivalence Theorem can also be

repeated, though approximately, as follows, to confirm (3.4). Especially,

formula (1.16) is generalized to:

8f/'=|8
1
a^J'^ijdX-^sja^^L'^^'^'jdX.^-^dja'.f,,^^^^ (3. 6)

where aji, L'"*" and U have been replaced by ajj,

j'mn=
l/2e^^"»e^'"a,a/,a;-,-, L''^«= l/2e"^^6^''«a/ca;-i (3.7)

and

U'=lj I!-^-a;,-dX. (3.7.1)

Dually we have, by simple rearrangement of (3.6),

8f/'x-|
8

1

al^-I'^^'^dX-^dja^.^L'^^-dXi + ^djl-^^^^^^^

where
f/' x = 1

J
xo"^^ (3.8)

Or

8(f/'-f/'x)-8(a)'-a>'><)=0 (3.6.2)

where

See e.g., reference [5].
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0)

(3.9)

If the periphractic effect represented by the surface integrals Sco'

and 8(1)'^ are neglected, (3.9) is reduced to

which is the obvious generalization of the symmetric non-periphractic

formula (1.18.1). In that case, it follows that U' and t/'^, as well as U and
f/^, are mutually transformed.

In this extension the concept of stress is generalized to include:

(i) not only the symmetric Beltrami feature which gives the non-diverg-

ent symmetric energy tensor 7*-^ =— /^

(ii) but also an antisymmetric Beltrami feature which gives the non-

divergent antisymmetric tensor y[0] =— /x[u],

(iii) The quantities (incompatibility) and L^'"" are also extended to

the asymmetric features, 1'^^^ and L'''"".

III. 2. Variation of an approximate affine connection

The affine connection is transformed from the Tkji of the foregoing to:

where aji is an asymmetric tensor whose symmetric part agrees with the

metric tensor ^ and Tkji is a tensor as before. Then, when referred to the

Cartesian rectangular coordinates of the unnaturalized state, the difference

8{U'-U''<) = 0 (3.10)

Kji - ^kji =1/2 Oj«;, + a.aj, - a,a;.)

,

•"' We would refrain from calling it an asymmetric metric tensor. In strict sense, more

geometrical constructions are needed for doing so.
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is also approximately an affine connection since

nji=T,ji-hll2{djdl-i^d,aji-dia,j)

is approximately a tensor.

Therefore, one can proceed in a way similar to the construction in

section I.l to obtain the variational function

where

R'lkji ^ ^d[iY'^yi^

small insignificant terms being neglected, and

f^'ijkl = (.xjkf.il

where c'' is the dual of c^j'^, i.e.,

cii = a''^-ll2aa'''K

III. 3. Couple stress of the Beltramic feature

We have

and

/X ij ^Q^lxkij^Q ^(^^ikm^jlnSx^^
) _

The quantity Skji so defined is a torsion tensor introduced into the space

of strain and incompatibility by what we have called in section LI a perfect

tearing of the metric ds^; and the quantity S/^^„ is its dual. The latter is a

torsion tensor introduced into the space of stress and stress function by a

perfect tearing of the metric which will be called a dual perfect tearing.

Since— J^'^^ = /^'^ is a stress of the Beltrami feature, L^^'J is a kind of

stress function. We shall call it a derived stress function. Its antisym-

metric extension L'^'^^^j^ is related to the antisymmetric Beltrami stress by

Hence it is a couple stress, as is well icnown.
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The derived stress-function tensor L^'^^j is given as a homogeneous Hnear

function of the torsion tensor of a dual perfect tearing without dual rota-

tions and the couple stress tensor L'^^'t'^^ is given as a homogeneous

hnear function of the torsion tensor of dual incompatible rotation.

The significant part of the couple stress in yielding the antisymmetric

stress is

where

is a torsion tensor, given as the difference of two dual perfect tearings or

two dual incompatible rotation distributions, dual to

Skji = d[kdj]i

which is the torsion tensor associated with an incompatible rotation

distribution.

IV. A Constitutional Construction of the Theory of Yielding and
Dual Yielding

IV. 1. Multidimensional enveloping spaces of the asymmetric
Beltramic features

We have obtained the extended variational formula (3.6.2). Its reduction

to (3.10) can be effected even if the geometrical structure of the material

is not perfectly non-periphractic, as follows.

If the disturbances are sufficiently small, we can set

d{o)'-(o"')=^j){8nm8L' i^^dXi - 8ji8L
'

^

^ dX

)

where L''^"" and L'^'^^j are linear and homogeneous in

^ kji
~ ^kji ~t~ Skji and Sif^ff^ Slhm H~ Sfnm

respectively. Hence, so long as the varied dislocational and dual disloca-

tional fields are compensated by the incompatible rotations and dual

rotations to satisfy respectively

on the boundary, where (v) indicates the direction of the surface normal,
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(3.10) can be assumed. We shall restrict ourselves to such a case, so that

we have

8r'=|
I

(a'>^'-''8/,.-8aji/'><^J)fl?Z+i J(Sa' - aj^a/' x^-^) t/Z= 0 (4.2)

v/here we can put

aji = 8ji +2 djw^div^ (4.3)

and

= +2 ^jM;^^a,-i;X^ (4.4)

N

both A and M running from 1 to sufficiently large integers.

A more general treatment without assuming (4.1) is also feasible. Its

analysis will be reported elsewhere.

By inserting (4.3) and (4.4) respectively into (3.7) and (1.17), we have

J'ij= l/2e''^'"*e''"2 ^kdnWdidrnV
(4 5)

and

I'xij=il2eil^m^ln^ dkdnlV'didrnV'', (4.5.1)

where the indices A andM are suppressed.

IV.2. Fundamental equations of yielding and dual yielding

The general variational criterion (4.2) is reduced to

1

1

{a'xm;,-daj',r^'j)dx=o (4.2.1)

if the stress-function-stress configuration is unvaried, i.e., if

and to

1 1
{8aj^xl'ij-a'^j8i;r)dX=0 (4.2.2)

if the strain-incompatibility is unvaried, i.e., if
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Substituting from (4.5), we have

= Bf'^^^{{d^dnBw)didmV-h idkdnW)didmdv}dX (4.6)

here

gy g!7 gin

g/fj g/c/ g/cn

gmj gm/ gmfi

(4.7)

By integration by parts, one can transform (4.6) further:

I j
aj?'8r'jdX=

^ ^ j)
dk8wB''^'^''didmvdXn-^^ ^ j> didvB''^'^''dkdnwdXm

-| 2 ^ 8ujdn{B^''^'^d,d,nV)dXk- ^wdrn{B''""^d,.dnW)dXi

+
j

^^d,.d„iB''"»'d,d,nV)dX+^^j 8vdidrn{B^l^^dudnW)dX. (4.8)

Also, we have, by substituting from (4.5),

I
^r^iiba;idX=\^ ^r^^i{{djbw)diV + djw{di8v)}dX

=
1 2 ^^wr^^^bivdXj + ^ ^ j dvI'^'^jdjwdXi

-i^ j8wdj{I'''^jdiv)dX-^^ j dvdi{r^^jdjw)dX.

Similarly for

(4.9)

Inserting these relations (4.8) and (4.9) into (4.2.1), we have
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8w{d,dn{Bf^''^^didn,v)-^djir^'jdiV)}dX

(4.10)

Abritrary values need to be allowed for 8v, 8w, dkdw, di8v in the

interior and on the boundary of the material body so that their coefficients

in the integrands of the volume and surface integrals standing in (4.10)

need to vanish separately. Thus we obtain the field equations

(4.11)

where non-divergence of /'^'^ is taken account of, and the associated

boundary conditions for free surfaces which are derived from the surface

integral of (4.10).

Similarly for the dual restriction (4.2.2), we obtain

dK-dn{B^f^-"^'"did,nV'')-\-rjdjdiV'' = 0

(4.11.1)

where the non-divergence of /''^ is taken account of, and the associated

free boundary conditions which are derived dually to the foregoing, where

B ikmciln

8'j 6'' S'"

^kj 3/cn

gwj g/n/ g/«H

(4.7.1)
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The equations (4.11) etc. have the same form as the equations of

yielding which have been proposed ([16]-[10] etc.) where ^xO = /'x(u)

plays the role of the critical stress tensor and B^^^^ that of the plastic

material tensor. The equations (4.11.1) etc. have the same form as the

equations of dual yielding which have recently been proposed ([11]- [13]

etc.) where pj = r^v) plays the role of the critical incompatibility and
^xkimn

^Y^^^ q£ i^j^g ^jy^j material tensor for fatigue. As can easily be

calculated,
gklmn =_ 2c^ .^\m]\n]

^2)

and

Qxklmn=_ 2ct/^ i
['

I
.Sl'^JI"] (4. 13)

where c^'^' has been defined above and by approximation

c-t^-i = a'f^-'- ll2a''8''f (4.14)

and dually

c^'= a''^'-l/2ad^-'. (4.14.1)

Since the difference of a/"" and 8^^ [a-^mn ^j^^j
gmn)

jg neglected, owing to

(1.11) and its dual, we have

Qklmn=,2k^M[in] (4.12.1)

Qxklmn = 2kx[l^m][ln] (4.13.1)

f^xlmnk = ^mn^kl

The structures of these material tensors B''''"" andB^'^'"'" agree perfectly

with the ones obtained by the previous analysis for yielding and dual

yielding, as will further be shown for symmetric stress and incompatibility

fields.

IV. 3. Reduction to symmetry

In the field equations (4.11) and (4.11.1), only the symmetric parts,

and pj, of the primarily asymmetric tensors, /'-^'J and /''^, come about,

their antisymmetric parts being involved only in the boundary conditions.

There can also be a special case in which the antisymmetric features are

excluded entirely even in the boundary conditions. A well established

geometrical interpretation is associated with this simplified case, as

follows.

This is given by

and

where

v = w (4.15)
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so that

^ji ~ ^Ji ~ ^ U

and the initial variational relations (4.2.1) and (4.2.2) are reduced to

1
1 {a-mji-8ajiIxv)dX = 0 (4.16)

and the initial variational relations (4.2.1) and (4.2.2) are reduced to

I j
{a>^^J8Iji^8ajiI^ij)dX--0 (4.17)

and

|| {8af.rj-a>jdIji)dX = 0. (4.18)

These can also be transformed, by tracing back the transformations such

as from (1.8.1) to (1.13) etc., to:

I
I (k'^i^^dKnmik- dajJ>''j)dX= 0 (4.17.1)

etc., where k^^^" etc. have been defined by (1.11) and its dual.

On the other hand, (4.10) is reduced to

2 I
dw{dh-dn(B^^'^''didm)+IX'JdjdiW}dX

+2 j)
8w{-dn{B>'^'^''didmiv)-I'''''diw}dXk (4.19)

+ 2 j>dkdwB''^'^''did,nWdXn^O

where the symmetric structure of

^klmn — Q[km\[ln] = ^[ln][km\

is considered. The resulting field equation and the boundary conditions

are not at all altered from the foregoing except that only the symmetric

369-713 OL - 71 - Vol II - 5
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stress enters the equations. By integration by parts, (4.19) can be brought

back to

j {2c''m3l>^r]\n]'^Sndkdwdid,nW-I>'ijY{djW

or

j {A--'^'«S(2//[,|[,|'^//|ni,„]A) -I''^jeji}dX=0 (4.19.1)

where

dji= 1/2 djwdiW

and

Hnk^=dndkW^. (4.20)

Comparing (4.17.1) and (4.19.1) we have

Knlmk = 2H[n\[k
\

'^H ||/]|/»] A' (4.21)

The last relation (4.21) has the structure of the well established formulae

in Riemannian geometry which expresses the imbedding of the Rieman-

nian manifold in a multidimensional Euclidean space of locally six dimen-

sions. The three-index quantity ///^^/^ represents its relative curvature of

the Riemannian subspace relative to the enveloping Euclidean space.

^

Formula (4.20) is its approximate expression as far as the deviation of the

Riemannian configuration from the Euclidean condition is small and

represented by the multidimensional Cartesian coordinates are w^.

It is hardly necessary to point out that the eq (4.7.1) or (4.19.1) is the

initial variational criterion with which we have started in our previous

formulation of our theory of yielding to define the yield point as a stability

limit with the critical condition for the stress at which the material mani-

fold leaves the Euclidean configuration in regard to its strain-incompatibility

metric to be curved into the enveloping space obtaining the relative

curvature Z/,';^.^.

In entirely a dual manner, we have formulated our theory of dual yield-

ing to define the dual yield point as another stability limit with the critical

condition for the incompatibility at which the material manifold leaves

the Euclidean configuration in regard to its stress-function-stress metric.

IV. 4. Average isotropy

In order to confirm that the foregoing formulation of yielding and dual

yielding is not trivial, it is necessary to ascertain that the tensors B'^^^

and B'^'j'"'' are not zero tensors.

^ cf. e.g. references [14], [15] etc.
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Some components of B^->'^^ and B^'j'''^ vanish identically whatever the

reference axes:

B>''^^^ll2{a''''d''-a''''8''-a''^'d''-\-a''''8'^)=0,

B>w = 1 /2 (
a
^ 'j^'j - a ^ '•^'S'J - a ^ '^^W + a ' 'Jd'J ) = 0

and similarly for B^'''' and B^^'jj. The sole nonzero components are

Bwi=i/2 (a^''SJJ + a^JJ6'"'-2a^'J8'-^) (4.22)

and
B'<'^jj' = ll2{a''8jj-^ajj8''-2aij8'j) (4.22.1)

where
iy^j. (4.23)

Owing to the restriction (4.23), the formulae (4.22) and (4.22.1) are

further reduced to

1/2 (aX'-'S'J + flX'JS'') (4.22.2)

and
B^'jj' = ll2{a^'d^j+ajj8^^). (4.22.3)

If some restriction is imposed on the structure of the material, further

restriction will be entailed. For example, if the material is perfectly

isotropic, all the components, i.e., not only B"", B''^-^ etc. but also B'jj'

etc., need to vanish so that the tensors B'j'"'' and B^'j'^'' are reduced to

zero tensors. Therefore, the foregoing formulation loses its ground for

absolutely isotropic materials. It is necessary that the material has some

anisotropic or crystalline structure in order that the equations of yielding

and dual yielding, (4.11), (4.11.1), etc., are not insignificant.

A drastic implication seems to be connected with this recognition since

our previous investigations of various possibilities of types of yielding

and dual yielding have mostly been based on the assumption of an iso-

tropic material ([11], [16] ~ [17], etc.). It might appear as if they are all

entirely meaningless!

Rescue comes, however, from the microscopically nonuniform structure

of the apparently isotropic material, such as mild steel which is poly-

crystalline. In such a case, the plastic property has to be recognized

through, and only through, the average behaviour depending on the

statistical average over quite a number of grain crystals which have

different orientations from one another (see fig. 1). This is the case, in

particular, for the material tensor B'j'"' and/or B^'j''''.

Therefore, we have to substitute in the fundamental equations, the

average plastic constants,

B'^'=1^ {a-^
'' ''0] O] 8jjO] O] - a^jjO] O] 6''0[0! ) (4.24)
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etc. where 0\ etc. indicate orthogonal transformations from the axes of

i, j etc. to those of i, /, k, I and the bars indicate the mean values over all

possible directions of the latter sets of axes.

X'

L . X'

Figure L Polycrystalline structure

The apparent macroscopic directions indicated by f,/, k, I can be taken

along any of the rectangular axes. But the directions indicated by i and 7

are restricted to be mutually orthogonal so that their relations to one and

the same fixed mean direction, say of 1, are not even statistically the

same (cf. fig. 2). Therefore, the first and the second term on the right-hand

side of (4.24) need not cancel each other (cf. [18]):

and

so that

^ j J
> j

B'

and

= const. ( ''0\0\- '<jjOp^
j
6

' 'V 0

B'j'j = const. (^^a^'^^Opj^ (^^dW^Qj -^8''0'P^^j ^ 0.

Similarly for

It is a straightforward analogy with the theory of elasticity that the

four-index tensor B'j'^'' which is symmetric with respect to i and k, j

and / and (ik) and (jl) has two, and only two, independent components in



KONDO 783

Figure 2. Statistical distribution of coordinate axes

the case of isotropy. Hence B'''' and B'^j^ are sufficient for describing

the average macroscopic property.

Writing B for B^ and -kB for we have:

; = 1 i^j

+ 2(1 + k) ^ (^^-jd-wj

w \d-d-W
I i

dX.

The equations of yielding are correspondingly simplified to

I

BAAw+ I^'jdJji) = 0
I

1
' '

!

and

I

{l + K)B^i^.)^i^,)^W-KB^W= 0,

I

(2 + K)Bd(^)Aw- ( 1 + K)Bd(^ )d(r>)d(^ )W + I\;,Jd_w= 0

etc. where A is the Laplacian operator.

Similarly for the equations of dual yielding.

It was with these isotropic forms that our previous analysis of yielding

and dual yielding has been performed on various special problems.
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DERIVATION OF A CONTINUUM THEORY OF
DISLOCATIONS ON THE BASIS OF AN ESTIMA-

TIVE ANALYSIS OF CRYSTAL LATTICES

M. Misicu
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Starting from the non-primitive crystal lattice model, a continuum

theory is derived by means of an interpolation procedure which takes into

account the variability of kinematic and dynamic fields. The non-holono-

my of the fields of displacements, energy and entropy is considered in

order to elaborate the analysis of dislocation and irreversible effects.

Key words: Continuum mechanics; dislocation field theory; statistical methods.

The correspondence between single crystal lattices and continuous

models appears to be satisfactory for a limited range of the physical

parameters. In the case of more complex lattices or for large ranges of

variations of the physical parameters, it seems necessary to estimate the

errors of correspondence and to improve the precision of continuous

models by means of a more systematic deduction.

Continuous models such as oriented bodies [1-3], multidimensional [4],

multipolar [5, 6], and dual media [7] belong to a particular description

valid for specific intervals of variation of experimental data. If an inter-

polation procedure is performed, a more complete modeling can be

achieved. A consequence of such procedures is the endowment of the

models with non-local features. The non-locality was considered in an

early work by Cauchy; afterwards integral constitutive equations were

formulated [8] or derived from the adiabatic Born-Oppenheimer approxi-

mation for periodic lattices in the frame of linear elasticity [9-13]. The

employment of a functional apparatus arises, in the customary way, but

difficulties in an effective correspondence, increase sensibly in the case

of non-primitive lattices [16—19], not to mention more intricate aspects

such as non-linearity, flow and dislocations.

The relatively efficient and simple description of certain structural

theories [21-22] which probably can be extended to the analysis of

quantum models [23] and the theory of dislocations [24-29] and dis-

clinations [30—34], as well as correlation type theories— for instance

connecting the dislocations with plastic strain [35] — suggested under-

Fundamental Aspects of Disldc.ition 'l lieory, J. A. Simmons, R. de Wit, and R. Hiillou<ih,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, .317, II, 1970).
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taking the present analysis by further taking into account real non-linear

behaviour and irreversible processes. As a first step toward this end an

interpolation method is developed which utilizes a functional apparatus

in a way which tends to avoid the restrictions pointed out above.

The above mentioned theories [21-35] proceed with deductions founded

on the assumptions formulated in finite terms, series, or asymptotic

expansions [15] (as for instance in non-linear elasticity theories [37—41]

and shell theory [42-53] ) more or less connected with real lattices. A
second type of analysis develops a systematic characterization of the

variation of the field values which thereby implies a synthetic extension

of the functional apparatus. Finally, as is done here, one can use an ap-

proach which identifies the characteristics of the field variable by means

of pseudo-differential operators [52-62]. These allow consideration of

different types of singularities of motion in the lattice.

The physical properties of the lattices are condensed by using a modified

energy tensor which permits a subsequent deduction of constitutive

anelastic equations eventually in connection with specific energetic

theories postulated by means of conditions of flow [63], activation [64],

etc.

The assumptions which have been adopted extend the initial frame of

analysis, since no particular potentials or spatial distribution of matter

are involved. Meanwhile, the malleable character of the adopted descrip-

tion helps to emphasize the essential features of lattices.

Because of the more extensive analysis given here the treatment tends

to be more realistic especially in view of subsequent derivations of par-

ticular constitutive equations and of different kinds of incompatibility

conditions for kinematic and dynamic fields. The case of non-primitive

lattices is also considered in another paper in order to avoid an excessive

development.

I. Structures in a Crystal Lattice

We consider a material structure which corresponds to the physical

model of a non-primitive crystal with internal energy dependent on the

relative positions of the particles (ions).

According to the model considered, the positions of the ions are to be

defined by two sets of points called the primary and secondary structures

(^ and y) so that any point p of referred to a Cartesian coordinate

system (x*^), there is located a particle interacting with a set of other ions

located at the points s belonging to a set S^p of 6^.

If it is possible to distinguish a macrostructure P and a microstructure

n of the primary structure ^ and also a macro and microstructure S, S
of the secondary structure y, we shall consider the coordinates x'^,

x''";^ of the points ^of 11 and X.
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More particular structures can easily be defined. For instance, a

cellular lattice will be characterized by assuming that the microstructures

n^, of the points p, q in P and the microstructures 2^ and 2'' of the

points 5, r of S are disjoint sets

UP n n«= 0, (py^q);!.' n S^ = 0, (s^r). (1)

A primitive lattice corresponds to the condition that the sets 11 and

X are empty
n^x=t (2)

A non-primitive lattice is characterized by the condition H, E # 0.

A coherent lattice is characterized by a secondary structure which is

included in the primary one

^C^. (3)

If S C P, S C P the coherence is ordered and if

yen (4)

the structure is microcoherent.

If the secondary structure S^p associated with a point p of the primary

structure ^ is included in the primary structure:

C ^, (5)

the lattice is endowed with a non-local field of interactions and if yp
is contained in the microstructure of the considered point p:

yp c n^' (6)

the interaction is local.

It is clear that a non-local field corresponds to a coherent lattice and a

local field to a micro-coherent lattice. The conditions

n C P, S C 5 (7)

correspond to lattices with microstructures included in macrostructures

{nuclear lattices).

If for any subset 11' C 11 of a nuclear lattice, the corresponding primary

substructure P' is included in the primary one: P' C P, then the lattice

will be termed structural nuclear.

It, can be easily shown that a microcoherent structural nuclear lattice

is ordered, since for y (Z Yl it appears that X C 11 and hence S C P.

In the next section we shall consider these lattices and more especially

the Bravais lattices characterized by the positions of knots and cells
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x'P = p'a\ (p'=l,2 . . .); jc'J
= jc'>+^'>, (77=!, ... 5). If the crystal

is heterogeneous, similar notations can be used, the indices being re-

placed by the rows pi . . . p„;(p( — 1, . . . 5(), etc.

II. Displacements in Crystal Lattices

The relative motions can be described with the aid of the relative macro

and micro-coordinates

j^ips = j^ip — j^is^^ip = j^ip — j^ip^ ^ips=^ip — ^is^^
(3)

Accordingly the macro-displacements will be defined as differences

between the actual and initial coordinates

u^-=ix{t)-x{0))^-. (9)

The micro-displacements are similarly expressed

lVP=iHt) - ^ (0) ) = u'P-u'P. (10)

In order to characterize the relative displacements, we denote

uips=i^ip-l^is^ ^^ips =^^ip-iiis
^ (11)

TT(T

Thus the relative displacement between two arbitrary ions can be decom-

posed as follows

^ips = u^ip _ ^is = ^j^ips^^^ips
_ (12)

TTlT IT (T TT(T ^ '

III. The Modified Energy Tensor

The kinetic energy can be expressed with the aid of the components of

velocities defined in the lattice and the masses of the material points

r<'-^) =X {mvhi)^r. r('4)-;^ {mv')l. 744 = ;^ m^, (13)

In order to apply the previous definitions, it is more useful to consider the

rate tensor (written in an asymmetric form)

drj = f^duji\ dT'^ = m''du'P, dT''^ = 0. (14)

The repeated indices in different positions (inferior and superior) imply

summation. The absolute forces are denoted by

pY,= {mw^)Y,. (15)
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where w^ = v^ are accelerations. Since the forces are equiHbrated by the

interactions with the secondary structure following equations of equi-

librium must be satisfied:

n= 1 n"+F% (16)

s, a€.9

Application of the action-reaction principle leads to the conditions con-

cerning the symmetry of interactions with respect to the structural indices

Pi^-^Pn=^- (17)

After summation of the interactions of a simple cell with the secondary

structure

fU=J^f7I = -fl,^^ (^^n, a= X) (18)

n. o-

and, considering the resulting external forces acting upon the cell

Fj, = 2 F>7„ (19)

it will be possible to express the balance equations relative to a cell as

n=Y.fu+n- (20)

Here the resulting inertial forces are:

f\.= ^f% (21)

n

The forces in the microstructure of ^ can be considered as a super-

position of link forces between the crystal and the external bodies (^s )

or internal coupling forces (F)

Ff= 2 F^+Ts'T. (22)

for

FVi = -FV>- (23)

The couphng forces can be considered, if the crystal is heterogeneous,

as reactions between the material phases. The resulting forces

77, KcO
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satisfy the equations of equilibrium

n=j,n,+rfi (25)

in which the resulting link forces,

?;i,=^Js7.- (26)

also occur.

For sake of simplicity, the symbols of summation will henceforth be

submitted: p, q refer to P; k, tt to 11; 5, cr to S and respectively. Equa-

tions (10)-(12) and (16)-(26) lead to a reformulation of the rate tensor (14)

drj=Js';dujP + ll2iFJ^^duji^l^

= ^^>dujP+^^'JdWP (27)

+ ll2{Fhqdujf''i F'j^^dujpj +fpsduJP'^ fj;;dujp^i)

dT''^ = nif^du + mj, du '>

.

Here the cell-masses are:

m,= ^m-p. (28)

TT

In the case of primitive lattices, terms with greek indices disappear

automatically.

We observe that additional rigid motions

du''jp=aj (29)

determine a variation of the energy rate tensor

dT*U = 'aJ
, ^/r*'4 = ma'. (30)

Here

iS'=^(S i,, m= X (31)

stand for resulting body forces and total mass.

Consequently, if the resulting body forces vanish, dT'j is invariant under

additional rigid motions:

^/r:^ = 0 for ?;' = 0. (32)

Analogously, if we consider additional rigid rotations
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dup = b)xi,, {bij = -bji) (33)

it follows that

+ +2 (/'^')/-+
• • )}H (34)

Hence, in the case of vanishing external forces (^^' = 0) and if the inter-

actions and coupling forces (F) are central forces

{v'F),qJls={v'f)ps. etc.,

where
v^ = xlU 1= (xjxj)^'- = VjxK (35)

Since b is an antisymmetric tensor, we deduce the invariance condition

of the apherical component of the energy rate tensor

f/r*'' = 0 (36)

for additional rigid rotations.

IV. The Correlation Between the Dynamic and Kinematic Fields

in Crystal Lattices

The interactions f^^^'^ can be derived from a potential or generally ex-

pressed in terms depending on the relative coordinates xj^^.,
^'^I'J . This

dependence presents more complex features if we take into account the

retardation effects, so that variables at different time instants must be

considered. Furthermore, in the case of a Van der Waals crystal, since

the interactions are not reducible to single central forces, it being neces-

sary to consider interactions between more than two ions to express the

polarization effects, the forces are derivable from many-body potentials.

In order to avoid the difficulties which arise from the consideration of

the different cases mentioned above, we shall disregard a particular form

of potential. The method of description adopted below will be further

apphed.

The indicial notation pt will be assigned to particular events which

correspond to a position x'^ of the ion p at an instant t (or x^^t for the

position x'^^ at an instant t + r). The values t vary continuously or are

spread discretely over the time axis. The relations (1)— (7) can be easily

transposed in the frame of a "procesual" analysis using instead of the

indices pt, etc. the "chronotopic" indices P, etc. The double indices
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PQ (37)

stand for an elementary transition between anterior events P and sub-

sequent ones Q. In (8)— (12), (15) we then substitute the indices

p^pt (or P), etc. (38)

and consider the dependences

fU=fUi^^AB)- (39)

AB stand for the indices ps (at an actual instant t) and for {t ^ t ^ to).

More generally, if non-locality intervenes, the indices correspond to

different points and instants.

If x{^ii = xj/' — x\'^^— (xf — xf.^ = u\'^ — u\\ the interactions depend on

the relative displacements. If /ps(0)=0, then we can reformulate (39)

as follows

B depends on the relative coordinates and/' is a residual term which

either can be included in the first term of the righthand side member or

can be used in order to express a part of the interaction forces which

vary in a qualitatively distinct manner (for instance, varying slowly with

a low intensity for very distant ions p, s and increasing rapidly for close

distances between p and 5) while the first term varies rapidly only for

close ions. Considering the usual properties of crystals, /' stands for a

principal term.

'

We assume that (39) can be solved so that the displacements can be

expressed in an analogous form to (40):

W = A^.x^ + u'\ {p7^s-i{ps)J(AB)). (41)

xj corresponds to different anterior stages. The residual term u\ which

takes into account the usual physical processes, is a secondary term with

rapid variation for small distances and tends to zero for large distances.

The coefficients A and B will be termed kinematic and dynamic

distortions.

The tensor (27) associated with a primitive lattice takes the form

+ 1/2 2 ( {vR'{) ..du'^- + {o'''^dA{. + dB[.\j'^)ps)AB (42)

+ dT''j-h . .

(Ij'i4= {vmdu^)f,.
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The non tensorial indices p, pq, ps are correlated with the tensorial indices

1,7 while k is referred to AB. du^ vanishes '\ix^^g are initial relative coordi-

nates, stands for the volume element of the cell with the knot p and

Vps = Vp + Vs.

The following notations are also used

R'i=flvinAi-{u'jlvij))Bi
(43)

dT'^j=ll2 ^ if'duj), Tj = rj-ll2Bix^u'j.

In the last four relations the following correspondences between the in-

dices are considered: i, j ps, k-^AB and Vps = V(i) — V(j).

We observe that if the dependences concern only initial variables ^•^g,

then dul^g = Q and in (42) the terms disappear. For vanishing external

link forces 3' have 0. dT^^ are residual parts which can be ne-

glected if the supports of the residual parts of the kinematic and dynamic

terms are disjoint or if these parts are of higher order. The first case corre-

sponds to a variation of kinematic and dynamic terms of complementary

type, in the sense that in the regions where the kinematic terms vary

slowly, the dynamic ones vary rapidly. The classical stress model corre-

sponds entirely to an implicit acceptance of this situation. In figure 1 such

variations appear simultaneously. From a physical standpoint the situation

corresponds to interactions which decrease rapidly with the increase of

distance between the ions, while the relative displacements vary slowly,

etc.

Figure 1. Variations of residual forces and displacements,
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The coefficients which appear in (42) are of dynamic nature and will

be called the distortions of the energy tensor. In a more synthetic treat-

ment it appears as useful to introduce the notations.

a=l . . . 9; T>j=T-; a=10, 11, 12; r^=T^ (44)

so that for vanishing dual effects (42) reduces to the conditions

dT^ = Tldx^ (45)

for

(a) a = ij=l, ... 9

^8=1 = 1,. . . . 9;Tl= V^^ = (T^^b{,X = A]^,\ = psAB

/3 = A:-10, 11, 12; Tl^T\ = vW^^, X= x^, k = p (46)

^=13, 14, 15; T<'p=r{=vR^8{,X = xj, \ = pq

(b) a = i = 10, 11, 12

/3=;=1, 2, 3; rg= Tj = i;m8j , Z= k = p.

The relation (35)2 implies the condition of equilibrium

{rx'^),s = {fx^)ps (47)

concerning the couples of interactions. Consequently, the "stresses"

cr satisfy the identities

cr[%'^] = 0 (48)

and admit the decompositions

a-ij = o-^ij)-\-cr[ij] (49)

in which appears the additional term

Taking into account (41), AB does not include the actual couple of indices

ps so that (50) is formulated by means of generalized displacements

x^AB~xis- If these differences are very small, (50) can be neglected and we

obtain a symmetric stress tensor (49).

The equihbrium equations (20), (25) and (18) can be formulated by means

of the new defined quantities (43)



MISICU 795

ps
AB

Here we have donated

Vi and / are defined in (35).

Q

Aj— Vjll and

(51)

(52)

V. Interpretation of the Non-Holonomic Character of the Energy
Tensor

For simplicity's sake we assume a plane strain state characterized

by three components of the tensor A(ij) = eij and three components Taj).

Hence, for a strain cycle in the plane en, €22 there is an open path in the

plane Tu, T22, as in figure 2.

The differences clTn, dT22 of the components Tn, 7^22 furnish a measure

of the "remanence" or hysteresis during a cycle. In the plane Tn,

any cycle corresponds in a converse manner to a path in the plane en,

e22, as in figure 3.

^2 -

1

<
1

\

>

^//

Figure 2. Strain cycle and stress path.

The remaining parts c^en, o^e22 give a measure of the remanent strain.

If we assume that for / (en, e22, ei2) < 1 the tensor T is integrable but

for / (en, e22, ei2) > 1 it is not integrable, then there exists in the space

Tw-, T22, T12 a curve which separates the domain of variation for the

values of T with reversible or irreversible character, as in figure 4.

For a strain cycle there is a corresponding closed or open path in the

^11, 7^22 plane if it is located on one or the other side of the separation

curve. If the curve is replaced by a set of singular points in which T is

369-713 OL - 71 - Vol II - 6
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Figure 4. Domains of variations for irreversible stress states.

not integrable, the irreversibility takes a more general character. For

instance, if on the curve cr— e or I —e there is located a point which can be

crossed over only with loss or gain of energy {T increases or decreases)

in an irreversible manner, then for any strain cycle there are correspond-

ing closed paths or open paths separated by the point (fig. 5).

The unidimensional model sketched in figure 6 illustrates this model.

The spring R in the box C has a link B which at a determined position

rubs the threshold A. If the threshold has a finite length, the singular

points must be replaced by a region of accumulated singular points.

In the frame of physics of lattices, such models are correlated with the

Taylor model of networks in which hook-effects are produced (fig. 7).

VI. Interpolation of Physical Fields

Interpolation techniques make use of the step and unit functions:
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G

e

Figure 5. Separated branches on the curve e — e for reversible and irreversible states.

^^^^^
Figure 6. Unidimensional irreversible model

1
B{x)= I sin kxdxlirk

2
' (jc^O)

0, jc< a-6/2

Uf,(x-a) = d{x-{a-hl2))-e{x-{a-^bl2)) = l, a-bl2<x<a^bl2

0,x<a-^b/2

^tAx-a) =bidix-a)-ll2(e{x-{a + b/2))-\-e{x-(a-bl2))))

= 0. x>a + bl2, =-6/2, a-bl2<x<a

= 0, x<a-bl2, =6/2, a<x<a + bl2. (53)

We use the simplified notations f— TTjfj, {j= I, 2, 3),/=;c, a, U, etc.

We denote by A the set of points x = a. B stands for the interval

a — b/2 < X < a-\- b/2. The interpolation is based on the representa-

tion of different values under the unitary form

(54)
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Figure 8. Noncontinuous variation of the function /.

for

ft,
= (f(a + bl2)+f(a-bl2))l2

f=(f(a + bl2)-f(a-bl2))l2. (55)

Figure 8 presents the variation of the function f(x) compatible with

(54).

VII. Spectral Analysis of the Interpolation Functions

Let us consider the Fourier transformation

fix) = (277) --^

I
exp {-ixs)ns)ds (56)

expressed by means of the image function

r is)=( exp {is:^)f{x)dx = J^ (/;,t/J.(5) S.(5) ) (57)
H

and the transforms

Ur.,M = (b(x-a))*Ur,(s)

AP»=(SU-a))*.S>*(s) (58)
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3 /,
TT^f , ^

/

sin 56/2 \

sl2 I

2 i5/2

The integrals are taken between the limits — 1 and 00, For 6-^ 0 we
have

f/,*^ 7736(5/2), (59)

§(:*:) being the Dirac function. Starting from (53) we consider the identities

J a

0 ,X7^0

x' )dx' =1, {b > X > a); = 0, {x > b or x < a)

I 8{x — x')f{x')dx'=f{x), {b > X > a); = 0, {x> b or x< a).
J a

(60)

In the last equahty

/

(x) is assumed continuous in the interval a < x < b.

The function ?7*(s) in (58) is the transformed unit function, since accord-

ing to (67)

J a

Ub{x) = {27r)-^ U,f{s) exp {-isjL)ds

(61)

(59)-{61) imply (57) and (58). We assume 6-^0. Since the representation

(57) is unique, and (56) stands for the unique correspondence in the frame

of the one-dimensional theory of information, the last observation reduces

to the Shannon-Kotelnikov theorem.

VIII. Some Properties of the Interpolation Functions

The functions f {x) are indefinitely differentiable, vanishing in the

exterior of a finite domain of the eucHdean space E (or more generally of a

space R). The whole set of functions f{x), termedfundamental functions,

constitutes the fundamental space K.
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A continous linear functional g over K is defined by means of real

numbers {g,f) for any fundamental function f{x). Hence, a and b being

real, (g, af^bf)=aig, f) + big,f), lim (/, <p.)-^0 for lim ^.,-^0,

in K. We also consider the local integrable functions g (absolutely in-

tegrable in any finite domain ofE or R) and the numbers

(^,/)=J^^
^gtx)f{x)dx,

(52)

/ being a fundamental function. The integration is performed over the

exterior of the domain in which f {x) vanishes. The functionals gC K
are also termed generalized functions. If g G Kis introduced by means of

(62), g is a functional of regular type, termed a generalized function. If

(62) is not valid, the regularity is no longer ensured, the functions being

singular. The whole set of these functions belongs to a space K .

If a generalized function g does not vanish identically in any neighbor-

hood of a point jco, this point is a proper one. The set of proper points

constitutes the support of g. If a set B of points contains the support of g,

then ^ is a functional concentrated over B. Accordingly, /(jc) in (54) is

concentrated over aB, a being the support of Ua{x) (we assume 6 = 0).

Another class of functions, more general than the fundamental ones, is

represented by the functions / with derivatives of any order bounded by

finite-order powers of coordinate variables

\\x^,^x^:'x',^d^^^<i^^'^^f{x)ldx'i^dxl'dxl^\\^C,,,^ (63)

These respective functional space will be denoted by S and the set of

the continuous linear functionals over 5 will be denoted S' (the last one

being contained in K') . Any function/ C K belongs to S. Now we restrict

ourselves to the consideration of generalized functions.

It can be shown that generalized functions possess derivatives which

are also generalized functions and satisfy the conditions

{dfldxj,g) = {f.-dgldxJ). (64)

The product of convolution of two generalized functions

fix)Xg{x) = jfiO^i^-Od^ (65)

has an effective meaning and satisfies the conditions

(fXg,h) = {ftx)Xgiy),h{x+ y)) (66)
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if one of the functionals gorfpossesses bounded support or if the supports

of both functions are bounded by the same side. In these cases the con-

ditions of commutativity, and distributivity as well as the rules of dif-

ferentation are satisfied:

fXg= gXf, {fXg)Xh=fX (gXh)

D{fxg)=Dfxg=fxDg=D{fxg)^ . . .

{D(fXg)^h) = {fXg^Dxh), (67)

D stands for a homogeneous differential operator. Particularily we have

axg^g.'f-XgJf. (68)
dXj dXj

The transform of Fourier for the fundamental function f (Z K satisfies

the conditions

\s^\s^S^lf{s)\^C exp (g,|Ti|+92|T,|+^3|73|), {sj = (Tj+iTj) (69)

Xj < aj being a domain outside of which f{x) vanishes identically. The
space of these functions will be denoted Z(= S*).

The Fourier transform of a generalized function g (over K), is the func-

tional ^(5) (over Z) satisfying the condition

{f\g^)={27r)Hf.g). (70)

/*(5) C Z being the Fourier transform of the function f{x) C K'. Equation

(70) stands for the Parseval formula and can be established directly

according to the definitions of the functions / and g. Further, the fol-

lowing relations are mentioned

P{dldxJ)g'' = P{-is)r{s) (71)

{fXg)*=f*g*JXg={27T)-^
[
r{s)g*{s) exp {-isx)ds.

Since

/*(.s) = (/, exp (/sx)) (72)

it results that

/*(0) = (/, 1). (73)
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(71) leads to other identities

/*(0)-(27r)-3(7, 1), 1*= (277)36(5). (74)

By the way, the last one follows from (60) and (56). The formulas (52),

(59), and (64) will be used for the formulation of the useful relations:

= {277)-3
J
f''{s)g*{s)ds= (277)-^! (f>^g)*ds

{f,U„) = bfi„ (75)

where
r ra+bi2

b= Ui>{x)dx= dx.
J J a-bl2

If /is constant then

{lJ)=Bf. and B = ^b. (76)

The interpolation formulas (54) and (62), the new representation

g(x,x')= ^ {g^„i>Ub{x — a)Ub'(x — a')

B, B'

^^!,„'S:>,>(x-a)^:) b'{x-a') +g%'a'Uu{x-a)^:) b'{x-a') (77)

+ g'<m'i> iAx — a)Uu'{x — a')),

and the functionals

(/, h) = ((7^), h) = (277)-n(/^)*, ^*)

= ^^jMg{x^x')h[x')dxdx' (78)

can be used in order to interpolate more complex expressions

B,B' 16
(79)
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li g{x, x') = gix — x') , the results can be directly deduced from the

properties (66)-(71) concerning convolution products. The above estab-

lished formulas represent one to one correspondences between the func-

tional spaces K' or 5 and the space F{A) of the functions fix). These

correspondences (see (75)i , (76), (79)) furnish the theoretical basis of the

equivalences between the discrete lattices and continuous media.

In connection with determined laws of variation of the values /«, the

interpolation rules present specific features which can be stressed

with the aid of the following parametric developments

f^={ePof,^eP^J\+ . . . .)

/-=(e9o/, + e«/i+ ....), etc. (80)

which correspond to a variation of class C(p, q) . e stands for a small

parameter and p, q or (po, pi . . . .; ^o, gi . . . .) are sequences of

increasing powers called indicators of variability, po and qo are positive

powers called indicators of intensity, i he values /)+, /) are assumed
independent of e. Meanwhile, we assume that the values b vary according

to the development

b = €'%, + €'^bi^ .... (81)

and the following additional developments are accepted:

g+ = esog^-^
. . . ,^g' = e^og'^^

Then we deduce the interpolation rules

if U,)^l e<t^^n^^n)b,J^,„. (82)

If the indicators of intensity satisfy the inequality concerning the

principal part of the developments

<7o + ^() > Po + 5o (83)

or, more restrictively, if

q^) > Po and to > So (84)

then the values vary slowly so that the principal part (for e = 0) of the

parametric developments for (/, g) depend only on the product of mean
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values /+«, g,oa

(f,g)<, = baf}„g+„. (85)

Under the same conditions, the following decompositions are valid:

The term (
)' stands for the residual part which can be easily referred

to previous condierations.

IX. The Fundamental Equations of the Theory of Interpolation

The sets of points S, P defined in the first section will be considered

as supports of the interpolation function. We assume (83) and instead

of b we consider the volumes v. Hence (51), after interpolation and ap-

phcation of the relations (75), transform as follows

bj and Pi stand for the ratios Ajab/vp. R^qlvp. The first integral is per-

formed over the domain s (Z S and the second one over the set of points

q(ZQ(ZPUS'-(r stands for (TpsAB. r, R and ^H' are located at p.

In order to formulate other elements, we define the functional

(/,t/,)=6o(/J )<,+ (/,!)'

{f,g)=b„(f„rigar+(f,g)'. (86)

and
R'= (1, p')+^' (87)

(a,-,c) = [J], id=ac) (88)

as the double integral

(89)

The notation

(M,6) (90)

will be used instead of the integral

(91)

Consequently the following identity holds true

(M,6)-(a,6,c). (92)
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Further, considering (4) and (41) we have
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/'- ib'j,xj) +/'", u'= (<„ jc''-) (93)

for

bi=B^/vij)andai = Allvi,,, (94)

where the following indices are associated: i ps.j AB, k-^CD and

are omitted in the notations.

Consequently, in order to interpolate (43), we define the functionals

obtained by integration over the volumes Vps and vab

[R'i] = {riv. ,ai.)-ia'Jlv, .blX

[a'''] = if/v, , x^-), [kJ''] = [u'jiv. ,
xf"). (95)

These functionals are correlated with the values (43) by means of the

conditions

[R'i^bix- x„.)b{x- Xah) - R'i

[o-'^-] 8 ( X - x„s )b{x-XAB) = (t''^'Ivab (96)

[kJ'^] 8{x- xj,s) 8{x-xab) = kJ/^'lvAB-

Here 8ix) =f[8{xi)

.

1

Finally, the rate tensor (42) becomes

dT'j {'M'\dxj)r+II2{R'. duj ) rci ,

+ l/2( ( [R'{] , dii'<) + ( [aj^] . dai) + (
[ki^^]

, db[)) . (97)

The inferior indices specify the range of integration (over the volume

elements Vp, v,,q, Vab) •

In a way which tends to extend the iterative methods of elasticity

[37-41], or the asymptotic analysis of the theory of shells [42-50], we
shall consider the parametric developments analogous to [80]

:

ns = ^€"%ps. u"^ = ^e"'ui„. (98)

//( in

Any term of these developments corresponds to a distribution of values

so that we shall consider the following system of description. To any field
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elements defined at the points 0,6. .we associate the values ga, gb and

the differences Aabg= gb — ga= yab{g)ga formulated by means of the

ratios yabig) — ^abglgn- Using the above mentioned parametric develop-

ments, we have

yabig) =X ^'"y"f^>>' ^ Anbgwiga. (99)
m

The interval ab is arbitrary. Further, we derive the relations

gb = GabgaAa fixed);

Gab = I+ yab= X ^'"^"'"^

/H = 0, 1,2..

Gabm = ^om-\-yabm, (100)

where ga and Gabm will be designated as the localized value and the para-

meteric characteristics of variability. // M is the minimal power of the

parameter e, it will be called indicator of intensity and the number m —M
the indicator of order.

Let us also consider (99)i put under the form

yig) =y{e,yi. . . .y,n. .). (101)

If (101) can be solved for e, we obtain an expression for, the small param-

eter, e, in terms 71, y-z- . which can be relevant in particular cases.

For instance, the exponential law ^=exp (ex//), e = llL< 1, can be used

in the analysis of boundary layer effects [42-50]. In a different sense

the parametric expansions are implicitly considered in the theory of polar

media. In this paper we consider a more general case, assuming that the

characteristics G are pseudo-differential operators

gb = Gabga = G{b. a)g{a) (102)

g{a) being a function of interpolation defined on a differentiable manifold

il(geCi){Ci)) . Then, according to the central theorem mentioned above,

there exists a function GeC'^ift X fl) so that

g={G.g). (103)

Here g= g{a). Some of the consequences of this assumption in terms

of the theory of interpolation may now be given. Thus,
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^ bafaga= (/, G, g) (104)
a

for

and

2 babjaga,h= (/, G, ^) (105)
r;, b

for

^„,-G(a, 6, c)^, ^= ^-(0). (106)

Relating these results to (94), we have the laws of variability

(107)

da'j= a'l^jdd',.

where (^, a = 0 for i ^ I, j 7^ k) represent characteristics and 6, d values

at a point c; analogously we assume a variation of relative displacements

du'< = yj^duK {y'f
= 0 for A- 7^ /) . (108)

a, )8, y are considered pseudo-differential operators and da, db, du

functions of class Cq. Hence (97)i can be reformulated the form

dVj={W. dx-i) + 1/2 (/?', duj) + 1/2 ( (/?'], f/a')

+ (o-'^";", ^/a;j + (\'.7, d~b'j).

where

XU- = ([X.iA'],^;-).

(109)

(110)

Equation (101) implies a new formulation of the equilibrium equations

which will be deduced below, starting from the observation that the

equation

{f.g)=--l (111)

is satisfied by the function g= /"
' = d{x) //so that

[a''^]=a-^/4o-r. (112)
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Here we have denoted

Thus (87)i, taking into account (96), becomes

r'={l.dj[^,.cr^j>,"),s,AH + R' (114)

for

c* = a A-a
~

' lliji,^
d{x — Xps)8{x — XAH)vAH. (115)

(109) and (113) must be further considered in terms of a new formulation

of constitutive equations. {R and k appear as additional quantities which

can be determined by means of the constitutive equations.')

X. Interpolation Measures of Dislocations

According to the previous notation, we shall consider the following

relative coordinates and displacements

x'''-x''^= ix'^-x'-') =x>''^-x''^-' = ui'''^^^'^ (116)

which can be expressed by means of (41) in terms including the kinematic

distortions:

iPQRS — A il'QRS yjLM A il'QRS = A H'Q — A iHS H 1 7

If, for instance, P = pt, Q = qt, R= pt() = Po, S = qto^Qo then we have

uH'Q'\M. = u'''"^ = u>'' - u>'^ (118)

and for P = pt, Q = pto = So = Po. R= pti = Pi, t > to {t\ being the instant

of transition from an elastic stage to a plastic one), it follows that

u{P)=x^P-x''P''=wP'''\ W'" ^x'^-x'^'^^Wf^P^
(119)

Meanwhile (107)-(109) allow us to decompose the displacements and

the distortions in parts assigned to the description of elastic and plastic

stages

' The terms R in (101) can be correlated with the interactions and implicitly satisfy the

condition of equilibrium which follows from the mentioned ones. However, according to a

previous observation, R will be neglected.
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^j'"'"'«'«"=-4j3,„. -4jX.8<,„
=

.4f'' (120)

In (116)-(120) we assign to any set of transitions and displacement w' . . .

the set LM . . . and the variables . . ., the last ones being assumed

in the next as belonging to a set C^^, that is LMeC^^, etc. Further we shall

neglect the residual parts which can be included in the remaining terms.

Let, then, P, Q . . ., PQ be a chronotopic cycle denoted by ^. By

bi=y\u^p^ (121)

we mean the components of a Burgers-type vector for the procesual

lattices of chronotopes. Taking into account (120) we can decompose

(121) as follows

r = 2"(?)=2^&^'"^0 (122)

which expresses the fact that the eventual existent dislocations cross

over the bidimensional region bounded by ^. If dislocations do not occur,

(122) remains still valid.

(121) can be reformulated without loss of generality using a characteri-

zation of the variations of plastic distortions starting from a localized

value

All'Q. —JiHSo = AiPQRS ykEF

Ajf. is assumed a function of the relative coordinates. We deduce

for

6' = 6;,+ ([S^'>],ai,,,) (124)

«]/>•{ />)=^jAt/»M.y)^ A-), V(j)=VAH. V(k-)=Vhf- (126)

If the right-hand side member of (125)i vanishes identically, llieii />'^„ = 0.

This situation occurs, for instance, in the case of isochrone and isotopic
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transitions, for P — A, Q = B and hence for C''^= ^, when (120) include

isochrone and isotopic transitions (relative to a single one). Hence we have

S^k] = ^\j^k]^ a]^ = AyvrQ. (127)

In order to complete the analysis of vector-like quantities (for instance

of the relative coordinates), we consider the variations

= + ^(^^)
'
j(CD) (128)

and, in agreement with (120) and (121), we deduce

VI, = (
{A'o + A'.^x^ ) ( V->- + V]x>) ), (129)

and
Vi-V'^= {AfVi-^A\^V>)x'^\ (130)

The possibility of an interpolation being accepted (130) leads to the

integral formula

= (aj, V{+ iV'.yi,). xn = V'-V> (131)

where
aj= A'jlv(j). a'jf,

= Ay V(j )

,

(aj,y/^.) = <. (132)

The last equation defines a functional connexion. The solution

y/^ =(«-}/;, a\l) (133)

is expressed by means of the inverse elements a^^ which satisfy the

reciprocity conditions

(aj, (Si). (134)

3{x) stands for the Dirac-type function.

XI. Thermodynamic Irreversibility and Constitutive

Incompatibility

The obtained results can be further developed in the frame of the

thermodynamics of irreversible processes (including the fourth prin-

ciple of the thermodynamics and more adequately the extension of H. B.
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Casimir [68]. Equations (42) and (45) shall be considered as a point of

departure. The residual terms are disregarded

dT- = T-dXf'=(t-^, dX^) (135)

(135) must be decomposed in terms which correspond to reversible and

irreversible effects dT^= dT^p^-\- dT^^j^, fl?r(") = r^(p, dX^. The summa-

tion over a closed cycle in the space {X)

^"^S ^^^^^ (1^^)

represents a measure of the increments of the energy tensor in a cychc

process. If the numbers of indices a and f3 are equal, t appears as a vector

analogous with the Burgers vector. Since, by definition

we have

The following relations

2 n,,,dXe= 0, (137)

f=S T"MdX^ (138)

T"M = ni, + TlydXy (139)

correlate in a general way the coefficients 7"^, which correspond to an

actual and a reference state of distortion.

In order to obtain analogous relations with (125) or (127), we replace

6, A, ij, k, S by t, r, a, ^, y, {dX^^, , dXy^). In (131) we replace y, a,

j, I, k by T, t, a, /3, y and we consider a density of constitutive discon-

tinuities

ih=T^ylV{ji)V{y) (140)

SO that the fundamental measures of dislocations and plastic effects

can be deduced in a unitary manner.

We conclude these remarks with the following observation. Equation

(137) is satisfied if

369-713 OL - 71 - Vol II - 7
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{dX^, t^^^^)=dL^, ^ dL"= 0 (141)

and hence

^ = dL-ldXi^, r^ = df3L\ (142)

d 13 is defined by the conditions

flff
=— 4^ or (dX^d,f)=df, hdf=Q\ (143)

which can be easily analysed by considering the sums of discrete values

according to (85).

The analysis of the incompatibility appfied to the tensor (135) can be

achieved in a more general sense if we resort to an analogous definition

of the differential forms starting this time from the equations

pe = g:, + /i + =^

p6r]-{q[i^h)-q' (log d),i^pOy.y^O (144)

in which
din

^

dp ,

T7 =^+ T7,/i^', ^+ (pi:')./ = p. (145)

These expressions contain the following functions: p (density), (internal

energy), q (heat flux vector), h (absorption rate of heat), ^= pW=XT'^
(rate of mechanical work of distortions), d (temperature), j] (entropy re-

ferred to the unit undeformed volume), p (mass transfer). We assume p= 0.

Further we postulate the following dependences

di] = r]ode + 7] -^dX ^= vdt, dW= W^dX^^ = Wdt ( 146)

de = e,4e^e(,dx~^ = edt,

dA = d{€-er)) =A,4e+ A'^dX'^

^(l-eov-0r)o)de- {e~p-n + dr]^)dX'' =Adt.

dX^' are hidden variables and ^ stands for indices (3 and (3'. It follows that

6dy= dW-^6dy]-d€= {6r)o-l)de+ {W^+er)i,)dX^-\-dr]i3'dX'''

= g,de + yf,'dXf' (147)
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where

gu=er)o-l, Wii+eiiy)-Aii= gn, Oh'-y]- A^- = g^^ . (148)

We neglect Oj and p. A more particular analysis [69] was previously

performed for the case of visco-elastic classical continua. We shall proceed

in a similar way as before using the condensed formulation

edy'=gj,dx\ {g'=g. r' = y) (149)

and the decomposition

Sh=Sh (e)+ glcd'X.''. (150)

Hence
g^/J

play the role of distortions (of entropic nature) and represent

irreversible thermodynamic forces, gnie) are generalized phenomenological

coefficients and
gl^^^•

are elastic parts so that

|;g,V,rf^''=o, (151)

3^{' being a closed cycle in {X). Thus we deduce an analogous form to

(138) for the generaHzed Burgers vector assigned to the entropy.

vanish identically if the Onsager's reciprocity principle is accepted. In

the case of isochrone and isotopic dependences, this quantity vanishes.

The plastic effects can be correlated with non-vanishing entropic Burgers-

type vector.

XII. Final Remarks

(a) The decomposition (137)i leads to the below deduced equations

which contain as an elastic part the terms (140)r and as an irreversible

part (139). From (42), (100), or (142) it is possible to obtain equivalent

equations. Using (132) we obtain in the frame of a linear theory,

r^,,= (cg„A:-), (152)

cgy being elastic constants. A similar result follows from (151). Further,

(139) correlates the symbols T with the analysis of irreversible processes,

since these symbols lead to a definition of torsion and curvature of the

respective connexion, which constitute measures of a constitutive in-

compatibility. The consistent development of the theory will be analysed

elsewhere.
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(b) We observe that the Taylor expansions can be appHed only by in-

cluding systematically terms of the same order of magnitude in the

sense of the above mentioned estimative analysis. For instance, if the

characteristics of variability (see (%)) can be approximated by simple

differential operators, the distributions in (42) take the form

Ui, ,)psx',,. (153)

It follows that the energetic terms including the kinematic distortions

can be expressed in the form

1/2 i&''-dAi^(T>^'''^dA{,^,)) = 1/2 ((o-'^ dai) + (cj ^ia/,,)) ) (154)

for

AB AB

It is obvious that the corresponding model which results only in the

frame of a local theory constitutes an extension of the symmetric con-

tinuum (for x'^^f^ = x'i,g) and if non-primitivity is taken into account, a

more general analysis leads to a Cosserat like continuum which is endowed
with more general features then usually considered.
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THE ELASTIC GENERALIZED COSSERAT
CONTINUUM WITH INCOMPATIBLE STRAINS

R. Stojanovic

Department ofMechanics

University ofBelgrade

Yugoslavia

Considered is a continuum with deformable directors. Dislocations are

regarded as sources of incompatibilities and internal strains. Established

are the relations between the dislocation density tensor and the gradients

of directors. The conservation law for dislocations (i.e. the law that the

dislocation lines cannot end inside a body) appears as the integrability

condition for the dislocation density — gradients of directors relation. In

a linearly connected space L3 in which the directors of a dislocated medi-

um represent fields of absolutely parallel vectors the equality of the dislo-

cation density tensor with the torsion tensor of the space L3 follows as an

immediate consequence. It is also proved that the geometry of L3 is

equivalent to the geometry of the linearly connected space L3 which is

defined in terms of the distorsions, introduced in the theories based on the

non-oriented continuum models. From the principle of virtual work are

derived the general (non-linear) relations for stress and hyperstress. The
stress tensor is not symmetric. In the appendix are presented the modified

divergence theorem and the expressions for the variations of the gradients

of directors in the absence of a displacement field, i.e., in the case when
the compatibility conditions for the strain tensor are not satisfied.

Key word: Continuum mechanics: Cosserat continua; dislocation field theory: oriented

media.

L Introduction

A configuration dt of a generalized Cosserat continuum representing

a body 6 at an instant t of time is characterized by the position x'' (X, t)

of the particles X of the body, and by the directors d^^^X, 0 . A = 1, 2, 3,

attached to each point of the body. If Z^', 1, 2, 3 are material, and
the spatial coordinates of points of the body, and if D*^' are the directors

in the initial configuration,

D*"= D^'\X), (1.1)

Kundanu-nlal \s>< < t- -.1 I)isl.Kali,,M Tli<-..rv. .1. \. Simmons. K. ,1,- W it. and H. Miill-.u^ili.

i;<|s. (Nat. Hiir. Stand. (I .S.I. Spec. I'ul.l. Ml . II, 19701.
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818 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

the equations of motion are

x>^ =x<^ {X\X\X'-\ t) , (1.2)

(1.3)

The theory of elasticity of this medium is discussed in a number of

papers; for references see [1].

In the present paper we are concerned with the problem of internal

stresses in the generalized Cosserat continuum. We assume that the state

of stress can not be associated with a strain tensor which satisfies the

compatibility conditions. Therefore, there are no analytic mappings of

the form (1.2), (1.3) which bring the body considered from a stressed

configuration (/)) to an unstressed configuration (/). In general, a body

may be released from internal stresses only through the violation of its

continuity, e.g., by cutting. It is possible, however, to consider a certain

non-Euclidean configuration (A'^) in a non-Euclidean space L.? in which

the body is free from stresses and its continuity is preserved. If m^,

X=l, 2, 3 are coordinates of points of the body S in the configuration

{N) , in the space L.?, the mapping (A^)^ {D) is given by the non-

integrable relations

where 05^' are elastic distorsions. The strain tensor corresponding to

this deformation does not satisfy the compatibility conditions.

For non-oriented bodies the general theory of incompatible deformations

in elasticity is elaborated by Stojanovic, Vujosevic, and Djuric [2, 3].

To establish the stress relations we shall follow the method and ideas of [2].

As sources of incompatibilities we regard dislocations. In section II of

this paper, we establish the connection between the dislocation density

tensor (which we consider as given) and the gradients or directors. The

integrability conditions for the dislocation density— director gradients rela-

tions yield some geometric implications, which we discuss in section III.

The conservation law for the dislocation density tensor (i.e., the theorem

that the dislocation lines cannot end inside a body), and the equality of

the torsion tensor of the space L.j with the dislocation density tensor follow

as immediate consequences of these geometric implications. The stress

relations are derived in section IV.

II. Dislocations and the Deformations of Directors

Let us regard simultaneously a crystal lattice with dislocations and the

corresponding perfect reference lattice. The lattice vectors D^^> of the

(1.4)
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perfect crystal are determined by the lattice points and if the crystal is

subjected to a deformation, the lattice vectors are deformed as material

vectors. Hence, the lattice vectors of a perfect crystal can not be con-

sidered as directors of a Cosserat medium. The lattice vectors in the

perfect undeformed crystal represent fields of parallel vectors in the

Euclidean sense.

If we refer the reference lattice to a coordinate system X'^ . and the

dislocated lattice to a coordinate system , it is impossible to determine

the lattice points of the dislocated crystal by the mappings of the form

x^ = x^<(^) (2.1)

and the lattice vectors d*^^ of the dislocated crystal can not be regarded

as deformed lattice vectors D^^^ of the reference crystal, i.e., there are

no relations of the form
^u) = /)U)X^^. (2.2)

If P is a lattice point of the dislocated crystal and if Z)^/' are com-

ponents of the lattice vectors of the reference crystal transported parallel

to P, for the components of the lattice vectors d\^^ we may write

^u) = /)U) + /^u)_
(2.3)

The vectors A^^^ vanish if the directors deform as material vectors.

An infinitesimal displacement along the lattice vector is represented

by the expression

dr^ = d\^^dxi (2.4)

Let / be a closed contour passing over lattice points in the "good" region

of a dislocated crystal and surrounding a dislocation line (or a zone with

dislocations). The contour integral

Ab^^^ =
j
dr^^j + A<>')^^^' (2.5)

determines the components of the Burgers vector in the directions of

the lattice vectors d^^^ The Burgers vectors Ab corresponding to the

dislocations surrounded by / is given by the components

A6' = A6^G?;\), (2.6)

where dl^) are vectors of the reciprocal director triad, dlx)dj''^ = 3'j.
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For an infinitesimal region AF encircled by / we have from (2.5)

^b'=j |^^(Z)<>'.j + A{j).])^FO-

(2.7)

Since the vectors D\^^ represent fields of parallel vectors, the gradients

D'^j^j vanish and we have

A6^ = A[|;,.^AF'^'. (2.8)

When AF—>0, we obtain from (2.6) and (2.8) for the dislocation' density

tensor a]}^ the expression

fy:k = fik lim ^^=fik \(X) (2Q\

This relation, or its equivalent

ay* = 4„rf[},',-, = 6«ao, (2.10)

where the fundamental metric tensor b of the Euclidean space is used for

the raising and lowering of indices, represents the basic relation between

the distribution of dislocations and the gradients of directors [1, 4].

The existence of the directors d'^^ for a given distribution of dislocations

depends on the integrability of the equations (2.10), which we write in

the form

did\^^-djd\^^ = 2aifd\^\ (2.11)

Differentiating this relation with respect to x''' and alternating the indices

ijk we obtain

cif,d,d^f' = d]'^>df,a-jj' + «[,
7;,,(/<M. (2.12)

The left-hand side of (2.12) vanishes because of the commutativity of

partial derivatives, and the integrability conditions reduce to the relations

^hk^u]' = -yU)i^h:Cl\'^}C^ij'][iJk]. (2.13)

The indices ijk involved in the alternation in (2.13) must all have dif-

ferent values and hence there are only three independent relations (2.13),
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for /=1,2,3. Nothing will be lost if we transvect these relations with

the alternating Ricci tensor e^j'^ formed with respect to the Euchdean
b

metric tensor b. Writing

le'j''a\ji = a''', (2.14)

and

(/;„a,rf(*'=-</i*'a,rf;„-Di,. (2.15)

the integrabihty conditions (2.13) obtain the form

d,.-a'^' + b'i.,,,a"'' = -D',,„a'"'. (2.16)

Here b'^}( are the Christoffel symbols of the first kind for the tensor b,

and b',^„^ = d,^\n V^.

III. Geometry

In the continuum theory of dislocations the stress-free state (AO of

a dislocated crystal is considered in a linearly connected metric space

with torsion [5, 6, 7]. If gij is the fundamental tensor of this space and

S'..''' the torsion tensor, the coefficients of connection FJ^. are given by

where g'-j"' are the Christoffel symbols of the second kind for the tensor

g and

^/j -^ij '^j-i ^^-ij^

(3.2)

Writing

I
/ b b b \

gijk =2 ^jgki-^kgijy (3.3)

where V,/, denotes the covariant differentiation with respect to the Euclid-

ean metric tensor b [7], the coefficients V^.. may be expressed by

the relations

R= AJ +g*W + /'yf-6*,+ Gyf. (3.4)

If we assume that the lattice vectors of a dislocated crystal represent

fields of parallel vectors in the space L.^, they have to be covariant constant

with respect to the connection Y'\,
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Wid^^^ = fi/j<.^> - r = 0, (3.5)

and from this and (2.15) it follows that

rs=i>j=<,^^^*'. (3.6)

Hence, the geometry of the non-Euclidean space L3 is completely

determined by the directors d*^\ i.e., by the lattice vectors of the dis-

located crystal.

From (2.10) and (3.6) we see that the torsion tensor S'.^' of L3 is equal

to the dislocation density tensor,

Sy^= avf. (3.7)

The integrability condition (2.16) may be brought to a more familiar

form. If we substitute partial derivatives by the covariant derivatives

with respect to the Euclidean metric b, i.e.,

b

and if we use the expression (3.4) for the coefficients of connection, the

expression (2.16) reduces to

V,a'^-' = -G,ia'<>\ (3.9)

Using the fundamental tensor gij of for the raising and lowering of

the indices, so that

the integrability conditions obtain the form

V,a'^= g'^'Gij.a'i. (3.11)

This coincides with Kroner's and Seeger's [7] generalization to the non-

hnear case of the conservation law for the dislocation density tensor,

given in the Hnear theory by Nye [9].

In the treatment of the continuously distributed dislocations Kondo

[6J and Kroner and Seeger [7, 8J consider the space L,] corresponding to

the (A^) -configuration of a dislocated crystal with the coefficients of con-

nection determined in terms of the distorsions c^^,^'

,

ffi„=<^;i/''C- (3.12)
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The coefficients F'}',,, determined in terms of the directors d^^* were intro-

duced first by Bilby et al. [5] (for detailed references, see [10, 11]. However,

the geometries of the two spaces, and Z3, are equivalent. In L3 the

dislocation density tensor is also equal to the torsion tensor of the space,

=ff,„„=*.M^'[/«;- (3.13)

The integrability condition of (3.13) reads

b

y i.a^'' + b^^y' = -T\^^yt
. (3.14)

Comparing this with (2.16) we see that the coefficients of connection

Ffj and Ffj of the spaces L3 and L3 are equal, which makes the geometries

equivalent.

IV. Stress Relations and the Equilibrium Conditions

To obtain the stress relations, the equations of equilibrium, and the

boundary conditions we shall use the principle of virtual work. In statics

this principle has the form

bE = A, (4.1)

where E is the total internal energy of a body 0,

E= j pwdO,

and w is the energy density. A is the virtual work of all forces acting on the

body.

In analogy with [1] we shall assume that the internal energy is a function

of the distorsions (f)'^^^ and of the gradients of directors, d\^l^^ ,

w^w{ct>l^^.d\>;l). (4.2)

We assume further that the independent variations are 8x' and dd\^\

and the expression for the virtual work may be written in the form

A=j^p{fi8x' + gi^, 8d\^^}dv + j {Fi8x' + G\^,8d^l'^)da (4.3)

where /, is the volume force, g'^^^ are the director forces, F, and G'^^^

are surface tractions.
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\ ariation of the total energy gives

8E=( p (-^ 56;; ^
+ 8d[^^. ) dv. (4.4)

To transform this expression to tlie form wliich involves only the inde-

pendent variations 8x' and 8d^^^ we have to apply the modified divergence

theorem (see Appendix, eq (A. 13) ). By (A. 18) the expression (4.4) becomes

5E =jp

^ riting

'(X) "^i
dv. (4.5)

dw , . -P^=K. <4.7)

and appMng (A. 13) and the divergence theorem to (4.5), we obtain for the

variation of the internal energy the expression

bE = - {tf^j8x'^h^^lj8d\'^^)dv^j (r/6jc' + /i(^',6c?<;^')^^aj. (4.8)

The principle of virtual work gives now the equilibrium equations

t^j+pfi = 0. (4.9)

and the conditions on the bounding surfaces of the body,

tynj= F,, (4.11)

h^^^^j =GU (4.12)

The relations (4.6) and (4.7) represent the stress relations, where t]' is

the stress tensor and A^^-', are three tensors of the stresses of orientation.

The internal energy^ function w must be invariant under rigid motions.

If x^' are Cartesian coordinates, the function ic has to be invariant under

the transformations of the group of orthogonal transformations (cf. [lOJ.

p. 884).

x^= ib^ + w^^ )xK (4.13)
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where a> is an antisymmetric tensor of infinitesimal rotation. The

invariance requirement yields three partial differential equations in

94-27 = 36 variables
(f)i^^

and d\^].

\d6L.''^ a^lff',- ^d^fl '''7
= 0.

[01 (4.14)

This system admits 36 — 3 = 33 independent integrals:

Cx^ = c^x=6/,«(/>;,, (/>;;!), (4.i5)

nt=^M>u,C)' (4.16)

and w is an arbitrary function of these integrals,

w = iv{Cx^.,F[-^^ ). (4.17)

Instead of the stress of orientation tensors we may introduce one single

hyperstress tensor h'f^''\

hf^h^^^^d^}^. (4.18)

From (4.8) and (4.14) for the antisymmetric part of the stress tensor we
obtain

which, using now (4.10) and (4.18), reduces to the simple form

The tensor S^^^^g^^=l^^^'^ represents some extrinsic couples which act

on the particles of the body.

From (4.19) and (4.20) we see that the antisymmetric part of the stress

tensor depends exclusively on the hyperstress and extrinsic couples, i.e.,

on the deformations of the directors, and not on the distorsions.

Since the energy function w depends only on the tensors C and F, using

(4.15) and (4.16) we obtain for the symmetric part of the stress tensor and

for the stress of orientation tensors from (4.6) and (4.7) the following

relations:

^<0-) = 2p (/)/^, + /^<,^/)''' + /(0), (4.21)
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hg, =P^,KM^)- (4.22)

In [4] we assumed, that the hyperstress A'^''" is an antisymmetric tensor,

h'j''' =— hj'''\ completely determined by the given dislocation density

tensor. If, moreover, we assume that the director forces act only through

the couples l^'j^ and that /^'^^ = 0, the symmetric part of the stress tensor

will depend only on the elastic distorsions.

V. Appendix

Since there are no integrable mappings of a non-Riemannian configura-

tion (A'^) on the Euclidean configuration {D), a straightforward application

of the divergence theorem to the surface integral

j {f.j8x^ + hil8d\^^)daj (A.l)

is impossible.

The Pfaffians

dx' = (j)l^^du^, du^ = ^\^^ dx' (A.2)

represent mappings of infinitesimal elements dx^ of the Euclidean space

on the corresponding elements du^ of the non-Euclidean space. Let

Xi and xo — xi + Ax be two points in £"3, then

x[-x\ = ^x' = (^[^^^u^; Au^ ^ (t)\^^
AxK (A.3)

The (A^) -configuration is fixed and Aa^ remain unchanged when we

compare different possible configurations (/)).

Virtual displacements of any two points are 8x\ anddxl and if they are

sufficiently near to one another, according to (A.3), we may write

A8x ' = dx!,-8x[ = 8Ax '
= 6(^(\ , A w\ (A.4)

Here A8x' represents the difference of virtual displacements of the two

points, and 8Ax' is the virtual change of Ax' when the points Xi and x-i

undergo displacements dxi and 8x2. From (A.3) we have

A8j»:'-8(/)(\,(/)</>Ajc'. (A.5)
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Figure 1

Let now T'-j be any regular and differentiable tensor field in E:i and let

us consider the integral ^ .

J^i)(b T.jdx'daj, (A.6)

where s is the surface enveloping a volume i; of a body 6- The whole region

V may be divided into a number of small elements Av,,^ with enveloping

surface As.^^ , and we have

For Cartesian coordinates x' we may chose A?;,,, to be cuboids with

edges Ax\ Ajc-, Ax-^. Then, if we put Tj^dx' = T' we have

^>^/L, ^''^-^/I. ^^'^-^/L ^^'^-^/L.,,
\n

+ f f TH-da2) + f f P(-^^«.3). (A.8)
J j-A.S2 j j-A.S3

On A^Jj we have {x ^ x\ y = x'-, z = x'-^)

As-': r = r(jco+Ax, y, z);

and on — As]^

As': 7'' = rU,y,z).

369-713 OL - 71 - Vol II - 8
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Similarly

~Asl: P = PU,yo,z),

As^: P = PU, r, zo+Az),

-As 3: T^=THx. y. zo).

Hence, for the pair of integrals

J\= j ^

rdm -
j J ^ ,

T'da, =
j j ^

irda, (A.9)

''^i
'^1

we have

ryo+Ay rzo+Az

r = [r{xo^Ax,y,z)-r{xo,y,z)]dydz. (A.IO)
-^l Jyo Jzo

However, for the regular field T-j we have

r-^Uo+Ajc, r, z) = r:'Uo, r, z) + a,r:iAjc+. . (A.ii)

and for the variations we have from (A.5)

8X%,+A:c, y, z)
= 8x%,^ Adx' = 3x' ^ 8(t>\^,(j)\>^^Ax. (A.12)

The difference AP in {A.7) obtains now the form

AP= (7;-i6(/>;,,(^;^'+ai7;-^6x')Ajc. (A.is)

For infinitesimal elements AK^[ the mean-value theorem may be applied

to the integrals J]^ , which yields

= iTi'3ct>(y,ct>[^^^dJ^^8x^)AxAyAz

and, in general,

= (r/-^-6(^(\,c/)i^» + 8jT:j3x>)dv. (A.14)

When Ai;^0 and A-^^, the sum (A.5) becomes the volume integral

over V and for any curviHnear system of coordinates we may finally

write

J = jj) Tr>dx'da, =
111^

( 7jTr>Sx'^T.j8(t)U^(})^/^)dv. {A.15)
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For the directors we assume that they are continuous and differen-

tiable functions of position in £"3. If P{x} and ^{x + Ax} are two infin-

itesimally near points of the body 0, the difference of the components

of the directors at P and Q is in the first approximation given by the relation

d\^^{Q}-d\^^{P}^Ad\^^-d\^}Axj^. . . . (A.16)

The variation of this difference gives

8d\^^{Q} - 8d\^^{P} = A8d\^^ = 8AJS^'

= {8d\^])Axj + d\^]dAxj. (A. 17)

But we also have

8Ad\^^ = 8d\^^{Q} - 8d\^^{P} = idd^^^) jAx^ (A.18)

and from (A.3), (A. 15), and (A.16) it follows that

{8\^^),jAxj= {dd\^])Axj + d[^](f)lf^^8(t)[^^Axj. (A.19)

This expression must be valid for any Ax' and we finally have

{8di>^y}j=did\^]) + d\^MU,cf,^/^- (A.20)
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Discussion on Papers by E. Kroner, and E. Kroner and
B. K. Datta.

ERINGEN: I have three questions I would Hke to put to our Chairman.

One is: What are the equations of motion and the boundary conditions in

his non-local theory? The second one is: In a non-local theory why use

the deformation gradients? The third one is: What can be said about the

stability of the elastic continuum? That is, what restrictions does the

non-negative energy function place on the constitutive functionals?

KRONER: As regards the first question, the equations of motion are

integro-differential equations. Actually, one can write them down im-

mediately: one starts with the equations of motion of the local theory in

the form which contains the stress tensor and then replaces the stress by

the displacement via the non-local constitutive law connecting stress and

strain. Now, the second question was why we use the displacement

gradient jSij. Do you mean instead of using the strain or the strain

gradient?

ERINGEN: No, I think that, in general, the deformation of all points in the

body should be used. Why the deformation gradient only?

KRONER: We always use the strain in elasticity theory and also here.

ERINGEN: But here we are dealing, of course, with non-local theory.

KRONER: This doesn't really matter because the strain still is a local con-

cept. The strain describes the change in distance of neighboring atoms,

for instance, and this is the same in non-local as in local theories. The

non-locality has to do with the range of the forces, and so appears not in

the strain but in the crystal.

ERINGEN: Perhaps I could explain that a Httle further. If we remember,

in continuum mechanics dependence of stress on the deformation

gradient arises from the near neighborhood hypothesis. Since you don't

have a local theory, I think that perhaps you have to formulate it in terms

of a displacement functional. In other words, why favor the first gradient

of the deformation?

KRONER: [At this point Professor Kroner gave a short discussion at the

blackboard which was not recorded.] One other comment: If we develop

the strain in the stress-strain law in terms of a Taylor series around the

point r, then we would get a whole series of terms and these would be

strain gradients. So, if you take a strain gradient theory up to infinite

order it would be equivalent to this theory, and so you see that the first

strain gradient approach is a very poor approximation of this non-local

theory.

Fmidaniental Aspects of Dislocation riicorv. .). A. Simmons. K. dc W it. and K. Hulloufili.

Eds. (Nat. Bur. .Stand. (U.S.), Spec. Pul.l. .^17. II, 19701.
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ERINGEN: With this process, can you get not only the strain gradients,

but also higher order strains, third, fourth order strains, etc., which are

not expressible as gradients of the deformation at the point r ?

KRONER: In my opinion this has nothing to do with non-locality. This is

something which comes in if you have a structure of the body as in your

materials. Your materials are primarily not non-local materials. You can

introduce non-locaHty in addition, but that is a different story.

ERINGEN: The boundary conditions. Do you have any idea about that?

KRONER- Again one just writes the local equations and replaces the

stress by the displacements via the non-local stress-strain law. In this

way one obtains the boundary conditions in integral form.

ERINGEN: One other thing: I. am wondering whether we can call your

theory a non-local constitutive theory, because Cauchy's equations of

motion are assumed to be valid rather than a more general set of equa-

tions incorporating the balances of other points.

KRONER: Well, this is a functional equation. The integral equation is a

simple kind of functional equation.

ERINGEN: Right, but the motion of a given point is affected by the mo-

tions of others. In other words you have only an ordinary partial dif-

ferentiation for the stress tensor at the point under consideration, which

does not reflect the non-local character of the field.

KRONER: I have no objection if you call this theory a non-local constitu-

tive theory. About the stability I cannot say much, but, of course, there

are restrictions on the form of these tensors. This has to be explored.

DE WIT: Equation 12 in your non-local review paper looks just like the

strain in a Cosserat continuum. Can you perhaps comment on whether

there is any relation to Cosserat theory here or not?

KRONER: Well, there are some similarities between the Cosserat theory

and the continuous dislocation theory, of course, but I know these are

only similarities. There are also important differences, and I think this

again is a rather long story. Perhaps we could speak of this in the final

panel.

DE WIT: You still maintain there is a basic difference.

KRONER: Yes.

BARNETT: In reply to Professor Eringen's questions, which I think were

very good: If you recognize that in developing this non-local theory,

you try merely to reproduce the lattice mechanics — which may or may
not be correct, but probably is to a certain approximation— you find that

the gradient of the displacement field enters naturally into the represen-
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tation in this quasi-continuum. You don't really care about that because

it is somewhat artificial; you have a choice of solving the equation in

either of the two representations, direct or reciprocal, and if you go to

the Fourier representation, which is probably the most natural to do

from the lattice, then you are talking about a displacement. You don't

really ever have to worry about displacement gradients — unless, perhaps,

you went to higher order terms in the expansion, in other words the an-

harmonic terms; then you might pick up the higher gradients of the dis-

placement field. At any rate, ifyou remain with the Fourier representation,

you really only have to worry about the displacement field as far as the

harmonic approximation is concerned. Secondly, from some work I have

started I think this question of stability is one which is very important,

and it is still open to discussion. We tried to look at this from a stand-

point of investigating these integral equations in terms of generalized

functions. It turns out that you run into some very difficult problems

because positive definite operators are defined only with respect to

particular types of functions which we really don't encounter in any of

these physical situations, so that was a very good question which we
cannot answer right now.

One thing I would like to interject is that I think there is a fundamental

difference between approaching the non-local theory from trying to

reconstruct the lattice mechanics using Kunin and Krumhansl's inter-

polation schemes,^ and trying to develop the non-local theory by con-

tinuizing the lattice through the Euler-MacLaurin formula. You can show

that you do run into all sorts of difficulties or differences when you try to

construct solutions for point force loadings, and if you don't take account

of the cut-off in k space and the fact that the Brillouin zone is bounded,

then if you wish to develop non-local mechanics along the same lines that

lattice mechanics have been developed, you have to change things. If

you represent a point defect by a dilatation center, you have to spread

out the dilatation center over a certain volume of space in order to obtain

an admissible solution. So there are many questions that are still open

and I don't think it is really clear how these two approaches differ and

how they are similar, but I think there are some very fundamental dif-

ferences.

KRONER: If I may just answer this. First, I did not think we had any dif-

ficulty with the dilatation center in this formulation of the theory, and

second, of course, it is true that you can extract all the solutions of lattice

* Krumhansl, J. A., in Lattice Dynamics, R. F. Wallis, Ed. (Pergamon Press, Oxford, 1965);

Kunin, I. A., PMM, 31, 889 (1967); Vdovin, V. E., and Kunin, I. A., Soviet Physics -Solid

State, 10, 297 (1968); Kosilova. V. G., Kunin, I. A., and Sosnina. E. G.. Soviet Physics-

Solid State, 10, 291 (1968); Kunin, I. A., in Mechanics of Generalized Continua, E. Kroner,

Ed. (Springer-Verlag, Berlin, 1968).
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theory from a continuum theory, but only part of these solutions have

physical meaning because of this cut-off, etc. Now I think the selection

of physically meaningful solutions is probably another problem which

makes obtaining solutions from the two formulations equally difficult.

[Written contribution] Having thought over Dr. Barnett's comment once

more, I am quite sure that his "very fundamental differences" of the two

formulations are just the usual differences between ordinary space and

Fourier space representation of a theory. It then depends on the problem

itself which formulation is to be preferred.

ERINGEN: I would like to insert a small comment. I thought that I was

playing here the Devil's Advocate in bringing this stability back which I

discussed with Professor Kroner sometime ago, trying to induce him to

look into this publicly as we discussed privately. Perhaps I owe an apolo-

gy for this. In regard to the problem of non-locality, I think it is a very

good start. I do approve that. I had some misgiving myself in a paper

sometime in 1965, where I used a purely formal way of introducing this.

I have been puzzled ever since then precisely about these three

questions I raised.

MARADUDIN: My question is prompted more by my background as a

crystal physicist than as an elastician, but it seems to me that the chief

advantage of elasticity theory was its generality and freedom from model

building. The general properties of the elastic constants followed either

from the symmetry requirements of the point group of the crystal or

from more general invariance conditions, rotational invariance and

things of this sort. There were few independent parameters of the

theory and everything went well. Once you abandon locality in con-

tinuum theory and introduce non-locality, it seems to me that you have

given up these desirable features of local theory, and you are then faced

with all the complications, such as the determining of the Cij^i for exam-

ple as a function of r and r', that you have inherent in the lattice theory.

I guess my question to Professor Kroner and Dr. Barnett would be:

What, then, is the advantage of a continuum non-local theory as opposed

to starting directly from a lattice formulation?

KRONER: Maybe, I could refer to an allegory which is roughly like this:

Somebody has to get up the mountain and there is one plateau here,

another one higher up, and a third one just on top. One gets something out

for his efforts when he comes to the first plateau, he gets something

better at the second plateau, and he obtains the best on top. Now it is

relatively easy to come to the lowest plateau, this would correspond to

conventional elasticity theory. Chmbing to the second plateau would

mean using non-local elasticity theory. Finally one has to do much more

to come to the peak, i.e. to apply lattice theory, except if trivial solutions



DISCUSSION: KRONER ET AL. 835

are concerned. If one compares the calculation of the dilatation center

of Dr. Bullough and the non-local calculation, there is no doubt that the

latter one is much simpler.

Besides this fact it is not at all clear to me that one really gets much more

out from lattice theory because this could only be the case with

phenomena on a rather atomic scale. As is well-known, classical theories

are not too reliable in this region, one rather should use quantum

mechanics. In spite of this clear recognition we often prefer the classical

theory, putting simplicity over accuracy. I doubt that in these cases the

lattice approximation comes much closer to the truth than the non-local

approximation. At least, there exist cases where the solutions in the non-

local theory are obtained more easily than in the lattice theory. To learn

more about this we should start solving problems now.

BEN-ABRAHAM: I would say that as a physicist I much prefer lattice

theory. However, it so happens that we are geared and conditioned by a

few hundred years to prefer continuous functions. I believe Dr. Barnett

showed it very convincingly that the non-local theory is a representation

for just this kind of mathematics that we are used to, and we can, then,

use Kunin's representation, or Krumhansl's for that matter, and find a

physical interpretation around the level of lattice theory. Also, as

Professor Kroner pointed out when we go to atomic distances then

classical theory is rather doubtful.

BULLOUGH: Actually, I think there is quite a lot more in the lattice

theory— in a sense — because, for example, perhaps you could explain

how you would put volume dependent forces into a non-local framework.

Is this a feasible thing to do?

KRONER: I should think that this is possible. In fact, this theory could be

expanded in such a way as to consider many-body forces and it should be

possible to use also volume dependent forces. I have not thought about

this in any detail. Incidentally, the inclusion of many-body forces would

make the theory non-linear.

BULLOUGH: I am a little puzzled that you think integro-differential equa-

tions are simpler than difference equations.

AUDIENCE: General laughter.

KRONER: With the same argument you could wipe away the conventional

elasticity theory by saying that difference equations are simpler than dif-

ferential equations. Notwithstanding, it is a fact that some of your finite

sums are much more comphcated to calculate than our integrals.

BULLOUGH: I don't see this. We just performed an absolute summation

over the reciprocal lattice vectors of the reduced zone. That is just a

quadrature, after all, just as you are involved with integral quadratures.
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The fact that our resuh was obtained through the use of a computer does

not dirty it.

KRONER: Before having really compared the whole calculation you made
and we made, you and I cannot say too much. Even in the particular case

in which you consider you had to make so little effort, the non-local

theory has been much simpler than the lattice theory. Of course, it could

be different in other situations. I think we can discuss it tomorrow in the

"Future Directions" panel.

BL LLOLGH: I just object to having lattice theory at the top of the hill,

that's all.

BARNETT: In answer to Professor Maradudin, all I want to point out is in

this theory [the interpolation theories referred to previously] you merely

use the continuum representation. It can't tell you anything more than

the lattice theory would tell you: it tells you exactly the same thing. It is

just a different representation, but it does allow you to use a formulation

which permits solving very simple problems like point defects and

straight dislocations. I think you very quickly reach a point where it

becomes more efficient to do the lattice theory than the non-local theory

for the simple reason that you begin with the lattice equations and then

rig up a continuum scheme which takes you to either a continuum or

quasi-continuum representation, and then, when you have a difficult

problem— and you will if you just put in a boundary— you must go back

and solve the thing numerically to get some numbers out of it. You have

to do this with a set of difference equations. So, effectively you are going

from lattice mechanics to continuum mechanics, and to get an answer

you go back to lattice mechanics again and go to the computer. So the

question you should really ask yourself is: Why not stay with the lattice

mechanics all the way? I feel there are instances where a continuum ap-

proach might be preferable for very simple problems, otherwise

probably not.

KRONER: [Written contribution] I should like to remind Dr. Barnett that

replacing complicated continuum equations by difference equations is

only one way of obtaining numerical results. Other possibilities may well

be preferable in certain situations, in particular if the step width must be

one atomic distance. Having gained now some distance of time from the

conference, this whole discussion forced upon me seems to be what in

Germany is called a "Streit um Kaisers Bart" (quarrel about emperor's

beard).

It should be evident to everybody who has studied both approaches

that it depends on the problem itself which method one utilizes with ad-

vantage. Fortunately, such choices exist in many parts of physics.

Nobody disputes any more whether Heisenberg's or Schrodinger's quan-

tum mechanics is "better."
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The starting point of this study is a paper by Kroner [1], who proposed

the replacement of the loading history variables in the yield condition and

in the work-hardening equation by internal state variables such as the

dislocation density and the density of dislocation loops.

Recently, Fox [2] generalized the work of Green and Naghdi [3] on the

theory of the elastic-plastic continuum. He replaced their linear composi-

tion between the material plastic and elastic symmetric strains by the
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non-linear matrix rule of composition used in the continuum theory of

dislocations for the non-symmetric elastic and plastic distortions. Fox

showed that the elastic distortion is equivalent to a dipolar displacement

field as defined by Green and Rivfin [4]. This permitted the utilization of

the formalism of multipolar continua. However, Fox introduced in the

yield condition the plastic distortion, which is not a state quantity.

The object of the present work is the construction of a non-linear

dislocation theory of the elastic-plastic behaviour for single crystals. To

this end we use the formalism of the continuum mechanics and the

thermodynamic principles adding to the state variables the dislocation

density and formulating a supplementary constitutive equation for the

dislocation flux.

Section 1 contains a new formulation of the non-linear kinematics of

the elastic-plastic deformation, which includes in a natural way the

dislocation density and flux. The basic non-linear kinematic equations

were obtained for the first time by Giinther [5], by means of a four-dimen-

sional formalism and of the analogy with the theory of relativity. The

present approach is grounded on purely continuum mechanical considera-

tions, being related to a paper by Eckart [11], who introduced the notion of

moving local natural configurations.

In section 2 the kinematic equations are linearized and the main

geometric differences between the plastic and the elastic deformation

are pointed out.

Section 3 comprises the analysis of the dislocation density and flux

associated with isolated moving dislocation lines or to other microscopic

dislocation arrangements and motions, in the framework of the linear

theory.

In section 4 it is shown that in the case of uniformly moving dislocation

fines, or groups of dislocation fines, the dislocation flux is completely

determined by the dislocation density and the velocity of the dislocations

with respect to the material.

In section 5 we return to the general theory. The kinematical equations

are supplemented by the balance laws for the mass, linear momentum,

and energy. To construct a theory of the elasto-plasticity, we postulate

an yield condition and an work-hardening equation, which contain as

state variables the stress, the dislocation density, the temperature, and

the dislocation flux. Making constitutive assumptions for the stress, the

specific free energy, the specific entropy, the heat conduction vector,

and the dislocation flux, and using the principle of material indiff^erence

and the thermodynamical restrictions, a rate-type theory of the elastic-

plastic continuum is obtained. The paper by Green and Naghdi men-

tioned above is used as a guide in constructing the continuum theory,

but their formulation is modified by considering internal state variables

which describe the dislocation arrangement and kinematics.
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Section 6 contains a discussion of the theory proposed and of the

possibihties to refine it by considering more microscopic details of the

dislocation arrangement and motion.

The basic tensor equations employed throughout the paper, the equiva-

lences between the direct notation and the component form, as well as

some elements of the theory of S-functions defined on lines and surfaces,

are included in appendix 1.

Appendix 2 comprises a new derivation of Mura's formulae [6] for the

determination of the self-stress and of the particle velocity field when the

dislocation density and flux are known, in the framework of the linear

theory and using Green's functions.

Finally, appendix 3 gives the principal equivalences between the no-

tations employed in the present paper and other notations used in the

literature.

I. Continuum Kinematics of the Elastic-Plastic Deformation

The body ^ is considered in a reference configuration (/.o) at time ^ = 0,

which need not be a natural state, and a current configuration (A ) at time t.

X and xo denote the position vectors of a material particle X in the ref-

erence and current configurations (fig. 1).^ Identifying the particles by
their position vectors in the reference configuration, we denote the

motion of the body by

x=x(xo, 0 (1.1)

and the particle velocity field by

V- x-^X(xo, t). (1.2)
at

The deformation gradient associated with the motion (1.1) is

F = grado x(x,), t) x(x(), t) • (1.3)

We assume that the body contains dislocations. Therefore, a global
natural configuration, i.e., a stress-free configuration of the whole body,
does not exist. Let N{X) denote the set of particles in a neighbourhood
of the particle X. In order to determine the elastic deformation undergone
by N{X) at time t, we may, at least in principle, cut out of the body this

' We shall employ the same names, x and xo, for the spatial points occupied by the particle

X at times t = Q and t. The right-hand operators curl, divergence, and gradient, taken with

respect to the particle positions in the configurations {k) and (A:,,), will be denoted by curl,

div, grad, and curio, divo, grado, respectively.
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neighbourhood and allow it to relax. We denote by (k) the local natural

configuration obtained in this way.

We refer {k) to a system of general co-ordinates x^' and (k) to a local

frame of rectangular Cartesian co-ordinates fixed with respect to the

particle. To simplify the further formulation of the constitutive equations,

we choose the local frames so that they have the same orientation with

respect to the preferred crystallographic axes. Let now Y be another

particle of A^(^). We denote by c^x and the position vectors of Y with

respect to X in the configurations {k) and (/<), and define the elastic dis-

tortion, A, by the relation

where dx^ arid d^'^ are the components of t/x and d^in the co-ordinate

systems x*"' and

We assume that, for sufficiently small neighbourhoods N(X). the so-

defined value of A does not depend on the choice of the neighbourhood

N{X) and of the particle YeN{X). Consequently, by repeating the same

procedure for all particles Xe^ and times t, we may define the field

A(x, t). In the presence of dislocations, A cannot be written in general

as a global deformation gradient, although it may be further interpreted

as the gradient at X of the function describing the local deformation

around X, that is the deformation of N(X) from {k) to (A;) (see e.g. , Teodosiu

and Seeger [7] )

.

Since the local frames are fixed with respect to the material, A does

not depend on the rotation of A^(^). In order to simplify the shifting of

the tensor components from {k) to [k], or inversely, we may then assume

that the local frames are rotated together with the corresponding neigh-

bourhoods so that their axes become parallel to a time-independent

rectangular Cartesian frame with axes z^' (for a two-dimensional repre-

sentation see fig. 1). Consequently, if the relation between the general

co-ordinates x^ and the Cartesian co-ordinates is

then the shifting of the tensor components from {k) to (/<) and inversely

may be done by using the formulae

dx'' = A>'^d^\ (1-4)

z" = z" (x'-')

,

1=^
kK

where the shifters and are defined by
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Figure 1. Two-dimensional representation of the motion and of the elastic-plastic

deformation.

Let us follow now the material vector linking the particles X and YeN (X)

throughout the motion. We denote by Ao, t/xo, and d^o. the values of the

fields A, (/x, and d^,. at time t = 0, i.e., those corresponding to the reference

configuration, and define the plastic distortion P(x, t) by the relation

(1.5)

We assume that the fields F, A, and P, are continuously differentiable

and admit for every fixed time t the inverses A~\ and P~\ hence

FF F T= 1, AA 1 = A 'A= 1, PP 1 = P ip=
1, (1.6)

where 1 is the unit tensor.

From the above definitions we infer that the deformation gradient F,

which will be also called total distortion, may be expressed as

F = APA; (1.7)

We remark also that in our considerations the choice of the reference

configuration does not play a special role, because we have not assumed

that this configuration represents a natural state of the body. It is true that

from (1.5) it follows P(x, 0) = 1, i.e., the plastic distortion is measured

with respect to the reference configuration. However, as only the time

derivative of P will be essential for the theory, the choice of the reference

configuration is in fact immaterial. One may dispose of this arbitrariness

by choosing as reference configuration an unloaded state of the body.
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Let us consider now a smooth surface s, bounded by the closed line c,

and containing the point x. The true Burgers vector, b, of the dislocations

piercing through 5 is defined by

(1.8)

It is important to note that in the integral (1.8), the vector is considered

as function of x and t. Substituting (1.4) into (1.8) and applying Kelvin's

transformation (A.22) gives

^ A~i(ix =— (curl A"i) nflfs —
J

<^ ds, (1.9)

where n is the unit normal to 5, and the positive sense on c is chosen

clockwise when sighting down along n. The tensor

a = - curl A-i' a^'" --e'-^'M^, „ (LIO)

is usually called the true dislocation density. If a is a continuous function

and 5 is infinitesimal, we may write (1.9) as

dh = ar\ds, db" = a'<^n,„ds, (1.11)

where dh is the infinitesimal true Burgers vector of the dislocations

threading £^5.

2

We may define now the infinitesimal local Burgers vector, dh, and the

local dislocation density, a, at x, by the relations

dh^Adh, db^^A^4b^ (1.12)

(1.13)

From these two definitions follows also

db=ands, db^ = a^^nids. (1.14)

2 For the time being there is no system of definitions and sign conventions generally

adopted in the continuum theory of dislocations. The present author tried to employ a system

of notations close to those frequently used nowadays in continuum mechanics. The sign

conventions will be mentioned explicitly. A table of equivalences with the notations used

by other authors is given in appendix 3.
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Along with the well-known true and local dislocation densities, a and

a, we shall make use of another dislocation density, a, first considered

by Noll [8] , and defined by

a=jaA'^, a'^'«=y^%a:'^'^, (1.15)

where

7 = 1
det A-i|. (1.16)

In order to understand the significance of Noll's dislocation density

let us consider first an oriented material surface element, nds, through

the particle X, in the current configuration (A:). By releasing a neighbour-

hood N{X) of X containing the surface element, the magnitude and the

orientation of the vector nds will change to hds, say, and we have (see

e.g., Truesdell and Toupin [9] , p. 249)

hds=jA'^nds, h\ds= jA^xUids. (1.17)

Substituting (1.17) and (1.15) into (1.11) yields

= binds, db'' = a'<Hxds. (1.18)

Since the true Burgers vector dh and the oriented surface element in

the local natural configuration nds do not depend on the elastic distor-

tion, a does not either, in contradistinction to the true and local dis-

location densities which vary under superimposed elastic deformations.

Equation (1.10) was called by Kroner [10] the fundamental geometric

equation of the continuum theory of dislocations. When the dislocation

densities a or a are known and time-independent, this equation allows

the determination of the self-stresses produced by dislocations, when
combined with the equilibrium equations, the elastic constitutive equa-

tions, and the boundary conditions.

Let us consider now the kinematic of the elastic-plastic deformation.

Differentiating (1.5) with respect to t gives

^=Pg?^o. (1.19)

Since

d^,, = F-'d^=V-'X-'d^, (1.20)

369-713 OL - 71 - Vol II - 9
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we may write (L19) in the alternative forms

d^ = id^=id:x., (1,21)

where the tensors I and I, called dislocation fluxes,^ are defined by the

relations

I ^ lA^PP-i, I\= I\nA ^^ = P>^~h^ (1.22)

By analogy to the names given above to the dislocation densities, we call

I true dislocation flux and define also a local dislocation flux, I, by the

identity

I^AT, ru^A'\l-i (1.23)

From (1.21) and (1.8), considering that c is a material line, follows

(1.24)

This relation shows that the dislocation flux characterizes completely

the transport of the Burgers vector through a material line.

If we denote by grad and grado the gradients taken with respect to the

particle positions in the configurations {k) and (A:o), we derive successively

from (1.1)-(1.3)

grado(.) = [grad(.)]F,

F = grado v= (grad v)F, (1.25)

grad v= FF"^

By taking into account (1.7) and (1.22) the last relation becomes

gradv-(APA^-i+APA^-^ )AoP-^A-i,

from this follows

_ .
-1

grad V- AI f AA-S v'\i= A^J''i + A''^A'<i (1.26)

If the dislocation flux I and the dislocation density a are known, as

This denomination will be justified by the considerations in section 3.



TEODOSIU 845

for instance in the case of a uniformly moving dislocation, the eqs (1.10)

and (1.26) together with the usual equilibrium equations, the elastic con-

stitutive equations, and the boundary conditions, allow again the

determination of the self-stresses produced by dislocations, as shown

by Mura [6] (see also app. 2). However, I and a cannot be assigned arbi-

trarily. In order for the eqs (1.10) and (1.26) to be compatible, the following

conditions must be satisfied

diva = 0, a'<"\,u = 0, (1.27)

curl (AI + AA)=0. (1.28)

To eliminate A from the last equation we shall write it first in its com-

ponent form^

-1

By performing the differentiation of the first term in the paranthesis,
-1

multiplying the result by
^JJ,

and taking into account (1.6)2, we obtain

-1 _ -1

ei^»^A^^,sA\.I'<i^e''"'{Af'^A'<i),s = -€^'^I^i,s. (1.29)

By (1.6)2 and (1.26), the first term of this equation may be transformed

as follows:

e^'^'A^ , sA ^Jxf =- €'''"A^K; sA'^-J'<

,

Equation (1.29) becomes

- e '"''A\;sv''\i^ e"'" {A'^-~A'<,A\.) = - e'-''-"'/\, ,. (1.30)

Using (1.6)2, (1.10), and (A.23), we have

^ When using the component form of the tensor equations we write for convenience the

non-tensorial subscripts underneath the kernel index, and the non-tensorial superscripts

above the kernel index.
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dt

and eq (L30) takes the form

From (1.10) follows

Hence, we get finally

(1.31)

(1.32)

which is the required compatibility condition for 1.

There is also another more indirect but much simpler way of demon-

strating (1.32). By applying Kelvin's transformation (A.22) we derive

from (1.23)

(curl I )nds, (1.33)

where s is the material surface bounded by c. On the other hand, by apply-

ing the formula for the rate of change of the surface integrals (see e.g.,

Truesdell and Toupin [9], p. 346), we deduce from (1.9)

a (gradv) ^ a div \} nds

.

(1.34)

By comparing (1.33) and (1.34) and taking into account that s may be

arbitrarily chosen we obtain the equation

a— a (gradv) ^ + a div v=— curl I. (1.35)

which coincides with (1.32).

Equations (1.10), (1.26), (1.27), and (1.35) are the basic kinematic equa-

tions of the non-linear dislocation dynamics. They were obtained for the
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first time by Giinther [5], by using a four-dimensional formalism and the

analogy between the theory of dislocations and the theory of relativity.

The present approach has in author's opinion the advantage of being based

on more elementary and direct considerations and on methods which are

currently employed in continuum mechanics.

Before closing this section we shall mention another formula giving

the rate of the plastic change of a material length element. Let dV' be

the square length of the vector element d^, linking the particles X and

YeN(X) in the configuration (k). We have

dl' = 8,Kd^'<diK (1.36)

Hence, by using (1.21) we obtain

dJ'=2h,^^d^^de- (1.37)

The last formula was obtained for the first time by Eckart [11]. The tensor

J -1/2(1 + 1^), Jkx-7(kX), (1.38)

appearing in this relation, was called by Eckart anelasticity tensor and

by Truesdell and Toupin ([9], p. 372) slippage tensor.

II. Linearized Kinematic Equations

In order to linearize the kinematic equations deduced in the preceding

section, we write

F=l+i8 % P=l+/3 \ A-1+/8, Ao=l + /3,), (2.1)

assume that the magnitudes of the tensors /S*^', /3o, as well as those

of their material derivatives^ /8^% p^, 0 are "small," and neglect their

products in the linear approximation.

We obtain successively from (1.6)., (1.22), (1.23), and (1.25),

A-1-1-/3, (2.2)

I-^-^-/3^ (2.3)

gradv^/3^'. (2.4)

Following Kriiner [10], we shall call P'\ /3'\ and /3, respectively, total, plastic, and

elastic distortion, employing thus for them the same nomenclature as that already used for

F, P, and A. We use for the total distortion the superscript G, from the German word

"gesamt", to avoid the confusion with the transpose of /3.
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From (1.13) and (1.15) we deduce also that in the hnear approximation

all the dislocation densities previously defined coincide, i.e.,

a^a^a, b ^ b. (2.5)

Furthermore, we assume that for all kinematic quantities considered

the material derivatives may be approximated by the partial time deriva-

tives, that is,

|(.)=|(-) + [grad(.)]v4(.).

This assumption is justified whenever the gradients of the quantities

involved and the velocity v are sufficiently small.

By introducing (2.1)-(2.6) into the basic equations (1.10), (1.26), (1.27),

and (1.35), we get the linearized kinematic equations

curlj8= a, e^'^^jS'^, s
= (2.7)

grad v^I +^, v>^\ r = Pr (2.8)
dt dt

diva= 0, q:^'",,„ = 0, (2.9)

dot da'"^^= -curlI, ^= -€'-^I'%,s (2.10)
dt dt

This system must be supplemented by eqs (2.3) and (2.4), which, in view

of (2.6), become

I^f^, (2.11,
dt

gradv-^ (2.12)
dt

The system of kinematic equations (2.7)-(2.12), or some of these

equations, were employed in various linear theories of the dislocation

dynamics developed by Hollander [12], Amari [13], Kosevich [14, 15],

Mura [6], and Bross [16] (see also the critical discussion by Giinther [5]).

It is worthwhile to illustrate here the qualitative geometric distinction

between the infinitesimal plastic and elastic distortions (see Kroner [10],

p. 18). To this end, let us consider the neighbourhood N{X) in the con-

figuration (ko), i.e., in the local natural configuration at time ^ = 0. Starting
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from (ko) we may consider a pure elastic distortion po of N(X), to the

configuration (/to), and a pure plastic distortion P'' oiN{X), to the local

natural configuration (/<•), at a fixed time t. To simplify the graphical

representations let us assume that jSo and P'' are constant in N{X), so

that both distortions are homogeneous.

If we denote by E, E'', the infinitesimal elastic and plastic strain tensors,

and by R, R^', the infinitesimal elastic and plastic rotation tensors, we

have the formulae

i8o= Eo + Ro, i8^'
= E^'+ R^; (2.13)

which represent the invariant decomposition of the infinitesimal elastic

and plastic distortions in their symmetric and antisymmetric parts.

Introducing (2.13) and (2.1) into (1.5) and then into the eq (1.4), written

for ? = 0, yields

d^, -d^,= {to + Ro)d^o, (2.14)

d^-d^o=iEP^Rnd^o- (2.15)

For sake of simplicity we refer also the global configuration (ko) to

Cartesian co-ordinates and consider only the following typical cases

(a) . Eo = 0, i?i2 =— i?2i > 0, all other components of Ro are zero (pure
0 0

elastic rotation, fig. 2a),

(b) . Ro= 0, £'i2 = £'2i> 0, all other components of Eo are zero (pure
0 0

elastic strain, fig. 2b),

(c) . E^ = 0, R{2=— ~R 21 > 0, all other components of R^ are zero (pure

elastic strain, fig. 2b),

(d) . R'' = 0, Ev2=E2i > 0, all other components of E^ are zero (pure

plastic strain).

Furthermore, we take

di^ = di2 = 0, dis = 0,
0 0 0

so that the vectors d^o, c?xo, and d^, all He in f '^-planes. Moreover, in the

case of the pure strains considered above, the chosen direction of the

vector d^o coincides with that of the principal positive extension, hence

it undergoes merely an elongation.

We consider first the elastic distortion. By pure elastic rotation, the

vector d^{) undergoes a variation perpendicular to itself, and its length

remains constant in the linear approximation. The lattice is rotated together

with N{X) (fig. 2a). The pure elastic strain results in the deformation of

the lattice together with N{X). Due to its particular orientation, our vector



850 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

d^o maintains its orientation but its length is increased (fig. 2b). In both

cases of pure elastic rotation and pure elastic strain, we indicated by

dashed lines the directions which would be taken by the axes and if

they were material lines.

Next consider the plastic distortion. To facilitate the comparison with

the elastic distortion, we have taken in fig. 2c, d, R^'=Ro, E^'^Eo, so

that the material vector d^o suffers the same rotation and elongation as

c. Pure plastic rotation d. Pure plastic strain

Figure 2. On the geometric distinction between the infinitesimal plastic and elastic

distortions.

in figure 2a, b. However, in contradistinction to the case of the elastic

distortion, the lattice does not rotate and deform together with A'^(Z).

III. The Dependence of the Dislocation Density and of the

Dislocation Flux on the Microscopic Arrangement and Kine-

matics of the Dislocation Lines

For completeness we write down the expression of the dislocation

density and flux for an isolated dislocation. Such expressions may be found

in different papers and books but because of the differences in notations

and sign conventions it is better to make precise those conventions that

are in agreement with the definitions used in sec. 1 for the continuous

distributions of dislocations.

We begin by the convention used to determine the Burgers vector.

Assume that the dislocation loop occupies the spatial fine L. Choose a

positive sense on L, and denote the corresponding tangent unit vector to
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L by l(x/J, where x/. is the position vector of a current point on L. To
determine the Burgers vector of the dislocation in a small neighbourhood

of X/., make the Burgers circuit in a sense that appears clockwise when
looking down the dislocation line along l(x/J. Make the corresponding

Burgers circuit in an ideal crystal. The vector which completes the circuit

and is drawn from the beginning point to the end point is the true Burgers

vector.

It is easily seen that the above convention coincides with the continuum

definition (1.8) if we choose the positive signs on all dislocation lines

piercing through 5, so that the scalar product n • 1 be positive for all

dislocations in the points where they intersect s. For an isolated dislocation

we have

a(x) =b (8) §(L) = b 0 1 (x,)6(L), «'^'"(x) = b'<l"^M^{L). (3.1)

Indeed, if we take a smooth surface 5 that intersects L in only one point,

where n • 1 > 0, we have by (A.30)

which coincides with the definition (1.9) of ol.

For a straight infinite edge dislocation whose line L is parallel to the

axis of a Cartesian system of co-ordinates (fig. 3), and has the equation

(3.2)

z- L ' (3.3)

we have

b = -6ei, h{L) = h{z^-z])h{z''-z'\).

Figure 3. Straight edge dislocation.
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If the positive orientations on L and on the axis coincide, 1 is equal

with the unit vector es of this axis and by (3.1) we deduce

ol{z\ 2^ z-^)--65(zi-ZA)6(2'-z2)e, ©e3. (3.4)

a,^{z\ z\ z^) =-66(zi-zi)6(z2-zi). (3.5)

Consider now a moving planar dislocation loop, which occupies at time t

the spatial line L?, situated in a plane with unit normal n. Denote by

V(x^^) the velocity of the dislocation line at x/,^ , and by St the planar

spatial surface encircled by the dislocation loop at time t. We assume

that V(x/,^) and b lie in the plane of the loop (the glide plane) and attempt

to determine the plastic distortion produced when the size of the loop

increases from a point to that of St. In the remaining part of this section

we shall use the linear approximation presented in sec. 2 (formulae

(2.2)-(2.6)). Consequently, we neglect the velocity of the material particles

with respect to the dislocation velocity and the elastic deformation of

St together with the material.

Figure 4. On the plastic distortion produced by the expansion of a dislocation loop.

Let G?^o be a vector element at time ^= 0 (fig. 4). If c^^o does not intersect

the glide plane, it remains invariant during the motion of the dislocation

loop, hence d^=d^o. If d^o intersects the glide plane, the component of

d^o parallel to the glide plane remains unchanged during the motion of

the dislocation loop, and the component normal to St changes by b. In

the general case we have

d^= d^o-^hin • dSo)diSt), (3.6)

or, equivalently,

d^^{l^h®n8{St))dSo. (3.7)

Comparing (3.7) with (1.5) and (2.1)2 we deduce

P=l+b(8)n6(S,), (3.8)
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li'' = h^ndiSt). (3.9)

Finally, by (A,36) we derive the expression of the dislocation flux for the

glide of an isolated planar dislocation loop in the linear approximation

l(x,0 -^=:b(8)V(x, )X6(L,), (3.10)

or, in component form,

/a-,(x, t) - b,€UnnV'"U,^)l»U,^)d{Lt). (3.11)

By examining (3.7) and figure 4 we deduce also the rule for determining

the plastic distortion produced by the expansion of a dislocation loop.

Arbitrarily choose one of the unit normals to St as the positive unit normal

n. Choose the positive sense on the dislocation loop Lt clockwise when
looking down along n. As the loop increases its size from zero, the dis-

placement of the part of the crystal into which n points, with respect to

the part situated on the other side of is equal in magnitude and direction

to the Burgers vector.

For the isolated straight edge dislocation represented in figure 3, mov-
ing in — direction with the velocity V{t), we have:

\ = -V(t)eu h = -beu 8{Lt) = 8(z'-zl(t))8{z'-z',At))e:u

and by (3.10) we obtain the flux corresponding to this motion

li:s.,t)=-bV{t)8{z'~zl(t))d{z-'-zUt))ei^e2 (3.12)

whose only non-zero component is

/,2(x, t)=-bV{t)8{z'-z]it))8(z-'-zl(t)).

The formula (3.11) may be also used to determine the dislocation

flux associated with various microscopic arrangements and motions of

the dislocation lines. To illustrate the necessary procedure, we give here

a particular example of single glide.

Assume that plastic distortion is produced by the creation and expansion

of circular dislocation loops, generated by Frank-Read sources, and

moving in parallel ghde planes. When the number of the loops per unit

volume is very large we may assume that it is a continuously differentiable

function of x and t. We denote by A^(x, t) the number of the activated

Frank-Read sources per unit volume, by ai(x, t) the mean number of

dislocation loops emitted by each Frank-Read source, and by /?(x, t)
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the mean radius of the dislocation loops. For the sake of simplicity we do

not write explicitly the dependence on x in the following considerations.

^ e choose a system of Cartesian co-ordinates which has its 2' and 2"^

axes parallel to the glide planes, and the 2- axis perpendicular to the glide

planes. Let us determine first the flux of the loops generated by a Frank-

Read source situated in the plane 2- = 2,7. By hypothesis, all dislocation

loops are circular and remain so during the expansion. Consequently the

velocity has a constant magnitude along every dislocation loop, has a

radial direction, and depends on the radius r{t) of the loop L, and possibly

on time. We denote this velocity by \(r{t). t)

.

Let (2(1 . 2,7, Zq) be the co-ordinates of the common centre of the loops

produced by the Frank-Read source considered, and

Since

V(r(0,0 X l(x/.^)=F(r(0, On, (3.14)

where now n^e^. we deduce from (3.11) the flux of the dislocation

loop Lr

I(O=b0nF(r(O, t)d{p- rit))8{z-' - z'^) . (3.15)

We assimilate now the dislocation loops produced by the Frank-Read

source by a continuous distribution, introducing the number of dislocation

loops per unit length measured radially, n{r{t), t). The total flux of the

dislocation loops generated by a Frank-Read source situated in the plane

2- = 2(7 is by (3.15)

I(0=b(g)n6(2--2o-) V{r. t)n{r. t)b[p-r)dr

= b(8)n6(2--2,7)F(p, t)n{p, t) . (3.16)

W'e can now derive the flux of all the dislocation loops at x and t. by

taking into account the definition of N(x, t) and by integrating (3.16)

over the whole space. W e obtain

l{t)=h^e-iN{t) p §(2^-Z(7)g?2,7 |^F(p, t)n{p, t)27Tpdp. (3.17)
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Finally, if we define the mean radial velocity V{t) of the dislocation loops

at X and t, by ^

I
F(p, t)ri{p, t)pdp = R{t)V(t)n{t), (3.18)

Jo

we get

l = 27rRVnNh'(gin, (3.19)

where all quantities except b and n depend in general on x and t.

Formulae similar to (3.19) were already used (see for instance Seeger

[17] and Kronmiiller [18]) in order to construct dislocational models

of the work-hardening.

IV. Uniformly Moving Dislocations

For certain physical problems it is interesting to study the uniform

motion of a straight dislocation or of a pile-up of straight dislocations.^

In such cases we have

q;(x, 0=ao(x-VO, (4.1)

where ao is Noll's dislocation density at time i = 0, and V is the constant

velocity of the dislocation group considered.

The dislocation densities a and a do not satisfy in general a similar

relation, because they do depend on the deformation of the material

surface and linear elements. However, if the medium is infinite, and the

elastic distortion produced by all other causes are zero or constant, then

;(x, 0=7()(x-V0, A(x, 0=Ao(x-VO, (4.2)

where jo and Ao are the values of j and A at time ^ = 0, and from (1.15)

follows

a(x, 0=ao(x-VO, a'^"'(x, 0=a(r(x-VO. (4.3)

In the remaining part of this section we shall explore the consequences

of this relation and demonstrate that, under the above mentioned hy-

The integral (3.18) is obviously finite, because h{p, t)=0 when p is larger than the

maximum radius of the dislocation loops.

^The uniform expansion of a dislocation loop represents a more complicated situation.

Although the expansion velocity V has a constant magnitude, its direction varies along the

dislocation line.
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potheses, the dislocation flux is completely determined by the dislocation

density at time ^ = 0 and by the constant dislocation velocity V.

From (4.3) we deduce

— hQ:'^"',/F' = 0, (4.4)
ot

hence

dt dt

= a'<>'\i{v'-V'). (4.5)

Introducing (4.5) into (L32) yields

By using (L27) and remembering that V is constant, hence V'\i = 0,

we may write the last equation in the form

{ax'" (v'-V) }j- {a"' {v'" - V"' )},/ = - e"'"'/'^/, r

,

or, equivalently,

e'-"^'{ertsa'<'{v'-V') -ll.}j = 0. (4.6)

If V = V, the dislocations do not move with respect to the material. There

is no plastic deformation, therefore, 1 = 0. Consequently, from (4.6) we
deduce

I =-aX (V-v), I'r=-erts^^'{V-^-v'), (4.7)

and, by (1.13) and (1.22), we have also

I =-aX (V-v), I'<r=-€rtsa''HV'-v'), (4.8)

Relation (4.8) replaces the constitutive equation which must relate the

dislocation flux to the stress, by a supplementary kinematic condition

valid for uniformly moving dislocations. If the dislocation density at time

^ = 0, a(x, t), and the dislocation velocity V, are known, then we know
a(x, t) and I(x, t) from (4.3) and (4.7) and we may determine completely

the self-stress and the particle velocity field by using the usual field

equations and the boundary conditions of the theory of elasticity (see

Teodosiu and Seeger [7]).

// the particle velocity field v may be neglected with respect to the dis-

location velocity, we obtain from (4.8)

I =-aX V. (4.9)
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Finally, for an isolated dislocation line Lt we have by (3.1),

a(x,0=b(g>6(L,), (4.10)

and we get from (4.9)

I(x,0=b(g)Vx6(L,), (4.11)

so recovering (3.10) for a constant velocity.

V. Theory of an Elastic-Plastic Continuum

In formulating the constitutive equations and in exploring the conse-

quences of the thermodynamical restrictions we shall follow the paper by

Green and Naghdi [3]. However, our thermodynamical variables will

include the dislocation density and the dislocation flux.

The thermodynamic process must be compatible with the law of

balance of linear momentum

divT+ pf=pV, (5.1)

and the law of balance of energy

pe — T • grad v+ div q= pr. (5.2)

Here T= T' is the stress tensor, f is the specific bodyforce per unit mass,

e is the specific internal energy per unit mass, q is the heat flux vector,

and r is the heat supply per unit mass and unit time, all quantities being

functions of^ and t, or, alternatively, of x and t.

Introducing the second Piola-Kirchoff stress tensor, T, defined by the

relation

T=jATW T^^=jA\ A\ A\ (5.3)

and taking into account (1.26) and (1.22) we deduce

T • grad V- (yATA'O • (AIA-» +AA-')

=jA'<,A\P^ iA,J^J-, +A,jK)

-jA ',A /..uf-^^x +jV<^AKAkK.

Furthermore, by using the elastic strain tensor

E = 1/2 ( A'^A- 1 ) , - \I2{A,.A'<K - Ska) , (5.4)
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and the symmetry of T, we may write the last relation in the form

T-grad v=7(A^At) • I+jt-E. (5.5)

Substituting now (5.5) into (5.2) yields

pe-j(A^At) • I-;T-E-pr, (5.6)

or. in component form.

Let p. po. p. and po denote the mass densities in the configurations

(A) , {ko) . [k). and (ko). respectively. The usual law of the balance of mass,

P=7Po. (5.7)

or. alternatively,

p + p divv= 0. p+pr^/ = 0. (5.8)

must be supplemented by the law governing the change of the mass

density on account of the plastic deformation. To obtain this law we
start from the relation analogous to (5.7),

p/po=| det P-i
I, (5.9)

which results from (L5). Differentiating (5.9) with respect to t by using

the formula for the differentiation of a determinant gives

p/po = P-P-^
I

det P-i
I,

wherefrom we derive with the help of (L22), (A.13). and (5.9),

p + p tr 1 = 0, p + p/\=0. (5.10)

As it is well-known, the change of the mass density produced by the

plastic deformation is in general very small. Hence we may consider

that the dislocation flux is a deviatoric tensor, i.e..

tr 1 = 0. (5.11)
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In the case of an isolated straight dislocation, this relation has a very

simple meaning. Let us substitute the linear relation (3.11) into (5.11),

by taking into consideration that I ~ I. We get

eumnbW^'V' = \ • (1 xb)=0, (5.12)

i.e., V lies in the glide plane (the plane determined by 1 and b). The

only case in which the condition (5.12) is not fulfilled is that of the chmbing

of an edge dislocation (V perpendicular to the glide plane), which plays

a significant role merely by high temperatures.

The laws (5.1), (5.6), (5.8), and (5.11) must be supplemented by the

elastic-plastic constitutive equations, whose study will cover the re-

maining part of this section.

We assume that the yield condition for the material under consideration

may be written as

/(t, a, e)=K, (5.13)

where / is a continuously differentiable function of its arguments ^ and

0 > 0 is the absolute temperature. The time-variation of K characterizes

the work-hardening of the material. The rate of K depends in general

on the stress, temperature, and on the arrangement, production, and

motion of the dislocations. We expect, therefore, that K will be a definite

function of T, a, ^, and I. If the dislocation arrangement remains con-

stant, hence 1 = 0, no work-hardening takes place. We may assume,

therefore, in the first approximation, that

/i= W(t, a, 0) -i. (5.14)

Suppose the body is initially at rest, at a constant temperature and free

of external loads. There is a certain range of variation of T and 0 around

this state, where the response of the material may be considered as

elastic. Consequently, we may assume that there is a value of K, say

/^*, such that

1 = 0 for/</<:*. (5.15)

In fact, even for loadings and temperatures satisfying the condition

K<K^, certain anelastic effects are produced by the reversible bowing

out of the dislocation lines between the nodes. However, we shall neglect

these effects in the present approach.

If the process of the dislocation production and glide begins.

^ The more general case when the surface (5.13) is piecewise smooth does not present particu-

lar difficulties, but will not be considered here.

369-713 OL - 71 - Vol II - 10
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We assume that the dislocation flux associated with this process is given

by a constitutive equation of the form

i = i(f , t, a, 6). (5.16)

Suppose we know the function I. It is then possible to determine the

variation of K through (5.14) and the new form of the surface (5.13) in the

space of the stress components and temperature.

The surfaces (5.13) are usually called yield surfaces or loading surfaces

and the sequence of points in the space of the stress components and

temperature, corresponding to the variation of the stress and temperature,

is called loading path.

For states of stress and temperature on the loading surface, we say

that loading\ unloading, or neutral loading takes place according to

whether the vector tangent to the loading path is directed outward, in-

ward, or along the tangent to the loading surface.

Since

ax da dS

loading, unloading, or neutral loading takes place for a given point on

the loading surface {f=K) and for a given a, if the expression

^'T +^e (5.17)
ax dO

is >0, < 0, or=0, respectively.

We neglect in the present formulation the dislocation flux corres-

ponding to the dislocation rearrangement during unloading or neutral

loading. Consequently, we assume that

I-I(X, X, a, 0, 6), when/-/C,^-X + ^^'>0
ax 30

(loading), (5.18)

1 = 0, when/=/^,-^ -1^ + ^(9^ 0
ax 36

(unloading or neutral loading), (5.19)

or when /< K (elastic range).
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Equation (5.18) must be independent of the time scale used to compute

the rate of change, so that I is homogeneous of degree one in T and 6.

If we assume in addition that I is a Hnear function of T and 6, whose

coefficients depend on T, a, and 6, and if we require the continuity of I

throughout stress and temperature space, we may derive from (5.18)

the constitutive equation for loading

I = A(-^-t + ^6»)H, (5.20)
dT 36

where A is a scalar-valued function and H is a tensor-valued function of

T, a, and 6.

We complete now the set of constitutive equations, by assuming that

the/ree energy

ilj=e-er), (5.21)

the specific entropy r), the Piola-Kirchoff stress tensor T, and the heat

flux q, depend on A, d, 6, and grad 0. Using the principle of material

objectivity (invariance of the constitutive equations with respect to the

rigid-body motions), we conclude that A and grad 0 must be replaced in

the constitutive equations by the strain tensor E and by the vector

g = A''grad^. Consequently, we adopt the following constitutive

assumptions:

i// = i// (E,cK, 0. g), (5.22)

7)-=^ (E,d, 6, g), (5.23)

T = t (E, d, 6, g), (5.24)

q = q (E, d, g), (5.25)

where the sign " ^ " is used to distinguish the functions i//, r/, T, and q
from their values.

Let us investigate the restrictions imposed on the constitutive equations

(5.20) , (5.22)-(5.25) by the second principle of thermodynamics, expressed

by the Clausius-Duhem inequality

p77-^+div (^) ^0. (5.26)

Ehminating r between (5.6) and (5.26) and taking into account (5.7) and

(5.21) we obtain

- Pol// - podrj + (A^'AT) • I + T • £ - (7^) -'q • grad 6^0. (5.27)
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From (5.22) follows

i/z^-F • E+T^ • a + T^ 0+ —- g, (5.28)
dE da 30 ag

and (5.27) becomes

d\p\ ( 3\\}\ dijj d\}j

po —— • g — po— ' a.
dg da

+ (A^AT) • i - (7^) -^q • grad 6^0. ^^-29)

In order for- the inequality (5.29) to be satisfied for arbitrary fields E, 0,

and g, it is necessary that

T=po^, (5.30)

.^-3, (S.31)

|f
= 0. (5.32)

Equation (5.32) entails the dropping of g from (5.22), and by (5.30) and

(5.31) also the dropping of g from (5.23) and (5.24). We have, therefore,

i//=i//(E, d, 9), (5.33)

and the functions i) and T are completely determined by the gradients of

i//. The remaining part of (5.29) is

-po-^ • a+(A^AT) • I-O'^)^ q - grad ^^0, (5.34)
da

for loading, and

q-grad^^O (1 = 0), (5.35)

for neutral loading, unloading, and the elastic range. The general dissipa-

tion inequality (5.34) may be decomposed under certain restrictive as-

sumptions into an internal dissipation inequality and a heat-conduction

inequahty, as has been done by Coleman and Gurtin [23J.
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In (5.34) the tensors a and I are not independent of each other. They

are related by the compatibiHty condition (1.35) in which a and I must

be replaced by a and I using the definitions (1.15) and (1.22).

By (5.21), (5.28), and (5.30)-(5.32), the law of the balance of energy

(5.6) may be written in the form

po^r^ + po— -^-(A^AT) -I+Cpo/p) divq^por (5.36)
da

for loading, and

p^i7 + div q = pr, (5.37)

for neutral loading, unloading, and initial elastic range.

We make use finally of the simplifying assumption that during un-

loading and within the elastic range, the behaviour of the medium is

purely elastic, i.e., di///5E and dipjdd are independent of d. Consequently,

the specific free energy must have the special form

i//(E, d, 0)^ijj' (E, 9)+^" {a), (5.38)

and the constitutive equations (5.30) and (5.31) become

T = po^, (5.39)

dip'

dd
(5.40)

We obtained so a complete set of constitutive equations which, together

with the kinematic equations and the balance laws, represent the basic

field equations of the elastic-plastic behaviour in the present theory.

In the next section we shall analyse the principal features of this theory.

VI. Discussion of the Theory Proposed

For convenience we collect here the basic field equations of the theory,

namely the kinematic equations (1.10), (1.15), (1.22), (1.26), (1.27), (1.35),

and (5.4):
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curlA"^ = d, (6.1)

grad V = AI + AA-i
, (6.2)

divd-0, (6.3)

a— d(grad v)^+ d div v= — curl T. (6.4)

a^jaXT, ;=|detA-i|, (6.5)

I=IA-i, (6.6)

E = 1/2(A^A-1), (6.7)

the balance laws (5.1), (5.2), (5.8), (5.10). and (5.36):

p + p div v = 0, p + ptrl=0 (balance of mass), (6.8)

div T4-pf= pv (balance of linear momentum), (6.9)

T =T^ (balance of angular momentum), (6.10)

po^i7 + poT^ • ct— (A^AT) • 1+ ;-i div q= p()r (balance of energy).
' ^

(6.11)

the dissipation inequality (5.34):

-po^ • d+ (A^AT) • I - {jO) -iq • grad 6> ^ 0, (6.12)

the constitutive equations (5.38)-(5.40). (5.25), (5.20), and (5.19):

T =;ATA^= pA A^ (6.13)
dill

dif'

i//=i//(E, d. 0) = i//'(E. ^)+i//"(d), (6.15)

q = q(E, d. e. XT grad 0) (6.16)

I = A(T, d, d)(y^ f +^ e'j H(T, d, 6), (6.17)

for ^ • f + > 0 (loading),

I =0, for/=/^, 0 ^0 (neutral loading, unloading).

or/< (elastic range), (6.18)
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the yield condition (5.13)

/(T, d, ^)=K (6.19)

and the work-hardening law

/^= W(T, d, 0) • I. (6.20)

Finally, we have to add to the above field equations the boundary condi-

tions. For the traction boundary-value problem these have the form

Tn = t, for xea^, (6.21)

where t is the prescribed surface traction, and n is the unit normal to the

boundary of the body ^.

When the explicit form of the constitutive equations is known the above

system allows us to determine the elastic-plastic behaviour of the material

by using a step-by-step procedure. Let us assume that we know the elastic

distortion field A(x, t) , the velocity field v(x, t), the temperature field

6—d{:x., t) , the surface loading (6.19), and the dislocation density

d= d(x, t) , at time t.

From (6.15) and (6.13) we calculate the stress tensor T. We apply then

for each particle the constitutive equations (6.17) or (6.18) depending on

whether the corresponding point in the stress and temperature space

belongs to the loading surface or to the elastic range, and in the first case

on whether the loading path is directed outward, inward, or tangential

to the loading surface. We determine thus 1,1, and by (6.4) also a. We
can write now for a sufficiently small interval of time {t, t-\-At)

a{X. t) ^a{X, t)-\-di{X, t) (t-r), Te(t, t^At). (6.23)

i(Z,T) -I(Z, 0. (6.24)

As a and I are known we may use the method presented in appendix 2

to determine the elastic distortion A and the velocity field v in the time

interval (f, t-\-At). When the thermal field is non-uniform and time-

dependent this method must be generalized in order to include thermal

effects, by using the energy equation (6.11). Then we know again the

fields A, V, 0, a and by (6.20) also the variation of the surface loading

during the time interval (t, t-\-/\t). Of course the same procedure may be

repeated at time t^At and so on. This scheme is especially adequate

when using computers. However, it would be premature to attempt the

solving of certain particular problems before the form of the constitutive

equations will be better known.
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In a further paper we shall study the relations between the present

theory and certain dislocational theories concerning the work-hardening

of fee single crystals in simple tensile experiments (see Seeger [17] and

Kronmiiller [18]). It is hoped that this comparison will provide indications

about the possible form of the constitutive equations for particular material

classes.

We close this paper with some remarks concerning the choice of our

internal state variables. We know that the plastic deformation is produced

by the dislocation motion and that work-hardening is due to the self-

stresses generated by dislocations.

In the present theory the dislocation multiplication and motion is

macroscopically described by the dislocation flux. On the other hand

the self-stress is completely determined by the dislocation density. How-

ever, we expect that these quantities will not be sufficient as internal state

variables. We may understand this better by the following considerations.

By definition the dislocation density gives a certain information about the

mean dislocation arrangement around the point considered. If the linear

dimensions of the Burgers circuit are comparable with the mean distance

between the dislocations, then we obtain a complete information about the

self-stress but this will vary rapidly from point to point. Alternatively,

if the linear dimensions of the Burgers circuit are comparable with those

of the macroscopic volume elements of the continuum theory, then the

dislocation density will be very small on account of the zero effect of the

dislocation loops and we shall obtain a slowly varying and small self-

stress, which gives practically no information about the interaction of the

self-stresses produced by the isolated dislocations. In fact, as shown by

the dislocation theories of work-hardening, the necessary dimensions

of the Burgers circuit for a work-hardening theory depend both on the

mean distance between the dislocations and on the mean length of the

dislocation pile-ups.

It is, therefore, necessary, to introduce in the yield condition (6.19),

in the work-hardening law (6.20), and in the constitutive equation for the

dislocation flux (6.17), supplementary internal state variables describing

the dislocation arrangement inside the macroscopic volume elements

and characterizing the self-stresses produced by dislocation groups,

such as pile-ups, whose linear dimensions are smaller than those of the

macroscopic volume elements (the characteristic length of the continuum

theory), but larger than the mean distance between the dislocations.^

Another possible refinement of the theory would be to replace the

dislocation flux by several more detailed characteristics of the dislocation

Such supplementary internal state variables could be. for instance, the correlation

functions of the microscopic dislocation arrangement, as suggested by Prof. Kriiner in the

panel discussion.



TEODOSIU 867

multiplication and kinematics, such as the density of the Frank-Read

sources and the dislocation velocities, and to consider separate constitu-

tive equations for each of these quantities.

As shown by the theory of multipolar and micropolar continuum me-

chanics (see Green and Rivlin [4], and Eringen [24]) there are several

ways of systematically introducing new phenomenological quantities

in order to describe in more detail the microscopic reality. However,

as the mathematical difficulties increase very rapidly with the number

of new quantities, it would be preferable to find theoretically and/or

experimentally the most significant microscopic quantities and to try to

describe them by suitable continuum functions on the macroscopic level.

VII. Appendix 1. Basic Relations from the Tensor Algebra and
Analysis Used in the Present Paper

In writing tensor relations we apply mostly a direct notation introduced

by Noll (see e.g. [8], and [21]), which has a certain similarity with Gibbs'

notation, but deviates from it in some respects. We shall write the prin-

cipal results in component form, too, and we shall make also use of this

notation for some intermediate calculations involving tensors of third

or higher order.

To facilitate the transcription of the results from one notation to another

we summarize here the basic equivalences employed in this paper.

Let A and B be second-order tensors, L a fourth-order tensor, u, v,

and w vectors, 1 the metric tensor whose contravariant, covariant, and

mixed components are g^^, gki, and b^i respectively, G rsm the

permutation tensor (£123=^312=^231 = 1, G 213 = G 132 = E 321 =— 1,

all other components are zero), and

^rsm ^ ^-1/2 ^ rsm^
^^^^^ ^ glfl ^ ^^^^ g= detHg^A^, ||

. (A.l)

We have then the following formulae:

Vector and tensor algebra.

{u^\)''-"' = u'^v'\ (A.2)

U-\=U'^'v,„=gk;nU'^V\ (A.3)

{uXy)'^ = €'^""UiVm. (A.4)

(Au)/'- = /i'^^«w,«, {A'ru)'' = A"'''Urn, (A.5)

(u (8) v) w = u (v • w) =?;^"m;,„u, (A.6)

(AXu)'>"'-e'-«'MS.a.s., (A.7)

det A=detMSn||, (A.8)
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tr A=^'",„(trace of A), (A.9)

(cr A) e'''''^Ars (cross or axial vector of A), (A. 10)

{AB)'^-'" = A'^pB'"" (A. 11)

AA-i-A-iA=l (A-i inverse of A), (A.12)

A •B = tr{ABn=^'"'"5A-;«, (A.13)

|A| = (A • A) (magnitude of A) , (A. 14)

L [A]^-^^ = L^-^^^'M„„. (A.15)

Vector and tensor analysis.

We make use only of the right-hand operators grad, div, and curl

(see for instance Jaunzemis [19], p. 88, where, hov^^ever, Gibbs' notation

is employed). We have

(grad u)^',„ = u^", (A.16)

divu = a'",,„, (A.17)

(curl u)»'--e''^'"u,,s, (A.18)

(grad A)'^-U=^''',,„, (A.19)

(div A)^ =^^'", (A.20)

(curl A)'''"= €'-'"'Af'r,s. (A.21)

Frequent use will be made of Kelvin's transformation

j)
Ad:s.=-j (curl A)n 6^5, (A.22)

where 5 is a smooth surface bounded by the curve c.

If x==x(^' 0 is the position vector of the particle X at time t, and if

\ =— x{X, t), the material derivative of the tensor-valued function <^(x, ^)
dt

is defined by

=^+ ,A.23)
at at

^-functions associated with lines and surfaces.

To describe the position and motion of isolated dislocation lines we

employ the 6-functions associated with lines and surfaces, introduced by

Kunin [20]. Let v?(x) be an indefinite differentiable scalar-valued function

with finite support, S a smooth surface, L a smooth curve, and E the

Euclidean three-dimensional space.
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The generalized functions 6(L) and 6(S) are defined by the relations

^(^)8{L)dV= <pU)dL, (A.24)

I
^M8{S)dV= j <p{^)dS. (A.25)

If L and S intersect in one point, whose position vector is xo, we have

S(L)6(S) = 6(x-xo), (A.26)

j 8{L)dS = j 8{S)dL=l. (A.27)

Let us now orient L and S by choosing the positive unit vector 1, tangent

to L, and the positive unit normal n to S. The generalized vector functions

8(L) and 6(S) are defined by the relations

1^
ipU)8{L)dV= ipU)\dL = <pU)d^. (A.28)

I
^U)8iS)dV=j^ <pMndS = ipU)dS, (A.29)

which are still applicable if in the both sides of the equations the tensor

function <|P(x) is related to the vectorial 6-function by the same vector

or tensor product. If L and S intersect in one point xo, we have

8(L)6(S)={+«<^-''"!'';"-J>J^;''«' (A.30)
[
— o(x — Xo) , II n • 1 < 0 at xo.

Let now /(xl) and /(x^) be continuous functions defined on L and S,

respectively. The generalized functions /(x/,)6(L) and /(x.s)S(S) are

defined by the relations

j^
^U)fU,)8{L)dV= cpU)f{^)d^, (A.31)

j^^MfUs)HS)dV=j^<pMfMdS. (A.32)

The formulae (A.24)-(A.32) remain vafid if v?(x) and /(x) are tensor-

valued functions provided that the same product is used in both sides

of the equations.

We consider finally the case of a planar surface St, bounded at time t by

the closed line L?, whose points are moving with the velocity V(x/,^, t)

contained in the plane of S(, and directed to the exterior of St. Let us

choose the positive unit vector tangent to L/, l(x/.^), and the positive

unit normal to St, n, so that V X I and n have the same direction. We shall
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prove that

From (A.24) follows

4s(S,)=V(x/Jx6(L,). (A.33)
at '

j^
^Mj^8{St)dV=jJ^^M8{St)dV=jJ^ (p(x)^fS, (A.34)

because in the first integral x does not depend on t. On the contrary,

in the last integral x is the position vector of a point on 5?, hence depends

on t. Let V(x, t) be a continuous field which vanishes in an arbitrary

point in the interior of St and whose value on Lt is V(x/,,, t). Considering

that St is material with respect to the "velocity" field V(x, t) and apply-

ing the formula for the rate of a surface integral taken on a material surface

(Truesdell and Toupin [9], p. 346) yields

j^j^
<pMdS =

j^
{<p^ipdiv\-^{gTSid\)^}ndS. (A.35)

But dipldt = 0, and V • n = 0, hence the component form of the last equa-

tion may be written successively

=1

j^j^
<pMn,dS =

j^
{{cp,>nV^^^^ipV^\,n)n,-<pV'\,n,n}dS.

{{<pV"n,mn,-{cpV'"),i.n„}dS,

=- j^efj,„„ipMV"'U)dx^

wherefrom it follows

<pMdS = j^^U) [\U,^)x8{L,)]dV. (A.36)

Finally, by comparing (A.33) with (A.35) we deduce (A.32).

VIII. Appendix 2

As already mentioned in section 1, when the dislocation density a and

the dislocation flux I are known, the system of kinematic equations (1.10),
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(1.26), (1.27), and (1.28) allows the determination of the self-stresses

produced by the moving dislocations, when completed by the equations

of motion, the elastic constitutive equations, and the boundary conditions.

We shall demonstrate this assertion for the linearized system of equations.

The solving of the non-linear problem may be reduced to that of a series

of linear problems by using an algorithm which slightly generalizes the

scheme proposed by Teodosiu and Seeger [7] for uniformly moving

dislocations.

Let us assume that a and I are known and satisfy the linearized com-

patibility conditions (2.8) and (2.9). For the sake of simplicity we consider

an infinite elastic medium E, free of body forces and surface tractions.

The equations of motion and the linear elastic constitutive equations are

now

divT =p^, T-T^ (A.37)
at

T=L2[E], (A.38)

where T is the stress tensor, p is the mass density in the current configura-

tion (A:), which in the linear approximation is constant if the body is homo-

geneous in the natural state, L2 is the fourth-order tensor of the second-

order elasticities, and E = 1/2 (jS +^^) is the infinitesimal strain tensor.

Our boundary condition will be the vanishing of the self-stress at infinity,

that is

|T|-^0, as |x|-^oo. (A.39)

By substituting (A.38) into (A.37), and taking into account the symmetry

of the tensor L2 we deduce

divL2[i8]=p^. (A.40)
ot

We write now the field equations (A.40), (2.8), and (2.7) in component
form, assuming that x'^' are the Cartesian co-ordinates z'\ so that the

components of L2 are constants. We obtain

Lidmn^m,,, 1
= p^-^

,
(A.41)

dt

V,,r =I,r^^, (A.42)
at

e,>s,l3nn>,s = a,nt. (A.43)



872 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

where (•)./• means now simplv z— (
" ) • To separate the unknowns

V and p, we differentiate first (A.41) with respect to z'' and eliminate v

between the equation obtained and (2.18). We have then

5-/3 Ar dhr
, . ^L A- / ,u nf3m n .

}— P T"= P (A.44)
2 Ot- Ot

But, from (2.19) we derive

ISnn-,u — f^m,i.r= £ r«fa»if, (A.45)

and introducing this result into (A.44) yields

TO T t- dhr_ d-^kr
,

i^klnnipmr. nl
~ -l^ k I m ii^ riir<^mr. {

—p— — p , . (A.46)
2 2 df dt-

Furthermore, we differentiate (A.41) with respect to t. and ehminate /8

between the equation resulted and (A.42), so obtaining

(^~Vk
Lklmn'Vm, nl~ Lklmnlmn, 1

= P , • (A.47)
2 2 dt-

If the dynamic Green's tensor function G(x — x', t — t') that is the solu-

tion of the equation

LklmnGmp. nl{^ — ^\ t — t') + Sa-p§ (x — x' ) 6 f f — f
'

)

with the boundary condition (A.39) is known for the material considered,

then the solutions of eqs (A.46) and (A.47) are given by

+ p-^/;„-(x', ?') G,njA^-^\t-t')dV'dt\ iA.49)
dt J

i;„,(x, 0=-
J

L,jlq,JqnJ'{^' • ^
'

) G,,,;, (x " X '

. t - 1

' ) cIJ " clt'. (A.50)
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1
dz'

that G(x — x', ^ — —^ 0 as |x'
|

^ oo, for all finite x, we have alternatively

where (')i/' = Tr77 (')• Integrating by parts and taking into consideration

+ p/p,.(x', t') (x-x', t-t')]dV'dt\ (A.51)
Ot J

i;,„(x, t)=- j^Lpl,nI,„U\ t')G,np,,U-^\ t')dV'dt'. (A.52)

Finally, by using the component form of (A.38),

Ti,i=^ Lklmn ftmn-, (A.53)

and the expression (A.51) for P we obtain the self-stress T.

The formulae (A.51) and (A.52) were deduced for the first time by

Mura [6] by making use of the displacement field produced by an isolated

dislocation line and employing a limiting process. The present derivation

was included for completeness and because it uses only continuum

concepts.

The expressions of the velocity field and of the elastic distortion field

produced by the motion of a singular dislocation line may be at once

derived from (A.51) and (A.52) by employing the 6-functions introduced by

Kunin and presented in appendix 1. Indeed, if we replace in these formulae

(see sec. 3)

a^Jx, t) = hqlu(^L^ )^{L,), (A.54)

V(x, t) = b,jGrsuVs{:s.Lf, 0/«(x/.,)6(Lr), (A.55)

we infer

/3//(r(x, t) — I j iLpiqii ^ rnubqG inp, I {'X. x',
j-x J I 2

t — t')

^pb,,G rsuVs{x\t') '^^{x-x\t-t')\dL' dt' (A.56)
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V,ni^,t)=—\
I

LjjignbqE nsuVs{^' , t' ) Gmp, — ^'
, t— t' )dL'dt'

.

(A.57)

IX. Appendix 3. Equivalences Between the Notations Used in

the Present Paper and Some Other Notations Employed in the

Literature

We give in the following table the equivalences between the notations

used in the present paper for the linearized theory (sees. 2-4) and some

other notations employed in the literature.

Table 1

Notations in the

Notations in the references:

present paper

[6] [14] [15] [10] [16]

U,k
(''ik (^'ik

< (^:'k (^'ik

iS/A- Ulk Uik (i,k

u, Vk Vk s'k

£ mnl^milk- -I,k -jik -be„n„N,,n,k

— Oilk D„ Oilk — a/A-

Likmn
2

kkinn, Ckinn, C kl III II

E,, i-ki Vkl iki ikI

R„ OJik COlk

T,, CTkl (Tlk a- Ik (Tkl

b, = b, -b, bk bk -b,
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As regards the non-linear dislocation kinematics, we give the principal

equivalences with Giinther's notations [5]. These are

h^K-AK.h^k-Axj,, (A.58)

-1 -1

gki-AmkA»h. (A.59)

Tmi''- A\APu,m]. (A.60)

-1 -1

Tmlk =gksTmf ~ ApkAl'li, ml, (A.61)

IctTI, - A,niV\. (A.62)

By using these relations, it is possible to prove, after some lengthy manipu-

lations, that Giinther's kinematic equations ([5], system (43)) are equivalent

with our equations (6.1)-(6.4). The relations to the previous work by

Amari [13] and Hollander [22] follow from Giinther's discussion ([5],

sec. II).
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solve a number of problems for isotropic materials, including the deter-

mination of stresses produced by dislocations, the scattering of elastic
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of x-rays by dislocation lines and rings. For the application of these

results it is necessary to know the elastic constants of third or higher order

entering the constitutive equations. Third-order elastic constants have

recently become available for a large class of single crystals with an ac-

curacy that exceeds considerably the earlier polycrystalline data. It

appears therefore desirable to develop a formulation of the theory

that may be applied to anisotropic materials.
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their effects on a superimposed infinitesimal motion.
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dislocations, the magnitude of the deformation gradient of the superim-
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straight dislocations and kinks, and the small-angle scattering of x rays

by dislocation lines and rings [1-6]. For the application of these results

it is necessary to know the elastic constants of third or higher order

entering the constitutive equations. Third-order elastic constants have

recently become available for a large class of single crystals with an

accuracy that exceeds considerably that of the earlier polycrystalline

data. It appears therefore desirable to develop a formulation of the

theory that may be applied to anisotropic media.

The present work aims at developing approximate methods for solving

non-linear problems of the following kinds: the determination of the

strains produced by stationary or uniformly moving dislocations in aniso-

tropic media (sees. Ill and IV) and of their effects on a superimposed

infinitesimal motion (sec. V).

The nonlinear problems are solved by reduction to a series of linear

problems, using expansions in terms of small parameters. Three such

parameters appear naturally: the magnitude of the distortion produced

by dislocations, the deformation gradient of the superimposed motion,

and the ratio between the dislocation and sound velocities. To obtain

definite approximation algorithms, hypotheses concerning the relative

order of magnitude of these three parameters have to be introduced.

The approximate methods to be presented have a large field of interest.

Their application to various concrete problems will form the subject

of further papers.

We shall apply mostly the so-called direct notation (for details see

[7]). However, we shall write the principal results in component form,

too, and we shall also make use of this notation when considering particular

crystal classes or whenever it simpHfies the calculations.

To facilitate the transcription of the results from one notation to another

we summarize here the basic equivalences. If A, B are second-order

tensors, L is a tensor of order n, and u is a vector, then

(Au)'"- =A''>''u,n. iA''u)''=A""^u,n. (Ax u)'"'" = e''^'M^as,

(AB)''-'" = ^^,B^^'", det A = det tr A = ^»S„ (trace of A),

(cr A)'' = e''''^Ars (cross or axial vector of A),

I A| = {A'^"'AK.,„yi'' (magnitude of A),

L[A]/>--/> =L''---^^"''A„n. n>2,

L[A, B]''- • ^'= L''- <^"'--A„„Brs, n > 4,

where e''"" = g-^'-G''"", G g= det \\gk;>,\l gkm is the metric

tensor, and G''^'"= E,-swi is the permutation symbol (Gi23= £312= £231= !,

E:2\:\ = G:\2\= £1:52 =— 1, all Other components are zero).
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We make use only of the right-hand operators grad, div, and curl,

whose component forms are

(grad u)^",„ = u'\ m , (grad Af^m=A''^,

div u = u"\m, (div A)'^' = A"'", m,

(curl u)'" = e'""Ur, s , (curl A)''"' = e'^'^A^r, ^.

L Basic Equations

The body ^ is considered in a current configuration (k) at time t. x de-

notes the position vector and x^' the coordinates of a material particle

X in this configuration.

Let

x = x(^, 0, x'- = x'(X,t), (1.1)

describe the motion performed by the body, and

v-i-|-x(X,0, v''-^yx'{X,t), (1.2)
ot ot

the particle velocity field.

We assume that the body contains dislocations. Therefore, a global

natural configuration, that is, a stress-free configuration of the whole

body, does not exist. Let N{X) denote the set of particles in a neighbour-

hood of the particle X. To determine the elastic deformation undergone

by N{X) at time t, we may, at least in principle, cut out of the body this

neighbourhood and allow it to relax. We denote by (/<) the local natural

configuration obtained in this way.

We refer (k) to a local frame of rectangular Cartesian co-ordinates

fixed with respect to the material. It is possible to describe now the

deformation of NiX) from the local natural configuration (/<) to the global

current configuration {k) by equations of the form ^

where x''' and ^'^ are the co-ordinates of the same particle belonging to

N{X) in the configurations (k) and (k). Let

dx'''A^.-- (1.3)

' In the presence of dislocations, such a representation is possible only locally.
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denote the associated deformation gradient. We assume that, for suffi-

ciently small neighbourhoods NiX), the so-defined value of A at x and
t does not depend on the choice of the neighbourhood N{X). By repeating

the same procedure for all particles and times, we define the field A (x, t).

We assume that A is continuously differentiable and admits the inverse

A-\ i.e.,

AA =A iA=l,

where 1 is the unit (metric) tensor.

As we are interested to construct a theory for anisotropic bodies,

we suppose that the material has a discrete symmetry group. To simplify

the formulation of the constitutive equations, we choose the local frames

so that they have the same orientation with respect to the axes of material

symmetry (for single crystals with respect to the crystallographic axes).

Because the local frames are fixed with respect to the material, the

gradient (L3) does not depend on the rotation of NiX). To simplify the

shifting of the tensor components from {k) to (k) or inversely we may,

therefore, suppose - that the local frames are rotated together with the

corresponding neighbourhoods so that their axes become parallel to a time-

independent rectangular Cartesian frame with axes z*^ (for a two-dimen-

sional representation see fig. 1). Consequently, the shifting of the tensor

components from (k) to (k) and inversely may be done by using the

formulae

^ .'

.'k '. '. .' .'k
.'

'
^ .'.'k Sk~^.'.'k

'.'.•>

For a treatment not making use of this possible simplification see [8], Appendix.

Figure 1. Two-dimensional representation of the superimposed motion.
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where the shifters and g^^ are defined by

Si

Finally, we assume that the material possesses an elastic strain energy

density and is uniform, that is the strain energy density W measured per

unit undeformed volume depends on the elastic distortion A, but does not

depend explicitly on X.

We summarize now the basic equations. For details the reader is

referred to [9].

In the static case the field equations and the boundary conditions

are:

div T + pb=0, r'^^, + p6'^= 0, (1.4)

(1.5)

T.,A^A^ ar(E)
(1.6)

curlA-^=— a, e^^^A'^r,s =— of""', (1.7)

for X E and

Tn = t, T^'ni = t\ (1.8)

for X E , where T is the stress tensor,

7=p/p=
I

detA-M =
I

det
II

J^„||| (1.9)

is the ratio of the mass densities in the current and the natural configura-

tions,

(1/2)(AA^-1), E,K= {\l2){gkiAKA\-b,K) (1.10)

is the strain tensor, b is the body force, t is the surface traction, d is the

true dislocation density, and 5^ is the boundary of whose unit normal

is n.

Along with the true dislocation density d, we consider the local dis-

location density a, and Noll's dislocation density d [10]. These densities

are linked by the relations

a== Ad=7AdA'^', a''"'=A^\a''"'^jA^^A'"^j,a''f^. (1.11)
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The density a has the remarkable property that it is invariant under a

superimposed elastic motion, in contradistinction to a and d (see [9]).

We consider now the case of a uniformly moving dislocation density in

an infinite medium, and in the absence of body forces.'^ If the dislocations

move with a constant velocity V, we have

d(x, 0=a()(x-VO, (1.12)

where 6lo{x) is Noll's dislocation density at time i = 0. The field equations

are in this case

divT + pb = pv, T^\i^pb^ = pv^, (1.13)

grad \= olX (v-V) +AA-S
-1

V^,r= etsrOL^'{v'-V')+A^^AXr. (1.14)

T=,A^A, r^'=,:.M'.^, (1.15)

curl X~'^=— dL = —jdLi)(^— \t)AJ,
-

1

for jleE, where E is the Euclidean three-dimensional space.

By making use of the relation

div 0'A^)=7s, eKtJL.{jA'x),i=jsK. (1.17)

where

s = cr d, 5x^6x^1.5'^^, (1.18)

the equation of motion (1.12) may be also written as

d~iv T+ Ts + pb = pv, P^; X + P^sx +~pb'' = pvK (1.19)

Here div denotes the divergence with respect to the (local) Cartesian co-

ordinates and ;\ denotes the total covariant derivative. For fields that de-

pend only on x and for local Cartesian co-ordinates we have ([8], Appendix)

( )..x-( (1.20)

T represents the first Piola-Kirchoff stress tensor given by

T^yTA^, T'^'=jP>^A^K. (1.21)

•'For a finite body and in the presence of body forces, the hypothesis that the dislocations

move with a constant velocity would not be reahstic.
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The form (1.19) of the equation of motion was derived for the first time by

Noll [10]. A derivation in component form of the relations (1.17) and (1.19)

is given in Appendix 1.

Finally we give another form of the boundary conditions (1.8) in terms of

the first Piola-Kirchofif stress tensor T. Let n ds be an oriented material

surface element in the current configuration. By releasing a material

neighbourhood of the surface element, the magnitude and the orientation

of the vector n ds will change to n ds, say, and we have:

rvds=jX^nds, ri\ds= jA^nids. (1.22)

Substituting (1.22) into (1.8) gives

Tn = t, P-^/ix = F, (1.23)

where
t = idslds, P = t^dslds. (1.24)

II. The Solution of the Linearized System for an Infinite

Medium

To linearize the system of field equations, we write

A=l+i8 (2.1)

and assume that a, )8, b, and v are "small." By neglecting the products

of these quantities we get from (1.4) and (1.9)-(1.11)

A-i=-l-i8, 7-l-trj8, (2.2)

E - (l/2)(/3 + i8n, a-d^d. (2.3)

We assume also that 5^F(E)/3E niay be developed into a power series

with respect to E, whose coefficients are the elasticities of diff'erent

orders

^^ME]4me,e] + ....

As E is symmetric we may suppose L2[A]=L2[A^] for every second-

order tensor A. Consequently, the last two equations give

Substituting this relation and (2.2) into (1.6) yields

T=L.[/3]. (2.4)
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Furthermore, we have

pb=7pb-pb, (2.5)

d\ dv
v =— +(gradv)v -— . (2.6)

ot at

We consider the case of an infinite elastic medium E and assume

|T|^0, as |x|-^oo. (2.7)

In the static case, we introduce (2.2), (2.4), and (2.5) into (L4) and (1.7),

so obtaining

divL2[i8]+pb = 0, (2.8)

cur\p = a. (2.9)

The component form of this system, in Cartesian co-ordinates, is

LklmnPmn,l+pbK=0, (2.10)
2

^pst^mp,s= OLmt, (2.11)

where ,/ denotes now simply the partial derivative with respect to xi.

From (2.11) we have

f^mr,n ^mn,r —^mtOLmt- (2.12)

By differentiating (2.10) with respect to Xr and taking into account the

last relation we obtain

Lklmn(^mr , nl'^ pbk, r~Lklmn G rntOimt, /
= 0. (2.13)

2 2

If the static Green's tensor function G(x— x'), that is the solution of the

equation

LhlmnGmp, „l{^—^') +8A-pS(x — x') =0, (2.14)
2

with the boundary condition (2.7), is known for the material considered,

then the solution of (2.13) is given by

PmrM=
I
{pbp,r'(jL')+L,i,n^nrta,t,l'W)}G,npU-^')dV\ (2.15)

Je 2
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where ,/' denotes the partial derivative with respect to x'l. Integrating in

(2.15) by parts and taking into consideration that Gkr (x — x')^0 as

|x'| 00 for all finite x, we may write (2.15) also as

j8»,r(x) {p6p(x')G,„p,,(x— x')

+ L^/q„G Hr^«Qr(x')G,„p, /(x — x')}fl?F'.

The solution of the system (2.10), (2.11) in the presence of body forces by

means of Green's function was given for the first time by Winis[ll].

In the case of a uniformly moving dislocation density, we introduce

(2.2)i, (2.5), and (2.6) into (1.13), (1.15), and (1.16), and assume b = 0. In

this way we obtain

divL2[/8]=pav/a^, (2.17)

gradv--a X\ -\-dpldt, (2.18)

curl/J=a, a(x, 0=«o(x-VO. (2.19)

The component form of this system, in Cartesian co-ordinates, is

LklmnPmn,l = pdVKldt, (2.20)
2

Vk,r =- ^turOC^-tVn + dlBK-rldt, (2.21)

e pst(^miJ,s = OLmt. am?(x, t) = Oi^f (x -\ t) . (2.22)

In order to separate the unknowns v and ^, we differentiate first (2.20)

with respect to Xr and ehminate v between the equation obtained and

(2.21). We have then

Li,.lmn(Smn,lr-pd'^pkrldt-= -pGtnrV„dalfldt.
2

In view of (2.12) this equation becomes

L,,lm,Smr,„l-pd~(Bkrldt- = — Lklmn^nrtO^%t,l—p^ tnrVndalf /dt. (2.23)
2 2

Furthermore, we differentiate (2.20) with respect to t, and ehminate /3

between the equation resulted and (2.21), so obtaining

LkinniV„i,nl— pc) ~ViJdt- = —Li,i,nn^ntsOi%t, /
V^. (2.24)

2 2

^ When using the component form of tensor equations we write for convenience non-

tensorial subscripts, e.g., 2, 0, F, under the kernel index or as superscripts, and non-tensorial

superscripts, e.g., — 1, above the kernel index.
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As the right-hand sides of eqs (2.23) and (2.24) depend only on x — V^,

there will be solutions /8(x, t) , v(x, t) that depend also only on the com-
bination X— Vf. We may simplify these equations by introducing the new
variable

y = x-V^ (2.25)

and, observing that for an arbitrary scalar or tensor function ^(x— V?)

^,/=a^/^y/, d'¥ldt = -Vid'irldyi. (2.26)

It then follows

{Li^-imn— pViVn^k m ,'

dyidyr

da""

+ iL,imn-~pViVndkrn) ^ nrt^ = 0, (2.27)
2 dyi

{L,i,n„-~pVlVAm) ^^+L,i,nnE:snt^ V, = 0. (2.28)
2 dyidyn 2 dyi

Assume we know the static Green's function G (y —y') for the infinite

medium with the "apparent" elastic constants Lkimn — pViVn^km, i.e., the

solution of the equation

{L,Unn-~pViVnhkrn) "7 '

) + ^A/.S (y " y
'
) = 0. (2.29)

2 dyndyi

We may then write the solutions of eqs (2.27) and (2.28) as

Pmr{y)=[ {L,l,n-pVlVn8,,)enrt^{y')GnuAy-y')dV\ (2.30)
JE 2 oyi

vm {y) = [ L,i,n^ sntVs^ (y ' )G,n,{y -y')dV'. (2.31)
Je 2 dyi

Integrating by parts and taking into consideration that G(y— y')^0
as |y '

I

0 for all finite y, we have also

/3„„(y)=|^ (L,,,,„-pV,V„b,,)&„r,al(y')^-^(y-y')dV\ (2.32)

v,„{y) =
1^

L,„„„G.,,„r.,a;',(y')^ (y -y')dV' . (2.33)
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The solution of eq (2.29) was recently obtained for an isotropic medium
by Beltz, Davis, and Malen [12]. If |V| is small in comparison with the

smallest sound velocity of the medium, c^in, the Green's functions may
be obtained from the usual static Green functions by developing in

(2.29) the apparent elastic constants in a power series with respect

to |V|/c, where c is an appropriately chosen sound velocity, as has been

done by Kosevich [13] and Kosevich and Natsik [14].

III. The Solution of the Non-Linear Problem in the Static Case

We begin the solving of non-linear problems by summarizing and

generalizing Willis' scheme [12] for the determination of the stresses

generated by a known time-independent dislocation density in an aniso-

tropic elastic body free of body forces and surface tractions.^ As

mentioned in section I, the basic static field equations for b = t = 0 are

divT= 0, (3.1)

(3.2)
dE

for X'

E=(1/2)(A^A-1), (3.3)

7=|detA-i|, AA-i = l, (3.4)

curl A-i =-a=-A-ia, (3.5)

div a = div {A''a)=0, (3.6)

Tn = 0, for xGa^. (3.7)

In order to obtain a definite algorithm for the solving of this traction

boundary-value problem we introduce now the following hypotheses:

Hypothesis Hi. The true dislocation density is known, depends ana-

lytically on a small parameter e, 0<e^l, and vanishes when e= 0,

that is

a=^e"a„. (3.8)

Each term of the expansion (3.8) satisfies the compatibility condition (3.6),

that is

div a„ = 0, n=l,2, . . . (3.9)

This scheme adapts in fact to the continuum theory of dislocations an approximate

method originally proposed in the non-linear theory of elasticity by Signorini (see e.g. [7],

Sect. 6.3).
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The difference in magnitude between the terms of the expansion (3.8)

may be used, for example, to distinguish the dislocation densities pro-

duced by different gHde systems. In practical calculations only the first

one or two terms of the expansion will be retained.

If, instead of the true dislocation density a, the local dislocation den-

sity a is given, we assume similarly that

but the compatibility condition (3.9) takes a more intricate form resulting

from (3.6) by equating to zero the divergence of the coefficients in the

expansion of A~^a.

Hypothesis H2. There exists a solution A of the boundary-value

problem which depends analytically on e and reduces to 1 when e= 0,

that is

A = l+i8, p = f^e-pn.
n=l

We assume that |^| ^ 1, so that e is naturally related to the magnitude

of p.

Hypothesis H3. The strain energy density W may be developed into a

power series with respect to the strain tensor E. The coefficients of this

series are the elasticities of different orders. More exactly, we assume

that

^^^-L2[E] + (1/2)L3[E, E]-h(l/6)L4[E, E,E] + . . (3.11)
Otj

where La [A 1, . . .,Aa_i],A:= 2,3, . . ., are multilinear tensor functions

having the following properties of symmetry:

La[Ai, . . .,A/, . . .,A,„, . . ., Aa_i]

= U[A,, . . ., A,„, . . ., A/, . . .,Aa-,], (3.12)

L,[Ai, . . .,A,, . . ., Aa_i]-U[Ai, . . .,Ar, • . .,A,_i]

-La-[A,, . . ., (1/2)(A,+ A[), . . .,Aa.-i], (3.13)

L,[Ai, . . ., Aa_,] B-La[Ai, . . ., A,_i]B^ (3.14)

and the property of linearity with respect to each argument:

La[Ai, . . pAi-\-qA'i . . ., Aa-i] ==pLa[Ai, . . ., AJ, . . .,Aa_i]

-f 9La[Ai, . . .,A;', . . ., Aa-i], (3.15)
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where p and q are arbitrary scalars. La is the tensor of the elasticities of

the kih. order. The component form of (3.11) is

dEKk 2 3 4

(3.16)

Substitution of (3.10) into (3.3) and (3.4) shows that E,7, and depend
analytically on e, and gives for the first terms of the expansions:

E = (1/2) 6(i3, + /8[) + (1/2) {p, 4-/8 J+/8f/3i

)

+ (l/2)e^(i83+ i8J+ i8fi82+i8r/3i)+ . . . (3.17)

;=l-etri8, + eH(l/2)(tri80'+(l/2)tri8f-tri82}+ . . . (3.18)

A-^=l-ep-eHli2-p\)-€HP,-p,p2-p2Pi + P',)+ . . . (3.19)

By introducing (3.17)-(3.19) into (3.2) and taking into account (3.11) and

the properties (3.12)-(3.15), we see that the stress tensor T depends

analytically on e, namely

T -eTi + e2T2 + e3T3+ . . . (3.20)

T2=L2[i82]+^2(j8i), (3.21)

T3 = L2[/33]+5r3(i8i,i82),

and in general

T,-L2[/3j+^„(/3i, . . .,pn-i), (3.22)

where X« is a known tensor function of its variables. In particular

^2(/3,)=-(tr/8,)T,+i8iT,+T,i8[-f(l/2)U[)8[^,]+(l/2)L3[/3i, j8i],

(3.23)

^3(i3, , ^2) = { 1/2 triSf - l/2(tri8, )^ - trj82}T , + { (tr/8, )p,- P'f^ p2}T,

+T,{(tr^,)/3f-(i8r)-^ + /3.r}-i8,T,i3'f-(tr/3,)T2 + /8,T2+T2/3[

+ L2[/3[/8,] +L3[/3„ p.2MmpJP^]Ml/6)L,[p,, Pu i3,]. (3.24)

Substituting of the series (3.8) or (3.16), (3.19), and (3.20) into (3.1),

(3.4), and (3.7), and then equating equal powers of € yields the following
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successive systems of differential equations and associated boundary

conditions 1, 2, . . .)

divL2[i8»]+div^„(i3i, . . ., i8„-i)-0,

curli8„ = 5I„(/3i, . . ., Pn-uctu . . ., a„-i), (3.25)

L2[j8„]n = -3:„(/3i, . . /8«-i)n,

where 5l« is a known tensor function of its variables. The boundary-value

problem obtained in the nth stage is obviously linear with respect to fin-

For an infinite medium this problem may be solved by means of Green's

tensor functions, as indicated in the preceding section. For a finite body,

the boundary-value problem reduces to a usual traction boundary-value

problem in the infinitesimal theory of elasticity if we can find ^ a particular

solution pn of eq (3.25)2. We have then

i8„
= i8„+grad U„, (3.26)

where U„ is an arbitrary vector field. Substitution of (3.26) into (3.25)

gives an usual linear boundary-value problem for the associated "dis-

placement" field U„.

We write now explicitly the systems (3.25) for n = l, 2, 3.

First step

div L2[i3i]-=0,

L2[i8i]n-0,

curl /3i .

Second step

curl j82==curl /3f + a2 = curl Pj + ao —piOCx.

This could be done, for instance, by extending a„ continuously diflferentiable through

the boundary d3§ io the whole space, and by using Green's functions for infinite media.
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Third step

divL2[i83]+div ^'3(i8i,i82)=0,

L2[/3.3]n = -^3(i8i, /32)n,

curl/33 = curl {Px/iz^P2P1- P^i) ^

In the above systems, ^-ziPi) and ^3(^1, ^82) must be replaced by

their expressions (3.23) and (3.24). At present, only elasticities of second

and third order have been determined experimentally, in general for

single crystals belonging to the cubic system or to one of the hexagonal

subsystems with higher symmetry. Consequently, we are interested to

write down explicitly the equations of the first two stages of approximation

for these crystal classes. Inspection of the relation (3.23) shows that it

is sufficient to know the components of the tensor-valued functions

L2[A], L3[A, B]. Since these functions appear frequently in the present

paper, we give in Appendix 2 their components in Cartesian co-ordinates

for cubic crystals and for hexagonal crystals with higher symmetry,

that is for the crystallographic subsystems 6, 7, 10, and 11, in the classi-

fication given by Dana and Hurlbut [15], which is nowadays generally

employed in continuum mechanics.

For isotropic materials we have for general curvilinear co-ordinates

L'^-'"'"A>nn = kg>^''A'"rn-^2fJiA^'-'\ (3.27)

L''''"'-^^,„„B,,= I.l^'>'^'^„5^,+2^.2(^''•'^(»^oB<'''«'+^'^„^'^')
3

+ ^<'^-^'5-,„)+4z.3(^^-'M(»nn5*'"'+^""^(»nO^'"'-0, (3.28)

where g''' are the contravariant components of the metric tensor, k and fi

are Lame's constants, and i^i, v-z, Vs are the elastic constants of the

third order introduced by Toupin and Bernstein [16].

IV. The Solution of the Non-Linear Problem for Uniformly

Moving Dislocations

We consider now a uniformly moving dislocation density in an infinite

elastic medium free of body forces. As mentioned in section I, the basic

field equations are in this case:

divT = pv, (4.1)

369-713 OL - 71 - Vol n - 12
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grad v==a X (v—V) +AA~\ (4.2)

T=jA—-^A^, (4.3)

E=(1/2)(A'^A-1), (4.4)

7= Idet A-i| = p/p, AA-i = l, (4.5)

curl A-i=-d(x, 0==-y«(x, OA^= -7ao(x-VOA^ (4.6)

divd^div (jaA^)=0. (4.7)

The last but one relation expresses the fact that the dislocations are moving
with a constant velocity V, so that (1.12) holds. For the local and the true

dislocation densities we cannot write relations similar to (1.12) because

they do depend on the elastic distortion.

We attempt to set up an algorithm for the determination of the solution,

similar to that presented in section III for the static case. To this end we
keep the hypothesis H3 in the form adopted for the static case, but modify

Hi and H2 so as to allow for dynamic effects:

Hypothesis HI. Noll's dislocation density is known at time ^ = 0 as

do (x), and moves with a constant velocity V, so that

d(x, 0=«o(x-VO. (4.8)

do(x) depends analytically on a parameter e and vanishes when e==0,

that is

ao{^-yt) = f^ e-anU-yt). (4.9)

Each term of the expansion of a =ydoA^ satisfies the compatibility

condition (4.7).

Hypothesis H2. There exists a solution A(x—VO, v(x— Vi) of the

problem which depends analytically on € and reduces to 1 respectively 0
when e= 0, that is

(4.10)
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By making use of (4.9), (4.10), and (3.18) we get

a=yQ:oA^=ed, + eH«2- (tri8i)di+dii8r} + . . ., (4.12)

a=Ad = edi + €-{d2-(tri8i)di+/3,di+Q:i/8r}+ . . .. (4.13)

Furthermore, as

v = av/ai+ (grad v)v, (4.14)

A = p=dpidt^ (gradi3)v, (4.15)

P=jp. (4.16)

we get from (4.10)2, (4.11), (3.18), and (3.19):

pv = ep^+ 6^p[^+ (grad vOvi-(tr^,) ^}+ • . (4.17)

AA- = 6^+e4^+(gradi80v,-^i8.}+ . . .. (4.18)

Since the constitutive equations (3.2) have the same form as in the

static case, we may write

T-eT, + e2T2+ . . ., (4.19)

where

Ti=L2[i8,], (4.20)

Tn = l^2[pn]+Xn{lil, • • . , . _ i ) , ^ ^ 2. (4.21)

Finally, substituting (4.12), (4.13), and (4.17)-(4.21) into eqs (4.1), (4.2),

and (4.6), and equating equal powers of e yields a series of linear systems

of differential equations for the determination of the unknown pairs

v„. For the first two stages of approximation we have:

First step

div L2[i3i] =pd\Jdt,

grad V, = — d,X V + dpjdt,

curl Pi=ai.
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Second step

div Lo[/3o] +div ^oiPi) =pdv2lc)t+p{(gr8id\,)\, -(tr/8i)avi/a?},

grad V2=-d.xV + a/32/a? + di X vi + {(tr/3i)di-/3id, -di/3^}xV,

curl /So = curl /Sj - ( tr/3, )a, + a./SJ',

where ^-lifii) is given by (3.23). These systems are obviously of the same
type as the linear system (2.17)-(2.19) and may hence be solved by using

modified Green's tensor functions, as shown in section II. To write the

explicit form of the first two systems for a certain anisotropic material,

we need the expression of ^-liPi) and consequently again the components

of the tensor functions L2[A] and L3[A. B]. which are given in Appendix 2.

V. Infinitesimal Motion Superimposed upon a Strain Produced
by Dislocations

We consider now an infinitesimal displacement (fig. 1)

u== u(x. t) . (5.1)

superimposed upon a strain produced by time-independent or uniformly

moving dislocations and, possibly, in the first case, by external forces

(body forces and surface tractions). We denote the resultant configuration

by (A^^). the position vector of the particle X in this configuration by

x'^(A', t), and attach stars to all quantities relative to the configuration

(k^). We assume that the superimposed motion is "elastic." i.e.. that it

leaves invariant Noll's dislocation density a and for uniformly moving

dislocations also the velocity V.

We denote by

H = grad u (5.2)

the gradient of the superimposed displacement with respect to the posi-

tion X in the configuration (A). We have then

A=^=(1 + H)A. (5.3)

The equations (1.14) and (1.16). expressing the conservation of the

Burgers vector and of its flux, remain invariant under the superimposed

motion. To render evident the changes undergone by the equations of

motion and the boundary conditions, it is convenient to employ the forms

(1.19), (1.23)
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div T +Ts + pb = pV, x G ^

,

(5.4)

and to make use of the fact that s remains invariant (as d does) under

the superimposed motion. Denoting by b* and t* the body force and the

surface traction associated with the resulting motion and admitting that

they may be different from b and t, we obtain at x*:

divT*+T*s+pb*=pv*, x*G^,
I

T*h=f*, x*Ga^.J

By subtracting (5.4) from (5.5) we obtain

ydiv (t*-t)+;(t*-t)s + p(b*-b)-pu, xG^,

(T*-T)ii=t*-t, xGa^.

(5.5)

(5.6)

Taking into account that, as shown in Appendix 2,

7 d~iv t+jts = div b'TA^), (5.7)

and in view of (1.22) and (1.24), we deduce finally the equations of motion

and the boundary conditions for the superimposed displacement field

div{7(T*-T)A^}+p(b*-b)=pa, xG^,

{;(t* -T)A^}n =t*-t, xG d^,
(5.8)

where now t* is the surface traction associated with the configuration

(/c*), measured per unit area in the, configuration (A).

From (1.15) and (1.21) we have

and, therefore.

,(t*-t,A^^,{A*i^-A^)A. ,5.10)

It is noteworthy that while the equations (5.8) do depend on the dis-

torsion A, they assume the same form whether A is produced by moving

dislocations or by dislocations at rest. Consequently, the equations deter-

mining the superimposed elastic displacement depend only on the strain
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in the configuration (k) and on the variation of the body forces and surface

tractions.

To solve the boundary-value problem (5.8) for the superimposed dis-

placement we employ again an iteration scheme. For the sake of simplicity

we suppose that the medium is infinite and free of body forces and that

the stress tensor produced by dislocations vanishes at infinity. Such

a problem appears for example when studying the propagation of plane

waves in a stressed medium.

Assume that the magnitude |H| of H is small. ^ e look for a solution

of the equation of motion

:;(T*-T)AT=pu. (5.11)

of the form

u + v'-uo + . (5.12)

where is a small parameter. \^ e denote

Hi = gradui, H2=grad u.. . . . (5.13)

and remember that all operators are taken with respect to the particle

positions in the configuration (A").

Introducing (5.12) into (5.2) and (5.3) gives

A=^=(l+i^Hi + i^% + . . .)A,

(5.14)
A*^=A^(1 +z.H[+i^W+. . .),

hence

(1/2)(A=^^A=^-1)

= E+(W2)A^(Hi + H[)A+(i.^/2)A^(H2 + H|'+H[Hi)A+. . .

(5.15)

We develop now the gradient of the strain energy density into a Taylor

series

ar(E*) _ rir(E) d-w(E) .

dE* " dE ^ dEdE ^

+ ^ '^T^^l [E*-E,E*-E] + . . . . (5.16)
2 dEdEdE

By taking into account (5.15). the last formula becomes
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Substituting this result into (5.10) and considering (5.14) and (1.6) yields

;(T*-T)A^-47A^^^^ [A'^H,A]A^ + HiT

+ [A'HiA]A^+ H,T+ g.(A,H,)j+. . ., (5.17)

where

$(A,H,) -|iA^^|i|^[A^H'lH,A]A' +iH,A^^|^ [A^H,A]A^

+|;A|g^[Am,A,ATI,A]A^. (5.18)

Finally, introducing (5.17) into (5.11) and equating the coefficients of

V, . . . we get the equations for the determination of Hi, H2, . . .,

namely

div(;A^^^^[ATI,A]A'- + H,T} = pu„ (5.19)

div{iA^^|^[ATi,A]A^+H,T|+div $(A,H,) = pa:

Denoting as previously

dEaE " aEaEaE"^-^' ' '
^^-^^^

where L2, L3, . . . are the elasticities of different orders, we have

^^^=L.[E]+|L:,[E,E]+ . . ., (5.22)

which makes exphcit eqs (5.18)-(5.20).

So far we have not made any assumption concerning the magnitude of

the strains produced by dislocations. We suppose now that the distortion

A is also obtained as a power series

(5.20)
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A-l+ei8i + e^i82 + . . . (5.23)

by means of the iteration schemes presented in sections III and IV.

If we want for instance to satisfy the equation of motion for the super-

imposed displacement up to 0(i^-) we have to solve (5.19), (5.20) for Hi and

Ho. By hypothesis e <^ 1, ev- < v-, therefore, if we replace in (5.20)

A=l,y-1,T=E =0, (5.24)

the corresponding error in the equation of motion (5.11) will be of the order

ei^^, i.e., much smaller than v^. Consequently we may write (5.20) in the

simpler form

div|L2[H2] + ^(l,H0} = pu2, (5.25)

where

^)(1,H,)=|l.[H[ Hi]+H,L,[H,]+|l,[Hi,H,], (5.26)

as it is easily seen from (5.18), (5.21), and (5.24).

In order to simplify (5.19) by means of (5.23) we need a supplementary

hypothesis concerning the relative magnitude of the small parameters.

We distinguish two cases.

Case 1. e<v<l. (5.27)

In this case we have ve < v- and, therefore, we may use the same approxi-

mation (5.24) for eq (5.19), which becomes

div L2[Hi]=pui. (5.28)

Equations (5.28) and (5.25) determine Ui and U2, respectively. If u is a

plane wave, this system of equations describes the lowest-order anhar-

monic effects due to the non-linearity of the equations of motion. Under

the hypothesis (5.27) the influence of the strains produced by dislocations

is negligible up to the order v'-.

Case 2. e" =^ <^ 1, integer. (5.29)

In this case we have ve'^ ~ v'- and, therefore, we must replace A in (5.19) by

A = l+e/3, + . . .+e"i8.. (5.30)

To outline the supplementary intervening effects let us consider the

simplest case e ^ i.e., ^=1.
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We have then, successively, by neglecting all terms of an order higher

than one in e,

A-l+£/3„E=|€(/3, + /3[),

T=€T, = €L2[/8,],7=l-€tr/8„ ^^^^^^^U + eU [/S.]-

Introducing the above relations into (5.19) gives

divL2[Hi] + e div S& (i8,,H,)=pui, (5.31)

where

^ iPuHr) ^ { - {tTp,)l ^ + p\}U[n,]+U [i8THi + H,i3i]

+ HiL,[i3,]+L3[Hi, i8,]. (5.32)

Equations (5.31) and (5.25) allow the determination of Ui and 112. If u
is a plane wave, eq (5.31) describes the anharmonicity due to the strains

produced by dislocations and (5.25) the anharmonicity due to the non-

linearity of the equations of motion.

The importance of the particular case n=l just considered results also

from the following. If i^<^e<^l, which corresponds to larger values

of n in (5.29), we may neglect completely the equation (5.20) and retain only

the first term in (5.12). In this case, by putting A ==1 +e/3i into (5.19) we
describe the lowest anharmonic effects due to the strains produced by

dislocations. It is noteworthy that these effects depend on the third-order

elastic constants but involve only the linear approximation to the strains

produced by dislocations.

Using a similar scheme it is also possible to describe the anharmonic

effects in the case of the propagation of two plane waves, as has been

done for isotropic materials by Bross, Gruner, and Kirschenmann [17j.

For further indications about the possible physical applications of the

methods developed in this work, the reader is referred to the paper by

Seeger [3].

VI. Appendix 1

By applying the rule for the differentiation of a determinant we obtain

from (1.9)

j J =^jA'"~A^n„i, (A.l)

hence

UA'x), , =j\ iA\ +jA\,
, =j{A\A '\A^,„, / + ^ 'x. ,)

.
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Differentiating AA~ '
= I

hence we have

-1

{jA\),i = 2jA\A'^\A^um.

=jeK^,€'^^^Ai^A>\A^'m,i.

From (1.9) we deduce

je"'' =eimpA^iA'jA%

and, therefore.

Finally, taking into consideration (L7), (Lll), and (1.18), we infer

=j€x^.a^'^jsK, (A.2)

which proves (1.17).

To demonstrate (1.19) we substitute first (1.21) into (1.13), so obtaining

Taking into account (1.17), this equation becomes

jP^ ,iA'x + jf'^SK + pb^'= pt^^

which in view of (1.20) and (1.9) may be also written

fkK _^ ^ p-Ks^ ^ p^A- = p^k (A.3)

VII. Appendix 2

As we have several times remarked in this paper, in order to write

down explicitly the equations determining second-order effects in aniso-

tropic materials, we need the components of the tensor functions L2[A]

and L;5[A, B] for different crystal classes. These expressions assume a

simpler form if we take into account the symmetry properties (3.12)-
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(3.14) and make use of Voigt's notation of the pairs of indices, namely:

11 ~ 1, 22 ~ 2, 33 ~ 3, 23 ~ 4, 13 ~ 5, 12 ~ 6.

If we denote, as proposed by Brugger [18], Lkimn by ckm, and Lkimmt
2 3

by Caa/6, where the subscripts K, M, . . take the values 1,2, . . ., 6 in

accordance with the above-mentioned equivalence, we may write in

Cartesian components, making use of the summation convention:

LklmnAmn = CKMAM = CKlAi-\-CK2A2-^ . . .+Ca-6^6, (A.4)
2

LklmnstAmnBst= CkMsAmBs = CKllAiBi-i- CK12{AiB2-\- A'2Bl) ~^
• • •

+ CKie{AiB,^A,Bi)^. . . +Ck4AA4B,^A,B4) + . . . +CKG6AeBs,

(A.5)

where ckm, Ckms are fully symmetric Cartesian tensors, and

Ai=Aiu ^2 = ^22, ^3=^33, ^4 = ^23 + ^32 = 2^(23),

^5=^13+^31 = 2^(13), ^6 = ^12+^21 =2^(12). (A.6)

However, when, as in our case, the tensor arguments A and B may
be products of other tensors, it is very difficult to maintain the convention

(A.6) for the arguments without hiding the interesting components of

their factors. Therefore, while adopting Voigt's notation for the elastic

constants ckm and Ckms, which is more and more employed in the litera-

ture, we make use of the customary notation with two subscripts for the

tensor arguments A and B. We have then from (A.4) and (A.5), taking

into consideration (A.6),

+ Ca'2^22 + Ca'3^33
2

+ 2c/f4^ (23) + 2ca-5^ ( 13) + 2Ca'6^ (12). (A. 7)

l-'klmnstAmnBst~ CK\lAi\B\\-\- CK\2AiiB22~^ • . •

+ 2C,^16(^ll5(12) + 5n^(12))+ . . . +4Ca-45(^(23)5(13) + /^(13)5(23))+. • •

+ 4C/,«(^(12)i5(i2). (A.8)

We write now explicitly the relations (A. 7) and (A.8) for the following

crystal classes:

Cubic system, subsystem 6: tetratoidal and diploidal.

Cubic system, subsystem 7: hextrahedral, gyroidal, and

hexoctahedral.
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Hexagonal system, subsystem 10: trigonal-dipyramidal,

hexagonal-pyramidal, and

hexagonal-dipyramidal.

Hexagonal system, subsystem 11: ditrigonal-dipyramidal,

dihexagonal-pyramidal,

hexagonal-trapezohedral, and

dihexagonal-dipyramidal.

We have taken the non-zero elastic constants of third order for various

classes from two papers by Fumi [19], [20]. For details concerning the

choice of the rectangular Cartesian axes with respect to the crystaUo-

graphic axes, we refer to the papers by Hearmon [21] and Smith and

Rivhn [22].

For experimental values of the third-order elasticities, the reader is

referred to "the papers by Hiki and Granato [23], Swartz [24], Gerlich [25],

and Thomas, Jr. [26], which contain further references to experimental

work and make use consistently of Brugger's notation of the elasticities.'^

Components of [A]

Cubic system, subsystems 6 and 7 (3 second-order elastic constants)

2

= Cii.4ii + Ci2(^22 +^33) ,

L22mn^mn
2

= Ci2{Aii-\- A33) +C11A22,

LssmnA mn
2

= Ci2{Aii + A22) + C11A33.

L23mn^mn = 2C44^(23),

ListnnAmn — 2c44.^(i3),
2

Li2mnA mn — 2c44/4(i2).
2

Hexagonal system, subsystems 10 and 11 {5 second-order

elastic constants)

LiimnAmn = CuAii -\- C12A22 + CisAss,
2

L,22mnAmn — C\2A\i + C\\A22~^ C13A33,

^ The compilation of experimental values of the second- and third-order elasticities given

by Truell, Elbaum, and Chick [28, App. D] appears to be in disagreement with the definition

of the elasticities adopted by these authors on pp. 5 and 43 of the same book, which deviate

from the Brugger notation.
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Ci3{Aii-\- A22) +C33^33,
2

L'ZZmnAmn — 2c44,/i(23),

LismnAmn — 2c44/4(i3),

Ll2mnAmn — (c II Ci2)A(i2).

Components of hs[A, B]

Cubic system, subsystem 6 (8 third-order elastic constants)

LwmnstAmnB St — C\\\A\\Bi\ + C \\2{Ai\B22 + 22^1 1 + A33B33)

+ Ci 13 11^33 -\- A22B22 -\- A33B 11) + Ci 23 (^22^33 + ^33^22)

+ 4Ci44^ (23)5(23) + 4C 155^ (13)5(1 3) + 4C 166^(12)5 (12)

L22mnstAmnBst — C 111A22B22 + Ci 12 1 i^i 1 + A22B33 + ^4 33^22)

+ Ci 13(^1 1^22 A22B11 +^33^33) + C 123(^1 1^33 +^33^11)

+ 4Ci44^ (13)5(13) + 4Ci55^( 12)5(1 2) + 4C 166^(23)5(23)

LssmnstAmnBst — C iiiAssBss + C112 (^ll533 -\r A22B22 + -^335ii)
3

+ Ci 13 (/4ii5ii + 7^22533 -\- A3ZB22) + Ci 23(^1 l5 22 +^225ii)

+ 4C 144^(12)5(12) + 4C 155^(23)5(23) + 4C 166^(13)5(13)

L23mnstAmnBst= 2C 144 1 15(23) + ^(23)5 n ) + 2Ci55 (^335(23) + -4(23)533)

+ 2C166 (^225(23) + ^(23)522) + 4C456 ( 1 3)5( 1 2 ) + ^ ( 1 2 )5( 1 3) )

Li3mnstAmnBst — 2C 144 (^225(i3) + ^(13)522) + 2C155 (/^ 1 15( 13) + ^( I3)5i 1 )
3

+ 2C166 (^335(13) + ^(13)533) + 4C456 (^(23)5(12) + /^( 12)5(23))

Ll2mnstAmnBst = 2C 144 (^335(i2) + /^( 12)5 33) + 2C 155 (^225(i2) + ^(12)522)
3

+ 2Ci66(^ll5(i2) + ^(12)5ii ) + 4C456 (^(23)5(13) + ^(13)5(23))

Cubic system, subsystem 7 (6 third-order elastic constants)

Put in the preceding relations: Cii3 = Cii2, ^166 = ^ 155.

Hexagonal system, subsystem 10 (12 third-order

elastic constants)

LiunnstAmnBst = Cn i (^n 5i i
-\- A->2B2-> — 2^(i2)5(i2 ))

+ Cn2|(^ii522+^225n +^2252. -^(,2)5(,2))+Cn3M.. 5.3 +^:u5n)

+ 2C„6,{(^n-^-.>2)5(,2)+^(,2)(5n-522)}+C,23 {A22B33 +A 338 22)
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~l~Ci33^:?3B33 + Ci44^(-23)5(23) + 4C 145 (23 1 3 ) + ^ ( 1 3 )-6(23 ) )

+ 4C,55^(.3)5(,3) + Co,,(3^(,o)B(,2)-^22522)

L 221)1 nstAm n Bst = Cm (^11522+^22^11+2^(12)5(12)) + C112 (^ll^ii

+^n522+^225n -^(,2)5(12)) +C, 13(^22533+^33522)

+2Cn6{(^22-^ll)5(,2) + ^(,2)(522 -5ii)}+C,23(^ll533

+ ^335ii ) + Ci33^33533 + 4Ci 44^ ( 1 3 )5( , 3 )
" 4Ci45 (^(23)5(i3)

+ ^(13)5(23)) +4C, 55^(23)5(23) +C222 (^22522 -^ll522 -^225n
— 2)5(12))

L^siunstAmnBst = Ci 1 3 (^ 1 15 ] 1 + ^ 22522 + 2^ ( 1 2 )5(i 2 ) ) + C 1 23 (^ 11 522

+^225ii - Z402)5(i2)) + Ci33{ (^11 +^22)533 +^33 (5ii +522) }

+ C333^33533 + 4C344 (^(23)5(23) +^(13)5(13))

L23mnstA,nnBst = 2Ci44 (^ ll5(23)+ ^ (23 )5 1 1
— ^ ( 1 3 )5( 1 2 )

~ ^
( 1 2 )5( 1 3 ) )

+2C,45{(^ll-^22)5i3+^(13)(5ii -522) +2^(23)5(i2) + 2^(, 2)5(23)}

+2C155 (^225(23) +^(23)522 + ^ ( 1 3 )5( 1 2 ) + ^
( 1 2 )5( 1 3 ) )

+ 2C344 (^^335(23) +^(23)^33)

LiSmnstAmnBst = 2C 144(^225(13) + ^(13)522 ^ ( 23)5( 12 )
— ^ ( 1 2 )5(23) )

3

+ 2Ci45{ (^11 ~ ^22) 5(23) +^(23) (^11 ~ B22) — 2.4(13)5(12)

— 2^(12)5(13)} + 2Ci55(^ 11^(13) +^(13)^11 +-4(23)^(12) +^(12)5(23))

+ 2C344 (^33^(13) + /^( 13)^33)

Ll2mnstAmnBst — C iii{ {A22 ~ A n) B(i2) ^ A(i2) {B 22 ~ B n) }

-(1/2) Cii2{(^ll+^22)5(i2)+^(12)(5ii+522)}

+ (Ciis — C123) (^335(12) + ^(12)533) +Cii6{(.411-/^22) (5ii —B22)

— 4.4(12)5(12)} + 4C 145 (^(23)5(23) (13)5(13))

+ 2 (C155 ~ ^"144) (^(23)-^(13) +^(13)5(23))

+ (1/2) C222{(3.4ii -.422)5(12) + .4(i2)(35ii -522)}.

Hexagonal system, subsystem 11 (10 third-order elastic constants)

Put in the preceding relations: Cue = C145 = 0.
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ON THE THERMODYNAMICS OF
INHOMOGENEOUS BODIES

C.-C. Wang

Department ofMathematical Sciences

Rice University

Houston, Texas 77001

This paper concerns the thermodynamics of inhomogeneous elastic

bodies. I adopt the constitutive equations for thermoelastic materials

given by Coleman & Noll ( 1 963) and develop a theory for bodies made up

of such materials. The general scheme of this theory is based on my paper

on Generalized Simple Bodies (1969). The main result is the explicit field

equations for the deformation and the temperature on a thermoelastic

body.

Key words: Continuum mechanics; dislocations; constitutive relations; inhomo-

geneous elastic bodies.

I. Introduction

A purely mechanical theory of inhomogeneous bodies was formulated

recently by Noll [1] and Wang [2]. In that theory, two basic assumptions

were used, namely material uniformity and smoothness. This paper

generalizes that mechanical theory in two respects. First, we introduce

thermodynamical variables and treat the corresponding thermodynamical

field equations. Second, we replace the assumption of material uniformity

by the weaker assumption oi symmetry uniformity. That is, we require the

iViaterial points of a body to have the same material symmetry rather

than the same material response. Evidently, material uniformity is

sufficient for symmetry uniformity, but the converse is not true in general.

The symmetry of a material is characterized by the symmetry group

of the constitutive relations defining that material. In continuum

mechanics, the classification of materials is based on material symmetry.

We call a maximal collection of materials having the same symmetry

group a material type, e.g., fluids, isotropic solids, transversely isotropic

solids, etc. The assumption of symmetry uniformity means simply that

the material points of a body be all of the same material type.

While the symmetry uniformity is a condition that limits the response

of the material points of a body to within a fixed material type, the smooth-

ness condition is a condition on the distribution of the response of the

material points on the body. In the reference [2], we have introduced a

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, H, 1970). „
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908 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

general smoothness condition for a materially uniform body. This paper

generalizes that condition in such a way that the smoothness condition

can be appHed to bodies with uniform symmetry.

We review briefly the constitutive relations for a thermoelastic material

in section II. This special class of materials is chosen mainly for the sake

of simplicity. The concept of material symmetry, of course, can be defined

for far more general classes of materials, but we do not consider them in

this paper. In section III, we explore the geometric structure of a smooth

thermoelastic body with uniform symmetry. Then in section IV we derive

the equation of motion and the equation of heat transfer in terms of the

state variables for such bodies.

II. Constitutive Relations and Their Symmetry Conditions

For definiteness, we assume that a fixed rectangular Cartesian coordi-

nate system has been chosen on the physical space. Then a configuration

of a body ^ is a dififeomorphism

k:^->^3. (2.1)

We can regard such a configuration simply as a global coordinate system

on ^. Let p be a point of 3^. Then a local configuration of p is an iso-

morphism of the tangent space with say

^p-.^p^mK (2.2)

As usual, each configuration k gives rise to a local configuration at p,

namely

K -.^p^m^ (2.3)
^p

called the induced local configuration of k at p.

In the purely mechanical theory, p is called an elastic point if the stress

tensor at k(p) in any configuration k is given by a constitutive relation

of the form

T(k(p))=G(k^^). (2.4)

This equation says that the local configuration K^p is the only state

variable utihzed in the model. For an elastic point p, the symmetry group

fp is the group of all automorphisms

A:^p-^^p (2.5)

such that

G(6;M)=^G(6;.), VS^ (2.6)
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f p \?> necessarily a subgroup of the unimodular group of since phys-

ically the stress tensor cannot remain unchanged when the body is

compressed or dilatated under an arbitrary power A" or A~" of A.

Choosing a fixed local reference configuration we can express the

constitutive equation (2.4) in the form

T = H(F,Mp), (2.7)

where F is the deformation gradient from iXp to any bp, viz;

¥=bpotJi-\ (2.8)

and where H is given by

H(F, iXp)=G(¥ ofx^,) (2.9)

The symmetry group fpifJip) of H is the group of all automorphisms

such that

H(FP, fx,)=n{¥, Mp), VF. (2.11)

From (2.9), f pifJLp) is given by

fp{l^p)=^l^pofpofi,p\ (2.12)

The function H(F, fjip) and its symmetry group fpifJLp), of course,

depend on the local reference configuration fjip. From (2.9) and (2.12),

the following transformation rules hold:

H(F, A,>) = H(FP, M/.), (2.13)

and

f,{iji,) = F^,{,ji,)F'\ (2.14)

where P is the deformation gradient from ft,, to ftp, viz.,

F=tJL,ofjij;\ (2.15)

The transformation rule (2.14) impHes that the symmetry groups relative

to all fijj form a conjugate class of subgroups in the unimodular group

of
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Next, we consider the constitutive relations that define a thermoelastic

point p. Let pE.^ as before. Then in any configuration k o{ ^ we intro-

duce two new state variables, namely the local temperature 6{p) and

the local temperature gradient g(p), the former being a positive real

variable, while the latter being a vector in the physical space, here repre-

sented by We introduce three new state functions also, namely, the

internal energy function e, the entropy rj, and the heat flux vector q, the

first two being scalars, while the last one being a vector. The resulting

constitutive relations are

T= G(6p, 0, g), (2.16)

e= e{8,. 0. g), (2.17)

r) = h{8p, 6, g), (2.18)

and
q-l(8p, g). (2.19)

Introducing a local reference configuration fXp as before, we can express

these constitutive relations as

T= H(F, ^, g, Mp), (2.20)

e = e(F, 6, g, ,x,) , (2.21)

Ty='/i(F, 0, g, M;,), (2.22)

and

q = l(F, 6, g, fJLp). (2.23)

In 1963, Coleman and Noll [3] proved that under some reasonable

assumptions this set of constitutive relations is consistent with the

second law of thermodynamics if and only if the following two conditions

are satisfied:

(i) The function 1 satisfies the inequality

1(F,^, g, M/>)-g^O (2.24)

for all (F, ^, g).

(ii) The functions H, e, and h do not depend on the variable g. Further,

there exists a fuhction o-(F, 6, fjip) called the free energy, such that

H(F, ^, /uip)-pFo-F(F, 61, /ui;.)^ (2.25)

e(F, iXp)=(T{¥. 9, ,jLp)+eo-H{F. 6, fJLp), (2.26)

and
/i(F, 6, ,jip)=(ToiF, 6, fjip). (2.27)

Here cr^ and q-h denote the partial derivatives of a with respect to F and 0,

respectively.
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Henceforth, we use the constitutive relations (2.20) — (2.23) only to the

extent that they satisfy the conditions (2.24) — (2.27). In particular, if we
define the symmetry group /'j? (pip) of cr in the usual way that P G fpifip)

if and only if

then fp(lJip) is contained in the symmetry group of e and h. The symmetry

group fpifJip) of H need not be equal to fpilXp) either. From a theorem

of Truesdell [4], the relation (2.25) imphes that PG /p(/Lip) if and only if

o-(FP, iJip) = cT(¥. 6>, Mp) + o-(P, iJLp)-cT(i:e, /xp). (2.29)

Using the principle of material frame-indifference, Truesdell [4] proved

further that fp(fJip) coincides with fpifip) if p is a solid point. On the

other hand, fpi/Jip) is generally a proper subgroup of fpifJLp) if p is a

fluid crystal point (cf. Wang [5], [6], [7]).

Coleman and Noll's theorem does not limit the symmetry group of

1 in any fixed way with respect to either fpifJip) or fpiftp). But for

simplicity, we assume that fpifJip) is also the summetry group of 1. Of
course, fpifJLp) and fpifip) are necessarily closed Lie subgroups of

the unimodular group of since the free energy function cr is assumed

to be a smooth function.

Under a change of local reference configuration from /Xp to fip, the

functions H, e, /i, 1, and cr satisfy the same transformation rule as before,

e.g.,

etc., where P is given by (2.15). Further, fpifJip) satisfies (2.14), and

likewise

o-(FP, 0, fjip)=a(F, 6, /JLp), VF, d. (2.28)

cr(F, ^, Mp)=o-(FP, ^, fJLp) (2.30)

^p*(Mp)=P^*(m.)P -1
(2.31)

To prove (2.31), we may introduce the abstract symmetry group of eras

the group of automorphisms A of ^p such that

&{8p'A, e)=&i8p, 61), W8p, e. (2.32)

Then as before

p{llp)=ft„of^ ofX~p •> (2.33)

which in turn imphes (2.31).
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III. The Concept of a Smooth Thermoelastic Body With Uniform
Symmetry

In the preceding section, we proved that the relative symmetry groups

fpif^p) of P form a conjugate class of subgroups of the unimodular group

of Suppose that the conjugate classes of the relative symmetry

groups of the points of a thermoelastic body ^ coincide with one another.

Then we say that ^ is a thermoelastic body with uniform symmetry.

In terms of the abstract symmetry groups, the condition of symmetry

uniformity means that for any two points p and q in ^ there exists a

linear isomorphism

A(p, q) i^p-^^g, (3.1)

called a symmetry isomorphism ofp with q, such that

fq= A{p,q)ofjjoA{p,q)-\ (3.2)

Indeed, if fip and fiq are any two local reference configurations of p and

q such that

then a particular symmetry isomorphism A(p, q) is given by

A{p, q)=/iq^ofi^. (3.4)

Conversely, if A(p, q) is a given symmetry isomorphism, and if fip and

fjiq are local reference configurations satisfying the condition (3.4), then

the relative symmetry groups fpifJLp) and f qif^q) coincide.

An isomorphism I(p, q) from ^p to is called a material isomor-

phism of p with q if

G(6„ ^)=G(8,oi(p, ^), e), V8„ e. (3.5)

If such an ismorphism I(p, q) exists, then p and q are called materially

isomorphic. In this case,

H(F, ^, M/>)=H(F, ^, M,), VF, ^, (3.6)

if fjip and fJLq are related by

I(p, q) = tiq' o/Xp. (3.7)



WANG 913

Hence the condition of material isomorphism means indeed that the

response of p and q be the same. A direct consequence of the condition

(3.6) is the condition (3.3). Thus every material isomorphism is a sym-

metry isomorphism, but the converse is not true in general.

Next, we set forth a smoothness condition on a thermoelastic body with

uniform symmetry. For this purpose, we follow closely the procedure

developed in the reference [2]. We define a symmetry chart as a pair

fx) consisting of a subbody ^ of ^ and a smooth field {x of local

reference configurations on such that the symmetry groups relative

to /A are independent of the points of ^. For such a symmetry chart,

we put

Vpe^, (3.8)

called the symmetry group of^ relative to fJi. NoTE: Since ft is required

to be a smooth field, it generally fails to have any smooth global extension

on the whole body ^. (Many counter examples were given in the reference

[2].) Thus the existence of a symmetry chart is strictly a local condition.

We call two symmetry charts (^Z^, fi) and (^^, jX) compatible if the

response functions relative [JL and fi coincide on the overlap ^ 0 ^, viz,

H(F, 0. fA, ) = H{F, jjLt,), VF, 0, (3.9)

for all p G ^ n ^. Equivalently, this condition means

iJiji'ofji^, e f^;,, V P e ^ n ^. (3.10)

Of course, (3.9) implies directly

f(lj.) = f(jji), (3.11)

but the converse is again not true in general.

For the two compatible symmetry charts (^, ix) and Jjl) , the field

G (p) = fji'P o fjLp\ p e ^ n (3.12)

is called the coordinate transformation from fx to fX, since it characterizes

the transition from the field fx to the field Jx on the overlap ^ O ^. In

particular, if G ^fi is the identity transformation at aU points in Pi ^,
then /X and jx agree on the overlap of their domains. In this case, Ji can

be regarded as a smooth extension of fx to the subbody ^ U On the

other hand, if G^A is not equal to the identity transformation, then fx and

]x are different fields. But in any case, the condition of compatibility re-

quires that the field of relative response functions on ^ have a smooth

extension to a field on ^ U
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We define a symmetry atlas A to be a maximal covering of^ consisting

of mutually compatible symmetry charts, say

A={(^a, fJia). aEl}, (3.13)

where I is an index set. The reader will verify easily that the following

three conditions are satisfied:

(i) There exists a smooth distribution of relative response functions

Ha(F, e,p) on ^ with

Ha(F, 6/,p)=H(F, fjLap),ypG^a. (3.14)

We call Ha the distribution of response functions relative to A.

(ii) The distribution Ha has a uniform relative symmetry group f (A),

namely

fiA)= f^a{lJLa).Y aG\. (3.15)

We call f(A) the symmetry group of 3S relative to A.

(iii) The coordinate transformation

= fJia •
, ^ E I (3.16)

from fJLa to fA^ is a smooth f (A) -valued field on H ^^g, for all a, 13 G I.

Further, from (3.16), the collection {Ga^s, ot. i^G 1} satisfies the charac-

teristic conditions of the coordinate transformations of a fibre bundle,

namely

Gaa(p) = l, VpG^a, (3.17)

Ga^(p)=G/3a(p)-^Vpe^a H (3.18)

and

Ga^(p)G/3y(p)=Gay(p), VpE^« H H ^y, (3.19)

for all q;, /3, y E I.

Naturally, we say that ^ is smooth if it can be equipped with a symmetry

material atlas A. As explained before, a smooth materially uniform body

treated in the reference [2] is smooth body with uniform symmetry. In

particular, a material atlas of a materially uniform body is a symmetry

atlas, but the converse is not true in general, of course. A necessary and

sufficient condition for a symmetry atlas A to be a material atlas is that

the distribution of relative response functions Ha be a fixed function in-

dependent of the material points of ^.

Like a material atlas, a symmetry atlas A is characterized by the dis-

tribution of the relative response functions Ha, viz,

A=AOHa=Ha. (3.20)
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Further, the general Hnear group of is a left transformation groupj on

the symmetry atlases. Namely, for any non-singular tensor P over

we define

Po A-{(^a,P-Ma), aGI}. (3.21)

The Po A is a symmetry atlas of and the transformation rules for

and /^(A) under the operation P are

Hp.^(F, ^,p)-Ha .(FP, ^,p), VF, ^,p, (3.22)

and
^(PoA)=P^(A)P-i. (3.23)

In particular, f (A) can be characterized by the condition

P e ^(A)<^Po A-A. (3.24)

However, unlike the material atlases, the symmetry atlases are not transi-

tive under the general linear group of

Aside from the distribution of the relative response functions, a sym-

metry atlas is formally the same as a material atlas. Hence the geometric

structure characterized by a symmetry atlas is also the same as that

characterized by a material atlas. In reference [2], we have analyzed

that geometric structure in detail. An important geometric object in that

structure is a structural connection, called a material connection with

respect to f (A) as the structure group. For a smooth body with uniform

symmetry, such a structural connection may be called a symmetry con-

nection, since its induced parallel transports are all symmetry isomor-

phisms among the points of ^.

In reference [2], we have proved the following necessary and sufficient

condition for a structural connection with respect to a bundle atlas A:

Let {x^) be a coordinate system on and let Fj^. be the connection

symbols of a connection ^ relative to {x^) . Then ^ is a structural con-

nection with respect to A if and only if the fields of matrices

FtI'Y— +r/ F[
J \ Q^m Im k

m=l,2, 3 (3.25)

are contained in the Lie algebra of ^(A). Here F\ denotes the com-

ponents of the deformation gradient F from fx to (%') for any chart

(^, iJi) in A. As we shall see in the next section, the condition (3.25)

enables us to express the field equations of ^ in global forms.

IV. The Field Equations of a Smooth Thermoelastic Body
With Uniform Symmetry

We follow the procedure developed in the reference [2] for the derivation
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of the field equations in terms of the state variables of the body ^. First,

we consider the equation of motion.

Let A be a fixed symmetry atlas of S^. For simplicity, we suppress the

dependence on A from the notations of the relative response functions and

their symmetry group. We put

H\; = H'j,i(F. O.p) (4.1)
dFkl

where the components are referred to the standard basis of The

order of the indices is important here, since it is understood that the indices

may be raised or lowered with respect to the Euclidean metric of

From the condition (ii) of the symmetry atlas A, H satisfies the condition

H(FP,^,p)=H(F,^,p),VF,^,p, (4.2)

for all P G ^ . Then the gradient of H satisfies the conditions

//0,,(F, e.p) F'^-Z^J^^O, (4.3)

and

//o-,,„(FP, p) Pr-Hh-i (F, p), (4.4)

for all K belonging to the Lie algebra of f and all P belonging to f .

Now let X be a configuration of ^ corresponding to the coordinate

system (jt'). Then the stress tensor in x('^) can be determined in the

following way: First, we choose a symmetry chart ('^a, Mo) A- For any

point p covered by the chart, the deformation gradient from yiap to x*p is

F = X,„»M;^ (4.5)

Substituting (4.5) into the response function H yields the stress tensor

T(x(p))=H(x^^^o^^i,^(p),p). (4.6)

But this is a local formula, vahd only for p belonging to the subbody ^a.
Substituting the formula (4.6) into Cauchy's equation

yields divT+ pb = pa (4.7)

where F' ' denotes the components of F relative to {x') , and where

(4.9)
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and

the arguments of H'h-i^ H^J, and H' being F, d{p), and x\ Like H^h-i, the

fields Hy and H' satisfy the symmetry conditions

//^(FP, ^,^"')=//^'(F, (4.11)

and

//'(FP, ^, jc'")=//'(F, ^, x>"), (4.12)

for all P belonging to f.
Now from the condition (iii) of the symmetry atlas A and the conditions

(4.11) and (4.12) just observed, the local fields H'J and H' in (4.8) are in-

dependent of the choice of the symmetry chart. Hence in the field equation

(4.8), only the leading term is a local expression. Using the technique

developed in [2] , we can convert that local expression into a global one,

as follows:

We choose a symmetry connection <^ associated with the symmetry

atlas A. Then the matrices in (3.25) belong to the Lie algebra of f. Hence

from (4.3), we have

//'^"(^+ r!S»f"') = 0. (4.13)

Substituting this equation into (4.8) yields

- Hij,i F "TJ .+ WJgj+W + = paK (4.14)

Now the leading term is a global expression, since from (4.4) the field

^'V = W^ki (F, x^)F^i (4.15)

is independent of the choice of the symmetry chart (^a, Pa)

-

In appHcation, the field equation (4.14) is not convenient, since the

connection symbols Fj^,. depend on the coordinate system (x*) of x, which

changes with time in a motion of To render the time dependence of

Tji^ explicit, we introduce a fixed reference configuration #c with coordinates

(Z^) , on Then a motion of ^ can be characterized by the deformation

functions

xi = xi{X\t), i=l,2, 3, (4.16)
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which merely correspond to a one-parameter family of change of co-

ordinates.

Now let the connection symbols of ^ relative to (Z^) be F^^, and

let the components of the deformation gradient to k be F"*' for any

symmetry chart jn) in A. Then we have the usual transformation

rules:

^ Bc^x-r^^^j ^^i. sX^'X^dx^dx'^'
^^•^'^^

and

F'i^^J'i (4.18)

Substituting these into (4.14) yields

where locally

H'V = i/'\/(F, ^, x^O^^^ (4.20)

The equation (4.19) is a global equation of motion in terms of the state

variables of ^.

We can express the equation of motion also in terms of the Piola-

Kirchhoff stress tensor Tk relative to the fixed reference configuration k.

By definition,T and T^are related by

n V.4

>< dx'

where J denotes the determinant of the deformation gradient

dx'
y= det (4.22)

_dX^\

In terms of T^, Cauchy's equation of motion is

Div T^ + p^b = p^a,
(4 23)

where Div denotes the divergence with respect to ic, and denotes the

density field in k(^).

We define the Piola-Kirchhoff response function A relative to A by
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A = A(F, e,p) ^(detF)H(F, ^, p)(F-i)^ (4.24)

where the superscript T denotes the transposition. We can solve (4.24)

for H obtaining

'^ = dh^^'- •4.25)

Differentiating this equation with respect to F, we get

= [FiA!'",, + {818„„- FiFriDA""] (4.26)

where

^'4,=^- (4.27)

Now substituting (4.26) into (4.19) yields

(4.28)

where locally

AiA.B ^ ^ir^,^ (F, e,x^-)F\ (4.29)
det r

and Tl^ =-^ .^'>(F, 0, x^)F^r= JH'K^ . 0, x^) f~ (4.31)

det F

Notice that, we can express the terms JH'Jgj and JH^ in (4.28) also by

f)TiA

JH'Jgj=^gA, (4.32)

where gA = (grad 0)^^gi (4.34)

Next, we consider the energy equation of In terms of the state func-

tions e, T, and q, the principle of balance of energy takes the

field equation

pe = tr{T grad v) + div q + pr, (4.35)

where v is the velocity field and r is the energy supply. For a thermo-
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elastic body e and T are determined by the free-energy function cr

through the relations (2.26) and (2.27). In particular, we have the identities

p&=tr{T grad y)-p7]d, (4.36)

and p&= p€— pr]6 — pOrj . (4.37)

Substituting these identities into (4.35) yields the usual equation of heat

transfer:

div q + pr= pdr). (4.38)

We proceed to express this equation in terms of the state variables.

By assumption, the symmetry group of the heat flux function 1 is the

same as that of the response function H. Hence relative to the fixed

symmetry atlas A, 1 is a smooth global field on ^ with

1(F,^, g,p)=l(F, ^,g,Map) (4.39)

for any symmetry chart {^a. fJi-a) in A covering the point p. We put

l'j,= l'jAF,e,s,p)=~ (4.40)

Then the following two conditions are satisfied:

i^j, (FP, d. g, p)P^;=i'jnAF. d. g, p) (4.41)

for all P belonging to f , and

/'jA-(F, 6, g, p)Fj'-K';„ = 0, (4.42)

for all K belonging to the Lie algebra of f.

As before, let x be a configuration of ^ corresponding to the coordi-

nate system (x^). Then the heat flux in x(^) can be determined by the

local formula

q(x(p))=l(F, g.x'Hp)) (4.43)

where F is given by (4.5). Substituting this local formula into the heat

equation (4.38) yields

I'n-^+ li,gj + l'i^:+ l + pr= p0r,. (4.44)
c)x' ax'

where , ..

1-=^ (4.45)

= (4.46)
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and

/^g. (4.47)

Like (4.8), the equation (4.44) contains a local expression in the leading

term.

Introducing the symmetry connection ^ and using the condition (4.42),

we can rewrite the equation (4.44) as

- + llg; + ^+ ^ + 9r=pQi). (4.48)

Then from (4.41) the combination

= ^Oa- (F, ^ , g, ;c'")/^"'" (4.49)

is a global field.

Now introducing the deformation functions (4.16) and carrying out the

same analysis as before, we obtain the global equation

^-^-al^)f +«^'+'i^S+'+''^=^''^' '4.50)

where locally

/~V = p-,.,i(F, ^, g, ;t'«)F-^'. (4.51)

Next, we introduce the heat flux vector relative to the reference con-
figuration K by

</«^=i'?'^- (4.52)

Then the heat equation (4.38) takes the alternative form

Div 4- PKr^^PK^T?. (4.53)

As before, we define the heat flux function s relative to A by

s = s(F, 0, g, p) ^(det F)F-4(F, ^, g, p). (4.54)

Then

l =^Fs. (4.55)

Differentiating this equation with respect to F yields
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^'^^==^X7¥ (did,m-F\J^^j)^-] (4.56)
det F

where

^'"j^=^ (4.57)

Now substituting (4.56) into (4.50), we get

(4.58)

where locally

7\.^ =-^ 0. g, x-^)FiFBK (4.59)
det F

Of course the terms Jl'e^i, Jl'i and Jl in (4.58) can be expressed also by
^ dx'

Jhgi = ^-^gA, (4.60)

7/'^fi
=^||, (4.61)

dx^ dgB dX"^

and
-^^^S'

^^-^^^

where is given by (4.34).

So far, we have expressed the state functions on the left-hand side of

the heat equation in terms of the state variables. Next we consider the

state function on the right-hand side, namely, the function 17. Using the

constitutive relation (2.22) together with the restriction (2.27), we have

the local formula

v{x{py) = h{F,e, fji.^). (4.63)

Now there are two possibilities:

(I) f — f"^' (This case includes all solid bodies.)

In this case the function /i is a smooth global field on with

/i(F, 6l,p)-/i(F, 61, iMa,;) (4.64)

for any symmetry chart (^a, in A covering the point p. We put

hj,= hj,(F,e,p)^-^^, (4.65)
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(4.66)

Then we have the identities

and hj,{¥V, 6, p)P/^, = hMF , 0, p), (4.67)

he{FF, d,p)=he{F, 0,p), (4.68)

for all P belonging to .

From (4.63), we have

'

'i] = hj„Fj^ + hse. (4.69)

Of course, the leading term on the right-hand side is a local expression.

We can convert that local expression into a global one by using the time

derivative of the formula (4.18)

Substituting (4.70) into (4.69) yields

where locally

hj = hj,{¥.e,p)F''K (4.72)

(II) f ¥^ f'^ . (This case includes fluid crystal bodies only.)

In this case the function h does not form a smooth global field on S^.

But from (2.27) and (2.29), we have the identity

/i(FP, ^, /Ap)=/i(F, /)ip)+/i(P, /jijj)-h{l, 0. ixp) (4.73)

for all P belonging to f. Differentiating this identity with respect to F
shows that the gradient of /i is a global field on ^, viz.

hj,{¥. p) =hj,{F, /w«p) (4.74)

for all (^a, /Wa) in A covering p. Thus as far as the leading term on the

right-hand side of (4.69) is concerned, we can proceed in exactly the same
way as in the previous case.

The last term of (4.69) remains a global field in this case.
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ELASTIC-PLASTIC PLANE BENDING
OF A SINGLE CRYSTAL

C. S. Hartley and M. A. Eisenberg

Department of Engineering Science and Mechanics

University of Florida

Gainesville, Florida 32601

The elastic-plastic bending of a single crystal beam which deforms by

single slip on a plane containing the axis of bending and in a direction nor-

mal to the axis of bending is analyzed. Both continuum plasticity and

dislocation approaches are used to obtain stresses and/or displacements

in the elastic and plastic regions. The relation between the. applied bend-

ing moment and the curvature of the neutral axis is also obtained. The ap-

proaches are compared and correspondences between the two theories

are discussed.

Key words: Dislocation distributions; mechanical properties; plane blending.

I. Introduction

The utility of dislocation theory as a tool to describe the inelastic

behavior of macroscopic material bodies has not been exploited until

quite recently. Analytical methods for such problems have employed

mathematical models for material behavior, which generally excluded

any explicit consideration of the role of microstructure in material prop-

erties. Studies of dislocation behavior have been concentrated primarily

on the properties of individual dislocations and finite arrays, and on the

role of dislocations in the deformation of materials under uniform state

of stress. In the present work a simple problem of plastic deformation

under a nonuniform state of stress — pure bending of a simply supported

prismatic beam — is analyzed both by classical continuum methods and

by an approach based on continuum dislocation theory.

The problem considered is illustrated in figure 1. A rectangular prismatic

beam, simply supported on either end, is bent by applying equal and

opposite couples, M, about the ends. The structural axis of the beam is

the Xi axis and the axis of bending is the JC3 axis. The origin is taken at

the centroid of the beam. In the following analyses it is assumed that the

couples are slowly increased from zero to their final value, and that the

resulting deformations are time-independent.

Fundamental Aspects of Dislocation Theory, .1. A. Simmons, R. de Wit, and K. Bullousli,

Eds. (Nat. Bur. .Stand. (LJ.S.), Spec. Publ. 317, H, 1^70).
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Figure L Coordinate system.

The beam consists of a single crystal having a single set of slip planes

parallel to the axis of bending and inclined at an angle Q to the structural

axis. The slip direction is normal to the axis of bending. The;ci' andx2 axes

are parallel to the slip direction and normal to the slip plane, respectively.

After plastic flow has occurred in the beam, the elastic-plastic interface,

defined as that surface in the beam where the elastic solution for the

stress distribution satisfies the yield condition, is parallel to the neutral

surface and located a distance ±17 from it. Plane stress conditions are

assumed, and linearized strain components are used throughout; hence,

the results do not apply to large deformations.

In the second section continuum plasticity is employed to obtain the

displacement and stress fields in the elastic-plastic beam. Both elastic-

perfectly plastic and hnear work-hardening models are investigated. The
third section treats the identical problem from the viewpoint of a con-

tinuous distribution of dislocations in the plastic region. The states of

dislocation corresponding to particular stress distributions in the plastic

region are determined, and it is shown by a direct integration that these

dislocation arrangements do have stress components which result in the

assumed value of residual stress in the plastically deformed zone. The

effect of slip geometry is also examxined. The results obtained by both

techniques are summarized in the fourth section.

II. Continuum Plasticity Solution

Let the beam considered be a single crystal of an hexagonal close-

packed metal, having a slip direction in the basal plane along x\ and

the normal to the basal plane along x%.
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The stress distribution and displacements throughout the beam are

obtained subject to the assumptions that (a) plane cross sections remain

plane, (b) plastic flow occurs by single slip in the x'l direction, and (c)

the material obeys an elastic-perfectly plastic flow law. Elastic anisotropy

is also taken into account.

A. Anisotropic Solution

When M is sufficiently small, the beam is elastic throughout and the

stress distribution is given by the ordinary beam theory. That is, the only

nonvanishing stress component is ctu, which varies linearly with x-z and

is constant in thexi direction.

Elastic behavior. The displacements in this case are obtained by

integrating the strains given by the anisotropic form of Hooke's Law.

Thus,

o-ii = c7= MW/, (1)

and

en = SnCT= Ui, i,

e22=S2l(T=U2, 2,

2ei2 = S6icr=Ui,2-^ U2,u (2)

where / is the centroidal moment of inertia of the beam cross section,

ui and U2 are the horizontal and vertical displacements, respectively,

andSij are the elastic compliances of the crystal.^

In a coordinate system based on the principal crystallographic axes of

an hexagonal crystal, the comphance matrix has the form

S/i S/2 Sl3 0 0 0

S22 S12 0 0 0

Sl3 S{2 S/i 0 0 0

0 0 0 S44 0 0

0 0 0 0 S55 0

0 0 0 0 0 544

(3)

where

x{
II [1120], jc^

II [0001], and
||

[lOTO].

Under coordinate rotation about the X3 axis, the relevant coefficients are

given by

The usual contracted notation is employed here for single crystal compliances [1].
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5ii = m^Sn + /i4S22 + 7712^2(25 12 + See)

S2i = m27i 2 (5/1 + 522 -See) + (m4 + ri4)5i'2

Sei = m^n (- 2S/i + 25/2 + See) - mn^{2Si2 + See) (4)

where m = cos 0 and = sin ^. The displacements are obtained by inte-

grating eqs (2) subject to the boundary conditions

ai(0, 0)-0, W2(/., 0)=0, a2(-L, 0)-0 (5)

where 2L is the length of the beam.

Thus, as long as the beam remains elastic

i^i = M[SiiJCiJt:2 + SeiJc2/2]// (6)

U2 = M[S2,xl-S,,[xl-L^)V2U (7)

and the centerUne displacements are

1^1 = 0, U2 = -MSn{x!-L^)/2I. (8)

Elastic-plastic behavior. The elastic solution described above remains

valid as long as plastic flow does not occur. Since plastic deformation

occurs by slip on planes normal to X2 along directions parallel to x'l, the

yield condition adopted is that of a critical resolved shear stress,

f= [mn{(Tn-(T22) + (^2 - 712)0-12] 2 = A:2, (9)

where / is the yield function and k is the critical resolved shear stress

in X2 plane along the x'l direction.

Since crii = o- is the only nonvanishing stress component, the stress

at which plastic flow occurs is

±o-= o-*-A;/m7i, (10)

hence,

M''=Iklcmn = 2kcHl'imn. (11)

Thus, for M > M* plastic flow occurs in the outer fibers of the beam.

It can be shown that in the plastically deforming regions (x| > if) the

stress state is a constant, so that <J22 and 0-12 remain zero throughout.

The proof follows the same lines as that employed by Prager and Hodge [2].



HARTLEY AND EISENBERG 929

It follows then, that

CJll o-'^xzlr) r]^X2^-r) (12)

cr* xz^ — rj.

We must require that the moment about xs of the internal stress distribu-

tion be equal to the applied moment M, so

M= t
\ (TuXzdXi

or M— =o-*(3c2-T,2)/3. (J3^

The position of the elastic plastic interface is thus determined as a function

of the applied moment. The collapse moment M** is then found by setting

7] = ^ and so

M** = 3M*/2. (14)

However, it will be shown later that the corresponding curvature violates

the assumptions of small strains. The stress distribution for M*<M</k/**
is thus determined by eq (12) and by inverting eq (13) to obtain

(Vc)2= (3M*-2M)/M*. (15)

The displacement solution in the elastic region has the same form as that

for the completely elastic solution; Mil is replaced in the latter by (t*/t7, i.e.,

ai = o-*[SiiJCiX2 + S6i:t|/2]/7? (16)

i/2 = cr*[(S2ixi/2) -S,,{x\-L^)l2-\lr) (17)

for jc| ^ 7)'-. The moment-curvature relation may be obtained from (17)

by evaluating the second derivative of the vertical displacement along

the centerline. Thus,

-A:-o-*5n/c[(3M*-2M)/M*]'/- = o-*Sn'r^. (18)

In the plastically deforming region the displacements are determined by

using the plane section hypothesis and the associated flow law correspond-

ing to the yield condition (10). A linear strain variation is assumed through-

out the beam, and since the strain gradient is known in the elastic core,

it follows that

en =Siicr*Xj/T7 (19)
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in the upper plastic zone. The elastic component of strain, determined

from Hooke's law, is constant so the plastic strain component is found

to be

e';,5no-*(x2-T?)/T?. (20)

Now, the direction of the plastic strain rate vector is determined by the

normality condition,

4=A(a//ao-o). (21)

The plastic strains are all initially zero, so

^22^-^1, (22)

e'[,= cot 2de[, (23)

throughout the plastic region. Adding the elastic and plastic strain com-

ponents gives the total strain

en = o-*{SnWT?} (24)

e22 = o-*{S2i— [Sii(:t2 — 1?)/^]} (25)

ei2 = o-*{(S6i/2)+Sn cot26lb2-T?)/7?l}. (26)

These equations may be integrated subject to continuity conditions across

the elastic-plastic interface to obtain the displacements in the plastic

region,

i^i = a-*[2Sn(xiX2+ (jC2-7?)2cot2^) +S6i(a:2-(^2-t7)2)]/27? (27)

a2 = o-*[S2i(jC2- {x2-y))^) -Sn{{x.-r)y^x\-L^)M27). (28)

B. Isotropic Solution

If the material is assumed to be elastically isotropic, then

Sn = l/^, Si2 = -W^, Si6 = 0

and so

'

I

C7*[xiJC2+ (jC2-T^)2cOt20]/7?£' X2>'r)

\-cT*[vx,^{xl-L^)y2r)E ....

]-(T''[p{x2-{x2-vYWx2-vV^^'i-L']l^vE X2>V

In similar fashion, the remaining aspects of the solution may be obtained

for this special case.
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III. Elastic-Plastic Solution With Linear Work-Hardening

In the previous section, solutions were obtained for the stresses and

displacements of a single crystal elastic-perfectly plastic beam in pure

bending. The analysis is now extended to include the effects of work-

hardening.

The plastic strains are given by the flow law

„_da-ij\

dff df .

IJ \ 0 0"mil

df

da-PQ

(31)

instead of eq (21). We assume a linear isotropic hardening of an initial

Mises yield surface, so the yield function is given by eq (9) and

V = (32)
OCFijq

The plastic strain is then

sin^2^(o-n-o-*)/2a

-sin^2^(crn-cr*)/2a

sin 4^(0-11 — o-*)/4a

(33)

(34)

(35)

in the regions where plastic deformation has occurred. These strains are

obtained from the corresponding rate quantities by interpreting ( ) as

differentiation with respect to 17 and by integrating subject to the require-

ment that the plastic strains vanish at the elastic-plastic interface.

The bending stress distribution in the plastically deforming region is

found by employing the linear strain gradient assumption (19). The stress-

strain relations are found to be

o-u = o-*(T? + i8^2)/7)(l+i8) (36)

where

5n//3-sin^ 2e/2a. (37)

Having determined the stress distribution in both elastic and plastic zones,

the interface may now be located by requiring equilibrium with the

externally applied bending moment,

M = cr*i [3c2t^ + 2(3c^ - r)^]l37]{l + (^) . (38)
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The cubic equation may be solved to obtain iq{M), but it is inconvenient

to do so. However, the moment-curvature relation can be found by substi-

tuting from eqs (11) and (18) into eq (38) to obtain

M = -EIK[SiK*/K)-{K*IK)^ + 2(3]l2il^l3) (39)

relating the applied moment to the resulting curvature and the curvature

at the initiation of plastic flow, K"^.

The elastic core displacement solutions and centerline moment-

curvature relation for the perfectly-plastic case (16, 17, 18) remain valid

provided (15) is replaced by (38). To obtain the displacement in the plastic

zone, we add the plastic strains previously determined to the elastic

components computed from Hooke's laws.

ei2 = cr Sn cot 26^ ^ +S11 cot 26,
2 / 7]

(40)

(41)

/(1 + /3) (42)

and integrate the total strains subject to the appropriate continuity

conditions at the interface. Thus,

XiXo-r —
1 + /3

^*%ot 20] +f h (43)

and

a-) cr'
52, / (^2

+ )8

Su
2

(44)

The above results reduce to the perfectly-plastic solutions when /3

i.e., as the tangent modulus vanishes.

IV. Dislocation Theory Solution

In the following section the theory of continuous distributions of dis-

locations developed by Kriiner [3] and Bilby et al. [4] is used to obtain

the results of the previous calculations in terms of dislocation content

and distribution. The assumptions of the problem considered are es-

sentially the same as for the continuum plasticity treatment. In addition,

it is assumed that the plastic zone contains a continuous distribution of

edge ^dislocations lying parallel to jc.}, the axis of bending, and having
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Burgers vectors of strength b which have components (bi, b-i, 0). Thus in

the plastic region the state of dislocation tensor has components

0 0 6iA^,

0 0

0 0 0

A,nn=\ 0 0 b-J^; I, (45)

where bi are the components of b along xi, and is the net number of

dislocations intersecting unit area normal to x^, i.e., the net density of

excess dislocations of like sign. In the elastic portion of the beam the state

of dislocation is zero. Finally, it is assumed that the state of stress is

independent of ^1.

With the preceding assumptions the relevant equations reduce to [4, 5]

(Tn,2 = -E{Kl^, + b,N^) (46)

() = -E{K',., + b2N^). (47)

The component of the lattice curvature tensor, K'^^^ is the curvature of

the neutral axis of the beam as shown by the following argument. Consider

a strip of material in the plastic region having an original length, /, parallel

to x\ and a thickness dxi along x-z as shown in figure 2. The difference

in the total strain between the top and bottom surfaces is

deu=-Kdx2 (48)

where K is the curvature of the neutral axis. This difference is composed

of a dislocation component, or plastic strain

deu =
J

(49)

and a lattice strain component de[i, which is elastic. Thus

de'u =-iK:i,-^b,N:,)dx2, (50)

Figure 2. Model for decomposition of strain into plastic (dislocation) and elastic (lattice)

components.
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and by Hooke's Law

o-n,2 = -^(/^+6,/V3), (51)

showing that the lattice curvature appearing in eq (46) and the curvature

of the neutral axis are identical.

In the plastic region the assumed stress distribution fixes the relation

between the dislocation density and the curvature of the neutral axis.

In particular

-K=biNs (52)

in the plastic region.

The internal stress at a distance y from the neutral axis can be ob-

tained by integrating €q (51) from = 0 to X2 = y,

(Tn=-E
\

{K+brN^)dx-2, (53)
Jo

where the first term in the integrand gives the stress which would exist

if the material obeyed Hooke's Law at x^ — y^ and the second term is

the "stress relief" due to the dislocation stress field. The internal resisting

moment, M, for a beam of rectangular cross section having thickness,

^, along the Xz direction, can be obtained in the usual manner:

M= -2
j auydA = 2E j' y{Ksi + biN:i)dx2dy, (54)

where again the first term is the "Hookean" moment, Me, and the second

is the moment due to the stress fields of the dislocation array, Mp.

It is interesting to consider the significance of the integrals involving

the dislocation distribution. Since A^3 = 0 when y<r}.

(' Nsdx.2 = yriy)
Jo

(55)

is the net number of dislocations intersecting an area having dimensions

of unity along xi and {rj — y) along xo. The second integration gives the

first moment of J^{y) about the axis of bending.

Integrating by parts

jy^iy)dy=[c'^{c) ^\m,dyV2, (56)

where the first term involves the total number of dislocations (per unit

length along in the plastic zone, and the integral is the second moment

of the dislocation density, A^s, about the axis of bending. Both of these
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quantities can be determined analytically for particular dislocation distri-

butions or experimentally on deformed specimens.

For the present problem, the dislocation density in the plastic region

is constant (cf. eq (46)), hence

J^{y)=N,{y-r^)=-K(y-v)lbu (57)

and the moment due to the stress field of the dislocation array is

Mp =- EKt [2c3 - 3c^r; + r]^]l3. (58)

The Hookean moment is simply

Me = EKU (59)

and the net moment, M, is given by

M= ME + Mt,= EKtr][3c' - r?^] /3, (60)

in agreement with the result of the continuum plasticity calculation.

Linear work-hardening can be introduced directly from eq (46). The

physical consequences of such an assumption will now be examined.

Let

(7u,2 = -r=-E{K^N:M (61)

in the plastic zone. From eq (36) it is evident that

-r-o-*/3/T;(l + /3). (62)

The dislocation density is, then

N,= [{rlE)^ K]lb^, (63)

which is evidently constant for a given curvature. The excess dislocation

density, r/Ebi, is thus proportional to the work-hardening rate. Hence,

in a plastic region the rate of work-hardening can be determined by experi-

mental measurements of K and A^3 at various points in the region. The

moment and curvature for the elastic-plastic beam can be found as before.

In terms of r

y = {
0-* [3c'- rj'] + r[2c^ - c'l) + t?=^] }/3. (64)

The moment-curvature relation follows from the substitutions

cl7] = KIK* and M* = (t*cH
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where M* and K* are the moment and curvature at the instant of yielding

of the outer fiber.

The moment-curvature relation can be expressed in terms of the

dislocation density in the plastic region by substituting eqs (11) and (18)

into eq (66):

Note that for no work-hardening K=— N-^b^ and the above reduces to the

elastic-perfectly plastic result.

The above treatment now permits an interpretation of the empirical

parameter /3 of the continuum plasticity result in terms of the dislocation

content. Fr.om eqs (61) and (62),

thus /3 is a measure of the net dislocation density present in excess of

that required to produce bending with a zero gradient of residual bending

stress in the plastic region.

The advantage of the dislocation approach is to allow a physical inter-

pretation of the assumptions of continuum plasticity. In the present case

the assumption of a constant bending stress in the plastic region implies the

following picture of deformation by bending. When a critical value of

lattice strain, efi, is obtained at the outer fiber of the beam, additional

deformation may only be accomplished by the addition of dislocations.

Clearly this is equivalent to assuming a critical shear strain on the active

slip system. Furthermore, the dislocations must be arranged in such a

manner that the lattice strain remains equal to the critical value through-

out the plastic region. At first glance it seems unlikely that a uniform

distribution of dislocation would satisfy such a requirement. It is therefore

of interest to examine this point and to determine the effect of plastic

deformation occurring by slip on planes inclined at various angles to the

neutral axis. In the following sections, it is shown that the distribution

of dislocations given by eq (52) does, in fact, give the correct stress dis-

tribution in the plastic region. Also, the effect of allowing the distribution

to become discrete by introducing slip bands is examined.

The stress field of an edge dislocation in an infinite half-space has

been given by Head for arbitrary orientation of the Burgers vectors to the

free surface [6]. In the present case the results must be modified to cor-

respond to the central plane of a beam in plane stress. This results in

replacing the factor E/2(l — p-) in Head's results by £'/2.

(66)

(67)
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If the dislocations in the plastic region are uniformly distributed with

a density given by eq (52), then the net Burgers vector of all dislocations

crossing an element of area dz\dzi is

B,=-Kdz,dz2. (68)

The stress field of such a "bundle" of edge dislocations is obtained by re-

placing the Burgers vector of an individual dislocation with Burgers vector

parallel to the free surface with B\. The stress field of the two-dimen-

sional array is then obtained by integrating the field of these bundles

over the entire plastic region. It is easily shown that cr'/^ and cr.l'., vanish

for a beam having infinite length along xi. The evaluation of cr'/j is some^

what more subtle, however. The stress components of dislocations

lying near a free surface can be written in the usual manner as the stress

components in an infinite body plus image terms. The image terms arise

in part from image dislocations of opposite sense placed at equal distances

on the opposite side of the free surface. Consider the contributions to the

stress component cr'j'j at the point (x], x>) in the plastic region shown.

The point hes in the tensile stress field of dislocations between x-z and

c, but in the compressive stress field of their images. Although these do

not cancel for a single dislocation, they do for an infinite array along

the JCi axis or for a finite array in an infinite half-space, illustrated sche-

matically in figure 3a. The point lies in the compressive stress field of

dislocations between x>z and 7] and in the compressive field of their images

as well. These superimpose to give the net stress component calculated

below.

The value of the stress component depends on whether the general

point is nearer or farther from the free surface than the dislocations.

In the former case the stress fields of the image dislocations cancel those in

the plastic region, while in the latter they add to give

EK p2
477- Jr,

^TTdz-z; Z2 < X2. (69)

Since both x-> and z-> lie between c and 17, the region in which Zz < x-z is

y) < zz < Xz. Finally, the stress component is

crn = EK{xz-r}). (70)

The stress in the plastic zone is then given by the sum of the stress

which would exist at any point if Hookean behavior were obeyed (the "ap-
phed elastic stress" referred to by Mura [8] ) and the stress due to the
dislocation array. Thus,

o-n -- EKxz + EK{x2-r))=- EKt) ^a*. (71)
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Figure 3(a). Infinite array of uniformly spaced edge dislocations with Burgers vectors

parallel to a free surface.

Figure 3(b). Infinite array of uniformly spaced edge dislocations with Burgers vectors

perpendicular to a free surface.

Since r] is the elastic-plastic interface, the product Kr) is the critical

lattice strain for yielding, ef^ , which is constant. The yield stress is simply

— EKj), that is, the value of the elastic stress at the elastic-plastic interface.

Y. Effect of Slip Geometry

In the following sections, the effect of slip geometry is considered.

First note that in the present case the component of the net Burgers vectors

parallel to the X2 axis can be expressed in terms of the curvature K:

B2 =-K cot ddxi dx2. (72)

Integration of the stress components as before shows that no net stress

is developed due to B2, as noted previously by Read [5].

The constancy of the stress component cru can be interpreted as a

constant resolved shear stress on the slip plane in the sUp direction.

This shear stress is

k^- {EKr))mn = cr* sin 26/2. (73)
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Figure 4. Edge dislocations in uniformly spaced slip bands.

The stress tending to produce climb can also be obtained by the usual

transformation of stress components:

i2 = o-* cos2 e. (74)

Thus introducing the concept of a continuous distribution of slip planes

does not change the results. This observation was first made by

Gardner [7]

.

The effect on introducing a discrete array of slip bands can be deter-

mined from an analysis of the stress field of the array shown in figure 4.

The average dislocation density is assumed to be the same as that of the

continuous array, thus

wh = w^ sin 2d/2^l/N3 = -bJK. (75)

The two-dimensional array shown can be analyzed as a distribution of

infinite arrays which lie parallel to the free surface and which are com-
posed of dislocations having a uniform spacing w along jci. If we assume
that the zeroth array is centered at (0, 17), the nth array is centered at

(ai5, j) + nh) where s = h tan d. The number of such arrays is

N={c-j))lh. (76)

Note that w and h are related to the curvature by eq (75).

The stress field of such a two-dimensional array is obtained in two

steps. First, the stress field of the infinite array parallel to the free surface

and centered at (0, r\) is obtained by direct summation. Then the dis-

tribution of arrays is approximated by a continuous distribution along

X2, so that the Burgers vectors of dislocations in the array become

I)
1 tan 6dx2

(77)

369-713 OL - 71 - Vol 11-15
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the stress components are then integrated over the plastic region. The
result for the continuous distribution can be obtained by taking the hmit
as while keeping K and bi constant. The stress fields for the

infinite arrays shown in figures 3a and 3b are given in [9].

The stress field of the two-dimensional array shown in figure 4 is

obtained by replacing the Burgers vectors of individual dislocations in

the array by eq (77) and integrating over the range r) ^ zz^ c The results

are given in [9]. Although the discrete distribution produces nonzero stress

components other than a'-^^, in all cases the limits as z^^O of the com-

ponents reduce to the continuous results, as they must.

The residual stress distribution in a plastically bent beam with zero

net moment about x^i can be obtained by superimposing a Hookean state of

stress arising from the appHcation of a moment equal and opposite to

that given by eq (66). Such a state of stress is

(Tn=-Mx2/I, (78)

all other components being zero. The net stress is then

(j'^ — rix2—r])—Mx2lI r]^X2^c

(79)

-EKx2[2-{3K''/K) + (/^*//^)-^]/2 0^X2<V-

The change in curvature when the external moment is removed (producing

zero net moment) is simply

AK= -MIEI, (80)

hence the curvature of a bent elastic-plastic beam without external loads

can be calculated in terms of the position of the elastic-plastic interface.

VI. Summary

The elastic-plastic pure bending of a simply supported prismatic beam
subjected to external moments on either end has been investigated from

the viewpoints of continuum plasticity and dislocation theory, assuming

plane stress and a constant bending stress in the plastic region. In the

former case solutions are presented for a particular case of elastic

anisotropy corresponding to the bending of an hexagonal close-packed

metal by single slip. The yield criterion applied was that of a critical re-

solved shear stress on a slip system such that the slip direction is normal

to the axis of bending. Strains and displacements in the elastic and plastic

regions and the moment-curvature relation are obtained for both nonwork-

hardening and linear work-hardening models of material behavior.
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The dislocation approach employs the same assumptions (except for

elastic anisotropy) to obtain the moment curvature relation and the state

of dislocation in the plastic region. Also, a relation is obtained between

the externally applied moment and various properties of the dislocation

distribution. The relation is independent of any assumption concerning

the yielding or flow behavior. Phenomenological coefficients appearing

in the continuum plasticity treatment of linear work-hardening are shown

to be related to the excess net dislocation density above that required

to produce bending with a zero stress gradient in the plastic region. It

is also shown that the model of no work-hardening corresponds to assum-

ing a maximum lattice shear strain on the slip system.

The stress field of the two-dimensional dislocation array calculated

from the assumed lattice stress distribution is shown to provide the re-

quired stress relief from the Hookean stress, i.e., that associated with

Hookean behavior up to the total shape strain. It is also noted that a

discrete distribution of dislocations in slip bands gives rise to nonzero

components of the stress tensor in the plastic region other than the bend-

ing stress, (Jii. However, in the limit as the distribution becomes contin-

uous, these go to zero.

The distribution of residual stresses in bent elastic-plastic beam with

no applied moment and the change and curvature when an external mo-

ment is removed are calculated.
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GENERALIZED STRESS AND
NON-RIEMANNIAN GEOMETRY

S. I. Ben-Abraham
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S. P., Brazil

The general non-Riemannian approach to the geometry of a solid with

lattice defects is briefly discussed. Non-Riemannian geometry is applied

to the treatment of statics. The "stress" curvature tensor has the meaning

of a generalized stress tensor with 27 components, while the associated

Einstein tensor represents the classical stress tensor. The "stress" con-

nexion expresses the generalized moment stress having 27 components.

Its torsion tensor is the classical couple stress tensor.

The identities of the curvature tensors are identified with the static

equilibrium conditions. Using a stress function density instead of a metric

tensor, it is shown that the equilibrium conditions can always be identi-

cally fulfilled. A consistent theory involving lattice defects must neces-

sarily involve also generalized moment stresses and generalized stresses.

Key words: Affine connection; continuum mechanics; non-Riemannian geometry; stress.

Introduction

Kondo [1] was probably the first to recognize that the geometry of

an imperfect crystalline body can be appropriately represented in terms

of a general non-Riemannian space. The notion was independently discov-

ered by Bilby, BuUough, and Smith [2] and has since been very much
developed, especially by the groups of Bilby [3] and Kroner [4], and

from a somewhat different viewpoint by the school of Kondo [5, 6]

.

Recently, Bilby et al. [7] extended the analysis to include nonmetric

connexions, and thus obtained an adequate continuum description of the

geometrical properties of both dislocations and point defects. A fairly

representative and up-to-date bibliography may be found in references

[3, 6, 7].

Fundamental Aspects of Dislocation Theory, J. A. Simmons, K. de Wit, and R. BuUough,,
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. ,H17, II, 1970).
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The importance of including couple stresses in a consistent contin-

uum theory of lattice defects was pointed out by Kn'mer [4, 8]. Mean-

while, the theory of couple stresses, originated by E. and F. Cosserat [9],

has been developed by a number of workers, from whom we shall mention

only Ericksen and Truesdell [10], Mindlin and Tiersten [11], and Toupin

[12]. It must, however, be emphasized that the theory of couple stresses

has been developed from an extremely phenomenological point of view,

mainly in order to match the needs of the theory of thin shells. Of greatest

importance in the present context is a paper by Eringen and Suhubi [13],

who succeeded in eliminating the indeterminacies hitherto encountered

in couple stress theories. They presented their results in a form which,

though not explicitly stated by the authors, is suitable for direct inter-

pretation in terms of continuously distributed lattice defects. Very recently

Cohen and DeSilva [14], dealing with thin shells, introduced a stress tensor

of valence 3 having 27 components, and thus presented the static counter-

part of Bilby's geometrical theory [7].

Kroner [15, 16] and Eshelby [17] have put forward the application of

three-dimensional tensorial stress functions to the determination of in-

ternal stresses in imperfect crystalline bodies. This has been done by

generalizing the classical Beltrami-Michell equations to include incom-

patible strains. The stress functions can then be expressed in terms of

the geometrical incompatibilities.

In the present paper we shall "geometrize the statics," i.e., we shall

treat stress-functions, couple stresses and stresses as geometric quan-

tities. This will enable us to apply the established formalism of nonrie-

mannian differential geometry and thereby show that it is always possible

to fulfill identically the static equilibrium conditions by deriving the

stresses from stress-functions. Moreover, since the curvature tensor of

the discussed space is identified with the stress tensor, the theory yields

in a straightforward way the generalized 27-component stress of Cohen

and DeSilva [14].

The terminology, the mathematical representation, and in particular

the tensor notation will, except for minor deviations, closely adhere to

those adopted by Schouten [18, 19]. The physical interpretation will follow

the hnes of the analyses by Kroner [4] and Bilby et aL [7].

I. Geometry

For reference purposes and in order to clarify the notations, we shall

briefly recall the essentials of the geometrical theory.

We imagine the solid under consideration to be initially a perfect stress-

free crystal containing no extramatter. This ideal state will be labeled
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[A]. The plastic (or dislocation) distortion P brings the sohd into the dis-

located state (first intermediate or first natural state according to Kroner

[4]), labeled [j/]. The introduction of extramatter, represented by the

distortion Q, brings about a state which will be called natural (second

intermediate or second natural in Kroner's terminology) and labeled

Kroner calls the distortion Q quasiplastic and Bilby extramatter distortion.

I suggest to coin the term ''qlastic'' distortion. This would fit the patterns

"elastic" and "plastic" and might be interpreted as an abbreviation for

quasiplastic reminding us of Q, and also reminiscent of the Greek word

A<:A.Q:crT(T^= broken. Finally the elastic distortion E fits the plastically and

qlastically distorted solid into ordinary Euclidian space and induces in

it the final state, labeled [a]. The qlastic and elastic distortions Q, E,

together form the lattice distortion L. The superposition of the plastic,

qlastic and elastic distortions is the total distortion T.

All quantities referring to the above described fundamental states

[^], [j/], and [a] will be denoted by CAPITAL ITALICS,

'^s^^^^J^^ S^^^JS^Sr , and small italics, respectively.

The states themselves may for simplicity be specified by these terms if so

desired. For symbols not specifically related to a particular state we
chose a neutral type, namely Greek or ROMAN. Thus an arbitrary state

will be denoted by [a] or [A].

The linear elements specifying the mutual position of two nearby

particles (material points) of the solid in the states [^], [j?/], [/^], [a]

will be denoted by dX'^, d ^ du^'^, dx'^, respectively. Now we can write

down the formal definitions of the fundamental distortions and their

inverses (it is assumed that these always exist):

I:.

d^^= '3.\dx''.

dx>^= l>^^dX\ i.;T.'i =

The inverse of a distortion D is here denoted by Q (upside down).

The identity will be denoted by I having as its inverse I again. This

notation has proved to be very convenient. In accordance with their

physical meaning, the distortions will always be treated as point trans-

formations, and it is therefore the kernels that must be distinguished by
different types. Our equations refer to some fixed but quite arbitrary

coordinate system, (/<). This fact is stressed by choosing neutral, viz,
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Greek types for the indices. Of course, one will usually choose a coordi-

nate system in which one of the fundamental states will be described

most simply (say the final state in the Eulerian description and the ideal

state in the Lagrangian description). This coordinate system will accord-

ingly be labeled {K)
,
(X), (^) or (k) and one will have, for instance

for the Eulerian definition of the plastic distortion etc.

Static quantities will, nevertheless, usually be denoted by Greek

letters, in order to adhere to common usage. This will, however, cause

no confusion, since the statics will throughout be given in the final state

representation.

To every point transformation there belongs a certain coordinate

transformation, such that the coordinate system is dragged along by the

point transformation. Formally this is expressed by the equations:

(1.3)

where now the kernel has become neutral (Greek). Using this trick, the

fundamental distortions will now be written:

I>=8^Q"_x8^' lf=8i^»^S«, (1.4)

This is the method adopted by Kroner. Bilby's notation is redundant,

since he usually writes the equivalents of dX'^, d^'-^^ da^^^ dx^ etc.
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When dealing with more general problems involving an arbitrary number

of point and/or coordinate transformations, it will be worthwhile to

have a more fancy notation. One then replaces the kernel letters of

the transformations by two-index symbols, such as

etc., clearly indicating that the plastic distortion P transforms the state

[A\ into [^]. Here the sign = stands for "equal by definition." Usually

one will, of course, have to label the states by an index. Obviously, this

notation extends the advantages of the kernel-index method to point

transformations. Since we are, however, dealing only with a few funda-

mental distortions, we shall not use this method, in order to keep the

notation as simple as possible to match our present needs.

We shall denote the distance between two fixed neighboring elements

in the fundamental states by dL etc., and for each state we shall define

a corresponding metric tensor A^x etc. by the relations

d^^= j^.xd^'<d^'\

df'^^a^xd^^djz^^^
^^'^^

dl^ = a^kdx'^dx^.

These metric tensors are essentially arbitrary and may for convenience

be chosen as Kronecker deltas in some fixed coordinate system. Thus:

Ak\ = j^k\=^k)^ =aKX=8KK. (1.7)

Really meaningful metric tensors are however obtained when the length

in a given state (e.g., dL) is related to the linear elements in another state

{e.g.^dx'^). Thus we shall have for instance:

dL^ = G^xdx-dx^ = H,KdX'<dX\

dJf'' = ^,xdx'<dx^ = ^,xdX'<dX\

(1.8)

df^ =fK\dx'<dx^ =AKxdX'<dX^,

dl-= g^xdx^dx^ KxdX^dX^.
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Here, of course, one of the metric tensors is still arbitrary, and one has

gKk = aKk, H^K=A^x. (L9)

The metric tensors can be expressed in terms of the fundamental distor-

tions. Since, for instance,

dIJ = A^xdX"dX ^ = A^xl dx ^'l!l,dx''= G^^ydx ^'dx \

we obtain

(1.10)

Now we can define the strain tensors as usual. The Eulerian strain

tensors are defined by the relations

d^--dL-= {^^x-G^x)dx'<dx^= 2Tr^xdx'<dx\

df- — d^-= {f>,x — ^'^Kk)dx''dx^^ 'Iq^xdx^dx^,

di--d/'-= {g^x- fKK)dx'<dx^^ 2€^xdx'<dx^, (Lll)

di- — dL'~= {gKX — GKx)dx'^dx^= 2rKxdx'^dx^,

dl'-d^-' = (g,x- ^kx ) dx '<dx ^ ^ 2Kxdx '<dx \

Hence, the Eulerian plastic, qlastic, elastic, total and lattice strain tensors

are, respectively:

T^kA = i (^kX ~ CkX )

,

qKk = i{ fKK — ^Kx),

€.X = Hg.K- f.x), (1.12)



BEN-ABRAHAM g^g

In an analogous way one defines the lagrangian strain tensors

— 1— 2 {^kK "

QkX — 1— 2 (^kX — JTkx) ,

— h ->^kx),

— 1— 2

AkK
— 1— 2 - ^KK ) •

(1.13)

The connexions associated with the fundamental states are defined as

^A-d.taKPrx.

^A-<l^pO!'.^.Qr.P.^ (1.14)

^^kX "-J^-j^ ^ -X'

The connexion hj^^ is the most important one. With the restriction to

holonomic coordinate systems, every connexion can be written as the sum
of a Riemannian connexion and a tensor:

^,^,= ^'^-(^{..M-^(K.x}),

^;fx=^r^''(^{K<rX}-5{^,,A}+9{KaX}). (1.15)

Here we have defined

2^KXM = ^Kg'XM, (1.16)

S^K^=h^[^X\. (1.17)

5kXm = ^Vr•SKX:^ (1.18)
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b

2gKAM V^g-XM = -d,gK^ + b^^ga^ + b^^ gaX. (L19)

and analogous definitions for quantities associated with other states.

The torsion tensor Skx^- describes the distribution of dislocations and

the ammetry tensor q^xix describes the distribution of extramatter. It

should be emphasized that the physical entities, i.e., the lattice defects,

are always represented by tensors.

Since the solid that has undergone a total distortion again fits into the

euclidean space, the connexion must be integrable. The integrability

condition is the vanishing of the associated curvature tensor

Hence the fundamental geometric equation, or else the generalized

compatibility condition is

CkXm.'^^O, (L22)

where now the curvature tensor CkXm" has to be expressed in terms of

the distributions of lattice defects.

A general curvature tensor can always be expressed as the sum of a

Riemannian curvature tensor rKX^ '' and terms depending on the non-

Riemannian, tensorial part of the connexion:

fj

c,x^!' = r,x^' + 2V[,tx] ^ + 2^[K|crr^x]^^ (L23)

where

TkXm.^^ 2^[Kgx]ll^2g[,l-,\gx]%. (L24)

^A^^'^'^kcrX}, (1.25)

tKk^ = g^^{- 5(KcrX} + 9WX}) , (1.26)

fJ

and V is the operator of the covariant derivative with respect to the Rie-

mannian connection gj^^-

Instead of (1.22) we can now write the equation

r.x^!' = -2V[.tx]^',^2t[.\a\!'tx]^.''. (1.27)

Here the right-hand side defined by the defect-distribution tensor t^x^

can be interpreted as the incompatibility associated with the lattice

defects.
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Since the identities valid for the Riemann tensor Tka^." restrict the

number of its essential components to 6, it can be equivalently represented

by the associated symmetric Einstein tensor

Kx^r^KK''-h'sKKg^''rats.v'f. (1.28)

Performing the operations prescribed by (1.28) on the right-hand side

of (1.27) we obtain the usual symmetric incompatibility tensor IkX = ixK,

so that we have six conditions

Kx^^Ikx- (1.29)

Equations (1.27) however yields 18 additional relations with a zero left-

hand side.

II. Classical Statics

We can now proceed towards our goal, namely the geometrization of

statics. We shall, however, not treat the most general case at once, but

we shall start with a demonstration of our procedure in the instance of

classical elasticity theory (GET). Thus we shall have the advantage of

considerable simplicity, while retaining most of the essential features

of our program. We shall throughout stick to the eulerian representation,

since the equilibrium of forces is maintained in the final state [a]

.

In the framework of GET the state of stress of a deformed solid body

is described by the stress tensor density o'kX', this is a symmetric tensor

density of weight +1. The weight of a density will be denoted by the

number of carets above the kernel letter for positive weights, or below

the kernal letter for negative weights. Thus g denotes a scalar density of

weight +2, PkX/xj^ a 4-valent covariant tensor density of weight — 1 (or

tensor capacity of weight 1). This notation perfectly fits our purpose, since

we shall not need weights higher than 2.

The static equibrium conditions in GET are

VkcS-'^^ + Z^^O, (2.1)

6-['<^l = 0, (2.2)

where is the vector density of volume forces of weight + 1.

The equilibrium conditions (2.1), (2.2), respectively, bear a striking

similarity to the Bianchi identity and the fourth identity for the Riemann
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tensor, when written out for the Einstein tensor. Essentially the three

remaining identities for the Riemann tensor are also contained here,

since the construction of an Einstein tensor equivalent to the Riemann

tensor is only possible when these identities hold.

The analogy between the static equilibrium conditions and the curvature

identities is not at all accidental and we shall make it the essential point

of our program.

First we shall reconstruct from a"^ the full Riemann tensor or rather

its density. We shall apply the Levi-Civita tensor densities defined by

e'<^M = e^'^^'^], ei23 = + l, (2.3)

^K\n=^[Kkn]. .§123 = + 1. (2.4)

Now we construct the 4-valent covariant stress tensor density

(2.5)

and the corresponding representation of the volume force density

Rewriting eq (2.1) in this representation we obtain

(2.6)

^UO^^x]^JiP = —fLKK^JLv. (2.7)

which has, except for the signs of density, already the form of a general

Bianchi identity:

^ [l^Kk]^^l'=2S[,^^.'Cx]a^J.v, (2-8)

since by definition

(2.9)

The Bianchi-identity (2.8) can be written in a more convenient form,

using the operator V defined for tensors alternating in the first 2 indices:

V [tCK\]/X»/=V[tC/<X]Mt' ~ 2S[iK^Cx]o-/LlZ^, (2.10)
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(for a general definition of V cf. ref. 19, p. 149 ft). Then we have instead

of (2.8)

9

V[.Cka]m. = 0. (2.11)

It is easy to see from the comparison of (2.8) and (2.9) that a given volume

force density induces in addition to the Riemannian connection gi;^^ a

semisymmetrical tensorial term

P.^.-WkH], (2.12)

with

P.^i-9x^f^^ (2.13)

where -P^x is the inverse of the stress tensor density o""^, and thus is

defined by

-OkmO-^' = I^ (2.14)

A nonvanishing volume force density implies a nonsingular stress tensor

density and therefore the existence of the inverse DkK in all cases of

interest.

From a practical point of view the representation of the volume force

density by the vector is as good as useless, since in order to deter-

mine Pk one has first to compute cr'^^ and DkK-, which are ultimately

determined by However, it shows that assuming a general connexion,

one already covers the case of nonvanishing volume forces, and therefore

the treatment can in principle be simplified. Since, moreover, we are

primarily interested in internal stresses due to lattice defects, it will be

fully justified to simpHfy our exposure by assuming

/^ = 0. (2.15)

Now the equilibrium condition (2.1) becomes

(2.16)
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Ever since Beltrami [20] it has been well known that this equation

can be identically fulfilled by deriving the stress tensor cr"^ from a sym-

metric stressfunction density of weight —2:

where

= Det [g^K).

(2.17)

(2.18)

(2.19)

Since one will usually choose ^-ka^^ka, the definitions (2.18), (2.19) do

not, in fact, complicate matters.

It can now immediately be recognized that the relation between ')^'^^

and cr"^ is essentially the same as between the density gK\/g derived

from a Riemannian metric tensor g^x and the associated Einstein tensor

Let us now proceed to construct the theory, first for GET. The basic

quantity is the symmetric stressfunction tensor density 7k\ of weight —2,

which is assumed to be a function of the coordinates differentiable as

many times as necessary. The tensor (density) "/ka and its inverse H'^^

wiU be used instead of fundamental tensors to rkise and lower indices.

This can be interpreted as defining in the manifold of x*^ a new "stress"

metric y^x not directly connected with the strain metric g^k. While ip

a bicapacity with respect to gK\ it will be a tensor with respect to itself.

From we construct first a Riemannian connexion (density of weight

-2):
'

^ (2.20)

By raising the index X in (2.20) we obtain the connexion

(2.21)
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We form the Riemannian curvature tensor p^^M^
associated with the

connexion jSj^^, according to the definition

PkXm"^ - 2a[K^x];i+ 2/3[,|,|/3x]S (2.22)

and now construct the tensor (density)

kKixv V var

(2.23)

Instead of (2.22) one can, with the same result, also define:

p kXm. ^ 2du(^ X] + 2x^" §[K
I

pH)Sx] Mcr. (2.24)

Now obviously, p^\^. is a Riemann tensor, and therefore the density

PkXaiz/ fulfills the identities

(I) P(KX)Mi^=0,

(II) p[KXM^'] = 0,

(III) pKMMt^) = 0,

(IV) QKknp = Q^LVK\'

(2.25)

and the identity of Bianchi in the form

VuPkx]m.= 0. (2.26)

From the identities (I), (II), (III) (2.25) it follows that PkXmi^ can equiv-

alently be replaced by the associated Einstein tensor. In the 3-dimensional

case this can be constructed in a most simple way by means of the Levi-

Civita density, as follows:

(2.27)

-713 OL - 71 - Vol n - 16
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cX

g

In terms of o"*^^ the Bianchi identity and the identity (IV) become

. VkO-'<^ = 0, (2.29)

o-t'^^] = 0. (2.30)

The tensor density must obviously be identified with the stress

tensor density. One sees that the stress tensor plays the part of the

Einstein tensor (or if written with the 4-index notation, the Riemann tensor)

in a space where the stressfunction density '^kk corresponds to g^x/g.

We have now essentially achieved our goal, in that we have shown

that a stress tensor (density) can always be constructed as the curvature

tensor (density) associated with a symmetric stressfunction tensor (den-

sity) as metric tensor. This construction automatically ensures the

fulfillment of the equilibrium conditions (2.29), (2.30), identical with

(2.16) and (2.2). At this point one has to use the constituting equations,

which define &'^^ in terms of the elastic strain tensor Ckx (and vice versa).

According to (L12) we have in the case of GET

eKK = h (gKK-G^x), (2.31)

where gKk (or alternatively 6\x) is an arbitrary symmetric tensor and

may in some coordinate system be chosen as

^kx=6ka. (2.32)

Therefore the constituting equations define G^x in terms of d-''\ We
shall assume, for the sake of simplicity, the constituting equations to be

in the form of Hooke's law

(2.33)

We obtain

G fxi' txv 26
(2.34)
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Now we form the Riemann tensor R^^^^ associated with G^j. according

to the usual rules. Again we may replace the Riemann tensor
/^^^m'

its associated Einstein tensor Kk\ = Kkk. Since both the initial state [A]

and the final state [a] fit into the Euclidean space, we have the 6 com-

patibility conditions

K,K = 0. (2.35)

When^KX is expressed through (2.34) in terms of cr'^^ these equations

are the Beltrami equations. If, moreover, we express here o""^ through

(2.28), (2.24) and (2.20) in terms of7KX, we obtain 6 partial differential

equations of the 4th order for the 6 functions y^x. However, since a co-

ordinate transformation involves 3 arbitrary parameters, we can choose
in a particular coordinate system 3 of the components of y^x at will, and

fulfill 3 equations identically. For a Cartesian coordinate system the choice

is either Maxwell's (yKX = 0, k =\= k) or Morera's {yKK = ^)- This topic has

been extensively discussed by many authors (cf. ref. 16, p. 55 ff).

III. Generalized Stress

We are now ready to generalize our results to the case that is of real

interest, namely when the connexion jSjJ^ is neither symmetric nor metric,

i.e., there are nontrivial distributions of dislocations and point defects

throughout the sofid, which, as will be seen, are equivalent to couple
stresses and double force stresses.

Let us assume a stress connexion (5^^ defined throughout the solid. The

connexion defines a covariant derivative. Let us introduce a symmetric
J kX

stressfunction tensor (density) y^k and its inverse /- •

Let us now define the ammetry i/z^Xm of 7kx with respect to (3^^:

i//KXM=-i Vk^x^. (3.1)

As before we now obtain

/3^ = /L'^-(i5{,y,x}-^U^x}+ '{'{Kcxx}), W = TM^/^rKX]. (3.3)

The connexion j8^^ is now expressed in terms of the stressfunctions 7kX,

their derivatives 4^ kKul and the associated torsion tensor

Now let us form the curvature tensor X^^^ belonging to
/^^J^

andy^x:

XKXM.'^-2af,/3x]';,+ 2/3f,|;;ii3\j-, (3.4)
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or

XkX/x. = 2d[K^x]M. + 2lp^(lu\p,\§K]t.a , (3.5)

where

i8.x^^7^.^-,. (3.6)

The tensor (density) XkA^i'. by virtue of its definition, fulfills the identities

(I) X{k\)hp=(^,

(II) x[^^m]i' = 2 V[k^xm]v ,
(3-7)

(III) XkXm^ =2V[^ijjx]^i^+2^Ji}jpf,j.

and the Bianchi identity

V[tXKX]Mi'=^0- (3-8)

The identity (I) of (3.7) shows ihat^Xi^xnu has 27 (rather than 81) independent

components and the identities (11) and (III) of (3.7) and (3.8) represent 30

equations for the 33 functions oil/3!t\ (27 functions) and y^x (6 functions).

Since 3 components of can still be chosen, we have the appropriate

number of equations. These identities represent the generalized equilib-

rium conditions (eqs (4.1), (4.11) in ref. 14).

The interpretation of XK\tJ.p is as follows. The Einstein tensor

r"^ ^^e'"<''e^^')^,K^, (3.9)

represents the stress tensor which, however, is not symmetric, since an

identity of the form (IV) (2.25) does not hold.

One can of course express XkX/xv as the sum of a Riemann tensor density

pKkuLv and a non-Riemannian part (/)kX/xi/:

(3.10)
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Then the Einstein tensor

corresponding to p^^^. will correspond to the classical symmetric stress

tensor and all nonclassical terms will be associated with (p^xni^.

The tensor density

XKHtJip)= (l>KMtJii') (3T2)

may be conveniently called double stress [14], since it corresponds to the

distribution of double forces due to point defects, as can be immediately

seen from (III) (3.7).

In the phenomenological treatment of Eringen and Suhubi [13] the quan-

tities corresponding to ^SkXm' and cr^^ are called first stress moments,

macrostress and microstress average, respectively.

The interpretation of {kXm and ^kXm is quite obvious. Forming the tensor

we obtain the familiar couple stress tensor fiP'^'^, where a labels the plane

and Py the couple. Therefore, {kAm expresses the same physical quantity,

but here kK labels the plane and /jl the couple.

The tensor i//^^. must be found in a different way, namely

^ (3.14)

Now i//"^. represents the torqueless moment stress labeled by a(B on the

plane k. Hence i//"^. corresponds to distributions of extramatter, i.e.,

foreign atoms, vacancies, etc. The quantity i//"^ or ifj^x^ is very convenient

from a practical point of view, since the effect of point defects is usually

given in terms of the double force distribution, which can be directly

measured (cf. refs. 4; 16, p. 148 ff; 21; 22).
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The next step to be taken is to express the static quantities XkAm*^' i^K^?

etc. in terms of geometric quantities, or vice versa. This can Be done if

an energy function is given for the sohd in terms of these quantities (and

possibly the entropy). This has been done by Eringen and Suhubi [13]

who, however, give a very vague phenomenological interpretation.

If the energy density w as a function of the elastic stress tensor, the

torsion tensor (representing the dislocation density) and the ammetry

tensor (representing the extramatter distribution) is

w = w(eKX, 5;^^ (^KAAt)' (3.15)

then

8w
o-'^^-^f-, (3.16)

h=B;^ (3.17)

(/)kx^ =—— , (3.18)
oqKkn.

where, of course, the densities, are obtained from the corresponding

tensor by multiplication with Vj^.

These equations show that a distribution of dislocations is intimately

connected with the presence of couple stresses, and a distribution of

extramatter is in a similar way connected with the presence of torqueless

moment stresses. Hence any consistent continuum theory of dislocations

must necessarily take into account the couple stresses, and a theory

accounting for extramatter is necessarily ammetric both in the geometric

and in the static connexions. The energy contributions of the moment
stresses are usually small, and Kniner [4] developed a successful theory

in which he dealt with 15 geometric functions e^x, ^kX ' iook into

account only 6 static functions o"*^^. He was, however, fully aware of

the inconsistency of his approach. It should, nevertheless, be emphasized

that the present general approach has a great physical value, since it

allows a continuum mechanical treatment of inelastic quantities associated

with lattice defects. Nowadays it is possible to determine the energy func-

tion w (3.14), since the intrinsic inelastic energy terms of grain boundaries

and point defects can be measured with a fair degree of accuracy.

Let us return to the determination of stresses. Equations (3.16), (3.17),

(3.18) can be solved for CkX, s^^x-, ^nd ^kXm in terms of o^^, 0^^'^, and
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(j"^ can, through (3.11), be expressed in terms of TkX, with the associated

Riemann tensor density

inserting now into (1.22) and the Bianchi identity, we obtain

Ckx^^ = 0, (3.20)

V[,c^x]^, = 0, (3.21)

where c^kfip is expressed in terms of 33 static quantities y^x, CkXh. ^Kkti-

Equations (3.11) represent 27 equations, (3.27) 6 equations, in all 33 equa-

tions for 33 functions. Since a coordinate transformation involves 3

arbitrary parameters, 3 of the functions 7k\ can be chosen at will to

fulfill 3 equations identically. Equations (3.20) are partial differential

equations of 2nd order for ^^x^ and ^kKh, and of 4th order for y^x; eqs

(3.21) are higher by one order.

Our procedure may be written in a concise symbolical form. Let us

put down the constituting equations in the symbolical form

(o-,^) = C(6, b), (3.22)

(e, b) -a(cr, /3), (3.23)

and denote the formation of the curvature tensor associated with the

metric tensor (density) g and the connection b by the Riemann-Christoffel

operator^.

R = R(g,b). (3.24)

I hen the equations for the determination of generahzed stresses become

R[3R(7, /3). 3/3]=0. (3.25)

Kroner [15, 16] found these equations for the Hnear EucHdean case and
wrote the equivalent of

Ink [3 Ink 7, s] --0 (3.26)

(eq (11.17) in ref. 16, p. 54). It can be seen that the Riemann-Christoffel
operator R is the full generahzation of Kroner's incompatibiHty operator
Ink.
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IV. Conclusion

The statics of general continuum mechanics of soHds with distributions

of lattice defects can be developed in full analogy with the geometry.

Theorems known from the differential geometry of non-Riemannian space

ensure that the method of generalized stress functions can always be

applied, together with a stress connexion representing the generalized

moment stresses. In other words, the static equilibrium conditions can

always be identically fulfilled by stress functions and moment stresses.

The stress tensor has in this theory 27 components, the new 18 components

being due to lattice defect distributions. A full and consistent continuum

theory of lattice defects must involve both a full geometric and a full

stress connexion, each having 27 components, i.e., it must be based on

a non-Riemannian, nonsymmetric and nonmetric space.
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Discussion on Papers by C. Teodosiu, and C. S. Hartley
and M, A. Eisenberg, Including Two Written

Contributions by S. I. Ben-Abraham.

SIMMONS: I would like to address a comment to Dr. Teodosiu and make
some general comments on the non-linear problem for dislocations.

First I would like to say that Signorini's scheme that Dr. Teodosiu

has put forth is a very nice extension of the technique that was done

and given by Willis where the iteration scheme was given on the

distortion. 1 Dr. Bullough and I have appearing in the Orowan Com-
memorative Volume another discussion of the deformation of the

non-linear continuum,^ and in this paper we take into explicit account

the shape changes of the body. We give there an iterative scheme which

is equivalent to the Signorini scheme and includes a derivation of

the shape change also in the final state problem if one is given a little

bit of extra information concerning the plastic deformation that gives

rise to the final state. We call that particular scheme a final state

problem if you're given the dislocations in the final state, and you are

given a little bit of information as to how you got those, then you can

calculate both the distortions and strains of the final state as well as

the dislocation density. We also formulate the so-called initial state

problem for non-linear problems. That is to say, if you put in a given type

of plastic deformation field and then ask what will be the resulting dislo-

cation field and the resulting strain field, then we present a scheme for

also obtaining that type of result which I think does not appear in the lit-

erature. Finally, we discuss a topic which I notice Dr. Teodosiu took care

to properly treat, namely the use of the appropriate strain tensor. For

isotropic bodies one can use either the Cauchy strain tensor or the

Green's strain tensor, that is the final or initial state strains; this is not

true for anisotropic bodies in the non-linear case, where the Green's or

initial state strain measure must be employed.

I would also like to comment on what is a more difficult problem for the

non-linear distortion or strain field associated to singular dislocations,

something which is not often brought out, and I would like to say it this

way if I may: Because of the feed-back or the non-superimposability of

strain fields in the non-linear theory, a singular dislocation, described

basically by a distribution— or delta function— in the linear theory.

1 Willis, J. R., Int. J. Engrg. Sci. 5, 171 (1967).

2 Bullough, R., and Simmons, J. A., in Physics of Strength and Plasticity, A. Argon, Ed.

(MIT Press, Cambridge, Mass., 1969) p. 47.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Hull<)U};ii,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ: 317, II, 1970).
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produces a globally different distortion field than one in which you smear

out the core. You don't have anything like the Burger's cut-off situation

that you do in linear theory. That is to say, if one looks at the results of,

for instance, Seeger and Mann, or Pfleiderer, Seeger and Kroner,^ where

the non-linear problem has been solved for a dislocation with a hollow

core at whose surface the tractions were set at zero, one finds that the

first order corrections diverge everywhere in the whole body as the core

size goes to zero. This is unlike the ordinary Burger's cut-off situation

where, of course, the answer goes to infinity at the core, but elsewhere

doesn't change at all.

In the case of the non-linear theory as you vary the core size the answer

blows up everywhere which means, of course, that the core size is an

exceedingly sensitive parameter in such a theory. We feel that the only

way to treat this problem is to go to the formulation which includes

essentially a continuum analogue of the Peierls problem. In the non-

linear theory you have to actually introduce a dislocation along a slip

plane, and you have to put down explicitly an expression for the misfit

energy along that slip plane. You, then, can solve the problem by

minimizing the total energy of the body: You assume a certain con-

tinuous distribution of plastic deformation which will produce the dislo-

cation. You, then, everywhere (except in the misfit energy region) solve

the non-linear problem to attain the total non-linear elastic energy— this

is not supposed to be practical; this is in principle — you add to that the

amount of misfit energy which is associated to the particular slip dis-

tribution you put in, and this gives you an amount of total energy in the

body. You then have to — by hook or by crook — start varying the slip dis-

tribution that you have put in the body, and therein find the correct

strain distribution everywhere in the body as that which is produced by

the particular slip distribution which minimizes the total energy.

If one had only some really reasonable physical meaning for a continu-

ous distribution in a real body or if you assume such a distribution, then,

of course, the problem disappears. But, as I said, unlike the linear theory

where at any distance away the solution doesn't really depend much on

how you perturb the solution, it does in a non-linear theory in that you get

entirely different answers depending on exactly what particular distribu-

tion of continuously distributed dislocations you put near the core.

So, this is a very much more difficult problem than in the linear case,

and I would be interested to hear from Dr. Teodosiu any comments con-

cerning how one can treat such a singular dislocation, because I think

•^Seeger, A., and Mann, E., Z. Naturf. 14a, 154 (1959); Pfleiderer, H., Seeger, A., and

Krimer, E., Z. Naturf. 15a, 758 (1960).
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the problem of treating singular dislocations in non-linear theory is much

more difficult than it appears at first blush.

TEODOSIU: I agree completely with this comment. However, we have

considered only a continuous distribution of dislocations, and the

problem of how to treat a singular dislocation in this scheme is a more

comphcated one which has to be solved. With respect to this stress

about the singularity, I feel that Professor Kroner may have something

to say about this.

KRONER: I just agree with you; one has to work it out.

GRUNER: I would like to address a question to Dr. Teodosiu. The assump-

tion underlying your theory is that the superimposed waves do not alter

the dislocation arrangement. One should, however, think that a strong

wave would change the configuration and the number of the dislocations

as well.

TEODOSIU: Our assumption was only that the superimposed displace-

ment field does not produce any plastic flow. This was a simplifying as-

sumption. Of course, the local dislocation density is influenced because

the Burgers vectors, themselves, deform together with the material, and

the surfaces to which the dislocation density is referred also deform

together with the material. But our assumption was only that we have no

plastic flow accompanying the superimposed displacement field. Of

course, maybe you are speaking about a more complicated problem we
have not approached so far.

MURA: I have a small comment on the last paper by Professors Hartley

and Eisenberg. You said you used Professor Head's solution because

you have a free surface. However, it was unnecessary to use this solu-

tion; you can have the same results, by using the simple solution of the in-

finitely extended medium. If you sum up the infinite body solutions for

the edge dislocations in the upper and lower plastic domains of the

beam, all stress components except cth vanish. But, since you only need

the formal tractions (T22 and cr-zi to vanish on the surface of the beam, you

obtain in the simple way the proper stress field for the dislocations in the

beam.

FOX: I really just want to make a comment concerning the remarks of Dr.

Teodosiu on the presence of the plastic strain in the constitutive equa-

tions for the theory of the elastic-plastic continuum in finite deformation.

I would certainly agree that there are obviously many factors which in-

fluence the yield criterion and which should therefore appear in the con-

stitutive equations — including the hardening law. I would also agree that

the dislocation density and higher order gradients, if you wish, should go
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in as welL I think that in non-linear continuum theories these days we
have got the apparatus for making them as compHcated as you like. It

seemed to me that the total plastic strain was the most fundamental vari-

able we have, and that is why I simply put that in and nothing else; but

certainly put in the others if you wish. Admittedly the total plastic strain

would depend upon the history of the deformation, but I see no reason

why this should exclude its presence from the constitutive equations.

TEODOSIU: I think the problem, here, is not to complicate the theory, but

only to obtain something which can describe the real behavior of materi-

als. If we want to describe the plastic state only by using the dislocation

densities, it would, of course, not be possible, because on a macroscopic

scale we have a vanishing dislocation density. So we have to introduce

some measures of more complicated dislocation arrangements. Unfortu-

nately, we have, so far, few indications from experiments as to which are

the significant dislocation arrangements for plastic flow: first in a single

crystal and further in a polycrystalUne material. In the meantime, as

theoreticians, we only have to think about the invariant measures we

could introduce in these conditions.

Now about plastic flow, if we have a perfect lattice which glides in a

parallel set of planes [like a deck of cards] , then the internal structure

remains the same, so I see no reason for which the response of the

material at any two points will be different, except, of course, if we ap-

proach the boundary of a finite body; but far from the boundary the

structure being the same after plastic flow, the response, I think, must

also be the same. It, therefore, seems to me that, as Professor Kroner

pointed out in 1963, plastic strain has no reasonable place in the work

hardening law, but we have to introduce some measures of the interior

structure of the body, such as the density of dislocation loops, density of

pile ups, etc.

BULLOUGH: I just wanted to comment how pleasant it was to see, at last,

someone trying to really test the value of the theory of continuous dis-

tributions of dislocations. I wonder if Professor Hartley could elaborate

a little on precisely how he intends to complete the work. What he said

was interesting, but it wasn't clear how he was testing the distribution

calculation.

HARTLEY: One of the things that we had hoped to do by getting some in-

dication of what the phenomenological parameters appearing in con-

tinuum elasticity treatments meant in terms of dislocation theory was to

introduce perhaps more realistic approximations to flow laws for real

materials based on what we know about dislocation behavior from other

studies. The other thing was to examine in more detail what some of the
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assumptions of continuum plasticity mean in terms of dislocation

behavior and see if we can use what we know about the behavior of in-

dividuals and groups of dislocations to make a more realistic continuum

theory.

WEINER: [Written contribution] I would like to insert here a reference to

the dissertation of Dr. J. M. Santiago.^ This dissertation contains a very

clear discussion of continuous distributions of dislocations together with

some valuable original contributions.

BEN-ABRAHAM: [The following two discussions are written contribu-

tions. The first discussion is devoted to "The Importance of Scale."]

In recent years and months, many among us have come to question the

validity of continuum theories of lattice defects for real solids. The 1967

lUTAM Symposium (held in Freudenstadt and Stuttgart, Germany) was

symptomatic. While mathematicians and continuum mechanists "by

birth" presented highly sophisticated theories, some of those "born

physicists" staged a concentrated attack from quite a few directions on

the very relevance of those theories.

To make my point clear, let me quote an almost childish example. In

order to define a dislocation density in a meaningful way one has to

choose the mathematical line element large compared to the mean spac-

ing of dislocations. Since the average dislocation spacing in metals will

usually be anywhere from 10~^m to 10~^m, the "mathematically in-

finitesimal" line element should be at least of the order of IQ-^m, which

is fairly big by any standard. The torque stresses associated with disloca-

tion densities must be considered on the same scale, while on any

smaller scale one must resolve them into force stresses. This has been

recognized as early as 1958 by Kroner.

Things are, of course, different with spin type torques, as has been

pointed out again by Kroner (1967). However, it would be rather artificial

to associate these spin torques with some kind of "micro-dislocations."

At any rate, I feel that such a procedure would only obscure matters

rather than contribute to our physical insight.

The situation, though, is somewhat better with regard to point defects

and the associated symmetries and torqueless moment stresses, since

they appear already at the atomic level. Nevertheless, a macroscopic

continuum theory is hardly able to distinguish between the effects of im-

purities and inclusions.

^Santiago, J. M., Mechanics and Thermodynamics of Continuously Dislocated Crystals,

Columbia University Ph. D., 1962 (University Microfilms, Inc., Ann Arbor, Michigan, No.

63-1522).
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Credit must be given to Kondo who, once more, was the first to recognize

the importance of distinguishing "levels" in the geometry of mathemati-

cally continuous bodies. He also emphasized that the same physical

phenomenon may be adequately described by quite different geometric

entities at different levels. However, he did not specify actual scales.

Krumhansl (1967) clarified matters quite a bit from the physicist's point

of view. He suggested to distinguish between the atomic or micro scale,

the macro scale, and, what he called a "milli" scale in between. For such

a rough distinction, however, one should rather prefer a more "mod" and

less specific term like "mini" or "midi."

However, I can't see a good reason why one should not be more specific

and, taking the meter as a basic unit, talk of a meter or macro scale

(lO^m), a milli scale (10~^m) meaning exactly what it says. The latter

would normally correspond to small crystals or moderately large crystal

grains. Continuum theories of lattice defects would then be adequate at

the micro scale (IQ-^m), while atomic phenomena would take place at

the nano (10~^m) or possibly pico (IQ-i^m) scale.

Admittedly, this looks very much like just playing with words. Yet, it

should be borne in mind that our primary concern is to build bridges

between the various levels both in the sense of constructing the connect-

^ ing theories and in the more human sense of establishing meaningful in-

teraction between scholars who concentrate their efforts at the different

levels. By the way, the terms "macro" and "micro" are so often being ut-

terly misused that literally "One man's micro is another one's macro."

Therefore, I believe it won't do any harm to have a clear cut common lan-

guage.

Essentially, one would like to predict the behavior of bodies at the macro

level from laws assumed to be valid at the nano level, or deduce nano

phenomena from macro experiments. Things usually turn out to be all

right when it is possible to bridge the gap directly from nano to macro,

i.e., when the averages of nano phenomena directly yield the right

macroscopic results.

One should look more carefully at this apparently trivial truism. One

point we should be aware of is our obsession with 19th century physics

and our reluctance to enter the 20th century. Let me point out in

parentheses that continuum mechanical theories, no matter how so-

phisticated and elaborate, belong to the past century, which of course,

doesn't mean that they cannot be very useful tools if properly used. Yet,

it should be clear from the start that any consistently continuum formu-

lation must necessarily neglect relevant information about discrete

phenomena. Moreover, there is a lower bound of scale to the validity of

continuum theories which presents another highly effective communica-
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tion barrier since it may vary in wide limits according to the particular

case in question.

Now, when is it actually possible to bridge the gap from nano to macro by

a single span? It is possible in the case of additive quantities having a

single sign (such as mass) or in the case of quantities of both signs when

we are interested only in their net bulk value and their manifestations on

the surface of the macroscopic body (such as electric charge).

Matters are quite different with lattice defects, in particular dislocations.

These occur typically at the micro level where they have distinct dis-

crete properties. They are of either sign, or even worse, they are vector-

like. We are interested in the entirety of their effects upon bulk

behavior. And, last but not least, they significantly interact among them-

selves and with other entities. Consequently, a defect density defined at

the milli level, even if by some odd chance different from zero, will by no

means convey relevant information at the macro level.

Of course, an attempt to work out a nano or micro theory to describe

milli and macro phenomena would be both impossible and futile. So, one

has to compromise. We have to work at the particular level we are in-

terested in, however, expressing in an appropriate way relevant informa-

tion from a lower level. For instance, at the milli level we must still keep

separate the densities of different kinds of defects and we must in-

troduce various "effective fields" to describe interactions. Sometimes

we have to resort to rather artificial devices like stress moments of

higher orders, and often introduce most arbitrary force laws and con-

stitutive equations. This is exactly the strength and the weakness of the

new continuum theories. It is the physicist's primary task to find physi-

cal justifications of those phenomenological quantities and to estabhsh

which one is relevant, and when any particular term can be safely

discarded.

Now, we do have a fine precedent in the relationship between ther-

modynamics and statistical mechanics. I would especially hke to draw
attention to the theory of superparamagnetism where the three levels of

atoms, magnetic particles and bulk are clearly distinguished and
statistical averagings are used twice.

This brings me to my final point. The processing of information from a

lower level to be fed to a higher one invariably involves some averaging.

In this process one has to be extremely careful not to average out rele-

vant information to zeros, and, to be sure to take into account any

statistical correlation.

[The second written contribution is devoted to "Plastic Flow — An
Unsolved Problem."]

The primary goal of dislocation theory has always been and still is to pre-
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diet the proeess of plastie straining in a given solid body under given con-

ditions of stress. During a few decades we have come to understand the

fundamental process of plastic deformation, namely glide. We have been

successful in discovering and, at least in part, explaining the role played

by dislocations in grain boundaries, diffusion, crystal growth, epitaxy,

properties of semiconductors and dielectrics, etc. Dislocation theory has

been interacting quite fruitfully with various fields of pure and applied

mathematics, mainly tensor calculus, differential geometry and the

theory of generalized functions. And last, but not least, some ideas born

within dislocation theory might prove useful for solving some fundamen-

tal problems of physics in the general theory of relativity and particle

physics.

Yet, we have to admit that in spite of lengthy and concentrated efforts of

a great many workers in the field (whose list is too long to be cited

without possibly hurting someone), and although these efforts were often

successful in details, we are as far as ever from our primary goal. Plastic

flow is still an unsolved problem. At the very best, we now understand

how complex the problem in reality is.

The advent of the theory of continuous distributions of dislocations

(credit is given to all pioneers without quoting names) inspired great

hopes which, alas, proved to be exaggerated. Some important fundamen-

tal results have been obtained, and as a byproduct, it has been recog-

nized that the relationship between the continuum mechanics of a solid

body and hydrodynamics is a fundamental one rather than a superficial

analogy. Since then, this point of view has obtained independent support

from studies of a quite different kind.

Yet, the continuum theory of lattice defects (in general, and dislocations

in particular) has a very serious limitation which, in my opinion, makes

it almost useless for meaningful application to all but a few very special

problems of practical interest. The continuum theory of lattice defects

is, in fact, an extension of classical elasticity in which the geometric (or

kinematic) equations have non-vanishing right hand sides. These right

hand sides, representing the distributions of defects, are the very crux of

the theory. However, the theory is by its very nature macroscopic and

thus meaningful only on a scale large compared with interatomic

distances or, even worse, on a scale large compared with the average

spacing of lattice defects. Since in plastic deformation all possible mo-

bile dislocations of both signs participate, the inevitable result is that the

relevant average dislocation density on a sufficiently large scale for the

theory to be applicable, becomes very nearly zero.

The way out of this dilemma is to adopt the point of view of plasma

physics, i.e., to maintain, at least to a certain degree, the individuality of

different particles — in the present case dislocations.
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This leads us to consider the behavior of dislocations on at least three

distinct levels: (1) individual; (2) statistical; (3) continuum.

The level of individual dislocations can be roughly subdivided according

to the method of approach into: (a) atomistic; and (b) elastic.

The elastic (or quasielastic, Peierls-type) theory of individual disloca-

tions is now well established and well understood. The atomistic treat-

ment has become feasible through the development of computer science

and is at present in steady progress.

At the other extreme we have the continuum theory. In its ''plasma" ver-

sion one must keep separated the densities of different Burgers vectors

and dislocation types and work with a quasineutral, rather than neutral,

continuum. Of course, the conventional continuum theory of lattice de-

fects becomes a necessary prerequisite just as the Maxwell theory is for

plasma physics. By this approach one is, of course, adding tremendous

difficulties.

The author has tried to work along these lines only to discover that a

plasma of dislocations in a tractable approximation does not describe a

solid but rather a liquid. This leads us directly to the dislocation theory

of melting most clearly formulated by Kuhlmann-Wilsdorf.^ Rapid

plastic flow of a solid then appears as a highly non-equilibrium process

in which the crystal on some planes shows liquid behavior in one dimen-

sion. It is clear that experimentally such a state can be most easily real-

ized during creep which also bears the most pronounced resemblance to

the flow of liquids. Low rate plastic flow appears as the same

phenomenon, however, sporadic. From the "plasma" point of view it is

similar to a glow discharge.

I feel that one should take the dislocation theory of melting for granted

and therefrom deduce conclusions about plastic behavior rather than the

other way around.

The remaining item in our classification, namely the statistical theory of

dislocations, has been put forward mainly by Akulov.^ Yet, credit should

be given to a significant and increasing number of physicists who are

now aware that the behavior of a large number of dislocations as encoun-

tered in plastic flow is by no means the simple sum of the behaviors of in-

dividual dislocations. The present author feels that Akulov's conclusions

are basically right but they have no sound physical foundation.

In discussions with Professor Gilman ^ we concluded that the right

answer to problems of plasticity might very probably be furnished by the

Kuhlmann-Wilsdorf, D., Phys. Rev. 140, A1599 (1965).

« Akulov, N. S., Phil. Mag. 9, 767 (1964).

Gilman, J. J., in Dislocation Dynamics, Rosefield, A. R., Hahn, G. T., Bement, A. L., Jr.,

and Jaffee, R. I., Eds. (McGraw-Hill Book Co., N.Y., 1968) p. 3.

369-713 OL - 71 - Vol II - 17
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theory of traffic flow. However, first it is necessary to find a proper

physical justification.

A very strong argument in favor of collective effects and the dislocation

theory of melting comes along the lines pursued by Professor Maradu-

din, Professor Weiner's group and others. A dislocation can be

described in terms of a localized mode of crystal vibrations. As the densi-

ty of dislocations increases the localized modes start to overlap. This

physically means that we have significant non-local and non-linear in-

teractions between dislocations. With a further increase of dislocation

density the localized modes fill out the entire crystal and thus cease to be

localized. Instead, a new phonon spectrum, that of the hquid, is

established.

It should be noted that since the self-energy of a dislocation is roughly

proportional to the square root of the dislocation density, one has to ex-

pect dislocation multiplication to be a self-enhancing process, provided

enough energy is supplied by an external source, e.g., an applied stress.

As the temperature rises, the shear modulus slightly decreases and the

process is further enhanced. Moreover, large deflections of atoms

from their equilibrium positions become more frequent. A large deflec-

tion of two neighboring atoms in opposite directions essentially

represents an elementary dislocation loop. Thus we have a purely ther-

mal mechanism of dislocation multiplication. At the melting point, the

process becomes spontaneous and self-sustaining. Below the melting

point it will be active only locally as long as a sufficiently high stress is

being applied. After removing the stress, the excess dislocations will mu-

tually annihilate at a very fast rate. Recently Adler et al.^ found spon-

taneous local slipping in a model for solid bcc He^ just below the melting

point. Their experiment seems to be a direct proof of the discussed

mechanism of plasticity and melting.

With Gilman, we tried to find justifications for the application of traffic

flow theory to plasticity.

We considered two edge dislocations on a common slip plane or on close-

ly spaced parallel slip planes. An elementary but tedious analysis yields

the answer that during acceleration of the dislocations by an applied

stress very violent transient oscillatory phenomena occur. These lead to

significant radiation losses. The motion of the two dislocations is quite

similar to that of a car being tailed by another car and is directly in-

terpretable in terms of traffic flow.

We also studied the behavior of a finite array of dislocations under ap-

plied stress. The analysis can be carried out for a finite dislocation wall.

« Adler. B. J.. Gardner. W. R.. Hofifer. J. K.. Phillips. N. E., Young. D. A.. Phys. Rev.

Letters 2 1,732 (1968).
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but the answer will be a forteriori valid for a two-dimensional array. It

turns out that an applied stress will pull the dislocations out of the wall

one by one rather than moving the whole wall. Once the wall is in nlotion

it will undergo oscillations. Again, the result is increased damping per ef-

fective amount of slip. The motion of dislocations again follows a traffic

pattern.

Further, we speculated that in a crystal heavily dislocated by repeated

plastic flow one might find more or less regular "crystalline" arrays of

dislocations. These in turn would necessarily become dislocated. Thus,

one should observe "hyperdislocations" (dislocations in dislocation ar-

rays). The action of an applied stress should be concentrated on the

hyperdislocations thus producing a collective effect while having the

appearance of a single glide but governed by the effective mass of the

array and the collective losses. This is one possible way to account for

the discrepancy between measured and calculated damping constants.
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The previous work and the present stage of study on the elastic field of

moving dislocations and disclinations are reviewed. Emphasis will be

placed upon the general method and approach using Green's tensor func-

tions and Fourier integrals. The previous solutions for individual

problems are reviewed as examples of this unified approach.

Key words: Anisotropic elasticity; dislocation dynamics; dislocations; Green's tensors.

L Introduction

The purpose of this paper is to review the various works of dynamic

field theory of dislocation by introducing a most general approach, namely,

continuously distributed dislocations.

The field equation of elasticity for an infinitely extended medium
will be solved in a general form for an arbitrarily prescribed plastic

distortion or given dislocation density tensors and dislocation flux (velocity)

tensors. By using the result, the elastic strain energy and kinetic energy

of the medium will be expressed in terms of the dislocation density and

the velocity tensors.

The concept of force acting on dislocations is also discussed in con-

nection with the concept of the energy dissipation of a system. The

analysis is extended to the motion of disclinations.

The most fundamental contribution to the dynamic field theory of

dislocations was made by Frank, Eshelby, Nabarro, and Leibfried. They
considered the simplest case of a straight discrete dislocation or Peierls

dislocation. In this paper such specification is avoided and a more general

configuration of dislocations is considered.

The stress singularity at the center of the dislocation and the multi-

valued nature of the displacement can be avoided by treating discrete

dislocations as special cases of continuously distributed dislocations.

The method of continuously distributed dislocations is also useful when
the relationship between continuum plasticity and dislocation theory

is considered.

Fundamental Aspects dI DisLx ation Th. oi s. J. \. Simmons. R. de Wit. and R. Biill.ui-;h,

Eds. (Nat. Bur. .Stand. (I .S.). Spe< . Publ. 317. II, 1970).
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The plastic deformation of crystals is described by the creation of

slip planes and their extension, which corresponds to the creation of

dislocations (or disclinations) and the motion of dislocations (or dis-

clinations), respectively. The motion of an edge-type disclination is quite

similar to that of a dislocation where the Burgers rotational vector and the

center of rotation are conserved during the motion. Since any other cases

of disclination motion require a special caution, attention will first be

centered only on the case of dislocations. The result will be extended

to the case of discHnations in the following section.

Denoting the direction of a line segment of a dislocation by i^, the

Burgers vector by b, and the velocity of the segment by V, the time rate

of plastic distortion caused by the motion of the segment can be described

by

^fi
= -ejikV,v„bi, (1)

where e/jA- is the unit permutation tensor. When an arbitrary point P in

an actual deforming body at time t is considered, there are several disloca-

tion lines at P which have various Burgers vectors b, b' . . ., directions

V, v' . . and velocities V, V . . .. The total Burgers vector of the

dislocations threading an infinitesimal surface element AS at P can be

expressed as

5/ -a,/AS/., (2)

where

ahi=vubi+vl,bl + . . .. (3)

The rate of plastic distortion (1) can be expressed as

'^^= -ejinVini (4)

by defining

Vun=Vivnbi^V\v'^h\^ ....
(5)

By assuming that dislocations are continuously distributed in the

material, tensors ct/j and F/j/, are defined as continuous functions of the

coordinates and time and called the dislocation density tensor (after

Nye [1]) and the dislocation flux (velocity) tensor [2], respectively.

Let the dislocation density tensor change by an amount aij per unit

time. The growth rate of the total Burgers vector of the dislocations thread-

ing an arbitrary open surface S isj cthidSh and can be considered as the

result of the dislocations moving through the boundary of the surface S.

Since only the dislocation velocity component which is normal both the
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boundary line of S and to the direction of the line of dislocation can

contribute to the growth, then

ahidSh = ^ eihkViiudli, (6)

where d\ is the line element of the boundary of S. Applying Stokes'

theorem to the right side of eq (6) leads to the result

OLhi = ^hlk ^mnkV mni, I (7)

or, by using (4)

dhi=-e,uk^ti,i (8)

or, by integrating with time

a,u = -eMkKi,i (9)

where stands for the differentiation with respect to coordinate jc/. Equa-

tion (9) was obtained by Kroner [3] and equivalent relations, under more

general conditions, were studied by Kondo [4] and Bilby [5] from the

geometrical point of view. Equation (7) was obtained by Kosevich [6] and

Mura [2] independently. An equation similar to (7) and the analogy with

Maxwell's equation was studied by Hollander [7] and the geometrical

theory valid for large deformations was developed by Amari [8] and

Giinther [9].

In this paper, only small deformations will be considered. It is assumed

that displacements of material, t//, are continuous and continuously

differentiable functions of the coordinates and time. A finite amount of a

slip, which leads to a discontinuous displacement, is replaced by an

infinite number of slip surfaces with infinitesimal ghding such that it

gives the same macroscopic average effect to the deformation caused

by the discontinuous displacement. This infinitesimal slip model (or

continuously distributed dislocation model), however, does not exclude

the investigation of a finite discrete slip, because the slip can be expressed

by the Dirac delta function, 8, and the Heaviside step function, H, which

are treated as continuous functions.

The distortion of materials is not only caused by the infinitesimal

ghding (plastic) but also by the superimposed elastic distortion j8j/, namely

(10)
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The term elastic has a meaning only for the symmetric part of /Sj,. which
is related to stress (Tij by Hooke's law

(Tij = CijU^U- (11)

Since and/3j* can be well defined. /3,[ may be defined as the difference

between Ui^j and ^j-.

II. Disclinations

It has been well known in theory of elasticity that there are two tvpes

of \ olterra"s dislocations: the translational type and the rotational type.

Ahhough the translational type of dislocation has been known simply as

the dislocation in crystals, little attention has been paid to the latter tvpe

of dislocations, which will be caUed the dischnation. Recently, in his book,
Nabarro [10] introduced some apphcations of dischnations [11. 12. 13]

to hquid crystalline structures. The apphcation will be extended to sohds.

particularly to the problem of torsion in crystal bars.

Figure 1. A disclination with a rotational Burgers vector ft and a center of rotation 0.

A line of a disclination is defined as a boundary L of an open surface S

inside of a material (fig. 1) where the displacement L i
has a multiple-value,

[r,] = 6o-,-n,A-o (12)

equal to the difference of L i defined above S and below S. It is created

by twisting the two surfaces on S by il about a center of rotation 0. Here,

x*^ is the radial vector of a point in question measured from 0. and e,jA-

is the unit permutation tensor. In order to define a disclination uniquely,

the center of rotation, rotational vector H. and the direction of disclina-

tion line p must be given. Going around a linkiwg circuit (the Burgers
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circuit) in the direction of rotation of a right-handed screw advancing

along the direction of the dischnation, the ending point of the Burgers

circuit is displaced by (12) relative to the beginning point of the circuit.

A force on the dischnation can be defined in a manner similar to the

Peach-Koehler force on a dislocation. Under a stress field cr/j, when a line

element vdl of the dischnation is displaced by Y without changing fl

and the center of rotation, the work done by o"/j can be written as

ij€imH^mXn€jpqV,jVqdl= ~ €jpqVqMjm^lmVpdl , (13)

where

Mjm = (TjieimnXf, (14)

is a moment about the center of rotation. The force f is defined by

and, therefore,

fp= — epqjPqMj,nfL,n, (15)

or

f=-i^x(M-a). (15)'

The simplest example of (15) is the motion of a circular dischnation

whose center is the center of rotation. When 11 is normal to the circular

plane, the dischnation receives a uniform central force MCl, under a

twisting moment M, about the center of rotation.

When the center of rotation moves from 0 to 0' , a distance A:r^, without

motion of the disclination line, the work done by cr/j is

(16)

Then, the force on the center of rotation is

/()

J ti j (Tij€i„n,i^,„dSj (17)

by defining AJV = /JAjcJ.

Another type of motion of the disclination is possible when a change

in 11 is considered. A more complicated motion may be the combination

of the above three cases. The discussions in the following sections will
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be limited to the cases where centers of rotation and the Burgers rota-

tional vectors, ft. are conserved during motion. Then, the discussion on

dislocations can be extended to the case of disclinations.

The plastic distortion caused by a disclination is

ftf,
= -nj€i,in,xf (18)

where iii is the normal vector of the twisted surface S. Its time rate of

change due to a motion of discHnation line with a velocity V is

Pfi=-eji„ViPHei,nun,uxl • (19)

The equation similar to (7) is derived as

Ohi = ^hlk^iunk ( VjnOni) ,/ (20)

where dhi=V}Mi- The dh> is called the discHnation density tensor when a

continuous distribution of disclinations can be considered.

Differentiation of (19) with respect to the coordinate of the center of

rotation leads to

-d(^f,ldx'^=ejuy,djrmeunn (21)

or

{\l2)eunnj^ln=-^lf^jVl6hm (21)'

where 8/3 jcJ) is replaced by didxn because of
;cJJ
= jc» — ;c„ (0) . From (20)

and (21)', we have

eM = - {ll2)e,uk-einjptjju (22)

or

diu = -{ll2)ena-einj(Stjjn (22)'

which ^ corresponds to (9). The plastic distortion caused by a disclination

can also be obtained by a proper choice of a continuous distribution of

dislocations. This equivalent aij is obtained from (9) and (22)'. Substituting

(9) into (22)' leads to

e„i= {ll2)€i,>ja„j,n (23)

whose symmetric part becomes the incompatibility tensor.

' By defining ( 1/2 )e,„j|a^* = k/.',, (22)' becomes the same expression by deWit in this

Proceeding [14].
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III. Elastic Fields

General expressions of solutions will be reviewed for the elastic field

caused by the motion of dislocations or disclinations. For simplicity, the

material is assumed to be infinitely extended and free from external

stresses.

Suppose that a plastic distortion is known as a function of the co-

ordinates and time as a result of dislocation or disclination motion. It

will be given in the form of Fourier integrals,

(^ji(x, O^JJ i8j/(A;, co) exp +k • x) jc^ko^w

i8*.(A:, aj) = {27r)-'^-' IP I3j,(x\ t') exp {- + k • x'

)

(24)

where k • x = kiXi + k2X2 + «^ = dkidk-idk^, g?x' = dx[dx2dx'^, and

v= 2> for a three-dimensional case, or k\X\-\- kiX-z, dh= dkidk-z, c?x'

= dx[dx2, and v= 2 for a two-dimensional case.

The equation of motion

(^PQ,Q= pUp (25)

is. to be solved with (9) and (10), where p is a constant density of the

material.

The solution is easily found as [15, 16]

Um{x, t)=— i
I 1

kiChujLmkik, co)^fi{k, co) exp {i(cot-\-h' jL)}dkdoj,
^^-"^

(26)

where

Lmk{k, (o) = ekst^tnurKsnKtrl {2e},qrKpiKq'2Kr',i) (27)

and

Ksn = C.ynlkjki — p(i)^8sn • (28)

For isotropic materials, (27) becomes

LynkKk, (xi)
—

T-ji WT7T~71^~Vr2 29)
(/Lt/c^ — pcx)-) {( \ + 2p. ) /c^ — pa>-}

with k^ = k\ + kl + kl, where A and fx are the Lame constants and 6// is

the Kronecker delta.
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The solution (26) can be rewritten as

UUx, t)

=-|J
C„iijGrnh,i{x-x\ t-t')/3fi{x\ t')dji:dt' (30)

by defining

G,n,,{x-X\ t-t') = {27T)-''-'
j
j Lmk{k, (xi)

exp - ^') + ik • (x — x') jcflcG^o) (31)

and G,„A,/ means dGmkl dxi=— dGmkldxl . The function Gmk is called the

Green's tensor function.

The elastic distortion is derived from the above result by differentiating

with respect to Xn and subtracting /3*m,

{3„m{x, t) =jj [knkiCknjL,nk{k, (D)-8jndim]ffi{k, 0)) (32)

exp {i(co^ + k "x.)}dkdco.

or

Pnmix, 0 =-
j

CklijG,n^.,inix-x', t-t')(B*i{x\ t' ) d^' dt'- ^l,,,{x ,
t) .

^^'"^
(33)

The basic idea leading to (30) has been used by Nabarro [17] for the

case when an infinitesimal dislocation loop is created suddenly in an

isotropic medium (see also Kosevich and Natsik [18], Gutzwiller [19], Willis

[20] and [2]). For a static case, the static Green's tensor is used, which is

obtained from (31) by taking (o = 0, dropping the integral with respect to

o), and changing the factor (277-)"''-^ to (27r)"^ (see Eshelby [21], Indenbom

[22], Kroupa [23]).

The result in this section can be applied to any case independent of how

j8j* is interpreted as, for instance, a thermal expansion, phase-trans-

formation distortion, inclusion misfit strain, or any other inelastic distor-

tions. However, here particular interest lies in the case where jSjJ is caused

by the motion of dislocations or disclinations. Then, the solutions (26),

(30), (32), (33) may be expressed in terms of velocity and density tensors

of these line imperfections instead of ^j*. The result will be useful in the

following sections.
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When
I3fj

and are eliminated from these expressions by using (4)

and (9), Mura [2] has obtained the following result by a semi-intuitive

approach (later the result was confirmed by Bross [24] and Willis [25]).

Un,{x. f)= jj^ Ck-lijH,nk-j{x-x\ t-t')€jnhVnlu{x\ t')d^'dt' (34)

(Snm{x, [enjhCk-lij(^mk,t{x — x\ t — t')ai,i{x\ t'

)

+ pGim(x — x\ t — t')enihVihi{x\ t')]d:s.'dt' . (35)

where

H,nk{x-x\ t-t')= j Gmk{x-x\ t - 1' ) dt , (36)

or the Fourier expressions

Um(x, 0 =
JJ

{\lo))kiCkUjLmk{l^. (i))€jnhVuln{k\ Oj)

exp {i(cot-\-h ' ^)}dhdxo (37)

jSnmix. t) = i

JJ_^
[e„jhCi,iijL,nk{k\ (x))kia,,i{k\ (X))

-\- p(x)Li,„{k\ (i))e„ihVini{k, co)] exp {i(w? + k '^)]d\^dxo (38)

where

VnM {X. t)

af,i{x, t)

and

Vu,n{k. CO) - (2

JJ
VnhAk, (X)) exp {i(co? + k • ^)]dU.doi

JJ"
a/,/(A, oj) exp {(w? + k • x)}c^c/a> (39)

tt)-"-^ // ^"'"(^'. ^') exp {-i(6J^' + k • x')}g?x'6/^'

«/,/(/., w) - (27r)-^-i

JJ"
a,,/(x', ;') exp {-i(w^' + k • x')}flfx'c?;' (40)

It is important to notice that the difference between a non-state and

state quantity can be seen in solutions (37) and (38). The elastic distortion

(38) is a state quantity, but the displacement (37) is not. The difference

becomes clear when a static case is derived from the above result as a

hmiting process. While the elastic distortion in the static state can be

obtained directly from (38) by taking V;ji; = 0 and a> = 0, the displacement

in that state must be specified in (37) by choosing a proper path for F/jA-

which has brought the dislocations to their static configuration under
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consideration. In other words, the displacement cannot be determined

unless the motion of dislocations is specified. The difference also becomes

clear when an oscillating case is considered. In this case, (37) gives only

a time-dependent part of displacement: on the contrary (38) yields both

the time-dependent and time-independent parts of the elastic distortion.

To get the time-independent part of the displacement from (37). the disloca-

tions are brought to the oscillating position under consideration through

a progression of infinitesimal steps.

For the case of dischnations. the solution similar to (34) is obtained

from (19),

Um{x,
jj

CkUjHmk,Ax—x\ t — t' )ejnheistVn

Oh, i.x' .t' )xp{.x' .t' )d:s.'dt' . (41)

For a single disclination loop. (30) and (18) give

U,n{x.t) = CuijGnik.iix-x' .t-t' )€innCtnX?,(.x' .t' ) dSj[x' . t' ) dt' (42)

where dSj is a surface element of the twisted plane S.

IV. Uniform Motion

In the following sections, some specifications will be imposed on the

results given in the last section.

hen aU dislocations are moving uniformly with a constant velocity V,

definitions (3) and (5) lead to

Vim{x, t) = Via,rAx. t) , (43)

and

ainix. t) = ai,i(^ — \t) . (44)

because a dislocation configuration at point x at time t = 0 is the same

as that a point x — V? at time t = t. Let the distribution of dislocations at

t = 0 given by ahiix) be noted, then

ain(x}'=j OLhiik) exp (zk-x)^/k.

(45)

Qthiik) = {'Itt)-'-' OLhi{x') exp ( — zk • x' )6^x'.
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The distribution at is

af,i{x,t)=j Q:/,i(A) exp {ik(x—VO}c?k (46)

and the flux is

V(,ri{x,t) = Vi a,uW exp{ik(x-VO}fl?k (47)

Comparing them with (39), it can be seen that

Vuu = V,dUk). (48)

and the integral sign with respect to o) drops out. Then, (37) and (38) become

Urn{x,t)=- {ll]^-\)k,C,ujL,nK-{k,-h-\)€jnhVnahi{k)

exp {ik(x-VO}^^ (50)

and

^nm{x, 0 = i

J
[enjhCkUjLmkik. — Vi \)ki

-p\L'\Lun[k,-'k'\)enuyi']aM{k) exp{ik(x-VO}t/k (51)

where ahi(k) is known from the distribution atf = 0 and L,„a(A:, — k • V)

is given by (27) and aj =— k • V.

The solution for a static case is easily obtained as a limiting case

V ^ 0. It should be noticed in (50) that the Hmiting value of F„/ (k • V)

does depend only on the direction of V.

The first analytical solution was obtained by Frank [26] for a straight

screw dislocation. In this case, all components of aij are zero except

a^z{x) = b2,^{x\)^{x2)

(52)

a,3(A)-63(277-)-2

with non-zero Vx and dh. = dkidk2, k3= 0. Eshelby [27] extended the

Frank solution to an edge dislocation. In the preceding analysis, (50) and

(51) with non-zero components of a.u = 6i (277)"^ and Vi yield the solu-

tion. When non-zero components a-.n = bi{27r)~- and V-z are chosen, the

solution is for the case of chmb motion which agrees with Weertman's

369-713 OL - 71 - Vol U - 18
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solution [28]. Eshelby [27] extended the static solution of Peierls dis-

location to the dynamic case of uniform motion (see also Leibfried and

Dietz [29]).

For anisotropic materials, the denominator of Lmk{k, — k-V) is the

sixth order homogeneous polynomial of k\ which has no analytical zero

points except for a few cases of special elastic constants with higher

symmetry. Bullough and Bilby [30] extended the two-dimensional static

analysis of Eshelby, Read, and Shockley [31] to the dynamic case. The

method employed by Bullough and Bilby has been applied to a fast-moving

dislocation by Weertman [32, 33] and also applied to the investigation

of the Weertman effect [34] by Teutonico [35, 36, 37].

Saenz [38] and Stroh [39] discussed the limitation of dislocation

velocities. The denominator of Lmk becomes zero for these limited values

of velocity. The dislocations moving with higher velocities than these

critical velocities are called supersonic dislocations. Eshelby [40] first

showed the analytical solution for a supersonic screw dislocation, whereas

Weertman [41] extended it to cover an edge dislocation.

Now, the energy of moving dislocations will be discussed under the

absence of applied stresses. Consider two distributions of dislocations

aij{x, t) and a[j{x, t) which are uniformly moving with velocity V and

V respectively. The interaction elastic strain energy between them is

defined as

£'/==J
CuqmnPqpix, t)l3nmix, t)dK, (53)

where (Slj is the elastic distortion caused by a'^j. For any function f{k),

f{k') exp{i(k-f k')x}cfxc/k'=(277)-/(-;^:), (54)

therefore, (53) can be written as follows after the substitution of (51) and

the similar formula for (S'mn,

E,= (27Tr Cpqnn,[e,ijnC,,ijL,Mk-]^-\)k,-pk-\Li,Ak-'k-\)eqinV(]

[€nj'trC,'ri'j'L,,,,Ak-k-\')kr-pk-\'Li'n,{k-k-\')€ni'i,'V;,] (55)
V

aUk)a;,,,{-k) exp{-ik{\-\')t}dk.
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Further modification can be made by using

k = k/A;, k-k = l, (56)

r = r/r, f • f= 1.

Then (55) can be written as

-pk-VL,;>(^,-k-V)e,//,F/][e„,-7,'CA-7'/',-'^-A-'(k,-k-V')^/' (57)

- pk • V 'L rmik. - k • V ')€„r,'V'r]dAI (k • r)

,

where

r=(x-x') + (V-V')^ (58)

The integral ^dA is a surface integral defined on a unit sphere at the origin

of k-space. During the derivation of (57), the fact that kikrL,„i, {k, -k • V) is

a ratio of two homogeneous polynomials with the same order was used.

The r is a distance between two dislocation segments at time t = t. The

above result leads to the line integral expression [42] when two disloca-

tion loops are considered to be in a static state (V = V '
= 0)

.

The elastic strain energy for one distribution aij{x, t) is easily obtained

as a special case of (57) by assuming aij= a\-^ V =V' and by multiplying

by the factor 1/2.

Similarly, the interaction kinetic energy is defined as

K] = p j U„i {x, t)U',n {x, t)dx. (59)

where U',n is the velocity of material caused by alj. Equation (59) can be

written as

K,= {lirYpVnV:, 1^ k,krC,ujC,'i'i'rL,n,{k,-\^ • V)L.,,-(/r, -k • V)

euiheyn'h'a,u{k)dL',,'i'{-k) exp {- ik(V- V')?}oflk (60)

or

Ki-= — ii27r)'''pVnV',tj ani{x)a'n'i'{x')lrdKdK' j)kikrC^iijCi,'ri'j'Lnu ' V)

L,„,Al-^ -y
' )ep,„er„„'dA I (k-r) (61)
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The kinetic energy for a)u{x,t) is similarly obtained from the above

result by assuming aij= a'ij. V=V' and by multiplying the factor 1/2.

When the velocityV is negligibly small compared with the sound velocities,

the approximation

L„,,(A-,-k -V) -L,„,(/c,0) (62)

can be used for (60) and (61). Then, the integrals in the k space become
independent of Y for V=V'. The kinetic energy, therefore, is expressed

by a quadratic form of Vm- The effective mass of ahi is easily defined as

the coefficient of (l/2)pF,;F„' in that expression.

V. Oscillation

When all dislocations are oscillating with a constant frequency oj and

a small amplitude, the velocity tensor can be approximated by

Viit iix,t) = Vi exp {iojt) ah i(x) (63)

where V is a constant velocity amplitude. The distribution of dislocations

is independent of time under the above assumption and, therefore, it is

denoted by q:/,/(x). When ahi{x) is given as (46). eq (63) is expressed as

Vihiix, 0 =
^/
J d,u{k) exp{i(aj? + k •x)}c?k (64)

and therefore

Vuu=V,dUk) (65)

Then, solutions (37) and (38) can be written as

Um{x, t)= j {l/co)kiCk-iijLmk{k, co)€jnhV,fii,ri{k) cxp {i(aj?+ k ' x)}G^k (66)

ftnm {X, 0 = i

J
[enji,Ct,iijL,„k{k, oj) ki

+ pcoLiinik, (x))euihVi]cihi{k) exp{i(aj^ +k •x)}c?k (67)

As mentioned before. (66) yields only the time-dependent part of the

displacement. On the other hand, (67) includes both the time-dependent

and time-independent parts of the elastic distortion.
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An example of a straight screw dislocation has been solved by Eshelby

[43]. Kiusalaas and Mura [44] obtained an analytical solution for an edge

dislocation. These solutions can be easily obtained from (66) by putting

ass = 6.3(277)-^ or a3i = 6i(27r)--, and A:3 = 0, V.^ V^^O, dk = dkidko. It is

rather surprising that, compared with the case of uniform motion, very few

examples of oscillations have been exactly solved.

The elastic strain energy, E, and the kinetic energy, K, can be obtained

by a similar method as was used in the case of uniform motion. It will be

necessary, however, in the products {\l2)Cpqmn(^qjSnm and {l/2)pUmUm to

take the real part of each factor of the products.

The result is expressed as

(27r)^ fx
E=

J
C,jqmn[€qjhCi,iijLp^(k,(Jt))ki-^ pOjLipik, (o)€qU,Vi]

[enj'h'Ch'i'i'j'Lmk'{k, oj)k I
'
— p(oLi'm{k, co)€ni'h'V(']o^hi{k)df,'i {—k) cos-co^o^k (68)

and

— (277)^K= - pV,iV„'
j

kiki'CkujCk'i'Vj'Lmk{k, a))L,nk'{k, oj)

€jnhej'„'h'0^hi{k)d,,'i'{— k) sin-cotdk. (69)

For the simple example of a straight screw dislocation which is os-

cillating with a small amplitude^, assC/c) = ocssi— k) = 63(277)"', Vi=Aia}.

Then (68) and (69) give

£' = ^{21og/?/eo-^-(co/c)2} cos^ o)t
o7T

K=^A' (oj/cy log/?/eo sin^ ojt (70)
077

where /x is the shear modulus, c the shear wave velocity, and R and eo

are the cut-off radius of the material size and the dislocation core radius,

respectively.

For oscillating dischnations, a similar result is obtained from (41).

The time-dependent part of displacement is

U,n{x, t)=
jj

CkiijHntk, lix— x', t— t')ej„f,eis(Vn exp {i(x)t')dhs{x')x^!{x')d^'dt'

.

(71)
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VI. Forces

When a material is subjected to an applied stress, the total stress field

is simply a sum of the applied stress Tij and the internal stress (X/j caused

by dislocations or disclinations. The applied stress is defined as that

stress which is elastically in equilibrium under the applied boundary

forces. The total stress is called the elasto-plastic stress.

Consider an arbitrary domain G, lying entirely within a given domain

D of the material. The rate of work done by the total stress on the boundary

^GofGis

bWIU= \ {(Tij + Tij)UinjdS. (72)
J dG

The Uj is the total displacement, satisfying the field equations

Ui,j = m+'^ji + yji (73)

where ft, and jji are the elastic distortions related to (Jij and Tij by Hooke's

law, respectively.

Applying Gauss' theorem of integration to (72) and using (73),

mibt = E + K+
1^

i(Tij^Tij)0fldjL (74)

where E and K are the elastic strain energy and the kinetic energy in G
respectively, that is,

E = ^ iaij+ Tij){Pji + yji)dji.,

K= r^j^pUiUid^. (75)

From (4), eq (74) can be written as

8JF/dt-E-k= j {fiVi+f;v;+ )d^ (76)

where

// = — {crij-\-Tij)ejinVhbi

fl= ~ ( + ^ij ) ^j//' ^'h b'i O'^)

are the Peach-Koehler force or the force defined by (15). According to the

balance of energy, the right side of (76) is equal to the energy dissipated
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in G, namely

\^
(f<V,+f;v; . . .)d^ = jQdy. (78)

where Q is the energy dissipated per unit volume and can not be negative

according to the second law of thermodynamics. As reviewed by Lothe [45],

Q can be evaluated independently by several models of energy dissipation.

The most fundamental one will be the Zener thermoelastic dissipation pro-

posed by Eshelby [43], later modified by Weiner [46]. Mason [47, 48]

proposed the other models of dissipation caused by phonon viscosity and

electron viscosity.

For most cases, ^ is a quadratic form of the velocity of the dislocation.

Then, eq (78) yields

f,= aQldV,.f; = dQldV',, (79)

which is considered as the equilibrium of dislocation forces. When no

energy dissipations are considered, the equilibrium can be written as

y,=o,// = o, (80)

Consider an infinitely extended body where dislocations are oscillating

as described in the last section under the absence of applied stresses.

Eshelby [43] pointed out that the average of 8W/8t per period is positive

(those for E and K are zero). From (76), it can be seen that the average of

fiVi per period for T/j=0 is positive. This energy dissipated is called the

radiation energy. In order to keep the dislocations in such a state of

periodic oscillation, the same amount of energy as dissipated must be

supplied by the application of t/j, which is determined from

fl = — { CTij + Tij ) €jih Phbi = 0. (81)

The Tij is applied in the form of sound waves. Then, the dislocation stress

field is interpreted as the scattering of the sound waves. This calculation

has been done by Nabarro [49] and Leibfried [50]. Leibfried argued that

the scattering of sound waves due to the thermal vibration of the atoms

should lead to a drag force on a moving dislocation. It should be noticed

that the resultant dissipation of energy under cr/j and t/j is zero in this case.

A further investigation on the phonon scattering has been done by

Ninomiya [51] by using a string model of a dislocation.
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VII. Conclusion

In this paper the differential geometry involved with dislocations and

disclinations and the generalized mechanics of oriented media have not

been discussed, since the emphasis of the present paper has been placed

upon only the elastic field associated with these line imperfections in the

framework of linear elasticity.

There are several problems remaining to be solved. Contrary to the case

of dislocations, no observation of a disclination line has been reported

beside the work done by Anthony, Essmann, Seeger, and Trauble [52].

If the Burgers vector is observed as a tangential vector along the singu-

larity curve, the curve is a disclination. The atomic configuration asso-

ciated with a disclination loop and the stability of the loop should be

investigated in order to substantiate the physical realization of the dis-

clination. The atomic misfit involves the whole plane bounded by the loop.

Since all the atoms on the plane are displaced to a higher potential energy

level, the Burgers rotational vector ft possibly changes its value during

subsequent motion in order to reduce the potential energy.

Application of the theory of moving dislocations to the dynamic

plasticity of metals has not been fully researched. The macroscopic

theory of plastic waves due to von Karman and Duwez [53] should be

reconsidered in the fight of the behavior of accelerated dislocations. More

practical applications of dislocation motion will be found in sheetdrawing,

extrusion, and machining where the arrangement and oscillation of dis-

locations become the important factors.

Green's functions for anisotropic elasticity are the most fundamental

functions for the analytical study of imperfections in crystalline materials.

Contrary to the static case [54—57], very little work has been done on

the dynamic case. A more comprehensive investigation seems to be

necessary. Finally, it is proposed to study physical applications of a new
concept of the impotent distribution of dislocations (Mura [58]). The

impotent distribution of dislocations is constructed from (9) by using

asymmetric plastic distortion tensor /3,*= — jSj^. Such a distribution of

dislocations does not produce any displacement and stress fields in

material.
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Discussion on Paper by T. Mura.

ARSENAULT: What can you say about the energy of the discHnation?

MURA: I have not calculated the energy, yet, but if we consider the screw

type of disclination in a finite cyhnder, I think it is not too bad. Also, the

edge type of disclination is not bad in an infinitely extended medium.

Part of these calculations have actually been done.

ARSENAULT: Could you foresee a discHnation as a twin fracture

nucleus?

MURA: Yes, it might have applications to twinning, but I don't know about

fracture.

SIMMONS: I'd like to ask a question for clarification in my own mind. One
would have thought that the way to make a discHnation would be by in-

troducing a discontinuity in the rotation across a surface which then

leads you directly to the concept of a curvature type element — in the

Riemannian geometry sense. I was curious to see why you thought it

necessary to put in a center of rotation in your definition. Would it not be

easier if one just had this concept of a discontinuity in rotation on the

surface without having to identify a center point?

MURA: Your question involves geometry and, as I said in my talk,

research in dislocations might be done in three ways: geometry, elastici-

ty and physics. The geometry is a chaos and the physics is a jungle; only

the elasticity theory is clear. So I don't want to get into the geometric

part of your question. However, I need a center of rotation to express the

displacement jump at the discontinuity surface in terms of rotation. In

your description, the center of rotation is on the discontinuity surface

and at each discontinuity point, so you have no displacement jump in

your formulation.

DE WIT: I also thought to make a comment on this point. There is a con-

stant rotation associated with the discrete disclination and there is

maybe not a center, but an axis of rotation which need not be fixed in

space. It could be moved to a different location by adding some disloca-

tions to the disclination, because you can move the axis by a translation.*

So, Dr. Simmons' description differs from Professor Mura's by a disloca-

tion distribution.

' See paper by R. de Wit in these Proceedings: eq (3.4) for the discrete case, or eq (7.4) for

a continuous distribution.

Kundamenlal Aspects of Dislocation Theory, J. A. Simmons. R. de Wit. and K. Huiloutili, .

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubl. 317, II, 1970).
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MURA: I should apologize for not saying more clearly that Frt) considering

dislocations and disclinations separately. I have expressed the plastic

distortion in one way or the other, so if you have motion of both disloca-

tions and disclinations at the same time it cannot be as simple as the ex-

pressions I gave.

VON TURKOVICH: Would your velocity calculation be applicable to the

case of a half mil where you can tie to the classical solution for shp lines?

MURA: Yes, it is applicable, but this is a special case which I haven't cal-

culated.

BULLOUGH: I just wondered if, in you example you took on the opposite

sides of a half plane a discrete semi-infinite row of evenly spaced edge

dipoles with Burgers vectors perpendicular to the half plane and put

your edge dislocation with Burgers vector in the plane at the end of the

row, what does the stress field look like then?

MURA: As I said, if the row of dipoles is continuous, then the stress field

is zero. If, however, the distribution is discrete, the stress field might be

periodic over the half plane where dipoles are and have zero space

average. In the half space away from the dipoles it should be almost zero,

but I don't know^ without calculating how it falls off perpendicular to the

half plane.

ESHELBY: Isn't the impotent dislocation array you're discussing just a

narrow strip of material between the dipoles which has been rotated rela-

tive to the stuff outside— like inside a little grain? Then it's not suprising

it has no strain field.

MURA: Right.
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The general non-Riemannian approach to the geometry of a solid with

lattice defects is extended to include the kinematics. The treatment is

valid for both the motion of old defects and the creation of new ones. The

change in a geometric quantity is described by a corresponding rate. The

main quantities dealt with are distortion rates, stretching tensors and con-
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of these a fundamental kinematic law and continuity equations for the de-

fect currents are set up and are found to be consistent with earlier results

valid in special cases.
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The first attempt to develop a kinetic ^ theory of continuously distributed

dislocations (CDD) was made in 1960 by Hollander [1, 2, 3], who used the

close analogy to electrodynamics to put forward a linearized theory based

on a set of equations following the pattern of Maxwell's equations. In 1962,

* We shall try to revive here a nomenclature advocated by Sir William Thompson (Lord

Kelvin) and P. G. Tait and used by Grammel and Winkelmann. According to this nomencla-

ture, mechanics is the science of motion and forces, and thus is divided into geometry and

dynamics. Geometry deals with spatial relations, whereas dynamics deals with the action

of forces. With regard to whether changes in time are considered or not, mechanics is divided

into statics and kinetics. Consequently, we distinguish static geometry from kinetic geometry

(commonly called "kinematics")^ and statodynamics ("statics") from kinetodynamics

("dynamics''). This is visualized in the following diagram:

Introduction

Static Geometry— Geometry— Kinetic geometry

Statics MECHANICS Kinetics

Statodynamics Dynamics Kinetodynamics

F'undamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullou{;h,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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1000 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

the same author [4] reformulated the kinematics to conform with the non-

hnear theory of CDD as developed by Bilby et al. [5. 6. 7. 8]. and Kroner [9].

Hollander's work suffers from the typical inconsistencies and deficiencies

of a first try. Nevertheless, it was the signal for the start of an intense

activity in this field. Amari [10] and Simmons [11] introduced four-

dimensional formalisms into the differential-geometric theory. Amari was

able to develop a full kinematic theory in the linear approximation, while

Simmons, working within a much wider framework, also arrived at the

fundamental kinematic law. Kosevich [12. 13] rediscussed the linear theory

and rediscovered Hollander's 1960 results. However, he extracted a con-

sistent minimum set of equations, so that he could determine the elastic

field of a given continuous distribution of dislocations undergoing prescribed

motions. Bross [14] corrected Hollander's calculations and also con-

vincingly showed that a four-dimensional approach could have only formal

value. An original and very fruitful approach to the kinetics of CDD was

proposed by Mura [15, 16, 17]. He formulated the problem in terms of

integral equations and used the formalism of Green's functions to find

interpretable solutions. Finally, Giinther [18], in a comprehensive mono-

graph presented what seems to be, to this date, the most exact, clear and

elaborate formulation of the kinematics of CDD (KCDD). None of the

aforementioned papers considered qlastic distortion.

Bilby et al. [19] extended the static geometry of CDD to include non-

metric connexions, and thus obtained an adequate continuum description

of the geometrical properties of both dislocations and point defects in the

static case.

In this account we shaU deal with the kinematics of CDD at a stage of

development corresponding to Giinther [18]. However, necessary criticism

shaU not be withheld and original work concerned with the generalization

to ammetric conditions will also be reported. A treatment of dynamics

will not be included.

The mathematical presentation, and in particular the tensor notation

will, except for minor deviations, adhere to those adopted by Schouten

[20, 21]. The terminology and conventions concerning the distortions are

explained in another paper presented at this conference [22].

I. Four-Dimensional Formulation of Fundamental Equations

Let us consider an elastic crystalline medium M embedded in our real

three-dimensional Euclidean space E3. The elements of M, called "points,"

shall be represented by (usually cartesian) coordinates in E3. The medium
M has the following two basic properties:

(1) At each point of M is given a set of quantities fx. . . . , ijl. . . .

1 r

characterizing the elastic properties of M. In general, the /x's will be
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functions of the points and the time, though usually they will be just the

ordinary elastic constants of various orders.

(2) At each point of M is given a set of three independent preferred

directions, i.e., the lattice orientation. In general, M will be in some

strained and dislocated state.

In order to simplify the presentation, let us assume that the ideal lattice

vectors form an orthonormal triple. The generalization to arbitrary

lattices is almost trivial.

The crystalline medium M is transformed from the ideal state [A] to

the final state [a] by the total distortion T^^

We shall formally extend the E3 to a four-dimensional Minkowskian

space E4 by including the time coordinate, conveniently defined by

where c is some constant having the dimensionality and the order of the

speeds of sound in M. No special importance should be attached to either

the definition (1.1) or the specific value of c. We shall elaborate on this

point later.

The total distortion T^^^ will be artifically extended to a 4-distortion by

the definition^

where v^ = v^{x^, x^) is the matter velocity. It can be easily shown that

= ct. (1.1)

(1.2a)

with the inverse

1",o —— l"hZ;'Vc (1.2c)

The Eulerian metric will be given by the equation

Said X'5aX^^GKX^ (1.3a)

2 We shall agree that Roman indices take the values a, b, . . .= 1,2, 3, while Greek indices

shall take the values a, /3, . . . = 0, 1, 2, 3.
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with the inverse

(L3b)

where Gai3 is arbitrarily fixed by choosing a pseudo-Cartesian coordinate

system such that

Gafi:

0 0

1 0

0 0 1

\ 0 0 0

{1.4a)

with the inverse

/-I 0 0 0

0 1 0 0

0 0 1 0

\ 0 0 0 1

A 4-connexion b'^^ of distant parallehsm can now be defined by

bin = T7^dal'^13-

This connexion must satisfy the auxifiary conditions

aTr^ = 0,

and

(1.4b)

(1.5a)

(1.5b)

(1.5c)

where Da is the four-dimensional operator of the covariant derivative.

From (1.2) it follows that

(1.5d)

while in general b^/^ 7^ 0.

Apart from b'^^ we shall also define the 3-connexion

3/)t- ^JC ^ Tk (1.6)



BEN-ABRAHAM 1003

Now we define the 4- and 3-tensors of curvature, respectively, by

ka^y^^a[a6/31y^+6[,V|V^ (1-7)

i=^Ca,e'^-a[a-^6b]c'+'6[a|K^|=^6b]^, (1.8)

respectively.

The set of kinematic field equations is now obtained by extending the

fundamental geometric law to four dimensions. At the same time one still

has to postulate the validity of the static geometric law and the condition

(1.5d). Summarizing, we have the equations

6% = 0,

<^abc^^ 0.

(1.9a)

(1.9b)

(1.9c)

However, these equations are redundant and we have to select from

among them a set of independent equations. We shall proceed to do so,

but first let us give a geometric interpretation of (1.9).

Equation (1.9a) represents the necessary and sufficient conditions of

distant parallelism in E4. Yet, eq (1.9b) shows that the E4 is not genuinely

four-dimensional, but at aU times decomposes into the ordinary E3 and

the time axis. Then (1.9c) is the necessary and sufficient condition of

distant parallelism in E3, now valid at all times.

II. Independent Equations

The equations of general relativity corresponding to (1.9a) include four

arbitrary parameters reflecting the equivalence of frames of reference.

There is no such equivalence in KCDD. However, from the mathematical

point of view, we do have four additional degrees of freedom. Let us

clarify their significance.

From (1.2, 1.3, 1.4) it follows that

^ab^:.^ab_l^^
(2.1a)

^ (2.1b)

^ =-1, (2.1c)

369-713 OL - 71 - Vol n - 19
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and hence

(2.2a)

(2.2b)

(2.2c)

Equation (2.2c), or any equivalent equation for that matter, fixes one of

the four arbitrary parameters. The remaining three degrees of freedom

have genuine physical significance. The corresponding parameters are

determined by the equilibrium conditions

eq (2.3) represents three differential conditions determining the metric ^ab

in a unique way.

We proceed to eliminate the redundant equations from the set (L9).

In order to do so we shall write down evidently independent equations

and by successive scanning establish any additional conditions until the

process is exhausted.

Equations (L9) define the metric if the connexions b^f^ and ^b^^^ are

decomposed into their Riemannian parts g^^^ and ^^^^^ and the torsion

tensors 5q/3^ and ^^ab'^", respectiveh , i.e., if the dislocation density is given

as a physical quantity. Thus

^k^^''^-pd^;^/dt = -/^ (2.3)

where a^'^ is the stress tensor density, p the mass density, and the

density of volume forces. With the constitutive equations

^ab^^ab(^-^,)
(2.4)

^^^b=-VL + ^5ab^ + ^^:ab+^f^ba,

(2.5a)

(2.5b)

where

(2.6)

and

(2.7)

with analogous definitions for ^^^^^ and -h^-nu.

Now we have to find a physical interpretation for the 4-torsion Sap^.
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From (1.2b, 1.5a, 1.6) it follows that

bl,= 'K,^ (2.8)

and hence

5ab^ = -'^5ab^ (2.9a)

which represents the dislocation density. Moreover, according to (1.5a)

Sa^'=0. (2.9b)

Giinther [18] also showed that

Ac =--5V (2.9c)

A) = „()
' bo ^ bm (2.9d)

5%., = '-r-5"im, (2.9e)

s%, = 's%,^-s\,. (2.9f)

Thus, any tensor component of Sa^T having at least one 0 index either

vanishes or can be reduced to s\(,- Therefore, it is essential to find an

interpretation to the latter, and, once this has been done, the entire

4-tensor of torsion becomes physically meaningful.

As, of course, anticipated, 5%^. turns out to represent the dislocation

current. Components with more than one 0 index then stand for additional

purely kinematical terms. Moreover, we see that an additional 0 index

reduces the order of the component by a factor of vjc.

In addition to eqs (2.9) the only independent condition following from

(1.9b) turns out to be

&i'ab)=0. (2.10)

Clearly, (1.9c) is independent of (2.10). Thus we have the condition

•W = 0. (2.11)

Now we have to check the number of independent conditions imposed by

(1.9a) in addition to (2.10, 2.11). This number is given by the number of

independent components of Cany^. determined by its symmetries.
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By definition, the curvature tensor fulfills the first identity

C(a^)y^ = 0 (2.12)

and the second identity

or

C[am^. = 2y [o^Siiyf. (2.13)

Since the connexion is metric, the third identity is also valid in the

form

CaW)=0. (2.14)

Thus, the fundamental kinematic law (1.9a) imposes only the condition

c[am^= ^^ (2.15)

or, in terms of the torsion, i.e., the dislocation density and current

V[aW = 0. (2.16)

However, the fundamental law of static geometry (2.11) already covers

a part of (2.15), so that the additional content of (2.15) can be reduced to

C(obc)' = 0. (2.17)

From (2.14, 2.15) it follows that the curvature tensor also fulfills the

fourth identity

C[M|78]]=0. (2.18)

The symmetry conditions limit the number of independent components

of c^a/sy to 21. Now (2.10) represents 6 equations, (2.11) 9 equations,

and (2.17) 3 equations, in all 18 evidently independent equations. The

remaining 3 parameters are fixed by (2.3).

Thus the full set of kinematic equations can be written as

^Cabc^^O, (2.19a)

C(()bc)^ = 0.

'(2.19b)

(2.19c)
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Giinther presented a few more equivalent formulations such as

3c(ab) = 0, (2.20a)

C(ab) = 0, (2.20b)

•V[abc]d = 0, (2.20c)

^q«bc]d
= 0, (2.20d)

where

cab-'c^ab"^ (2.21a)

(2.21b)

are the three- and four-dimensional Ricci tensors, respectively, and

qobcid - q()bc]"^dn (2.21c)

III. Interpretation

Equation (2.19b) can be written in the explicit form

C%b)= * (5gab/5t + i;'"a„,^ab)+ ^m(a^b)i^"+ 2cAab)=0, (3.1)

While eq (2.20d) becomes

3c'V[oab]c= dhahJdt — 2ca[aS^b]c + i^'^^m^abc

+ 2c5'>[a|m| ^^b]^ + 2c^5-ab5% = 0. (3.2)

This equation is the key to the interpretation of Taking into account

(2.9a) and neglecting all nonHnear terms in (3.2) we obtain

|^3„- = 2cflusV. (3.3)



1008 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Hollander [4] derived a continuity equation for dislocation currents

which, in the linear approximation, reads

— 5ab'' = 5[aJb]^ (3.4)
ot

where is the dislocation current tensor defined as follows. Let A'^^^

be the total Burgers vector in the c direction carried by dislocation Unes

in the b direction moving in the a direction and crossing in a unit of time

a unit of length normal to the (be) plane if b c, and normal to the (ab)

plane if b = c. Since the motion of dislocation in its line direction is un-

physical k^^^ is completely determined. The plastic effects are given

by the tensor density

yabc= ^^[ab]c
^3 5^

which is then appropriately called the dislocation current density.

This can be equivalently replaced by the tensor

ya!^ =eRla7''^•^=ekla^^'^^ (3.6)

called the dislocation current tensor. The latter is connected with the

plastic distortion P'^ by means of the equation

dF\ldt= -j,\ (3.7)

Generalizing the results of the linear theory we identify

2csY=j^' = -dFuJdt. (3.8)

Hence, eq (3.2) is the nonlinear continuum equation connecting the dis-

location density with the dislocation current. Then eq (3.1) connects the

strain and the matter velocity with the dislocation current.

IV. Comments

Giinther [18] discussed the relationship of his results to earlier work

by Amari [10], Hollander [1, 2, 3, 4], Bross [14], and Kosevich [12, 13].

In the Hnear approximation the fundamental equations reproduce

Amari's results. However, Amari failed to recognize the importance of

distinguishing between 3- and 4-quantities. Yet, this does not affect the

vahdity of the results, since in the linear approximation the spacelike

-

part of any 4-quantity and the corresponding 3-quantity do indeed coincide.
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On the other hand, however, probably due to the latter circumstance

Amari did not select a set of independent equations, and so his formula-

tion is redundant.

Bross [14] considered the case of vanishing impressed volume forces

and a homogeneous isotropic hookeian medium. In this case, the equi-

librium conditions (2.3), the constitutive equations (2.4) and the linearized

equation

Cab= CKab'^ = 0 (4.1)

yield an equation for elastic waves in the presence of dislocations and

dislocation currents:

ak5'eab+ (1 +X//Lc)aaab€u' " (1/c^; )d''€jdf' = ^ab, (4.2)

where

i^ab^ (l/c)a5'Wdt + aK5^ab)-^(a5^)k, (4.3)

Cx is the transversal wave velocity, and A, /jl are the Lame constants.

Equation (4.2) reduces to inhomogeneous wave equations if shape

and volume deformations are taken separately. For €^'^ = 0 we have

^k^'^ab- (l/c^^ )d-'ejdr' = t^^. (4.2a)

while by contraction of the indices a, b we obtain

ak^V- (i/c2 )aV-/at2= (4.2b)

where Cl is the longitudinal wave velocity.

The equations derived by Bross are identical with (4.2) except that

the right-hand sides were expressed in terms of the incompatibility.

Hollander [3, 4], Amari [10], Kosevich [12, 13] and Giinther [18] all

arrive in some form at the kinematical law in terms of elastic strains

and dislocation currents

V(at^b)+ia'^ab/at=7(ab) (4.4)

and the continuity equations

V[a V„|i;'- -hdsa>/:/cn = 0

which here were given as (2.19c).

(4.5)



1010 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Giinther used equations (4.2a, b) to justify his choice of

c = c^.
(4.6)

Yet, he honestly admitted that such a choice was by no means necessary.

His own analysis clearly shows that the "elastic spacetime" invariably

degenerates into separate spacelike and timelike parts.

I wish to discuss this point in some detail. In my early work [1, 2, 3],

I introduced a four-dimensional space-time continuum primarily as a

heuristic means to find the right equations which subsequently should

be physically justified. Yet, the particular choice (4.6) was made on the

basis of the physical rather than formal similarity between fast disloca-

tions and relativistic particles with full awareness of the significant

differences. Indeed, the physical result that emerged was the clear recogni-

tion that a linearized theory could hold only for low velocities as well as

smaU distortions, and then the particular choice of c becomes immaterial

as long as c has the order of magnitude of the speed of sound.

It also became clear that upon deciphering the four-dimensional equa-

tions one is left with a great many redundant relations some of which are

hard to interpret. In fact, I totally misinterpreted some quantities con-

fusing distemporations with point defects [3].

It turns out that both Amari and Giinther fell into this trap. Fortunately,

they were more careful and did not jump to conclusions. Giinther also

endeavoured the painstaking job of separating the relevant equations.

Once the target equations have been established and it becomes neces-

sary to justify and generalize them by referring to intuitive and, as far

as possible, realistic physical and geometrical models, the four-dimensional

formalism becomes more troublesome than helpful, and, it should be

discarded. I believe so, and I did so [4].

However, there is one possibility of genuine appHcation for the four-

dimensional formalism. This comes about when one allows for

distemporations.

Let us consider the following model which is admittedly highly artificial,

but nevertheless quite illuminating. We take a soft ferromagnetic (or ferro-

electric, for that matter) crystalline body. At equal intervals of time r we
magnetize the body for a very short period t' < r. Accepting as spacetime

events only happenings at lattice points during the magnetized periods t' .

we convert the instantaneously body into a genuinely four-dimensional

crystal. Now c will, of course, have to be the propagation velocity of the

magnetization, rather than the speed of sound.

In our 4-crystal we can now introduce distemporations. An edge dis-

temporation will be created if the crystal is divided into two parts 1 and 2.
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The magnetizing pulses in 1 arrive at the basic frequency l/r. In part

2 the frequency is shifted to i^+=1/(t+1) or i^-=1/(t— 1) until the

pulses again coincide. A screw distemporation can be created making

the pulses continuously lag in time around a given axis of propagation in

such a way that along any axis of propagation the pulse spacing is r again.

It should be pointed out that dislocations (including distemporations) in

a four-dimensional medium are two-dimensional entities.

Taking into account the dispersivity of the medium and magneto-

elastic interactions we would now have a genuine four-dimensional elastic

crystalline medium. In this case the four-dimensional formalism would

become really meaningful. The full set of equations would be just the

set of independent four-dimensional equations, since none of them would

overlap or become trivial.

Giinther [18] also generalized his equations to include point defects.

However, since his treatment of the subject is somewhat vague and, in

the meantime, has been superseded by the introduction of nonmetric

connexions by Bilby et al. [19], I prefer to report work done by myself

on this subject in early 1966.

Our starting point will be the fundamental distortions, as defined in

GS. Thus we shall deal with the plastic, qlastic and elastic distortions,

respectively denoted by P, Q, and E. The distortions Q and E form to-

gether the lattice distortion L, while the superposition of all three funda-

mental distortions P, Q, and E is the total distortion T.

The present complication is that the distortions are considered to be

changing in time. We shall assume the distortions to be continuous and

differentiable functions of time t. Consequently, we must introduce

incremental distortions and distortion rates. ^
First of all, let us fix that any symbol referring to the time instant

tH- dt shall be distinguished by a tag to the left of the corresponding symbol

that refers to the instant t. Thus we have for the states

V. Distortion Rates

[A] = [A],,t'A] - [A]
t + dt? (5.1)

and for the Hne elements

t + dt- (5.2)

For convenience we shall also introduce what will be called comple-
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mentary distortions by the definition:

D^x-T^^a^, (5.3)

wherefrom it follows that

D%D% = T%. (5.4)

The distortion D wiU be called the complement of D.

Since

l\=E'^Q\V\, (5.5)

we have the relations

1 X — 1 . \ ,

i\=r.K (5-6)

The complementary distortions will prove to be useful in later work.

Now we can define the fundamental distortion increments dD by the

relations

d'x''= (rx+drx)dz\

d'^''= (r,+dp':x)d^\

d>'< = (rx4-dE%) d./'\

d'x'^= (rx + dT"x)dx\ (5.7)

The ideal state [A] remains, of course unchanged, i.e.

= (5.8)
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so that

d'Z" = dZ", (5.9)

and naturally,

dl\ = 0. (5.10)

From (5.7) we obtain for the fundamental distortions at the time t + dt:

dV^^'Q'xd^S (5.11)

d'X"='l\dx\

where, obviously.

'D\ =D^ + dD^. (5.12)

Now we introduce the distortion rates, or for short, distorates D. We
define

dP-A=Prxdt,

dQ^A^Q^dt,
(5.13)

dE':x-E%dt,

drx^T^xdt,

etc. The distorates are the basic entities of the kinetic theory, just as the

distortions are those of the static one. It must be emphasized that, in

general, one cannot write a distortion increment in the form

dD'^^ = '^ KV-dt (5.14)

as was done in [4] and [19] (p. 104). This would mean that the distorates

can be derived from a well defined velocity field and therefore would ex-

clude the creation of new defects during the distortion processes. In this

sense, the treatment of [1, 2, 3, 4] is vaHd only for the further elastic dis-

tortion process in dislocated solids.
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YI. Stretching Tensors

The change in the state of strain can be characterized by the local time

derivatives of the Eulerian metric tensors, or metric rates, Gxk, ^xk, f xk

and g\K. These can be obtained by straightforward differentation of eqs

(GS 1.10):

(6.1)

dt

d

Differentiating the identity

a:^;,D^ = r, (6.2)

we obtain

a%D.^+a^^D:^=0, (6.3)

and hence

a^--o%D^cra^ (6.4)

If (6.4) is substituted into (2.1), this becomes

=— 21,'^(^^ T^j^Lt,

^xk==-2T^(xL,)^,

^A;,--2ia^(xE^)M,
(6.5)

where
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It is more convenient to replace the metric rates by the rates of strain,

called stretching tensors [23]. These are defined by the equations

TTXk = T~ ''TAk — i'(^XK ~ G\k) >

at

o I

€KK = — eKK=^{g\K — VKK), (6-7)
at

dt

d

ot

The stretching tensors can be expressed in terms of their respective

distortions and distorates, as follows:

<1'^(xPk)m,

C)^(xQk)m,

T\K = X^(xT^)^,

^Xk-
— l^(xLK)At.

For cxk, txk and Xx^ this result trivially follows from (6,5), (6,6), and

(6,7), while for ttxk and qx^ it can be easily proved, using (5.5), (5,6), and

taking into account that distortion and distorates of different kinds always

commute.

VII. Connexion Rates and Fluxions

The connexions involved in the geometry of CDD were defined by

eqs (GS 1.14). The rate of change of a connexion, the connexion rate, is

defined as the local time derivative of the connexion. The connexion

rates, expressed in terms of distortions and distorates, become:
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d

ot

y^U^jl^U =3vaME"x+3va^E-x- (7.1)
at

dt

In view of (2.4) this becomes

^MA=dv(a^K-^^AP%),

i;ix-3v(aM^"x- /^^xt%),

bx^^ = L^A^;i-^- 6&.t%).

These equations have a clear physical interpretation. The first term

represents the rate of creation of new defects due to the involved dis-

torate. whereas the second term describes the rate of change in the

distribution of old defects by the convection connected with the distorate.

In analogy- with the connexions (GS 1.14). we shall define the following

tensors: ,

B'^x^ I'^^f Kk= Ivi'^x =0,
dt

(7.2)

dt

ot

dt

(7.3)

The tensors will be called fluxion tensors, the name reminding us of

"flow" and "connexion." The fluxions describe essentially the same
physical entities as the distorates. However, the fluxions have the ad-
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vantage that they express the time changes of the distortions in terms of

quantities referring to the soHd in the* ideal state [A].

VIII. Kinematic Law

The equation

b^K=l'-at'rK (8.1)

is, in fact, already a possible formulation of thefundamental kinematic law.

Since at any time t the sohd in the final state [a] fits into the euclidian

space, the fluxion b'^x must be a gradient tensor

6'5x = Vxi;\ (8.2)

-here
3^v =x'

is the velocity field in the solid.

According to (5.5), (5.6) the total distorate T'^a can be expressed in

terms of the plastic, plastic and elastic distorates Pf^x, Ql^x., frx:

= E + Q:^.rQ^ + P'T^P^. (8.4)

After transvection of (8.1) with T.^k and substitution of (8.2) and (8.4)

we obtain the fundamental kinematic law in the form

T.vVxi;--E!^cxE-x+ Q:<c.Q"x+ P.VP-x. (8.5)

In the linearized version this becomes

VKV^-t-.K^t-x (8.6)

If the qlastic distortion is neglected, (8.6) simplifies to

Vxi;'<-E!^A=P^ (8.7)

which is identical with equation (III. 18) of [3] as corrected in [4].

At this point we can give a physical interpretation of the fluxions. The
meaning of the total fluxion bx*^, is made clear by eq (8.2) and does not

need additional comment. The plastic fluxion ^x*^ must be identified with

the dislocation current, as defined in [2] and [4] (there denoted hy Jx*^).

In [4] it was wrongly claimed that the dislocation current is

A:^ = 25x..^i;-. (8.8)
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This expression, however, represents only the convective part of the

dislocation current due to the local velocity field v'^. A correct physical

definition of the dislocation current ^x*^ is as follows: Consider a given
i

volume element. Measure the tensors ^'fj.k'^ corresponding to dislocations

of all kinds (labeled by i) that are possible in the given solid and their

velocities /"'^
• Then the dislocation current tensor ^x'^ is given by

^K^^2j^ha^r- (8.9)

i

The fluxion A*^ represents the total defect current, including the motion

of both dislocations and point defects. We introduce the vacancy current

Px'^^ A^-^x^, (8.10)

which, of course, describes the motion of point defects of all kinds. In

analogy to eq (8.9) we have the working definition

a'--2 2 I A--". (8.11)

A-

indicating that in a given volume element one has to measure the velocities

/i/*^ with which the gradients of the point defect densities of various kinds

(labeled by k) are transported. The total defect current becomes

ix'^ = +A' = 2^ f "- 2 2 f r (8-12)

IX. Continuity Equations

One can also formulate the fundamental kinematic law in a form

analogous to what was called in [1, 2. 3. 4J the equation of continuity.

One way to do this is the following: Starting from the definition (OS 1.21)

of the curvature tensor and differentiating it with respect to time, one

obtains

ic.M'^ = a[iH^ + 6[H^|6M]^ + 6[Hp|6>]^ • (9.1)

We now take the alternated covariant derivative of which obviously

is a tensor
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V[iM]l=5[,6^]-,+ 6[H^6^]^,- (9.2)

Hence

V[X]1 = ^d,^K'_ = s.^^py^^. (9.3)

The fundamental geometric equation (GS 1.22) must hold for any time,

and hence follows the kinematic compatibility condition

c^.a'^ = 0. (9.4)

From (9.3) and (9.4) we obtain the fundamental kinematic equation

in the form

V[,6^]^+s.^^6p\-0. (9.5)

An alternative derivation of (9.5) is as follows: Let us extend the defini-

tion (GS 1.21) of the curvature tensor and the geometric law (GS 1.22)

to include time derivatives. We have for the "time curvature"

^M^x*^ - - bp'^b^^ + = 0.. (9.6)

The covariant derivative of bk'^ is

yj>K''=dj)K'' + bl[pbK^-bpJ)p'<.. (9.7)

From (9.6) and (9.7) we obtain immediately

bUx = V^^x*^ , (9.8)

which is again a possible formulation of the kinematic law. Taking the
alternated covariant derivative of (9.8) we have, in view of (GS 1.22):

V[. ]6^+ sr^p\7pb^!< = 0. (9.9)

Substituting again (9.8) we finally arrive at (9.5).

To derive a continuity equation for the dislocation current one has to

start from the last one of eqs (GS 1.15). Differentiating with respect to

time and using the last one of eqs (6.5) one obtains

=^''^(-5{M(rA} + 9{McrX}). (9.10)

369-713 OL - 71 - Vol II - 20
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Upon substitution of (9.10). eq (9.8) becomes

gvcr^nbx'^-^S{,j.i.K} — q{^i^\}=0. (9.11)

X. Conclusion

We have outlined the present state of the kinematics of continuously

distributed dislocations in crystals or rather lattice defects in generaL

The theory appears now to be well established. Future work should

advisably concentrate on dislocations in noncrystalline bodies. This

might be achieved by some relaxation of the fundamental geometric

conditions.
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Discussion on Paper by S. I. Ben-Abraham.

SIMMONS: I see in this formulation there were a number of, as you say,

useless terms. In a paper I did in 1961 — which I never published except

as a report — on a dynamic theory for imperfect continua, the formulation

I gave required no metric at all and had no extraneous quantities what-

soever. This formulation was completely general and included curvature

also, which I interpret to mean that grain boundaries — or rather sub-

grain boundaries — are free to move through the body. There was also no

attempt to make the theory look like relativity theory, which I think is a

spurious analogy in this context.

BEN-ABRAHAM: I could not agree more with the chairman. Relativity

was good once, as a heuristic method, and it was based on physical

analogies such as the so-called relativistic behavior of fast dislocations.

But it only yields valid physical results when both the strains and the

velocities are kept small. Then it does not matter at all what the limiting

velocity is. Otherwise I believe the problem is so different that one

should not involve relativity at all. I presented this review as I did

because I felt this presentation was the fuUest, but I prefer the three

dimensional representation where all the terms are meaningful.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloufih,

Eds. (Nat. Bur. Stand. (U.S.), .Spec. Publ. 317, II, 1970).
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A MICROMORPHIC APPROACH TO DISLOCATION
THEORY AND ITS RELATION TO SEVERAL

EXISTING THEORIES

A. C. Eringen

Princeton University

Princeton, New Jersey 08540

and

W.D.Claus,Jr.

Princeton University and Textile Research Institute

Princeton, New Jersey 08540

Two separate continuum dislocation theories are presented; one deal-

ing with static, incompatible, micropolar dislocations and disclinations, as

encountered in initial stress problems, and the other with a dynamical

theory of micromorphic solids containing continuous distributions of

dislocations.

Relationships between several continuum dislocation theories and

micromorphic mechanics are established by providing extensions and

new interpretations of the micromorphic theory. First both micromorphic

and micropolar theories of elastic solids are summarized, and then the

theories of Kroner, Fox, and Berdichevskii and Sedov are discussed in

some detail within this framework. In the last section, by use of

micromorphic kinematics, dislocation density, strain, and microstrain ten-

sors are introduced and constitutive equations are constructed. Together

with the balance laws this constitutes a complete dynamical theory. The
theory is intended for predictions of motions and micromotions of a solid

containing dislocations undergoing elastic deformations. From the

micromotion, the dislocation density and first stress moments can be cal-

culated.

Key words: Continuum mechanics; dislocation distributions; micromorphic dislocations;

micropolar dislocations.

I. Summary of Micromorphic Mechanics

In this paper we present two distinct theories of dislocations. The first

one (section II) constitutes an extension of the initial stress problem, as

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and K. Bull()U{!h,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, II, 1970).
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treated by Kroner, Bilby. and others, to the micropolar couple stress

theory, and the second (section III) introduces a dynamical theory for

microelastic solids containing continuous distributions of dislocations.

The initial stress-couple stress problem treated here may be called an

incompatible micropolar theory. In this theory the determination of stress

and couple stress requires the solution of a set of field equations in which

the dislocation and disclination densities are the prescribed source terms.

This is in accord with current practice in solid-state physics. It seems

to us that the specification of two second order tensors (dislocation density

and disclination density) throughout a body at each state of the body is

unreasonable and perhaps impractical for the determination of two other

second order tensors (stress and couple stress). Our hope is that ultimately

these requirements can be relaxed and replaced by simpler initial and

boundary conditions. Motivated by this, in section III we present a dynam-

ical theory of microelastic soHds containing continuous distributions of

dislocations. Upon the determination of the motion and micromotion by

solving a boundary value problem, the dislocation density, stress, and

stress moments can be calculated. Clearly for the treatment of yielding

and plastic deformation further work is necessary.

As Professor Nabarro [1] has pointed out, not the least of our problems

as mechanicians and solid-state physicists is terminology. In this paper,

the phrase "continuum dislocation theory" is used to mean the theory

of a continuous distribution of infinitesimal dislocations in the spirit of

modern continuum mechanics, which includes balance laws, properly

invariant constitutive equations, and associated boundary and initial

conditions. We begin with a summary of the basic equations of micro-

morphic mechanics, and then examine aspects of various theories within

that framework.

A. MiCROMORPHic Equations

The basic equations of micromorphic mechanics were given originally

by Eringen and Suhubi [2] and by Eringen [3, 4], and contacts with

various other microstructure theories were provided in [5] . The balance

laws are:

^+(pi^a).a = 0 (mass) (1.1)

^+ Ja/, mv,n — ihnVkm " ikmVim = 0 (microiucrtia) (1.2)
at
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tki,k+ pfi= pvi (momentum) (1.3)

A-A-/m, A- + tml ~ Sml~\~ pUm — pCTim (moment of momentum) (1.4)

pe= tklVl, A- + (5a-/ — tk-l)vik + ^klmPlm, k + Qk, k + ph (energy) (1.5)

where

p— mass density

fi= body force/mass

ikm = microinertia tensor

Sim = microstress average tensor

= first body moment tensor/mass

cr/„i =inertial spin tensor

e= internal energy/mass

qk=^ heat flux vector

h=heat source/mass

^A/— stress tensor

Vk = velocity vector

j^A/= gyration tensor

A.A/m= first stress moment tensor.

Throughout the paper all vectors and tensors are referred to rectangular

coordinates Xk. We employ the usual summation convention on repeated

indices, indicate material differentiation by a superposed dot, and denote

partial differentiation by an index following a comma, e.g..

The inertial spin tensor & is related to the gyration tensor v by

CrIk — imk ( i^lm + VinVnm). (1.6)

In addition to the above balance laws, constitutive relations are needed

to describe the particular material under consideration. Anisotropic fluids
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and microviscoelastic solids were treated in [4] and simple microfluids

in [3]. For the present purpose, we employ the linear theory oi microelastic

solids.^ In this case the strain measures are:

eki=U(k,i)= -k {iik,i + ui,k)
yl.l)

€kl— III, k--^ (i>kl, yklm — — (kkl, m

where Cki is the classical strain tensor, and ykim are microstrain tensors,

Uk is the displacement vector, and (f)ki is the microdisplacement tensor.

Constitutive equations are of the form

tki = tki{eij. e/j, yijk)

Ski = Skii€ij, e/j, yijk) (1.8)

^klm = ^klmiCij, Eij, yijk) •

For explicit representations see [2]. The strain measures satisfy the fol-

lowing forty-two compatibility conditions [6]

:

CkmpCinqCmn, pq~^

eknwiemi, « + 7/»/«) =0 (1.9)

€ kpqyimjj, q 0.

Appropriate boundary and initial conditions are given in [2]

.

The theories of Berdichevskii and Sedov and Fox are related to this

microelastic theory with twelve generalized displacement degrees of

freedom (three for Uk and nine for 4>ki)- However, for clarity we proceed

from a simpler point to this complicated situation. For this we need the

the basic equations of the theory of a micropolar solid, as given in [2] and

[7]. This will be shown to be related to Kroner's dislocation theory.

B. Micropolar Equations

The micropolar solid is obtained as a special case of the microelastic

solid by setting (j)ki = — (J)ik^ which means that the nine independent

quantities (f)ki are reduced to three quantities chk by (j)k = hekhn^mi.

' For the finite deformation theory see [2].
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(f)ki
=— ekim4>m, where (/)a is called the microrotation vector. In this case,

the balance laws take the forms

tki,k^ pfi= pill

rrikl, k + eimntmn + p// = pi4>l

pe = tkieki^Tnkikki + qk,k + ph

and the linear constitutive equations are, explicitly,

^A•/==\e„^,„6A•/+ {iX^ K)ekl + P'^lk

TUkl^ aKmm^kl + (^Kik + yKkl

where
ekl = Ui^ k~ eklm(f>m, Kkl— (f)l, k

are the micropolar strain tensors, and ruki is the couple stress tensor.

From (1.13)2 it is evident that the couple stresses are caused by the

independent microrotation gradients in the elastic, micropolar theory.

The micropolar compatibility conditions are [6]

€kmn^nl , tn — Kik^ Kmm8kl = 0

€kmnK nl , m 0.

Appropriate boundary and initial conditions are given in [2] and [7].

II. Comparisons With Continuum Dislocation Theories

The dislocation theories discussed in this section range from the

initial stress problem in which the dislocation density is specified to the

elastic-plastic deformation problem in which the dislocation density

results as part of the boundary value problem. The distinction between

these different problems is relevant and important since frequently in

the literature the work "plastic" is ambiguous. We begin with the theory

of Krc'mer [8, 9] and then discuss the work of Fox [10, 11] and Berdichevskii

and Sedov [12]. A continuum theory includes kinematics, balance laws,

constructive relations, and boundary and initial conditions. It is these

points on which the following discussion is based.

A. German School

Kri'mer's theory is divided into two parts, one with couple stress [9]

and one without [8]. The fundamental equation of the theory without

couple stresses is an incompatibility relation between a strain tensor

and a dislocation density tensor. The balance laws and stress-strain rela-

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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tions are the classical elastic ones. Giinther [13] pointed out that this

model could be referred to as an incompatible Cosserat medium. Giinther's

results pertain to only the static, geometric aspects of the Cosserat

medium. Examination of the micropolar soHd equations (1.10)-(1.15) leads

to the conclusion that the kinematics of micropolar elasticity is identical

with the Cosserat model used by Giinther. However, micropolar elasticity

suppUes the dynamical terms and thermodynamics missing in [13]. Based

on these observations, one can use Giinther's arguments and show that

Kroner's model [8] could also be called an incompatible micropolar medium.

It should be pointed out that Giinther's term incompatibility means the

following: any second-order tensor A,i is called incompatible if

e-ikmejlnAki, mil ^ 0. (2.1)

This is a natural definition in the context of Kroner's theory without

couple stresses [8], since in the compatible case the strains satisfy second-

order equations. However in polar mechanics, the strains satisfyfirst-order

partial differential equations. This leads us to propose first-order incom-

patibility relations for the polar strains as follows. The total linear micro-

polar strains in (1.14), now denoted by ej, and k^j, may be considered to

be the sum of elastic and plastic parts, e^i and e^,, i.e.,

el.i=ui,i, — ekimcf)m = e,i-\-e^.i (2.2)

Kli=(kl,k- Kkl^ K^-i. (2.3)

Compatibility conditions on the strains are obtained by differentiating

(2.2) and (2.3) and eliminating and 4>k- Thus

ekmn^nl, m — Kik^ Kmm^kl = ^kl (2.4)

CkmnKnl, m= Okl (2.5)

where

TTkl = —ek-mn€^ii^ m + K^k~ '<mm^k-l (2.6)

Okl = —ekmnK^U,m- (2-7)

We refer to 77a-/ as the micropolar dislocation density and Sui as the

disclination - density [14].

- See also Anthony, deWit. Mura, and Nabarro in these Proceedin^rs.
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By differentiating (2.4) and (2.5) we obtain
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TTkl, €lmnO„in — 0 (2.8)

^A/,A--0 (2.9)

which are identities that must be satisfied by tt and 0. Equations (2.6)

may be stated as: €^ and are the sources of the micropolar dislocations.

Equations (2.7) state that the disclinations arisefrom k^. By differentiating

(2.4) with respect to a free index yields

ekmi)€lnq€mn, pq+ CklmKrr, m — ClmnTTkn, /« + Oik (2.10)

The symmetric part of this equation is

+ ^(A/). (2.11)

When 6(ki) vanishes, (2.11) is formally the same (with a minus sign) as

Kroner's incompatibility equations in [9].

The skew-symmetric part of (2.10) gives the incompatibility equations

for the skew part of the micropolar strain tensor

C mnp^[up] , km ~t~ ^Km m , k TTmm, k- (2.12)

Equations (2.12) appear to be new; they reflect the fact that the micropolar

theory is based on non-symmetric strain and stress tensors.

With the incompatible micropolar theory presented above, the static

initial stress-couple stress problem can be formulated. That is, one con-

siders the sources of internal stress to be given (the dislocation density

7T and disclination density 0), and the problem is to determine the initial

stresses and couple stresses in the body. The basic system of equation

to be solved is then

tki,k=0

rflki, A + eimntmn = 0

tkirik = 0, nikink = 0 on S

(2.13)

(2.14)

(2.15)

with the incompatibihty equations

€kinn€nl, m — K(k+ K„im^kl = TTa/ (2.16)

^knniKnl , m — Okl. (2.17)
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Here tt and 6 cannot be specified arbitrarily but must satisfy

TTkl, k^eimnOnni = 0, Q^i, a-= 0. (2.18)

The constitutive equations to be used in the isotropic case are

tkl^\emmhhl-^ {lJi-\- K)e}:i-\- JJLeik (2.19)

m^-i = aKmm^u-^ (3Ka--\- yKki. (2.20)

The couple stress model in [9] uses the kinematics described above and

combines it with the static balance laws of a Cosserat medium [18].

Kroner then proposes a constitutive relation between the couple stress

and lattice curvature (or the dislocation density via the Nye relation) and

retains Hook's law for the symmetric part of the stress. In this theory,

once the dislocation density is given, the couple stress is known through

its constitutive equation, and the skew part of the stress is known through

the moment balance law. It seems to us that this theory is incomplete.

There should be a constitutive relation for the entire stress tensor inde-

pendent of the balance laws. Eringen [7] has demonstrated the unsound-

ness of using the moment balance law as a constitutive relation in the

case of the "indeterminate couple stress theory."

Kroner's theory with couple stresses [9] is more explicitly compared

with the incompatible micropolar theory in the following table.

Table 1

Kroner (with couple stresses) Micropolar

Fa,Z)a pfk.pk

ef,-7itpeinq€(mn). PQ = ~" e(A|HiH|'^/);)i. h+ d{kl)

ennip€l„j)], A-m + 2k»,,». A-= TTnnii. k

dkl= -ekmnK'^,l^ ,„

Q!a-/= Kik- — Kmm^kl TTkl = Kf^, - /<^„„6a-/ - ekmne^u, m

This is one possible reinterpretation of incompatible micropolar mechanics.

Other dislocation considerations are discussed in section III.

B. Oriented Materials

An approach to continuum dislocation theory utilizing the methods and

ideas of multipolar mechanics and the theory of oriented materials has

been suggested by Fox [10]. In his theory, an oriented medium with three
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directors d% associated with each particle is employed. Thus Fox has nine

generalized displacement degrees of freedom (Ik (X, ^) in addition to the

classical motion jca = ^a (X, t). For a determinate problem, twelve dif-

ferential equations of motion are required. Since Fox uses energy invari-

ance under translations and rotations, he obtains only six such equations;

six are missing. Therefore an indeterminancy exists. In fact his balance

laws can be shown to be identical to Cauchy's first law of motion and the

micropolar moment of momentum equations (1.11), with the correspond-

ence given in the table below. This means that the symmetric part of the

general balance equation (1.4) is missing. This fact leads to a hydrid

comparison between his theory and the kinematical variables of micro-

morphic mechanics. The functions :x:a (X, t) and fl?"(X, t) are sufficient

to correspond to the constitutive variables in micromorphic mechanics,

but the equations of motion are only six (instead of twelve) and correspond

to the micropolar case.

TABLE 2

Balance equation variables

Fox Micropolar

CTa-/

F, Pf>

VI VI

— TUki

GlmuL'fffd^ -ll

eimnW%dl', — CTl

Fox shows a relationship with dislocation theories by introducing an

affine connection and defining a dislocation density by

a„i = eunnd^ef,,^„ (2.21)

where e^i are reciprocal directors satisfying the relations

d^ef=bu. d^el=d<'^ (2.22)

C. Russian School

The recent work of Berdichevskii and Sedov [12] is also closely related

to micromorphic mechanics in that they also introduce nine new gen-

eralized displacement degrees of freedom in addition to the classical

three. These authors construct rather general balance equations from a

variational principle, and then they proceed to show how the classical
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elastic, plastic, and fluid constitutive relations can be constructed within

their framework. In their final section, they choose appropriate varia-

tional variables and obtain an infinitesimal dislocation-plasticity theory

which utilizes the concepts of dislocation density, plastic yield function,

strain-rate, and entropy production. For comparison purposes, their

theory is summarized as follows:

Pki.k+F,= pij, (2.23)

^eunn{Rmk^ 1. mk),n ^ Pkl - Qkl^ 0 (2.24)

P^^=-^(f)^+o-i(V^)+o-2(e(^^»,S). (2.25)

No names are given to the new quantities appearing in the balance laws,

but they can be identified from their constitutive relations:

5^ ^ du ] 1

Pa/= t-77T, X =7F- ^reversible part (2.26)

Qki = Qik= Rki =^ [dissipative part (2.27)
de^.^ ' dSki J

dCFi

Also a yield function is postulated in the form

=0. (2.28)

In the above equations, S^-i is the dislocation density, and the super-

scripts on the strains denote the elastic and plastic parts.

In (2.24) the contribution to the kinetic energy in the Lagrangian

from the dislocations has been neglected; hence there is no inertia term

on the right-hand side. Since this is a dislocation-plasticity theory, the

only point of contact with the original micromorphic theory seems to be

the generalized moment of momentum equation (2.24) which Berdichevskii

and Sedov refer to as the "internal parameters" equation. The skew part

of (2.24) can be interpreted as an angular momentum equation. The

interpretation of their symmetric part is not made clear. Their use of the

entropy production equation in constructing constitutive equations is

quite different from the current practice in continuum mechanics, cf. [15].
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III. A Dislocation Theory Based on Micromorphic Mechanics

Most of the existing continuum theories of dislocations appear to be

either intended for initial stress problems, hence static in nature, or are

incomplete for the treatment of dynamical boundary value problems in

the same sense of completeness to which we are accustomed in classical

elasticity. In this section we present a dynamical theory within the frame-

work of micromorphic mechanics with the following objectives: (a) to

treat dynamical motions of elastic bodies containing continuously dis-

tributed dislocations and (b) to provide a unifying framework from which

some of the existing theories can be viewed. The present theory excludes

macroplasticity and effects attributable to nonmetric connections, and

should be considered an initial report on a larger program.

First the micromorphic kinematics is given a dislocation interpretation,

and then balance and constitutive equations are derived using the disloca-

tion density. For simplicity we employ cartesian coordinates, but some-

times for convenience retain indices in raised positions.

A. Dislocations and Micromorphic Kinematics

In micromorphic kinematics there are twelve generalized displacement

degreees of freedom: Xk^XkiX, t) the classical motion, and x^k=xMX, t)

the micromotion. This micromotion provides the necessary mechanism

for the treatment of dislocations in the solid. An average Burgers vector

can be defined by

A6A-= fiA- =
(f

^k^dXi^=
[ [ ^^^^ ^^^^ ^ (3J)

where 5 is a small area element bounded by the closed circuit C. In the

limit when S 0 this gives

= a^iriL, ol^lO^, t) = ClmnX^n, m (3.2)

Since Bilby, Kroner, and others have shown the relationship between

the dislocation density and the torsion tensor of an appropriately defined

affinely connected space, we introduce the connection

r^LM=^''<kX''L,M (3.3)

where are three vectors reciprocal to Xa'. i-e..

(3.4)
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The material dislocation density tensor is defined by

a^L = euixTh-.^j = Xhah. (3.5)

It is readily verified that F transforms as a connection under the co-

ordinate transformations Z'^ =Z'^ (X)
, i.e.,

r ^L.:/= T7777 T^^r

"

dX^ dX'^' dX''' dX^ bX'''dX'''

In Bilby's terminology, this space possesses distant parallelism since

the Riemann curvature tensor based on this connection vanishes

identically

R^LMS= T^LS. M - T^LM, X+ T^LxT^RM " T^UfT^RX= 0. (3.6)

As pointed out by Kondo. this is not the most general procedure possible,

and this restriction will be lifted in a later work.

The relations presented above are in the material frame: in order to

construct constitutive equations in a later section the analogous spatial

form of these results is needed. Thus an average Burgers vector may be

defined by . . .

lB^ = B^la = i ryK,dxK- =
[

I

eimn^^'^n, mdai (3.7)

B^=a^inu a^i = eunnP^'^n.m (3.8)

Again based on the ideas of affinely connected spaces we introduce the

connection.

r'^-/».==x'A'//'^/.,« (3.9)

The spatial dislocation density tensor is then given by

a^l = CimnT^nm = K^^ I • (3.10)

The spatial dislocation density (3.10) corresponds also to that introduced

by Fox. In fact if we recognize the correspondence of our Xa' with his d"
and ^'^= -3^'^\\\ (where 'w are the spatial cartesian base vectors) with his

e" then (3.10) is identical with (2.21).

It can be verified that Ff',,, transforms as a connection under the trans-

formation x''"' = x''' (x), and that the space possesses teleparallelism.

R^lmn-^. (3.11)
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In the terminology of Bilby, BuUough, and Smith [16], this is distant

parallelism. In this respect, the present theory is more restricted than

that of Kondo [17]. Contact can now be provided with the incompatibihty

equation of Kroner by introducing the connection

r,''„, = {L}+s„/-s,„*;+s'-„„ (3.12)

where

5,„,'-rf,„,j=-ie„„„at, (3.13)

is the torsion tensor and the Christoffel symbols are given in terms of

the deformation tensor Cki or the Eulerian strain tensor eku i.e.,

Ckr {Cir,m + Cmr,l — Cim,r)

Ckl = 8kl — 2ekl.

If now we require that the Riemann-Christofifel tensor R^imn based on

r^;m vanishes and linearize the resulting expression, we obtain Kroner's

incompatibility equation

^^kmp^lnq^ (mn), pq~ ^kmnOL im, « + €imn(^ km, n- (3.14)

Incidentally if we do not linearize the equation R^imn — O, based on T^im we

obtain a nonlinear incompatibility equation for the nonlinear strain tensor

eki. We further note that

^[lm]~ ^'liti' ~^[lm]. (3.15)

Therefore the torsion tensor in the present theory is identical to those of

Kroner and Bilby. However Ff;^) 7^ Ff;^) in general. Since in micromorphic

mechanics three different strain measures are used, the foregoing approach

is no longer suitable. This provides basic reasons why additional incom-

patibility tensors may be introduced, as was done in the first part of the

paper, to account for other physical phenomena.

B. Balance Laws

The balance laws used here are those of the general micromorphic

theory summarized in (1.1) to (1.5).

369-713 OL - 71 - Vol n - 21
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• C. Constitutive Relations

The nonlinear, anisotropic constitutive equations for the micromorphic

theory are [2]:

Po d^KL d Tklm
(3.16)

2p
Ski =—

Po
Xk,KXl,L +^^^Xik,KXl)l- + X(k,KXl)L,M 1 (3.17)

d Tklm J

where

f^klm— T Xk , MX I
, KXm L

Po <3Ul.w

S = S (X, CA-,,^A-,.rA-A,;)

(3.18)

(3.19)

'KL — Xk , hXk . KL — Xk
, kX^-L, TkLM— X k , kX^ L , M (3.20)

The gamma hat used here is a strain tensor and should not be confused

with the connection in (3.3). The gamma hat in (3.16)-(3.20) corresponds

to Eringen and Suhubi's gamma.

Let P and A be defined by

PKLM— TK{LM)— 2 i^KLM''!' ^kMl)

A KLM= Tf^iLM] = ^ (Tklm ~ Tkml) •

(3.21)

(3.22)

Using (3.2) we see that Aklm can be written as

A KLM=—h eiMs Xk . KOLkS' (3.23)

Hence the dislocations in the body manifest themselves through the

skew-symmetric part of F. This leads us to call A the dislocation strain

tensor. We conjecture that P is due to other types of defects, e.g., point

defects. This interpretation will be elaborated on in a later paper. For the

nonlinear case, we see that the dislocation tensor ol^l is not an appropriate

constitutive variable, rather A is. Only in the hnear theory does the dis-

location density tensor become an admissible constitutive variable.
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To arrive at the linear theory, the analogous spatial forms of (3.16)-(3.18)

must be used. They are given explicitly as eqs. (6.15) in [2]. The spatial

micromorphie strain tensors are

Ck-l = XK, K-Xk, I. ^kl = XK, k^Kl-, yklm=XK, k^Kl, m. (3.24)

Again we see that the dislocation tensor a^i in (3.8) contributes only

to ykim- In fact, by defining p and a by

Pklm = yk(lm), ak-lm = yk[l?n] (3.25)

and using (3.8) a can be written as

aklm =—i eimnXK, k OCKn (3.26)

in the nonlinear case. This motivates the name spatial dislocation strain

tensor for akim.

Passage to the infinitesimal theory requires the introduction of dis-

placement gradients Ur,k and microdisplacements 4>rk through

Xk, k— Saa- ~ ^KrUr, k

^Kk= ^Kk — ^Ks4>sk- (3.27)

The linearized forms of the dislocation strain tensor akim (obtained from

(3.26)) and the dislocation density tensor a^i (obtained from (3.10)) are

aklm=~ i€imnOikn = yk[lm] =— (f)k[l, m] (3.28)

OCkl= — €imn(f>kn,m. (3.29)

For later use we record the inverse of (3.28)

Oikl= eimnaknm = eimnyknm (3.30)

The linear, isotropic constitutive equations which were written sym-

boHcally in (1.8) are explicitly eqs (6.15) of [2]. For this dislocation model
we neglect contributions to the strain energy from other defects and take

S = S (e, €, a) (3.31)

In this case (6.15) of [2] becomes

tkl— {k + T)enn,t^kl-^2{jUL+ Ct) € i + 7)6 „t m8 1,- 1 + Peik+ K€kl (3.32)
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^(v^k-(t){€,i^€i,) (3.33)

(3.34)

where

2ai - T2 — T6, 2^2 = Tj — T9, 2a3 =78— Til, Ti^Ts, Ts^Te, Tio=Tii. (3.35)

The ta's are Eringen and Suhubi's [2] original constitutive constants.

D. Field Equations

Substitution of (3.32)— (3.34) into the equilibrium equations (1.3) and

(1,4) gives 12 partial differential equations for the 12 unknowns Uk and

(f)k-i. The field equations are

{k + fj.-\-T+ o-^p-\-r})uk,ki+ (At+ Cr+/<)W/,A-A-+T7(/)A-A-,/

+ i^(Pik. k-^K(pK-i, a-+pq//=po —r
ot-

ai{4>rk. rk — (f)rr, kk)8ml— («1 + ^3) (/)a-/», A/ + a 1 </> A'A", ml

+ ^2 ((/)//», kk — 4>lk, mk) -^asicfimk, lk—(t>ml, kk-^4>kl, mk)

— rjUr, r^ml— KUm,l—VUi, ,„+ {t — T)) (^rr^ ml (3.37)

+ (cr — )(/),„/+ (o-— /<:)(/)/,„ + po///» = Polo -^TT^".

The boundary conditions to be satisfied on the surface S of a body are

tklTlk= t(n)l. kklmnk=\{n)lm 0T\ St

u, = U, (f)ki= ^ki on Su = S- St (3.38)

where t(n)i and X(„)//» are prescribed surface tractions and moments on

a part of the boundary St and Uk- and 4>a/ are prescribed surface dis-

placements and microdisplacements on the remaining part of the boundary

S». Other mixed boundary value problems are also possible, but in each

case uniqueness theorems must be proved.
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We notice that from (3.34) Xa/w=— A-m/A- so that eq (1.4) can also be

written as

CkmnJnni, k~r tml~ Snil~r plim = PJq—^^^
^

where

)^klm— eicmnfnnl, ^kl— i €kmn^mln (3.40)

and

mki=— asamm^ki — aiaki-\- (ai — a2 + as)^//.-. (3.41)

The twelve partial differential equations (3.36) and (3.37) constitute the

field equations of the dynamical theory of dislocations presented here. A
set of initial conditions may be of the form

u^- = ul{js.) Uk = vlM

cf>k,= cf>i,U). ci>ki=viiM in V, t = 0
^^-^^^

where u", v*\ <^*\ and are the prescribed initial fields. The field equations

(3.36) and (3.37) subject to conditions of the type (3.38) and (3.42) constitute

a well-posed set of equations for boundary and initial value problems of

the theory. Once «a and (j)ki are so determined, the strains are calculated

through (1.7), the dislocation strain from (3.28) and the dislocation density

from (3.29). The stresses and stress moments follow from (3.32) to (3.34).

IV. Concluding Remarks

In this paper we have shown how the incompatible dislocation approach

can be viewed in the context of micromorphic mechanics. In the last

section a dislocation theory was developed for the treatment of dynamical

boundary and initial value problems. The theory supplies a determinate

mechanism for the prediction of the motion and deformation of elastic

solids with dislocations.
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ON THE CONTINUUM THEORY OF DISLOCATIONS
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The kinematics of an oriented medium is discussed with reference to

the continuum theory of dislocations. The concepts of dislocation density,

dislocation flux and slip velocity are introduced and a corresponding con-

stitutive theory is developed.

Key words: Continuum mechanics; dislocation kinematics; dislocations; constitutive

relations; oriented media; thermodynamics and dislocation motion.

I. Introduction

During the last ten years considerable advances have been made in

the development of various generalizations of classical continuum

mechanics. And it is our purpose here to reexamine the continuum theory

of dislocations in the light of these advances. (For reviews by the origina-

tors of research in this area see Kondo [1], Bilby [2] and Kroner [3]).

Motivated by the geometry of dislocated crystals, we show how the con-

cepts of dislocation density, slip velocity, dislocation diffusion, and disloca-

tion flux may be introduced into a continuum theory without recourse

to non-euclidean geometry and without making a transition from a theory

of dense distributions of discrete dislocations. This is made possible by

adapting the theories of oriented media which are now available. (For a

review of these theories see for example Truesdell and Noll [4] p. 389).

Moreover, generalizing the theory of internal state variables given by

Coleman and Gurtin [5], the thermodynamic background to the subject

may also be developed.

Most of the significant work on the continuum theory of dislocations is

summarised, or referred to, in the Proceedings [6] of the recent lUTAM
Symposium on the subject. It appears that authors who seek a basis for

this theory within the framework of general continuum mechanics adopt,

broadly speaking, one of two possible starting points. In the first, some

kind of oriented medium is defined by introducing new kinematic variables

which are variously called directors, multipolar displacement fields or

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and K. Bulloutili,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).

1041
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microdisplacements. Then either static or dynamic theories are derived

which provide a model for a dislocated crystalline material. The other

starting point was suggested by Noll [7]. He showed how the idea of disloca-

tion density or inhomogeneity emerges from the properties of the con-

stitutive equation for a simple material using the concept of local reference

configurations. And these ideas have been carried further by Wang
[8, 9]. However, these two approaches are not entirely distinct. Toupin

[6] has shown that, although directors may be introduced as new kinematic

variables defining an oriented medium, they may also be related to

Noll's analysis of a simple material.

We do not consider further the relationship between these approaches.

However, we note that Noll's theory starts by defining over the body a

set of local reference configurations which does not vary in time. Conse-

quently the theory gives rise to a time-independent dislocation density.

And although it seems possible to extend this theory to allow the local

reference configurations to vary with time (see Fox [10]), the idea of

dislocation flux appears to be clearer if approached from the standpoint

of director kinematics. For this reason, we adopt the terminology of the

oriented medium.

We introduce dislocation density and slip velocity using simple vector

and tensor analysis in euclidean tTiree-space. We show how the transport

of dislocation density may be separated into a diffusive part and a convec-

tive part. This leads us to a definition of dislocation diffusion vectors

which we then relate to dislocation flux vectors. We postulate constitutive

equations, including one for the dislocation flux vectors and analyse the

restrictions on these equations arising from the laws of thermodynamics

and the principle of material indifference. And finally we arrive at a com-

plete set of equations governing the deformation of an oriented medium
in which slip processes arise from dislocation flux.

II. Preliminaries

We use fixed rectangular cartesian axes. The position vector of a generic

particle of the body in a reference configuration '^o is denoted by X = (^4) •

Its position vector in the configuration ^ i at the current time t is denoted

by X = (jcj). All upper and lower case suffixes take the values 1, 2, and 3.

The motion of the body is given by the time-dependent mappings

x-x(X, 0; x/=x/(X4,0. (2.1)

We assume that all functions used are differentiable as many times as

required and we denote the deformation gradient tensor by

(2.2)
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where a comma followed by an upper or lower case suffix denotes partial

differentiation with respect to Xa or jc, respectively. As usual, we assume

that

y = det F > 0. (2.3)

And so (2.1) has the unique inverse

X=x-Ux, 0. (2.4)

We denote the velocity of a particle by

v=^X(X, 0 (2.5)

and in virtue of (2.4) we may also regard v as a function of the spatial

coordinates x,, t. As no confusion arises we normally omit the explicit

dependence on xi and t. Then {d/dt) is used to denote the time derivative

keeping Xi fixed and (D/Dt) to denote the material time derivative keeping

Xa fixed. For convenience we sometimes use the superposed dot in place

of (DIDt).

Associated with each particle of the body we suppose that there are

defined three vectors d" known as directors. Greek indices take the

values 1,2, and 3 and serve simply as labels for the directors. A repeated

index or suffix implies summation.

The motion of the directors is given by equations of the form

d"=6"(X, 0. (2.6)

We define the director gradient tensors D" as

D"-(fl^,"J (2.7)

and the director velocities by

d«=^8«(X, t). (2.8)
ot

Using (2.1) the directors may also be considered as functions of the

spatial coordinates x,, t.

We suppose that throughout the motion the directors associated

with any given particle remain noncoplanar. Thus we may define recip-

rocal directors e" by the relations

e"-d^ = 8«^ (2.9)

where 8"^^ is the Kriinecker symbol.
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III. Dislocation Kinematics

By analogy with Burgers circuits in real crystals, the circulation of the

vectors e" about any reducible circuit C of material particles in may be

used as a continuum definition of the Burgers vector for the circuit C.

This leads naturally to the definition of the dislocation density vectors

to" as

ft>"= curie", (3.1)

where the curl operator is defined in terms of the spatial coordinates %\.

These vectors may be resolved into components co"^ in the triad d".

That is

o>"=aj«^d^ (3.2)

where

a>"^= w"-e^. (3.3)

We call co^^Ca # /3) the edge components of the dislocation density vectors

and(x>"'^(Q; = ^) \\vescrew components.

The time rates of change of the dislocation density vectors measured

per unit area of an element of surface moving with the material are given

by the convected time derivatives

= cbf+ v„, K-ojf
- Vi,j(x)f. (3.4)

Alternatively, we may write (3.4) in the form

of= (aa>"/aO + curl(ft>"Xv). (3.5)

For any smooth material surface S bounded by a smooth curve C we may
write, in virtue of (3.1) and (3.4),

^£ efdxi = (ofmdS = MfmdS, (3.6)

where m is the unit normal to S.

The slip velocities f " are defined by

(3.7)
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and the vectors o>" are related to the vectors by the formula

w"=curl{(^^-e«)e^}. (3.8)

The derivation of the above relations and the physical motivation for the

definitions has been given by Fox [11].

Now it is clear from (3.1) that the vector fields a>" are solenoidal and

an extensive study of such fields has been given recently by Marris and

Passman [12]. They have generalized the Beltrami identity concerning

vorticity transport to provide a relation governing the transport of an

arbitrary solenoidal field. And they have derived a general integral of this

relation which is the counterpart of Truesdell's [13] integral of the Beltrami

identity. Much of this analysis has direct application to the present theory.

Applied to the vector fields a>", their fundamental identity gives

y-i (DIDt) ( Jo>«) = w« + ( • grad) v, (3.9)

which may of course be deduced directly from (3.4). This relation shows

how the time rate of change of the dislocation density vectors may be

separated into what we call a diffusive part and a convective part. In

particular, we see that when ft>" is zero a necessary and sufficient condi-

tion that o>"be zero is that a>" is zero. We call (o"the (spatial) dislocation

diffusion vector.

The integral of (3.9) may be written as

(ot= ^A^-^ JXK,j^jdtyi,„J-' (3.10)

where Xi,Kj~^ is the value of o)^ at time t = to. The time integration in

(3.10) is carried out following a material particle. And so, for example, if a
o

dislocation diffusion vector is zero, the associated dislocation density

vector a>" may be said to be convected only by the velocity field v. In

this case

(of= Xi,KAy-'K (3.11)

If all three vectors o)" are zero in some region of the body, we say that,

in this region, the motion is dislocation preserving. And we see from (3.6)

that in such a region, the circulation of the vectors e" about any material

circuit is constant. It is also possible to discuss motions in which the

strengths of the vector tubes of the fields ft>" remain constant while being
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convected by distinct velocity fields V(q:) (see Fox [11]). However, the

deformation of real crystals due to the independent motions of edge and

screw dislocations suggests that a more general analysis is required.

A general dislocation flux tensor has been introduced by Kroner and

Rieder [14] and the associated theory has been further developed by

Mura (see [6] for references). However, this approach involves a transition

from a theory of densely distributed discrete dislocations and the object

of the present analysis is to provide a basis for a continuum theory of

dislocations using only continuum hypotheses. We therefore proceed by

introducing what we call dislocation flux vectors, using the ideas of the

above authors as motivation but relying only on the kinematic variables so

far defined.

We assume that at each point of the body there exist nine vectors v"^

such that the slip velocity is given by

An analysis of this relation in conjunction with (3.6) and (3.8) leads us to

define v"^ to be the dislocation flux vector associated with the dislocation

density component o)"^. Clearly the vectors v"^ determine the but the

j^Q^ uniquely determined by the This corresponds physically

to the fact that certain slip velocities may arise from the motion of distinct

dislocation components. If all the vectors v"^ are zero the motion is neces-

sarily dislocation preserving. But a dislocation preserving motion does not

necessarily imply that all the vectors v"^ are zero.

From the point of view of generalized continuum mechanics, we regard

v"^ as new primitive variables for which constitutive equations must be

formulated. Once these equations have been postulated, (3.12) determine

the slip vectors, which in virtue of (3.7) give rise to first order differential

equations for d".

In order to discuss thermodynamic processes, we introduce the Cauchy
stress tensor T, the body force b per unit mass, the internal energy e

per unit mass, the heat flux vector q, the heat supply function r per unit

mass, the entropy j) per unit mass and the absolute temperature 6. The
equations of motion and energy balance may be written in the forms:

(^^.e«)e^-V (3.12)

IV. Thermodynamics and Constitutive Equations

Tji,j + pbi = pvi (4.1)

pe-TijVi,j+q> / = pr. (4.2)
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We do not consider here the modifications of (4.2) due to director stresses

and director inertia. We assume that these effects are negfigible.

We now proceed using a generafization of the techniques of Coleman

and Gurtin [5] and we use their terminology.

The set of eleven functions (x, T, b, e, q, r, 17, 0, d"} defined over the

body for all time t is called a thermodynamic process if and only if it

satisfies (4.1) and (4.2). Clearly any set { x, T, e, q, 17, ^, d"} determines

a thermodynamic process since corresponding values of b and r may be

calculated from (4.1) and (4.2).

The rate 7 of production of entropy is given by

py- PV- {pri 6) ^div (q/0) (4.3)

and the Clausius-Duhem inequality is written

7^0. (4.4)

In virtue of (4.2), (4.3) may be written as

0y= -^-r)e^SiAXi,A-{giq>lpe}. (4.5)

where

Tij= pSiAXj,A. gi=0,i,

and ^= e — Orj denotes the Helmholtz free energy per unit mass.

We make the following constitutive assumptions:

^ = '^(F, d", D«, g), (4.6)

S=S(F, d", D«, 6, g), (4.7)

7) = r){F, d«, D", g), (4.8)

q = q(F, d", D", 6, g). (4.9)

v«^-v«^(F, d«, D", g). (4.10)

And we say that a thermodynamic process is admissible if it is compatible

with (4.6)-(4.10).

From (3.7) we see that

Xi,A=U^^d<^)eJx.^^^ (4.11)
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Hence, (4.5) may be written

ey=-^-'ne+SiA{^t+ d,-)efxj, a - igiqdpe) . (4. 12

)

Using (4.6) and (4.11), (4.12) becomes

-if:*'-||''-^(*"-sn)'.*''-.«-'»""""- i*-"!

And we recall that ^ is given in terms of v"^ by (3.12).

Now the second law of thermodynamics asserts that the inequality

(4.4) must be satisfied at all points of the body for all time t by every

admissible thermodynamic process. And in order to examine the conse-

quences of this law, we select some particular processes. First we note

that if x(^' 0 and ^(X, t) are specified then F and g may be calculated

directly. Equation (4.10) then gives first order differential equations for

d"(X, t). Assuming that these equations have a solution for some chosen

initial values d'^(X), we see that, in virtue of (4.6)-(4.9) the functions

X(X, t) , ^(X, t) , d"(X) are sufficient to determine an admissible thermo-

dynamic process.
o o o o o

Let {F, d",D", 6, g} be an arbitrary set of values of the independent

variables in the constitutive equations at a material point X' of the body.

We consider the admissible thermodynamic process defined by

xKx, t) =x\ + {Fu +{t- hAiA]{XA -x:,

)

+ ai2)BiAB(t- h {Xa -X:,){Xs -Xs). (4.14)

^(X,0 = ^+ (^-^)a+te•+ {t-l)ai}FiA{XA-X:,), (4.15)

df{X)=dr+h(^A-x',) + (V2)Cf^^{XA-x:,){Xs-x;,). (4.i6)

o

where time t, the scalar a, the vector a and the tensors Aja, Biab^ ^Iab

are chosen arbitrarily (except for the symmetries B.^^ = B
^ ^
Cf^^ = Cf^^ )

.
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This process has the properties:

F(X', 0 = F, d"(X', 0 = d", D«(X', 0 = D«,

^(X', h = k g(X',0 = g, Xi,A{X\ h=AiA.

Xi,ABiX\ h=BiAB, ^(X', t)=a, ki{X\ 0 = a/,

(4.17)

Now using (4.10) and (3.12) we see that may be regarded as a function

of the form

And from (4.11]

^«=|«(F, d«, D", g). (4.18)

df' = ii,AXA,jdj-^-. (4.19)

Hence,

4"(X', h=A.^F-jdJ-if{F, d«, D", g). (4.20)

Also, using (4.19) again, we find

4" ^ (X ' , 0 =5
•

,

,-F- 'd^ -^F-'D^.A.^
« • ^ V ' / lAh Aj J A J jh I

A

ddf^

D^, £a 11
jAK ^ gjFjK, (4.21)

where the symbol |o indicates that the preceding function is to be evaluated

at (X', t)-

Now in (4.21) Biak-, are tensors which have been chosen arbitrarily

(except for symmetry in the last two suffixes). But it does not necessarily

follow that values of these tensors can be found which give an arbitrary
o

set of values c?^"^(X', t) . Certain values of the coefficients of these tensors
o

in (4.21) may give restrictions on the possible values of c?"^(X', t). How-

ever, we exclude these special cases from our consideration and assume

that the form of (4.21) always permits an arbitrary choice of (i^"^(X', t°)

.

If this assumption were not made the form of could be made slightly

more general than that used below.

Using (4.17) (4.19) and (4.21), we see that for the admissible process

determined by (4.16), the values of d, d", D", g at (X', t) in eq (4.13)

are arbitrary while all other terms in the equation are fixed by the choice of
o o o o o

{F, d", D", d, g}. Hence in virtue of (4.4) we must have,
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Su = = 0,

(4.22)

(4.23)

And the energy equation (4.2) reduces to

o f
i, i
= pr. (4.24)

V. Material Indifference

In addition to the requirements of the laws of thermodynamics the

constitutive equations are also subject to the restrictions of the principle

of material frame indifference. (For a discussion of this principle see

Truesdell and Noll [4] p. 44). To use this principle we consider a second

motion of the continuum in which the particle X has position vector x*

at time t given by

where Qij{t) is an arbitrary time-dependent proper orthogonal tensor,

Ci{t) is an arbitrary time-dependent vector and Xi is given by (2.1). It

follows that

and we assume that the other variables appearing in the constitutive

equations transform as follows:

xf = Qij{t)xj^Ci{t) (5.1)

(5.2)

Using these relations it can be shown that

(5.4)
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(See for example Green, Naghdi, and Rivlin [15]. Or equivalently, we may

write

"^^^{dfx.^^ dfdf, 6). (5.5)

Hence, using (5.5) and writing

f- = dfx.^^^ g-i'= d-df, (5.6)

we see that the constitutive equations (4.22) must take the form

V = -'-^, (5.7)

T,j= p{x,_,df + dJ.,J^+ 2pdfd^^^. (5.8)

Applying the transformations (5.3) to (4.9) and (4.10) we find that each

of the 10 vectors q, v"^ must satisfy a relation which is most conveniently

expressed in tensor notation as

f(OF, Qd«, QD«, 0, Qg) = Qf(F, d«, D«, 6, g) . (5.9)

Vector functions of this type could be expressed in canonical form using

the theory of isotropic invariants but we do not enter into the details here.

The final forms of (4.23) and (4.24) are

2{d^/dg-ndf i^-giq^ipO)-' ^ o, (5.10)

-2(d^ldg-^)df ^f+ pdr)-{-qi,i = pr. (5.11)

This leads us to define an internal dissipation function

(T^2e-'{d^ldg<'^)dif (5.12)

An interesting special case of the above theory is obtained if we assume

that the constitutive equations do not depend on F. In this case,

Tij = 2pd^di^.d^ldg"^. (5.13)

And then incidentally, if the sHp velocities were assumed to be identically

zero and the directors were initially the base vectors of a coordinate

369-713 OL - 71 - Vol II - 22
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system over the body, our theory would reduce to elasticity with o"— 0.

In any case, with the assumption (5.13) we have

cr=(pd)-'T-^f (5.14)

where

Tr= Tue- (5.15)

and we note that Tf\ef\~^ (no sum) is the traction across the plane con-

taining d^, dy{a 7^ ^ 7^ 7 7^ a).

Clearly in an isothermal deformation the thermodynamic restriction

(5.10) becomes

o-^O. (5.16)

This ensures, for example, that if only one slip vector is non-zero, the

component of the slip velocity in the direction of the resultant traction

over the slip-plane must be nonnegative.
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Discussion on Papers by A. C. Eringen and W. D.

Claus, Jr. , and N. Fox.

TEODOSIU: I would like to make some comments concerning the paper

by Professor Eringen and Mr. Claus. As long as we are concerned with

developing a theory of continuum mechanics in which new invariant

kinematical and dynamical quantities are involved, we can do it in a

rather elegant way, and I think we have so far two beautiful examples.

One is the theory of micropolar mechanics developed by Green and

Rivlin,! and the other that of micromorphic materials developed by Erin-

gen and Suhubi.2 These two theories provide a good framework for

developing other general theories of physical phenomena. But if we in-

tend to describe new physical phenomena with these theories, we must

be very careful when approaching physical objects to consider the

descriptions by people studying such quantities.

I would like to indicate some points which are, in my opinion, not quite

clear in this paper, not in the sense of a continuum mechanical theory,

but in respect to its relation with the theory of dislocations. First, they

consider in the second part of their paper ordinary motion and another,

micromorphic motion. It seems to me from the relations presented that

this micromorphic motion is nothing but the time dependence of the so-

called elastic distortion in dislocation theory. Then, there is an important

point which was not presented here, which is that one can always decom-

pose the general motion into two parts which are additive in the Hnear

case and may be written in the non-Hnear case as a product of two asym-

metric matrices, the plastic and elastic distortions. If this is so, then the

strain measures presented are no longer correct because they are based

on the assumption that the response of the material is completely deter-

mined by the elastic part of the deformation, that is by those quantities

named in this paper the micromorphic displacements.

In the meantime there is another point which is not quite clear to me: It

is true that in previous developments of dislocation theory no asymmet-

ric stress appears, and there is a good reason for this. We do not have in

dislocation theory, in fact, a new independent degree of freedom such as

a rotation, and as long as we don't have such independent rotations, we
are always able to redefine the stress tensor in order to make it symmet-

rical. So there is no asymmetric part of the stress tensor in dislocation

' Green, A., and Rivlin, R., Arch. Rat. Mech. Anal. 17, 113 (1964).

2 Eringen, A. C, and Suhubi, E. S., Int. J. Engng. Sci. 2 , 189 (1964); Suhubi, E. S., and Erin

gen, A. C. , Int. J. Engng. Sci. 2 , 389 (1964).

Fundamental Aspects of Dislocation Theory. J. A. Simmons, R. de Wit, ;

Eds. (Nat. Bur. .Stand. (U.S.), Spec. Fubl. 317, II, 1970).

ind R. Buliough,

.
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theory, as long as we don't introduce a new rotation. This question has

also been discussed some time ago by Professor Kroner. I should, there-

fore, be interested to know the opinion of the authors about the sig-

nificance of their asymmetric stress.

The next point I should like to make is about both the papers up for

discussion. This is that the usual law of conservation of mass is no longer

complete in the theory of moving dislocations. It can be proved that it

must be supplemented by the equation: p + p Tr / = 0, where p is the

mass density in the local natural configuration and / is the dislocation

flux tensor. This was already known in the linear theory and could be

proved easily for the non-linear case. If we consider the case of a

uniformly moving dislocation density, say, we have a simple relation

between the dislocation flux, the dislocation velocity, and the dislocation

density. If we specialize this relation for a singular dislocation, then it

can be proved, as was shown by Kosevich in the linear case,^ that one

can describe the climb of edge dislocations; and this is a known fact that

climb is a non-conservative motion associated with mass defects.

Concerning the paper by Dr. Fox, I have another question. That is

whether the directors considered in this theory are material directors or

not, because if they are material directors then they are completely

equivalent to the components of the elastic distortions. If they are not,

what significance has the independent motion of these directors with

respect to the general motion of the material?

CLAUS: Let me take Dr. Teodosiu's questions in ascending order of com-

plicatedness. First of all, we think we have been careful. As far as identi-

fying terms and so forth, we have a continuum analogue of a body which

contains a distribution of dislocations. We are not counting atoms and so

forth, and we recognize this can be a tricky business so we have at-

tempted to be careful.

The second point: The conservation of mass equation given by Dr.

Teodosiu, I think, simply requires interpretation. A couple of other

points needing interpretation, I think, are based not so much on disloca-

tion ideas, but rather the method of micromorphic mechanics in general.

Our mass density is an average mass density, and the conservation of

mass equation is valid.

The question of asymmetric stress is one which has been frequently

discussed in the literature lately. The balance of linear momentum is

fine and the question is what is the moment of momentum or angular mo-

mentum equation. In the classical case the stress is symmetric. If one in-

cludes extra degrees of freedom into the angular momentum equation.

Kosevich, A. M., J. Exptl. Theoret. Phys. 42, 152 (1962). Usp. Fiz. Nauk 84, 79 (1964).



DISCUSSION: ERINGEN ET AL. 1055

we claim that the equation leads to a non-symmetric stress tensor,

whether it is a couple stress or a stress moment tensor.

SIMMONS: Is there, by the way, a physical example you can give where

the energy has this type of rotational dependence?

CLAUS: That is precisely the problem. Everybody these days is looking for

situations in which the stress is non-symmetric. In continuum mechanics

many people are trying to think along these lines. Some of the areas of

promise to be pointed out are liquid crystal experiments where in-

herently there is a structure to the liquid which could conceivably lead

to a non-symmetric stress tensor. Another area is in a body which con-

tains a polarization, and the behavior of that body in an internal field.

Many people are trying to look for asymmetries there. But I cannot quote

an experimental paper where it has been demonstrated.

Concerning the question about elastic and plastic distortion, the in-

terpretation here is that we have a body with dislocations that are

deforming elastically so there is no slip in a lattice sense. There is no

plastic deformation taking place; you put loads on the body and get only

elastic reactions. Obviously what we are trying to construct is a plasticity

theory, and we think we have the beginning of a mechanism to do that.

Again the strain arises by looking at the average motion of the center of

gravity of the collection we are considering. Starting off with a collection

of elements, the center of gravity deforms in a way which is described in

the classical fashion. It is the motion of the microelements that we are

trying to describe, and through a very tedious process of looking at the

motion with respect to the center of gravity and studying the appropriate

kinematics we arrive at an elastic non-symmetric strain. That decom-

position is a result of the kinematics and not an artificial postulate in-

volving the division of the motion into an elastic and plastic part.

Everything is elastic.

ERINGEN: I would also hke to answer Dr. Teodosiu. The remarks that I

am about to make will, I hope, clarify some of the main points. One of

these points is concerned with the strain measures in the present theory.

The present theory employs three sets of precisely defined strain mea-

sures. One of these is the classical strain tensor, the second one involves

the directors, and the third one is a third order strain tensor arising from

the deformation of the directors, in terms of which the dislocation densi-

ty is defined. All these strains are exact; they are non-linear, possessing

linear approximations. The material response is neither determined by
the elastic strain nor by the microdisplacements alone.

I believe Dr. Teodosiu also missed the crucial point that the dynamical

theory introduced here is not intended to be a plasticity theory. The ulti-
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mate goal of the present theory is to determine the motions and

micromotions by solving an initial-boundary-value problem. Once they

are determined, the dislocation density can be calculated in a

straightforward manner. This point of view is, perhaps, in clash with the

present practices in dislocation theory. In harmony with the long-

established traditions in other well-developed fields of continuum

physics, I suggest that the continuum dislocation theory should offer a

set of field equations subject to a set of well-posed initial and boundary

conditions to predict the evolution of the motion and of the dislocations.

Present practice in this field requires that the distribution of a second-

order tensor (the dislocation density) be given throughout the body at all

times in order that we determine another second order tensor, namely,

the stress tensor. This is not only unreasonable on logical grounds, but

also not feasible experimentally. After all, why not ask for the stress ten-

sor in the first place! When a proper continuum theory is constructed,

this problem, I believe, will be reduced to a boundary-initial value

problem as in other branches of continuum physics. Our present work

contains an attempt in this direction which is concerned only with elastic

motions of a body containing dislocations.

[Written comment] Dr. Teodosiu also stated that the law of conserva-

tion of mass is not valid in dislocation theory. In this he is wrong, of

course. This law is valid for all non-relativistic theories of continua.

FOX: I think my answer to Dr. Teodosiu can be very brief, actually. Your

question was, "Do the directors move relative to the material?" The

answer is "Yes." This is the whole point of having the slip velocities. The

idea that the material can deform relative to the directors gives us a con-

tinuum analogue of slip processes.

RIVLIN: As I listened to some of these papers and remarks, I was struck

by the fact that the products of research in theoretical physics are quite

different from the products of activity in the field of architecture. If you

build a small hut on weak foundations, it may perhaps stand. But as a

building is developed by adding story after story, if the foundations are

weak, it will eventually collapse. In building up a physical theory, the

situation is quite different. If the foundations of the theory are weak and

there is only one paper on the subject, it is quite easy to demolish the

theory. However, as generation after generation of papers is added to the

literature of a physical theory, it eventually becomes impossible to get

rid of the theory, no matter how weak its foundations.

AUDIENCE: General laughter.

RIVLIN: Now, I will preface the comment I really intended to make by a

quotation from the Hunting of the Snark:
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"... I have said it twice: (at the lUTAM Conferences in Vienna and

Freudenstadt in 1966 and 1967, respectively).

... I have said it thrice: (at the conference in Rome in 1968).

What I tell you three times is true."

These remarks are not directed against anybody personally— although

they may be at everybody. In my youth, about five years ago, I was

myself guilty of the same errors I am about to criticize. In many of the

theories of generalized continuum mechanics, there is a tendency to

pass from a physical inspiration to continuum statement without any

clear indication of the passage from one to the other. For example, in the

so-called micropolar theory with which Dr. Claus's paper was con-

cerned, a material is considered which consists of many structural ele-

ments, each of which undergoes deformation. Mention was made of the

coordinates of the centers of mass of the deformed elements. Then, sud-

denly there appeared spatial derivatives of these coordinates. Now one

cannot take spatial derivatives of functions defined on a discrete set of

points — at least not in my kind of mathematics. So, somewhere a

passage has been made from functions defined on a discrete set of points

to continuous and, indeed, differentiable functions defined throughout

a region of space. Now, as soon as one begins to think about the manner

in which this passage might be made, one realizes that it cannot be made
in a unique fashion. For example, averaging procedures might be used,

interpolation procedures and so on. The spatial derivatives take on quite

different meanings and values depending on how this passage is made.

In some of these ways of carrying out the passage from functions defined

on a discrete set of points to functions defined over a region of space, the

derivatives are quite meaningless. In others they have a more limited

meaning than is attached to them by their users. In all events, one can-

not pass from the discrete model to a continuum by saying, "We just

smooth it," however engagingly this may be said.

ERINGEN: [Written contribution] That was a most entertaining diatribe.

Since it was directed to "everybody" we should let "everybody" reply.

However, reference has been made to micropolar theory with accusa-

tions that partial differentiations were carried out on functions defined

at discrete points. Neither in this nor any other of our previous publica-

tions concerned with this topic has such been the case. It is true that Dr.

Claus's presentation here emphasized the physical motivation of the

theory in terms of discrete elements. However, the mathematics of both

the present paper and the previous ones are innocent of such accusa-

tions.

With regard to the averaging procedure here questioned, I have also said

several times; on one of these occasions (which took an hour at Freuden-
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stadt in 1967), Professor Rivlin told me that he understood completely

the points that he has raised here today— at least he then said so— and

expressed his thanks. But, once again I am obliged to tell you that it is

true: the micropolar theory is a rational continuum theory based on

proper postulates, thermodynamics, and uniqueness theorems. Any

reference to discrete elements is only motivational to exhibit its physical

basis. Equations of motion of the theory were already given to us in 1962''

(pp. 104, 124, 125). The theory was fully developed in 1964 at the end of

a sequence of two papers,^ especially Art. 6 in the second, as a special

case of the theory of microelastic solids. Recapitulations of the theory

based on proper postulates, thermodynamics, and uniqueness theorems

are to be found in later reviews.^

The micromorphic theory— which Professor Rivlin apparently confuses

with the micropolar theory— was first introduced in 1964 ,2 and extended

in a series of papers in subsequent years. We make a brief mention of

one paper^ where the general micromorphic theory of all grades was

derived under postulates and theorems. In these works various volume

and surface averages and moments are introduced through integrals

defined over the surface and volume of the body. The integrands of these

integrals contain piecewise continuous functions (stress, body force,

etc.) which are multiplied by infinitely differentiable functions. The

averages and moments generated by these integrals are continuously dif-

ferentiable at all points of the body at all times, except possible at some

singular surfaces, lines, and points which may be present in the body.

Again I repeat, no differentiation has been carried on functions defined

at discrete points. Careful and precise as they are in their definitions,

these concepts are used for motivational purposes. The balance laws so

motivated systematically may just as well be considered as postulates of

the theory, as practiced in all other branches of continuum mechanics.

The authors of several hundred papers, which have appeared on the sub-

ject since the reception of our work in 1964, seem to have understood

this point very clearly. I believe that any competent scholar who will take

the time to read these papers as well as to examine the figures in the

texts will find no reason to disagree with our theory.

KRONER: I completely agree with Professor Rivlin that we need to be as

exact as possible in mathematics to make the transition from discrete

^ Eringen, A. C, in Nonlinear Theory of Continuous Media (McGraw-Hill, New York, 1962).

^Eringen, A. C, J. Math, and Mech. 15, 909 (1966). Eringen, A. C, in Fracture II,

H. Liebowitz, Ed. (Academic Press, New York, 1968), Chapter 7, expecially Arts. XVII to

XXIII.

^ Eringen, A. C, in Mechanics of Generalized Continua, E. Kroner, Ed., (Springer-Verlag,

Berlin, 1968).
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particles to the continuum. With regard to our work, you may recall from

the previous session that we use the Euler-MacLaurin formula, although

there may be other ways to do it. But, I think this is a crucial point in con-

structing continuum theories.

Now I would like to address a short question to Dr. Fox. Are your parti-

cles atoms or are they little crystal domains?

FOX: They are the same particles that we use throughout continuum

mechanics. I am not at this stage giving any interpretation of them. They

are points within a continuous body and associated with each point I am
taking directors.

KRONER; When you want to apply your theory to physics you must identi-

fy your particles with something physically real, and then you must de-

cide whether your particles are atoms or domains. And, I think you must

consider domains because a single atom has no direction, so your parti-

cles can only be little crystalline domains. Is that true?

FOX: But I'm deriving a continuum theory and it must stand or fall on what

it predicts at a macroscopic level. For instance, in hydrodynamics, one

predicts what happens at a macroscopic level; one predicts flows. In the

same sense I suggest that this theory will predict certain behavior of

crystalline materials at a macroscopic level.

SIMMONS: I think we are uncovering here a fundamental difference in

philosophy between the viewpoint of continuum mechanics and that of

solid state physics.

KRONER: Well, eventually. Dr. Fox, you must construct your constitutive

equations from a knowledge of the constitution of the body. And the

body is made up of atoms.

FOX: No, I am not constructing my constitutive equations from statistical

theories. And my particles are mathematical points, they are not

domains. I model the structure with directors.

KRONER: Well, let's forget this. I would like to make clear why the skew

symmetric stress does not appear in dislocated bodies. Assume particles

which are little crystalline domains, for instance little cubes which build

up a perfect crystal. Now imagine two of these particles to be isolated

from the rest and be rotated through the same angle (fig. la). By this

operation the atomic structure is not disturbed and the state of the

crystal along the interface between the particles is not changed. So there

is no statical response to this kind of deformation and that is why the

skew symmetric part of the ordinary stresses vanishes in dislocation

theory.
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I

1st particle ^\ 2nd particle

interface = slip plane

•i • . .

} St particle I 2 nd particle
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• • •
• • •

particle

particle

(b)

Figure 1. (a) Two adjacent "particles" of a crystalline body before and after a rotation

through the same angle. This kind of rotation impHes the slip of a dislocation along the

interface. It does not change the state of the crystal, (b) Four adjacent "particles" of a

Cosserat type material before and after a rotation through the same angle. This kind of

rotation does change the state of the body.

It does not vanish in Cosserat type theories where one considers

oriented point particles which do not possess a crystaUine structure (fig.

lb). Such bodies could be, for instance, non-primitive crystal lattices

where the atoms in a cell are so tightly bound that the deformation of a

cell can be disregarded whereas the bonds between the cells are weak.

In this example the ceUs are the particles of the Cosserat continuum;

they possess the usual translational and rotational degrees of freedom.

Now rotate these particles through the same angle and the body is in a

different state. So you expect a response.

I call the body described firstly a dislocated body and the other a

Cosserat continuum. In the dislocated body one observes the occurrence

of slip because the above described rotation of the two crystaUine

domains implies the slip of a dislocation along the interface between

them. Slip has no meaning in the usual Cosserat continuum.
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FOX: May I just reply to that statement? I can only repeat that my particles

are not domains, they are points. And on couple stresses, certainly I did

not include in my energy equation possible generalizations which arise

from the inertia associated with the directors or possible higher order

stresses. This can be done. There is no difficulty in principle; I just

omitted them for simplicity.

KRONER: Let me also ask this. You said you make no reference to dif-

ferential geometry. Now, some of the fundamental equations of disloca-

tion theory are the incompatibility equations which are equations of dif-

ferential geometry if you formulate them in the general non-linear way.

Now, if you don't have equations like these, then you can't solve actual

problems with internal stresses. Do some of your equations correspond

to the incompatibility conditions or is your theory still incomplete in this

respect?

FOX: No, it's not incomplete in this respect. What I said was that I could

formulate the theory without using the geometry of higher spaces. You
can put this interpretation on the director theories if you wish: it is there

as an interpretation. All I am saying is that you don't have to start with it

and I don't think it's fundamental to the formulation of the theory.

KRONER: Yes, but I think the dislocation concept is, by definition, a dif-

ferential geometric notion. So, I don't see any point in emphasizing that

you don't need differential geometry. In some way it must be in your for-

mulation.

SIMMONS: May I insert a brief remark here. In a static development done

by Dr. Bullough and myself,^ we used an approach which is effectively

equivalent to that of Dr. Fox, although we have emphasized deformations

throughout, rather than the director concepts. If you do that, you can in-

troduce the idea of a reference connection — the Euclidean connec-

tion—in the undeformed state. When the body is deformed, one can

define the deformation of the connection also. Then the incompatibility

conditions come out merely from the study of the deformed connection

in the deformed state. So it's possible to get the incompatibihty equa-

tions from Dr. Fox's theory— at least in the static situation and, no doubt,

in the dynamic one also.

FOX: Oh, you can do it all right. It's just a matter of looking at the

geometry of the directors. I just don't think this is relevant to producing

the constitutive equations.

^ Bullough, R., and Simmons, J. A., in Physics of Strength and Plasticity, A. Argon, Ed.

(MIT Press. Cambridge, Mass.. 1969) p. 47.
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SIMMONS: I'm not sure exactly what you mean by constitutive equations,

but it's necessary for solving problems, because these provide general-

ized continuity conditions, if you will.

KRONER: I did not want to criticize Dr. Fox's theory: I think it is a beauti-

ful theory. Also it may well work just as well as other theories, or even

better, if one knows the mathematics well enough. Actually, I am
pleased that so many people from continuum mechanics and mathe-

matics are now interested in dislocation theory. Their contributions may,

eventually, help us to solve our problems.

Finally, you have emphasized that Noll had introduced local reference

lattices, or configurations, or whatever. These also appear in papers by

Kondo and by Bilby and coworkers which were published in the early

fifties.
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A theoretical treatment is given of the thermally activated motion of

dislocations in the presence of dislocation barriers with different heights.

The height of a barrier is allowed to depend on an arbitrary number of

characteristic parameters (multiple obstacle spectrum). Under the as-

sumptions which are usually made for the derivation of an Arrhenius

equation for the slip rate a in the case of a uniform array of dislocation

barriers, a is calculated for a multiple spectrum of barriers. It is found that

even under these conditions the validity of an Arrhenius equation « = ^o

exp {—AGIkT) (ao = const., AG = mean free enthalpy of activation) is

preserved. An application of the "spectrum theory" is discussed.

Key words: Arrhenius rate theory; dislocation dynamics; statistical theory of disloca-

tion; thermal acceleration.

I. Introduction

Macroscopic deformation of a crystal is connected with the properties

of the individual glide dislocations by the relation

€ = ^rir)idi= ^rir}ibiPiVi, (1.1)

i i

where e is the macroscopic deformation rate, 6, the strength, p, the

density, and Vi the mean velocity of mobile i-type dislocations. 17, is a

geometrical factor which projects the resolved slip rate

di=b,piVi (1.2)

of i-type dislocations to the direction in which the macroscopic deforma-

tion rate is measured. F, means a relative active slip volume, i.e., the

crystal fraction which is actually deformed by gHding of /-type dislocations.

For sake of simplicity we assume homogeneous deformation {T -,= 1) and

Fundamental Aspects of Dislocation Theory, ,|. A. Simmons. H. de Wit, and H. Biillousli.

Kds. (Nat. Bur. Stand. (U.S.). Si.ce. Publ. 317. II, 1970).
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restrict ourselves to one type of glide dislocations with an 17 /-factor equal

to unity. Then eq (LI) is reduced to

€ = a = bpv. (1.3)

Moreover, we shall consider a steady state of deformation in which

the production rate of mobile dislocations by sources cancels the

rate of annihilation and immobilization of dislocations (p = const). Con-

sequently, the following theory cannot account for phenomena involving

a change of the dislocation density, such as work-hardening. The problem

which is left is the determination of the mean dislocation velocity v from

the properties of individual glide dislocations by means of statistical

methods. In the present paper a solution will be presented for the case

of dislocations moving through a crystal under the action of a locally

constant effective stress r in the presence of thermally surmountable

barriers with different heights. At first, however, a quasi-regular arrange-

ment of uniform dislocation obstacles will be treated, in order to introduce

the most relevant notations.

II. Quasi-Regular Arrangement of Uniform Dislocation Obstacles

A quasi-regular arrangement is defined as an array of obstacles for

which the geometrical activation parameters do not vary from one activa-

tion event to another. Examples for geometrical activation parameters

are the separation / between neighbouring barriers along the dislocation

lines, the distance X covered by a dislocation between subsequent activa-

tion events, and the separation 8 of the obstacle centres from the slip

planes. Even if all obstacles are uniform, the condition for quasi-regularity

can be hardly fulfilled rigorously for /, \, and 6 at the same time. For a

random array there are natural distribution widths of / and X, whereas

the distribution of 8 is determined by the range of the obstacle-dislocation

interaction. In a regular array the condition for quasi-regularity is satisfied

for / and A.; for 8 it will be approximately fulfilled if the obstacle-dislocation

interaction range is small compared with the minimum separation between

the slip planes. Then, only those obstacles act as actual barriers which

lie directly on the slip planes.

Pegel [1] derived a criterion which permits to decide in which cases

quasi-regularity is a good approximation. If x represents an activation

parameter, w(x) its distribution probability, and v{x) the velocity of an

individual dislocation, the mean dislocation velocity ?; as a function of x is

given by
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v'='v(x), if the mean square [x — x)'^ of the distribution width of x is

sufficiently small. Thus, an array of obstacles may be called quasi-regular,

if this condition is fulfilled for the geometrical activation parameters. If

this condition holds for all activation parameters, we are concerned with

a quasi-regular array of uniform obstacles.

Now we proceed to the calculation of v, at first without the restriction

to quasi-regularity and uniformity. — If the mobility of dislocations is

controlled by surmountable local barriers, the mean dislocation velocity

may be written as

v^pX, (2.2)

where A. is the mean value of X and p the mean jump frequency of dis-

locations over barriers.

The individual barriers will be described by waiting times t{P; r, T)

for the glide dislocations:

t{P; T, T)-^ = voiP; T, T) exp [-AG(P;t, T)lkT] (2.3)

(A;= Boltzmann's constant; PoiP; r, T) = attempt frequency of a disloca-

tion for overcoming an obstacle, which is characterized by a set P of

parameters, at the effective stress r and the deformation temperature T;

AG{P; T, T) =free enthalpy which must be supplied by thermal lattice

vibrations, in order to push a dislocation over an obstacle P) . According

to Schock [2] we have

AG{P; T, T) = ^g{P; T, T)-bl{T, T)Ax(P; r, T)t. (2.4)

Herein, A.g(P; r, T) and />/(t, r)Ajc(P; r, T)t mean the work done over

the activation distance Ax{P; r, T) against the dislocation-obstacle

interaction force and by the effective external stress r, respectively

(/^mean value of /). At this point we have assumed that (/—/)2 is suf-

ficiently small, in order to replace AG{1) by AG(/). This condition is

less stringent than the assumption of quasi-regularity, which requires

the smallness of {x — x)- for all geometrical activation parameters.

Within the framework of the string model for a dislocation the attempt

frequency has been calculated [3, 4] to

po(P;t, T) = bvna {P)I2I{t, T), (2.5)

where pd is the Debye frequency and a{P) a numerical factor, which
depends only weakly on the properties P of the obstacles (1.8 < a{P) < 2)

[3]. Therefore, we put approximately

369-713 OL - 71 - Vol U - 23
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v,{P;T.T)^jp-^v,{r.T). (2.6)
/(t, T)

Thus, eq (2.3) is simplified to

^(P;t, T)-^ = v,(r, T) exp [- ^G{P; r, T)lkT]. (2.7)

Hence, an obstacle is characterized completely by its ^G{P; r, T) -value.

In the special case of a quasi-regular array of uniform obstacles, with

which we are mainly concerned in this section, all t(P; r, 7") -values are

identical. This leads to

vir, T) = t{P; T, T)-^ = Po (r, T) exp [-^G{P; r, T)lkT]. (2.8)

Combination of the eqs (1.3), (2.2), (2.6), and (2.8) yields

h = b-'pvo^^j^exp [-AG(P; r, T)lkT]. (2.9)

Conveniently,

X(t, T) ^1{t, T) (2.10)

is assumed. Then we are left with the Arrhenius equation

d = ao exp [-AG(P; r, r)/AT] (2.11)

for the deformation rate a. Therefore, clq means the abbreviation

do^f'pvn. (2.12)

which is a constant.

III. Multiple Spectrum of Dislocation Barriers

III.l. Definitions and assumptions

An array of dislocation obstacles is called a spectrum of barriers if they

differ with respect to their heights for moving dislocations. If the heights

of barriers depend on a set P of parameters, namely on m continuously

varying parameters pi , . . ., p,» and on /i discrete variables , . . ., q„,

we denote such an arrangement a multiple spectrum of barriers. We shall

demonstrate in the following that in the presence of a multiple spectrum
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of barriers the deformation rate a is given by an Arrhenius equation

provided that the subsequent conditions are satisfied:

1. An individual activation event is characterized completely by a

waiting time t{P\ r, T) which is given by an Arrhenius-type eq (2.3).

2. It must be possible to define a mean value / of / for which {I — IY is

sufficiently small, in order to replace AG(/) by AG(/), i.e., eq (2.4) is

assumed to be valid.

3. The attempt frequency does not depend explicitly on P:

voiP: T, T) - i>o(T, T) ^
bvp

/(t, T)

4. X(t, r)-/(T, T).

(2.6)

(2.10)

These assumptions are exactly the same as those which have been made
for the derivation of the Arrhenius eq (2.11) in the case of a quasi-regular

array of uniform obstacles.

III. 2. Historical remarks

Thermally activated motion of dislocations in the presence of a spectrum

of barriers has been treated theoretically by Wyatt [5], Basinski [6], Diehl

and co-workers [7], and Kocks [8].

Wyatt and Basinski assumed the activation events at different obstacles

to be alternative processes. Hence, in order to obtain the mean jump

frequency i>, they added the obstacle-characteristic jump frequencies.

Diehl et al. recognized that the assumption of consecutive activation

events at spatially separated obstacles and thus a summation of obstacle-

characteristic waiting times to a mean waiting time should be a better

approach. Finally, Kocks treated the case in which the flow stress is con-

trolled by two types of barriers by assuming that the dislocations have

to go through both kinds of obstacles at the same time so that the waiting

time is the same for both barriers. This model is far from reality if the

dislocations behave like flexible strings, but it will be a useful description

in cases where the dislocations may be regarded as stiff rods.

Besides the determination of the mean dislocation jump frequency

another problem arises for a spectrum of obstacles, namely the calculation

of the mean effective separation I of obstacles. It has been treated in a

qualitative way for a single spectrum of obstacles by Diehl et al. [7], while

Kocks [8] was concerned with the special case of two types of obstacles

with 1 1 > 1-2.

In the subsequent sections we shall present a general theory which

permits the calculation of v (sect. III.3) and / (sect. III.4) for a multiple

spectrum of barriers provided that the conditions compiled in section III.l

are satisfied.
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III. 3. Mean dislocation jump frequency j>(t, T)

A. Distinction Between "Soft" and "Hard" Obstacles

In the following it turns out to be useful to distinguish between "soft"

and "hard" obstacles which are defined by

t(P; T, T}-^^p{t, T), (3.1)

respectively. For "intermediate" obstacles we may put

t{P: T, T)-^ = p{t. T). (3.2)

Under the assumptions 1 to 4 in section III.l, eq (3.2) is equivalent to

AG(P; T, T) = kT\n ^ (3.3)
a

with

dQ=b'-pVD. (3.4)

Correspondingly, the conditions (3.1) for soft and hard obstacles are

reformulated:

AG(P; T, T) ^kT\n — . (3.5)
a

Now we shall have a look at the physical meaning of the distinction

between soft and hard obstacles. In a steady state of plastic flow, seg-

ments of a mobile dislocation which are stopped at hard obstacles lag

behind the mean dislocation front, while segments at soft obstacles are

ahead of it (fig. 1). Thus overcoming of a hard obstacle is an alternative

process to the passing of spatially neighbouring barriers. Surmounting of
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a group of soft obstacles, however, is mainly controlled by the relatively

hardest obstacles of the group, since the activation events within the group

are consecutive processes. Therefore, the mean waiting time tg (r, T)

at a "soft" group has to be calculated by a summation over the waiting

times characterizing the individual events within the group, v (r, T)

itself is obtained by addition of the ^,s(t, r)~i-values of the soft groups and

the t{P; T, r)~i-values of the various hard obstacles.

B. Mean Waiting Time ^,s(t, T) at a Soft Group

According to the qualitative considerations in the preceding section,

the mean waiting time at a soft group is given by

S'-'Sf-'-f^ t{P;T.T)N{P;T.T)dp,... dp,

Sf--- N{P;T,T)dpr. . .dp,

(3.6)

where N{P; T,T)dpi . . . is the effective differential obstacle density

per unit area of the slip planes in the intervals (pi, p\-\-dp\), . . ., {pm->

p,n + dpm) of the continuous parameters p, and at the values ^i, . . q,,

of the discrete variables qj. In eq (3.6) it is assumed that the "hardness"

^G{P; T, T) of the obstacles increases monotonously with increasing

values of pm- The upper limit p* of the integral over pm is the solution

of eq (3.3) for p,„ and therefore depends on pi, . . ., pm-i, qu . . q„, r,

and T. Thus, the cutting-off of the integration over pm at Pm = p% ensures

that only soft obstacles are taken into account in the calculation of 4(t, T).

C. Calculation of v (t, T)

If the effective integral densities per unit area of the slip planes for

soft obstacles, hard obstacles, and soft groups are

yv.s.(T, T) = ^- - - yv(P;T, T)dp, . . . dp,n. (3.7)

N,{t.T) = ^- • '^[^--'{^ N{P;T,T)dp^ . . . dp,n, (3.8)

(in

and

NAr,T)-N„(r,T)
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respectively. p{t, T) may be expressed as

1

v{t. T) =
Gs{t.T)+N,{t.T)

f.(T, T)-^Gs{t, T)

t{P; 7, r)-W(P; T, r)^fpi . . .dp, (3.10)

By these equations the calculation of p{t, T) is reduced to a computation

oi N{P; T, T)dpi . . . ^ipm, which is performed in the subsequent section.

III. 4. Mean effective separation 1{t,T) between obstacles

The relation between /(r, T) and the total effective integral density

7V(t, T) =Ns{t. T) + A^„.(t, T) (3.11)

of obstacles is rather complex even in the case of uniform obstacles

[9, 10, 11, 12]. As discussed elsewhere [13], for a multiple spectrum of

obstacles it is completely hopeless neither to derive an exact analytical

expression connecting /(r, 7') and N{t, T) nor to give an approximate

relation which is better than the conveniently used formula

/(t, T) - 1/VA^(t, T) . (3.12)

Therefore, for applications of the theory the use of eq (3.12) is proposed.

It has been successfully applied to an example, which will be discussed

in section IV. It should be emphasized, however, that the validity of an

Arrhenius equation for the deformation rate a, as demonstrated in the

following section, does not depend on the assumption made about the

relation between /(r, T) and7V(7, 7").

By the eqs (3.12), (3.7), and (3.8) the calculation of /(r, T) is reduced

to that of the effective differential obstacle density A^(P; r, T)dpi . . . dpm-

If D{P)dp\ . . . dpm denotes the actual differential obstacle density

and if /<(P; r, 7") is the probability that a potential obstacle of the type

P is not transparent for dislocations moving at the effective stress r and

the temperature T, we may put

N{P:T,T)dp^ . . . dp,n=^2K{P:r,T)D{P)dp, . . . dp„r-

(3.13)
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The factor of two accounts for the fact that obstacles are located on both

sides of the slip planes. The nontransparency factor k{P; t, T) is simply

given by

k{P; t, T)

r AG{P; T, T)

J w=0

J M= 0

1 — exp
kT

(3.14)

for AG(P;t, r)^0. For AG(P;T,r)<0 k(P-.t,T) has to be taken

equal to zero.

III. 5. Validity of the Arrhenius equation

Since the attempt frequency vo(t^ T) does not depend explicitly on

the properties P of the obstacles (see eq (2.6)), v{t, T) may be brought

into the form

v{t, T) = vq{t, T) exp
AG (t, T)

kT
(3.15)

ith

exp
AG (t, T)

kT

t[{T, T)-'Gs(t, T)+h{T, T)

G.s.(t, T)+N,{t. T)

XN{P; T, T) dpi . . . dpni,

(3.16)

AG(P;r,T)

kT

(3.17)

h{T,T) = ^. • - 2 f
- • • exp[-AG(P;T,

0, (/„ J Pt=0 Jp,„_,=0 J p,„=p*

T)/kT]

X/V(P;t, T) dpi . . . dp> (3.18)

Under the assumptions of section III.l a comparison between the eqs (1.3),

(2.2), and (3.15) yields

a = ao exp
AG(t, T)

kT
(3.19)



1074 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

where do is the constant defined by (3.4). Hence, even in the presence

of a mukiple spectrum of dislocation obstacles an Arrhenius equation

for the deformation rate a remains valid. It should be noted that the mean
free enthalpy AG(t, T) of activation which enters this equation is just

equal to AG{P; r, T) of those obstacles which were defined as "inter-

mediate" ones at these r, T-values (compare eq (3.19) to (3.3)).

IV. Application of the Spectrum Theory

We shall not enter a discussion of the variety of examples to which

the spectrum theory is applicable in principle, but shall report on a

problem to which it has been applied successfully. This is plastic flow

of neutron-irradiated copper single crystals [13, 14].

By means of stereo-electron-microscopy the dislocation barriers in

copper after neutron irradiation at 80 °C were found to be preferentially

vacancy dislocation loops of the Frank type on {111} -planes [15]. These

loops represent a triple spectrum of barriers, which is characterized by

the loop radius r, the distance 8 of the centre of a loop from the slip

planes, and the discrete orientation parameter i which distinguishes

between the four different types of {111} -planes on which a loop may
be located. Obviously, the differential density Z)(r, 6, i)drdd of the loops

does not depend on 6 and i. However, it is a function of the loop radius r,

which has been determined by means of electron microscopy on neutron-

irradiated copper foils [16, 17].

Using the D{r, 8, i)drd8-\aw obtained in this way and AG(r, S, i; r, T)-

values calculated by Saxlova [18], a(T, T) has been computed from experi-

mental T, T-values [14] according to the spectrum theory [19]. In figure 2

the results are shown for a crystal which has been irradiated with 4.10^^

neutrons/cm- (neutron energy > 0.1 MeV, e= 3.10"^5"^). The variation

of d/do with the deformation temperature for a constant e-value is due to

the inhomogeneity of the deformation process: A neutron-irradiated copper

single crystal shows the expansion of a Liiders band along the crystal

length during deformation. This may be described mathematically by

eq (1.1) speciaHzed to one type of mobile dislocations,

e = Tvd, (4.1)

with a temperature-dependent relative active slip volume T{T), which

obviously leads to a temperature dependence of d{T) for a constant

macroscopic deformation rate e.

From the «/do-values of figure 2 the mean free enthalpy AG of activation

was calculated as a function of the deformation temperature with the aid

of eq (3.19) (solid curve through the open circles in fig. 3). On the other,

the mean enthalpy AH of activation could be determined experimentally
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Figure 2. Logarithm of a/ao versus deformation temperature Tfor 6= 3.10~^5"^ calculated

by means of the spectrum theory from the temperature dependence of the critical shear

stress of copper single crystals after neutron-irradiation [14].

from change-in-strain-rate and change-in-temperature tests [14] (full

circles in fig. 3). Since the contribution — TAS by the mean entropy AS of

activation is small compared to Ai7 (AS= (5 ±4)/:) [13], the "theoretical"

AG-values may be directly compared to the "experimental" A//-values

(fig. 3). The excellent agreement appears to be particularly noteworthy,

since no adjustable parameter enters into the calculations.

Figure 3. Comparison of the "theoretical" AG-T curve obtained from data in figure 2 by

means of eq (3.19) (solid curve through the open circles) with "experimental" A^-values

determined from change-in-strain-rate and change-in-temperature tests [14J (full circles).



1076 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

V. Acknowledgements

Stimulating discussions with Professor Dr. A. Seeger and the close

cooperation with Dr. M. Riihle and Mrs. M. Saxlova are gratefully acknowl-

edged. Furthermore, the author would like to thank the Deutsche

Forschungsgemeinschaft for financial support.

VI. References

[1] Pegel, B., in Realstruktur und Eigenschaften von Reinststoffen 3, E. Rexer, Ed.,

(Akademie-Verlag, Berlin 1967) p. 895.

[2] Schock, G., phys. stat. sol. 8, 499 (1965).

[3] Granato, A. V., LUcke, K., Schlipf, J., and Teutonico, L. J., J. Appl. Phys. 35, 2732

(1964).

[4] Frank, W., Z. Naturforschg. 22a, 365 (1967).

[5] Wyatt, O. H., Proc. Phys. Soc. B66, 459 (1953).

[6] Basinski, Z. S., Phil. Mag. 4, 393 (1959).

[7] Diehl, J., Seidel, G. P., and Niemann, L., phys. stat. sol. 12, 405 (1965).

[8] Kocks, U. F., Trans. Japan Inst. Metals (Supplement) 9, 1 (1968).

[9] Friedel, J., Les Dislocations, Gauthier-Villars, Paris 1956, p. 205.

[10] Labusch, R., Z. Physik 167, 452 (1962).

[11] Foreman, A. J. E., and Makin, M. J., Canad. J. Phys. 45, 511 (1967).

[12] Kocks, U. F., Canad. J. Phys. 45, 737 (1967).

[13] Frank, W., Ruhle, M., and Saxlova, M., phys. stat. sol. 26, 671 (1968).

[14] Ruhle, M., phys. stat. sol. 26, 661 (1968).

[15] RUhle, M., phys. stat. sol. 19, 263 (1967).

[16] Scheidler, G. P., Makin, M. J., Minter, F. J., and Schilhng, W. F., in The Nature of

Small Defect Clusters (Report of a Consultants Symposium, A.E.R.E., Harwell), M. J.

Makin, Ed. (H.M.S.O., London, 1966) p. 405.

[17] Ruhle, M., phys. stat. sol. 19, 279 (1967).

nSI Saxlova. M., Czech. J. Phys. B19, 610 (1969).

[19] Frank, W., phys. stat. sol. 26, 197 (1968).



FLOW AND THE ARRHENIUS EQUATION
IN THE STATISTICAL FRAMEWORK

U. F. Kocks

Materials Science Division

Argonne National Laboratory

Argonne, Illinois 60439

The rate equation of plastic flow and a general work-hardening law are

combined into a single equation of flow. It degenerates into the Arrhenius

law only under certain specified conditions. A single Arrhenius term with

temperature insensitive pre-exponential (and entropy) terms adequately

describes the rate dependence of dislocation motion through a slip plane

studded with obstacles of any spectrum of strengths and spacings. In this

case, the mobile dislocation density in the slip plane generally does not

enter the flow equation; only the density of slip planes does.

Key words: Arrhenius law; mechanical properties; precipitation hardening; thermal

activation.

I. The General Equation of Flow

The rate equation of plastic flow, linking strain rate or dislocation

velocity to stress and structure, and the work-hardening law, linking flow

stress increments to strain increments, are often treated independently

of each other. They may be combined into a single equation of flow, with

a gain in generality especially for applications to large plastic strains. The

general equation of flow to be derived below is similar to a "mechanical

equation of state" except that the strain enters only in differential form,

and the (dislocation) structure enters explicitly.

The rate determining factor in plastic flow problems is generally thermal

activation rather than, say, phonon drag. Dislocation motion then consists

of spurts between positions at which some waiting time is spent. The
spurts may be, for example, from one Peierls valley to the next, or from

one series of obstacles to the next, or from a pinned dislocation source

to the surface. If there are potentially mobile segments per unit volume

(i.e., those waiting plus those in transit) and a fraction dP of these actually

gets free for some reason, they can clear a number of further obstacles

without further cause and sweep out an average area a in the process.

Fundamental Asijiects of Dislocation Tlit-ory. j. A. Simmons, R. de Wit. and R. BuUoufih.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Puhl. 317. II, 1970).
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For time increments larger than the time of flight between waiting

positions [1], the macroscopic shear rate is then ^ [2-5]

dyldt = baN dPIdt (1)

(b: Burgers vector). The fraction dP may become unstable not only

through thermal activation after an average waiting time tu ^ but also

through an increase da in applied stress:

dP = dtltw+ P dcT— hdp. (2)

Equation (2) allows for a decrease in the activation probability through

work hardening, which we describe by an increase dp in the density of

those dislocations that influence the flow stress. It may increase through

storage of some mobile dislocation lengths after they have traversed a

"mean free path" [2, 9] L, and it may decrease through (stress aided)

thermal recovery at a rate r [10, 5]:

dp=YT dy— r dt (3)
oL

For the average inverse waiting time, we explicitly assume an Arrhenius

term, as shall be justified in the next section. Combining eqs (1) through

(3), we thus get the general equation of flow: ^

y=6aA^|i^*exp {-^^ + p (cr- Oy)
|

where the work-hardening rate

(4)

^=-(A-i)- (5)p\Lb y

N, a, p*, H*, p, 6, A, L, and r may all depend on the applied stress as

well as on the structure and on the temperature. We again emphasize

that eq (4) holds only after transient times of the order of the spurt length.

' For an application to linear problems such as etch pit propagation, one may prefer to

replace (aN) by (px), where p is the total length of essentially straight mobile dislocations

and X the average distance they move forward per spurt. One may then interpret {x dPjdt)

as the average dislocation velocity, or conversely (pdPldt) as the dislocation generation

rate. This distinction [6, 7] is arbitrary for spurt-like motion [8].

^ By y we mean the plastic shear rate only; to include elastic (and machine) strains, a term

cr/G has to be added to the right-hand side. To obtain the relevant shear component of the

tensorial strain, the entire equation has to be divided by 2.
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Equation (4) shows that the Arrhenius equation for plastic flow holds

only if

&=ey. (6)

This is the equation of the stress strain curve after the initial transition

region: The stress is continuously raised to compensate for structural

changes. Thus the Arrhenius law holds for the asymptotic flow stress.

The Arrhenius equation holds in a creep experiment {& — 0) only if

0=0, i.e., when there is no structural change, as in steady state creep. In

transient creep, the term 6y is finite (although it is often negligible with

respect to the Arrhenius term). Similarly, stress relaxation experiments

involve all three terms in eq (4).

In a strain rate change experiment, the Arrhenius law holds again for

the asymptotic flow stress as mentioned before. The existence of transients

such as yield drops suggests slow movement of dislocations between wait-

ing positions. This may be either due to a high drag or lattice friction stress,

when one considers spurt-like activation over discrete obstacles; or it may
be due to a quasi-viscous propagation through obstacles, but spurt-like

generation at sources.

One may be tempted to apply the Arrhenius equation also at the top

of the yield point (or properly where eq (6) is fulfilled). However, this

would presuppose that the velocity of dislocations in transit is itself con-

trolled by thermal activation, such as in the quasi-viscous model discussed

above, and that elastic effects of machine and specimen may be neglected.

The latter is grossly untrue during transients. The situation gets worse if

one back-extrapolates the transient itself to zero strain [11].

II. Statistics and Geometry in the Slip Plane

Detailed models of spurt-like slip have been developed for the case in

which the flow stress is controlled by the difficulty of propagation through

a slip plane studded with point-like obstacles, i.e., obstacles that are of

limited extent in both dimensions in the plane. Such obstacles may vary

in strength, spacing, and angular arrangement with respect to each other.

The waiting time for thermal activation of a dislocation segment at an

obstacle depends on all of these parameters. While each one of these

waiting times may be described by an Arrhenius term, the macroscopic

strain rate depends on some average of these, and the question is, what

average?

For the simple case of a square lattice of obstacles of varying strength,

Frank [12] has recently written out the averaging procedure in elaborate
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form, considering soft spots in series and hard spots in parallel^ The case

of identical obstacles in random spacial arrangement had been treated

analytically by Kocks [2-5] and numerically by Foreman and Makin

ri4, 151.

Formally, the two cases may be transformed into each other by a simple

strength-to-inverse-spacing transformation. However, some of the geo-

metrical implications may be easier to see, and were derived, in Kocks's

model.

The important observation is that, independent of the temperature,

dislocation loops sweeping over the same area of the slip plane have to

overcome the same set of obstacles in the same sequence: they pass

through weak obstacles in series until they get to a critical "gateway,"

and aU "gateways" in the slip plane have to be overcome in parallel before

the entire slip plane has been swept out. For this reason, the weight

attributable to the various obstacles in the averaging procedure does

not depend on temperature and, as a consequence, neither does the

configurational entropy of activation (into which Frank [12] has put the

effect); there is no "thermal front" [16]. Only when the pre-exponential

factor in the Arrhenius equation, including the activation entropy, depends

on temperature to a degree much smaller than that described by the

exponential does a phenomenological description of rate processes in

terms of an Arrhenius law make any sense.

There is one case in which the critical path, and therefore the activation

entropy, can change with temperature; namely, when the activation

depth differs widely from obstacle to obstacle, so that those obstacles

that are the harder ones at low temperature may become the weaker

ones at high temperature. As Diehl et al. [17] have shown, this leads to

an inverse square-root dependence of the pre-exponential factor on

temperature, in first approximation.^

The average waiting time per spurt, which consists of the sum of the

waiting times at all "soft" obstacles and at the critical one, may be

approximated by the waiting time at the critical obstacle only [4, 5]. All

soft obstacles are overcome so much faster, particularly because of the

"zipper" effect. Thus, a single Arrhenius term adequately describes

activation in eq (4).

In a specific case, Kocks [4, 5] has shown that the waiting times at

different critical obstacles along the same dislocation line arrange them-

' He neglects the interaction between various obstacles along the same dislocation line,

which makes the waiting time at one obstacle depend on whether the dislocation has already

overcome the next one ("zipper effect" [13]).

^ Their specific reason for assuming such an inversion, which was not based on a spectrum

of obstacle depths, was, however erroneous [3, 4].
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selves to be equal at the flow stress; this applies when many weak obstacles

and few strong ones are both randomly distributed in the slip plane.

III. The Number of Mobile Segments

Another consequence of the geometric conditions in the slip plane is

that, at least in many cases, the number of mobile dislocations enters as

an independent parameter only through the slip plane spacing (or the

"active glide volume" [18]). This may be seen by separating the volume

density of mobile segments into an area density Np on the slip plane

and a slip plane density l/c?:

N= Np/d (7)

and then considering the product (aNp) which enters into the general

equation of flow (4). This product must be a constant of order 1 if the whole

slip plane has to be swept out, and that was shown to be necessary at the

flow stress [2]: otherwise back stresses will build up that prevent any

further flow. If there were just one source per slip plane, it would have to

cover the entire slip plane. If there are Np sources, each has to cover an

area roughly equal to the average area per source, so that dislocations of

opposite sign can annihilate each other or form low-stress arrangements.

The pre-exponential term then becomes

baN=b/d. (8)

Dislocations on different slip planes are truly independent of each other.

The strain rate contributions from different slip planes are additive, and

a "thermal front" may develop. Whether a description of macroscopic

rate processes by the Arrhenius equation is then still helpful, can only

be decided by experiments that do not presume a temperature independent

pre-exponential.
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A. J. E. Foreman

A.E.R.E., Harwell, Didcot, England

and

P. B. Hirsch and F. J. Humphreys

Department ofMetallurgy

University ofOxford

England

The motion of a dislocation through random arrays of impenetrable

point and parallel line obstacles is considered. For impenetrable point ob-

stacles the difference in line tension for edges and screws, and the ellipti-

cal equilibrium shape of the bowing-out loop are taken into account, and

the yield stress for screws and edges is found to be the same. The results

of a calculation of the effect of interaction between neighboring segments

of the dislocation on the critical breaking angle and on the yield stress are

presented. Computer calculations on the motion of dislocations through

random arrays of parallel line obstacles show that the dislocations move
by the generation and motion of large "kinks." The yield stress is found to

increase approximately linearly with the obstacle length. These calcula-

tions are relevant to and are compared with the hardening in the early

stages of the work hardening curve of dispersion hardened alloys contain-

ing small particles, in which rows of prismatic loops are formed at the par-

ticles, which act as linear obstacles to the gliding dislocations.

Key words: Computer simulation; dislocation motion; mechanical properties; pre-

cipitation hardening.

I. Introduction

Foreman and Makin [1] and Kocks [2] have considered the problem of

the flow stress for a dislocation passing through a random array of im-

Fundamental Aspects of DisK.caliipn 'riicorv. ,|. A. ,Simm..ns. K. de Wit. and R. Hulloiif;!)

Eds. (Nat. Bur. .Stand. iV.S.). S\n-c. Puhl. Ml. II, 1970).
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penetrable point obstacles on a slip plane assuming that the line tension

is independent of dislocation character, and that the dislocations bow out

into circular arcs. It is found that the yield stress r is related to the line

tension T and the mean planar obstacle spacing Ds{Ds= {l/Ns) ^'-) by the

relation

2T

where b is the Burgers vector and ^ is a constant (the statistical factor).

If the assumption is made that dislocations pass through the obstacle

when the breaking angle ((/)) between the two arms of the dislocation at

the obstacle is zero then k = 0.8 and 0.842 on the two treatments

respectively.

Equation (1) has been applied to the yield stress of dispersion hardened

materials by Ashby [3].

It has been suggested that since the line tension of the edges and screws

are different, the yield stress for these two types of dislocations will differ

by a factor equal to the ratio of the line tensions, that consequently edge

dislocations will move more easily, and that ribbon slip will be produced

(Ashby [4], Kocks [5]).

However in this argument the noncircular shape of the bowing dis-

location loop is not taken into account. In this paper we shall consider

two problems related to the passage of dislocations through random

arrays of impenetrable point obstacles.

(1) The effect of the shape of the loop if the dependence of line tension

on dislocation character is taken into account.

(2) The effect of the interaction between neighbouring segments of

the dislocations on the critical breaking angle and on the yield stress.

After small deformations dislocations passing through dispersion

hardened alloys containing impenetrable particles generate rows of

prismatic loops behind these particles by a process of cross-slip (Hirsch

[6], Humphreys and Martin [7], Hirsch and Humphreys [8]). Screw dis-

locations interact with these rows of loops, forming helices which act

as parallel line obstacles. The second part of this paper presents com-

puter calculations on the movement of dislocations through arrays of

parallel line obstacles, as a function of length of obstacle and breaking

angle.
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II. Movement of Dislocation Through Random Arrays of Point

Obstacles

II. 1. Effect of dependence of line tension on dislocation

character

If this factor is taken into account, the shape of the noncircular loop

must also be considered.

To a first approximation the equilibrium shape of a bowed out loop is

eUiptical (deWit and Koehler [9]).

For an elliptical loop the critical configuration of the dislocations

passing through a random array of point obstacles can be obtained from

that for circular loops by a suitable shear transformation, which transforms

the circles into the appropriate ellipses, and the lattice into another

random lattice with the same density of points. It follows that the sta-

tistical factor for ellipses is the same as for circular loops of the same area.

The major (screw \s) and minor (edge \e) axes of the ellipse are related

to the line energies of screw and edge dislocations (Eg, Ee) by

(deWit and Koehler [9]), and for isotropic elasticity

where v is Poisson's ratio. This means that the average spacing between

obstacles along the screw is larger than along the edge direction by the

factors given in eqs (2) or (3). Furthermore, since the circular and elliptical

loops (related by shear) have the same area, ks^E=^~ where X is the

diameter of the equivalent circle.

A. is the effective spacing appropriate to circular loops; i.e., in the nota-

tion of equation (1) k= Dslk.

The yield stress r is given by

(3)

2E,J2Ee_ 2

bkE bks bk
VE^E=k,2

Ve^e
bDs (4)

It is clear therefore that there is only one yield stress for dislocations pass-

ing through a random lattice of point obstacles, that the yield stress for

edges and screws are equal, and that "ribbon slip" does not occur.
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This result holds in general for elliptical loops, irrespective of whether
the ellipticity is due to the dependence of line tension on dislocation

character, elastic anisotropy, or interaction between neighbouring dis-

location segments; or stating the result in another way, if dislocation

interaction results in loops becoming elliptical the yield stress is given by

(4), where Eg, Ee are the appropriate hne energies. The yield stresses of

dispersion hardened crystals are in reasonable agreement with (4) (Ebel-

ing and Ashby [10], Jones [11], Hirsch and Humphreys [8], Ashby [12]).

It should be noted that the result for a random lattice that the yield

stresses for screws and edges are equal holds more generally for loop

shapes which can be derived by shear from loops with four fold symmetry.

However in the more general case the statistical factor wiU have a

different value.

II. 2. Interaction of Dislocation Segments

Ashby [3] has pointed out that when considering the by-passing of

particles by dislocations, the interaction between the arms on opposite

sides of the particle should be taken into account. As a first approxima-

tion this interaction is taken into account by considering the line tension

to be that of a dipole of spacing equal to the particle diameter.

However, it is inevitable that as a result of this interaction, the critical

breaking angle at which the dislocation loop becomes unstable is greater

than zero. This problem has been considered for the case of a screw dis-

location cutting a forest dislocation by Foreman [13], and Ashby [12]

has considered qualitatively its relevance to the by-passing of a particle.

In principle, in order to determine the yield stress, the interaction of

the various segments of dislocations passing through a random lattice

must be taken into account: such a calculation has not been attempted.

Instead, in order to obtain an estimate of the importance of the interaction

both on the yield stress and critical breaking angle the model shown in

figure 1 has been adopted.

The interaction of two neighbouring loops bowing out around a particle

of diameter x has been fully taken into account within the framework of

isotropic elasticity, following the method of Foreman [13]. The pinning

points are taken along the screw direction, and the particles are spaced

at a distance (L + jc). In the calculations the equilibrium configuration

of the loops is determined for a given stress r, each element being in

equilibrium under the combined forces of the applied stress and the self

stress, including the interaction. Detailed interactions with the particle

however are not taken into account.
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° ,0* ,0=* 10* ,0*

SEGMENT LENGTH L (UNITS OF rj

Figure 1. Stress to bow a pair of screw dislocation segments at a finite obstacle.

Above a particular value of stress, and inclination 0, the loop becomes

unstable, no solution being possible, and this corresponds to the critical

by-passing configuration, and the yield stress. (The breaking angle
(f)

is

given by (tt — 2^).)

Figure 1 shows the yield stress as a function of L for three values of

x/L typical of dispersion hardened alloys. The curves show that the yield

stress is in fact rather greater than that predicted by Ashby's [3] formula;

for values typical of dispersion hardened alloys, say L=lO'^ro (where ro

is the cutoff radius) and x/L = 0.1, the yield stress is larger by about 10

percent. At the same time the critical values of 6 are considerably less

than 90°; table 1 gives typical values; the instabiHty occurs at angles of

d varying between about 65° and 85° for the cases considered.
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Table 1. Inclination (d) of critical segment

cIL

LIro

102 103 104 105

0.05 65° 69° 73° 74°

0.10 74° 75° 78° 80°

0.20 87° 84° 86° 84°

In these results, 6 is the incHnation of the last stable segment obtained,

and the values in table 1 show some scatter due to the finite stress incre-

ments used. Because the statistical factor k is dependent on 6 (ref [1]

fig. 3) the raising of the critical stress predicted by figure 2 will be partly

compensated by a lowering of k in the final expression for the Orowan
stress.

III. Movement of Dislocations Through Random Arrays of

Parallel Line Obstacles

After small deformations, dislocations moving through alloys containing

small impenetrable particles generate rows of prismatic loops parallel

to the primary Burgers vector, behind the particles (Humphreys and

Martin [7], Hirsch and Humphreys [8]).

Figure 2 shows an example of such rows of loops in a single crystal

of copper containing alumina particles, deformed at 77 K and observed by

electron microscopy at room temperature. Screw dislocations interact

with the rows of loops forming helices (A in fig. 2).

It is thought that the helix will compress like a spring as a result of the

bowing out of a free length of screw (see fig. 3). However, when the

pitch of the helix becomes of the order of the diameter, the interaction

between the turns rises rapidly (Hirth and Lothe [14]) and the spring

compresses no further. The dislocation then bows out through the gap

until at a critical stress it becomes unstable, and the particle and the

loops therefore act effectively as parallel linear obstacles.

Edge dislocations on the same slip plane as one of the sides of the loop

also repel the loops and force them together to a critical spacing which

will again be of the order of the loop diameter. The edge dislocations must

therefore bow out between the rows of loops which act again as parallel

linear obstacles.
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Figure 2. Parallel linear obstacles consistin<!; of precipitates with rows of primary pris-

matic dislocation loops in a CU-AI2O3 crystal deformed at 77 K to a strain of 0.15 (section
parallel to primary slip plane (111)).
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HELIX

(C)

Figure 3. The interaction of a screw dislocation with a row of prismatic loops to form a

helix.

The motion of screw dislocations through such an array has been

described quaHtatively elsewhere (Hirsch and Humphreys [8]), and the

dislocation effectively moves by the generation and propagation of a super

double kink between the rows (fig. 4).

Computer calculations have now been carried out on an IBM 360/65

computer for the movement of dislocations through random arrays of

linear obstacles of various lengths, represented by closely spaced points.

It was found that a spacing of these points of DsllO was sufficiently small

to simulate a linear obstacle for the range of stresses encountered.

In order to avoid the clustering of obstacles which is found in a truly

random array and which does not occur in a real precipitation hardened

system, obstacles which were closer than Z)s/2 were excluded.

Figures 5a and 5b show critical configurations for screws in two such

arrays, assuming a breaking angle of zero. It is clear that for the longer

obstacles the screws tend to remain straighter, and propagate indeed by

the generation and movement of kinks.
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D

Figure 4. Formation and propagation of an edge kink.

Figure 6 shows part of the configuration for the case when the breaking

angle for the obstacle is 90°, except for the "particle" at one end at which

the breaking angle is zero. This figure shows a dislocation passing through

the obstacle at A; examples of such configurations in practice are seen

in figure 7, and also in Hirsch and Humphreys [8] figure 9.

It is assumed that the yield stress is reached when a screw dislocation

starting at the bottom of the diagram reaches the top. Figure 8 shows the

yield stress as a function of obstacle length(s) for three cases corresponding

to breaking angle:

(a) zero

(b) 90°

(c) 90° except at one end where there is a "hard" particle.^

' Similar calculations for a completely random array showed values lower by 5 percent

to 10 percent.



1092 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Figure 5(a). Diagram obtained directly from the computer by a Stromberg-Carlson 4060

graph plotter for the movement of a "screw" dislocation through an array of hnear obstacles

of length s. The dislocation moves from the bottom of the array and its position is shown

for successive stress increments. The straight parts of the dislocation at the top are

nonequilibrium positions which occurred when the dislocation broke out of the top of

the array. Infinitely hard obstacles s = OADg.

Curves (a), (b) are linear in 5, curve (c) is linear except for a region for

small s.

For impenetrable linear obstacles the yield stress r is

To is the yield stress for point obstacles

T is the line tension

Ds is the mean planar spacing of the obstacles.

The slopes of the other curves are somewhat smaller.
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Figure 5(b). Diagram obtained directly from the computer by a Stromberg-Carlson 4060

graft plotter for the movement of a "screw" dislocation through an array of linear obstacles

of length s. The dislocation moves from the bottom of the array and its position is shown

for successive stress increments. The straight parts of the dislocation at the top are non-

equilibrium positions which occured when the dislocation broke out of the top of the

array. Infinitely hard obstacles s = 2Ds.

An approximate calculation based on the idea that kink generation is

the critical step, gave a Hnear variation with small s/Dg with a smaller

slope (see Hirsch and Humphreys [8]). If kink movement is the critical

step, it is easily shown that for long obstacles, assuming zero breaking

angle,

27^5

which agrees with equation (5) for large values of s/Ds.

Similar calculations were carried out for edge dislocations passing

through the array (fig. 9). It is found that ribbons of edge dislocation can

find easy paths through the lattice but that these generally terminate after

some distance, which may however by of the order of the size of the array.
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Figure 7. As figure 2, showing a similar configuration to figure 6.
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Figures. The stress to move a screw dislocation with Hne tension through an

array of parallel hnear obstacles as a function of obstacle length (s).

In effect this means that the flow stress (as defined by the stress at which

the edge dislocation crosses the array) is lower than for screws.

However the total area of slip plane swept out in this case is very small,

and macroscopic slip can not be said to have occurred; and thus it appears

that our model is too small. Calculations with different sized arrays sug-

gest that as the size is increased, so the yield stress approaches that for

screws.

Thus if we consider a dislocation loop expanding in this array, it will

be elongated considerably in the screw direction, but the macroscopic

flow stress will be that as calculated in our array for screws. Thus in

contrast to an array of point obstacles, a type of ribbon shp will occur for

a set of parallel linear obstacles.
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Figure 9. Computer diagram for the movement of an edge dislocation through an obstacle

array. Infinitely hard obstacles, s = 2Ds.

An attempt has been made to correlate the computer resuhs with a

real metal. Single crystals of copper containing a dispersion of AI2O3

particles of diameter ~ 500 A were deformed into stage I (see fig. 2) at

77 K, and the flow stress at a given strain was measured and compared

with the microstructure of that specimen. Such an alloy shows con-

siderable recovery (Jones [11], Hirsch and Humphreys [8]) and up to

60 percent of the work hardening may be lost if the crystal is warmed
up to room temperature. Thus the observed microstructure corresponds

to the recovered flow stress, and it was this parameter which was meas-

ured. The results are shown in figure 10 (open circles). However the

obstacles will expand when the stress is removed, and we will observe a

longer obstacle length than the true one. In order to correct for this, the

number of loops at the obstacles was counted, and a new obstacle length

was calculated assuming that the loops under stress could approach to a

diameter (full circles).

These results indicate an agreement with the computer calculation,

and with the evidence that the obstacles are cut, e.g., figure 7 and reference

[8] figure 9, suggest that this type of crystal shows the behaviour of the

middle curve in figure 8, i.e., hard particles and soft loops.
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Figure 10. Experimental points for a CU-AI2O3 crystal, compared with the computed

results of figure 8.

The application of this type of analysis to the prediction of a stress-

strain curve is complicated as it will depend on how the loops are dis-

tributed with strain. There is evidence, see [8], that all the loops are not

in the rows, but that some are swept away, thus reducing the build up of

the linear obstacles to below that predicted by a simple model.

IV. Conclusions

(1) For a random array of infinitely hard point obstacles there is

only one yield stress for both edges and screws, and "Ribbon Slip" does

not occur.

(2) Computer calculations on the bowing of pairs of interacting disloca-

tion segments separated by a "particle," show that the critical by-pass

stress is a little greater than that calculated by Ashby [3] and the breaking

angle may be considerably greater than zero.
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(3) Computer calculations on the movement of a dislocation through an

array of linear obstacles parallel to the screw direction show that as

the obstacle length increases, the dislocation moves by the generation

and propagation of edge kinks, and a type of ribbon slip occurs.

The hardening increases linearly with obstacle length.

(4) Experimental results on a dispersion-hardened copper alloy show

a satisfactory agreement with the computer calculations.
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STRAIN RATES IN DISLOCATION DYNAMICS
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Since the success by Johnston and Oilman in relating yield phenomena

in LiF to direct measurements of dislocation velocities and densities, the

Abv expression for the strain rate has been used almost exclusively,

where A is the mobile dislocation density, b the Burgers vector, and v is

the average dislocation velocity. We note that there are cases for which

the strain rate is independent of dislocation velocity. When the velocity is

large enough the strain rate is given in a simplified model by Abx, where

X is the average distance traveled by a dislocation. The strain rate is even-

tually determined, then, by the rate at which new dislocations are created

and not necessarily by the rate at which old dislocations expand or by the

dislocation velocity.

Key words: Dislocation kinetics; mobile dislocations, stress rates.

The shear strain e produced by dislocation loops which sweep out

an average area A is given by

where b is the Burgers vector. It is often simpler in discussions of mecha-

nisms to consider straight dislocations, for which case eq 1 may be

written as

where A is the total length of mobile dislocations per unit volume, and x

is the average distance moved. This relation, and others depending on it,

can be easily generalized to the case of curved dislocations.

In early discussions of strain rate formulas for dislocation dynamics by

Orowan [1] and by Seitz and Read [2], it was appreciated that there were

two limiting possibilities. The strain rate e might be given as

(1)

e= Abx, (2)

e = Abv, (3)

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloufih.

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubl. 317, H, 1970).
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or by

k = kbx (4)

where v is the average velocity of the dislocations, and x is the average

distance traveled by a dislocation before it is stopped or annihilated.

Although a clear decision between these possibilities was not possible at

that time, the available evidence seemed to favor the Kbv mode of

description.

Since the success by Johnston and Gilman [3] in relating yield

phenomena in LiF to direct measurements of dislocation densities and

velocities, the I^bv expression has been used almost exclusively, and is

usually taken as the fundamental equation of dislocation dynamics [4].

We wish to show that there exist cases for which the average velocity v

is not necessarily relevant to a description of strain rates. In such cases,

dislocation generation, and not the overcoming of obstacles, becomes the

rate limiting step in plastic deformation.

Recently, comparisons [5] of ultrasonic measurements with etch pit

measurements have led to a realization of the fact that in many materials

there are several important time constants relevant to the description of

dislocation velocities and strain rates. The first of these is the time of

flight tf between obstacles which is determined normally by the disloca-

tion-phonon interaction. The second is the time of waiting th to overcome

obstacles; the ratio of the first two determines the average dislocation

velocity v as measured by etch pit techniques. The third is the lifetime

of a movable dislocation, which is related to x through

x = m. (5)

The fourth is a time determined by the rate of production of dislocations

td, and the fifth is the experiment time te. These times are all distinct.

The time r is particularly relevant in a discussion of strain rates. The

distinction between these times can be appreciated from a detailed con-

sideration of the dependence of dislocation velocity on stress.

Velocities as a function of stress in NaCl as derived from etch pit and

ultrasonic data are shown in figure 1. The etch pit data were obtained by

Gutmanas et al. [6]. The two curves on the left represent average velocities

as a function of stress for relatively pure (< 10-^ % Ca) NaCl. The upper

curve of each pair is for the faster moving edge dislocations, while the

lower curve is for screws. For relatively impure NaCl (~ 10"^ % Ca) the

dislocations are much slower at a given stress, as shown by the pair of

curves on the right. For high speeds, the dependence of the velocities on
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Figure 1. Dislocation velocities as a function of stress in NaCl. The etch pit data is from

Gutmanas, et al. The ultrasonic data is from Fanti, at al.

Stress becomes weak, and the difference between the velocities of edges

and screws at a given stress is reduced greatly. The effect of hardening

and of radiation damage is qualitatively similar to that of impurity addition.

There are evidently three regimes in the velocity-stress curve, for

which different physical mechanisms limit the velocity. At the highest

stresses, the velocities are limited by relativistic effects to the velocity

of sound. There is also a structure insensitive domain where the velocity is

linear in stress. At the lowest stresses, the velocities are structure sensi-

tive, depending on the defect content of the specimen. It was suggested

by Mason [7] that is should be possible to determine the strength of the

dislocation-phonon interaction from the velocity measurements in the

linear regime by equating the drag force per unit length of dislocation to

the applied force per unit length:

where B is the drag force constant and a is the applied resolved shear

stress.

The three-regime interpretation is supported by measurements of the

temperature dependence of the velocities and by ultrasonic measure-

ments. It has been found that the velocities as low stress increase strongly

with temperature, while the velocities in the phonon-drag Hmited region

decrease weakly [8]. This behavior is as would be expected if thermally

activated processes operate at low stresses, leading to an exponential

Bv = bcr, (6)



1102 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

dependence on temperature. At higher stresses, where the velocities are

limited by phonon scattering, increasing temperature should lead to in-

creased drag as a consequence of the increased phonon density. Using

ultrasonic measurements, Baker [9] showed that the etch pit velocities at

low stresses were not instantaneous velocities, but only average velocities.

He found that velocities of dislocations between pinning points were

orders of magnitude greater than the average velocities measured by etch

pit observations at the same stress. Instantaneous dislocation velocities

can be determined ultrasonically by making attenuation measurements

at high frequencies, where the motion is again limited by the phonon drag

[10]. The linear curve shown in figure 1 represents an extrapolation

(above ~ 10^ cm/s) of velocities deduced from ultrasonic measurements

by Fanti et al. [5]. It is easily seen that the same mechanism limiting dis-

location motion in high frequency ultrasonic measurements does indeed

also limit the velocities of the unidirectional motion of dislocations over

longer distances. This correspondence has also been found for pure

Cu, Zn and Al by Vreeland and his co-workers [11].

The corresponding displacements, velocities, and time constants of a

given dislocation under the action of a stress are shown schematically in

figure 2. It is supposed that a shear stress, of amplitude ctq and relatively

long duration (te) is applied at a given time. The velocity Vi of the ith

dislocation then quickly achieves its limit velocity vil- The limit velocity

is given by the sound velocity at high stresses or low temperatures, but in

the intermediate range (phonon limited) is given by bcr/B. The dislocation

travels a time Tf until it becomes stuck at an obstacle. After a wait time

Tw, with the help of thermal fluctuations, the process is repeated. After

having traveled a distance Jcj, the dislocation becomes permanently

stopped, and moves no more even though the stress is still applied. In an

impure specimen where there are many obstacles, the average velocity Vi^

indicated by the dashed line, is small compared to the limit velocity. The

magnitude of the average velocity is determined by the Hmit velocity and

the ratio of the free-flight time tf to the wait time tw The motion is

discontinuous, but is quasi-continuous on a macroscopic scale.

It has been pointed out by Argon [12] and by Kocks [13] that the strain

rate can be described equally well by either eq (3) or (4) for spurtlike

motion, the distinction being arbitrary. This is true for times Te long

compared to tf and tw, but short compared to r. We are primarily con-

cerned here with cases for which te is long compared to r, and will use

subsequently the smoothed-out (dashed) curves shown in the time interval

T. For the latter case, we believe the distinction not to be arbitrary. We
thus regard the average velocity Vi (that observed in etch pit experiments)

to be zero before the stress is appHed, to have the value Vi during the time

interval r, and then to be zero again subsequently. The behavior described
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Figure 2. Schematic sketch of dislocation displacement Xi and velocity Vi for an applied

stress (To of duration te.

in figure 2 is idealized and simplified. The average velocity vi is likely

to decrease with time. However, we believe this description is a useful

first approximation which already contains much of the important physical

behavior and which can be easily generalized later to a more realistic

description.

As an example of a specific physical system to discuss, we have in mind

the recent results found by Vreeland [11] and Suzuki [14] for high purity,

low dislocation density copper. It has already been mentioned that the

dislocation velocities were found to be linear in stress, with a drag co-

efficient agreeing well with that determined ultrasonically for phonon

drag. This means that th is negligible and r is extremely short. Suzuki

applied stress pulses of amplitude near 20 g/mm^ and durations as low as

5 X 10""^ s. He found that if successive pulses are used, then most of the

dislocations which are stopped after the first pulse do not move again

unless the stress amplitude is increased significantly, even if the pulse

time is lengthened. Also he found that the average distance of motion x

is independent of the length of the pulse and the testing temperature.
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Some representative values from his data are ^~4X10"2 cm and

f; ~ 4 X 10^ cm/s from w^hich we find r ~ 10~^ s from eq (5). Also, using eq

(3) and the values of v and € observed by Suzuki, one obtains A ~ 40 cm~"^,

showing that very few dislocations move simultaneously. It is then ap-

parent that after a time i = AoT/A, where Ao is the initial dislocation

density, the old dislocations will have already made their contribution to

the strain and new dislocations have to be created to support the strain

rate. With Ao ~ 4 X 10^, this time is then ~ 10"' s.

A simplified model, stimulated by these data, can then be based upon

the following assumptions.

L The dislocation velocities are large (phonon or relativistically

limited).

2. jc= const.

3. e= const.

These assumptions are used to simplify the discussion. They are sufficient

but not necessary, and can be relaxed somewhat for a more general

treatment.

Assumption (1) has been verified for some low dislocation density, high

purity metals. At finite temperatures the velocity is given by hajB^ and

so depends weakly (1st power) on stress and temperature. As the velocity

depends exponentially on stress and temperature in the low stress regime,

it is a reasonable approximation to neglect by comparison the weak

dependence entirely in a first approximation.

Assumption (2) is derived from the experimental results. Presumably

X depends upon the dislocation forest density Af and also weakly on

impurity content, stress and temperature. The lowest value of :^ observed

in etch pit measurements is of order 10 ~^ cm while the largest value is

limited by the specimen size. A typical value would seem to be ~ 3 X 10

cm, and the maximum variation of about a factor of 30 is in any case small

compared to the range of velocities (a factor of 10^^) which can enter eq

(5). It is therefore reasonable to suppose that r is determined primarily

by V.

The total strain at time t is given by the sum over all dislocations

i

and the strain rate by the corresponding sum

(8)
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Figure 3. Schematic sketch of dislocation average displacements Xi and average velocities

Vi at a time t' in a time interval t. ^t;,(t) is the sum of the velocities of dislocations

moving simultaneously. '

The terms in the sum of eq (8) are step functions of time, each of which is

zero most of the time. To evaluate the strain rate at a time t' , we must

know which of the i dislocations are moving at that time and the velocity of

each. This sum is easily evaluated with assumptions (l)-(3) as indicated in

figure 3. The displacement and velocity of the /th dislocation are indicated

with a heavy line. For a constant strain rate, the stress level presumably

increases at a slow rate. However, in this range of high velocities, the

velocity is only a weak function of stress, and to a first approximation

the velocities can be taken to be constant or independent of i in the time

interval r. But constant strain rate then implies that dislocations become
available at a constant rate, so that the spacing of the curves for different

i must be uniform. Only those dislocations in motion at time t' contribute

to the strain rate e{t'). For example, in figure 3, dislocations 1 — 2 and

7+ 2 do not contribute to e(^'). Thus the mobile dislocation density

A at time t' is given by

A=Lt, (9)

where A is the rate at which mobile dislocations become available. The
sum of eq (8) then becomes

€= Abv= A rbv.
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Using eq (5), the velocity dependence then cancels out to give eq (4).

Thus, for the conditions described here, the strain rate is independent of

dislocation velocity.

Since the mobile dislocation density required, for example under the

conditions of Suzuki's measurements, is so low (
— 40 cm~-), the strain

rate could be sustained for a period with the pre-existing dislocation

density (.V)~4X10^ cm"-). However, the time constant ^ is so small

(
~ 10~^ s), that even these are insufficient to maintain the strain rate

for reasonable experiment times te- From eq 5, using values given by

Suzuki, we find A= 4X10^ cm"- s~^ This defines a critical time Tc

through the relation Ao = Atc to be Tc ~ 10~^ s. For times greater than

Tf. = Ao/A= Aot/A,,,, new dislocations must be produced. Even if dis-

locations are able to move again as the stress is raised, x is still limited

by the specimen size, so that Tc is still small compared to reasonable

experiment times. Also, if not all the old dislocations move, Tc will be re-

duced. Under these conditions the rate limiting step in deformation is

determined by the dislocation production rate and not by the rate at

which obstacles are overcome.

Note added proof: It has come to our attention that a similar argument

has been given independently by Mecking and Liicke. It appears in

Mecking, H., Thesis, Aachen (1967). is sketched in Mecking. H., and

Liicke, K., Acta Mat. 17, 279 (1969), and will be pubUshed separately.

References

[1] Orowan. E. Proc. Phys. Soc. (London) 52, 8 (1940).

[2] Seitz, F. and Read, T. A., J. Appl. Phys. 12, 470 (1941).

[3] Johnston, W. G. and Gilman, J. J.. J. Appl. Phys. 30, 129 (1959).

[4] See for example, articles in Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L.

Bement, Jr., and R. I. Jaffee, Eds. (McGraw-Hill Book Co., New York, 1968).

[5] Fanti, F., Holder, J. and Granato, A. V., J. Acoust. Soc. Amer. (June, 1969).

[6] Gutmanas, E. Yu., Nadgorni, E. M.. and Stepanov, A. V., Sov. Phys., Sol. St. 5, 73 (1963).

[7] Mason, W. P.. J. Acoust. Soc. Am. 32, 458 (1960).

[8] Pariiski, V. B. and Tretyak, A. I., Sov. Phys. Sol. St. 9, 1933 (1968).

[9] Baker, G. S., J. Appl. Phys. 33, 1730 (1962).

[10] Granato, A. V. and Lucke. K., J. Appl. Phys. 27, 583 and 789 (1956).

[11] Vreeland, T. Jr., in Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn. A. L. Bement,

Jr.. and R. I. Jaffee. Eds. (McGraw-Hill Book Co.. New York. 1968) p. 529. See also

Gorman, J. A.. Wood, D. S.. and Vreeland, Jr., T., J. Appl. Phys. 40, 833 (1969).

[12] Argon, A. S., Mater. Sci. Eng. 3, 24 (1968).

[13] Kocks, U. F., in these Proceedings.

[14] Suzuki, T., in Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bement, Jr.,

and R. I. Jaffee, Eds. (McGraw-HiU Book Co., New York, 1968) p. 551.



Discussion on Papers by W. Frank and U. F. Kocks.

SCHOECK: If you have a spectrum of two different types of obstacles,

hard ones and soft ones, is it not correct that the effective distance for

penetrating the hard obstacles is given, not by the average spacing

between obstacles, but by the spacing of the hard obstacles?

FRANK: No, it is given by the distance between the so-called effective ob-

stacles, the hardnesses of which are high enough to be not overcome at

a given stress level.

SEEGER: If there is a bunch of small obstacles, they also count. The iso-

lated soft obstacle will not count, but if there are enough to be effective,

then they count just as much as the hard obstacles.

ARSENAULT: One question I would like to ask Professor Schoeck is

whether the appropriate quantity to use in such activation calculations

is the Gibbs free energy, the activation free energy or the free enthalpy.

SCHOECK: When you formulate the equation for a rate process you have

to make certain assumptions. In describing the movement of a disloca-

tion which intersects other dislocations or a dispersion of fixed obstacles

by thermal activation one generally uses the so-called transition state

model which was first developed by Zener^ for atomic diffusion, later

generalized by Vineyard,^ and applied to dislocations by Granato et al.^

The rate of overcoming the obstacles in this model is given by the ratio

of the partition functions in the saddle point configuration and in the

equilibrium position in front of the obstacle. From this formulation it fol-

lows then that the quantity which occurs in the exponent of the rate

equation and which is called activation energy is really the difference in

the Gibbs free energy between the configuration in the activated state in

the saddle point and in the ground state in front of the obstacle.

ARSENAULT: I would like to introduce a different name, if possible. In-

stead of worrying about whether it's the Gibbs free energy or not, call it

reversible work.

SEEGER: That, of course, is the same thing. Reversible work under condi-

tions of constant temperature and constant pressure, as you are told in

thermodynamics, is the Gibbs free energy.

ARSENAULT: Yes, but Gibbs didn't consider a shear stress.

1 Zener, C, in Imperfections in Nearly Perfect Crystals (Wiley and Sons, 1952) p. 259.

2 Vineyard, H., J. Phys. Chem. Solids 3, 121 (1957).

3 Granato, A. V., LUcke, K., Schlipf, J., and Teutonico, L. J., J. Appl. Phys., 35,2732 (1964).

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloufih,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubi. 317, H, 1970).
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SEEGER: If you look up Zener* you will find this very point made there. He
says that it's the reversible work to be done, and this is equal to change

in Gibbs free energy.

KOCKS: If I may first say something on this same topic which actually

links to Dr. Frank's talk. I think we are all agreed that there are funda-

mental principles that put the free enthalpy^ in the exponent of an Arr-

henius equation, but there is the other half of that and that is the opera-

tional procedure. If one does experiments and plots the logarithm of the

strain rate against 1/r, of course the slope of the line is not G but H. So

the problem that complicates this activation process in plastic flow is

that the activation entropy, which you may put into the pre-exponential

factor, is then not distinguishable from other parameters that enter into

this pre-e3Cponential factor. It is, then, not possible in principle to mea-

sure the activation entropy despite whatever Dr. Frank may have said,

because you have to make assumptions about do in his terminology.

That brings me to a discussion of Dr. Frank's work. When one has a com-

plicated problem there are two approaches: One is to try and write down
the general solution, and the other is to try and find what sounds like the

most plausible approximation. From what we can gather from the slides,

Dr. Frank has tried to write down a general equation. Firstly, his result

that the Arrhenius equation formally still holds has meaning only to a

limited extent. It is specifically assumed, and generally true, that the

spectrum of obstacles that is important may depend on the temperature,

so that therefore, the activation entropy may be very much stronger than

what we would expect merely from the temperature dependence of the

elastic constants. Now whenever that is the case, the Arrhenius equation

becomes a formalism that has very little meaning left. You might as well

describe it by a Fourier series or something else. The Arrhenius equation

means something only if the major temperature dependence is described

by the l/T term in the exponent and if one knows independently

something about the other terms in front. I have discussed this problem

with Dr. Frank and if I may give my summary of that discussion, he takes

the perfectly valid approach that some of the properties that go into do

can be found independently by microscopic means — not by making

stress-strain tests, but by microscopic techniques. One can try to mea-

sure the distribution spectrum of spacings or strengths, for example. On
the other hand, one thing that I don't think one has any handle on mea-

suring microscopically is the mobile dislocation density, and since that

4 Zener, C, Trans. AIME 147, 361 (1942).

In the American literature "free enthalpy" is usually referred to as the Gibbs free energy.
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does enter into his equation, I think there is a parameter that I cannot

quite see being called a non-adjustable parameter.

If I may be allowed one more word on the evaluation of his term "quasi-

regularity," I have not been able to see how it can really deviate from

regularity without very much disturbing the procedure that he uses. For

example, the picture he had on the board showing obstacles was very far

away from regularity, and he stated that the distance between obstacles

may change a little. One of the most important things in my opinion

about non-regular arrangements of obstacles is not only that the spacing

changes, but also that the angle between them changes. If you want to

write a general equation the angle is one of the most important parame-

ters. It does not even enter into this general summary of all possible in-

teresting parameters of Dr. Frank's. The angle question brings up an

even more important general matter completely forgotten by Dr. Frank,

one which is almost the center of my work on this, and that is that the ob-

stacles are not independent. It is not possible to ascribe a waiting time to

one obstacle that does not depend on whether the obstacle next to it has

not already broken through. There is a zipper effect. If one obstacle goes

through, the angle that the dislocation makes on the new obstacle has

changed, and the waiting time depends on this. These geometrical fac-

tors do not enter into the equation that Dr. Frank derives, despite the

fact that it looks general.

SEEGER: Before I give the floor to Dr. Frank, I should like to make a com-

ment from the chair on the temperature dependence of the activation

energies and entropies and the vahdity of the Arrhenius equation. I dis-

agree completely with what you say, for the following reason: If you have

constant temperature independent activation energy and temperature

independent entropy, then these are two unrelated quantities and they

may have any value you dream of. If you consider, now, temperature de-

pendent values, then at a fixed reference temperature— Hke room tem-

perature—the two absolute magnitudes are also unrelated, but the tem-

perature dependencies are absolutely coupled, by the following equa-

tion: T dS/dT = dH/dT. In fact, assuming a temperature dependence or

finding a temperature dependence for one of the quantities gives a tem-

perature dependence of the other— not its absolute magnitude. So, there

is no difficulty whatsoever. The kind of proliferation of possibilities

which you indicated simply does not exist on thermodynamic grounds.

If you have a curved Arrhenius plot, say lnZ> against IjkTyou determine
the slope at one point, which is equal to minus H at that particular tem-

perature, T. Then from the temperature dependence of the function H
determined from the equation I mentioned, you get the temperature

dependence of the entropy. I really cannot see the physical basis of your

remarks.
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KOCKS: The Stuttgart people and many other people always write on the

ordinate ln{d/do). That's not an operational parameter. You are there as-

suming that do is constant.

SEEGER: But only the absolute magnitude. If you assume that the other

parameters are temperature independent . . .

KOCKS: Yes, assume.

SEEGER: In fact, you don't have to assume. If you measure the tempera-

ture dependence of 5, you can separate it from the measured tempera-

ture independence of do.

KOCKS: No, sir, that is not true.

SEEGER: Well, let's agree to disagree.

FRANK: First of all I want to thank Professor Seeger for having answered

most of the questions which were addressed to me. .

.

AUDIENCE: General laughter.

FRANK: But, what I wanted to say is connected to what you have called

the zipper effect. You are completely right that the overcoming of the dif-

ferent obstacles of various heights are not independent from each other

and that one has to account for this zipper effect, but, you see, in my ex-

pressions for the waiting times, I have a set of parameters called P, and

I may use one of these parameters in order to describe this zipper effect.

The problem which is left— and on this point I agree with you— is the cal-

culation of the interaction potential between the moving dislocation and

the dislocation obstacle when overcoming the obstacle by zippering.

I admit that we did not account for this zippering effect in our application

to neutron irradiated copper single crystals.

MITCHELL: Since this is a conference on fundamental aspects of disloca-

tion theory, with the emphasis on the theory, I would like to ask Dr.

Schoeck and Dr. Frank if the most appropriate thermodynamic potential

for the discussion of dislocation phenomena should not be the measure

which has the independent variables V, T and fx, because glide processes

occur at constant volume and climb processes occur when one has a

deviation in the chemical potential. Therefore one needs the chemical

potential, /it, as the independent thermodynamic cariable and not A^.

SCHOECK: You have to select your thermodynamic potential according

to your problem. When during the deformation process you have for-

mation of point defects, and this is a rate controlling factor, then of

course you have to introduce the chemical potential of the vacancies or

point defects into your rate equation. But this complicates the matter

very much, and the expression for the rate equation often becomes very
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complicated. The form of the rate equation then depends sensitively on

the finer details of the formation of point defects by moving jogs and on

such questions as to whether a dislocation is a good or bad sink for

vacancies.

On the other hand, if you assume a simple glide process and if intersec-

tions or other localized obstacles are rate controlling, then you can

neglect the formation of point defects. In this case the appropriate ther-

modynamic potential is the Gibbs free energy, which depends on the ap-

plied stress, the internal stress and the temperature.

HAASEN: What we would really like to do is construct a macroscopic

strain rate theory from parameters we can measure microscopically.

Now, there is no doubt that we can measure dislocation velocities and

dislocation densities, but as Dr. Kocks has rightly said we cannot easily

measure mobile dislocation densities. In certain cases, however, we

might have a chance to get the mobile dislocation density. If it is true

that dislocations get stuck in configurations like dipoles, or pile ups, or

something, then there are physical properties which can differentiate

between single dislocations and dipoles. This afternoon I will try to ex-

plain that maybe the electrical properties of dislocations in semi-conduc-

tors which have been a very useful material in constructing such a micro-

scopic strain rate theory, might be a tool. Perhaps, then, we can separate

dislocations in a locked configuration from free dislocations and thus the

mobile dislocation density might be a measurable parameter.

LOTHE: I just want to put on record that I disagree that the attempt

frequency should just be the lowest mode.

SEEGER: Alright. I think there are quite a few people who will agree with

you. It's really a very complicated problem and one has to take into ac-

count the flexibility of dislocations in detail, etc.

HIRTH: I would like to write on the board. I would like to agree with what

Dr. Kocks said about not being able to abstract the pre-exponential from

the free energy. Suppose we have some mean jump frequency that is

composed of a pre-exponential factor and an exponential containing the

free energy AG divided by /cr— incidentally, this could apply as well to

diffusion as to dislocation jumps — and suppose that AG and Pq are

functions, say, of stress and temperature. We could then write

Po{(tJ) exp {-^G{(TJ)|kT) = p', exp {-AC (aj) IkT)

,

where i^^ is not a function of stress or temperature and

AG' {aJ) = AG{(tJ) + kT\np';{aJ) ,

where p'o is that part of Po that is a function of cr and T. Then, unless

one independently knows information about the stress and tempera-

ture dependence of the pre-exponential— either from theory or from
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some other measurements— when one operates on this equation,

there is no way of separating the two terms AG and Vo"- So, one cannot

resolve the issue on the sole basis of mechanical property data.

SEEGER: I appreciate your point. I agree there is a difference whether you

have processes where the relationship between the Arrhenius function

expf— GlkT) is something which is fixed by the physical situation, as is

the case when you calculate the concentration of point defects, and a

case like you have discussed where there is a certain freedom. In diffu-

sion processes, however, I think this difficulty does not arise since what-

ever you write for Vq is more or less fixed by the modes of vibration of the

crystal, etc.; so it is really a matter of principle rather than actual im-

portance. But I agree there is a difference.

GRANATO: I'd like to ask Professor Lothe why he feels that the attempt

frequency should not be the lowest mode.

LOTHE: The lowest mode attempt frequency corresponds to an activation

process which goes more or less in phase all over the segment. However,

one could also think of activation processes where the applied stress

does not do quite so much work, but on the other hand the line ten-

sion is more relaxed; and one can show that starting with these as

equilibrium configurations, they have the same total activation energy to

first order. This means that there are a number of activated configura-

tions with the same energy to first order as the lowest mode configura-

tion which is the one you seem to be counting when you use the depen-

dence 1//.

SEEGER: I have come across this point when considering tunneling ef-

fects where the effective mass enter very heavily, and if it were such that

it's only the lowest mode that's the important one, then you would move

an enormous effective mass. You could do much better if you moved
only a little bit of the dislocation; what you then lose in work, you gain by

far in the exponential factor. This is also true, but not so markedly, in the

case of ordinary thermal activation.

GRANATO: Those effects would be taken into account in the entropy

term — that is, the effect of the other modes. The attempt frequency only

means the lowest mode. All the rest are really entropy terms.

^

LOTHE: It really comes down to a matter of definition of what you call the

pre-exponential term,

SEEGER: What Professor Lothe would say, presumably, is that it is simply

not enough to write i^ocxpf— AG/kT) and take the as proportional to 1//

So you would have to use a modified form for / or give the full treatment

for the other modes— but you shouldn't forget the other modes.

"See footnote 3 page 1107.
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FRANK: I think Dr. Schoeck has shown that you have to put the total en-

tropy into the free enthalpy of activation which enters the Boltzmann fac-

tor. On the other hand. Professor Granato has demonstrated that you can

put the entropy arising from these various activated states into the en-

tropy factor. My feeling is that when we calculate, for example, the free

enthalpy of activation by means of the theory of elasticity, we automati-

cally take these terms into account. This is because in the formulation

given by Schoeck nothing is said about the sort of entropy entering the

AG term. It is the total entropy.

SCHOECK: I would like to come back to Professor Hirth's statement that

it is impossible to get the pre-exponential factor out of experiments. I

agree only conditionally with his statement.

HIRTH: I stated it conditionally.

AUDIENCE: General laughter.

SCHOECK: The problem is really that before you try to analyze a ther-

mally activated process, you should know what the process is so that you

can construct the appropriate model with an appropriate rate equation.

Once you have chosen a model, you can calculate the effective activation

energy and the activation volume and compare their temperature, stress

and strain dependence with what you determine experimentally.

The quantities you measure experimentally depend, of course, on

whether your pre-exponential factor is constant or whether it changes

during the experiment. If it changes, it introduces, however, in your ex-

perimental values some characteristic dependence on temperature and

maybe other variables which are at variance with what you would expect

from the model, and hence you may be able to subtract it out. I agree

this approach is not without pitfalls, and in complicated systems might

not work well. However, you may try different possibilities until you

come up with a self-consistent picture.
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I. Introduction

When a crystal containing dispersions of small particles is plastically

deformed, the dislocations moving through the crystal generate rows of

prismatic loops at the particles. These loops have the Burgers vector of

the primary dislocations, and the rows lie along the Burgers vector direc-

tion. Such rows of loops have been observed at low strains for a number

of different systems, for example in copper with silica or cobalt particles

(Humphreys and Martin [1]), in copper with alumina particles and in

copper-zinc alloys with alumina particles (Hirsch and Humphreys [2]),

in aluminum with silicon particles (Martin and Stewart [3]), and in mag-

nesium with particles of unknown origin (Hirsch and Lally [4]). The
phenomenon is quite general, and the loops appear to be produced by a

cross-slip mechanism (Hirsch [5]). The geometrical arrangements expected

for impenetrable particles have been discussed by Hirsch and Humphreys

[2]; however, the details of the cross-slip mechanism have not yet been

discussed. Gleiter [6] has considered in some detail the problem of cross-

slip and formation of prismatic loops at particles with misfit strains for

the case in which the dislocations can pass through the particle during

the sequence of steps leading to the eventual formation of prismatic loops.

However, Gleiter based his arguments entirely on the local stresses

present, without considering the activation energy controlling the various

*Now at Division of Pure Physics, National Research Council, Ottawa, Canada

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. .317, II, 1970).
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cross-slip steps involved. The object of the present paper is to study the

effect of misfit strain on the activation energy for cross-slip. It will be

shown that the strain field due to the particle misfit has a profound effect

on the activation energy, even when the local force on the total dislocation

is small. The implication of this effect on the various cross-slip steps in-

volved in the formation of prismatic loops is considered, for the case of

impenetrable particles.

II. The Effect of the Misfit Strain on Dislocation Width

In this section a general expression will be derived for the force on an

arbitrary element of glide dislocation due to a spherical coherent inclusion;

the special case of extended dislocations in the fee lattice will then be

considered. •

The displacement field Ur of a spherical coherent inclusion of radius R
and linear misfit e, embedded in an infinite isotropic elastic continuum

(Mott and Nabarro [7]), is

where r is the radial distance from the centre of the inclusion. This dis-

placement field gives rise to a stress field aij in the matrix given by

where G is the shear modulus of the matrix and 8jj is the Kronecker delta.

Consider an element of dislocation of unit length lying in the X1X2 plane

at a point (xu ^2, ^3), and having a Burgers vector b also in the X1X2 plane.

Using the FS/RH sign convention, the force per unit length in the slip

plane exerted on the dislocation is

with direction as shown in figure l(i).

Next consider the interaction of the inclusion with a unit element of a

dislocation dissociated in the Xix-z plane into two partial dislocations

separated by a distance d. There will be a difference in the forces on the

two partials due to their different distances from the inclusion. However,

it can be shown easily that this difference will be of order d/r, and for

ribbon widths small compared with the radius of the inclusion, can be

neglected; the forces will be calculated as if both partial elements were

Ur=eR^lr\ r^R
= er , r<R,

(1)

F= 0-3161 +0-3262, (2)
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situated at their mean distance from the inclusion, taken as {xi, Xi^ x^.

We assume the partial elements to be parallel, of equal length, and to have

Burgers vectors hp of equal magnitude. Choosing the X2 axis parallel to

the Burgers vector of the total dislocation, we have for the forces per unit

length, F+ and F_, on the partials with Burgers vectors making angles

+ 0, —0, respectively, with the X2 axis

„ 6Gbp€RH3
( ^ ,

.

t + = yx2 cos d + Xi sm 6)

(3)

„ 6Gbp€RH3
t ^ .

r - = ^ {x2 cos d— x\ sm 6),

where the positive directions of F+, F- are shown in figure l(ii). Note the

change in sign of positive force, due to the negative stress field components

in (1). There is a total force on the dissociated dislocation element:

Figure 1. (i) Definition of the positive direction of force F on the dislocation L, assuminji

the FS/RH convention, (ii) The positive directions of the forces F+ and F- on the partial

dislocations Li, L-z.
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„ „ ,
„ 12GbpeR^X2X3 cos 6

F =F^+F- = ^—
. (4)

and a difference in the forces on the two partials:

AF =F+—F-= ' (5)

where the positive directions of F, AF are those of F+ in figure l(ii).

In general the dislocation will be in equilibrium around the inclusion

under the influence of the interaction force F, given by (4), the externally

applied stress, and the self-stress of the dislocation. The differential equa-

tion governing the equilibrium shape is given by Gleiter [6]. Assuming

that the curvature of the partials is sufficiently small for them to be con-

sidered locally straight and parallel, their equilibrium separation will be

determined by their mutual interaction, the force due to the intervening

ribbon of stacking fault, and the force AF given by (5). The effect of the

particle force ZiF may be seen most easily by combining it with the stack-

ing fault energy y to define an effective stacking fault energy given by

^ l2GbijeR^XiX3sm 9
y* = y± (6)

the choice of sign depending on whether the + ^ or — ^ partial is nearer

to the inclusion.

The equilibrium separation c?* of the partials is given in terms of the

separation d in the absence of the inclusion stress field by

^* = ^7/7*. (7)

The effective fault energy is evidently equal to the stacking fault

energy if the two partial Burgers vectors are parallel to the total Burgers

vector (6=0), and thus the modification in y is due to the difference in

character between the partial dislocations and the total dislocation,

e.g., for an extended screw dislocation, the change in y is due to the edge

components of the partial dislocations. It is also of interest to note that

the change in y changes sign with X1X3. Thus for a dislocation lying on

the slip plane JC3 = constant, the effect of the inclusion will be to constrict

the dislocation on one side of the inclusion, and to extend it further on

the other side. It should also be noted that the constricting or extending

effect can be large even though the total force on the dislocation is zero,

i.e., at JC2 = 0.
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Figure 2. Thompson's tetrahedron, drawn relative to (i) cube axes, (ii) primary slip plane

axes, (primary plane is ABC), (iii) primary slip plane axes, showing cross-slip plane (ADC);

dislocation on cross-slip plane viewed from inside tetrahedron.

It is convenient at this point to restrict discussion to glide dislocations

in the fee lattice. Figure 2(i) shows a diagram of the Thompson tetrahedron

relative to the crystal axes, and figure 2(ii) shows the orientation of the

tetrahedron relative to the chosen inclusion axes [121], [101], [111]

(such that the primary slip system is (111) [101]). A primary 1/2 a [101]

dislocation can dissociate on the (111) plane according to the reaction

l/2a[T01] l/6a[TT2] + l/6a[211]

CA^C8 + 8A, (8)
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with the order of the partials as shown in figure 2(ii). Thus in (6) we take

the positive sign.

In figures 3(i)-(iv) is shown quahtatively the effect of the difference

in the forces on the two partials for positive and negative dislocations,

and for positive and negative misfit e. For e > 0, both positive and negative

dislocations are constricted for ^1X3 > 0, and are extended further for

X1X3 < 0; the reverse applies for €< 0. In figures 3(v) and (vi) the effect

is shown on a positive edge dislocation bowed out around the inclusion,

Figure 3. Schematic diagrams of the influence of the particle stress field: (i)-(iv) on the

width of dissociated dislocations, (v) on the width of a positive edge dislocation bowed

out around the particle, (vi) on the width of a positive Orowan loop around the particle.
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and on an Orowan loop formed from such a dislocation, respectively, for

the case X3>0 and e > 0. It should be noted in figures 3(v) and (vi) that

the edge components, for which :ti = 0 in (6), have their width unchanged

by the inclusion stress field. It is clear that once the arms of the bowed

edge dislocation in figure 3(v) reach screw orientation, cross-slip of the

constricted arm can occur more easily than in the absence of the inclusion

stress field, while cross-slip of the extended arm will be more difficult.

The force constricting the partials can be considerable; at the surface

of the inclusion, at xi = X3 = Rl V2, r=R, then AF= 3Gbpe, and for

€=10~2, AF ~ Gbp/30, which is of the order of the theoretical shear

strength.

Once cross-slip has occurred, the 1/2 a[101] dislocation can redissociate

in the (111) (see fig. 2(iii)) cross-shp plane according to

1/2 a[T01] 1/6 a[2Tl] + 1/6 a[Tl2] (9)

CA-> C^+/3A,

with the order of the partials as in fig. 2(iii). The effective fault energy

y* on the cross-slip plane is given in terms of the primary coordinates

xu ^2, xs by

y*c=y^
12^£€^^ _^ 2 V2xs) {xs - 2 V2xi) sin 6 , (10)

with the negative sign being chosen for a positive dislocation.

Figures 4(i) and (ii) show a projection on the X2 = constant plane. The
regions of constriction and extension on the primary and cross-slip

planes are shown for positive dislocations and for positive e (fig. 4(i),

corresponding to an inclusion larger than the cavity in the matrix) and

negative e (fig. 4(ii)). For negative dislocations the diagrams are similar,

but the order of the partials is reversed.

The inclusion exerts also a total force, which can assist cross-slip, on

the dislocations of figure 4. The sign of the force changes with the sign

of X2X3, and with the sign of the dislocation. The arrows in figures 4(i) and

(ii) show the sense of the total force for x-z > 0; for x-z < 0, and for negative

dislocations and x-z > 0, the force is reversed. Thus for e > 0, JC2 > 0, a

positive dislocation will be driven in a clockwise circuit around the

particle; for JC2 < 0 the circuit will be anticlockwise. There are, of course,

other forces on the dislocation, due to the applied stress, and due to the

image interaction with the inclusion. The sense of the appHed stress on
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(ii)

Figure 4. The regions of constriction and extension on the primary and cross-slip planes

for positive dislocations and for positive e(i) and negative e(ii).

the cross-slip plane will depend upon the orientation of the stress with

respect to the crystal axes; the image force will be compHcated in form,

but will in general repel all dislocations if the shear modulus of the

particle is greater than that of the matrix, and vice versa.

Consider the cross-sHp process for a bowed edge dislocation (fig. 3(v))

or an Orowan loop (fig. 3(vi)); the screw arm must cross-slip three times

in order to bypass the inclusion. Some of these steps will be easy (labeled
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Figure 5. (i) and (ii) Possible cross-slip paths for a positive dislocation forces > 0, e > 0, and

for :C2 >0, <0 respectively, (iv) and (v) Similar paths, for X:^ <0. (iii) and (vi) Schematic

diagram of the equilibrium shapes of a positive edge dislocation bowed out around the

particle, and of a positive Orowan loop around the particle, for :t3 > 0 and < 0, respectively.

"e" in fig. 5) because the dislocation is constricted by the inclusion stress

field, others difficult (labeled "d" in fig. 5), because the cross-slipping

dislocation is extended further.

Figures 5 (i) and (ii) show possible cross-slip paths for a positive disloca-

tion at X:i > 0, for e > 0, and for positive and negative X2, respectively:

figures 5 (iv) and (v) show similar paths for X:i < 0. In each case two easy

cross-sHp steps and one difficult step are necessary. In the cases where
the difficult step is the third (figs. 5 (ii) and (v)), cross-slip can be assisted

somewhat by the attractive interaction of the cross-slipped dislocation
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and the remaining arm of the loop. For this reason the circuits of figures

5 (ii) and (v) may be preferred, although as will be shown in section IV,

this effect is relatively small for practical values of e.

It is also of interest to consider qualitatively the shape of the dislocation

line in the neighbourhood of the inclusion, since cross-slip can occur

only when the dislocation has local screw character. In the case of JCa > 0

(figs. 5 (i) and (ii)), a positive dislocation is repelled by the particle for

X2 > 0, and is attracted for X2 < 0. For an Orowan loop, the expected

equilibrium shape is shown in figure 5(iii). In the region of negative jc2,

the loop will lie close to the particle, in equilibrium under the self-stress

of the loop, the attractive particle interaction, and the repulsive image

interaction: for positive X2 the loop will lie further from the particle, since

the particle interaction is now repulsive. Thus it is likely that screw orien-

tation will occur for X2 > 0, so that cross-slip via the circuit of figure 5(i)

is possible. In the case of a bowed dislocation, however (dashed line in

figure 5(iii)), Gleiter [6] has shown that screw orientation is reached in

the critical configuration at X2 < 0. Thus cross-slip in this case is possible

via the circuit of figure 5(ii).

For X3< 0 (figs. 5 (iv) and (v)) the expected shapes are shown in figure

5(vi). Provided that the dislocation does not cut through the particle, both

the Orowan loop and the bowed dislocation (dashed line) attain screw

character for X2 < 0, so that in both cases cross-slip via the circuit of

figure 5(v) is possible.

The above discussion of the loop shape is highly simplified. For the

small dislocation-particle distances involved, the precise shape of the

inclusion and the anisotropy of the image stress will have a profound

influence on the shape of the dislocation.

It should be noted that the magnitude of the driving stress can be

considerable e.g., for X2 = X3=RlV2, the driving stress on the primary

plane is 3 VSGbj^, which for e= 0.01 is again of the order of the theoretical

shear strength.

III. Conditions for Cross-Slip at Absolute Zero

In this section we consider the magnitude of the constricting effect of

the inclusion stress field. It will be shown that the easy steps in the bypass

mechanism can take place at absolute zero for suitable values of hnear

misfit e and stacking fault energy y. We assume a dislocation in equilibrium

around the inclusion, and consider a segment of screw orientation at the

point {xi, 0, X:i). It is further assumed that constriction is complete when

the two partials are separated by a distance less than or equal to the

magnitude of the total Burgers vector.
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For the sake of simplicity, and in order to assess the importance of the

effect, we shall consider the maximum constricting stress for a given

radius r from the particle centre; it follows from (5) that this occurs for

X\= x^= rly/2. (It should be noted of course that for values of <
this maximum cannot be attained, and for small values of Xs in particular

the effective constricting stress will be considerably smaller.) Inserting

these values in (6), together with ^= 30°, bp = blVS, and d= Gh'-ll67Ty

(assuming Poisson's ratio to be 1/3), it is found, after some rearrangement,

that complete constriction can occur for

a)'
^

,.1,
1/1677 -7/G6

In figure 6 the maximum value of (rlR) satisfying (11) is shown as a

function of the linear misfit e for various values of the dimensionless

quantity y/Gb.

These results suggest that at particles with large coherency strains,

e.g., Co particles in Cu (e ~ 10~'^), the screw dislocations (in the favour-

able positions) are completely constricted even at the absolute zero. On
the other hand, the misfit strain expected from incoherent impenetrable

oxide particles will be considerably less, e ~ a few times 10~^, estimated

4-75

maximum separation in particle radii

Figure 6. The maximum separation in units of particle radius, r/R, for which complete

constriction can occur at the absolute zero, shown as a function of linear misfit e for various

stacking fault energies.
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from differences in the thermal contraction during coohng. For such alloys

thermal activation would be needed at low temperatures if y/Gb is too

small. Thus for alloys with y/Gb ~ lO"- (e.g., y ~ 100 ergs/cm- for Cu
base alloys) thermal activation is required to complete the constriction;

for Al base alloys (y/Gb ~ 2 X 10"-) the dislocations would be completely

constricted at 0 K.

However the difficult cross-sHp steps can never take place without

the aid of thermal activation, since in this case the partials are extended
rather than constricted by the inclusion stress field.

IV. Cross-Slip With the Aid of Thermal Activation

At finite temperatures the presence of thermal energy can assist the

cross-shp process. Thermally activated cross-shp in the rapidly varying

stress field around an inclusion will be a complex process, and the highly

simpHfied models used below can do no more than give an estimate of the

energy changes involved. We consider two simple models with the aid

of the diagrams in figure 7. For cross-slip to occur, the dissociated screw

dislocation of figure 7(i) must first be recombined over part of its length,

forming constrictions at A and B (fig. 7(ii)). The energs- necessary to effect

this change can be divided roughly into two parts.

(a) The energ\' of the constrictions at A and B. Provided that the length

AB is large compared with the dislocation width, this energy^ wiU be

independent of the length AB. and may be written as 2f/i, where Ui is

the energy^ of a single constriction, assumed to include the effect of the

work done by the applied and internal stresses.

(b) The energy required to recombine the dislocation over the length

AB. Again, if AB is assumed large compared with the dislocation width,

this energy^ wiU be hnear in /, the length AB. If £"0 and Ei are the energies

per unit length of the constricted and dissociated configurations, respec-

tively, with El assumed to include the effect of the work done by apphed

and internal stresses, then the recombination energy- will be / (Eq — Ei)

.

If the length / becomes sufficiently large, the constricted part of the

dislocation can redissociate on the cross-slip plane (Friedel [8]. Escaig

[9], (fig. 7(iii)), releasing energy / {Ea — Eo) —2U2 (the condition that this

quantity be not less than zero defines the activation length), where the

subscript "2" indicates reference to the cross-slip plane. The constrictions

A and B are then attracted by a force Ez, and are drawn apart by a force

Ei; thus the configuration of figure 7(iii) will collapse into the fully cross-

sHpped state provided that Ei > Eo, i.e., as shown below, provided that

the separation of the partials is greater in the cross-shpped state than

in the initial state.

Provided that these conditions are satisfied, cross-slip is possible by

model (a), with activation length /* and activation energy Ha given by
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(i)

liv)

(V)

Figure 7. Schematic diagram of the activation processes, (i) The unperturbed extended

dislocation, (ii) The dislocation constricted between A and B. (iii) Model (a): the dislocation

is redissociated between A and B on the cross-slip plane without bowing out. (iv) Model

(b) : the dislocation is bowed out in the cross-slip plane without redissociation. (v) Model

(c) : the dislocation is both bowed out and redissociated in the cross-slip plane.

When the total stress (i.e., the sum of the particle driving stress and

the applied stress) on the dislocation is large, alternative mechanisms

(figs. 7 (iv), (v)) may be possible. The constricted (fig. 7(iv)) or redissociated

(fig. 7(v)) segment of dislocation AB is glissile in the cross-slip plane,

and can bow out under the influence of an applied stress. For a sufficiently

high curvature (i.e. for a sufficiently high stress) the loop AB will become

unstable, and cross-slip can occur. Consider first the case where the

length AB in the critical state is too small to permit redissociation (fig.

7(v)). In this case (model (b)) the equations analogous to (12) are given

2^/2/(^0-^2)

m^2u,+f,nE,-E,).
(12)

by (Friedel [8], Escaig [10])

4V2£o(^o-^,)
TO

2f/, + /;(^o-^,),
(13)

where r is the total stress on the dislocation.
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Next consider the case in which the length AB is sufficiently large to

permit redissociation in the cross-slip plane (fig. 7(v), model (c)). The
activation length and energy are now given by (Duesbery and Hirsch [11])

m 2f/i + 2U2 + /? {E2 -Et)' (14)

Equations (14) are vaHd only for Ez^ Ei, since for Ez < Ei the critical

length and the activation energy will be given by (12).

The unknown quantities U and {Ei—E) can be estimated from elas-

ticity theory by estabhshed methods (Escaig [10]; Duesbery [12]), and

only the results are given here. For dissociated screw dislocations in the

fee lattice we put

2f/-0.0536G63

{Eo-E)^0m99Gb-' (in^-'^-^^)' (15)

where d* is the separation of the partials on the relevant shp plane in the

presence of the imposed stress fields.

As mentioned above, in order for cross-slip to be possible by model (a),

the inequality d* > df must be satisfied; cross-shp may be more favour-

able by model (b), if fb<-^a, but cross-slip by model (c) wiU be un-

favourable. If c?2*<c?i*, however, cross-shp must occur by models (b)

or (c), since in this case the cross-slipped state of model (a) is unstable.

If < 2f/2/(^o — £2), model (b) will be the more favourable; if

A* > 2U2I {E0 — E2) , model (c) will be preferred.

A little manipulation of (6) and (10) shows that cross-shp from the

primary plane to the cross-slip plane is possible by model (a) provided that

{V2xs-x,)(xs+V2x,) >0. (16)

Conversely, cross-slip from the cross-slip plane to the primary plane is

possible by model (a) only if the left-hand side of (16) is negative.

It should be noted that the condition (16) for the primary-cross-shp

plane step to be possible by model (a) immediately precludes the possi-

bility of the reverse process by the same mechanism. Similarly, the stress-

activated models (b) and (c) are not reversible, since activation requires

the formation of an unstable loop of dislocation. Thus the rate of formation
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of prismatic loops by these mechanisms will be controlled by that cross-

slip step requiring the largest activation energy, and is not given by the

product of the rates for all three necessary steps.

The activation energies for cross-slip have been calculated as a function

of position for various stacking fault energies, linear misfit values, and for

several applied stresses, using the equations given above. Figures 8 (i) and

(ii) show the variation of activation energy around the inclusion for stacking

fault energy 7= 0.008 Gb (corresponding roughly to 80 ergs/cm^), for

linear misfit e = 0.005, and for zero applied stress. Figure 8(i) shows the

primary to cross-slip plane activation energy, while figure 8(ii) shows the

cross-slip back to primary plane activation energy. In both cases values

are shown for X3> 0 only; figures for < 0 can be obtained by rotation

of the diagrams by 180° about the X2 axis. In the case of the stress-aided

mechanisms, the value of x-z was chosen to maximise the driving stress at

fixed Xi, Xs (i.e., at ^cf = l/4(%i + jcf) ) ; in the case of mechanism (a), the
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Figure 8. The variation of the activation energy, in units of 0.001 Gb^ with position around
the particle for stacking fauh energy 7== 0.008 Gb, linear misfit e = 0.005, (i) for primary
to cross-slip plane steps, and (ii) for cross to primary slip plane steps.
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value shown is the lesser of the two calculated at JC2 = 0 and 1/4(a^j4-jc-3).

The favourable regions of mechanisms (a) and (c) are clearly shown; it

is found that mechanism (b) begins to operate only for total stresses in

excess of ~ 0.02 G.

Figure 8 shows that for 7= 0.008 Gb, e = 0.005, the controUing "difficult"

cross-slip step requires an activation energy ~ 1/8 Gb^. In this case the

activation energy is likely to be overestimated, since the cross-slipping

dislocation is extended by the particle stress. Cross-slip may be easier

at a larger value of l^^l, such that the driving stress is still large, while

the extending stress is smaller.^

In order to investigate the cross-slip process in more detail, one par-

ticular cross-slip sequence (corresponding to fig. 5(ii)) was chosen, with

coordinates (0.80/?, ± 0.44/?, 0.407?) ; (/?, ± 0.70/?, /?) , (-/?, ± 0.70/?, /?)

for the first, second and third steps, respectively. Figures 9 (i)-(iii) show

the activation energies for these steps as a function of stacking fault

energy for zero applied stress and for linear misfits e = 0.005, 0.010.

Calculations have also been made for nonzero applied stresses, but the

difference in activation energy is small. For example, in figure 9(iii), an

applied stress of 0.01 G on the cross-slip plane reduces the activation

energies shown by less than 10 percent. Since applied stresses greater

than ~ 0.001 G are unlikely to occur in dispersion-hardened fee. materials,

it seems likely that the applied stress will have little influence on the

cross-slip process. The reason for the relatively small effect due to the

applied stress is that the internal stress from the particle is considerably

greater.

It should be noted that the coordinates selected for the cross-slip

sequence of figure 9 are not those for which maximum constriction

occurs. Thus there is no anomaly in the finite values of activation energy

in figure 9 at stacking fault energies for which figure 6 would predict

complete constriction.

V. Discussion

The experimental observations give (a) some information about the cross-

slip paths (c.f. fig. 5), and (b) about the activation energies involved.

(a) Humphreys (private communication) has examined the loop struc-

tures in a Cu — 20 percent Zn alloy, sectioned normal to the slip plane

with the slip direction contained in the plane of the foil. The loops are

always less than half the particle diameter high, and the top edge of the

loop is approximately at the same height as the top of the particle. The

' For dislocations on planes close to the equator, the first "easy" step in the cross-slip

sequence also has a high activation energy.
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1 1 I I 1 1 1 1

•002 -004 -006 -008

(iii) p->c Y'^*"

Figure 9. (i), (ii), and (iii) show the activation energies for the first, second, and third cross-

sUp steps, respectively, as a function of stacking fauh energy, for linear misfits e = 0.005

and 6 = 0.010.

loop shapes are therefore in accordance with paths 5(ii) and 5(v). The
size of the loops is also in accord with this mechanism.

(b) It is pointed out by Hirsch and Humphreys [2] that it is difficult to

decide from the experimental evidence whether prismatic loops are

formed as a result of a dislocation bypass mechanism, or by indirect means

e.g., cross-slip of Orowan loops. It is therefore of interest to consider

whether the formation of prismatic loops could account quantitatively

for the observed strain rate. The number of Orowan loops produced per

369-713 OL - 71 - Vol II - 27
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particle per second is given in terms of the plastic strain rate e by (Hirsch

and Humphreys [2], eq 22)

dN 2R .

If the strain rate is to be supportable by prismatic loop formation (i.e.,

if prismatic loops are formed in preference to Orowan loops) then the rate

of cross-sHp must not be less than the rate of Orowan loop formation in

(17), i.e.,

2/? ' 2/? Vifb

-J- exp {-HlkT)^ (18)

where is the activation length, 2/?//* an estimate of the number of

available activation sites, pd is the Debye frequency, and vob//* the

vibration frequency of a dislocation with wavelength /*; k is Boltzmann's

constant and T the absolute temperature.

Assuming vd=10^^s-^, /*~306, (18) reduces to

e< 10i« exp (-HIkT)' (19)

For deformation at room temperature (T— 300 K), with a typical strain

rate of 10~^s~\ equation (19) places an upper limit on the activation

energy of 0.81 eV, or about 0.16 Gb^. For activation energies greater than

this, Orowan loops will be formed before prismatic loops.

From figure 9, with e =0.005, it can be seen that this limiting value

corresponds to y/Gb > 0.0028, 0.0056, 0.0079, respectively, for the first,

second and third cross-slip steps, respectively. It is clear from figure

9(iii) that the rate-determining difficult step is more sensitive to stacking

fault energy than to the misfit, and thus we would expect a transition

between prismatic loop formation and Orowan loop formation as the stack-

ing fault energy is decreased.

There is evidence that such a transition occurs (Humphreys, [13];

Hirsch and Humphreys, [2]; Orowan loops are observed in an aUoy of

Cu — 30 percent Zn containing alumina particles (fig. 10), but the critical

stacking fault energy is < 20 ergs/cm^, in contrast to the value ~ 80 ergs/cm^

suggested by the above theory.

There are however a number of factors which make detailed comparison

with experiment difficult. Firstly, the parameter e for the particles under

observation is not known. Secondly, Orowan loops could first be formed

during the deformation and then subsequently cross-slip, aided possibly

by further Orowan loops formed later and adding to the internal stress,

which is not taken into account in the calculation. The structure ob-

served for the alloys of lowest stacking fault energy consists of Orowan
plus prismatic loops suggesting that this mechanism operates in this
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Figure 10. Orowan loops around alumina particles in a Cu— 30 percent Zn alloy.

case. Thirdly, a considerable time interval (~ 10^ s) elapses between

carrying out the deformation and observing the structures by electron

microscopy at room temperature. In principle therefore Orowan loops

could cross-slip during this time interval at room temperature. However,

after deformation at room temperature, and in the case of Cu containing

silica or alumina particles also after deformation at 77 K, the structures

observed suggest that most of the cross-slip processes occur during the

deformation, although the possibility of perhaps one Orowan loop being

left around the particle and subsequently cross-slipping cannot be ruled

out. Another uncertainty arises from the non-spherical shape of the

particles which introduces deviation from spherical symmetry in the

stress field.

It is also possible that a different mechanism may be responsible, for

low stacking fault energies. It is clear from (12) & (14) that for the operative

mechanisms, the activation energy cannot be less than the sum of the

constriction energies, which for wide dislocation energies can be very

large. It is not likely that refinement of the calculations would reduce the
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constriction energies by the factor of 10 necessary to explain experimental
results. A possible alternative mechanism in such circumstances was
suggested by Fleischer [14]. In this mechanism the 1/6 a [211] partial on
the primary plane can redissociate in the cross-shp plane, forming a

nonplanar configuration, according to

1/6 a[211] 1/6 a[2Tl] + 1/3 a [010]

if the cross-slip is through an obtuse angle, or

1/6 a[211] 1/6 a[Il2] + 1/6 a[ToT]

if the cross-slip occurs through an acute angle; in either case a sessile

dislocation results at the intersection of primary and cross-slip planes.

The dislocation is then pinned, so that the large driving stress of the in-

clusion can be used to constrict the remaining 1/6 a[ 112] primary partial.

At stacking fault energies > 60 ergs/cm- the separations of the partials

in the intermediate configurations are smaller than the total Burgers

vector, so that cross-slip by this mechanism would be indistinguishable

in this case from the mechanisms considered in detail in the previous

sections. However, for lower stacking fault energies it is likely that the

Fleischer mechanism would require an activation energy appreciably

smaller than the mechanisms discussed above.

In conclusion it should be noted that the particle strain field has a

profound effect on the activation energy for cross-slip, that so far the

observations are in qualitative agreement with the theory, but that at

present it appears that cross-slip at the particle is even easier than ex-

pected are the basis of the theory described in this paper.
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Discussion on Paper by M. S. Duesbery and P. B.
Hirsch.

BULLOUGH: Have you allowed for change in line shape, such as bowing

out around the obstacles?

DUESBERY: No, we haven't.

BULLOUGH: This effective stacking fault energy is based on straight

dislocations, then?

DUESBERY: Yes, it is based on the assumption that the partial elements

are straight and parallel. The particles are very large, of the order of

2,000 A in diameter, so that this might not be a bad assumption.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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TO DISLOCATION MOTIONS IN CRYSTALS
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Institut fur Theoretische undAngewandte Physik der Universitdt

Stuttgart, Germany

Thermally activated processes involving dislocations are usually

treated by applying the theory of absolute reaction rates and the string ap-

proximation of dislocations. In the first part of this paper the limits of

validity of these treatments are discussed. A paper of T. Geszti is briefly

reviewed in which it is shown that in processes involving point defects

deviations from the rate theory must be expected if the energy exchange

between defect and lattice waves is slow compared with the average time

between jumps, e.g. if localized or quasi-local vibrations contribute essen-

tially to the defect motion. It is pointed out that the localized modes of

dislocations may also lead to deviations from the rate theory.

In the second part a treatment of the double kink relaxation (Bordoni

relaxation) based on the Kramers-Brinkman diffusion theory of chemical

reactions is given. After showing that in f.c.c. metals the influence of the

Peierls potential is so small that on dislocation loops only one kink pair

must be considered explicitly whereas the remaining parts of the loops

may be described by the string approximations, diffusion equations for the

loop motion are derived. Under certain conditions these equations are

equivalent to a system of reaction rate equations. Exact solutions of this

system are not yet available. However, the behaviour of dislocation loops

in the amplitude independent region of internal friction measurements

may be extrapolated combining results of two limiting cases: a double

well model and a simplified multi-well model.

The relaxation strength and the preexponential factor of the relaxation

time calculated have the same orders of magnitude as in measurements of

the Bordoni peak. The loop length dependence of the damping peak is in

good agreement with neutron-irradiation measurements. The charac-

teristic half-width of the Bordoni peak may partly be explained using loop

length and stress distributions.

Key words: Bordoni-peaks; dislocation motion; kink relaxation; mechanical properties;

thermal activation.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloujih,

Eds. (Nat. Bur. Stand. (U.S.), Spec, f^ubl. .317, II, 1970).
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I. Introduction

The plastic behaviour of crystals is to a considerable extent determined

by thermally activated processes involving dislocations. These processes

are mostly treated by applying the theory of absolute reaction rates and

the string approximation of dislocation. The purpose of this paper is to

discuss the limits of vaHdity of these treatments with a view of more

recent developments both in the theory of thermally activated processes

and in dislocation dynamics.

As an example for the application of the Kramers-Brinkman diffusion

theory of chemical reactions to dislocation problems a treatment of double

kink relaxation (Bordoni relaxation) will be briefly reviewed.

II. Theories of Thermally Activated Processes

The theory of thermally activated processes was originally elaborated

for chemical reactions. The well-known "transition state theory" has

been developed for defects in crystals by Vineyard [1]. In this theory the

transition of a crystal in an atomic jump process from a stable equiHbrium

state i in A^-dimensional configuration space to another one j over a single

saddle-point S is considered. The jumping rate Vij from potential weU i

to j is calculated as the one-sided current going out from weU i, directed

perpendicular to the hypersurface S/j in the configurational space dividing

well i from j. Equilibrium distribution functions are assumed in the

potential well and at the saddle-point. Employing the theory of smaU
oscillations in the high temperature approximation leads to the well-known

expression for the jumping rate:

\i=i I 1=1 '

A(f) is the potential energy difference between the saddle-point and the

ground state i • vi are the eigen frequencies in the ground state, vl the

eigen frequencies in the activated state.

Equation (1) is frequently applied to thermal activated motion of dis-

locations, assuming plausible values for the jump frequency p^n-

Granato et al. [2] have actually calculated the effective jump frequency

i^eff in (1) for different obstacles. The eigen-frequencies of both states were

determined in the framework of the vibrating string model.

The applicability of the transition state theory is limited since Brownian

motion in the saddle-point region and deviations from equilibrium dis-
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tribution functions may occur. This contradicts the assumptions of the

transition state theory. In the case of point defects the situation has been

clarified by Geszti [3] in a thorough investigation.

Geszti points out that loss of energy and loss of momentum are two

entirely different aspects of defect motion. He finds that in hopping proc-

esses (characterized by an activation energy A(/) $> kT) the basic dissipa-

tion process is that of momentum. This process occurs during the jump of

the defect over the barrier by turning from directed motion on the barrier

into irregular oscillation around the reached equilibrium state. The loss of

momentum takes place within a time tp much shorter than the meantime

between two jumps over the barrier, i.e.,

(2)

^pis of the order of a few lattice vibration periods, i.e., tp^ o)~^ (co£)= Debye

frequency).

For the loss of energy two limiting cases can be distinguished:

(a) the case of fast thermaUzation, where extreme (jumping) energy

values are created by random phase-coincidence of the normal modes

and are destroyed within a time r ~ ((Oo) ~^ as short as tp. This mechanism

has been investigated by Rice [4]. It is in this case that the predictions of

rate theory are fully realized.

(b) a case of low thermalization, where localized or quasi-local vibra-

tions give contributions to the motion of the defect comparable with that

of all the non-localized modes. The intrawell thermalization of the defect

is dominated by a quantity slowly varying with respect to tp (say, the energy

of the local or quasi-local vibration). In this case deviations from the

rate theory must be expected. A treatment of this case has been given

by Prigogine and Bak [5].

In order to check the applicability of the transition state theory to dis-

locations one has to investigate the mechanisms of energy exchange

between dislocation and lattice.

The situation is rather transparent in the case of the double kink re-

laxation process since kinks have only one degree of freedom and their

mass and viscosity are rather well-defined quantities if one excludes the

double kink creation proper. As pointed out by Seeger and Schiller [6],

the rate theory may in this case be replaced by Kramers' [7] respectively

Brinkman's [8] diffusion theory.

In the case of depinning from point obstacles more recent results of

dislocation dynamics should be considered. Different authors have found

localized normal modes for infinitely long screw and edge dislocations
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[9-11]. Besides resonance modes for screw dislocations exist. It may be

possible that these modes, modified by the finite loop length, give rise to

deviations from the transition state theory.

III. Application of Kramers' Diffusion Theory to the Double Kink
Relaxation Process

III.l. Properties of dislocation loops in the Peierls potential

A. Equilibrium Configuration

We consider a pinned dislocation loop in the Peierls potential and de-

scribe it by the distance between the pinning points L ("loop length"),

the angle ^ to a close-packed direction and by the applied (constant)

stress di. For loops that have a tangent to a close-packed direction several

equiUbrium configurations exist. It is only these loops that are capable of

taking part in the double kink relaxation process. This process has been

proposed for the interpretation of the Bordoni peak by Seeger [12]. The
static equiUbrium of a dislocation loop is best discussed by means of an

energy diagram used by Alefeld [17] showing the loop energy versus the

area F swept over by the bowing dislocation. Figure lb gives the special

case of vanishing internal stresses and absence of geometric kinks

(crj = 0, (^ = 0). The energy increases in portions of 2Wk. Calculations for

a dislocation in copper show (see fig. la) that the mutual attraction between

the kinks of a created pair plays a negligible role beyond a distance of

1.5 w {w= km\i width). Therefore a long plateau in the diagram exists.

Kinks at the ends of the loop are pushed aside when a new pair is created

leading to an increase of the energy at the end of the plateau. By applying

a stress the energy diagram is tilted to one side.

The first two energy troughs become equally deep when the condition

ahL(T= 2Wu (2)

is fulfilled (a= distance between Peierls valleys, b = Burgers vector). For

stronger stresses cr always two or more troughs on nearly the same energy

level exist. Figure 2 illustrates this situation. On the dislocation loop three

regions may be distinguished then. In region I the kinks coalesce, in region

II they are well distinct and in region III the dislocation runs along a

close-packed direction. The parabolic rise of the lowest trough energies

is caused by an increase of the elastic line energy. For the treatment of

the double kink relaxation this increase, the length Lm and the area AF
between the two energetically most favourable configurations must be

determined.
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Figure 2. Tilted energy diagram for a dislocation under stress.
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In fee metals the kinks eoalesee already at low kink densities since the

Peierls energy is low compared with the elastic line energy. The kink

width of a single kink is given by the expression (G= shear modulus)

w _ Gb-g

a ^ 2W,
-35. (3)

Thus very few kinks are fully distinct on a loop and one may neglect

region II. In region I the string approximation may be appHed. Variation

of the elastic energy to the number of double kinks and simultaneous

consideration of the equilibrium condition

(Tb =
R (4)

(5(i//) = line energy dependent on dislocation character, i? = radius of

curvature) yields values for AF and Lm. We quote only interpolation

formulae which are valid for all amounts of bowing out:

Lni= L; AF=—
vcr 2

1 + ; V- ah ' L. (5)

B. Non-Equilibrium Configurations

In internal friction measurements transitions between equilibrium con-

figurations are induced. In these, the loops must run through different

non-equilibrium configurations. Figure 3 shows several such configura-

tions. In (a) an unrealistic configuration in the pure kink picture is given.

A description of this loop would require a variable number of kink coordi-

nates. In the kink chain on the left side a double kink has been created.

This pair cannot contribute to the relaxation strength because it must

vanish in separating. Creation of kinks in this region brings about only

fluctuations of the dislocation around its equilibrium configuration. The

remaining deviations from the equilibrium position in (a) require high

energies and therefore are rather improbable. We assume that transitions

between equiUbrium positions take place by the lowest deviation possible:

the action of only one kink pair. This is justified by the fact that the thermal

energy kT is small compared with the elastic line energy (Gb'^a) in the vicin-

ity of the Bordoni peak and therefore only small fluctuations in position

occur for not too high loop lengths [L < lO'^a). The process of bowing out

looks then as follows: in one direction a kink pair is created and separated

by stress to the loop ends before the next pair is created. In the reverse

direction the kinks in the pair created last separate from the loop ends
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e)

Figure 3. Non-equilibrium configurations of a dislocation.

and diffuse towards each other until the pair collapses. Only after this

the next pair separates from the loop ends. Figure 3 shows an energetically

less favourable transition (activation energy 4SrA ) by means of two simul-

taneously moving double kinks.

III. 2. Diffusion model of double-kink relaxation

The motion of kinks along a dislocation Hne may be treated as one-

dimensional diffusion of particles. Consider a dislocation containing only

one kink pair. If andx-z are the kink coordinates and rrik the kink mass,

the following equations of motion may be set up:

^^m,Xi = K-^Xi{t); ^ ^ m,X2 =- K-hX2{t) . (6)
at at

The force K is defined by the relation K= d<t){r)ldr and consists of the

attraction between the two kinks and a contribution due to stresses acting

on the dislocation. Xi{t) is a statistical force due to the interaction of the

ith kink with lattice vibrations and gives rise to a Brownian motion of the

kinks. Starting from the above equations of motion (6) one may derive

an equation for the distribution function g{x\ , xz, Pi, Pi, t) in phase space

following Kramers [7].

The statistical force Xi{t) is characterized by a relaxation time ta

= ^a/i7a (t^a = kink viscosity) which is a measure for the decrease of

directed motion. Since ta is short compared with oscillation periods

applied in internal friction measurements in the interesting temperature
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range (ta:= lO-^*^— lO-^^s) Kramer's diffusion equation may be replaced

by an equation in coordinate space which is known as Smoluchowski's

equation. Introducing the coordinates

r=X2—Xi, q= Xi-\- X2

and the density in coordinate space

r+oo

p(q, r, 0 = g (g, r, p\ pr) dpdpr
J -X

this equation takes the form of an equation of continuity in the q, r-plane:

The components of the current density j are given by the following

expressions:

. _ 2kT dp

(8)

dq

2kT dp^ 2 .

t7a- or 17 a-

The first terms represent ordinary diffusion currents, the second term

in jr describes the convection of kinks in the field of force K{r). Since

the kinks move within the distance L between pinning-points and kink

creation is probable only in one direction, eq (8) has to be solved in a region

in the q, r-plane limited by the straight lines r= L — q and r= 0. The

component of the current normal to the boundary must vanish. Another

form of the diffusion equation is obtained by integrating over the co-

ordinate q. Defining a density function

p{r,t) =
I

p{q,r,t)dq
J q=-L + r

and an integral flux in r-direction

Jiryt) = I jr(q,r,t)dq,
J q=-L+r
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one gets an extended equation of continuity from eq (7):

fe+|^= 20VU=,,-r+>U-,.+r). (9)
at dr

For the current J the following expression holds:

y(r,0=-—~+ J/^(r)p(r,0
Vk dr Vk

2kT
{p{q. r)

I
q=L-r-^piq, r)

\
q=-L + r). (10)

The concept of diffusing particles breaks down at r= 0, since then the

kink properties {mk, r]ki r) become ill-defined. A simple model may be

employed here.

If a loop is bowed out by the creation of several double kinks some ideali-

zation is necessary since the motion of both the kink pair and the loop

ends must be taken into account. We assume that the kink pair entirely

separates before the loop ends begin to glide. Suitable coordinates instead

of Xi and x-z are the areas under the loop ends reckoned from the centre

of the loop. The calculation runs on similar lines as in the case of one kink

pair. The diffusion region takes a different shape as shown in figure 4.

Figure 4. Region of diffusion for bowed-out dislocation.

For illustration the loop configurations for five points in the q\ /-plane

have been sketched. Configuration 1, 2, and 3 are symmetric ones, the

others are unsymmetric. The cordinate q' is a measure for the shift of

the loop to one side.
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III. 3. A multiple well model of double kink relaxation

Equation (9) and the corresponding equation for loops with several

double kinks describe the anelastic behaviour of dislocation loops. A
stress-strain-relation is obtained in principle by solving these equations

for a given stress cr(t) as function of time and using the solutions p(r, t)

to calculate a mean anelastic strain by averaging over r.

An exact solution of Smoluchowski's equation is available if the following

three conditions are fuUfilled:

(1) ahL(Ti>2Wu

(2) (TalcTi < 1

(3) 2Wu>kT.

In the vicinity of the Bordoni peak we have 2Wk ~ 9kT. Condition (1)

ensures that several wells of comparable depth exist, condition (2) has

the effect that the well character of the potential is only shghtly altered by

the applied stress da- Condition (3) is necessary for the application of

an approximate method due to Brinkman [8].

A. Derivation of Rate Equations

Starting-point of Brinkman's method is the current J of eq (10), which

may be written in the form

Multiplying by exp [(})lkT] and integrating over the potential ridge yields

{^o= kTlab(T)

fL-io , 2kT ^-^0 2kT r^-^o

Jo r\k r=o 'r)k Jo

The main contribution to the integral on the left-hand side is given by the

region near to the top of the barrier (S12). Since on the top the current

7

is nearly independent of r (owing to low density values and the validity of

eq (9)). J may be taken out of the integral

Jo Js^2
(11)



ENGELKE 1147

Assuming Boltzmann distributions for p{q, r) in the potential wells the

current J may be calculated. By introduction of the occupation numbers

ni = I p{r)dr and 1x2=
\

p{r)dr
Jr=0 Jr=1.5w

eq (11) takes the form of a rate equation:

y=— ^i = ri2?ii — r2i;i2. (i2a)

For loops with several double kinks one gets a system of rate equations:

~fi\—Ji, /+i —Ji-\,i

J -r n r n
(12b)

Ji,i+i — ^ 1,1+1^1 — 1 i+i,ini+i.

The jumping rates are defined by the following expressions

^"=f/(/,(-r)'-'-I/-).
£<.=—

aba

Explicit forms are

I12 — lo-e^-e
i-T^ , 1 21 = 1 0 •

• e-;;:^ ,

VQa

2a' e

77-17 A-

2/3 x;

369-713 OL - 71 - Vol II - 28
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a^=2, 31 • 2r,>^ /3^=0, 33 • 2r./^.^ X=
"'"^^

avTrkT vo=1.5 abw

g7 . e f<T

1+
TTabLiiicr'

AT

1 0
—

7717 A- (-+-V

TTabcr'

avTrkT

The jumping rates r,j are functions of the curvatures a and j8 of the poten-

tial curve (see fig. 1). The factor e'^(y ^?>I^it) describes the variation of

the oscillation entropy of the dislocation by double kink creation. cTww

is a parameter (having the dimension of a stress) which describes the

interaction of the kinks of the same sign at the loop ends.

The system of eqs (12) may be written in matrix form

A'n + h = 0, (13)

where n is the m-dimensional vector of occupation numbers (n = {ni,

n2 . . . rim}) and the square matrix A contains the jumping rates Fjj.

B. Solution of the Rate Equations for Low External Stresses

We restrict ourselves to the linear anelastic response of the loops to

an external stress CTa. Requiring that
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we may expand the matrix A(o-) at (7= crj(cr= o-j-l- era) ,
retaining only

the Hnear term in o-q:

A=Ao+AA, (AA~t;cra).

The ansatz

n= no+ An

leads to the following inhomogeneous linear system of differential equa-

tions (a second order term is neglected)

Ao • An + Ah= — AA • no, (14)

where no solves the equations

Aono+ no= 0. (15)

Solutions of eq (15) are of the form

noK-=Vk'exp [— ^/n], A:= 0, 1, 2 . . . m — l.

Tk are eigenvalues of the corresponding eigen-equation

(Ao-- J) •r/=0. (16)
T

The vectors yja form a complete set of eigen-functions, with which the

solution of eq (14) may be constructed. For a periodic stress crn = croo ' exp

[i(t)t] one obtains

. AA • no ^ ,

At long times after switching on the external stress no is given by a solu-

tion of the static equation Ao • no= 0.

Eigenfunctions for the exact matrix Ao in which the parabolic increase

of the loop energy (see fig. 2) is taken into account are not available yet.

Figure 5 illustrates under which simplying conditions the problem could

be solved. The main contribution to the relaxatiojri strength comes from

the wells with the highest occupation numbers (in the centre of model A).

This situation may be roughly approximated by taking all jumping rates

equal (Fij^r) and determining a suitable number m of potential wells

(model B). This number is estimated in model D by distinguishing only
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LrmjiJTJiJiJTJTJiJij^

. ® u
®

1

Figure 5. Different multi-well models (schematic).

two jumping rates (Fi and F2). Equation (16) could be solved for models

B, C, and D in closed form (B is a special case of D). The double well model

C gives nearly the same information as model B if only the solution with

the lowest eigenvalue ta is taken into account.

The resolved anelastic strain may be calculated from solutions An(f)

by the following relation:

m _

Aeanei= 6 ^F,'l^nu (18)
1=1

where F \ ^ F= — 2kTlb(T\ for neighbouring wells. The logarithmic

decrement 8 is given by the expression

^el

In the case of model B(r,j=r) one obtains for the relaxation times ta-

and the decrement 6:

TA-=1/ 2 1-cos
TTk

m TT-'k-^ r

r{m = 2) = ll2Y

for
irk

m

and

<^1; (20)

{k' odd integer number). (21)
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Thus the decrement is proportional to a sum of Lorentzian peaks. For the

weighting factor gmk ' approximately the following expression holds:

^-"''^^ fo-- ^'«l=^-=i- (22)

The main contribution to the relaxation strength is given by the lowest

mode (A;' = l). For example, gyn^=\l21 gm\. We therefore neglect all

modes but the lowest.

An estimate of the number of considered wells m leads to the following

relation:

kT L

For a maximal length Lmax=10^«. a temperature T^ax—^^^ K and

G6^a= 4.26 eV an upper limit of the number wells is obtained: /Mmax = 22.

III.4. Numerical results for the double-well model

A. Relaxation Time

In figure 6 the relaxation time T{m= 2) is plotted in a logarithmic scale

as a function of l/T for different loop lengths. The preexponential of r

10-5

10-7

XjO XJO90 ap TP 60 55 50 t,^ ^T\^l
i5~^ f5 20 t>^T

Figure 6. Relaxation time as a function of temperature in the double-well case

(parameter is the loop length L).
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turns out to be of the same order of magnitude as those measured although

no adaptable parameter is involved. This must be considered a success

of our diffusion model. The relaxation time is approximately proportional

to the loop length. Therefore the Bordoni peak shifts to slightly lower

temperatures by shortening of the loops (on account of the maximum
condition o)T{Tjnax) = !)•

B. Relaxation Strength

The relaxation strength of the double kink relaxation may be estimated

by assuming plausible values for the dislocation density, the fraction of

loops capable of relaxation and a mean loop length. The double-w^eU

model yields values for the relaxation strength that are lower than experi-

mental values by a factor of about 40. This difference is reduced in a

multi-well model when the reasonable assumption is made that about

ten wells participate (m=10).

C. Half Width of the Damping Peak

Since the relaxation time depends on loop length and stress a broaden-

ing of the damping peak is to be expected when distribution functions for

these variables are assumed.

The following distribution function was employed:

n{Lr(Ti)dLdai= ^-e -jA— e - dLdcn. (23)A V277Aor

Here n{L, (ji)dLdai is the number of loops with lengths between L and

L-\-dL and under a stress in the interval (t,, cr, + £/cr/. C is a constant of

normalization, A is the mean loop length. Act is the spread of the internal

stresses.

It is reasonable to allow only for those loops that cannot act as disloca-

tion sources, i.e., whose length is lower than the critical Frank-Read-length

L<Lcr = 2S/6o-/.

Figure 7 gives experimental and caluclated values of the half-width as a

function of l/Tm (i.e., a frequency scale !). The filled circles represent

Bordoni peak measurements collected by Niblett [13]. The other data

represent peaks calculated with the distribution function eq (23)

(A -0.5 /Ltm, AO-/G-10-4).
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Figure 7 shows that the calculated values exceed that of a simple relaxa-

tion process (line parallel to the l/Tm axis) but that the broadening is not

sufficient to explain the full width of measured Bordoni peaks. Further

reasons for broadening may be involved.

Figure 7. Half-width lITm—^-ITt of measured (#) and calculated (other symbols) Bordoni

peaks plotted against lITm (I'm = peak temperature, r2 = temperature ( >Tm) at which

the damping is half the maximum value).
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D. Frequency Dependence of the Relaxation Strength

Figure 8 shows the behaviour of a calculated peak due to a variation

of the frequency. The peak height is seen to decrease with frequency,

as has been observed in copper [14] but not in silver, gold, palladium,

and platinum [15],

Figure 9 gives results obtained with the double-weU model. The spread

Act of internal stresses and the frequency were taken constant and only

the mean loop length A was altered. An outstanding property of the peaks

is a simultaneous decrease of the height and a shift to lower temperatures

with decreasing loop length.

The peaks were calculated for comparison with a neutron-irradiation

experiment on copper carried out by Thompson [16]. Figure 10 shows

Thompson's results. The upper curve is measured after a 12 percent

plastic strain, the second after an anneal of 24 hr at 150 °C and the others

after different doses of irradiation. The mean loop length was determined

E. Loop Length Dependence

s

X*200

Q2'

2

3

60 70 80 90 no tn 120 130

Figure 9. Calculated damping peaks for various mean loop lengths:

\ = Mw; Ao-= lO-^'G, 2^^ = 0.115 eV v= 1.6 10^ Hz (double-well model).
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Figure 10. Variation of the Bordoni peak with increasing neutron-irradiation dose

measured by Thompson [16].

-02 -04 -0.6 -aa -!0 -12 -W

G2 04 ae ojb w ^-jfci.

Figure 11. Comparison of loop-length dependence.
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for each peak from modulus and decrement measurements at tempera-

tures (r~ 190 K) far above the Bordoni peak by means of the Granato-

Liicke-model. This permits a quantitative comparison between model

and experiment of the loop length dependence.

In figure 11a the relative decrease of the height of the Bordoni peak

with increasing dose is plotted against the relative variation of the mean
loop length. For small doses the peak height decreases approximately

proportional to A^, for larger doses proportional to A" where the exponent n

lies between one and two. A clear decision is not possible because of the

differences occuring between modulus and decrement values for the loop

length. The solid line represents results for the double-well model

(^max~200 w). The exponent n is near to one for A = 200 w and in-

creases with decreasing loop length. In the multi-well model fuU agreement

may be expected since the weighting factor gmi is nearly proportional to A.

In figure lib the peak temperature Tm is plotted as a function of relative

loop length. The calculated shift of Tm agrees rather well with Thompson's

results.

Summarizing one may say that the derived diffusion model is able to

describe the loop length dependence of the Bordoni peak rather quan-

titatively. The characteristic half-width of the peak is only partly ex-

plained, however. The influence of other causes as for example the

splitting of dislocations can therefore not be excluded.
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SLIGHTLY DISSOCIATED DISLOCATIONS
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A modified Peierls-Nabarro model is used to calculate the relation

between the separation of partials and stacking fault energy for an ideal-

ized dislocation dissociated into two equal pure screw partials. The result-

ing expression agrees with the inverse dependence obtained by equating

the elastic repulsion of the partials to the attraction of the stacking fault,

but unlike that result does not break down at zero separation. Also an ar-

gument is given that the width of such a dissociated dislocation should be

considered as a complex quantity, with the imaginary part corresponding

to the separation of the partials.

Key words: Dislocation stacking faults; Peierls-Nabarro mode.

An inverse dependence on stacking fault energy of the separation of

partials in a dissociated dislocation, while reasonable for large separa-

tions, is highly questionable when the separation is less than a few lattice

spacings as in a dissociation model for low temperature flow stress of

bcc metals [1]. The present note discusses some of the problems of

slightly dissociated dislocations in terms of a Peierls-Nabarro model in

the Foreman [2] modification applied to a screw dislocation dissociated

into screw partials on one plane. While such a model is inadequate to

describe the complex multiplanar dissociation presumed for a bcc screw

dislocation, it does give the interesting result that the partials recombine

at a definite stacking fault energy. In an earlier communication [3] it

was shown for the Peierls barrier problem, assuming the dislocation con-

figuration is known as an analytical displacement function U {x) , that

partial separation is defined better as the separation of the poles of

dU/dx nearest the partials in the complex coordinate plane than as the

separation of the maxima of dUjdx on the real coordinate axis, due to the

mutual distortion of the partials for slight dissociation. It will now be

argued that the pole definition is also preferable for the multiplanar

dissociation problem.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, H, 1970).
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Assume an analytical displacement function

appropriate for a Peierls-Nabarro model of a dissociated dislocation,

which will be constructed later. Here b is the magnitude of the Burgers

vector and a> is the width of each partial. Width is also defined better in

terms of the poles than in terms of the configuration, due to the mutual

distortion of the partials for slight dissociation. For now, observe that the

dislocation is already dissociated by 2o-=2a)/V3 according to the pole

definition before there is any dissociation according to the maxima

definition. This may explain the paradox of an apparently undissociated

sessile b.c.c. screw dislocation in the computer model of Gehlen, Rosenfield

and Hahn [4]. If indeed the explanation lies in their use of an inappropriate

definition for dissociation, then a sessile to glissile transformation should

occur in their computer model upon increasing the stacking fault energy

on the possible dissociation planes.

A self-consistent Peierls-Nabarro model for a dissociated screw dislo-

cation can be obtained from (1) by reversing the usual approach. Consider

now the displacement function U (x) as known and the misfit shear stress

function

rrrr/ f dU {x ) /dx' ,
,

as unknown, where fju is the shear modulus and the principal value of the

integral is understood [5]. While the direct approach required solution

of a nonlinear integral equation, the reverse approach requires mere

integration to obtain

/[!/(.)] =-f^{-rrr^+-TTF^l (3)

Since U (x) has an inverse on —6/4 < U < 6/4, the function f{U) can be

obtained from (3) by substitution. However, it will be more convenient to

keep X as the independent variable for the final two steps of the present

argument.

The first step is to satisfy Hooke's law in shear

a (4)
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for the small strain at 2U= ±bl2, where a is the vertical spacing between

the elastic media above and below the slip plane, and where 2U is the

relative displacement of the media. For large x the chain rule, with

(1) and (3), gives

^= 9- (5)

The second step is to obtain the stacking fault energy y of the model

from the misfit energy density vix). This is obtained by integrating the

misfit shear stress function/over the relative displacement 2U

v{x)=-2j'nU{x)]^^dx, (6)

which gives

v{x) =—— ^

,
tan~^ [(jc + cr)/(o] — tan-^ [(%— o-)/aj]

1-
(7)

The first two terms can be identified with the misfit energy density due

to the two partials and the remainder with the misfit energy density due

to the stacking fault. The remainder at jc= 0 is taken as the stacking fault

energy of the model

_ fjib'^ tan~^ (cr/o))

(8)

For a> oj this agrees with the result obtained by equating the elastic

repulsion of two parallel screw dislocations of Burgers vectors b/2 to the

attraction of the stacking fault, but unlike that result (8) does not break

down at (j= 0. Rather there is a definite recombination stacking fault

energy

y"=i^, (9)
47r-a ^

'

which for an f.c.c. lattice is 0.031 This recombination stacking fault

energy is about midway between the 0.056 6 obtained by Seeger [6],

and the 0.013 /x6 obtained by Duncan and Kuhlman-Wilsdorf [7].
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It was asserted above that width and separation are better defined in

terms of the location iw±cr of the poles nearest the real axis of the

function dUldx rather than in terms of the configuration U{x). This can

be illustrated in a two-harmonic Frenkel-Kontorova model described [3]

earlier, in which the configuration is

U{x)=2tan-' [sinh {axl2)la], (10)

and the lattice mesh is h. For this model the Peierls barrier was found

to be proportional to

exp (-7r//Q:){cos 0+ {a/1) [sin 0/sinh (aOH)]}, (11)

where l=2'7T/h and 6= (2/ cosh"' a)la. Actually it is not the poles in

dU/dx which determine the barrier but the similarly located poles in the

misfit energy density. The Peierls barrier is proportional to the lattice

periodic component of the Fourier integral of the misfit energy density

in the slip plane [8]. It is the evaluation of the factor exp {2mxlh) of the

Fourier integrand at the poles of the misfit energy density function that

gives the result (11). To define the dislocation width w in lattice units h

so it is proportional to the common distance 0} = 7rla of the poles from the

real axis makes more sense than to define width / in lattice units so it is

inversely proportional to the slope of the dislocation at its center since

this latter definition becomes unreasonable on splitting. If w and / are to

agree for a=l when there is no splitting, then w and / are related by

w= lla. If additionally the separation s of the partials is taken to be the

separation of the poles in lattice units, then in terms of w and s expression

(11) becomes

exp (— TTZ*;) {cos (tts) + {l/w)[sin (7r5)/sinh (ttsIw)]}. (12)

The cosine term in (12) can be obtained by a simple argument that assumes

each partial moves in a quasi-Peierls potential [3]. When this term dom-

inates the other term in the brackets, the Peierls barrier can be viewed

formally as proportional to the real part of an exponential exp {—7r[w-\- is]

)

of a complex dislocation width, which incorporates partial separation as

its imaginary part. The real and imaginary parts of dislocation width have

often been confused in the assumption that any increase in dislocation

width lowers the Peierls barrier.
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Discussion on Papers by H. Engelke and R. Hobart.

SEEGER: Could we divide the discussion first between the general aspects

of thermally activated processes— such as questions of thermalization,

validity of rate theories, diffusion theories, etc. — which were discussed

in the beginning, and then the more specialized questions connected

with the applications to Bordoni relaxation?

THOMSON: A few years ago we worked on much of the same material

concerning the Peierls energy kink nucleation problem, and I am just

wondering about something which came up at the time. Much has been

said about how the system goes through the saddle point configuration

and whether this is or is not in equilibrium. I gather that the assumption

is usually stated that the time one stays in this activated state is small

compared to the various times for collision processes going on during

that activated state. I have been puzzled by this, because it seems to me
that if one has an ensemble then this is taken care of automatically. If

the entire system is in equilibrium presumably there are a number of

dislocations and a number of activated processes in the lifetime of the

experiment, and the requirement is stated in terms of the equilibrium of

the entire ensemble. Then one does not have to talk about the time

between various types of collisions during any given activated state. I

wonder if I could ask the authors what their opinion of this is.

SEEGER: May I give my personal opinion, because I have been discussing

these questions with my collaborators. The point that Professor Thom-

son raised is right when he speaks about the application of statistical

mechanics as a whole. I think it is quite true that these processes are in-

cluded. If you would give an exact treatment based on statistical

mechanics this problem would not arise. However, I think in the transi-

tion state theory you made a specific assumption saying that as soon as

a representative point reaches a saddle point with an outward velocity,

it will never come back. There you made a specific assumption and this

assumption need not be right, but it has nothing to do with the validity of

the statistical arguments. If you try to avoid this by saying that even if a

particle is over the hill there is still a finite chance of coming back

because of fluctuation— the particle is carrying out a sort of Brownian

motion rather than what you ordinarily think of as a jump process — then

you get into the range of validity of the Kramers-Brinkman theory which

Mr. Engelke was alluding to. It turns out, fortunately, that if the condi-

tions are such that you are uncertain whether one theory or the other is

applicable then both give the same result. So, it's comforting to know

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulioufih,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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that both theories are not only right in their own domains where they are

clearly applicable, but also in between. The transition theory gives the

right result in those cases where there is a slight possibility of the jump
being interrupted, but in the extreme cases where you have a barrier— as

may happen in kink problems— which is thirty or forty atomic distances

wide and fairly low, so that the particle really creeps up slowly and rever-

ses its direction of motion many times, then, I think, the transition state

theory would give you the wrong answer, because you are making an as-

sumption which is patently not fulfilled.

BESHERS: I was going to remark that there are very simple proofs availa-

ble for Professor Thomson's point. Fred Reifs new books on statistical

mechanics ^ make your point quite clear in very elementary derivations.

The applicability is a consequence of the equilibrium of the whole

system.

THOMSON: Part of the reason for bringing my point up is that apparently

it is not uniformly accepted that one can take the point of view I outlined.

SEEGER: But do you agree with the general point I made?

THOMSON: Yes.

ARSENAULT: When you had a plot of decrement versus temperature, you

had various widths of peaks as a function of loop length. Were you con-

sidering that the loop was bowed out to equilibrium position due to some

static stress?

Also, I wanted to raise a related question. When I looked at this problem

sometime ago, one thing that confused me was that if you take a piece of

copper and deformed it to produce the bias stress, you have a large range

of loop lengths and a larger range of bias stresses. That led me to beUeve

that it would be very difficult to get anything that resembled a peak out

of the data as you would have just a huge background.

ENGELKE: I don't know what you mean exactly, but what I have assumed

is a random distribution of loop lengths and, in addition, a normal dis-

tribution of interna] stresses. Using this distribution you get bowed-out

loops if the spread of the stresses is sufficiently large. Stresses play an

essential role in the kink-relaxation process since an appreciable relaxa-

tion strength is produced only if the stresses are high enough

{abL(Ti>2Wk).

ARSENAULT: Let me simplify the question. When the loop goes out to a

bias stress, do you always get the two equihbrium positions almost the

same irrespective of loop lengths?

' Reif, F., Fundamentals of Statistics and Thermal Physics (McGraw-Hill Book Co., New
York, 1965), pp. 202-203, and Reif, F., Statistical Physics -Berkeley Physics Course, 5,

(McGraw-Hill Book Co., New York, 1967).
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ENGELKE: Yes.

SEEGER: You could also look at it this way: The activation energy is al-

ways close to that for formation of two kinks. That is the basic process.

What we are talking about are two modifications: One involves a factor

affecting the relaxation strength associated with the process. The other

is that it is not quite true that the activation energy is two times the kink

energy because stresses can help and there is a loop length effect, etc.

This is what Mr. Engelke has been discussing, so he has really been

discussing a modification of the basic idea that the Bordoni energy is

simply the energy to form a kink pair.

BRAILSFORD: I have a question for Mr. Engelke related to Dr. D. O.

Thompson's experiments. As you know, it has always been his thesis

that the Bordoni peak consists of several independent components, cor-

responding to different types of dislocations for example. I was under the

impression that he had shown that if you looked at the modulus defect

change produced by irradiation, the positions of the independent com-

ponents did not move with temperature. The overall shifting of the peak

temperature, according to his interpretation, arises because of changes

in the relative strengths of the various components. This is the main

point of his paper. It appears to be in conflict with your interpretation of

his attenuation data.

ENGELKE: The random loop distribution produces smooth damping

curves, but can only roughly approximate the loop distribution existing

in a real crystal. If you look at the Bordoni peaks measured by Dr.

Thompson you will see various dents. In my opinion these are caused by

different loop distributions. With a random distribution you can only

roughly approximate the existing loop distribution in a crystal.

SEEGER: Perhaps I may try to summarize what the present situation

seems to be? I think the interpretation of Dr. Thompson that all you see

is just going up and down of components cannot be generally true. There

seem to be genuine effects where the loop length comes in, and they

seem to be accounted for by the double kink model if you take

everything properly into account. Of all these what I call secondary ef-

fects, which are not simply described by my original proposal, there is

only one that is left not completely accounted for. That is the peak width,

and, in fact, the width that comes out of the kind of theory that Mr. En-

gelke considered is considerably broader than the single relaxation

width, but it's still too small by a factor of two compared with the mea-

sured width. So, there is room for other modifications like the fact that

dislocations are extended in copper, say, or for using quite different dis-

tributions of dislocations, such as one for screws and one for edges. I
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think it should be left to specific experiments to clear up these final

refinements.

BRAILSFORD: Would you not agree, however, that it is important that we
look not just at the internal friction, but simultaneously at the modulus

defect?

SEEGER: Yes.

BESHERS: I just wanted to say that every picture we have, theoretical and

experimental, of work hardening— including the original Taylor theory—
gives you a non-random distribution of dislocations. That is, we talk

about pile-ups or cell walls and about dislocations which are not in

the pile-ups and not in the cell walls. I have not tried to analyze it myself,

but the resulting distribution must be something that is at least bi-

modal— if .one can give a one parameter analysis — if not more. So, until

you find an experiment which gives you a random distribution of disloca-

tions instead of pile-ups and the resulting cell walls, you just won't be

able to disentangle these two.

SEEGER: This may well be the answer. But it's a challenge to the experi-

mentahst to create conditions where the Bordoni peak is half as wide as

the normal one. Anyway, I still consider the question of peak width as

open.

[Written contribution] In aluminum, Bordoni peaks of approximately

the width corresponding to a single relaxation time with Arrhenius tem-

perature dependence have been observed by Ameen.^

ARSENAULT: This was really my question earlier. It is my feeling it is

hard to conceive of a model or of a dislocation arrangement where

you would get a narrow peak. It seems to me that in any cold worked

block, you would get an infinitely wide peak.

SEEGER: I cannot agree with you about the infinite peak width. We are

really dealing with small corrections to two basic peaks. You see, only

those dislocations contribute which run fairly parallel to one of the close

packed directions. So, the most random aspects of the dislocation dis-

tribution do not contribute. This was one objection against Dr. Thomp-

son's interpretation. He needed at least six peaks, or something like that,

so you would have to invoke not only dislocations running parallel to

[110] directions in fee crystals, but also along [211] directions, and

reasons were not given why the [211] energies were so close to the [110]

energies as to make the peaks overlap. Anyway, I don't think this state-

^ Ameen, D. L., Materials Science Center, Report No. 50 (Cornell University, Ithaca, New
York, 1962), pp. 26-27; Mayadas, A. F., Materials Science Center Report No. 429 (Cornell

University, Ithaca, New York, 1966), p. 37.
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ment of an infinitely wide peak is a fair one; I don't think you would ex-

pect this.

BULLOUGH: With reference to Dr. Hobart's paper, perhaps I could just

refer him to Alan Foreman's Ph. D. thesis which was published in 1954.^

He does both of the problems that you discuss in your paper.

3 Foreman, A. J. E., Ph. D. Thesis (Imperial College, London, 1954).
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Dislocations and other defects in solids broaden sharp resonance lines

in solids, such as spin resonance and optical zero phonon lines. The
broadening is a result of the random strain fields produced, and the shape

of the resonance line is a measure of the distribution of internal strains.

Measurement of line shapes can give information which is different from

that given by the more usual mechanical and transport studies of disloca-

tions. We calculate the shapes of the resonance lines in terms of the pro-

perties of the individual defects which cause broadening, their density and

their statistical distribution. The theory is applied to straight dislocations,

infinitesimal loops, dislocation dipoles and to point defects.

Key words: Line broadening; optical zero phonon line; spin resonance; statistical

methods for dislocations.

Dislocations and other defects in solids often broaden sharp resonance

lines, such as spin resonance lines and optical zero phonon lines. The
broadening is a result of the random strain fields produced, and may give

information additional to that from mechanical and transport studies. We
discuss the calculation of the shapes of these resonance lines in terms of

the properties of the defects which cause the strain fields: the statistical

properties of their distribution, the perturbation fields of the individual

defects, and their concentration. In particular we compare the effects

of straight dislocations, dislocation loops and point defects.

The method we use is the so-called "Statistical Method," and its

essential assumptions are these:

(I) The transition energy of any one of the centres giving rise to the

resonance line shifts linearly with the local strain:

E= Eo+ E'e (1)

where e is a suitable linear combination of the components of the local

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.), Spec. I'ubl. 317, II, 1970).
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strain tensor. Eo is the unperturbed energy and E' is a coupling coefficient.

(II) The contributions of the various defects (dislocations, loops, etc.)

to the local strain e are simply additive

e(2i, 22, . . . zn)= ^ e(2i). (2)

Here Zi ^ (r?, rj,) where r, is the position of the defect with respect to

the centre studied and 17, denotes any relevant internal variables of the

defect (e.g., the axis and Burgers vector for a straight dislocation). Equa-

tion (2) is the assumption of linear elasticity and (1) that of first-order

perturbation theory. We can, of course, bypass the definition of the local

strain, e, by combining (I) and (II) into the assumption that the shift in

transition energy of any centre is simply the sum of contributions from

each defect.

(Ill) The probability of a particular defect configuration, {zi, . . . zn},

in which the positions and internal variables of the defects all have

definite values, is P(zi, . . . zs)dzi . . . cLzn. We assume the individual

defect distributions are independent of one another, so P can be factorised:

P(zi, . . . Zn)=p(zi) . . . p{zn) (3)

This cannot be exact because it allows two defects to occupy the same

site; (3) should, however, hold well at low defect concentrations. The

statistical distribution function, p(z), is closely related to the pair distri-

bution function of the defects causing broadening with respect to the

centres giving rise to the resonance line.

The general method was described in [1]; here we quote the results

for the distribution of e and outline the proof in an appendix. Within the

assumptions (I)-(III) these results are exact.

/(e)-^[" dx'€>-^'e-pJ^'^'> (4a)

where p = NI ^ dzp{z) is the density of defects, and

J{x)=jdzp{z)[l-exp{-ix€{z))]. (4b)

These equations give the distribution of microscopic strain, e, and hence

(by (1)) the line shape, in terms of the strain fields of the individual defects,

6(2), the density of defects, p, and the statistical distribution of defects,

specified by p(z).

In addition to the basic assumptions, outlined above, for the purposes

of this note we have assumed (a) that the host lattice can be treated as

an isotropic elastic continuum (although we may restrict the Burgers
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vectors to specific directions), in that the long-range elasticity theory

forms of e(z) may be used, and (b) that the distribution of defects is

statistically homogeneous. Our calculations will be made for MgO, so

in all cases the Burgers vectors will be in one of the [110] directions; we

usually assume all such directions occur with equal probabilities.

Table. Line shapes and widths for different sources of broadening

Defect Line shape Width A

Nearly Gauss 6a!, VZ
Lorentz

Lorentz ba^Ll

Point Hpfpots Lorentz

Results are summarised in the table for straight dislocations, for

infinitesimal loops with their planes normal to the Burgers vector, for

dislocation dipoles with separation /, and for point defects of strength D.

L is the length of dislocation per unit volume, p the number of point

defects per unit volume and A the area of loops per unit volume. The dis-

tributions of strain are described by reference to the standard shapes:

Lorentz: /(e) ~ (e-eo)-]-^

Gauss: /(e) ~ exp— In 2

A is the full width at half intensity of the distribution, and eo the mean
strain; eo usually proves proportional to some macroscopic parameter,

e.g., the change in lattice parameter for the point defect case.

The constants a have been evaluated for two cases particularly useful

in spin resonance:

eiOO— ^^ZZ ^XX

eiii = e^yH" ey^+ e^;^.

Straight dislocations:

6Q:aoo)^0.99. 10-7cm

6a(ni)^ 0.425. 10-"/cm.

Infinitesimal loops:

6a(^<"»)= 3.6. 10-«/cm'^

64"i)= 2.0. 10-«/cm-^
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Point defects:
Q;aoo)= 10.13

01(4"'^= 5.07.

With these figures the broadening should be significant (A > lO""*) pro-

vided L > 10^ or 106 cm/cm^, A > 10^ or 10^ cm^/cm^ and p > 50 ppm.

Dislocation dipoles are, in practise, always negligible. Note that, contrary

to the usual supposition for random strains, simple Gaussian distributions

never occur.

The predictions for straight dislocations in MgO have been compared

in detail with spin-resonance experiments [1, 4]. The magnitude of the

strain broadening, and the variation of the line shape and line width with

magnetic field orientation are all in good agreement with experiment.

However, the line-shape itself does not agree— theory gives a nearly

Gaussian shape, whereas in MgO Lorentz shapes are observed. This

discrepancy is probably a result of our oversimplification of the actual

dislocation distribution in MgO. The nearly Gaussian shape for broadening

by dislocations has been seen in NaCl [5], where the predictions for

strain broadening by point defects were also verified in detail. No detailed

check of the predictions for broadening by dislocation loops has been

made, although zero-phonon lines in neutron-irradiated MgO appear to

be broadened by this mechanism [6].

In summary we can predict the effects of dislocation and other lattice

imperfections on resonance lines. The predictions, in terms of the indi-

vidual defect perturbation fields, defect densities and defect distributions,

are verified by experiment.

Appendix

The probability that the perturbation e lines between e and e + c?€ is

I{e)de, and may be calculated from equations (1), (2), and (3) without

further physical approximations.

Formally we can write

/(e) =^ / ^ dzip{zi) . . . G?ZArp(2Ar)8{€ — €(zi, 22, . . . zn)}.

The delta function singles out the configurations where e(2i, . . . zn)

has the specific value e; /(e) is simply the fraction of the possible con-

figurations which have this value of e(2i, . . . zn)- The statistical distribu-

tion function, p{z), is normalised by

v= dzp(z).
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Using the spectral representation of the deha function:

we can write

/(e) =^—1"^ dxe^"^^ j dzipizi) ...
I

dzNpizN)

exp [— ijce(zi, . . . zn)

The innermost exponential factorises as a result of (2):

N
exp [— ijce(zi, . . . ZAr)] = J^exp [—ixe{zi)]

1=1

so that

/(e) =^ I"
dxe'^'^ dxp{z) exp [-i:te(2)] |.'

Using the definitions of p and J given in (4b)

which gives (4a) in the limit of large A^.
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Discussion on Paper by A. M. Stoneham.

BENNETT: Recently, Weisman and P extended a nuclear magnetic

resonance technique which turns out to be somewhat better than the

calibrated lineshape method for studying these distributions of strains

from dislocations. This is a technique (first introduced by Solomon in

1958)2 of using pulsed NMR and measuring what is known as the

quadrupolar echo. We have shown that this is a very powerful technique

for measuring the actual distribution of the satellite Unes rather than the

reduction in intensity which is obtained when the satellite lines are too

far out to be measurable as simply a broadening of the central line. So it

would extend the applicability to the study of somewhat higher strains

than the case you have talked about.

STONEHAM: Most of the experiments which have been done have

generally been in spin resonance and optical techniques, and then they

correspond to cases where there are strains in order of, shall we say, one

part in 10,000. Now, the case you are mentioning deals with the situation

where there are defects, generally speaking, closer to the centers than

these which give rise to the resonance line in the spin resonance or opti-

cal cases. Then, the discrete structure of the lattice becomes important

and gives rise to the satellite lines you mention.

ASHCROFT: Are these experiments carried out when the crystal is under

a state of stress?

STONEHAM: No external stress.

ASHCROFT: Can you tell me how you normalize these widths?

STONEHAM: What one needs to know is the coupling coefficient to strain

of the centers you are looking at, in other words, how much the line shifts

per unit strain. This is usually obtained by a separate experiment in

which there is a static external stress of the type you mentioned. In other

words there is an assumption here that response to the local strain is the

same as the response to a uniform stress. That becomes valid at the low

concentration limit which is essential in some of the assumptions I

made.

BULLOUGH: I wondered if you could comment on the possibility of using

these kinds of methods to expose the non-linear strain field of disloca-

tions.

» Weisman, D., and Bennett, L. H., Phys. Rev. 181 , 1341 (1969).

2 Solomon, I., Phys. Rev. 110,61 (1958).

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Biilloufih,
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STONEHAM: I don't know how one would do it simply. What one can do

is to look at the extreme wings of a resonance line. In that case in the low

concentration limit the wings are dominated by the contribution of con-

figurations in which there is, for instance, one dislocation near to

whichever center you are looking at. In that case one should certainly be

able to detect deviations from the simple dependence of the disloca-

tion strain field provided you know something about the distribution of

the dislocations and point defects, for instance if you assume that they

are just randomly distributed. Unfortunately, both the strain field and

the distribution are rather intimately coupled, and it may be difficult to

separate the two effects.

SEEGER: There is also the point that since your Burgers vector is indepen-

dent of the radius unless you are really in the core, the strain, if properly

defined, will always be 1/r unless you get right in the dislocation core.

It's the stress that shows the non-linear deviations and your results are

really sensitive to the strain and not the stress. So the region where your

technique could be expected to show any non-linear effects is extremely

small. It is the dislocation core proper, and not the region where in other

experiments second-order effects could be expected to show up.

MARADUDIN: I would like to address my question to Dr. Stoneham,

although it is prompted also by the question that Professor Ashcroft

asked. In normalizing the widths, presumably one measures the shift in

the center of the line due to an externally imposed strain. But, in fact, the

strain actually acting at the defect site is different from the externally

imposed strain. After all, the force constants about the defect and so

forth are changed, so that in the resonance experiments the strain that

is actually operative is the local strain. Is there any estimate of the dif-

ferences or errors arising from this source?

STONEHAM: There are two points. The first point is that in the case of

broadening by strains there is no need to make any corrections of the na-

ture you have just mentioned, simply because all one is saying is that the

coupling coefficient one measures is the shift in the resonance line per

unit external strain — if one forgets about the changes in lattice con-

stants. When one calculates what the strain broadening is, one also uses

effectively, the formulae for the external strain due to other defects. In

other words one is saying that the corrections due to the changes in local

force constants are the same for the strains due to defects as they are for

the case of the external stress. This is not necessarily a valid assump-

tion, although it becomes increasingly valid at low concentrations when

the more homogeneous strains are the most important ones. In other

cases, though, particularly if you are interested in broadening by internal
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electric fields, then it is essential to take into account some sort of local

field correction. This is often very difficult to calculate, particularly in

nuclear magnetic resonance cases.





DISLOCATION PAIR INTERACTION
IN A FINITE BODY

R. O. Scattergood and U. F. Kocks
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The elastic interaction between dislocations in a finite body shows im-

portant features not found in an infinite body. For example, two like dislo-

cations parallel to the axis of a cylinder repel each other only when they

are close, but attract each other when their distance is comparable to the

cylinder radius. Contours of the pair interaction energy are given for both

screw and edge dislocations in a circular cylinder.

These new features appear not only when free surface conditions are

demanded on the entire body, but even when approximate stress fields are

used that demand some surface tractions, so long as no torques are trans-

mitted through the body.

The relevant torques (bending moments) associated with an edge dislo-

cation in a circular cylinder, which vanish when the mantle is traction

free, may be made to vanish in general by a simple modification of the

stress field of the edge dislocation.

Key words: Dislocation surface; interactions; dislocations; elastic interactions; finite

elasticity.

I. Free Surface Conditions Versus Internal Stress Conditions

Ideally, one might like to know the stress field cr/j of a straight disloca-

tion extending throughout a finite body under free surface conditions,

i.e., so that the tractions '

Ti = (TijTlj = 0 (1)

on every surface element (unit normal nj). In practice, this goal is hard

to achieve and of limited interest. Instead, stress fields of both screw and

edge dislocations have been obtained for long cylinders and for thin plates,

Summation convention. All subscripts go from 1 to 3 unless stated otherwise.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Builough,
Eds. (Nat. Bur. Stand. (U.S.), Spec. Pubi. 317, II, 1970).
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fulfilling free surface conditions on the large surfaces, but not on the end

surfaces of the cylinder or on the rim surface of the plate [1, 2]. Yet

certain averages of the tractions over these small parts of the surface

were made to vanish so that, by Saint Venant's principle [3], their effect

would not penetrate far into the body. These less restrictive boundary

conditions may be called "internal stress conditions."

For example, the torque developed by the simple stress field of a screw

dislocation across any cross section of a cyHnder has commonly been

canceled by the superposition of another stress field without regard to

the fact that both stress fields together do not lead to vanishing surface

tractions on the ends of the cyHnder.

Similarly, one may relax the free surface conditions everywhere, so

long as certain averages of the tractions are zero and the "wavelength"

of their variation is small compared to the specimen dimensions. We have

found that more general boundary conditions Hke this, which are easier

to satisfy than eq (1), often produce essential features of dislocation

stress fields in a finite body. Let us therefore summarize these "internal

stress" conditions, first regarding the "wavelength," then the vanishing

of "certain averages."

For a finite body containing many dislocations, it is often stated that the

surface effects penetrate to a depth comparable to the average dislocation

spacing. It is true that the surface tractions, which would be demanded

by an approximate stress field, would vary with a "wavelength" of the

average dislocation spacing. Such an approximate stress field would there-

fore describe the state of affairs in the bulk of the body, provided the

average of those surface tractions is also zero. This condition may be

obviously satisfied in special cases, such as in a balanced distribution of

positive and negative, but otherwise identical, dislocations. In general,

however, any approximate stress field that limits surface effects to a thin

layer has to satisfy additional conditions.

Consider separating off a part of the body by a plane cut C, whose

unit normal is nj, and let the remaining part of the surface be called S'.

The absence of body forces implies that the area integrals

(2)

On the other hand, "internal stress conditions" demand

(3)

separately. In other words, the average of the surface tractions over S'

must also vanish.

"
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Similarly, the absence of body moments implies

eikiXkTidS = 0 (4)

where Xk is the position vector from the origin and eiki is the permutation

tensor. The first term in eq (4) represents the moments arising from torques

(i.e., twisting and bending moments) being transmitted through the cut.

We may characterize these torques by defining a tensor the torque

tensor, where the component Mij is due to torques taken about the i axis

which are transmitted through planes normal to the j axis. (In general M
will not be symmetrical.) The first term in eq (4) then becomes rijMij.

"Internal stress conditions" demand that these torques also vanish:

Therefore, the second term in eq (4), which is another average of the

surface tractions over S', must also vanish.

Equations (3) and (5) are trivially satisfied under free surface conditions

(eq 1), but they are generally not satisfied if the stress field of a dislocation

in an infinite body is used in the finite body. There are obviously inter-

mediate solutions which satisfy conditions (3) and (5) but not (1).

Consider a cyhndrical body of cross-sectional area A containing a pair

of dislocations parallel to its axis, one at a fixed position and the other

intersecting the cross section at an arbitrary position Xn. Let / be the

energy of interaction between the dislocations, i.e., the energy difference

between the body containing the pair of dislocations and two identical

bodies each containing one of them at corresponding positions. The
average interaction energy

where the integration is taken over all positions Xn on the cross section.

If eq (6) is integrated by parts along the coordinates k in the plane, noting

that / is zero for all positions Xn on the boundary, we obtain

(5)

II. Elastic Interaction Between Dislocations

(6)

(7)
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Let the dislocation at Xn have the Burgers vector bj. The gradient of the

interaction energy is then [4]

where (Tij is the stress field of the fixed dislocation and /i, is a unit vector

along the cylinder axis. Substituting into eq (7) and using eq (5) we find

for an internally stressed body.

Since / vanishes, the energy of interaction for the pair cannot have a

unique sign and so two like (unlike) dislocations will not always repel

(attract) each other. This result is in marked contrast to "infinite body

interaction" where for example one always has two like screw dislocations

repelling and their energy of interaction always positive.

/ will be zero (eq 9) when the component Mij due to torques transmitted

through planes normal to the Burgers vector, taken about an axis along

the dislocation line, is zero. This internal stress condition will be called

the torque condition. Anticipating the results of the next section wherein

we take the stress field for a dislocation in an infinite body and make
corrections to it, eventually building up to a "complete solution" (free

surfaces), the essential features of dislocation interaction appear when
the torque condition alone is satisfied.

In order to illustrate the features of elastic interaction under various

boundary conditions, we shall consider the interaction between a pair of

dislocations lying parallel to the axis of a long circular cylinder of radius

R. Let the z axis coincide with the cylinder axis and let the x and y axes

be in the cylinder cross section. The analysis of the interaction is most

transparent for the case of screw dislocations and we treat this first.

Our approach will consist in taking the stress field for the dislocation in

an infinite medium, make a correction so as to satisfy the torque condition,

and finally make corrections to obtain a complete solution. A comparison

of the interaction energy contours calculated from the various "corrected"

stress fields enables one to see how the interaction is influenced as the

free surface conditions are approached.

ekiiO-ijbjTii (8)

III. Dislocation Interaction in Circular Cylinders

III. 1. Screw dislocations

/ will be zero when the Mzz component of the torque tensor is zero, or

in other words when no twisting torque is transmitted through the cross
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section. (The twisting effect associated with a screw dislocation in a

cyHnder is well known [1, 2].) The torque condition can be satisfied by

adding (we assume linear elasticity and small strains) to the infinite body

stress (Tdz a stress cr^^ which is proportional to the distance from the

cylinder axis, the proportionality constant being determined by Mzz= 0.

A complete solution is obtained by then adding a stress cr^^ which cancels

the traction over the mantle (cylindrical surface) of the cylinder. This

latter stress corresponds to the stress field of an image dislocation. The

complete stress field is in equilibrium; therefore by Saint Venant's

principle [3] we can ignore any effects due to the free surface condition

on the ends of the cylinder.

Figures la, lb, and Ic show contours of the interaction energy calculated

from the complete, torque corrected, and infinite body stress fields,

respectively.^ The interaction under infinite body stress is quite distinct

from the true interaction, but when the torque condition is satisfied aU

the essential features of the interaction appear. One can see that in a

finite body the interaction energy does indeed change sign, and it is

apparent from either figure la or lb that the interaction force must also

be zero for certain configurations. An extensive set of contours for the

interaction energy and the radial component of the interaction force

between a pair of screw dislocations in a cylinder was given in a previous

paper using the complete solution for the stress field [5]

.

III. 2. Edge dislocations

The relevant components of the torque tensor for edge dislocations

with Burgers vectors along the x or y axes are M^x and M^y, respectively.

These components are due to the bending torques, taken about the z

axis, which are transmitted through planes normal to the x and y axes,

respectively. When the tractions on the mantle vanish, Mzx and M^y
clearly must vanish. This is in contrast to the case of screws where the

free surface and torque conditions were independent (section III. 1).

Since the torques due to an edge dislocation have usually been ignored

in the past, we shall treat them in detail at this point.

The following two identities are required; these can be verified with

Gauss's theorem in the plane'^

^Interaction energies were determined by the usual method [1] of integrating the appro-

priate stress components of the fixed dislocation over a "cut." When the mantle is not a free

surface, this method must be considered an approximation since we ignore the work done

by surface tractions. For consistency all cuts were parallel to the y axis.

^The bracketed index means no summation.
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Xii)(JijdS =
^j^

xfTjds (10)

J
{Xi(Tjn-\-Xn(Jij)dS = ^^XiXnTjds (11)

where the closed curve C bounds a region A in the plane, and nk{Tj=(Tjknk)

is the unit normal to a given element of C. When the cyhnder is circular,

one can show

where v is Poisson's ratio and we have assumed plane strain conditions.

Thus for the special case of edges in circular cyUnders, the torque con-

dition can be stated in terms of the vanishing of the bending torques Mxz
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and Myz which are transmitted through the cyhnder cross section. It is

clear that these kinds of torques must arise from the (Tzz — v{axx-^(Tyy)

component of the stress.

The only mention of the torques associated with edge dislocations

appears to be a theorem attributed to Eshelby by Nabarro [2]: The

vanishing of the tractions over the mantle of a cylindrical body (arbitrary

cross-sectional shape) containing a dislocation parallel to its axis implies

the vanishing of Mxz and Myz. The proof given [2] invokes an incorrect

formulation of the free surface condition on the mantle, and we shall

give a correct proof since the result is of interest here.'* Let the z axis

coincide with the cylinder axis and let A be the cylinder cross section.

We obtain from eqs (5), (10), and (11)

M:,z=-£ y(TzzdS=
I£ ix' -y ) Tyds -£ xyT:rds ( 14)

Myz= £ xcTzzdS =1£ ix' - y' ) T^ds -£ xyTyds, ( 15)

thus Mxz= Myz= 0 when Ti vanishes on the mantle.

Consider a dislocation with the Burgers vector parallel to the x axis,

intersecting the cross section at a point on the x axis. We can make the

torque correction in the following way. Myz is zero by symmetry and we

add a stress function

to the infinite body stress function, where d is the displacement of the

dislocation from the cylinder axis. This gives a ctzz component of stress

proportional to y and we determine the proportionality constant a from

Mxz= 0. A similar correction can be made if the Burgers vector is parallel

to the y axis. The value of a for the Burgers vector along the x axis is

(17)

and for the Burgers vector along the y axis it is

^The present authors questioned the free surface conditions given in [2] on the basis of

specific stress functions. The conditions given in [2] are in fact correct (J. Eshelby, private

communication) if one allows for additional linear terms in the stress function. This does not

affect the stresses.
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2[S+{dlR)^]
' ^^^^

Bullough [6] has given the stress functions for complete solutions, these

result in corrective terms which are more complicated functions ofx andy
than eq (16). We can again neglect the free surface condition at the ends

of the cylinder (cf. screw dislocations).

Figures 2a and 2b show the interaction energy contours obtained with

torque-corrected and infinite body stress fields, respectively. For this

special case, with the fixed dislocation along the cylinder axis, the torque

correction also removes the traction from the mantle, but in general this

will not happen. We have thus labeled the torque corrected contours a

complete solution, and of course all the features of finite body inter-

action are manifested under the torque corrected stress field. If the fixed

dislocation is moved ojff the cylinder axis, the situation becomes analogous

to that for screw dislocations. Adding the torque correction brings out the

essential features of the interaction.

As a matter of interest we show in figures 3 and 4 several interaction

energy contours obtained with complete solutions where the fixed disloca-

tion is moved off the cylinder axis. One can see that the energy of interac-

tion changes sign and also that there is a zero radial interaction force,

i.e., not just with respect to the glide component. When two like dis-
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COMPLETE SOLUTION
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Figure 5. Some metastable screw dislocation configurations. (The distance from the axis

is given in units of the cyhnder radius.)

locations with Burgers vectors parallel to the x axis both lie on the x axis,

the interaction force is always repulsive and the energy of interaction

always positive.

IV. Metastable Configurations

We have seen that the interaction force between two dislocations

will change sign. This suggests the existence of metastable configurations

containing several dislocations. It has been shown that a single screw
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dislocation is in metastable equilibrium when it lies along the axis of a

circular cylinder [1],

The total energy of various arrangements was calculated using complete

solutions for the stress fields, and we have found the metastable con-

figurations of screw dislocations which are shown in figure 5. Because of

their extreme symmetry, one would not really expect these to be physically

significant except possibly in the cases of the dipoles. In no instance did

we find similar metastable configurations made up of edge dislocations,

even though figures 3 and 4 suggest they might exist.
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THE MEAN SQUARE STRESSES (cr2)pQR a
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Stuttgart, Germany

The paper gives a full proof of the author's earlier statement according

to which the elastic interaction energy of completely randomly distributed

dislocations vanishes. As a consequence the outer cut-off radius in the

logarithmic factor of the elastic energy coincides with the external

cylinder radius rather than with the mean dislocation spacing. The proof

takes into account the elastomechanical boundary conditions which were

neglected in the earlier paper. Further it is shown that for a restrictedly

random distribution the outer cut-off radius is equivalent to the radius of

the areas small compared with the cylinder cross-section, each of which

contains the same number of dislocations randomly distributed over the

corresponding area. In the special case that each area contains only one

dislocation with arbitrary inside the area the outer cut-off radius

degenerates to the mean dislocation spacing.

Key words: Dislocations; elasticity; statistical methods.

The expression "random distribution" has been widely used in the

literature for describing the dislocation patterns in deformed crystals.

However, in an earlier paper the present author [1] has shown under

some restrictive assumptions regarding the elastic boundary conditions

that such a distribution yields to an unrealistic high value for the elastic

energy or the mean square stresses.

The present paper deals with the calculation of the mean square

stresses (cr^) for two types of distributions of dislocations, which extend

parallel to the axis of a cylindrical body with traction-free surfaces.

(i) The intersection points of the dislocations are completely randomly

distributed over the cylinder cross section, all dislocations having the

same Burgers vector b in direction and sign.

(ii) The cross section is subdivided into equally sized areas, all con-

taining the same number of dislocation intersection points. Within each

Fundamental Aspects of Dislot ation Theory, J. A. Simmons, R. de Wit, and K. Bulloufih,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubl. ;^17, M, 1970).
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such area the intersection points are randomly distributed as in (i) ("re-

strictedly random distribution").

Using the linear theory of elasticity, (o'2)may be splitted into two terms,

(o-2> = (o-^>.+ (o-2),-

where {cr^)^ equals the sum of the mean square stresses due to the

individual dislocations and (o-^)i denotes the interaction terms. (The

subscripts s and i refer to "self-energy" and "interaction energy.") The
two terms may be expressed as follows:

{<T')s=
[p I

o-^r, r) ' d'r'^ • P(^)(r) • d'^f. (la)

{(T'')i=I [f I
o-(r, r) • o-(r", r) • d'r^ • P^''^{h\ r" ) • d'h' • d'^r" •

(lb)

a-(r, r) stands for the stress component under consideration at the posi-

tion r inside the traction-free body. cr(r, r) is originated by a dislocation

line with its intersection point at r in the cross section F • F= volume of

the body, P^^^ (r) • d'^r means the probability for finding any dislocation

inside the area d'^r at the position r. P^^^r,' r") • d'^r' • d'^r" denotes the

probability for one dislocation in the area d'^r' at r' and another disloca-

tion in d'^r" at r". P^^^ and P^'^^ are distribution functions averaged over

an infinitely large number of individual distributions, obtained under the

same statistical conditions. For the problem under consideration this

averaging is necessary, since for an individual distribution (cr'^) may
deviate strongly from the average value in either direction.

Now we make use of the dislocation theorem, according to which a

traction-free body containing a locally constant dislocation density remains

stress-free [2, 3]. For the distribution model (i) it comes out that P^^^

= constant and F^^^= constant. Then it is easy to arrive from eq (1) to

<o-2>/ = 0, (2a)

<o-2) = {a')s= p • 6^ • C • log Ro/ro. (2b)

p = dislocation density, C is a constant depending on the stress component

concerned, /?o= «o-/?o, /?o= cylinder radius defined as /?o=( — I ,

ao = a constant in the order of 0.5, ro = inner cut-off radius.

After evaluating P^'^ and P^'^^ for the distribution (ii) one finds for Ro >
Rp >p"'/^, = radius of the sub-areas.
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(a') = P'b'''C 'log Rplro. (3)

Rp—ap'Rp, ap—ao.

Equation (2) confirms exactly the author's [1] earlier statement, according

to which the effective outer cut-off radius in (o-^) coincides for a com-

pletely random distribution approximately with the cylinder radius. The

distribution model (ii) may be extrapolated to one dislocation per sub-

area, corresponding to Rp = (np)'^^'^. For this extreme case, which may
be better denoted as a "quasi-homogeneous" distribution, eq (3) results

in an effective outer cut-off radius in the order of the mean dislocation

spacing. Such a value for the outer cut-off radius was assumed to hold

also for completely random distributions [4, 5], which is in contrast to

eq(2).

It is easy to verify that eq (2) remains valid also for dislocations of

mixed signs as long as no correlation exists between the ''plus" and

"minus" dislocations. The same is to show for eq (3), if all sub-areas

contain the same fractions of "plus" and "minus" dislocations. The
full-length paper has been submitted to Acta Met. [6].
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THEORETICAL ASPECTS OF KINEMATICAL X-RAY
DIFFRACTION PROFILES FROM CRYSTALS
CONTAINING DISLOCATION DISTRIBUTIONS
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The paper deals with a theoretical study of the Fourier transform of the

X ray diffraction line profiles from crystals containing dislocation dis-

tributions. The theory is based mainly on a calculation of spatial averages

of powers of the strains e«, where e„ means the differential strain perpen-

dicular to the reflecting planes averaged over a certain length n{n = varia-

ble of the Fourier transform). The second power average (el) is calcu-

lated in a closed form for a restrictedly random dislocation distribution.

However, the result is approximately valid also for other distributions.

The contributions of the averages of higher powers of e,, are taken into ac-

count in an approximate manner. The expression derived for the Fourier

transform depends on the two parameters p and Re, where p is the disloca-

tion density. Re is equivalent to the effective outer cut-off radius which

appears for instance in the logarithmic factor of the elastically stored

energy. The result which is applicable for Re > p~^''^ is discussed in com-

parison with the theory of Krivo-- laz and Ryaboshapka, in which a

completely random dislocation distribution is assumed, and with the

theory of diffraction from distorted crystals mainly developed by Warren

and Averbach.

Key words; Diffraction profiles; dislocation diffraction; kinematic x-ray diffraction;

statistical methods for dislocations.

I. Introduction

X-ray diffraction profiles I{6) angle of diffraction) from deformed

crystals display a broadening compared with the theoretical line width

of perfect crystals. This line broadening has been studied for many years

in various experimental and theoretical investigations [1-5]. If the

influence of stacking faults can be neglected, the broadening can be

attributed mainly to the strain fields of the (deformation-induced) dis-

locations (strain broadening).

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. .317, II, 1970).
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In the past, broadened x-ray line profiles from deformed crystals were

often analysed by means of a Fourier analysis method of the type mainly

developed by Eastabrook and Wilson [1] and by Warren and Averbach

[2, 4]. In this method, the broadening is analysed in terms of the "mean
particle size" (mean size of the coherently scattering crystal regions) and

the "mean square strains" (en) (see section II). There are, however, some
fundamental difficulties preventing a straightforward interpretation of

these results in terms of dislocation density and dislocation distribution.

Therefore, in developing a theory of kinematical diffraction from

deformed crystals, it became expedient to incorporate, from the beginning,

the existence of the dislocations as the sources of internal lattice strains.

In several theoretical papers special, more or less oversimplified, crystal

models were treated. (Therefore the conclusions of these papers are not

directly applicable to experimental results.) For instance, some papers

concerned themselves with the diffraction from a cylindrical crystal con-

taining a single perfect dislocation [6-9], a single imperfect dislocation

terminating a stacking fault [10], or a small number of perfect dislocations

[11]. The asymptotic tails of the line profiles were studied in [12].

So far, the theory of Krivoglaz and Ryaboshapka [13] (in the following,

K & R) is the most highly developed one. This theory uses a method

especially developed for problems of scattering from crystals containing

point defects and is based on the assumption that the cylindrical crystal

contains a large number of straight parallel dislocations which are

randomly distributed over the entire crystal cross-section. This theory

predicts that the diffraction line profile is represented by a Gaussian func-

tion with a half-width which is proportional to the square root of the dis-

location density and which depends logarithmically on the radius Ro

of the model crystal. Applying the results of the K & R theory to experi-

mentally determined diffraction profiles, the meaning of this parameter

Ro (which comes out to be closely connected with the outer cutoff radius,

see below) remains completely unclear. This difficulty results from the

random distribution of the dislocations as assumed in the K & R theory.

In fact, it has been shown by Wilkens [14, 15, 16] that such a distribution

is not a suitable model distribution for the problem under consideration.

It is well known that properties of dislocated crystals which are based

on spatial averages of second-power products of stress or strain tensor

components depend on an outer cutoff radius Re- As an example we

mention the volume density E of the elastically stored energy, generally

written in the form

E= Y-b^ - p' logRe/ro (1.1)
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where G shear modulus, b modulus of the Burgers vectors, p dislocation

density, ro inner cutoff radius. Re is a characteristic parameter which

for deformed macroscopic crystals depends on the internal structure

of the dislocation distribution (caused by the deformation) rather than on

the crystal dimensions.

Wilkens and Bargouth [17] have applied the K&R theory to experi-

mentally determined diffraction profiles from deformed copper single

crystals. Tentatively they identified the above-mentioned radius Ro with

a characteristic spacing of the dislocation distribution and thus arrived

at values for the dislocation density which were in a fairly good agreement

with values determined by transmission electron microscopy.

Stimulated by this agreement we investigate in the present paper the

kinematical x-ray diffraction profiles, expressed by their Fourier trans-

forms, for non-random, i.e., physically more realistic dislocation dis-

tributions. This first paper is restricted to a rather simpHfied model: the

cylindrical crystal contains one set of parallel dislocations of one slip

system. The distribution of the dislocations over the crystal cross section

is not tightly specified. However, as a special distribution which allows

some detailed calculations we treat the case of a restrictedly random

distribution which contains the effective outer cutoff radius Re as a free

adjustable parameter [14-16]. A subsequent paper [18] will deal with

the extension of the theory to crystals with several sets of dislocations

and with a discussion of methods for a separate determination of the two

parameters, p and Re, from the diffraction profiles.

Although electron transmission microscopy has proved to be a powerful

tool for the determination of the dislocation density and distribution in

various crystals [19, 20], the determination of p and Re from x-ray dif-

fraction profiles may be of interest especially for such substances which

are difficult to investigate by electron microscopy, for instance because

of a too high dislocation density (p> 10^^ cm"^) or due to difficulties in

the preparation of the transmission specimens.

Let us consider the diffraction profile /y obtained from a set of lattice

planes characterized by the reciprocal lattice vector g. The function Ig is

assumed to be given as a function of the coordinate S of the reciprocal

lattice

II. The Basic Equations

(sin ^— sin ^o) —
2 cos ^0

«9-6>o). (2.1)

A.= x-ray wavelength, ^= diffraction angle, ^0 = Bragg angle of the un-

distorted lattice.
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Ig{S) shall be normalized corresponding to

I
dS=l (2.2)

and may be expressed by its Fourier transform Ag{n),

Iy{S) = j Ay{n) exp {27TinS)dn, (2.3)

Ag(n) = j Ig{S)exp{-27rinS)dS. (2.4)

Since we confine ourselves in the present paper to symmetric functions

Ig{S) the Fourier transform Ag{n) will be symmetric and real, too. There-

fore, it is sufficient to consider for the rest of the paper only positive values

of n.

Neglecting the so-called particle size broadening, ^^,(71) may be written

in the form [1, 2, 4]

Ag{n) = {exp {27Tign ' €n)} , (2.5)

where

n „ t^g(^^+^n- eo^-Ug(^r-^n' eo'j (2.6)

1 r+«/2

jl
\ eo(r +5 •eo)c?5. (2.7)
j-H/2

Ug Stands for the component of the displacement vector u parallel to

g • eo= unit vector parallel to g.

eo^limcn (2.8)

denotes the differential strain parallel to g which may be calculated from

the strain tensor € by means of

eo= eo • e-eo. (2.9)

Further,

(. . .}=-^j. . . c?¥, F= crystal volume, (2.10)

means in eq (2.5) the spatial average taken over all atom pairs with

distance n • eo.
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Developing A(j{n) into a power series, we obtain [1, 2, 4]

AAn) = l--~{27Tgnr {€l)+j^{27rgn)* + . + (2.11)

This series can be transformed into an exponential form

^^(Ai) = exp (ri + r2 + r3+. . .+) (2.12)

with

T,=-^(27Tgn)Hel) (2.13a)

r, =i {27Tgny [{el) -3 (^1^] ^ T* T]; (2.13b)

7'3= -|y (277^n)e 15 (e^} (e;,> + 30 (f^^'] (2.13c)

In the method of Warren and Averbach [2, 4], it is assumed that the

frequency distribution of the €n within the crystal volume may be approxi-

mated by a Gaussian function. Under this assumption all terms T/,- with

k^2 vanish. Below, we will see that this is not the case due to the high

strains near the dislocation cores.

III. The Dislocation Distribution

In this paper we consider distributions of straight parallel dislocations

all of them belonging to the same slip systems (i.e., all Burgers vectors

are either parallel or antiparallel to a reference direction). The dislocations

as well as the z-axis of a cartesian coordinate system are oriented parallel

to the axis of a cylindrically shaped crystal which we assume to be elasti-

cally isotropic. Fo means the area of the cylinder cross section and A^o

the number of distributed dislocations. Hence the dislocation density

p is given by

(3.1)
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The position vectors within the cross section area of the dislocations will

be denoted by r,, i=l . . . No. We define eo(r, r) as the differential

strain at the position r produced by a dislocation at the position r.

Making use of the analytically simple solution of Co which is valid for

straight dislocations in an infinite body (this assumption will be justified

below), it follows

€0= function of r— r , (3.2a)

6 0= independent of the z-coordinate . (3.2b)

Under these conditions, eq (2.7) can be reformulated by substituting the

integration over r by an integration over r. Hence

e„(r)=2'^«('*«' (3-3)

i=l

with
+ m

- . 1 r 2
^

e„(ri, r)= . eo(ri + ej • 5, r)G?5, (3.4)
JT^ J m

-2

m = n ' sin ei= unit vector parallel to the projection of g (or eo) on the

plane of the cylinder cross section {x — y-plane). m • Cq= corresponding

projection of n • eo.

ijj= angle between g and the direction of the dislocation line (z-axis).

For the following it is expedient to use, instead of the variable n, the

projected variable m. Since both variables can be interchanged easily

we retain the notations Ag{n), €«, and in, even when these functions are

expressed in terms of m.

With respect to the distribution of the dislocation positions we restrict

ourselves to "quasi-periodical" distributions, where the length A of the

quasi-period of the distributions is small compared with the diameter of

the cylinder cross section. In this context quasi-periodical means that the

local dislocation density has a much smaller variation when averaged over

areas of minimum diameter A than would be expected for a completely

random distribution of the intersection points in over the cross section.

As a special, mathematically transparent case of such a quasi-periodical

distribution we treat a "restrictedly random" distribution which was intro-

duced by the present author in preceding papers [14, 15, 16].

A restrictedly random distribution is defined in the following way:

The cyhnder cross section is subdivided into sub-areas all of which are of
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the same size Fp. Each sub-area contains the same number and

dislocations with positive and negative Burgers vectors respectively.

Consequently,

N,= Nl + N-, p=
f^-

(3.5)

Within each sub-area the Np intersection points ia are completely

randomly distributed. As shown in [15] such a distribution (for which the

length A corresponds to ~ VF^) has the property that, for spatial averages

of second power products of strain tensor components, the elasto-

mechanical boundary conditions may be neglected if the condition

VVp < Vf~o (3.6)

holds. (It appears reasonable that under the condition A <^ VFq the same

conclusion holds for other quasi-periodical distributions.) Hence, with

eq (3.6) we may use for eo the infinite body solutions, see above.

IV. Calculation of Ti

In the same way as the elastically stored energy the mean square

of the differential strain Co may be expressed in the form

<e„n=(6/27r)V-p-C-/„; /„=log^- (4.1)
r0

The constant C depends on the type of the dislocation involved and on the

orientation of g with respect to the dislocation line and to b.

C = sin2 ip 'C\ C =cos^ i//, for screw dislocations; (4.2)

C = sin2 tjj 'C , C =sm^ i// • F(y), for edge dislocations, (4.3a)

F{y)=^{l-p)-^- [1-4>v+Sp^+ 4<{1-2v) cos^y]. (4.3b)

^'=Poisson's ratio, 7= angle between b and the projection of g on the

-x-y-plane, ro= inner cutoff radius (ro~ b) . As for the elastic energy, the

effective outer cutoff radius Re is determined by the dislocation distribu-

tion. In general Re cannot simply be identified in terms of characteristic
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spacings of the dislocation distribution. However, for a restrictedly

random distribution it has been proved in [15] that Re is closely related

to the "radius" Rp of the sub-areas,

It came out that

/o-=log^=log^-« (4.5)
''o r 0

with oi=- for screw dislocations. A similar value of a is expected for other

than screw dislocations.

According to eq (3.4) €n is obtained from eo by smearing the dislocation

cores over the distance m = n • sin
\fj

in the x — y-plane. From a mathe-

matical point of view this smearing procedure suppresses the divergence

of the strain in the dislocation core. However, the inner cutoff radius ro

as introduced in eq (1.1) and (4.1) is physically determined as a proper

limit of the applicability of the linear theory of elasticity. Consequently,

with increasing m the inner cutoff radius ro may not be neglected unless

the strain divergence is more effectively suppressed by the m-smearing

than by the ro cutoff. This point was studied in more detail for a single

screw dislocation in an earlier paper [8], in which we found that for a

calculation of (e^) the inner cutoff ro may be neglected if m is larger than

about 10 ro.

Under this condition it was found in [8] that for a single dislocation

{ e%) may be derived from (e§) by the following substitution

log ro (in ( e|) ) ^ log m- /3 (in < e|) ) (4.6)

with /3 = 2 for screw dislocations. Since the main displacement component

of an edge dislocation resembles that of a screw dislocation, we may set

tentatively (3 = 2 for all types of dislocations.

Considering a crystal containing a large number A^o of dislocations

distributed over the crystal cross section it appears reasonable that a

similar substitution as eq (4.6) holds at least as long as m is small compared

with the mean dislocation spacing p""^^^. This assumption could be proved

in detail for the special case of a restrictedly random distribution, for

which (e^) could be calculated in a closed form, see appendix 1. As

a result one obtains
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<e2)=(6/27r)2.77 ' p-C'f{mlRe). (4.7)

The function f{m/Re) is plotted in figure 1. The rather lengthy expression

for / is given in the appendix. For small arguments we find the

approximation

/(77l/i?e)-l0g^+2, (4.8)m

which coincides with the substitution of log tq in eq (4.1) according to

eq (4.6). As demonstrated in figure 1 the simple approximation eq (4.8)

holds with a 10 percent accuracy up to mIRe = 2. Later we shall find

that the function / will be needed in general only for arguments which

are small compared with this upper limit. Therefore we conclude that

eqs (4.7) or (4.8) are suitable approximations also for other dislocation

distributions as long as they do not deviate drastically from a restrictedly

random distribution. Within this approximation we obtain for the first

term Ti in the exponent of eq (2.12)

T^= f^{g'b)'-C' 'p-m' -fimIRe) . (4.9)

° 0.1 Q5 q^.m/2Rp 10

0 0.2 1.0 ,f.m/R^ 2.0
'

' 3fl

Figure 1 The functions /(^) and/*(r^) as given by eq (A.8). Full line=/(^) and f*ir]);

dashed line= approximation according to eq (4.8); dotted horizontal Hne = constant p
according to eq (7.6).

V. The Higher Approximations Tk, k^2

In order to elucidate the structure of the terms 7"^ with 2 we have

studied T2 in more detail. T2 is proportional to (e^)— 3(e2)2, which for
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Ai—>0 degenerates to (eo>— 3(e§)2. Therefore an inspection of the latter

expression gives a first clue. In the appendix 2 (ej) is calculated for a

restrictedly random distribution of screw dislocations. We will report

here only the conclusions which can be drawn from the results and which

we believe to be qualitatively valid also for other types of distributions.

In order to have a simple description we subdivide (ej) into three terms

which are differentiated by a lower subscript. The same subdivision will

be used also for (e^) and respectively.

(1) Irrespective of the dislocation distribution, the leading term of

(e^) is given by

<eo^>(i) = £<e'S(ri, r))
1= 1

= 7Vo<€S(0, r) ) ^ mirY ' p ' ~ l/r§.

(2) The second term (€j)(2) is mainly determined by the expression

3 2(e?(ri,r)-62(r,-, r)). (5.2)

All the individual integrands of the volume integration {....) are

positive. This means there is no mutual cancelling due to the different

signs of the Burgers vectors bi, hj and, or due to the antisymmetry of the

individual strain components Cq. For a restrictedly random distribution

the result is (appendix 2)

<€S)(2)=3(6/27r)4 'TT^-p^'O [fl-fo+^ ]

= 3(e2)2-3(6/27r)4 • rr' - p' • C [/o-f|] (5.3)

with /o as defined in eqs (4.1) and (4.5). The first part of <ej)(2) exceeds

the second one by the factor /o (of the order of 5-10).

(3) In the appendix 2 (€j)(3) is calculated as

<«J>(3)=^ { <^J><^'+ | (W2ir)^ -77^ -p' O [/„- (
2 log 2+

)] }
•

(5.4)
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In the next section we find that our approximation is applicable only for

Np> 1. Consequently we may neglect (€j)(3) in comparison to the pre-

ceding terms of (ej).

(4) Calculating (ej) — 3(€§)2 we see that both terms (ej)^ cancel

each other. We are thus left with

<€$> -3{€iy = <€j)(„-3(6/27r)^ -77^ -p^ • a (fo~) (5.5)

where, due to ro ^ > p, the first term on the right hand side outweighs

the second one strongly.

(5) If we now turn from Co to €«, it is easy to show that neglecting ro

(en)(i) may be written in the form

(e4)a)= (6/277-)^ •p-Z)2 -1^2 (5.6)

The constant D2 will not be needed expHcitly. The necessary integrations

for the term (e^)(2) could not be performed. However, the factor /o, which

diverges logarithmically in ro, appears in eqs (5.3) and (5.4) due to the

same reasons as in (cq) (area integration over the quadratic singularities

in the dislocation cores). Therefore, it seems reasonable to assume that

for sufficiently small mlRe the /o-factors in (eo)(2) niay be replaced by the

function f(mjRe) of eqs (4.7) and (4.8). That means,

diverges only logarithmically with diminishing w, compared with

<e^)(i)~m-2.

(6) Subdividing T*, eq (2.13b), in the same manner as (e^) we find

that

7^2*(i) = {g'bY'P'Dk' D'2= D2 sin-4 i//, (5.7)

is of the same order in m as Ti; and for small m the rest of T2 may be

neglected compared with THi).

(7) With respect to the higher approximations Ta, A: ^3, similar con-

clusions could be drawn. For small m there exists a leading term T^-^d

analogously defined as TJ,) which is rather independent of the dislocation

distribution.
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(5.8)

(8) Consequently, in restriction to small values of m the sum of the

higher order terms ^ T/, may be approximated by the sum ^ '^n)
k=2 A-=2

of the leading terms. We write the sum in the form

2 Ttiv
k=2

(5.9)

with i^=|g-b|=^-6 -

I

cos ^1 for screw dislocations. In the appendix 3

it is shown that the constant Kv can be calculated without explicit knowl-

edge of the constants D'j.. In figure 2, Kv is plotted for 1^= 1 to 6. The full

line corresponds to an interpolation curve

(5.10)

which we will need later. Similar as for the calculations of j8, eq (4.6),

we assume that as a first approximation Kp is dependent of the type of

the dislocations.

(9) One further conclusion regarding the higher order terms Ta,

/: ^ 3, should be mentioned. Subtracting T^{\) (which is included into K^)

from it is found by a qualitative discussion that the leading parts of

Ts — Tsd) are of a similar structure to Tf ' T\ and T\ and consequently

^0

10 -

0 7 2 3^56— l>

Figure 2 0 = A:^ as derived in appendix 3. X and dashed line = + log u.
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are compensated to a great extent by the term {—T^ • Ti+'Tf), which

is included in the complete expression of T3 (see eq (2.13c)). This mutual

compensation (see also item (4) above) which we expect to apply also for

A; ^ 4 justifies from a mathematical point of view the transition from the

power series eq (2.11) to the exponential form of eq (2.12).

Making use of eqs (4.9) and (5.9), Ay{n) is given in the "quadratic

approximation" by

Ag{n)=e-^ (5.11)

with

Q=l{g-br-C''P' m'UimIRe) -K.^. (5.12a)

We introduce a normalized coordinate

^=mlRe (5.13)

and a dimension-free parameter

Ne= pRI'7r (5.14)

as a characteristic parameter of the dislocation distribution. Then the

exponent Q may be written as

Q =
l
(g'hYC 'Ne-e-mO-KA- (5.12b)

VI. Limits of the Applicability of Eq (5.12)

According to the above derivation eq (5.12) is expected to be most

accurate for small ^. We therefore define a critical value Q in such a way

that for Q > Qc the neglected terms in the exponent oi Ag{n) exceed a

critical fraction q of Q. In the present calculation Qc can only be estimated,

since even the next term which is proportional to {g • b • m)"^ - p- could

not be calculated. However, a rough estimate may be obtained from the

neglected terms of T? the m-dependences of which are approximately

known. We refer here only to the results of this estimate. For ^ = 0.15

follows Qc = OA, 0.8 and 1.1 for Ne = S, 10 and 100 respectively. How-
ever, due to the alternating signs of the T/,- it is expected that this estimate

yields rather too small values of Qc. Therefore considering the Fourier

transformation of A;f{n), i.e., the intensity profile I(){S), we assume that

with A^e > 5 the exponent Q in the form of eq (5.12) may be accurate
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enough for a correct reconstruction of at least the flanks and tails of

IAS).
Apart from the neglection of the higher order terms of Q, eq (5.12) bears

a real meaning, from a mathematical point of view, only as long as

Q — Q{^) increases with increasing If we substitute /(f) for simplicity

by the approximation of eq (4.8) it follows, for v=\ and C' = cos- i//

(screw dislocations), that

^= 0 for f= fn.ax = 1.74 (3(fmax)=0.76-Ar,. (6.1)

For f > fmax the function Ag(n) diverges. In order to avoid this divergence

eq (5.12) must be terminated for f > fmax^ for instance by putting AJji)=0

for ^ > fmax* Such a termination (— exp (-^0.76 • A^e) ) leads to charac-

teristic oscillations in Iy{S) which, however, are irrelevant for A^e > 5

(leading to exp (-0.76 • Ne) < 0.02).

We see that both points of view, (1) neglection of the higher order

terms, and (2) avoiding the divergence of Ag{n), yield about the same

lower limit of Ne for the apphcabihty of eq (5.12).

Formally the termination of Ag{n) can be avoided with only minor

perturbation of Q in that region which is relevant for the flanks and tails

of lg{S). For this purpose we define another outer cutoff" radius R'e by

f{mlRe)-K.=f{mlR'e), (6.2)

where R'e is adapted by means of eq (4.8)

R'e= Re-e-^v. (6.3)

With this substitution the exponent Q is transformed to Q'

,

Q' =\{g-hY-C' ' Ne^'fie^^ • f ) (6.4)

=|(g-6)2.C'-p-m2-/(m/i?;).

Since /(f) is proportional to for f
—> (see appendix 1), Q' is a mono-

tonically increasing function and

Ag{n)=e-Q' (6.5)

a monotonicaUy decreasing function of f . Therefore, even for Ne in the
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order of 1, the Fourier transformation of Ag{n) in the approximation of

eq (6.5) will result in '^smooth" curves of Ig{S), which are expected to be

at least qualitatively correct as far as the flanks and tails of Ig{S) are

concerned.

VII. Application of the Warren-Averbach Analysis

As has been done before [8], we will treat the theoretically calculated

Fourier transform 71 ) of the diffraction profile /^(S), as if both functions,

Ig{S) and Ag{n), were determined experimentally. The reason is that

we are interested to see how the "mean particle size" (assumed to be

infinite in the present calculation) and the "mean square strains" as

derived by the Warren-Averbach method [2-4] are related to the disloca-

tion distribution.

Denoting y4 5 as the Fourier transform of the diffraction profile as de-

rived from the experiment, ^ | is split into two functions [2, 4]

Al{n)=A'p{n) 'Als{n), (7.1)

wherey4 J is independent of the order of the reflexion involved and describes

the particle size broadening of /y(S). The strain broadening is given by

AUn) = exp{-27T^g^nH€m. (7.2)

where (cn)^ should be equal to the above defined mean square strain

<el> (see eqs (2.13a), (4.7)).

We assume that the diffraction profiles If^^ and of the first two

orders from the same set of lattice planes are known. Then A^ and Al^g^

can be separated [2, 4]

log^l(n) =1 [4 log Al- log Atg^] (7.3)

{€iy= (67T^gW)-^[\ogAl-\ogAlJ. (7.4)

We apply these equations to ^^(n) as calculated in eq (5.12). Setting

v=l and v=2 for g= go and g=2go respectively we obtain

A${n) = exp (-y {K2-K,)p • m'^ with^ (/^2 -/^i) = 1.15
, (7.5)

{e^y= C'p' (fimlRe) -p), p =iifc^^ 1.7. (7.6)

For small m the particle size function A^, is curved towards the abscissa
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{d^Af,/dm^ < 0). Such a behaviour of has often been observed experi-

mentally and has been discussed in the literature under the name "hook

effect" [4, 8, 21, 22]. On the other hand, from a theoretical point of view

a downward curvature of is excluded, if the particle size broadening is

assumed (as, e.g., in [2, 4]) to be caused by well-defined discrete boundaries

like large angle boundaries, outer crystal surfaces, or extended stacking

faults. Such a "discrete" boundary means: a given atom lies, for all pair

distance vectors n-eo, either inside or outside a given "particle" or

"coherently scattering crystal region."

As discussed in earlier papers [8, 21], in macroscopic crystals contain-

ing distributed dislocations such a clear "either-or" distinction is not

possible. As an example: Small angle boundaries may act as coherence

boundaries for n> d, if is the dislocation spacing in the small angle

boundary. However, for n< d both adjacent crystal regions belong to the

same "coherently" scattering particle [21].

Following a commonly used experimental procedure we extrapolate

the steepest slope of A^ down to the abscissa. Using eq (7.5) the abscissa

is intersected at m=1.3-p~'/^, which coincides rather well with the

mean dislocation spacing. Although this latter result appears to be reason-

able it should not be overestimated since the validity of eq (7.5) is perhaps

restricted to rather small values of m which do not allow such an extra-

polation.

Comparing the "experimentally" determined mean square strains

(e^)^ with the theoretically predicted form of eq (4.7) we see that the

experimental logarithmic factor comes out too small by about 1.7. As a

further consequence with increasing n the slope of (e|)*' is considerably

steeper than the "true" slope of (e^).

These anomalies of both "experimental" terms A^ and (efi)^ are not

included in the conventional interpretation of the results of the Warren-

Averbach analysis. It is noticeable that they have been found already

in the above mentioned earher paper [8] which was concerned with a

similar analysis of the calculated diffraction profiles from a crystal con-

taining only one single screw dislocation. It is obvious from the present

paper (which differs in its method considerably from [8]) that these

anomahes are due to the constant Ki,, i.e., due to the contribution of the

higher order terms Tk with k^2 which is neglected in the Warren-

Averbach analysis and which comes from the large strains in the vicinity

of the dislocation lines.

VIII. Comparison With the Theory of Krivoglaz and Ryaboshapka

Starting from a completely random dislocation distribution the K&R
theory arrives at an expression for A g{n) which agrees with eq (5.12) of

the present paper, if the factor log {Rolm • p) (K&R) is identified with
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{f(mlRe)—Kv) (this paper). Using for f{m/Re) and K„ the approxima-

tions of eqs (4.8) and (5.10) this leads to the equation

log-^4-a-/^i = log^ or Re= Ro€^^^-"l (8.1)
m- y m- V

Consequently our representation ior Ag(n) agrees fairly well with that of

K&R, if the effective outer cutoff radius Re as used in the present paper

is equated (apart from the factor exp {K\ — a) = exp (—1)) to the crystal

radius /?o. This is a reasonable result, since for a completely random dis-

location distribution the effective outer cutoff radius coincides approxi-

mately with the crystal radius [14^-16]

.

In the theory of K&R the completely random dislocation distribution

is used as an essential and basic assumption. Therefore the consequent

application of the K&R theory to diffraction profiles from macroscopic

crystals leads to extremely large, and physically unrealistic, outer cutoff

radii. However, in the more general treatment of the present paper we

could show that the above mentioned basic assumption of K&R is not

necessary for obtaining a comparatively simple expression for Ag{n)

.

This expression should be applicable to physically reasonable dislocation

distributions with outer cutoff radii Re down to values in the order of

magnitude of the mean dislocation spacing p"^/^.

If the instrumental broadening of the experimentally determined

diffraction profile must be subtracted, as, i.e., in the Fourier method

(see [4]), the comparison between experimental and theoretical line

profiles is most easily performed in terms of the Fourier transform ^ ( )

.

However, under certain experimental conditions [17, 23, 24] the instru-

mental broadening can be neglected. Then it may be easier to compare

the line profiles directly.

In the paper of K&R, the theoretical line profiles were calculated by

an analytical Fourier transformation oiAg{n). This procedure was carried

out using some mathematical approximations which are most justifiable

^N\iGn N p ' R^ is very large. It was found that the fine profile Ig{S)

may be represented by a Gaussian function whose half width (or integral

width) is proportional to Vp- log |^ log As a consequence of this

"Gaussian approximation," the two independent parameters of the dis-

location distribution, p and /?o (corresponding to p and Re, or p and

Ne — p ' R^TT, in the more general treatment of the present paper), cannot

be determined separately.

A more detailed inspection of Ag{n) as given by eqs (5.12) or (6.4) of

the present paper confirms the conclusion of K&R insofar as, for a given

value of A^e, the width of the profile is proportional to Vp. The Gaussian

369-713 OL - 71 - Vol II - 32
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function, however, is a good approximation for Ig{S) only for extremely

large values of A^e- With decreasing A^e the tails of Ig{S) increase in height

and extension. Thus by measuring the width as well as the shape of /^(S)

both parameters, p and Ne, can be determined independently from each

other. We shall deal with this question in more detail in a subsequent

paper [18].

IX. Appendix 1. Calculation of (ei) for a Restrictedly Random
Distribution of Screw Dislocations

The infinite body approximation of the displacement vector u of a single

screw dislocation lying in the z-axis of a cartesian coordinate system is

given by

n = ^[0,0.^], (A.1)

(f
= polar angle in the jc-y-plane

We set

eo= [sin i//, 0, cos i//] (A.2)

which means, for screw dislocations, no restriction of generality. With

eq (2.9) it follows

eo (0, r) =^ sin i// • cos i// • r' = V5^+7, (A.3)
Ztt r

Following [15, 16] we may write (el) for a restrictedly random distribu-

tion in the form

<e?> = A'o-{{€i(0,r))-<{l40:7))2-> (A.4)

with

€o(0, r) =^ [ eo(r, r)o?2r (A.5)

(centre of gravity of the area Fp in r = 0)

For convenience we assume Fp to be a circular area with radius
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Now we substitute €o in eq (A.4) by in as defined in eq (3.4). If the

various integrations are taken in a proper sequence all integrations can

be carried out in a closed form. In the volume integration ( . . . . > , which

is appropriately chosen as the first integration, the upper limit of r' may
be set equal to an arbitrary value Rl^> Rp which cancels out in the final

result when both parts of eq (A.4) are subtracted. Finally, we obtain

<£|)= (6/277)2 •tr-p-C-/(f),f=
R,

(A.6)

fii) is easier to express as a function of

With fiO = /*(t?), it follows

for 7] ^1:

/*(.)=-log.+ g-log2) +|gi

2^1" 1_] parcsir

77 L V J jo V
arcsin V dV

ttLiSOt) 90 ^ 90
• vr

iriii..Zii 2 arcsin 17 + ^-17^

(A.7)

(A.8)

for 17 ^ 1:

512 1

9077 7)
^+4 log 2., »2*

X. Appendix 2. Calculation of (e^)

The comparison of the mean square strain (e(T> for a single dislocation

at r = 0 with {el) for randomly distributed dislocations showed that

both expressions diverge logarithmically with the crystal radius Ro.

On the other hand, <eo> is (nearly) independent of the outer cutoff

radius or crystal radius.
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In analogy to the second power averages one might assume that also

(ef)) as calculated for randomly distributed dislocations will be independ-

ent of Rq. However, this is not the case (see below). Therefore we con-

sider in the following a restrictedly random distribution. In order to sim-

plify the notation, we write

ao(r,-, r) (B.l)

Then, after some re-ordering of the individual terms, (e^> may be

written in the form

Ho

= I <ef > + 4 2 • ^j) + 3 2 <e?
^f)

i-l i,j i,j

(B.2)

i, j, k i, j, k, I

^0

with 2~ 2 similarly for S" and 2'". In order to substitute the

summations by equivalent integrations, we introduce the following

distribution functions (which are to be understood as averages over the

distribution functions of an infinitesimal number of equivalent distribu-

tions; compare [15, 16]).

P^'K„c,..ck-d'r,-d^r2. . . d^Vk (B.3)

means the probability for finding any one dislocation, which is different

from the other /c — 1, in the infinitesimal area d^Vi at the position rj. The

subscripts d may accept the following values.

Ci= +, Ci— , Ci = 0. (B.4)

Ci =+ (— ) means that the dislocation in d^i, r, bears a positive (negative)

sign of the Burgers vector b. In the case of c, = 0 the sign of b will not be

considered.

Using eq (B.3) we define furthermore
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Ci,C2 Cl»C2

AP(3)= '2 nf),,,^- § m.-c,; (B.5)
d, C2,C3 0, C2,C3

Ci • • C4 Ci • • C4

(+ ) (-)

2 and 2 means summation over the terms with Ci • C2 . . . Ck=
c c

and "—" respectively.

The cylinder cross section is subdivided into sub-areas of equal

size Fp

1-. Fo r,

P

The individual sub-areas are denoted hy U i=\ . . . p^. Those sub-areas

containing the dislocation intersection points ri, r2, 1*3, 1*4 are denoted

by Ua, Ub, Uc, Ud respectively. In order to simplify the following equations

we assume

N} =Nb=In„p= j^^. (B.6)

The following five distribution functions wiU be needed. They can be

derived for a restrictedly random distribution by simple counting pro-

cedures (see [15])

n'>= P=^ • (B.7a)

AP(2)= o for a 7^ 6,

=-^ p for a = b; (B.7b)

P^%= p^ for a 9^ b,

p^-^'P for a = b; (B.7c)

AP(3)=-^p2 for a^6 = c,
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2 1
= T~2P~~FP^ fora = 6 = c,
r p r p

= 0 for all the other cases; (B.Td)

^ p

= 4~2P^~S~3P for a = b = c = d,

= 0 for aU the other cases. (B.7e)

Now we define

Fi={€o{ra,rV=-^ ( (eo(r, r))^(i2r (B.8)
^pJ C/a

(va = centre of gravity of the area Ua).

which means the singularity of the kth power of eo is homogeneously

distributed over the sub-area Ua-

If we substitute

No r _

1=1

2; (if • €,•> =
[

[ AP(3) . (^3 . e,) . d^r, • d^2, (B.9)

and in the same sense for the other sums in (B.2) we obtain after some

re-ordering

(et)=N„-J^<Tt-{ia)^> + 3Nl f <{Ti-Cea)'}-{Tl-(i,V}>
a=l a,b=l

-N, 2 <3{ri-(la)n^ + 4{|3-(l„)3}i;-6{^«-(l„)2}(l«)2 >. (B.IO)

Terms of the kind {ca — {ia)'^} disappear outside Ua with increasing

distance from va faster than e^. This allows the following conclusions:

(1) In the double sum ^ the terms with a b may be neglected.

a, 6
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(2) The volume integration (...) of the individual integrands

converges very quickly. Therefore the volume-integration may be extended

in the jc-y-plane to infinity.

(3) From item (2) follows that the position of U a within the cyhnder

cross section is irrelevant.

(4) Further we conclude from item (2) that we are allowed to use

for Co the infinite body approximation.

Making use of these conclusions eq (B.IO) may be replaced by

(e^)-=(e^>(i)+<€^>(2)+<eJ>(3),

(eJ>(i) = A^o • (eS(0, r) -(€o(0, r))^)

(B.ll)

= -37Vo-<{e§(0, r)- (eo(0, r))2p>

-4yVo-<{eJ(0, r)-(eo(0, r))^ ' eo(0, r) >

+ 6iVo< {€§(0, r) - (eo(0, r))^ • (€o(0, r))2>.

Thus, for a restrictedly random distribution, (ej) could be written in a

similar form as <e§), compare eq (A4).

Similarly as in Appendix 1 we assume for the integration that the sub-

area f/a is circular with radius Rp and with its centre ra= 0. Writing

^o= Q Q=— sm ijj cos i//,

r Ztt

compare eq (A.3), we obtain from eq (B.8)

io-Q' sin v?-^, r' ^ Rp,

(B.12a)

Q 'simp^, r' ^Rp\

r§=^-^^[si„V-|+ log^+ ilog(l-g],.'.fi„-n„

=<?'^|^[sinV-2^+^^'log(l-^)],r'3=«„ + r„;

(B.12b)
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- 3 sin ip • r' ,

(B.12c)

For el in (eo>(i) the smearing out according to eq (B.8) may be neglected.

Substituting eq (B.12) into eq (B.ll) the following results are obtained

<eJ>(l)= e'*-p--77T-2; (B.13a)

<.S>.,
= 3a-pV^[(log^>-|log^+|]

<.S>.3,=^<.S)..+^|^V-^[/o-(21og2+f-^)

(B.13b)

(B.13c)

with /o according to eq (4.5). In (ej)(i) the term <€^> (proportional to R^^)

was neglected.

Finally let us consider a completely random distribution which cor-

responds in our notation to Rp= Ro. For this case eq (B.IO) must be used

with

Io=0

(for details see [14, 15]). (ej>(i) remains unchanged. The other non-

vanishing terms degenerate to the form

Ut)m+ <ej>(3,= 3(?^ • p ( p
) TT^

[

( log^ )
+^ • log ^+ S

]

A, 5 = constants.

As a result we state that for a completely random distribution (e^) di-

verges logarithmically with the crystal radius Ro. Since now Ro appears in

(ej> it is not allowed to use the infinite body approximation for eo. There-
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fore the constants A and B cannot be calculated with eo according to

eq (A.3).

XI. Appendix 3. Calculation of Kv

Using eqs (A.3) and (3.4) it follows for a screw dislocation

e„(0, r) = e„(0, r'), r' = [_x, y, 0], r' = VxH^ ;

_ h

27rm

_ b

277

m

sin i// • cos i// • (TT— q), for r' ^ m/2

sin xjj • cos i// • q, for r' ^ m/2

"-h" for sin <^ ^ 0

q = principal value of arctg

We define a function F,

2k • sin (f 2r'

F= cos {2'TTgn en)— l+-|j(27r^n knY.

(C.l)

(C.2)

(C.3)

Using v=
\

g-b
\

= g' h '
\
cos i|/

|

, m = n • sin ijj and eq (A.3) F may be

developed in a power series

Fi{q) =COS i^(77-g) -1+ — • 1^2 . (77-^)

1,

2/-i^^W""-^'^-''^
(C.4a)

(C.5a)

F2(g) = cos vq- l+ ^j-i^^-g^

k {2k) \

^

(C.4b)

(C.5b)

After multipHcation with A^o the spatial average of Fi + F2, eq (C.5), coin-

cides with the wanted expression of eq (5.9).

Since €„ in eq (C.l) is independent of the z-coordinate the integration is

restricted to the :«-y-plane. Discussing the lines ^ = constant in the x-y-
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plane the differential area r'dr'd^ can be transformed into the form

/(g)c?g resulting in

Fr'dr'dip=p'
\

Fr'dr'dip,
0 jo jo jo

= p • j^" {F,(q) -Mq) +F,(q) Mq)}dq; (C.6)

r / \ A { 1 9 COS 9 "I ^ ,

/.(<7)=4{^-i^^4^1,K^l. (C.7)
t sm^ q sm^ 9 J

(Since F2(q) decreases for r' > m/2 proportional to r'"^ the r'-integration

in eq (C.6) can be extended to infinity.)

Substituting for Fi{q) and F2{q) the corresponding right-hand sides of

eq (C.4) all integrations can be carried out analytically. (Some of the

integrals diverge for '"'"^^ or 9"^"^ respectively. These divergencies,

however, cancel each other.) Writing the final result in the form of eq

(5.9) we obtain for the constant Kv

/f,=|-2 1og2, K2^^, K3=||-2 1og2

Q Q7 2^
A:4 = |, A:5=|^-2 1og2, Ke=f. (C.8)
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THERMODYNAMIC PROPERTIES OF
SOLIDS CONTAINING DISLOCATIONS

J. Holder and A. V. Granato

Department ofPhysics

University ofIllinois

Urbana, Illinois 61801

Using thermodynamics and elasticity theory, a unified treatment of the

changes in the thermodynamic properties of solids containing dislocations

is given. The results are expressed in terms of temperature and pressure

derivatives of the formation energy of the dislocations. The required pres-

sure and temperature dependence of the energy is given by the measured

pressure and temperature dependence of the elastic constants appearing

in the energy expression found at zero pressure and temperature. The
method is not restricted to calculations of volume changes, or to isotropic,

static or even elastic systems at zero pressure. Changes in entropy,

specific heat, thermal expansion and bulk modulus due to dislocations are

easily calculated.

Key words: Bulk modulus; dislocations and thermodynamics; entropy; specific heat;

thermal expansion; thermodynamics and expansions.

Using thermodynamics and elasticity theory, a unified treatment of

the changes in the thermodynamic properties of solids containing dis-

locations is given. The results are expressed in terms of temperature

and pressure derivatives of the energy required to form the dislocations.

The required pressure and temperature dependence of the energy is given

by the measured pressure and temperature dependence of the elastic

constants appearing in the energy expression found at zero pressure and

temperature. For example, the volume change per defect, v, of a solid

containing defects is given by the thermodynamic relation

v=dg{p,T)/dp (1)

where g is the change in the Gibbs free energy and pressure p and tem-

perature T are the independent variables. The Gibbs free energy change

per atomic length of screw dislocation in an isotropic medium is given by

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, H, 1970).
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Gb^a
g

4<Tr
(2)

where G is the shear elastic constant, b the Burgers vector, a the atomic

spacing, and R and ro are the usual outer and inner cut off radii of the

strain field of the dislocation. Equation (2) has the form

where a is a constant independent of p and T, and V is the volume of the

crystal. Applying eq (1) to eq (3) one obtains immediately

Where the prime signifies a derivative with respect to pressure.

This simple result, found here by a single differentiation has previously

been given by Seeger and Haasen [1] who used a result given by Zener

[2] , and by Toupin and Rivlin [3] as the result of relatively long and in-

volved calculations based upon nonlinear elasticity theory. Equation (4)

gives the ratio of the volume change to the energy change of a crystal

containing screw dislocations in terms of elastic constants and their

pressure coefficients, which may be taken, for example, from ultrasonic

measurements.

The thermodynamic method of calculation above depends only on the

recognition of the fact that eq (2) with G = G(p, T) , is the proper expres-

sion for the Gibbs free energy change in this case. This method is not

restricted to calculations of volume changes. It is also not restricted to

isotropic, static, or even elastic systems at zero pressure.

The results for the volume change per unit atomic length of screw

dislocation in a number of materials are given in table I, using both the

isotropic elasticity expression for the energy, and the anisotropic elasticity

expression for cubic materials with (110) Burgers vectors. Cl is the atomic

volume, or, in the case of ionic crystals, the average ionic volume. A few

features of the calculations are apparent from the table:

1. The isotropic and anisotropic results do not differ greatly except

in the case of the potassium and rubidium compounds. This difference

results from the negative pressure derivatives of the elastic constant

C44 in those cases. In all cases, the anisotropic results will be more reliable

than the isotropic results.

2. The volume changes for some of the materials, notably the sodium

and lithium halides, are very large. Such a large volume change could

mean the dislocation cores are hollow, and evidence for such hollow cores

g=aGV (3)

v^G^_l
g G B

(4)
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in LiF has been found in the measurement of Na ion diffusion along

dislocations [4].

3. The volume changes for Si are much larger than those found for Ge,

in both the isotropic and anisotropic cases. This is a direct consequence

of the relatively high pressure dependence of C44 in Si.

In addition to these results, the changes in entropy, specific heat,

thermal expansion, and bulk modulus due to edge and screw dislocations

in the isotropic and anisotropic cases, and grain boundaries and pile ups

in isotropic materials are easily calculated.

Table I. Elastic strain energy and relative volume changes of a number of solids per unit

atomic length of a screw dislocation using isotropic and anisotropic elasticity results

Isotropic Anisotropic

Material

g
(ev)

via g
(ev)

vin

Al 2.46 1.33 2.44 1.31

Cu 3.35 1.01 2.86 .80

Ag 3.02 1.12 2.61 .92

Au 2.76 .86 2.41 .69

Si 12.0 4.98 11.7 3.86

Ge ILl .25 10.7 .12

LiF 7.22 2.58 6.85 3.37

NaF 7.38 2.64 7.32 2.24

NaCl 6.36 2.83 6.25 2.32

KCl 7.84 2.64 6.59 .73

KBr 3.15 3.10 2.76 1.31

KI 6.06 3.28 5.21 1.40

RbBr 6.40 2.64 5.31 .77

MgO 22.0 2.32 21.4 2.82
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Discussion on Papers by M. Wilkens, and J. Holder
and A. V. Granato.

STONEHAM: I would like to make a comment on the paper by Dr. Wil-

kens. It is often very tempting to calculate the moments of the distribu-

tion of internal strains such as the mean square strain which Dr. Wilkens

did. I would just like to emphasize that this often leads to problems

because of divergencies, and also that it involves the assumption of some

inner cut-off radius. When one calculates the proper distribution of the

internal strains there is no need to make an assumption for the inner cut-

off radius.

BESHERS: This question is for Professor Granato: The non-linearities

which you are taking into account by considering the pressure and

temperature dependence of the elastic constants also enter in the cut-off

radius, Tq. You have the logarithm of r/ro, which you have assumed con-

stant. If you apply a pressure and the body is linear, the ratio r/ro will not

change, but ro is down in the non-linear part and it is not clear that you

can assume that the ratio r/ro is going to be sufficiently constant for the

purpose at hand.

GRANATO: That is true. We have used the usual elastic expression for the

energy density; of course, it is only an approximation. One could do

better. One could add in something that gives the core dependence if you

also knew how it depends on temperature and pressure. Also you could

go to higher order by getting the non-linear contribution to the energy

density, that would have a third order elastic constant instead of a

second order elastic constant and again would give the contribution upon

differentiation. But it seems reasonable to suppose that the simple

elastic expression will be the main term for the same reasons it is the

main term for the energy.

SEEGER: The argument given here seems to be very similar to that given

by Zener in his 1942 paper.^ The really new part, I think, is that you have

shown in a general way that this follows from the non-Unear elasticity

theory. We have convinced ourselves in special cases that the results of

the Zener theory and of non-linear elasticity theory are the same.^ We
have used the idea that this is generally true, e.g. for anisotropic

problems,^ where calculations by elasticity theory become so com-

' Zener, C, Trans. AIME 147, 361 (1942).

2Pfleiderer, H., Seeger, A., and Kroner, E., Z. Naturf. 15a 758 (1960).

3 Seeger, A., Suppl. al. NUovo Cimento, Ser. X, 7, 632 (1958).

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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plicated that you have to resort to an argument like that in order to get

the generalizations to cubic and non-cubic crystals.

GRANATO: That's right. The Zener theory is more restricted. It applies

only for the volume, it cannot be generalized to higher derivatives. It is

also very easy to deal with the anisotropic cases here. If you know the

energy, you can write it down immediately. Also this works for another

case that the Zener formulation would not work for and that is for non-

static effects. The Zener formulation holds only in the static case. For ex-

ample, you can treat phonons by just writing down the energy for a

phonon; then for the density of defects, A'^, you have just the temperature

and that gives the ordinary temperature dependence of the volume and

of the elastic constants.
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CHARGED DISLOCATIONS IN THE
DIAMOND STRUCTURE
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Germany

The electronic states at dislocations in elemental semiconductors are

reviewed in the light of new experimental and theoretical work. Evidence

is produced for the existence of a one-dimensional energy band along

edge as well as screw dislocations. This explains quantitatively their abili-

ty to act as donors as well as acceptors depending on temperature, doping,

and dislocation density. The degree of charging has been recalculated

from the free energy of a system of charged dislocations screened by free

carriers. The dislocation charge limits the Hall mobility in addition to the

strain field of the dislocation. Measurements of photoconductivity of

deformed semiconductors support the above model of the charged dislo-

cation. The dislocation charge influences the Peierls force and thus the

mobility of dislocations in the diamond structure. The occupation limit of

the neutral dislocation, measured from the valence band edge, lies at 0.09

eV in germanium, and at 0.3 eV in silicon.

Key words: Band structures; charged dislocations; diamond lattice; dislocation-

electron interactions; semiconductors.

I. Introduction

In 1954 Pearson, Read, and Morin [1] investigated the electrical effects

of dislocations in germanium. They found that dislocations introduced

by plastic deformation at high temperatures decreased the density of con-

duction electrons, i.e., that dislocations acted as acceptors. Following

suggestions by W. Shockley Read proceeded in a series of well known

papers [2, 3, 4] to describe theoretically the properties of a charged dis-

location in the diamond structure. The success and elegance of this theory

discouraged from further work of similar extent in this field for almost a

decade. Whatever was done since Read to determine the energy level of

this dislocation acceptor did not, however, fit the earlier results; neither

have Read's theoretical assumptions remained unquestioned. It is common

P'undamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubl. 317, H, 1970).
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practice now among workers in this field to start a talk like this one by

reference to a slide which summarizes all positions of the dislocation

acceptor level published so far. They cover the forbidden band of germa-

nium rather uniformly. I will not attempt to review all of this work here

which— useful as it has been— suffers from a number of disadvantages:

(a) Deformation has been done mostly by bending which limits the dis-

location density to values ^ 10^ cm~^ and leads to inhomogeneous dis-

location distributions.

(b) The level of chemical doping Nc of the specimens investigated so

far has been rather high 10^^ cm"^) so that dislocation acceptors

showed up electrically by partial compensation of chemical donors only.

The high Nc is necessitated by whatever AA'^c impurities are intro-

duced during deformation, the condition being AA^c Nc. All of this led

to N.'^bNc (b = Burgers vector) in the earlier experiments. We will

see, however, that for dislocation effects to become clearly visible

N > bNc must be realized experimentally. Results are now available ful-

filling this condition for Ge and Si which lead to a model of the charged

dislocation different from Read's in the following qualitative aspects:

(a) The dislocation acts as a donor as well as an acceptor.

(b) The dislocation electron states form a one-dimensional energy band

rather than discrete levels. Only the limit of occupation of this band

is measured electrically.

(c) Screening of the dislocation is by free carriers rather than by ionized

impurities.

(d) Screw dislocations most probably behave electrically very similar

to 60° dislocations.

Figure 1. 60°-dislocation in the diamond structure. AaB^Cy indicate the stacking order

of close-packed planes.



HAASEN AND SCHROTER 1233

The information (d) so far is only preliminary from first Hall data on

twisted p-Ge in addition to indirect information from the change in

dislocation mobility in Si with doping level [5]. The mobility changes with

the dislocation charge (in the extrinsic range of doping) probably because

this changes the core structure and so the Peierls potential. It has been

shown [6, 7] that the formation of kinks in the Peierls potential determines

the mobility of dislocations in the diamond structure. We will discuss dis-

location mobility in section VI below.

Information on the dislocation band outside the limit of occupation may
be obtained by optical methods. First results are discussed in section V.

In the next section we will describe the structure of dislocations in the

diamond structure. Then we turn to the results of electrical measure-

ments to prove the statements (a) to (c) above.

Figures 1 and 2 recall the structure of a 60° and of a screw-dislocation

in the diamond structure, respectively. The former shows a row of "dan-

gling bonds" along the edge of the extra half plane: one bond of the tetra-

valent atom sitting on this edge has no valence partner. Energy is gained

according to Shockley [9] and Read [2] if this dangling electron accepts

another electron and thus becomes paired. This leads to an energy level

somewhere in the forbidden band. Shockley expected an one-dimensional

half-full band of what he calls edge states. Read rejected the idea of a band

II. The Electronic Structure of a Dislocation

12

b.

Figure 2. Screw dislocation in the diamond structure (according to Hornstra [8] ).
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that would be highly conducting, a behaviour which has not (yet!) been

found. Also such a band would show donor as well as acceptor character.

The former was, however, not observed at that time in (strongly doped!)

p-germanium in which dislocations produced no electrical effect. Read

assumed some pairing of the dangling electrons along the 60° dislocation

though, as ESR measurements did not show unpaired electrons in dis-

located germanium [10]. This is probably due to the strong spin-orbit

coupling in the material.

In the meantime an ESR signal of the dislocation in silicon has been

found [11]. It is nevertheless not yet clear whether the signal represents

unpaired electrons precessing independently or the free electrons of the

dislocation band. The temperature dependence of the signal will reveal

this. The signal seems to depend sensitively on the orientation of the

dislocations. "Further work is under way on this point.

The screw dislocation in the diamond structure has no dangling bonds

at all (fig. 2). If this dislocation behaves electrically similar to the 60° dis-

location as it appears to do then this can only be rationaUzed in the band

model. The model of an one-dimensional dislocation band is in fact a very

sensible one. Along the dislocation the translational symmetry of the lattice

is maintained while in the two dimensions perpendicular to the dislocation

line there is a rather localized disturbance of crystal periodicity.

We assume that the normal band structure is maintained everywhere

far outside of the dislocation while the electron states in the immediate

environment of the dislocation will be changed. As the periodicity along

the dislocation is that of the lattice, the energy levels of these states wiU

form a band. This is also the result of a calculation by Teichler [12] who

tries to describe from first principles the electron energies of a neutral

screw dislocation in the diamond structure using the pseudopotential

method and Wannier functions. He obtains one energy band within the

gap for the electron states localized at the dislocation. Its exact position

will be the result of further numerical evaluations.

An earlier calculation of the energy level of an electron which is trapped

in the shear displacement field of a screw dislocation in a many-vaUey

semiconductor has been done by Celli et aL [13]. With the deformation

potential of Ge these authors obtain an acceptor level at 0.08 eV below

the conduction band edge {Eq) . A similar calculation for the 60° and edge

dislocations yields 0.05 eV below Ec. Such levels have not been found

yet experimentally. The occupation limit of the neutral dislocation band

of Ge is observed 0.09 eV above the valence band edge (Ev) as we will

see below.

The band model naturally explains the acceptor/donor behaviour of

the dislocation as positive/negative deviations from the half-full, neutral

occupation. These deviations will be small as Read [2] has pointed out
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since the extra electrons/holes transferred from the crystal or the chemical

centers onto the dislocation strongly repel each other there electrostati-

cally. This raises the energy position of the band within the gap until its

occupation limit coincides with the Fermi level and no further charge

is transferred to the dislocation.

III. Hall Measurements on Deformed Crystals

We will now describe the Hall measurements of Schroter and co-

workers [14, 15] which have led to the conclusions stated in section I.

These experiments were done mostly on weakly p-doped germanium

and silicon although /i-type specimens were also investigated. Deforma-

tion was by homogeneous single slip in an uniaxial compression creep

experiment at 580 °C for Ge, at 770 °C for silicon in an atmosphere of

forming gas. Utmost care was applied to keep the specimens clean during

deformation and handling: This has been successful within ~ 10^- im-

purities/cm^ for Ge, within about lO^^cm"^ for silicon. Dislocation densities

were determined by etching. The reliability of various dislocation etching

solutions was checked against electron transmission microscopy in the

case of Ge [16]. It is known [16] that the dislocations produced by this

deformation are mostly of edge character with a structure similar to that

in figure 1. Thus the dangling bonds have atomic spacing. Hall effect and

conductivity were measured between 50 and 250 K (± 0, 1 K) for Ge, up

to 350 K for Si. The magnetic field was about 6 kG. It was made sure by

measurements up to higher fields that the ratio of carrier density to Hall

coefficient was constant (assumed to be Stt/S).

A. Results on Germanium

Figure 3 shows the concentration p of free holes in a specimen doped

with A^ca~7.3 X lO'^cm "^ chemical acceptors as a function of temperature

before and after deformation to a dislocation density of 4.6 X lO^cm -.

The curve of the undeformed specimen is typical for a specimen with

chemical acceptors of an energy close to Ev. The curve of the deformed

specimen indicates at high temperatures the presence of additional

acceptors of the dislocation type as the curvative changes continuously

indicating an energy shift with occupation.* At low temperatures the

chemical acceptors become inefficient because they become filled from

above i.e., dislocations are acting as donors.

' Additional evidence for dislocations not point defects [17, 18] being the deformation-

introduced centers is provided by synchronous annealing studies of Hall effect and disloca-

tion content.
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(The other possibility that the chemical acceptors become attached to

dislocations during deformation can be excluded by a kinetic argument).

It is interesting to follow the changes in the In p{\IT) curve as either dis-

location density or doping concentration are changed systematically (figs.

4 and 5). Schroter notes that an n-doped specimen (doping A'^cd) fits the

general trend which is determined by the parameter {bNcalN) if one puts

A^ca ~"~^cd for this specimen.

To understand the measured In p{l/T) curves we notice first that the

low-lying chemical acceptors must all be ionized at the temperature of

Schroter's measurements so that for charge conservation the degree of

occupation of the dislocation

—.^fv-'j

,o"l . , ,
•

3 5 JO J5 20

Figure 3. Temperature dependence of hole concentration in Ge before and after deforma-

tion to a dislocation density {l^ca ~ initial density of chemical acceptors) [14].
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Figure 4. Temperature dependence of hole concentration in Ge after deformation to

different [14].

(At low temperatures p^A^ca and /=/o is the parameter found experi-

mentally to determine the shape of In p{l/T).)

The energy E to excite an electron to the dislocation band (see fig. 6)

may depend on /, p (and A^ca which can, however, be eliminated by eq

(1)). It is reasonable to put (following fig. 6)

E = Eo + Ei(f,p)+e{f). (2)

Eo= E(f=0) is the occupation Hmit of the neutral dislocation (measured

from Ev); Ei is the interaction energy of an electron on the dislocation

with the others already present on this and other dislocations and with

the surrounding screen. All energy levels near the dislocation are changed

by this electrostatic interaction, e is the (small) change with / in the
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pCem-^3

W5 S.SlcF

W6 3.9 1(7

Figure 5. Temperature dependence of hole concentration for Ge specimens of about the

same A at different doping levels [14].

occupation limit within the dislocation band. In thermal equilibrium E
must be equal to Ef, the Fermi energy, which at normal temperatures

(Ef > kT) is uniquely determined by p and T (assuming a standard

valence band) according to

(3)

(For Ge C- 1.17 X 10^^ cm-=^ for Si C= 1.95 X lO^^ cm-^ K-^^^).

For /=0, T=To following eqs (1), (2), (3) one gets

p(To)=N,^, Ef{To)=Eo, and £'o = A:roX In

can be calculated from the neutrality temperature To given e.g., by the
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f =0

Fermi level

chemical acceptor

I// 1 III ;/ 1

,

dislocation band

f>0

/////.

Figure 6. Energy level scheme at neutral (/ =^ 0) and negatively charged dislocation (/> 0).

intersection of the two curves in figure 3. Schroter finds rather accurately

£"0= 0.09 eV (above E^) for Ge.

The further evaluation of the Hall data on deformed Ge for/=0 requires

a calculation of Ei including a model of screening of the charged disloca-

tion. Read's screening by partial ionization of the doping atoms in the

neighbourhood of the dislocation is inapplicable in the range of T and

TVca under consideration, as figure 3 shows that all (shallow) chemical

acceptors of the undeformed specimen are ionized. Bliek [19] has cal-

culated Ei for a single dislocation in a large crystal using a screened

Coulomb potential of fixed screening radius. This results in E[ being a

function of / alone and suggest plotting eq (2) as (Ef — Eq) versus /,

where Er is calculated from the experimental data via eq (3) and / via

eq (1). The result for Ge is seen in figure 7 (with minor adjustments in

A^ca and A^— within their experimental errors— in order to get the data

from all the different crystals to overlapp as much as possible). There is

almost a unique curve (Ei + e) versus / except for the "tails" pointing

towards smaller energies. The tails are even larger in silicon and have

induced a new calculation of Ei by Schroter and Labusch [20]. It is

interesting to note that at high temperatures (7^250 K) the Hall effect

of deformed Ge depends strongly on N and little on Aca providing a con-

venient means of determining the density of (electrically active) dis-

locations. For Ge (and Si) this agrees rather closely with direct counts

ofA[14, 15].

B. Results on Silicon

Because of the rather different band structure it was considered

worth while to measure the Hall effect also on deformed silicon despite

considerable difficulties encountered at the higher deformation tem-

perature and higher specific resistivities of this material [15].
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f

Figure 7. Degree of occupation / of dislocations versus Fermi energy Ep measured from

level £0 of neutral dislocation in Ge [14].

The measured hole concentration versus temperature for Si again shows

acceptor character of the dislocation at high temperatures and donor

character at low temperatures. Below 250 K a flat exponential behaviour

of In p (1/r) is found (fig. 8) which has not been seen in Ge (fig. 3). The
change of the curves as a function of and A^ca (including 'N^^^=— N^^^

is qualitatively similar to Ge (fig. 9). The evaluation follows the lines of

that in Ge. From the neutrality condition/= 0, p{To) =Nca Weber obtains

£"0 = 0.30 to 0.33 eV (above E,). The (£", (/) -£"0) curves, figure 10,

calculated from eqs (1) and (3) look rather different from those of Ge,

figure 7: Only at high temperatures, /> 0, a unique {Er{f) —Eo) curve

is obtained in Si while at low T, below a certain/< 0, Er decreases sharply

corresponding to the flat range in In p (1/7"), figure 7. This behaviour

excludes a new, second energy level for the dislocation as well as for some

point defects, rather shows that (Ef — Eq) is not a function of/alone but

also one of p. (Some indication of such a behaviour is visible also in the

"tails" of the Ge curves, fig. 7). The reason for this complication is the

large screening radius ko ^ p"^^^ at low temperatures which makes it

necessary to recalculate E, for a crystal containing more than one charged

dislocation. This has been done by Schroter and Labusch [20] with the

result indicated in figure 10. Only A^ has been slightly adjusted with these

curves to obtain good fit to the calculated (Ef — Eq). The corrected values

A^corr correspond to an electrically active A^ slightly higher than the light-

optically determined N. The e-term corresponding to a change of the

occupation limit within the dislocation band has been neglected.

C. Theory of the Interaction Energy E

At low temperatures screening of a charged dislocation in a not too

strongly doped crystal is rather incomplete and extends beyond the
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Figure 8. Temperature dependence of hole concentration in Si for different dislocation

densities [15].

Figure 9. Temperature dependence of hole concentration in Si for different doping

levels [15].
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Figure 10. Degree of occupation / of dislocations versus Fermi energy {Ep—Eo) for Si

[15] together with result of calculation (dotted curve) [20].

next dislocations considering the .V-values obtained in [14. 15]. There is

then no longer a large undisturbed crv^stal reservoir with undeformed

energy- bands from which electrons can be drawn freely to occupy the

dislocation band. The occupation statistics must be reformulated con-

sidering changes in the dislocation band as well as in the valence band

(the chemical acceptors being completely ionized in the range of interest).

This has been done by Schroter and Labusch [20] who obtain two Fermi

distributions for these two bands. Variation of the free energy results in

to be inserted into eq (2) with E = Ef for thermal equiUbrium. Ef is stiU

to be determined from eq (3). Eg is the (integral) self energy of the charged

dislocation which is calculated now including all the interactions present:

with other dislocations, with the free carriers, as well as with the ionized

impurities, and among the electrons on the dislocation itself. This is an

essential improvement with respect to earlier estimates [2. 19, 21],

as is the second term in eq (4) which takes care of the charge balance in

the deformed crystal. The explicit calculation of Eg finally results for

b < kpf in [20]
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In -^^+0.25 +^) (5)

where e is the dielectric constant and the Debye screening length

\d = ( -T— I . This result is in excellent agreement with experiments as
\ € P I

shown in figure 10, the steep rise in Ep at low T, small p being caused by

the new, last term in eq (5).

In addition to the HaU coefficient Rh the conductivity a of the deformed

Ge- and Si-crystals was measured by Schroter and co-workers [22, 15]. The

Hall mobility is then calculated as ixh= Rh ' cr (and is to be considered

as the high field limit). As mostly edge dislocations were introduced by

uniaxial compression, the current direction (123) formed an angle of

78° with that of the dislocations. The mobility /jlh of undeformed, hghtly

p-doped Ge below room temperature is determined by the scattering of

holes at phonons: One finds fjun ^ T~^-^ above 100 K and a somewhat less

steep rise below that temperature. Scattering at ionized foreign atoms is

unimportant above 50 K for the doping concentrations used here. In the

deformed state a very strong additional scattering is observed at low

temperatures as figure 11 shows. The combined eff"ect of this defect

scattering and of the phonon scattering being still dominant above 120 K
leads to a characteristic mobility peak. Figure 12 shows how fJiniT)

changes with increasing dislocation density at constant values of the old

characteristic parameter (— bNcal^) —/o, the degree of charge occupation

of the dislocation at low temperatures. A systematic depression of the

curves is observed. The identification of the scattering defects

with dislocations furthermore is supported by synchroneous annealing

studies of and [22]. The change of jLt// with the dislocation charge at

constant N is seen in figure 13. The degree of occupation /of the disloca-

tions in these specimens is shown in figure 14. At low temperatures holes

in We are less mobile than in Wi corresponding to the stronger positive

charging of dislocations in the former. W5 is an ^-doped specimen

(^ca ~~^cd) in which the dislocation charge is always negative 1 fig. 14).

The mobility of the holes, which became dominant after deformation in

this specimen too, is very small and does not show the pronounced maxi-

mum as the p-type specimens do: This suggests an explanation of the

/jiH maximum by the neutral condition of the dislocation as derived from

the Hall measurements, see figure 14. In order to isolate the mobility /jlj

limited by the dislocation charge only, the mobility jjip limited by phonons

IV. Mobility in Deformed Crystals

369-713 OL - 71 - Vol U - 34
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TCKI—"

Figure 11. Temperature dependence of Hall mobility of p-Ge doped with 7.3 X \Q^^cm~''

acceptors before and after deformation to A^= 4.6 X lO'^cm"^ [22].

50 60 70 80 90 100 W M 160 180

Figure 12. Hall mobility versus temperature for constant /o. Ge deformed to

different A' [22].
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(in undeformed specimens) must be separated from the measured /jlh

according to

-L=^+J-. (6)

f^H l^p IJ^f

A /X/ maximum results at the temperature which agrees well with the

neutrality temperature Tq (visible in fig. 14) for Ge.

The same also holds for Si some results of which are shown in figure 15.

The still finite mobility at T^j, indicates the scattering at the displacement

field of the dislocation in addition to the carrier scattering at the dislo-

cation charge. The mobility }Xu as limited by displacement scattering has

been calculated by Dexter and Seitz [23] from the deformation potential

with the result fJLu^T/N{iJLpT~^-^ for Ge was already mentioned above).

/Lt/has first been calculated by Read [3] assuming specular reflection of

the carriers at the space charge tubes around dislocations formed by

ionized impurities. Broudy [21] has modified this scattering mechanism

assuming a second hollow cylinder around Read's (of a wall thickness

equal to the mean free path) in which the mobility is stiU reduced. These
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Figure 14. Occupation / of dislocation for Ge crystals of different doping

[22] (/V~5-107cm-2).

models don't apply for our case b • NdN^ 1 in which all acceptors must

be ionized at the temperatures under consideration. Our case of screening

by free carriers has been treated by Podor [24] in Bom's approximation

with the result

Figure 16 shows a comparison of the experimental [22] and theoretical

[24] )Lt~^ for Ge after correction with respect to ptp and /Ltu according to

eq (6). The fit to the theoretical parabola is quite good whose nadir cor-

responds to /= 0. There is numerical factor 5 to 6 multiplied onto Podor's

/Ltj.^^"'" to fit the experimental results. On the whole the model of the dis-

location band describing the donor/acceptor behaviour of the dislocation

including the screening calculation [24] fits the measured ixh behaviour

quite well if the scattering of the displacement field of the dislocation

also is taken into account.
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Figure 16. Mobility ixf limited by the dislocation charge versus hole concentration.

The parabolas are calculated [24]. Experimental results for Ge [22].
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V. Optical Excitation at Dislocations

Since by Hall measurements one obtains information only about the

occupation limit of the dislocation band, optical excitation of electrons

might become an useful tool to study other states of this band.

Various possible processes of this sort include:

(a) photo-conductivity— stationary and transient— to study recombina-

tion at dislocations;

(b) optical absorption corresponding to transitions to and from the

dislocation band;

(c) radiative recombination at dislocations of injected carriers.

Recent results on these methods are due to Figielski et al. [25] [26, 27]

and due to Giith and co-workers [28]; of these the measurements (a)

referring to of the decay of transient photoconductivity by Jastrz^bska

and Figielski [26] are particularly informative. These authors deformed

[26] mostly n-type Ge by bending at 650 °C to dislocation densities betvv^een

10^ and 10^ cm~^. The extra conductivity following a white light pulse

was measured as a function of time after light switch-off at various tem-

peratures. Initially the transient photocurrent decayed in proportion to

log time, later on it disappeared exponentially, both with a time constant

Te (of the order 50 s at 150 K). Te rose at low temperatures {T > 160 K)

with an activation energy A£'= 0.5 eV (similar to that of the rise of sta-

tionary photoconductivity with temperature). The authors showed that

the transient photocurrent was due to electrons in the case of n-Ge.

There the dislocation is negatively charged and captures holes easily

while the photoproduced electrons have to overcome a potential ecp to

reach the (screened) dislocation (see fig. 6). The rate of electron capture

(density n) can be described by

-„= c.^..exp(-|^)(exp^/-l) (8)

where /o, <po are the barrier height and degree of occupation, respectively,

in thermal equilibrium and A/, (^o"A///o are the changes in these quantities

with illumination, c is a capture coefficient. The change in conductivity

then is

Ao- An Ap (trapped) . ^an n bn

It decays according to eq (8) either exponentially or logarithmically with
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time (depending on ——7^ being small or large compared to one). The
/o • kl

decay time is in both cases (independent of A^!)

if Eg is the gap width, Ep the Fermi energy (measured still from Ev), and

eq (3) is applied to electrons instead of holes. Using eq (2) with Ei = ecpo

and the equilibrium condition E= Ef we obtain

AE= d\n Te IdiHT) ~ Ea - £0- e,

see figure 6 (e could be different in this case!). The experimental results

therefore yield (£"0+6) ~ £"0 ~ 0.2 eV (above Ev). Although the concept

of this experiment makes no explicit use of Eo it allows to determine this

quantity to some approximation from a measurement of (Ei — Ep) and

from an energy balance, eq (2). Figielski et al. point out that only the dis-

location band model is able to explain the photo-conductivity results on

Al— as well as p-Ge for which results are scarce so far.

In [27] the spectral distribution of the photosensitivity referring to (b)

is investigated. In deformed n-Ge two photosensitive regions are found:

one beginning at 0.22 eV and a second one at about 0.42 eV. The latter

one decayed logarithmically with time and could be shown to be due to

electrons. It is ascribed to excitations of electrons from the dislocation to

the conduction band, the rate limiting process being that of recombination

analyzed above. Its activation energy agrees with that obtained from the

temperature dependence of photoconductivity in deformed n-Ge. The
photoconductivity rise with light of 0.22 eV is followed by a quick decay

corresponding to the short lifetime of holes near the negatively charged

dislocations. It is therefore ascribed to transitions from the valence band

to the dislocation band. The sum of the two excitation energies nearly

equals the band gap.

VI. Dislocation Velocity in Doped Crystals

A. Methods

As was mentioned in the introduction the velocity of dislocations in

the diamond structure is determined by the rate of formation of kinks

in the Peierls potential [7]. This conclusion is supported e.g., by the good

agreement between calculations of the kink formation energy [6, 29] and

experimental results on the activation energy of dislocation motion [30, 31].
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Direct velocity measurements are possible by the double-etch or by x-ray

topographical methods [7]. The dislocation velocity can also safely be

derived from macroscopic measurements of incubation creep or of

pronounced yield [7]. Experimental results are available on pure as well

as on strongly doped crystals (in the extrinsic range). Remarkable dif-

ferences are found as we will see below. This is most likely related to

the charge of the dislocation although no theory of the Peierls potential

exists for charged dislocations. The matter serves here to demonstrate—
in agreement with the foregoing sections— the possibility of negative as

well as positive charge effects and the similarity between charged 60°

and screw dislocations. Both points support the idea of a dislocation band.

The problems of optical charging of dislocations and of dislocations in

the sphalerite lattice are also mentioned.

B. Experimental Results On Doped Crystals

Figure 17 shows the velocity of dislocations in Ge at fixed stress r

and temperature T versus concentration c of doping, either by As, by

Ga or by Sn [32]. There is a pronounced dependence of ?; on c in the

extrinsic range for this temperature, ri-doping increases, p decreases v

while tetravalent substitution has no effect. Since the velocity in the

intrinsic material is of the form

v= BoT'^e-vi^'^, (11)

the question arises which of the parameters change with c.

The result is that m stays to be about one, Bq is almost unaffected while

U changes greatly [32]. ai -doping is about twice as effective as p -doping.

In the measurements on Ge the dislocation character was not known
(probably 60°). With Si by x-ray topography one is sure to investigate

screw dislocations [5]. The magnitude of the effect in /i-Si is about the same

. X103
4f—

T= 500'C

/arsenic

o
A(Sn)i

o

GALLIU

10'^ 10<* 10'* iO'^ 10'« <0'9 i020 102'

IMPURITY CONCENTRATION/CM^

Figure 17. Variation of dislocation velocity with doping in Ge. Arrow indicates the intrinsic

carrier concentration at 500 °C [32].
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as in n-Ge at the same relative values of the parameters. In p-Si only the

effect of relatively small c have been studied so far which are similar to

those in p-Ge. The velocity changes in effect with doping as does the Fermi

energy. The effect saturates ate ~ lO^^cm"^. It must be of electronic origin

as trivial bulk causes can be excluded [7]. An explanation of the doping

effect by Frisch and Patel [33] postulates a preferential formation of kinks

at certain locahzed charged dislocation acceptor sites. For their theory

which is based on Read's model [1] of the charged dislocation these authors

need an acceptor level in Ge fixed above the center of the gap. In silicon

they claim that the energy level of the dislocation practically coincides

with Ec [34] . These results are inconsistent with the electrical measure-

ments described above and with the model derived therefrom.

C. Optical Charging

In a recent paper Fortini and deBouard [35] report that the incubation

time in bending creep of pure Ge at 380 °C decreases considerably on

irradiation with white hght (250 W bulb focussed by elliptical mirror).

The authors claim that the creep acceleration under light corresponding

to a 3.5 percent decrease of the activation energy was not due to a tem-

perature rise of the illuminated specimen which was only 0.24 mm thick.

Schaumburg [36] has tried to reproduce this effect by a direct velocity

measurement on a 4 mm thick Ge specimen with and without illumination

(in this case by a carbon arc). No change in velocity was found at 370 °C

and 450° C within 20 percent (Fortini et al.'s change in activation energy on

illumination would result in a factor 4 higher velocity).

On the other hand Schaumburg could show that a thin specimen as

used by Fortini et al. [35] would be heated up by illumination easily by 30

to 40 °C enough to explain the whole illumination effect as the result of a

simple temperature change. In order to truly excite charge carriers to or

from the dislocation the light intensities applied so far don't seem to

suffice. Probably the cross section corresponding to the dislocation states

is too small or the life time in them is too short. The number of electron-

hole pairs created by illumination on the other hand was still a factor of

100 or so too small to change the dislocation charge noticably.

D. In- and Sb-Dislocations

Positive and negative 60° dislocations in InSb have different core

structures, their extra half planes ending with a row of In- and Sb-atoms

respectively [38] . It has been shown now by several experiments [38, 40,

39, 7] that In- and Sb-dislocation also have different mobilities. In disloca-

tions being much faster than Sb dislocations at a given stress and tempera-

ture. The In dislocation core is less disturbed by the three-valent edge

atoms than that of the Sb-dislocation. On the other hand relative to a tetra-
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valent reference lattice the In-dislocation charge corresponds to that of a

dislocation in strongly p-doped Ge. Whereas an In-dislocation is faster

than an Sb-dislocation, however, dislocations in p-Ge move more slowly

than in n-Ge. This demonstrates the inadequacy of this comparison.
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Discussion on Paper by P. Haasen and W. Schriiter.

BEN-ABRAHAM: I would like to ask whether you worried about kinks?

Just a year ago, Dr. Gilman interpreted the mobility of dislocations in

germanium and diamond lattices in terms of charged kinks.

HAASEN: It might well be possible that it is the charged kinks which are

responsible for changes in mobility with doping. The only thing we know

at the moment is that a charge on a dislocation is one possible way to ra-

tionalize these effects. Whether the charge is localized at kinks or

homogeneously spread in the way we have described it here is not

known. Oilman's model really applies to very low temperatures where he

uses tunnelling of kinks and things like this. At high temperatures we are

sure that it is the formation of kinks which is the process responsible for

dislocation movement.

ASHCROFT: This is just a point of information. I thought in intrinsic

semiconductors, which are what I believe you are using, the surface

state electronic density is about an order of magnitude more than the

numbers you are dealing with here. My question is, first of all, is that the

case, and secondly, how are you sure that you are looking at dislocations

and not damage and effects thereof on the surface electronic density?

HAASEN: We can follow all the effects we have measured as a function of

dislocation density. We can put in various dislocation densities and an-

neal them out again and get the electrical behavior we expect from this.

Surface states would be present in annealed and in unannealed

specimens. I think we can completely rationalize our results in terms of

a dislocation density. We can count dislocations electrically and as you

have seen the result is within 20% of the etched dislocation density.

MENDELSON: Did you consider the possibility of an effect on the donors

or acceptors from the tendency to separate or dissociate for both 60° and

screw dislocations?

HAASEN: Do you mean node measurements, or other direct observations,

or how else should we believe in a stacking fault separation?

MENDELSON: Well, I wasn't thinking whether you would actually make
an observation, but how it might affect the electrical properties; that is,

how the electrical effects due to donors and acceptors might affect the

number of dangling bonds due to a dissociation and how this might tie

into the plastic properties— for example, the mobilities of a dissociated

dislocation versus a perfect dislocation.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, K. dc Wit, and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.),Spec. Publ. 317, II, 1970).
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HAASEN: There are only Peierls type calculations for the undissociated

dislocation. The mobility of the undissociated dislocation depends on

doping as shown in the last slide. You know my negative view about dis-

sociation. I think it's quite a different story. What one still would like to

know is the stacking fault energy, say, as a function of doping. But, there

is nothing known as far as I can see.

MENDELSON: Well, that would be good if you knew it. Suppose you made

the assumption that there is a stacking fault formed and you asked your-

self, "What would be the nature of the danghng bonds on both the screw

and the sixty degree dislocation and how would these dangling bonds in-

teract with the two types of dopings — the acceptors and the donors?"

HAASEN: There are no danghng bonds with the screw dislocation. That

was one of the reasons why we left the danghng bond model and went to

the band model, which corresponds to electronic states in the core of the

dislocation without making expUcit use of bonds and pairing of bonds.

The electrical behavior of dislocations in Ge does not seem to depend on

the dislocation character.

MENDELSON: Yes, but the dissociated screw would have dangling bonds

and that would at least be consistent with your electrical effects of

screws.

HAASEN: OK. I still see no theoretical or experimental reason to invoke

a spht dislocation in the diamond lattice.

MENDELSON: [Written contribution] Dr. Haasen has expressed the be-

lief that dislocations in the diamond lattice are not dissociated whereas

various behavior characteristics are consistent with the view that at least

the 60° dislocations are dissociated. AmeUnckx^ pointed out that the

behavior of dissociated dislocations would be different and by studying

extended dislocation nodes concluded^'^ that the stacking fault energies

in Si and Ge are 50-60 ergs/cm^ and 90 ergs/cm^ respectively. The validi-

ty of this technique for determining the stacking fault energy has been

questioned by studies^'^ which show that nodes could appear to be ex-

tended by an anomalous diffraction contrast effect, however the ten-

dency for twins and stacking faults to form during crystal growth of Ge

and Si suggests that the energies cannot be very high. Studies of the

1 Amelinckx, S., Proc. Int. Conf. on Crystal Lattice Defects. Suppl. J. Phys. Soc. Japan 18,

22 (1963).

2 Aerts, E., Delavignette, P., Siems, R., and Amelinckx, S., J. Appl. Phys. Letters 33, 3078

(1962).

3 Art, A., Aerts, E.. Delavignette, P.. and Amelinckx, S.. Appl. Phys. Letters 2 , 40 (1963).

4 Booker, G. R.. and Brown, L. M.. Phil. Mag. 1 1 . 1315 (1%5).

5 Shaw, A. M. B., and Brown. L. M., Phil. Mag. 15. 797 (1%7).
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etching behavior of various twin boundaries and high and low energy

stacking fauhs in epitaxial silicon^ support the view that twin boundaries

and perfect intrinsic twin stacking faults have a low energy. In the stu-

dies of Art et al.3 the screw nodes in Ge were only extended after pro-

longed annealing. For short anneals most nodes were not extended at all.

If anomalous diffraction effects were responsible for their observations,

annealing should have no effect. Celli et al.^ point out that long anneals

may be necessary at screw nodes because danghng bonds must be

manufactured when the dislocation dissociates.

Shockley partials at dissociated 60° and screw dislocations have free

atomic bonds, but due to their small Burgers vector the smaller electron

exchange interaction distance for covalent bonding should significantly

reduce the "effective" number of free bonds. The result is that free

bonds are created when screw dislocations dissociate and are probably

reduced when 60° dislocations dissociate. The elastic repulsive force for

dissociation of screws is about 1/2 that at 60° dislocations, and when for-

mation of the free atomic bonds is considered, the lack of spontaneous

dissociation of screws could be rationalized. On the other hand both

elastic and, to a lesser extent, electronic effects favor dissociation of 60°

dislocations.

Dissociated 60° dislocations in the diamond lattice are apparently more

difficult to move than perfect ones and can account for Kabler's disloca-

tion velocity measurements in germanium; ^ isolated 60° dislocations

were found to move more slowly than screws and the activation energy

decreases with increasing stress. The behavior is interpreted in terms of

constriction and recombination of dissociated dislocations.^ That similar

results are not found by others is probably due to the fact that the

scratch-velocity technique is not very reliable because the stress field on

the leading dislocation can be several times the applied stress.^^

The effects on the dislocation velocity of doping with acceptors or

donors ^^'^^ j^^s been attributed to the change of mobility of charged kinks

on the dislocation line.^^ In these studies heavy doping with arsenic

donors increases the dislocation velocity while gallium acceptors

« Mendelson, S., J. Appl. Phys. 39, 2477 (1968).

7 Celli, v., Kabler, M. N., Ninomiya, T., and Thompson, R., Phys. Rev. 13 1 , 58 (1963).

« Kabler, M. N., Phys. Rev. 1 3 1 , 54 (1963).

^ Mendelson, S., these proceedings.

1" Rosenfield, A. R., and Hahn, G. T., in Dislocation Dynamics, A. R. Rosenfield, G. T.

Hahn, A. L. Bement, Jr., and R. I. Jaffee, Eds. (McGraw-Hill Book Co., 1968) p. 255.

1' Patel, J. R., and Chaudhuri, A. R., Phys. Rev. 143, 601 (1966).

12 Patel, J. R., and Freeland, R. E., Phys. Rev. Letters 18, 883 (1967).

13 Frisch, H. L., and Patel, J. R., Phys. Rev. Letters 18, 784 (1%7).
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decrease it. An alternative interpretation by Haasen^^ relates the effect

to the change in dislocation line energy via the shear modulus. Arsenic

concentrations at v^hich the maximum velocity is found in Ge are re-

ported to decrease C44 by 4.4%; this is consistent with the smaller

separation of partials. Haasen also suggested that the effects might be

related to changes in the electronic structure of danghng bonds at 60°

dislocations. The results could also be related to electronic effects at dis-

sociated dislocations. Since the 60° dislocations move slower than

screws, their velocity would be controlhng. The addition of arsenic

donors should enhance acceptor formation by enhancing recombination

of dissociated 60° dislocations; the reverse would be the case for addi-

tions of gallium acceptors.

ASHCROFT: I have another question about the expression you used for

the Fermi energy. If you are in a two-band situation, which I think you

have here — a dislocation band in the center of the gap— then I think that

the number condition which leads to the Fermi energy should in fact in-

volve an integration of the density of states in the dislocation band.

That's one point . . .

HAASEN: A full theoretical explanation of this situation is given in a

forthcoming paper by W. Schroter and R. Labusch in Physica Status

Solidi.

ASHCROFT: Well, the second point is that part of your theories seem to

come to grief at low temperatures, and I wonder whether it is because

the expression you are using there is for the non-degenerate Hmit. When
you get to very low temperatures you should then use the degenerate

limit.

HAASEN: Right! If you go to a temperature at which the chemical accep-

tors are no longer ionized, then you have to use a different model. But,

this temperature is far below our experimental range.

THOMSON: I have a question here. Do you, in your theoretical treatment,

have what looks like a single band instead of two bands for the accep-

tors?

HAASEN: That's right. It's one single band. In the neutral condition it's

half filled. The limit of occupation changes with the position of the Fermi

level. This corresponds to donor or acceptor behavior of the dislocation,

respectively.

Haasen, P., J. De Physique, Colloque C3, Suppl. 7-8, 27, 30 (1966).
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The authors use a simple pair interaction model to make the following

calculations. (1) Stacking fault energy of simple metals. (2) Interaction

energy between a stacking fault and an impurity atom or a vacancy, and

application to the study of segregation effects. (3) Interaction energy of

parallel stacking faults.

Numerical results are given. Consequences of the long range interac-

tion between defects are discussed.
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I. Introduction

Relatively recent work has shown that, up to the second perturbation

order, the total energy of a metal is accurately described by a pair

interaction [1, 2, 3, 4,]

E = E, + \^E{v,.). (1)

where £"0 is independent of the position of the ions

£'(ry ) is an effective interaction potential between ions at sites

R
i
and R

j

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317. H, 1970).
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To describe the effective interaction £^(rij ) we shall suppose that we
know the pseudopotential w created by an ion of charge Z in a metal whose

electronic density is described by the radius kr of the Fermi sphere for

free electrons, and assume that w depends only upon the distance r from

the center of the ion. Such a pseudopotential w{r) has been shown to be

the sum of the pseudopotential v{r) created by the bare ion and by a

screening potential Vg. One has [5, 6]:

w{r)=v{r)-\-Vs{r) (2a)

w{q)=v{q)le{q) (2b)

e{q) = l^{2kj.lUq^)g{ql2kj.) (2c)

g{x) = l-^[{l-x^)l2x] log[(l+^)/(l-A:)], (2d)

where w{q) and v{q) are the Fourier transforms o{w{r) and v{r).

The bare ion pseudopotential can be approximated in different ways,

e.g.:

— The point charge approximation where the ion is described as a

point charge Z.

— More elaborate approximations where one takes into account the

core electrons wave functions. We shall use here the results of

Pick [7]. Although the expression is more elaborate in this case,

it has been shown that for most of the applications one can use the

same formulas as for the point charge approximation by replacing

Z by an effective charge Z*.

The interaction model has been used and thoroughly reviewed by many
authors [1-7] . It has the advantage that it does not necessitate the use

of adjustable parameters, but it suffers from a number of serious draw-

backs which considerably reduce its applicability, in particular:

— Exchange and correlation interactions between conduction elec-

trons are not taken into account; this limits the applicabiUty of

formulae 1 and 2 to the comparison of crystalline states with the

same electronic densities.

— The wave functions overlap of core electrons is neglected, which

limits the model to the case of normal metals. It is to be empha-

sized that the noble metals cannot be treated within the framework

of this approximation.

Formulae (1) and (2), however, have been applied with success to the

study of the stability of metals and to the calculation of their total energy

[7]. Although less successful, the study of transverse phonon dispersion

curves has given results in qualitative agreement with experiment [8, 9].

In this paper we shall make use of the model described by formulae

(1) and (2) in the following way: In section II we shall calculate the varia-
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Figure 1. Interaction energy between an atom 0 and an atomic plane (P). The atoms are

the black spheres, 0' is the projection of 0 on P, b has not been drawn but can be any

vector of P. O is the average area per atom in P. 0' is on the Oz axis. 00' = d.

tion in the interaction energy of an atom and a plane lattice of atoms (P)

which ensues when the latter is shifted of a quantity b, b being a vector,

but not necessarily a lattice vector, of (F) (fig. 1).

The results of this calculation will then be applied to the following cases:

— stacking fault energies of pure normal metals and their alloys

(section III)

— Interaction of a point charge and a stacking fault and its relation

to the Suzuki effect [10] (section IV)

— Long-range interaction between parallel faults and application to

phase transformations (section V)

— An application of these results to loops in quenched Al will be

given in section VI and the general conclusions in section VII.

II. Interaction of an Atom With a Lattice Plane

II. 1, General formulation

It has been shown in a previous paper [11] that the variation of the

effective interaction energy between an atom 0 and a plane lattice of atoms

when the latter is sheared by a quantity b (fig. 1) is given by:

</?(z) = (4n2/n2) 2 e'^ ''»(e'^ *'-l)i//(A,z), (3a)
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z)=r e^^'w[{k^+X^)'l^]dk (3b)
J -00

where Cl is the area per atom in the sheared plane

k is the component of the wave vector k along 0 0'

X is the reciprocal lattice vector of the plane lattice.

From formula (2d) we see that g{x) has a singularity at x=l and

the asymptotic form of i// (A., z) in eq (3b) is then an oscillatory function.

This situation arises when

^2+A2 = 4A:|,- (4)

There will thus be two distinct cases:

A. > 2kF: the asymptotic form for (3b) is then:

i// oc gxp — 2A;qZ (5a)

4A;;2 = X2_4^2 (5b)

\<2kF: then the asymptotic form for (3b) is:

i// oc gjjj 2koz (6a)

Ul= Ul-XK (6b)

If one assumes the metal is close packed (f.c.c. or h.c.p., for example),

one easily verifies that the first case corresponds to metals of valency

smaller than

Zc=l.U. (7)

The second case corresponds to the smallest A for metals with valency

larger than Zc.

II. 2. Monovalent metals and alloys Z<Zc

The asymptotic form of the variation of the interaction energy is easily

evaluated:

(f* (nd) — Q:*a' exp — nd' (8a)
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a' = A:|(2rT) '^Z'^ [ (Zc/Z) 2/3-1] 1/2

1263

(8b)

6' =2k'^d (8c)

a* = 2Z*2/ne2 {2kF) for a pure metal (Sd)

z = /ic?, (8e)

d being the distance between close packed planes, ip"^ (nd) is seen to de-

crease very rapidly with distance. (In what follows we shall use quantities

<^*, a* corresponding to the use of Z*. In all cases where Z* is not known
we shall make use of a and Z corresponding to the value Z of the ions)

II.3. Polyvalent metals and alloys Z > Zc

ip *{nd) — a*an~^ sin nO (9a)

a = A;2 (2n) -3Z-2[1 - {ZJZ) 2/3] 1/2 (9a)

a* - 2Z*2/ne2(2A;f') for a pure metal (9c)

e = 2kod (9d)

z = nd. (9e)

(p*{nd) decreases relatively slowly with distance.

III. Stacking Fault Energies of Pure Metals [11]

III.l. General formulae

Let Fj^A be the energy per unit surface of a pA(or pV) stacking fault in

a h.c.p. structure and F^, Fj, Fe be the energy per unit surface of a twin

boundary, an intrinsic fault, and an extrinsic fault respectively in a f.c.c.

structure. Simple calculations then give:

n=oo

^l^=^ nip* i2nd) (10a)

n=l

F2A = "2 ^ ''{2nd) -(p''{2nd-\-d)] (10b)

n=l

F3A - 2! [ + l)(p*{2nd) - 2nip*{2nd+ d) ] (10c)

n=l

= [2ip *

(

3nd) -<p*(3nd-d)-(p''{3nd+d) (11a)
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r, = "2 [^n<p ''(Snd) - {3n - l)<p*{3nd-d) ] (lib)
n=l

re = "|] [{3n^l)ip''{3nd) -^rup'^i^nd-i-d) -2cp''{3nd- d)].{Uc)
n=l

Since the asymptotic form gives except for sodium a good approximation

to the accurate value for the second nearest neighbour interaction, one

can make use of formulae (8) and (9) to calculate (10) and (11).

III. 2. Monovalent metals

Equations (8), (10), (11) yield the following results:

— Sums- in eqs (11) and (10) can be replaced by their first term

— r is negative for f.c.c. structures and positive for h.c.p. structure

which is in agreement with experiment.

Numerical results are given in table 1.

Table 1. Stacking fault energy for monovalent metals expressed in ergs cm"^.

Stable phase h.c.p.

The r are expressed in ergs cm~^

Metal a* a

Li 0.40 0.39 2 4 6

Na 0.01 0.36 0.03 0.06 0.10

K 0.18 0.32 0.4 0.8 1.2

Ref [7] [11] [11] [11] [11]

III. 3. Divalent metals

For these metals eq (9), (10), (11) yield the following results:

— Sums in equation (10) and (11) must be evaluated up to n = 20.

This shows that atoms very far from the stacking fault "feel" its

presence

— r is negative for f.c.c. structure and positive for h.c.p. structure

which is in agreement with experiment.

One can then calculate the sums (10) with the help of the following

formulae:

1

(12a)
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y2^ =^ [(2n)-i sin 2n^- (2/1+1)-^ sin (2/1+1)^] (12b)

y3^ = ^[{2n)-H2n-^l) sm2ne-{2n+l)-'' 2n sin (2n + 1

)

6] (12c)

^p^ = a*ayp^, p-1,2,3, (12d)

— Numerical results are given in table 2. They show that stacking

fault energies are rather high. In fact if one assumes that the

stacking fault energy as given in table 2 can be used to describe

an extended dislocation one sees that its width 8 would be smaller

than 2a.

Table 2.. Stacking fault energy for divalent metals expressed in ergs cm~'^.

Stable phase h.c.p.

Metal a* a c/a 81a r exp Ref.

Be 2.38 1.91 390 760 1240 1.633 1.2 [12]

403 1.856 [13]

Mg .73 1.63 60 120 195 1.633 1 280 ±100 [12]

60 1.625 125 ± 25 [13]

Zn 1.79 195 395 630 1.633 0.5 300 ± 150 [12]

199 1.567

However, when the splitting is so small the edge effects of the limiting

dislocations must also be taken into account, the model of an infinite

fault in an otherwise perfect crystal is inadequate.

The comparison with the experimental results indicated in the last

column of table 2 is not in fact very significant, because the experimental

values were obtained from measurements on the annealing of quenched

vacancies loops [12, 13]. As shown previously [14] these results are dif-

ficult to interpret due to the lack of control of the experimental conditions,

the dispersion of experimental results given in table 2 indeed confirms

this point. In the case of zinc, we used the point charge approximation,

the numerical results are, therefore, dubious.

III. 4. Trivalent metal: the case of aluminum

In the case of aluminum, the stable phase is found to be f.c.c. in agree-

ment with experiment. The sums (11) can be calculated with the help of

the following formulae:
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X = m(twin), /(intrinsic fault), e(extrinsic fault) (13a)

ym=^ [(2/3/i) sin SnS-n (Sai-I)-^ sin {Sn-l) d-n{Sn + l)-^
1

Xsin {3n^l)e] (13b)

yi=2 f (^'*)~' sill 3n^-(3Ai-l)-i sin (3n-l)^] (13c)
1

re=2 [(3;i+l) (37i)-2 sin SnO-Sn (3/i + l)-2 sin {3n+l)e
1

-2(3ai-1)-2 sin (3^-1)^. (13d)

Table 3. Stacking fault energy of Al expressed in ergs cm-'^. Stable phase f.c.c.

oc* a Tin Te r.
* ! exp

1, 70 4, 20 60 147 132 110

[7] [11] [15]

One needs to calculate the sums (13) up to a distance of 30 planes. The
results are summarized in table 3. On notes that a* is about 0.4 and that

the extrinsic stacking fault energy is about 10 percent lower than the

intrinsic stacking fault energy. Comparison with experiment leads to

comments similar to those developed in III. 2, but one notes that the agree-

ment is quite good for aluminum. These results have been more or less

described previously [11].

III. 5. Alloys

The situation in dilute alloys can be described with the help of a very

rough model, i.e., assuming point charges with an effective charge Z
equal to the number valency electrons per atom and [11].

a= {l — c)aAA-^2c{l — c)aAB + c'^ocBB- (14)

Irrespective of the value of a, curves representing the situations for the

sums (12) and (13) can be drawn (see figs. 6 and 7 of ref. [11]) and show
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the limits of stability of phases. Assuming a > 0, one obtains the results

given in table 4.

Table 4. Relative stability off.c.c. and h.c.p. phase in normal alloys

z 1 1, 14 1, 27 1,36 1,66 2, 10 2,29 3,53 4

0 100 135 200 270 290 400

H.C. Instable Instable

C.F.C. Instable Instable Instable

The comments are the following:

— Noble metals base alloys cannot be described by the model, as

pointed out in the introduction.

— The variation of stacking fault energy as a function of composition

in alkali base alloys is not necessarily monotonic; these should be

a discontinuity in the stacking fault energy, at least for 2A(2A)

and 3A(3A) faults at the concentration Zc
— For divalent metal base alloys the sums 12 decrease with electron/

atom ratio. This seems in contradiction with experimental results

on the Cd Ag system, but as mentioned previously these alloys can-

not be adequately described by the model.

IV. Interaction of a Stacking Fault and a Point Charge

IV. 1. Interaction energy

We calculate the quantity AJVu the difference in energy between the

two following cases (fig. 2):

— the energy of a matrix M of valency Z containing a stacking fault

and a single impurity atom / of valence Z + Z', at a distance z from

the fault.

— the sum of the energy of the impurity atom alone in the perfect

matrix and the stacking fault alone in the perfect matrix

= (WiM^, - W,M^ - {WmM,, - WmM^ (15)

where M stands for an atom of the matrix lying at the same place as /.
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2 <4 Z b

Figure 2. Definition of the interaction energy between an impurity atom and a stacking

fault, a. The impurity atom I interacts with the part M2t of the translated matrix, b.

The impurity atom I interacts with the part M2 of the translated matrix. Interaction with

part Ml are the same in both cases and cancel in formula 15.

These calculations are made using the point charge approximation for

both the matrix and the impurity atom.

One then obtains the following formulae for the interaction of an in-

trinsic fault with one impurity atom in f.c.c. crystals:

^ ifiSmd)- £ ip{Smd-d) \z= 3kd-\-2d (16a)

m=k+l m=k+2 J

m=x r 1

AWr = n{Z'/Z) y \^{3md)-ip{3md-d)\ z = 3kd-\-d
m^+l L J (16b)

z = 3kd

(z is the distance between the impurity atom and the fault plane), and

similar formulae for the interaction of lA (IV) fault and one impurity

atom in h.c.p. crystals:

m=3o

AWr = a{Z'IZ) 2 <Pi^^d) z= 2kd (17a)

m=k+l

AW, = 0 z= 2kd-\-d. (17b)
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For hexagonal metals the distance z is counted from the top of the fault.

The results are summarized in table 5. They show a long-range oscil-

latory interaction, the maximum binding energy t^E\ occurs when the

impurity atom is close to the plane, but its value depends on the sign of Z'.

Table 5. Interaction energy between a point charge and a stacking fault

Z'=-l A£,(10-2eV)

zld 0 1 2 3 4 5 6 7 8 20

Trivalent -3.7 -3.7 2.5 -0.2 -0.2 -0.28 0.19 0.19 -0.17 0.03

Divalent

Cla

= 1.633

-4.6 0 0.65 0 0.3 0 -0.22 0 -0.05 0.03

Table 6. Comparison of the binding energy of a solute atom with a stacking fault and the

difference in dissolution of the same atom in a fee. and h.c.p. phase (Z'=— 1).

Binding energy (10"^ eV) ^E2{\0-^ eV)

Trivalent Al -3.7 -8

Divalent C/a= 1.633 -4.6 -9

The binding energy can be compared with the difference in dissolution

energy llEi in h.c.p. and f.c.c. planes calculated ^ith the same approxi-

mation (see appendix 1). From table 6, one sees that:

^E2 - 2^Eu (18)

The case of monovalent non-noble metals leads to no long range

interaction.

IV. 2. Application

The above evaluations can be used to describe qualitatively the situa-

tion in dilute alloys. Let us examine first the case of a dilute alloy con-
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taining a very large stacking fault, from the results of IV. 1, one can

conclude that:

— Segregation will occur not only on the plane of the fault but on

several parallel planes. The so called Suzuki effect [10] cannot

therefore be described by simple thermodynamic theories describ-

ing the system after segregation as a two-phase system [10, 16, 17,

18]. In fact, one should study a system with an average charge per

atom varying with the distance from the fault. Due to the crudeness

of the model such a calculation can give only qualitative results

and is not worth the effort. Similar conclusions apply for the study

of the kinetics of segregation.

— Such a segregation gives an appreciable frictional force (of the

order of 10 ~^ pt) on dislocations moving on planes which are not

parallel to the fault (fig. 3).

&.P.

15

FP ?.P.

3 a 3 b

Figure 3. a. Stacking fault (F.P.) with segregated impurity atoms I.S. b. Same
situation after a dislocation D has moved on a glide plane G.P. cutting the fault.

— These results do not apply to extended dislocations of small width.

It must be emphasized however, that a long range oscillatory be-

havior exists even in this case, as will be seen in the conclusion.

V. Parallel Stacking Faults in Polyvalent Metals (Fig. 8)

Since the electronic perturbation caused by a stacking fault is a long-

range one, parallel stacking faults or parallel twin boundaries interact

with each other. The formulae are given in appendix 2 and the results

calculated in the point charge approximation are shown in figures 4-7 for

the following cases:
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&.

Figure 4. Energy of a twin lamella ymmn of width n = \ to 6 interplanar distances for

1.36 < Z < 1.65. The resuhs for 1.65 < Z < 2.1 are obtained by turning the figure upside

down, as the energies jm and 2ym of a single twin boundary energy and of two twin

boundaries at infinite distance have been plotted. (Arbitrary units).

— parallel twin boundaries in f.c.c. metals and alloys referred to as

ymm (figs. 4 and 5).

— parallel intrinsic faults in f.c.c. metals and aUoys referred to as yn

(figs. 6 and 7).

— parallel in lA faults in divalent metals.

One can verify that far from the limits corresponding to Z=l.36, 2.09,

the difference.

AE's^ Energy of a pair of faults — twice the energy of a fault (e.g.,

yii — 2yi) is rather small, of the order of at most 10 percent.

On the contrary, close to the boundaries the interaction energy varies

very rapidly with electron per atom ratio, and with the distance this agrees

with the fact that such structures are not stable and that structure with

periodic stacking faults occur. Calculation shows that periodically

faulted structures are more stable in this range of electronic densities [19].
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VI. Application to the Segregation of Vacancies on Stacking

Faults

The previous results can be applied to the simple case of superimposed

loops appearing in quenched Al [20]. Describing a vacancy in a metal

as a point charge Z' =— Z, one can easily check from table 6 that vacancies

will segregate just above the plane of the fault. In that case nucleation of

a second stacking fault on the first one is helped by the fact that the ex-

trinsic (double) fault energy is lower than the intrinsic fault energy.

VII. Conclusion

A simple model for calculating the energy of defects has been shown

to give semiquantitative agreement with experiment and describes reason-

ably well the effects associated with stacking faults in pure normal metals

and their alloys.

Although this model, as it is, is too naive to describe the situation in

complex metals such as noble metals or transition metals, it must be

emphasized that the main physical fact underlying this model is the

Fi(;l RE 5. Same as figure 4, but with a different scale for 2.09 < Z < 3.53 or 0 < Z < 1.36.

(Arbitrary units).
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Fi(;l RE 6. Figure for a pair of intrinsic faults in f.c.c. metals. For other data see caption

of figure 4. (Arbitrary units).

long-range oscillatory interaction between two perturbations in an electron

gas [21]. This interaction results in fact from the existence of a Fermi

surface in metals.

Therefore the main qualitative facts analyzed in this paper certainly

exist in more complicated metals. Among them we would like to point

out that:

— Precipitation of vacancies on an extended fault gives multiple

faults as observed in Al or Mg rather than climb of the fault, or

tetrahedron growth as observed for example in gold, this suggests
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Figure 7. Figure for a pair of intrinsic faults in f.c.c. metals. (Arbitrary units).

very strongly that the sign of interaction is different in the latter

case.

— strong negative interaction energy between parallel faults will

make them easy to nucleate and to propagate. This suggests that

such interaction play an important role at least in some case of

martensitic transformations.

VIII. Appendix 1

The difference in dissolution energy AE2 for an impurity atom in an

HCP phase and in a FCC phase is easily shown to be:

P=oo r
^

AE2 = 2a{Z'IZ) ^ \-ip[{6p + 2)e] -\-^[{6p-\-3)d]-ip[{6p-^^)e]\.

IX. Appendix 2

Formulae for the calculations of the sums for the case of FCC metals.

ymm (nd) Stands for the energy of a twin lamella of width nd, ya {nd)
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stands for the energy of a pair of intrinsic stacking faults whose distance

is nd (see fig. 8).

ymm{Md-hd) = ^ [{n-k-\)ip{d,ne-e) + {n-k)ip{2>ne)-2{n-k)ip{?>ne+e)]

H- ^[-{d>n-k-l)ip {2>ne-e)^{^n+k)ip{^ne)
n=l

-2k<p{3nd-\-d)]

ymmi^kd) = 2 [-2{n-k)<p{Sne-e)-h4^{n-k)<pi3^nd)
n=l

-2{n-k)ip{3nd+d)]-^ 2 [-2kcp{3nd- d)
n=l

+ U(p {3nd)- 2k(p (Snd^d)]

8b

Fl(;URE 8. a. Twin lamella of width z=nd in a f.c.c. structure, b. Parallel stackinji faults

at a distance nd in a f.c.c. structure.

k-i

ymm(Skd-d) = ^ [-2{n-k)ip{3nd-e)-h{n-k)ip{3ne)
n=l

-\-{n-k+l)(p{3ne-\-d)] -\- ^ [-2k(p{3ne-e)
«=i

+ {3n-hk)^{3ne) - {3n - k I) <p {SnO+ d) ]

-713 OL - 71 - Vol II -
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yu{d>kd+d) = ^ [-(6/^-6A:-4)(p(3A^^-^) + (3«-3A;-l)v?(3/l^)

+ {?>n-d>k)ip{Zne+ e)]+ ^ \-{6k+ 2)ip{^ne-e)
11 = 1

+ (3n-^3k-\-l)(p{3nd) - {3n-3k)<p(3ne+ 9)]

yuiSkd) = 2 [~ {6n-6k-2)ip{3nd-e) + {Sn-3k)ipiSne)]
n=l

+ ^^' (3^-3^+l)<^(3/i^+^)+ 2 [-6k(p{3ne-e)

+ i3n + 3k)<p{3nd) - (37i-3^+ 1)(^(3ai6>+ ^)]

yuiSkd-d)= 2 [- (6/1 - 6A:)<^ {SnO- 6) + (Sn - 3k + l)<p{3nd)
' n=l

+ (37i-3A: + 2)<^(3/i^+^)]+ 2 [- {6k-2)ip(3nd- 6)
n= 1

+ (3n + 3/c-l)<^(3n^) - (3ri-3A:4-2)<^(3^^+^)].

Formulae of the same kind are obtained for two lA faults in HCP metals:

n = k

yn{2kd-d)=^ {n- k)<p{2nd- d)
n=l

+ "^" [2n(p{2nd) - {n- k)(p{2ne- 0)

n=l

yu{2kd)=2''^ {n-k)<p(2ne)+2k ^(2ne)
n=l n=l

z being the distance between the mid planes of the faults.
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THEORY OF SURFACE STATES ON
STACKING FAULTS

Robb M. Thomson

Department ofMaterials Science

State University ofNew York at Stony Brook

Stony Brook, New York 1 1 790

The Slater-Koster method in the Bloch representation is applied to a

model for a stacking fault in an idealized crystal leading to a type of

Shockley surface state. A series expansion is obtained for the energy

which is worked out for the simplified case of a constant matrix element,

with the result that for a tight binding nonoverlapping band, there are sur-

face waves which split off from both the top and bottom of the band. Con-

trary to Shockley 's results for external surfaces, and to the Slater-Koster

theory of the localized impurity, localized states occur on the stacking

fault for a single nonoverlapping band and for arbitrary potential values.

A constant matrix approximation is worked out for the case of the simple

metals.

Key words: Dislocation-electron interactions; Slater-Koster method; stacking fault.

I. Introduction

The purpose of this paper is to work out some aspects of a simple model

of the surface state on a stacking fault. Previous theoretical attention

regarding the stacking fault has centered either on the energy of the

fault [1] or its scattering [2].

Our motivation for looking in more detail at the surface state is the

realization that for certain types of problems, the surface state and its

localized wave function are the important considerations. The first example

is in the case of semi-conductors, where speculation about trapping states

introduced on dislocations has a long history [3]. Amelynckx and co-

workers [4] claim that dislocations in Si and Ge are split, although more

recently some workers have disputed thi- result. Nevertheless, the

original dangling band model of this state is very open to doubt since

screw dislocations have been shown to possess trapping states also [5].

Thus, the possibility of a stacking fault on the screws makes the stacking

fault a possible model for the seat of this bound state.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. BuUouf^h,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Pubi. 317. II, 1970).

1279
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The second area of special interest for a surface state lies in the im-

purity interaction with stacking faults originally proposed by H. Suzuki [6].

Even though a neutral imperfection, if the stacking fault possesses a

surface state, the localization of charge will cause local oscillations in

charge density similar to those about a charged impurity, and these

fluctuations can be the cause of significant impurity interaction with the

stacking fault.

The model calculation carried out here will provide qualitative rather

than quantitative insight into these problems. Nevertheless, the results

suggest that a bound surface state is to be expected quite generally on a

two-dimensional break in translational symmetry such as a stacking fault

or a twin, and our model calculation serves as point of departure for more

detailed numerical work.

In this paper, we shall work from the Slater-Koster theory, according to

which a localized or a bound state is expected when the determinantal

equation

\l-gV\ = 0 (1)

has a solution [7]. If Ho is the hamiltonian of the perfect crystal, and H is

that of the imperfect crystal, then V is the operator

V^H-Ho. (2)

The Green's matrix is defined by

g={E-Vo}-\ (3)

where E is the total energy of the problem, and in this case, the energy

of the bound state. In the usual application of this formalism, F is a

localized perturbation, and the Wannier representation is introduced so

that only a few nonzero components F^a need be considered. However,

in our case, the stacking fault is by no means localized, since the long-

range order of the crystal has been completely destroyed, and we shall

therefore prefer to remain in the Bloch representation.

II. The Surface States on the Stacking Faults

Our point of departure is to note that, in the face-centered packing ar-

rangement, there is no strain or distortion of an elastic variety at a stack-

ing fault. All the nearest neighbor arrangements around an atom at the

stacking fault are correct except for a rotation of atoms from the "C" to

positions in the close packed arrangement. The local potential of an

electron within its Wigner-Seitz call should then suffer a negligible

perturbation.
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Nevertheless, the basic translational symmetry of the crystal at the

stacking fault is completely destroyed, and indeed the actual perturbation,

F, is large in every cell on one side of the fault relative to the crystal on the

other side as shown in figure 1. Our attention is thus focused on the effect

of a change in the basic periodicity of the crystal introduced by the stack-

ing fault, in a rigid ion approximation. For large changes in ion position,

some change in the local ion potential occurs, and some elastic distortion is

present; however, this restricted model is all we consider here.

According to our model, V{x) will be zero for jc < 0 and is a periodic

function of x, y, and z for z > 0, with the period of the crystal itself. (See

figure 1.) Further, in the standard manner, we assume V{x) to be composed

of a superposition of individual ion pseudo-potentials, v{x — Rn), where

V{x) =^v(x — Rn) , the sum to be evaluated only over the faulted half

n

of the crystal.

We first prove that the diagonal components of this perturbation matrix

are strictly zero. The proof follows from an inspection of the rigidly dis-

placed whole crystal (as contrasted with our case where only half the

crystal is rigidly displaced). For the whole crystal, the perturbation

potential is periodic everywhere; the function for z > 0 is exactly the same

as in figure 1, but has now been extended uniformly to z < 0. In standard

fashion, the matrix element between the two Bloch functions ijjkix) is

broken into atomic and structure factors, where RD here stands for

rigidly displaced crystal.

Figure 1. Schematic diagram of the assumed form of the perturbing potential for a two

dimensional fault in the crystal. The figure shows the potential along a line perpendicular

to the fault. It shows a perfectly periodic structure to the rignt of the fault and a strictly

zero value to the left.

Z

STACKING
FAULT
PLANE
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'\V\k)HD= j ijjt' (x)F«Z)U)l//A-(x)^fx

=
[ i//?(x)i;(x)i//,(x)^fx 2 e-(k'-k)-R

R

where again v{x) is the individual pseudo-potential of the atom at the

origin. The wave functions in Vk-'k are normalized to a single cell, and A^is

the number of sites in the (cubic) crystal. K is a reciprocal lattice vector.

But since the diagonal elements of V^'k are the first order changes in

energy of the crystal system, they must be exactly zero, since the displaced

crystal must have precisely the same energy spectrum as the original

crystal. Hence Vk'k^O for k' — k= K. We have operated for simplicity

with a simple cubic system in (4) since our theory will not here be appUed

to a specific band structure, but the appropriate lattice basis with the

corresponding generaHzation of (4) can easily be suppHed in this as well

as the following eauations.

For the faulted crystal, there is a similar expression,

{k'\v\k)sF =
j

i^* MVMijjkMd^

= N^-''vk'kJ^e-^iK-^^^^8,-,^,K. 6,--,„^„. .

z>0
"

V(x) is the function of figure 1 and the sum is over the half space to the

right of the fault, but Vk'k is the same matrix as in (4), and the diagonal

elements must be zero as before, Vkk = ^- The only non zero elements
are for k '

— k # K. For a simple cubic crystal with lattice spacing a, the

sum over the lattice points z > 0 gives the structure factor

L/2, /c= 0,

2>0

27m——
, n even.

La (6)

-1 odd.

Since we shall wish to carry out integrations over smooth functions and

A + (;i) is a highly discontinuous function in A:-space, we shall introduce

a smoothed counterpart to Ax and define

A+(/<)=L/2, K= 0

(7)
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The structure factor, A + (/<), is the crystal analogue of the function

8+{k), as the kronecher dk'k is the discrete analogue of 8{k).

{k'
\

V\k) = Vk-'k^+M 8k^k8kyky
(8)

III. Green's Function Solution of Stacking Fault

The determinantal equation, (1), of the Slater-Koster formalism in the

Bloch representation now takes the form

0= D =

1 ^1^13

^2^21 1 ^§^2^23

^3^32 1

(9)

As mentioned previously, we shall remain in the Bloch representation.

The reason is that even though V is not limited to a few matrix elements,

at least the matrix of gis diagonal in this representation.

This determinant may be expanded straight forwardly by permutations,

z)=2 i-^VR'^Ri'- (10)

P

where is the element of the first row, etc. In this expansion, the zeroth

permutation is simply the product of all the diagonal elements of D, and

is unity. The first permutation gives quadratic terms in the matrix ele-

ments, Fy, and and in general (10) leads naturally to an expansion in

various powers of Vij. If we group together all the terms in the zeroth

powers of Vij, calhng that sum Z)o, all the terms quadratic in Vij together

into D2, etc., then to fourth order.

D =Do +Z)i + Z)2+ . . . +Z)^ ,

Di = 0 ,

D2 = -^gigj\Vij\\

/)3= 2 2 S^-as-A-Re {V;jVj,V,>},

i<j<k

_ j<k<l i<j

i<j<k<l

(11)
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Replacing the summations by integrals over ki ,
kj , . . —space, and

noticing the complete symmetry between the arrangement ^1^2! ^i2p and

g2gi\V2i[^, this becomes:

/>2 =-| I j gii)gU)\V{ij)\'didj ,

Ds =
l III g{i)gij)g{k)[Re {V{ij)V{jh)V{ki)}]didjdk ,

/>4=-||
I I j gii)g{j)gik)g{l)m Re{V{ij)VUk)Vikl)V{li)

+ V{ik) V(ji) V{kl) V(li) + V{ik) V{jl) V{kj) ] }didjdkdL (12)

The general rule for finding the terms in Dn can be developed by looking

at the partitions or classes of the permutation group in the total determi-

nant expansion, (10). D2 corresponds to the partition (L^~^, 2^). D3 corre-

sponds to (1^"^, 30- D4 corresponds to two partitions, (1^""^, 2^) and

41) jj^g numerical factors in front of the integrands in (12) are

identical to the corresponding numerical factors in the total number of

elements in the class or partition concerned. The number of terms in the

sums in (11) is exactly the same as the number of permutations in the

corresponding partition. In going from the sum, (11), to the integral, (12),

we first write the products and integrate without regard to equivalent ways

to write the same permutation, then divide by the factor which counts the

number of equivalent permutations. This factor is obtained by the same

reasoning which leads to the factor dividing in the formula for this

number of permutations belonging to a given partition. Thus the number

of different permutations in the partition (1'^"^, 3^ is

N{n-l)(N-2) _
3

the number of terms in the partition (1^-^, 2^) is Nil (N -4^)\2^ ^ N^IS,

etc.

IV. Constant Matrix Approximation

The form of the solution (12) is perfectly general, but will require con-

siderable numerical labor if applied to a specific crystal and band struc-

ture. Inspection of (12) shows that the greatest simplification would result

if we could simply replace all the matrix elements by their average values.

Because it is possible to obtain the results in nearly closed form in this

case, we shall work it out in some detail. We leave to later paragraphs a
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discussion of how adequate this approximation is. We shall therefore

assume

Vk-', - V
,

(13)

Combining (13) and (12), (1) then becomes

l-ll2GW-\-ll3GW^-ll8G'V^ = 0 (14)

if V is real and where

G=j,Wdk=j^^. (15)

The integration variable, k, now is the z-component of the three-dimen-

sional /c-vector. G is the one-dimensional integrated Green's function and

E{k) depends parametrically on kx and ky. If a tight binding form is

assumed for the density of states in order to get a closed expression,

E(k)=Eo{kx, ky) -\- 8 cos ka, (16)

then standard methods give

1
€<-8

,

G=^<-==' -6<e<8, (17)
o^ —

1

e>8 ,

€= E-Eo{kx.ky). (18)

With the substitution (e^ — 8^) IV'^ = y, (14) becomes

y2-l/2y-l/3 1/8 = 0 ,

which has the solution y — 0.968, or

e =- V8^-0.968F^ e < 8 (19)
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for the branch of G for which 8 > e. For the branch where e > 8, the same
substitutions lead to

r2-l/2y+l/3\^-l/8= 0,

which has the solution y — 0.30 and

e =+ V82-f 0.30P , e>6. (20)

Thus for each value of the pair {kx, ky), one state is introduced below

the sub band, and one state above the band, independent of the sign of V.

This result is general for all orders under the approximation (13). We also

note that contrary to the situation for a point defect in a three dimensional

crystal, a sub band of bound states always appears, independent of the

strength of F, because G corresponds to the one dimensional Green's

function. For the two-dimensional fault, the band of levels corresponds

to a bound state which can have various amounts of kinetic energy of

translation parallel to the fault.

V. Metals

We turn now to the question of how valid a constant matrix element

approximation might be. Excluding the structure factor, the matrix

element is

Vk'k = j ^k'v{:x.)\lfkd^
, (21)

where v{x) is the perturbation potential in a rigid ion displacement of

one of the ions of the crystal. In first order in a Taylor series this is

v{x)=h-Vu{x)
^

(22)

where b is the stacking fault displacement, and u{x) is the one electron

potential of one ion of the perfect crystal.

In this form we recognize the close connection to electron transport

theory in metals, and can adopt the calculation of the matrix elements

from that theory. Following Sham and Ziman [8] (see their equations (10.2)

and (14.4)), we have

Jix) =3{sin x — x cos x)lx^ , (23)

q = k -k.

ks is the screening parameter, 4m-e^r]{ef), which is of the order of a lattice
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constant for simple metals. In this equation, we have neglected the orthog-

onalization of the OPW wave function to the core electrons. Uo is the

difference between the Hartree-Fock potential at the Wigner-Seitz cell

radius and the energy at the bottom of the band, k= 0.

The first point to note is that only "longitudinal" or "umklapp" contribu-

tions are permitted. For K=0, where K is the reciprocal vector in (4), the

"scattering" vector, q, must lie normal to the stacking fault plane, and

<lx = qy = 0. However, the displacement vector, b, is m the stacking fault

plane, so b • q= 0 in (23). Hence only matrix elements corresponding to

umklapp in transport theory are allowed. Equation (23) is a decreasing

function of q, so only the smallest reciprocal vectors (in the x-y plane)

need be considered. K=7T/a {01}. We note that (23) contains a linear fac-

tor, b • q. This product is simply the constant, b • K, and is not a function

of the z-component of q. Likewise, in (23), although the quantity in braces

and J are functions of the total vector, q, the magnitude of this vector is a

slow function of = k: through the band of allowed values of /c, because q

already has the large component, K. Hence the matrix element, Vk'k is

zero except for those values of q on the line in A;-space passing through the

nearest reciprocal lattice vectors to the origin in the x-y plane. For all

the points on this line, Vk'k is slowly varying, the function J — J(tt) — 1/3,

and Vk'k takes the approximate value.

The total matrix element, F, of course includes the structure factor,

A+, from (6), and seems to be singular at k= 0. This is simply the familiar

spurious singularity in scattering at a Brillouin zone boundary, and when
one takes a proper linear combination of plane waves near the zone bound-

ary, the singularity disappears.

We are thus left with the result that over the range of values, /c, for

which Vk'k is non zero, that the approximation of a constant matrix element

made in (20) yields a reasonable order of magnitude for the energy of the

bound state for simple metals, where the average value of v is given by

(25). The conclusions listed at the close of the last section then appear to

be qualitatively correct for the simple metals.

Uo = U{rs)-e{k= 0). (24)

(25)
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Discussion on Paper by C. Nourtier and G. Saada.

SEEGER: I would like to make a comment on Professor Saada's paper. In

fact, it's mainly putting it in the record, because I've said it before in

other conferences. It is that I have doubt whether the first part of the

method— not the summation over the planes— is actually valid, and the

reasons why I have this doubt are the following: What you can show by

general arguments is that the asymptotic form of the potential around an

atom in a Fermi gas is identical with what Professor Saada had on the

blackboard, except for the phase factor 0. The phase factor is zero if and

only if you use second order perturbation theory.

What I want to say is that I think I have strong reasons to believe that cf)

should not be zero in any real case. In fact, it may even be tt, which

would reverse the conclusions on the stacking fault energies. The argu-

ment simply is that in the concept of pseudo-atoms you have to hold the

right number of conduction electrons at the atom when you move it

around, while on the other hand the potential on the atom— whatever it

is — has to be sufficiently localized for it not to interfere with that of a

neighbor. Otherwise you can't form a stacking fault simply by shifting

the potential rigidly; if the pseudo-potentials strongly overlapped there

would be some interference. To me it seems to be very difficult to satisfy

these two conditions simultaneously. The case of monovalent atoms is a

case where you might argue whether you can do it or not, but my feehng

is that in divalent and trivalent metals you cannot do it. That is the main

point of my comment.

A small comment is this: I always thought that potassium stayed body

centered cubic down to the lowest temperatures. I was surprised to hear

that now all alkali metals become hexagonal at low temperatures.

SAADA: Yes, as far as potassium is concerned, I took only the metals for

which the method of pseudo-potential was shown to work well from the

point of view, for example, of cohesion, phase stability, and so on. So I

didn't take potassium because there is a problem for this one. In the case

of potassium it is known that it does not have a stable compact phase.

Therefore, I didn't make a complete stabihty of phase calculation. What

I say is: You take a given structure and you look whether the h.c.p. or

f.c.c. phase is the more stable. Then, what you find is that for

monovalent metals it is h.c.p. This doesn't mean in the calculation I

worked out that another phase cannot be more stable.

SEEGER: All right.

SAADA: Now, for the first two points. The first one, the
(f)

point, I agree

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Buliough,
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that there can be a 0 which can be different from zero, but in our calcula-

tion to the second order of pertubation it is all right to take
(f)
= 0. What

I want to say is that all this work is only valid up to the second order of

perturbation. If the development is not valid then all the work goes to

water.

SEEGER: My point really is that I beheve this treatment is not valid. I

think I can give reasons that this (j) is significantly different from zero.

SAADA: The second point is that for the metals on which I have done the

calculation (/> has been shown by direct calculation to be very small. This

is for Al and for Li, for example.

SEEGER: Did you do thm with perturbation theory?

SAADA: This has been done with perturbation theory by Pick. See our

paper.



INTERACTIONS OF DISLOCATIONS WITH
ELECTRONS IN METALS

C. Elbaum and A. Hikata

Department ofPhysics
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Physical arguments are given to show that the interaction of moving

(vibrating) dislocations with conduction electrons in metals is indepen-

dent of temperature. Calculations based on the assumption that the Fouri-

er components of the displacement field of a moving dislocation can be

treated as pseudo-phonons give the same result. These conclusions were

confirmed by the results of recent experiments.

Key words: Dislocation dynamics; dislocation-electron interactions; phonons.

I. Introduction

The interactions are considered in terms of scattering of conduction

electrons in metals by moving (vibrating) dislocations. A calculation was

carried out following a scheme suggested by Holstein, and the physical

implications of the results were discussed in detail [1]. The predictions

of this treatment are consistent with the results of an experimental study

on the interaction of moving dislocations with conduction electrons in

the normal and superconducting states of a metal [2].

The actual treatment of the interaction starts with a Fourier decomposi-

tion of the lattice displacements u (displacement field) associated with a

dislocation:

Q

Each component Uq of this decomposition may then be treated as a

"phonon" traveling through the lattice with the dislocation velocity va

(vd is much smaller than the velocity of sound in the solid Vs; typically

Vd ^ l^~Hs) and the energy lost by these ' phonons" to the conduction

electrons can be determined using the established formalism of electron-

phonon interactions. The interaction so calculated is independent of

temperature. In this scheme any dependence of the interaction on tem-

perature would have to come in through the inclusion of effects due to the

temperature dependence of the Fermi energy of the conduction electrons

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. {Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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and the temperature dependence of the components Uq. That these

effects are small and indeed negligible in the context of possible experi-

mental verification by presently available techniques can be seen from

the following arguments.

Since the temperature dependence of the Fermi energy is of the order

of (T/Tf)'^ (plus higher order terms), the correction is obviously negligible.

As far as the temperature dependence of the components Uq is concerned,

it may be noted that the atomic displacements associated with an edge

dislocation decrease rapidly with distance from the dislocation core

(at a distance from the core of the order of five atomic diameters, these

displacements become comparable with the amplitude of thermal phonons

near the Debye temperature Od), and that they are substantially tem-

perature independent (their temperature dependence is of the order of

the thermal expansion of the solid). It follows that the components Uq

dominant in the interaction with electrons have magnitudes of the wave

vector q ranging from approximately the reciprocal of the lattice spacing

to the reciprocal of about 10 lattice spacings, i.e., 10'' < |^|< lO^cm"^

Thus, for most temperatures of interest and certainly in the range T < 6d

these magnitudes of q correspond to the condition qle>l, where le is

the electron mean free path. It follows that the interaction of dislocations

with conduction electrons should be treated in the spirit qle > 1 and is,

therefore, independent of le. Since q as well as the dislocation density

are also temperature independent, the interaction process is temperature

independent. The temperature independent character of the interaction

was confirmed experimentally at low temperatures [2].

In addition to the above, the effect of magnetic fields on the dislocation-

electron interaction was considered. A simple estimate suggests that such

interactions should not be significant for cyclotron radii much larger than

a few atomic diameters. It follows that for magnetic fields commonly

available such interactions should not be observable. The results of ex-

periments with fields up to 15 kG do not show any indication of an effect

of the fields on the interaction [3]. Experiments at much higher fields

would have to be carried out in order to reach more concrete conclusions.
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ELECTRONIC ENERGY STATES OF DISLOCATIONS;
THE CASE OF COVALENT-IONIC SOLIDS
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It is shown that electronic energy bands are associated with disloca-

tions in wide-band-gap, compound semiconductors. The eigenvalue

problem for the dislocation band edge is solved for CdS-type crystals, and

the occupation of the band is calculated. The Fermi energy is then deter-

mined for crystals containing many deep-lying discrete levels as well as

dislocation bands. It is predicted that when a crystal is illuminated with

light of appropriate wavelength and increasing intensity, the thermal ac-

tivation energy governing the electrical conductivity passes through a se-

ries of energy plateaus which are equal to the energy of the discrete levels.

In a dislocation-free crystal, these plateaus are connected by step

changes, while in a crystal with dislocations they are connected by broad

transition regions. The above predictions have been verified experimen-

tally.

Key words: Band structure; covalent-ionic solids; dislocation-electron interactions;

Fermi energy; semiconductors.

I. Introduction

Changes in the energy of an electron in a crystal near a dislocation are

usually attributed to lattice dilatation, and in the case of edge dislocations

to "dangling bonds." The two readily recognizable consequences of the

geometric proximity of the "dangling bonds" are: (1) The wave functions

for adjacent sites should overlap significantly, which suggests a band

of energy levels. (2) The occupation of an energy level associated with

the dislocation edge should be limited by the Coulomb energy associated

with the trapped carriers.

In previous treatments of this problem [1-6] one [6] or the other [1-3]

of these two properties was emphasized. The resulting theories have,

however, adjustable parameters which make it impossible to distinguish

between them experimentally.

* Present address: Bell Telephone Laboratories, Whippany, NJ. 07981
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In the present treatment a quantum mechanical model was used and it

was shown that energy bands are associated with dislocations in wide band

gap, CdS type compound semiconductors. This formulation was combined

with a statistical treatment of localized energy levels found in such

semiconductors. On this basis a test, far more definitive than previous

theories allow, has been devised to check the band model of dislocation

states [7]. In what follows, for the sake of convenience, reference will

be made specifically to CdS, although all the general considerations

apply to any solid of the type mentioned. Two reasons have guided the

choice of wide band gap compound semiconductors, specifically CdS:

(1) In CdS the dangling bonds are partially ionic rather than entirely

covalent. Therefore, the electronic energy states at the dislocation are

affected less by charge on the dislocation than they are in an elemental

semiconductor such as Ge.

(2) In CdS we often find a high density of deep levels which are asso-

ciated with various impurities and other point defects. It is shown that

these energy levels, which are referred to as local levels can be used as

a probe of the dislocation bands.

With the above conditions in mind, the band theory for dislocation

energy states is formulated for CdS. The resulting eigenvalue equation is

solved for the dislocation band edge by using a pseudo-square weU
approximation for the dislocation potential. The dislocation occupation

is then calculated as a function of the Fermi energy. This result, com-

bined with a general description of a wide band gap semiconductor con-

taining many deep levels leads to the following prediction:

In CdS with a low dislocation density the activation energy associated

with the temperature dependence of the electrical conductivity wiU

coincide with a local level, whereas in CdS with a high dislocation density

the activation energy may fall between two such levels. This prediction

has been verified in experiments with undeformed and deformed CdS
crystals.

II. Summary of Calculations

The present derivation is formulated in terms of the electron occupation

of donor bands. With simple changes of notation, these results apply

to the hole occupation of acceptor bands. In this treatment the charge

on the dislocation is accounted for in two ways. First, an explicit cor-

rection Vq is made to the final derived energy levels. This correction is

due to the fact that the total Coulomb energy of all captured holes is

reduced when an electron is captured. Vq is essentially the electrostatic

energy defined by Read [1], and it is approximately proportional to

the charge on the dislocation. This means that Vq is related to the dis-

location occupation {no) by
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Vq= -CinD-ll2ns). (1)

where ris is the number of atomic sites per unit length of dislocation and

C is a positive constant. The second effect of the charge on the dislocation

occupation arises because the perturbing potential F(r), associated with

the dislocation, is charge-dependent. Hence the wave equation invo^lving

V{r) must be solved in a self-consistent manner. However, in CdS the

dangling bonds are partially ionic, and V{r) does not depend strongly on

dislocation occupation. It will be assumed that V{r) can be specified, and

that the resulting energy levels are independent of dislocation occupation.

If the energy of an electron in the conduction band is related to its

momentum through E{p), then in the effective mass approximation the

"effective" Hamiltonian for the electron is E{—ihW). When this electron

is also in the field of a dislocation, the effective wave equation is

[E{-ih\/) 4- V{r)]^{r) = r^(r). (2)

The eigenvalue W represents the change of the energy of the entire crystal

due to the interaction of a single electron with a dislocation.

An approximate form of eq (2) is obtained by expanding the function

E{p) to quadratic terms about (0, 0, pz). It is assumed that E{p) has an

extremum along this line so the first derivatives in px and py vanish. By
choosing a coordinate system in which z is along the dislocation edge, and

the x — y submatrix of the effective-mass tensor is diagonal the expansion

of E{p) becomes

E{p., Py. P.) =E{0, 0, p,) + -i- p|+^ Pl . (3)
Zmxx ^friyy

If the dislocation does not disturb the periodicity of the crystal field along

the dislocation edge (z direction), the wave function and dislocation

potential can be written as

^(r)=PU, r)e-'^•^ (4)

V{r) = V{x,y).

Combining eqs (2), (3), and (4) and simplifying yields

+ V{x,y)P{x, y) = kP{x,y) (5)
2mzz dx^ 2m yy dy^

where X is defined by

\^W-E(0,Q,hk). (6)

Equations (5) and (6) can be interpreted in terms of multiple energy

bands. To see this let the zero of energy be at the conduction-band edge.
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The function £"(0, 0, fik) then represents the kinetic energy of an electron,

in the conduction band, moving in the z direction with momentum hk.

Since this energy has a quasi-continuum of positive allowed values, the

total energy W can have a quasi-continuum of values above a band edge

at X. For any negative value of A. these energy states constitute a band of

allowed states which overlap the forbidden gap. If X is positive, these

states represent the scattering of free electrons by the dislocation.

In order to obtain an approximate solution of eq (5) for the eigen-values

A., it is assumed that, as mentioned earlier V{x, y) has the form of a rec-

tangular "square well." (This is a crude approximation to the actual

potential and its use with the effective-mass approximation is not expected

to yield very rigorous results, but it should be helpful in estimating the

number of bands which will be bound.) Within the weU the potential is

— and outside it is zero. From the dislocation geometry in CdS [7] it

is concluded that 6 A by 8 A is a reasonable estimate for the size of the

well.

To render eq (5) separable, the "square well" is replaced by the follow-

ing potential:

V{x,y) = U(xla)+U{ylfi),

U{w) = ll2\V\, \w\>l (7)

U(w) = \i2\V\, \w\<l

where a and are the half-widths of the well in the x and y directions.

Using this potential, eq (5) can be written in separated form:

2m xx d'l a

2myydl

X{x)=Q, (8a)

nr) = o, (8b)

where 6 is a separation parameter which is real. With

u= xla, Eu = ^ — b, yl=h-l2mj.xa-; (9)

v = ylp, E,= b, yl= hV2myyp\

and after a number of intermediate steps, a set of parametric equations,

which specify A. as a function of parameters of the well, are obtained;
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V=yUOi^ ^1 1/277) 2(1 + tan^^i )

,

0^0^^ 1/277; n 0, 1, 2 . . .

En = l/2yi ( ^1 + m 1/277)M 1 - tan^ ^1 )

,

^=70(^2 + Ai2l/277)2(l + tan2 ^2), (10)

0 < ^2 < 1/277; n-z 0, 1, 2 . . .

- l/2y 2 ( 0, + /121/277)Ml- tan^ ^2 )

,

\ = Eu + E,.

where

(lly){ll2\V\ - Ey''-= (e-^ll2n7T) tan ^ (1/y) [1/2
1

F| ^+ 1/2/177.

Equations (10) can be solved for the maximum well dimensions (d\, d-?)

which give negative values of X, i.e., dislocation bands as a function of

well depth V. The resulting parametric relationship between di and d-?,

with V as the parameter, gives the locus of A. = 0. An evaluation of the

energy shows that at the dimensions assumed for the potential well
o

(6 by 8 A), the weU must be almost 2.5 eV deep for even one dislocation

band to exist. For more than one band to exist, the well must be much
deeper. An energy of 2.5 eV is close to the band gap in CdS, and cor-

responds to the minimum energy difference between a bound and a free

electron in a perfect lattice. This is a reasonable upper limit for the

potential associated with a broken bond. Therefore CdS should contain

no more than one dislocation band.

To find the occupation of a dislocation band, it is assumed that there

is little interaction among the captured electrons, and their distribution

is given by a Fermi function

and both Wr and Ef are measured (positive up) from the conduction-

band edge.

To find the average number of captured electrons per unit dislocation

length [no), eq (11) must be summed over all allowed values of k. As

usual, this summation is replaced by the following integration:

III. Occupation of Dislocation Bands

(11)

where r7-X + £'(0, 0, hk)-V, (12)
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2
nD= -\ fkWT)dk, (13)

TT jo

where £"(0, 0, hk) is assumed to be a symmetric function of k. Equation

(13) can be integrated by parts; the integrated part vanishes with the

result

nD =- kdMWr). (14)
TT Jo

To solve eq (14) the usual free-electron relationship is assumed:

£(0, 0, hk)=h^k^l2m,

where m is the effective mass for motion in the z direction. For convenience

let:

f{z) = (l-re'y\

^ Wt-Ef ^ 1

kbT kbT
[k-Vq-Er + h^'kV2m]

B = -^(\-V,-E,). (15)

The function /(z) is a conventional Fermi function in which the energy

z is translated to the origin, and the argument z is expressed in units of

kbT. The only case considered here is that of the Fermi energy within the

dislocation band, i.e., that of positive B. Combine eqs (14) and (15):

_ 2 2m
no— T7 k^n-' j^^ iz+Byi'(^-^^ dz. (16)

Since the derivative of f{z) looks like a 6 function, the value of this

integral is determined near the origin. Thus the integral can be approxi-

mated by expanding (2 + 5)^^^ in a power series about the origin, and

replacing the lower limit of integration by — ^. The integrals in the result-

ing series can be evaluated explicitly:

no- ![!fH""[-S—
-

]

If the Fermi energy is more than a few kbT above the band edge, the

dislocation occupation can be approximated by the first term in eq (17).

Combining this approximation with the definition of B [eq (15)] gives

Til)

^(f^)"^£.+
F,-A)./^. (18)
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Using eq (1) to eliminate Vq in eq (18) gives

JlD — K

Equation (19) establishes an implicit relationship between no and Ep.

This equation is analogous to the usual relationship between the occu-

pation Tij of a local energy level at Ej and the Fermi energy:

nj = Nj 1 +exp
hT (20)

where Nj is the density of these levels. In both eqs (19) and (20), the

occupation {no or rij) is determined when the Fermi energy is specified.

In a crystal containing defects the Fermi energy is determined by the

temperature and the number and type of defect levels present. An ana-

lytical relationship between no, nj, and Ef can be derived from the equa-

tion of charge neutrality, and from continuity equations for the local levels

and the dislocation bands

n-\-^na = p-\-^Pd + NDPd, (21)

nj^Pj = Nj, (22)

riD-^- Pd = Jis, (23)

where Ua represents electrons occupying acceptor sites, pa represents

holes occupying donor sites, Nd represents the density of dislocation

lines, and no and po represent the electron and hole occupation of the

dislocation bands. After some manipulation the following is obtained

^Nb + nj= ^Nd-^-Noins-riD)^ M, (24)

where ^Nb is the total number of local levels lying below Ef, INd is the

number of donor levels in the crystal, and M is defined by

M=p-^^PB-n-^nA. (25)

M is the difiTerence between the number of holes in local levels below

Ej and the number of electrons in levels above Ej. Since Ej is the local

level nearest the Fermi energy, and because of the sharpness of the Fermi

function, both of these quantities are small. Therefore M is small.

An imphcit equation for Ef can be obtained by combining eqs (19),

(20), and (24). The Fermi energy can be obtained explicitly by plotting the

left-hand and right-hand sides of eq (24) independently, as a function of

Ef, using eqs (19) and (20) to determine how nj and no depend on Ef-

The Fermi energy for the crystal is given by the intersection of these two
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curves. Because of the stephke nature of the Fermi function, the left-

hand side of eq (24) is essentially constant between the local levels, and

at Ej it decreases by Nj over an energy of a few k^T. The right-hand

side of eq (24) is dominated by the constant term ^ A^^; however, in a

crystal containing dislocations, the term tid [eq (19)] gives it curvature.

In figure 1, solid and dashed curves represent the left- and right-hand

El E, E3 E, E5 Es E,

ENERGY

Figure 1. Solution to ^ ^B + nj=^ Noin^ — nD) +M for hypothetical crystal.

sides of eq (24) which are plotted for a hypothetical crystal with various

dislocation contents. In the dislocation-free case the solid and dashed

curves are parallel everywhere except very near the local levels. Thus the

intersection must occur very near one of these levels. However, in the

crystal with dislocations, the two curves are no longer parallel and inter-

sections can occur between the local levels. For example, in figure 1; the

Fermi energy is near in the dislocation-free case, as well as in the case

of few dislocations, but with many dislocations the Fermi energy is between

and Ea.

With these graphical solutions in mind, appropriate approximations can

be made to obtain an analytic expression for Ef- First, consider the

dislocation-free case. Letting Nd= 0, combine eqs (24) and (20) and

solve for

Ef = Ej — ki,T In (26)

Equation (26) can be used to determine the activation energy which

governs the temperature dependence of the electrical conductivity. In
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the case of CdS, which is an ^-type, wide-band-gap semiconductor, the

electrical conductivity is given by

C = nqiJi = NcQfJi exp [EFlkbT], (27)

where q is the charge on an electron and fi is the mobility and the zero

of energy is defined at the conduction-band edge. Combine (26) and (27):

In C= {llkbT)Ej^ln NcQIJl

-In (28)

By definition [8], Nc is proportional to r+^/'^ and experimentally, [9] be-

tween 80 and 700 K, the mobility in CdS is proportional to T'^^^, hence

fjbNc is temperature-independent. In addition, as mentioned earlier, M is

small, so its temperature dependence can be neglected in the last term.

Therefore, in a dislocation-free crystal, the slope of a plot of In C versus

IjkbT, i.e., the "activation energy," will be Ej.

For a crystal containing dislocations, the case in which the Fermi

level is near a local level must be distinguished from the case where it

is between two local levels. Figure 1 shows that in the former case the

exact value of Ef is determined by the variation of nj with energy, and

ud can be treated as if the intersection were at the local level. In this

case Ef is given by

EF = Ej-kbT In ^Nj j ^Na-^Ns^M

^Noris-NDUD (^j) j-1 (29)

By comparing this result to eq (26), we can see that the activation energy

is again Ej.

When the Fermi energy falls between two of the local levels, iij is

either 0 or Nj, and it is not a strong function of energy. In this case Ef

can be found by combining eqs (24) and (19):

^Na+ NDUs+ M'-^NB

(30)

where M' is defined by

M' = M-nj (E), \E-Ej\ > k^T. (31)
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In this case the activation energy is equal to Ep and it will be between

two of the local levels.

A scheme was devised [7] to check experimentally these results. The
experimental data obtained on undeformed and deformed CdS agree with

the above predictions.
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A moving dislocation in a metal induces an electric field which causes

currents in the conduction electron gas. The energy dissipation associated

with these fields and currents is calculated from the Boltzmann equation

in a manner analogous to theories of acoustical attenuation. It is found

that the applied stress required for steady motion is proportional to the

dislocation velocity divided by the electrical resistivity, in good agree-

ment with low temperature yield and flow stress measurements on bcc

metals. The concept of a large electronic component of drag which in-

creases with decreasing temperature is used to give a qualitiative explana-

tion of the observed mechanical properties of b.c.c. metals. When one con-

siders electronically damped dislocations impeded by pinning points, it is

found that: (1) the dislocation velocity depends only on the mean strength

of the pinning obstacles; (2) the stress required to overcome an obstacle

dynamically is less than that required statically and is, in fact, the elec-

tronic drag stress; and (3) the apparent dislocation velocity should vary

rapidly with applied stress. The displacement field of a dislocation is sig-

nificantly wider and more gradual in a f.c.c. than in a b.c.c. lattice, and this

feature can be incorporated into the calculation by assuming that the elec-

tronic screening of the positive charge shift of the dislocation is essen-

tially perfect in a f.c.c. lattice. The Boltzmann formation then gives a tem-

perature independent stress or drag coefficient in agreement with experi-

ment and with Holstein's scattering calculation. The problem of a disloca-

tion moving in an applied magnetic field directed along its length and per-

pendicular to its direction of motion is also treated. Under suitable condi-

tions it is found that the stress or drag coefficients exhibit oscillations of

the cyclotron resonance type which could be as large as 10 to 30% of the

zero field values.

Key words: dislocation damping; dislocation-electron interactions; electroresistivity.

I. Introduction

In previous work, we have calculated the electronic component of

drag on a moving dislocation using a Boltzmann equation approach

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, II, 1970).
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analogous to theories of acoustic attenuation [1, 2]. If one assumes that the

electronic screening of the positive charge shift associated with the dis-

location is perfect, one obtains a drag coefficient or electronic component

of yield stress which is temperature independent in good agreement with

the scattering calculation of Holstein [3]. In an applied magnetic field,

the electronic component of drag is predicted to exhibit oscillations of

the cyclotron resonance type, which could be as large as 10 to 30 percent of

the zero field drag. However, Brown [4] and others [5] have shown that

the positive charge shift is not perfectly screened if one treats the short

wavelength components of the dislocation displacement field rigorously.

If one uses Brown's result for the deformation potential in the Boltzmann

theory, the drag coefficient is found to be inversely proportional to the

resistivity. For reasons discussed in section II, the temperature independ-

ent result is probably a more accurate description for f.c.c. or h.c.p. metals,

while the second, strongly temperature sensitive result may be a correct

description of a moving dislocation in a b.c.c. metal. As wiU be shown, such

a result gives a good explanation of the large, markedly temperature de-

pendent yield and flow stresses observed in bcc metals at low temperatures

[6-11]. In this case, the previously mentioned magnetic effects are greatly

reduced. Such magnetic experiments should thus provide a good test of

the theory.

In section II, we outline the Boltzmann theory and give its main

results. In section III, the concept of an electronic component of drag

which increases strongly with decreasing temperature is utilized to give

a quaUtative explanation of the mechanical properties of b.c.c. metals.

In section IV a short summary and discussion of the results are presented.

We follow closely the general treatment of Cohen, Harrison and Harrison

[12], who use the form of the Boltzmann equation solution given by

Chambers [13],

where r' = r{t'), and v' = v(^'). Here /(r, v, t) is the electron distribution

function, which gives the probability of finding an electron at point (r, v)

in phase space at time t; fs is the distribution function after scattering,

and T is the electronic relaxation time. If u(r, t) is the velocity imparted

to ions and impurities by the moving dislocation, fs has the form of an

ordinary Fermi distribution function centered about velocity a; i.e.,

II. Boltzmann Equation Theory and Results

(1)

/s(r, V, 0=/o(E(r, v-u, t)-Er), (la)
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where Ef is the Fermi energy. The space time dependence of the single

electron energy is chosen to give the correct electron density.

E(r, V, 0 -Ef = ^ my^ -E^ (2)

where

El = E,-Eo. (3)

Eo being the energy at the bottom of the conduction band and A^o the

unperturbed electron density. In the two approximations we eventually

use to calculate the drag coefficient or yield stress (perfect screening and

a Thomas-Fermi model), eq (2) is identical to

E(r, V, t)-Er= ^mV'-\-Vo (rt) Eo(v) + Fz)(r, t)-El (4)

where Vd is the deformation potential of the moving dislocation. More

generally, however. Brown has shown that eqs (2) and (4) are not identical

in a more accurate treatment using the static dielectric function to

describe the screening [4]. We retain eq (4) in this treatment, partially

because the resulting algebraic equations are simpler, and the results

identical in the approximations used, and partially because we feel it

may have a more direct correspondence to an eventual scattering theory.

We have, however, also carried out the calculation using eq (2) and the

more accurate results of Brown for 8^(r, t) , and find that the changes

in the main results of the theory are negligible.

The solution to the linearized Boltzmann is found by expanding/ and /o

to terms which are of first order in u.

/(r, V, 0 =/o(Eo(v) ~E,) +/i (r, v, t) . (5)

Following standard procedure [12, 14], one finds

-VV.ir^n+^ir^n)-^^^"^^] (6)

where E is the electric field produced by the moving dislocation. Following

CHH, we Fourier analyze all quantities and obtain for the electron current,
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" i ^ er il-icor) e J

(7)

where o" is the conductivity tensor. The simplest form of oj which satisfies

the requirement of Gahlean invariance is simply q • Vd, where \d is the

dislocation velocity. We take the deformation potential to have the form

Fz,,-— A,r,——— r, (8)

where is the Fourier transform of the dilatation, Uq\
\
is the component

of Uq parallel to q, and Tg specifies the electronic screening.

Using Maxwell's equations and the charge-current continuity equation

one can express the electric field and electron current in terms of u. The
results have the form

E, =E,-^ (9)
CT 0

and

Jeq=J^-N€U^ (10)

where E and J are dimensionless tensors, and ctq is the d-c conductivity.

It is then readily shown [1] that the energy dissipated by electrons when
the dislocation moves from one lattice position to an adjacent position is

(27r)-^T J
^ (^^^ ^11)

where L is the dislocation length, td is the time required for the motion,

and the integration extends over the (1-2) plane in figure 1. Sq is the

dissipation tensor given by

Sq^J^Eeff c+1 (12)

where J+ is the adjoint of J and Eeff is the effective field tensor. The

tensors J, E, Egff, and S are all given in terms of the conductivity tensor,

O", and the deformation potential. Their exact forms are rather cumber-

some and we refer the interested reader to reference [1] where they are

given. The Fourier transforms of the ionic velocity functions to be used in

eq (11) are also given there.

If there is no appfied field, O"^^ and all of the other tensors are diagonal

and the resulting expressions split into longitudinal (||) and transverse

(_L) components. In particular, one finds that the applied stress required

to supply the energy dissipated by the conduction electrons is



HUFFMAN AND LOUAT 1307

(i.b.Vj)

Figure 1. Calculations in wave vector space are most easily carried out in the (1, 2, 3)

coordinate system specified by the unit vectors q, in the direction of q, L, along the length

of the dislocation, and the cross product of these two, q^. The natural coordinate system in

real space, (i, j, ft), is specified by the Burgers vector or glide direction, b, and the direc-

tion of their cross product j

.

C(edge) — — C(edge) _|_C(edge)

[1-4 sin^.]
(R,s,)} ,13)

4 jo jo q

while

477^7 jo jo q (14)

where b is the Burgers vector and (f is the angle between q and v^, and qo

is the Debye wave vector.

One can readily show that S^^^^^ and S^l'^^-^^) are <^ Sj^^^^) over the tem-

perature range of interest (0 K to 200 or 300 K) and that the dominant

contribution to the integral comes from the region where q is

large (i.e., q > qoiio). In this high q region, qA > I, A being the electron

mean free path. If additionally, we assume that cor < 10 ', which should

be valid for most materials, we find,

Re5„ = {M)!a-r,HMA}(i,^„)

369-713 OL - 71 - Vol II - 38
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where we have neglected terms of order (ojt)^ with respect to 1 and terms

of order 1 with respect to qh.

The simplest approximation is to take Fg^^l, which assumes that the

electrons screen the positive charge shift of the dislocation perfectly.

One then finds for an edge dislocation the temperature independent

stress

dyne
This is ~ lO^to 10'

( ) for a typical metal. The electron drag
cm-

coefficient is then

^(edge) = Nmb'^Wgo^'^
^^^^

^here

(18)

Vf is the Fermi velocity, and V2 and v\ are the transverse and longitudinal

sound velocities. This result is in good agreemxcnt with Holstein's scatter-

ing calculation [3]. An earHer, somewhat less general solution of the

Boltzmann equation by Kravchenko [16] gives a similar result.

In a more general, quantum mechanical calculation [4], Brown has

shov/n that when the wave vector q is not small with respect to kp and

qtf-, the Fermi and Thomas-Fermi wave vectors, the form of the screening

function Yn is

[I
In

2kF-\-q

2kF-q
(19)

Following Pines [17] and others [18] we replace qrF by a somewhat smaller

screening vector, qs = OASSqTF , and adopt the approximation

To -
H + g'/ql)

(20)

Inserting this expression into eqs (15) and (13) one finds for edge disloca-

tions a large, temperature dependent stress which is inversely proportional

to the d-c electrical resistivity, p.
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(21)

Here Xm=qDlqs and

1 +
2(1 2x1

1 3
(22)

If we neglect other dislocation drag mechanisms, we can equate S to the

yield stress. More accurately, we mean the flow stress extrapolated back

to the elastic line on the stress-strain curve [9]. The term yield stress is

used because it represents a fairly well defined point on this curve at

which interactions between dislocations (work hardening) should be

negligible. For measurements at constant strain rate, as discussed pre-

viously [2], Vd can be assumed to be approximately independent of tem-

perature, so that aU of the temperature dependence is contained in p.

Separating p into its ideal and residual parts, and inverting eq (21), we

A plot of 1/S versus p, should then give a straight line whose slope and

intercept determine the dislocation velocity and the residual resistivity,

respectively. Several examples are shown in figure 2 and the dislocation

velocities and residual resistivities found from these and other such plots

are Usted in table I. If one now takes these values and uses them in eq (21)

one finds the theoretical S versus T dependence shown by the smooth

curves in figure 3.

find

1^1 (p.(r)+po)

S C Vd
(23)

Table I

Element yd(cm/s) paifJiCl — cm)

V
Fe

Cr

W
Mo
Nb
Ta

K

5.88 X 104

2.18 X 104

6.22 X 10"

1.89 X 104

2.27 X 104

7.83 X 104

6.64 X 104

11.86

3.88

2.06

3.35

1.39

2.17

5.06

3.85

.0.54
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1 I I I I I I I I I r

I I I I I I I I I \ I I I

0 2 4 6 8 10 12

p_ (/ift-cm)

Figure 2. The inverse yield stress versus the ideal resistivity for:

(a) K^; (b) Fe"' i", Cr, iiV,^ and W^.

It may be noted that theory and experiment are in better accord at low

than at high temperatures. This is expected since other dislocation drag

mechanisms (phonon drag, impurity and grain boundary pinning, etc.)

should become comparable to or greater than the electronic component

at higher temperatures. In general the straight line relationship of eq (23)

has been found to hold reasonably well up to temperatures of order 150

to 250 K for most b.c.c. metals.
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0 40 80 120 160 200 240 280 320

TCK)

Figure 3. Theoretical (smooth curves) and experimental (points) yield stress versus

temperature results for* (a) and V^; (b) Fe*^- and Cr'^.

The dislocation velocities obtained are fairly large, being about 5 to 10

percent of the speed of sound in most cases. This agrees qualitatively

with recent experimental measurements [19]. The residual resistance in

this theory should be viewed as a parameter which is characteristic of the

electronic mean free path in the highly strained region close to the dis-

location core. This seems reasonable, since the dominant part of the inter-

action takes place for large q, > qnllO, so that most of the energy dissipa-

tion takes place within a distance of several Burgers vectors from the
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dislocation center. This view is supported by the fact that the same
residual resistance seems to be appropriate for the Fe data of two different

investigators. This was also found to be approximately true for other metals

where more than one set of data was available.

In f.c.c. metals, the yield stress shows very little temperature depend-

ence, and the small temperature dependent component which is observed

may arise from impurities [1, 20, 21]. Further, ultrasonic experiments show
a damping which is essentially temperature independent [22, 23]. It there-

fore seems likely that the temperature independent drag coefficient of eq

(17) is a more accurate description for f.c.c. metals. The diff"erence between

f.c.c. and b.c.c. metals can be qualitatively explained by noting that the

core distortion should be spread out over a considerably larger region in

f.c.c. than in b.c.c. lattices, and the effect of this is to emphasize the con-

tribution of the somewhat longer wavelength components of the Fourier

synthesis. Inspection of eq (19) shows that such an emphasis is equivalent

to taking 1, which approximation was used in deriving eq (17). We note

that an alternative approach, using the concept of dislocation widths yields

a similar result [1], at least as regards the temperature dependence.

The electronic drag arising from the transverse components of the field

and current, as given by the second term of eq (13) and by eq (14) for a

screw dislocation have a more complicated form and we have evaluated

these integrals by computer integration.

The transverse component of drag is found to increase with increasing

temperature, and this is shown in figure (4) for a screw dislocation in a

typical metal. The relatively small magnitude of the stress arises primarily

because the displacement field we have assumed for a moving screw dis-

FlGURE 4. Stress versus temperature for a screw dislocation in a typical free electron

metal assuming a conduction electron density of 5 X 10^2 cm^'' and a dislocation velocity

of 10"* cm/s. S'^**^^^ has a very similar form.
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location has no dilatation. If in fact, this is not the case, this result could

be greatly altered.

Next, consider the problem of an applied field H directed along the

length of the dislocation (axis 3 in fig. 1). The conductivity tensor and the

dissipation tensor are no longer diagonal. As for the zero applied field case,

the dominant contribution to the integral of eq (11) comes from the high

q region q > qoiio- In this region Sn is much greater than either the trans-

verse ($22 and S33) or off-diagonal components (S12 and S21) of S. Using

the same large q approximations as CHH for (Jn, it can be shown for

r^^l that

o

{Re [{l-iojT) cothZ](l+A:^)-cuT Im [{l-iajr) coth Z] (1 + jc^) ^}

[l+(ceJT)Hl+Jc2)2]

(24)

where
77"

Z = {I — icor), and x= qlqTF, (25)
(OcT

(x)c being the cyclotron frequency, (eH/mc). Inserting this result into eq

(13) and performing a computer integration, one finds the results shown

in figure 5 using parameters appropriate for Cu. Here we have plotted the

stress at constant temperature against the ratio Wm/coc, ojm being the maxi-

mum frequency associated with the dislocation wave packet, qoVd- The

drag coefficient would, of course, show the same behavior. The oscilla-

FlGURE 5. Stress versus Wm/oic for Cu parameters (vd^ 10^* cm/s) assuming perfect screening.
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Figure 6. Stress versus (Om/coc for a b.c.c. metal, using the screening function of eq (19).

tions are about 10 to 30 percent of the zero field value. Because of the

somewhat large residual resistivities associated with the region near the

dislocation core, there might be an inherent difficulty in obtaining cowT

values even as large as 10. Nevertheless, this problem should be less

severe for f.c.c. than for b.c.c. metals, and it seems likely that some oscilla-

tory behavior should be observable for f.c.c. metals. The locations and

separations of such oscillations could be used to determine the primary

velocity of a dislocation moving between adjacent lattice positions.

If one does not take r=l but uses eq (19), which is presumably a

better description for b.c.c. metals, one finds that the magnetic effects are

drastically reduced, due to the fact that the large, temperature dependent

part of the stress is rather insensitive to the magnetic field. A typical

result is shown in figure 6. It is clear that magnetic experiments of this

type on b.c.c. and f.c.c. metals should be crucial in clarifying the situation.

In addition to the drag coefficients one can also derive electric fields,

currents, and charge densities from the Boltzmann formalism [1]. Using

the complete screening function of eq (19) and the integration techniques

of Brown, one finds for the charge density, for example.

p(r')=-/Ve(^) {27Tk,aoCo)

cos (r^+ 7r/4)

sin (f sin (r^+ 77-/4 )

(r;)^/2

+ (2A>i;rfT) cos (p sin (f
(r;) 5/2

^2 2
(4A|.+ g|,^) sin sin (r;+77/4)

(2W)^ cos^ <p (26)



HUFFMAN AND LOUAT 1315

where ao is the Bohr radius, Co is a dimensionless constant ~ 1, and
rF=2kF\r— \dt\. All electromagnetic quantities exhibit the Friedel

oscillations characteristic of a Fermi gas.

III. Mechanical Properties

We now consider a new theory for the temperature dependence of the

flow stress of b.c.c. metals. The observed temperature dependence of the

flow stress and that calculated for the electron damping of dislocation

motion are the same over the relevant range of temperature. Since it

would seem improbable that this could be coincidental we shall, as im-

plied earlier, equate the energy dissipated as heat by moving dislocations

to the work of plastic deformation.

The question as to how the work of plastic deformation is dissipated

seems largely to have been neglected. Nicholas [24] examined this matter

and concluded that if, as experiment seemed to indicate, dislocations

do not move rapidly with speeds approaching that of sound, the dissipated

energy could be accounted for by the formation of point defects through

the motion of jogs. However, it was pointed out later by Louat and Johnson

[25] that jogs of the same sign are apt to accumulate leading to the forma-

tion of dislocation dipoles rather than point defects. Nicholas' results

are then seen to overstate significantly the energy dissipated in this way.

Accordingly, it seems necessary to suppose that dislocations do move
rapidly.

To resolve the resultant contradiction of experiment we have only to

postulate that dislocations move in a series of jerks so that their mean
speed is much less than that of sound whereas their maximum speed may
approach it. This view finds support from Fisher and Lally's [26] observa-

tion of noise induced in a plastically deforming material. It would also

seem inescapable from the realization that in the situation with which we
are concerned the forces on a dislocation through an applied stress field

are large compared with the effective dissipative force when a dislocation

moves at a speed very much less than that of sound.

Allowing that dislocations do move rapidly we still have to explain

why the speed is essentially constant as required from our earlier

considerations.

When preparing a new theory it is advisable to indicate some short-

comings of the old. Accordingly, before discussing these above ideas

further, we shall examine briefly two current theories severally based on

the ideas of large Peierls forces and the dissociation-association of screw

dislocations (Hirsch, 27).
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A. Present Theories

Basic to the formalism of both the Peierls and dissociation-association

models is the postulate that the flow stress (S) is the sum of two com-

ponents, thus

S = Si + S{T) (27)

where Si is independent and S{T) a function of temperature. Furthermore,

Si is identified with the resistance to dislocation motion consequent on

the presence of internally induced stress fields. It is an essential assump-

tion of these models that the lateral speed (Fa) of kinks produced through

thermal activation is much greater than the forward speed {Vd) of the

dislocation as a whole. Concomitantly, the dislocations are envisaged in

the analysis as essentially straight. In view of later considerations it is

now appropriate to examine the validity of this assumption.

It is clear that the activation energy for kink motion (£'a), if it be acti-

vated, must certainly be less than (Tpb^ where dp is the Peierls' stress.

This quantity is to be compared with that for double kink nucleation (£"„)

namely, 30 kT (Dorn and Raynak, [28]). In the case of iron (28), for example,

(T;> ~ 4 X 10^ dyn/cm^ so that < (Tpbs ~ 6 X 10 erg which is almost

certainly a gross upper limit. Even so this limit is less than 10 kT at all

temperatures above ~ 60 K.

Now, since the speeds of these motions are determined by exponential

functions of the activation energies, it is clear that Fa- > Vd at all tem-

peratures above 60 K, as a gross upper limit. We conclude therefore that

Vk > Vd over much, if not all, of the relevant temperature range. This

result vindicates the assumption that on double-kink models the disloca-

tions are essentially straight.

We now remark that internal stress fields are random in direction and

thus that the local value of internal stress at some point on a straight dis-

location is equally apt to be in such a sense as to aid as they are to retard

the dislocation motion. In fact the sum of such forces exerted on the

dislocation must tend to zero with increasing dislocation length. A little

consideration now indicates that one might there expect a flow stress

S = S{T)-Si (28)

rather than that of eq (27).

Seemingly, this difficulty may only be obviated by supposing that kink

speeds are comparable with the forward speed of the dislocation so that

the dislocation may bend. But as we have seen this position is untenable.

Finally, we note that while it is possible to envisage particular configu-

rations of obstacles such that the dislocations are indeed bent and so are
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everywhere acted on by internal stresses which tend to oppose their

motion this is irrelevant since it is required that eq (27) be valid in general.

We conclude then, that eq (27) is invalid for both the Peierls and dis-

location models and, since this equation appears to be critical, that one

should seek alternative processes.

We now return to a consideration of the ideas introduced in section TIL

B. Dislocation Motion for a Square Array of Obstacles

Consider a dislocation to move through a lattice containing point

imperfections which impede its motion. Suppose for simplicity that these

imperfections form a square array of side / in the slip plane of the dis-

location. Suppose further that at a given instant the dislocation adopt the

configuration indicated in figure 7 and that the dislocation is then on the

point of breaking away from the restraints. Neglecting interactions, the

elastic energy of a circular arc of dislocation in equihbrium under an

applied stress as is

where /jl is the shear modulus. If breakaway occurs this potential energy

(29)

®

«

Figure 7. A dislocation traversing a square array of imperfections.
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will in the main be converted into kinetic so that we may write

where —— is the mass per unit length of dislocation, b is the Burgers

vector, c is the speed of sound and V the dislocation speed. We then find

We now write

a-.=a^ (32)

where a: is a constant which denotes the specific strength of the locking

process. In these terms we have

(33)2V3'

It is of particular interest to note that V is independent of /, thus of the

concentration of pinning points. Furthermore, for reasonable values of a,

e.g., a: = 0.1, F is a few percent of the speed of sound.

We now observe that there should exist a stress S such that the energy

dissipated in motion between one set of pinning points and the next

is just made up by the work done on the dislocation, namely Sb^ per unit

length.

A solution to the relevant differential equation seems intractable even

for the simplified case in which one considers a sinusoidally varying

potential energy.

sin(^)+l|/2.

Recourse was accordingly made to the use of a digital computer. The
results of such calculations showed that S^B VE^^ BVmax^ provided

the damping force fiF^ax was small compared with that due to the poten-

tial gradient. It may be noted that V^^x has the same significance as

does V. In cases where this proviso was not met it was found that with

increasing 5, S approached a characteristic value equivalent to os .

To recapitulate, we have seen that if a dislocation could be put in motion

so as to overcome a barrier to its motion then that motion would continue

using stresses smaller than those required to overcome the barrier in

a static manner. We have also seen that the magnitude of the stress
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required is BV where V is determined by the specific strength of the

individual pinning processes and not at all on the separation of those

points. These results are thus in accord with eq (21). In particular dis-

location speeds determined in this way agree essentially with those found

by fitting this equation to the experimental results.

An array of locking points such as we have considered will not occur

in a real material and we shall now consider dislocation behavior for a

more realistic arrangement of obstacles.

C. Dislocation Motion for a Random Array of Obstacles

Unresolved in our considerations of the square array is the question

of how the dislocation first gets into motion. This problem vanishes when

we consider a random array. Thus, prior to motion the distances between

recessive pinning points along the length of a dislocation are distributed

at random about some length Is. We suppose breakaway of some such

length / when a stress

(34)

is applied, provided the dislocation does not encounter a new obstacle

before bending the required amount. The probability of finding such a

length / is readily shown to be (cf Kocks, [28])

= p 6\ls)

a /cr.,

p = € 6^''^ =e (35)

Whence we see that for llls= 10

p = exp (— 1.6)

so that such lengths should be relatively common. Accordingly, we may
suppose that at stresses small compared with cTs, dislocations will break

away from their pinning points and once this has occurred our earHer

considerations should apply in so far that motion should continue provided

the applied stress is sufficient to make up for the damping losses.

The stress necessary for continued motion is not here so readily defined

as for the square array. Thus, following the initial breakaway, the moving

dislocation is apt to encounter a new pinning point so that we then have

two moving lengths. The criteria for continued motion of either of these

lengths is influenced by the angle turned by the dislocation at the outer

pinning points. Sometimes this angle will be such as to make breakaway

easier, sometimes harder.



1320 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

For small stresses, in which case the probability of breakaway from

all three pinning points is small, continued deformation implies that one

or the other of these lengths breaks free and the whole dislocation line

advances piecewise so that the mean velocity of the dislocation is very

much smaller than the instantaneous velocity of a particular element of

it. The analysis of this behavior is complicated by the presence of random
internal stresses and this matter has not been resolved.

When the applied stress is large enough, the dislocation will tend to

advance as a whole. One may then compute an average dislocation

velocity for a dislocation surmounting a series of potential hills. Since

such averages are necessarily dominated by the dislocation behavior

near the top of those hills one must anticipate results which will fit the

form

V^S^ (36)

where m = m{S) and m{S) is a function which decreases monotonically

to 1 with increasing S.

We have finally to remark that we have taken no account of thermal

activation. Clearly, this process will be important in the initial activation

of dislocation motion. However, in these considerations it has no in-

fluence on the temperature dependence of the flow stress since its role

is simply that of a trigger and is not involved in the general process of

deformation.

IV. Summary

We have seen that the Boltzmann equation theory gives a good account

of the energy dissipated by a dislocation moving through a metal arising

from its interaction with conduction electrons. If one assumes that the

conduction electrons screen the positive charge shift associated with the

dislocation perfectly, the drag coefficient for an edge dislocation is found

to be temperature independent and is in good agreement with Holstein's

scattering calculation [3], and with low temperature ultrasonic [22, 23]

and yield stress [20, 21] measurements on f.c.c. metals. When one uses the

static dielectric screening function of eq (19) or the approximation to it

given by eq (20), a large temperature dependent drag is found which is

proportional to the d-c conductivity of the metal. It is suggested that this

may be the origin of the large temperature dependent yield and flow

stresses observed in b.c.c. metals. The difference in the electronic screen-

ing is thought to occur because the core distortion of an f.c.c. dislocation is

spread out over a considerably larger region of the lattice than in the b.c.c.

case. The drag on a screw dislocation via this mechanism is found to be

small compared to the edge dislocation drag, and increases with

temperature.
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The problem of a dislocation moving in an applied magnetic field paral-

lel to its length and perpendicular to its velocity is also considered. In

the perfect screening approximation, oscillations of the cyclotron reso-

nance type in the stress or drag coefficient are predicted which could be

as large as 10 to 30 percent of the zero field value. If one uses the screen-

ing function of eq (19), these effects are found to be drastically reduced.

Such experiments should therefore be quite useful in clarifying the situa-

tion as regards the difference between f.c.c. and b.c.c. metals.

A verification of the temperature dependent electronic drag of eq (21)

by an improved scattering theory would be highly desirable. It seems

clear that a modification of Holstein's (4) calculation to include a more

general deformation potential such as Brown's will make little change in

his result. It also seems unlikely that the desired result will be obtained

by carrying the calculation to second order in perturbation theory to in-

clude the effect of thermal vibration on the deformation potential. Per-

haps a better approach would be to try to justify the use of a screening

function like eq (19) in eqs (2) or (4) and subsequently in eq (la), by follow-

ing a procedure similar to that of Holstein and co-workers [30, 31].

They have shown that for long wavelength acoustic phonons the energy

conservation laws in the scattering expression for {dfkldt) coll. are modi-

fied to a form which corresponds to a delta function,

8[(£k-muM+ ^Dk'(r, 0) - + VDkMl^hWqn)] (37)

where Vok (r, t) is similar to the usual deformation potential, and hojqn is

a phonon energy. This is the quantum mechanical justification of eq (la).

Whether or not some procedure similar to this can be carried out for short

wavelength disturbances remains to be seen.

Turning to mechanical matters we have seen that if dislocations sur-

mount obstacles in a dynamic manner we can anticipate a flow stress

BV in which V is characteristic of the obstacles and is quantitatively a

few percent of the speed of sound. We have also seen that there will

exist a range of stress in which the average dislocation velocity behaves

as S"^^^^ where m{S) decreases monotonically with increasing stress to the

limiting value L
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Discussion: Closing Comments by R. M. Thomson

THOMSON: Listening to the papers of this session has brought to mind a

few final thoughts with regard to the situation in semiconductors:

We seem to have finally come full circle on the original Shockley

proposal that the presence of dangling bonds on dislocations implies

both acceptor- and donor-like states. Another, very obvious point, which

was again discussed some in the early days, is the mobility of charge on

dislocations. If there is some kind of band state associated with the dislo-

cations, the carriers should be mobile. Some early search was made for

mobile carriers with negative results, but I believe both the possibility

for device applications and the basic physics demand that one bring up

this question once more. Limitations to the mobility will be produced by

impurities trapped at the dislocations and various types of inhomogenei-

ties such as nodal points, etc., but one should be able to design experi-

ments to minimize these effects. On the other hand, if the band is nar-

row, then the electron state on the dislocation may have suffered a Mott-

like transition to a non-conducting Heitler-London state. Also, the one-

dimensional character of the charge distribution gives a very high effec-

tive mass due to correlation effects.

These are obviously interesting theoretical questions, but at this stage

we probably need some guidance from the experimentalists.

In a somewhat different vein, is the question, how difficult will it be to

work out a one-electron theory of the state on the dislocation? There still

seems to be controversy about the ability to treat a large perturbation in

the semiconductors. Callaway and Hughes claim to have had good

results for the vacancy with the use of the Slater-Koster technique. In

addition, one suspects it should be possible to combine the dislocation

structure factor with some sort of pseudo-potential method for a first cal-

culation. To the proposition that the Slater-Koster technique could be

applied, A. M. Stoneham has made the following observation:

"The Slater-Koster method does not involve a perturbation expansion,

but the problem it solves is only realistic at small perturbations. Experi-

ment indicates the small perturbation assumption is not valid for the

vacancy in silicon, and this is probably why Callaway and Hughes have

been unable to reproduce any of the experimental results with the use of

arbitrary parameters. I should emphasize that the corresponding dif-

ficulty does not arise in Green's function approaches to lattice dynamics

in crystals with defects, except possibiHty in highly anharmonic crystals.

Also, I should mention that there may be difficulty in defining the per-

turbing potential. It is well known, for example, that empirical pseudo-

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and K. Hullouf^h,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Fubl, 317, II, 1970).
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potential fits to band structures are not unique, and usually involve ar-

bitrary assumptions— e.g. spherical point symmetry. In short, whilst the

Slater-Koster technique is an important tool, it is neither as fundamental

nor as general as if often asserted."

Thus one suspects there is considerable room for some hard theoretical

work on the electronic structure of dislocations in semiconductors.
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Questions Submitted to the Panel—
"Future Directions for Dislocation Theory"

1. What more can be done with classical continuum dislocation theory?

a. static vs dynamic formalisms

b. discrete vs continuous distributions

c. linear vs nonlinear theories

2. What fruitful interactions can we expect between the ideas of disloca-

tion theory and modern continuum mechanics?

3. What is the future for lattice calculations?

a. static theories

b. dynamic theories

4. Given an interatomic description, what is the best continuum approxi-

mation to it? For instance: If a long-range two-body potential suffices in the

atomic system what is the appropriate continuum formalism? Or how may
many body interactions be incorporated into a continuum framework?

5. Are there experimental techniques which can be employed to mea-

sure such microscopic phenomena as couple-stresses, non-local effects,

discHnations, and incompatibilities, .... Perhaps high resolution microsco-

py,...?

6. What are the prospects for our further understanding of thermally ac-

tivated processes?

7. What quantum effects are likely to be important in dislocation

theory? Conversely, what is the hope of doing more meaningful quantum

calculations in dislocation theory?

8. Can we extend old analogies or uncover new analogies between dislo-

cation theory and other field theories, particularly electromagnetism,

hydro-dynamics, general relativity, quantum mechanics . . . ?

9. What are the prospects of producing a macroscopic plasticity theory

based on meaningful microscopic parameters? How soon will we be able to

contribute to technologically important subjects, such as fatigue, fracture,

etc.?

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Pubi. 317, II, 1970).
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REPORT ON THE PANEL DISCUSSION:
FUTURE DIRECTIONS FOR DISLOCATION THEORY

A. Seeger

Max-Planck-Institut fiir Metallforschung

Institut fur Physik

and

Institut fur Theoretische und Angewandte Physik der Universitcit

Stuttgart, Germany

The chairman opened the discussion by comparing the assignment of the

panel to that of "futurologists" who have the difficult task of predicting the

further developments in the field of dislocation theory.

Fortunately, at present this task appears not to be nearly as delicate as

it would have been some twenty years ago, when doubts about the ex-

istence of dislocations were wide-spread and when the first obstacle to

overcome in talking to a large audience was to convince them that disloca-

tions might exist at all. The chairman expressed the view that nowadays

the main problem is the development of new methods and techniques for

doing practical and reliable calculations rather than discovering new fun-

damental ideas.

In making dislocation theory a powerful tool in crystal physics, one

should be aware of the progress made in neighbouring fields. For instance,

the measurements of single crystal higher order elastic constants have

rapidly improved during recent years. This progress makes possible nu-

merical calculations on non-linear problems involving dislocations in

anisotropic media. Further, it is to be expected that the development of

dislocation dynamics proper and the theory of the interactions between

dislocations and other fields in crystals (electrons, phonons, magnons, etc.)

will play an important role in the near future. Another problem, which has

been waiting for a solution since 1934 when dislocations were first applied

to crystal plasticity, is the construction of a macroscopic theory of plasticity

based on dislocation theory.

For the scientists attempting to make further progress in dislocation

theory, the chairman recommended warmly the perusal of recent books on

dislocation theory, such as those by Nabarro and by Hirth and Lothe in

which the present status of the dislocation theory is recorded. This may
help to avoid re-solving problems already solved and to concentrate on the

outstanding open questions.

Before the panel and the audience was a list of nine questions prepared

by J. Simmons, R. Bullough, and R. deWit. Opening the discussions on

these questions the chairman asked E. Kroner and J. Simmons to express

their views about "What more can be done with classical continuum dislo-

P^undamental Aspects of Disloralion Theory, J. A. Simmons, R. de Wit, and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, II, 1970).
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cation theory." Kroner pointed out that the alternative between "discrete

or continuum description" of dislocation arrangements (to which he

referred as field and continuum dislocation theories) is somewhat

analogous to the alternative between Lorentz's and Maxwell's theories of

electromagnetism. However, this analogy is restricted by the fact that the

dislocation lines are in general rather far apart, i.e., that the distances

between them are usually much larger than the interatomic distance. As a

consequence the average dislocation density is not a sufficient macroscop-

ic measure of dislocation arrangements. Kroner proposed that a more

satisfactory continuum description may be achieved by introducing point

correlation functions in the sense of statistical mechanics. A further com-

plication compared with electromagnetism arises from the irreversibiUty

of the thermodynamic processes accompanying dislocation motion. This

calls again for the use of statistical mechanics.

Comparing linear to non-linear dislocation theories Simmons
emphasized the great advantage of the linear superposition principle valid

in the linear theory. He recommended extended calculation of Green's

functions and their use for solving dynamic and inhomogeneity problems

in dislocation theory. Referring to a recent paper by Indenbom and Orlov,

Simmons expressed doubts about the possibility of reducing general three-

dimensional problems to two-dimensional problems and asked the au-

dience for comments on this point. J. Lothe, A. Head, and K. Malen ex-

pressed the opinion that the basic result of the Indenbom-Orlov paper is

correct and that it should be used to solve definite problems in order to

check the practical usefulness of the method.

In reply to Simmons, Seeger stressed the importance of non-Hnear con-

tinuum theories for investigating those effects which vanish in the linear

approximation, for instance the phonon scattering from dislocations. The

theory has been developed to the extent that the handling of such problems

is not much more complicated than that of linear problems, provided that

the calculations are restricted to the first non-vanishing terms contributing

to the effects to be investigated. Simmons remarked that when treating sin-

gular dislocations some lattice calculations are necessary anyway so that

it is questionable whether the non-linear theory should be applied in such

a case.

B. von Turkovich asked whether it is possible to demonstrate the unique-

ness of the solutions of non-linear problems. Seeger answered that it is very

difficult to prove uniqueness theorems for general non-linear problems. He
mentioned that the recent treatise by Noll and Truesdell on non-linear field

theories in the Encyclopedia of Physics contains existence and uniqueness

theorems only for very restricted cases. In practice the relevance of a

"solution" may often be judged by physical intuition when the non-linearity

is small and the linear solution is known.
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R. Thomson raised the question of the usefulness of continuum theories

for soUd state physics except when treating boundary-value problems. S.

I. Ben-Abraham argued that continuum theories provide the simplest tool

to deal with measurable quantities. N. Fox compared the present situation

in the continuum theory of dislocations with that existing 10 years ago at

the initial stage of the continuum theory of Hquid crystals, when no definite

solutions had yet been obtained. The recent successes of the latter theory

justify an optimistic outlook for the future of the continuum theory of dislo-

cations.

The chairman turned to the second question for the panel: "What fruit-

ful interaction can we expect between dislocation theory and continuum

mechanics" and invited E. Kroner and C. Eringen to comment on this

subject.^

E. Kroner emphasized that one of the main objects of this interaction is

the construction of a better continuum theory of plasticity, which is needed

by people doing practical calculations on plasticity problems. To this end

a closer co-operation between scientists working in dislocation theory and

in continuum mechanics is necessary.

A. C. Eringen remarked that if in a precise continuum theory the

phenomenological or constitutive coefficients can be determined experi-

mentally or by theoretical considerations, the continuum theory holds

promise of being a useful tool for materials science. Moreover by providing

internally consistent theoretical frameworks, continuum theories may help

to eliminate physically meaningless results obtained sometimes from

statistical considerations, as for instance happened in the case of some

statistical theories of liquids. He also stressed the importance of construct-

ing dislocation theory as a boundary and initial value problem.

A. Head added that another important connection between micro- and

macro-theories could be the prediction of the constitutive properties of new

materials starting from the micro-phenomena that the metallurgist is going

to put into these materials.

The chairman went on to propose discussing simultaneously the related

third and fourth questions "What is the future for lattice calculations?"

and "What is the best continuum approximation to a given interatomic

description?"

A. Maradudin predicted a bright future for lattice calculations with the

aid of high-speed computers in both static and dynamic theories. He ad-

mitted, however, that certain difficulties have to be overcome in picking

suitable interatomic potentials and in imposing the boundary conditions,

especially if a non-Hnear lattice theory is used. He remarked that from this

point of view harmonic lattice calculations as done by Bullough, Hardy,

and himself may be advantageous. Maradudin suggested that either the

zero-temperature energy or the Helmholtz free energy of a crystal contain-

ing a dislocation could be calculated by the lattice dynamics theory, in

* See also below for the chairman's comments on this question.
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order to get information about the Peierls barriers. Along the same hne

one could obtain the equation of motion of a dislocation loop which takes

into account interactions with lattice vibrations.

J. Lothe asked if it would not be better to consider physical objects that

are less sensitive to the choice of the interatomic potentials, such as jogs

and kinks, even though their configurations are more complicated than

those of a singular dislocation or a stacking fault. The chairman replied

that such studies were in fact performed by F. Granzer and his group in

Frankfurt am Main (Germany) for ionic crystals, the only class of crystals

for which the interatomic potential is at present fairly well known.

N. Ashcroft expressed the opinion that recent work on the higher elastic

constants is incredibly valuable for getting information about the pair

potential of a perfect crystal. He wondered if similar information could be

obtained about the structurally dependent part of the potential of a

dislocated crystal provided the dislocation arrangement is known. The

chairman answered that this procedure cannot be applied, since disloca-

tion arrangements are far from thermodynamical equiHbrium. Maradudin

suggested that for the treatment of many problems, as, for instance, the

phonon dispersion from dislocations, it is easier to avoid the use of pair

potentials by doing all quantum-mechanical calculations in reciprocal

space. A. Seeger supported this view and added that the pair potential for-

malism is only correct if second-order perturbation theory is sufficient to

handle the problem.

R. Bullough doubted the applicability of Fourier transform methods for

the study of the dislocation core and the stacking fault. He also expressed

the opinion that the repulsive potential of ionic crystals is not sufficiently

known and, therefore, the formation energy of defects is not accurately

determined. Seeger replied that the Fourier transform methods have al-

ready been successfully apphed for stacking faults. Concerning ionic solids

he remarked that recent work by Lidiard and his group and by his own
group furnished repulsive potentials in very good agreement with the mea-

sured elastic constants. With these potentials the formation energy of a

vacancy in sodium chloride can now be calculated with an accuracy that

presumably exceeds the accuracy of the experimental value. A. Maradudin

wondered how non-central forces have been taken into account in the

potential. A. Seeger answered that three-body forces were considered, but

their contribution to the cohesive energies turned out to be merely about

1% or even less.

J. Hardy noted that when one works in reciprocal space for the static lat-

tice theory the equations obtained in the long wavelength limit go over to

the continuum equations. In this case there is no difficulty of matching a

continuum to a discrete region. With regard to the formation energy of de-

fects in ionic crystals Hardy mentioned that one should better calculate the
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formation energies of the separate constituents of a Schottky pair rather

than the total energy, as is usually done.

A. Seeger recommended the use of non-local theories to supplement the

lattice description when these involve long-range forces and interactions of

non-mechanical origin. Examples are electro- and magneto-strictive ef-

fects, for instance in calculations on defects in piezoelectric crystals.

F.R.N. Nabarro suggested that it would be worthwhile to study exactly

the behavior of the dynamical Peierls force as the velocity tends to zero as

well as the interaction between dislocations and phonons within the

framework of the Frenkel-Kontorova model.

The chairman proposed to discuss the fifth question "Are there experi-

mental techniques which can be employed to measure such microscopic

phenomena as couple-stresses, non-local effects, disclinations, and incom-

patibihties?"

A. Maradudin pointed out two methods for the determination of the

elastic constants describing non-local effects. The first method is the com-

parison of the frequencies of continuum vibrations with the results ob-

tained by means of neutron spectroscopy. The second technique, applica-

ble only to crystals without a centre of inversion, such as tellurium or

calcite, is to measure the speed of propagation for right- and left-circularly

polarized sound waves along the polar axis. The rotation angle of the

polarization plane of the sound wave propagating along this axis is deter-

mined by the fifth-rank tensor which is the first-order correction term to

the elastic constants when expanded in powers of the wave vector.

The chairman raised the question whether acoustical measurements jus-

tifying the introduction of additional elastic constants such as those

required in theories with a non-symmetric stress tensor and couple-

stresses have already been done. A. Granato answered that up to now there

are no accurate experimental results requiring additional "elastic" con-

stants.

R. deWit asked if the stresses around a singular dislocation given by the

linear theory of elasticity have been checked experimentally.

A. Head answered that the strains around dislocations measured by elec-

tron microscopy are in agreement with the anisotropic linear theory of

elasticity. In addition, it should be possible to determine uniquely the dis-

placements around the dislocations on the atomic scale by high-resolution

electron microscopy, without implying the validity of a continuum theory.

J. Eshelby mentioned some other older photoelastic experiments done on

gelatine cylinders by Volterra's pupils.

The time allotted to the panel discussion had now elapsed. Accordingly,

the chairman thanked the organizers, the panel members and the au-

dience, and underlined the good future prospects of various branches of

dislocation theory. He appealed once more to a stronger co-operation
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between scientists with different backgrounds, e.g., in crystal physics and

continuum theories, for the future development of the theory.

At the request of the organizing committee, the panel chairman has

added some written comments on questions not— or only briefly— treated

in the discussions.

Question 2: What fruitful interactions can we expect between the ideas

of dislocation theory and modern continuum mechanics? In the writer's

opinion, dislocation theory has itself contributed substantially to the

development of modern continuum mechanics, so that the two fields do not

represent antitheses. Nevertheless, it may be said that in its narrower field

the development of new ideas and, even more so, of methods useful for

doing calculations in dislocation theory has on the average been far ahead

of the approach known as "rational mechanics" despite statements to the

contrary that may be found in the literature. With the present activity in

theories of tearing and folding in connection with dislocation and disclina-

tion theory this situation is likely to continue for some time. Nevertheless,

in the interest of uniformity and of the interchange of ideas the writer

recommends to make use of the notations and some of the concepts that

have emerged from the rational mechanics approach, as has been done in

the paper submitted to this conference by Teodosiu and Seeger.

Question 6: What are the prospects for further understanding of ther-

mally activated processes? Almost a complete session has been devoted to

this important subject at this conference, and two review papers and the

subsequent discussions have given a survey of the present situation. It ap-

pears that the additional complexities of thermally activated processes in-

volving dislocations above and beyond those of thermally activated

processes in gases or involving point defects in crystals have now been

recognized. Considerable progress has been made to solve the specific dif-

ficulties associated with the extended nature of the dislocations, and cer-

tain simple general results have emerged. The open problems of thermally

activated processes of point defect in crystals, e.g., those associated with

the nature and the exact description of the transition state, remain in the

dislocation problems a fortiori and should be attacked in the future. In the

course of such refinements it will presumably be necessary to pay more at-

tention to the detailed processes and rearrangements in the dislocation

cores during the activation process than has been done hitherto. Such

refined considerations will presumably also be required if one wants to ob-

tain a better understanding of the temperature dependence of activation

energies and entropies.



DISCUSSION: SEEGER 1335

Question 7: What quantum effects are likely to be important in disloca-

tion theory? Conversely, what is the hope of doing more meaningful quan-

tum calculations in dislocation theory? Quantum effects will presumably

be most important in problems of thermal activation. At low temperatures,

the harmonic oscillators which are introduced in order to describe the

vibrations of the dislocation lines should be treated by quantum statistics

and not, as usually done, by classical statistics. This will lead to an addi-

tional temperature dependence of activation entropies and energies, and,

if properly done, include the effects of zero-point motion. In addition, at

very low temperatures there should be tunneling effects, which have been

alluded to several times in the experimental literature on dislocations, for

which a convincing treatment appears to have not yet been given.

The writer considers the prospects for doing meaningful quantum

mechanical calculations, say on the structure of dislocations, as not very

good as long as the present emphasis on the use of pseudo-potentials and

second order perturbation theory in the electron theory of crystals con-

tinues. The disturbance of the regular crystalline arrangement in the dislo-

cation core is much too large to be treated in a meaningful way by the

methods which are at present used to describe, e.g., the phonon spectra of

metals. A quantum mechanical calculation of the dislocation core in, say,

a simple metal appears feasible with the present computer facilities, but

requires theoretical concepts and methods different from those which are

in vogue at present.

Question 8: Can we extend old analogies or uncover new analogies

between dislocation theory and other field theories, particularly electro-

magnetism, hydrodynamics, general relativity, quantum mechanics . . . ?

During the panel discussions the analogies of the continuum theory of

dislocations to electromagnetism arid hydrodynamics have already been

commented on. Very fascinating appears the possibility of analogies to the

general theory of relativity and cosmology. Several writers, including E.

Kroner and his associates, and J. Brinkman, have commented on these

questions. Unfortunately, the rather detailed considerations by J. Brink-

man have so far appeared only in a very condensed form (lUTAM Symposi-

um Freudenstadt/Stuttgart). They are particularly interesting at the

present time when there is a widespread tendency to search for modifica-

tions, generalizations, or even supplantations of Einstein's theory of 1916. J.

Brinkman belongs to those who believe that the conceptual foundations of

the general theory of relativity ought to be revised, and he is of the opinion

that the continuum theory of dislocations may serve as a useful guideline.

It may be appropriate to remark that, as shown by the continuing work of

Kondo and his school and that of Anthony, the general continuum descrip-

tion of dislocations and disclinations is itself a rapidly developing subject.
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Question 9: What are the prospects of producing a macroscopic plastici-

ty theory based on meaningful microscopic parameters? How soon will we
be able to contribute to technologically important subjects, such as fatigue,

fracture etc.? If one extrapolates from the past, the answer to the first of

these questions can only be: "poor." This is deplorable, since the open

problems are both intellectually challenging and technologically important.

It should be recalled that these problems have been one of the principal in-

centives in the early developments of dislocation theory. In the writer's

personal opinion the almost complete standstill in this area is due to not a

small degree to the confusion that has been created during the last decade

by poorly founded theories of work-hardening and preliminary but

overemphasized experimental work on dislocation observation, which have

brought the whole field into a state of disrepute. It is to be hoped that this

state will soon end, so that good scientists will be attracted to the field in

large numbers and that substantial progress can be made again.
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