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These Proceedings contain research papers, discussions thereon,

and panel discussions for the conference on "Fundamental Aspects of

Dislocation Theory," held under the auspices of the Institute for Materials

Research, April 21-25, 1969, at the laboratories of the National Bureau

of Standards, Gaithersburg, Maryland. Approximately 75 contributed

papers and two panel discussions are included. Topics covered are Dis-

crete Dislocations in Continuum Elasticity, Lattice Theories, Dislocation-

Phonon Interactions, Applications of the Geometry of Dislocations,

Intrinsic Properties of Dislocations, Dislocation Field Theories, Thermally

Activated Processes and Statistical Theories, Dislocation-Electron Inter-

actions, and Future Directions for Dislocation Theory.
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FOREWORD

In its role of characterizing materials and their properties, the Institute

for Materials Research of the National Bureau of Standards periodically

sponsors topical conferences devoted to an understanding of the funda-

mental quantities affecting material behavior. One such quantity is the

dislocation. As line defects in crystalline solids, dislocations have a funda-

mental influence on mechanical, electronic, and growth properties; while

they are also of prime significance as elementary sources of internal stress

in any elastic material.

The organizers of this conference assembled over one hundred scientists

from eighteen different nations for their meeting on Fundamental Aspects

of Dislocation Theory which was held at the NBS laboratories in Gaithers-

burg, April 21-25, 1969. Their purpose was to provide a multidisciplinary

forum seeking to intermix the viewpoints of solid state physicists and

continuum mechanists on the basic properties of dislocations. The success

of this venture is well attested in the following Proceedings.

J. D. Hoffman, Director,

Institute for Materials Research

National Bureau of Standards
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PREFACE

These volumes comprise the proceedings of the conference on

''Fundamental Aspects of Dislocation Theory" held under the auspices

of the Institute for Materials Research at the Gaithersburg Laboratories

of the National Bureau of Standards on April 21-25, 1969.

The purpose of the conference was to bring together workers active

in all fundamental aspects of the theory of dislocations to discuss, evaluate,

and contribute to the current state of understanding of these defects in

crystalline materials.

Dislocations have been subject to theoretical study for some 60

years, starting with the investigations reported by Volterra. In the last

20 years there has been a steady increase in sophistication of dislocation

theory from the early almost intuitive models to current theories, which

range over a large portion of continuum mechanics and solid state physics.

Sustained interest in dislocations has been largely due to their applica-

tions, particularly to mechanical properties of materials. Over the last

15 years the study of dislocations has received an added impetus from

better correlations with experimental observations made possible by ad-

vances in such fields as electron microscopy and crystal growth. With

this increase in experimental work, recent conferences have been pre-

dominantly devoted to experimental results. We, therefore, felt that this

was a suitable time for a conference whose scope was limited enough to

allow some in-depth treatment of various theoretical developments in

the study of dislocations.

A small closed conference of about sixty people was decided upon to

insure a high degree of informality and interaction. However, toward

the end of our preparations the general interest had exceeded our ex-

pectations, so that a little over one hundred participants with forty percent

drawn from eighteen different foreign countries finally took part; this

produced a gathering of truly international character.

The conference was divided into ten sessions, each of which was

organized by its chairman. Eight of these sessions were devoted to the

presentation of contributed papers; however, due to the large number

submitted, not all papers could be orally presented. Nonetheless, discus-

sion time was allocated for all contributions. The remaining two sessions

of the conference were panels which provided some perspective on

current opinion of dislocation theory by aiming at the general questions:

"How far have we come?" and "Where do we go from here?" The discus-

sions were taped and each discusser edited his own comments. A few

comments were also submitted in writing after the conference and these

are labeled in the discussions as written contributions.

Constant support both for the conference and for the preparation of

these Proceedings has been given from within the Institute for Materials

Research and from the National Bureau of Standards as a whole. We



particularly want to thank R. B. Johnson for his invaluable counsel

throughout and R. Wagner and Mrs. B. L. Oberholtzer for unstinting efforts

in preparing these Proceedings — which have at times approached a

printer's nightmare. Among the many groups within the NBS who have

provided continuous assistance we want to mention the Special Activities

Section. R. T. Cook. Chief, and the Conference Facilities Management.

B. V. Como. Chief. Grateful thanks are also due Mrs. L. D. Smith. Mrs.

M. C. Reid. Mrs. R. J. Morehouse. Mrs. S. F. Holdridge. and Mrs. M. L.

Oland.

We also acknowledge the assistance of the A.E.R.E., Harwell, for

their help in preparing the discussion transcriptions.

Our acknowledgements would not be complete without recognition of

the basic encouragement and support which have been given us through-

out this endeavor by Dr. L. M. Kushner, Dr. J. D. Hoffman, Dr. H. Sorrows,

Dr. E. Passaglia, and Dr. M. R. Meyerson.

One of the important by-products of this conference was to continue

the nurturing of interaction between continuum mechanists and theoretical

physicists interested in understanding and describing the processes of

deformation. We hope that further conferences devoted to the theory of

dislocations will take place periodically and further encourage this

interaction.

June 17, 1969 The Editors
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INTRODUCTION TO THE SESSION ON DISCRETE
DISLOCATIONS IN CONTINUUM ELASTICITY

J. D. Eshelby

Department of the Theory of Materials

University of Sheffield

Sheffield, England

This section is concerned with that part of dislocation theory which

treats the elastic fields of discrete dislocation lines according to linear con-

tinuum mechanics. It forms the basis for much of dislocation theory in the

narrower sense, and, by giving an approximation to the positions of the

atoms in a crystal lattice, serves to relate the theory to other parts of

physics. Where non-linear effects are important they can usually be dealt

with by perturbation theory starting from the linear solution; if this is in-

adequate it is usually necessary to take into account the atomic structure

as well.

The papers presented show that the subject matter of this section,

though the longest-established (or most old-fashioned) part of dislocation

theory is far from being worked-out.

The opening paper by Head presents his views on some important topics

in the present field.

Many dislocation calculations are concerned with problems relating to

specific configurations of one or more dislocation lines. There is, of course,

indefinite scope for the solution of such problems, but if they are not to

serve simply as an excuse for a display of mathematical weight-lifting they

must be chosen carefully, either to cover a wide range of special cases, or

to refer to a specific situation of interest (e.g. some configuration observed

in the electron microscope), or they should be concerned with some simple

situation chosen so as to bring out a physical point.

A number of the papers presented in this section fall into this category

and meet these requirements. Bacon and Groves treat the case of a disloca-

tion loop near a free surface, Li finds the elastic field of a finite grain boun-

dary, and Sendeckyj presents some general theorems and special solutions

for screw dislocations interacting with inclusions or cavities. Smith gives

some new results relating to the equilibrium form of dislocation pile-ups

under the influence of fixed dislocations and applied stresses. The papers

by Kuhlmann-Wilsdorf and Duncan, and by Lothe, use the results of

elasticity calculations to elucidate the physical behavior of dislocations.

Kuhlmann-Wilsdorf and Duncan are concerned with the extent to which

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit. and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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4 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

dislocations in f.c.c. metals split into Shockley partials. Lothe deals with

the image force on a dislocation terminating at a free surface.

Several of the papers in this section use anisotropic elasticity, but three

in particular are concerned specifically with the problem of anisotropy.

The theory of two-dimensional problems (infinite straight dislocations) is in

reasonably good shape. To solve three-dimensional problems (e.g. to

find the strain field of a dislocation loop) one in effect needs to know

the elastic Green's function, that is, the response of the anisotropic

medium to a point force. Even if the method used does not make ex-

plicit use of this function the analysis will sooner or later come up against

the same difficulties as present themselves in the calculation of the

Green's function.

It is only for crystals of the hexagonal system, which are elastically in-

variant under rotation round the six-fold axis, that the Green's function can

always be written down explicitly. For cubic crystals an analytic solution (a

particularly simple one) can apparently be obtained only for the theoreti-

cally possible but seemingly non-existent solid which satisfies Ci 2 = — C44

in the usual notation. Generally one has to use some kind of series expan-

sion. One way is to do a perturbation calculation starting from an isotropic

medium. Its elastic constants may be chosen largely at will. Barnett's

paper on series representations of the Green's tensor throws light on the ef-

fect of this choice. Simmons and Bullough treat the problem of how to find

the stress field in a finite anisotropic solid when the incompatible strain or

the incompatibility tensor is prescribed.

The last-named contribution evidently trespasses into the realm of the

theory of continuous distributions of dislocations. So also, in a sense, do

the papers of Tucker and Louat. If it contains a large number of disloca-

tions a dislocation pile-up can be replaced by a linear continuous distribu-

tion of infinitesimal dislocations. This "smear technique" (Louat) has also

been found useful as a mathematical tool in solving some of the crack

problems of fracture mechanics. Though not the most erudite, it is, per-

haps, so far, the most productive part of the theory of continuous distribu-

tions of dislocations. Tucker uses this technique to discuss screw disloca-

tion pile-ups near grain boundaries in anisotropic crystals. Louat considers

the solution of the integral equations which appear when one is concerned

with a number of continuous pile-ups, not necessarily in the same plane.

Finally, included in this section are two papers on dynamic problems,

which however, reduce to modified static problems when viewed by a

suitable steadily-moving observer. Malen is concerned with the stability of

moving dislocations in anisotropic media, and Weertman and his col-

leagues discuss the elastic fields of dislocations moving in the interface

between two different isotropic media.
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As a framework in which to survey some of the current questions in this

long-established part of dislocation theory, the problem of the experimen-

tal determination of stacking fault energy is considered. Attention is

restricted to those methods which observe and measure in the electron

microscope a simple dislocation-stacking fault configuration. It is as-

sumed that the configuration is in equilibrium with the forces between the

dislocation balancing the surface tension of the stacking fault. The
stacking fault energy then follows if these dislocation forces are known
from theory for the observed dimensions of the configuration.

Experimental techniques have improved to the point where a reprodu-

cibility of 1 to 5 percent standard deviation is claimed. This calls for

theory which has at least a similar standard of accuracy. It is doubtful if

the theory which is in current use has this accuracy and this is surveyed

under the following headings: (a) The treatment of the core; (b) Elastic

anisotropy; (c) Zig-zag instabilities; (d) The effect of the stacking fault; (e)

The observation of dislocations by electron microscopy.

Key words: Dislocation observations; dislocation theory; status and problems.

I. Introduction

A historical survey of this part of dislocation theory is quite impracti-

cable in the time available and I am sure it would not be appreciated

since you already know all about it. This is where dislocation theory

started, as dislocations in an elastic continuum with the quantization of

Burgers vectors and slip planes in recognition of the real lattice as opposed

to the idealized continuum. Books have been written on the subject,

it is taught to undergraduates, it is in everyday use, and it is, I suspect,

often taken to be the truth, the whole truth, and nothing but the truth.

Most of it is of course true enough as far as it goes but I will use this

occasion to consider if in fact it does go far enough for the needs of the

present.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullou<:h.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970).
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6 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

There is one general characteristic of dislocation problems in this

field, that they are questions in continuum elasticity and as such show

many of the features of continuum elasticity in general. These features

include the simplicity of two dimensional problems as compared with

three dimensions and, especially in the case of two dimensions, the wide

variety of mathematical methods which can be used in any particular

case. The choice of any particular mathematical apparatus has been

largely a matter of personal taste but a new variable is appearing as more

complicated problems are tackled. This choice is whether the end product

shall be in a form best for human understanding or a form best for com-

puters. These often coincide in simple cases but may diverge widely

in cases of complexity. I think that this divergence will become increas-

ingly apparent.

As a framework in which to survey some current questions, I will

consider the problem of the experimental determination of stacking

fault energy. There are a number of different ways in which this can be

estimated but, in keeping with the spirit of this conference, I will only

consider direct methods which observe and measure in the electron

microscope a simple dislocation-stacking fault configuration. Examples

would be the separation into partials of a straight dislocation or a three-

fold dislocation node. It is then assumed that the configuration is in

equilibrium with the forces between dislocations balancing the surface

tension of the stacking fault. If this is so, then the stacking fault energy

follows if these dislocation forces are known from theory for the observed

dimensions of the configuration.

Experimental techniques have improved to the point where a repro-

ducibility of 1 to 5 percent standard deviation is claimed. To maintain

this accuracy in deduced values of stacking fault energy calls for theory

with at least a similar standard of accuracy. I would suggest that current

theory probably does not meet this standard in a number of respects

and I will attempt to survey some areas of continuum dislocation theory

where improvement appears to be needed.

II. The Dislocation Core

The core of the dislocation does not really belong to this part of the

conference, being the nonlinear, noncontinuum part of the dislocation

but I mention it because our ignorance is often disguised as a linear

continuum question, the choice of an inner cutoff radius. There are various

conventional ways of prescribing this cutoff but they are just conventions

and give no guide as to what value this cutoff should have in order that the

true total energy of the dislocation is reproduced. A typical choice could

be that the inner cutoff is taken as a fixed multiple of the Burgers vector

of the dislocation. But any such choice forces the nonlinear core energy
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to vary in proportion to the linear elastic energy for changes in the screw-

edge character of the dislocation, for changes in the Burgers vector, or

for differing elastic constants. It seems unlikely that the real situation

could be that simple, but a better description will not come from con-

tinuum theory.

III. Elastic Anisotropy

The fact that most metals are elastically anisotropic and that most

dislocation theory has used isotropic elasticity is well known. This is

understandable as isotropic theory is so much simpler and can often give

neat little formulae when the anisotropic equivalent only gives numerical

results for specific cases. But even in simple cases for simple metals

it is unlikely that the isotropic approximation is good to 1 percent and an

example given in the next section suggests it is much worse than that.

Three dimensional problems in anisotropic elasticity are especially

difficult and are rarely considered. Recent Russian work is therefore

important in showing that some three dimensional dislocation problems

can be reduced, in a certain sense, to two dimensional problems. This is a

technique which is awaiting fuller exploitation.

The theory of two dimensional elastic anisotropy is well known and is

being used increasingly in dislocation theory. Results have been numerical

except when special symmetries have allowed simplification. But there

does seem to be a mistaken belief that numerical results are the only

possibility in the general case as the roots of a sextic polynomial are

involved. This may be because it is often loosely said that Abel has proved

that the roots of a general polynomial cannot be determined explicitly

if the degree of the polynomial is greater than four. But what Abel proved

was that the roots cannot be determined explicitly in terms of radicals.

The appropriate question for higher degree polynomials is then, what

new types of higher function will explicitly solve the polynomial? The
answer is known for the general quintic to be elliptic modular functions

and for the general sextic, of interest to us, to be hyper-elliptic functions.

I do not suggest that this explicit solution of a sextic polynomial is simple

nor that it would replace numerical methods when specific numerical

results are needed. But the type of question where it may be of use could

be the following. Consider the common slip dislocations of fee metals

which lie on (111) planes. The general direction in a (111) plane does not

fall in one of the symmetry categories for which explicit factorization of

the sextic is presently possible. But in this case the six coefficients of the

sextic are functions of only three parameters, one angle specifying the

dislocation direction and two ratios of elastic constants. So this sextic

is far from general and perhaps the solution of this sextic by hyper-elliptic

functions would reveal just how special it really is.

369-713 OL - 71 - Vol I - 3
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IV. Zig-Zag Instability

The zig-zag instability of dislocations is a feature which is specific to

elastic anisotropy and cannot occur for isotropy. The occurrence of such

instability is a sign that the isotropic approximation is inappropriate.

Such zig-zag dislocations have previously been observed in /3-brass, which

is very anisotropic, with good agreement between theory and experiment.

But we have recently observed in Cu-15 percent Al, which is about as

anisotropic as copper, that for the common i(110) slip dislocations,

one partial has a zig-zag form. This suggested that we examine theoreti-

cally the question of zig-zag instability of partial dislocations in fee metals

and we find that it can be expected in copper, silver and gold and their

dilute alloys.

These metals are of course just the ones which have been most inten-

sively studied in determinations of stacking fault energy yet they are

sufficiently anisotropic for the partials, which are involved in these deter-

minations, to have zig-zag instability. This raises doubts as to the accuracy

of stacking fault energies which have been derived from isotropic theory.

For instance many values have been derived from the measurement of

the shape and size of three-fold nodes. This shape depends directly on the

variation of energy of a partial as a function of its screw-edge character.

But it is just this energy variation, and the fact that it is significantly differ-

ent from the isotropic approximation, which produces zig-zag instability.

V. The Stacking Fault

The most obvious property of the stacking fault is that it has an energy

per unit area and exerts a force per unit length on the dislocation which

bounds it. It also has a second property which has not been taken into

account, that across the fault the cubic packing of atoms is changed to

hexagonal and in the approximation of continuum elasticity it should be

represented as a thin layer of material with different elastic constants.

The importance of this is rather difficult to estimate for although the

layer is thin, it usually is in regions of high strain energy.

A possible illustration of the importance of this effect may be shown by

the zig-zag partials in Cu-15 percent Al which have been mentioned above.

The theoretical calculations of the forbidden directions of such disloca-

tions give a forbidden range of directions which is symmetrical about the

edge orientation of the partial but the experimental measurements show

a small but definite assymetry. This cannot be due to the stress field of

the other partial nor to the stacking fault as a source of line force on the

dislocation but could be due to the stacking fault as a region of differing

elasticity which is created or destroyed as the dislocation moves.
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VI. Electron Microscopy

The experiments I have been considering involve the measurement of

electron micrographs of dislocations to determine their positions or

spacings, and what is needed is the position of the centre of the disloca-

tion. The theory of electron microscopy is complicated and general rules

are few but one rule would be that in almost all cases the centre of the

dislocation is not at the blackest point of the image. It may be to one side

or the other, displaced by distances which may be tens of Angstroms and

depending not only on the experimental parameters of the electron

microscope but on the precise nature of the dislocation.

So if the position of the centre of the dislocation is required with pre-

cision, then it is necessary to interpret the micrographs with some care.

Now for any particular situation this can be done by computing the theo-

retical image the dislocation should have and then the position of the

dislocation centre can be located. What is required is the displacement

field of the dislocation in a suitable form for a computer to simulate the

passage of the electron waves through the distorted crystal. It has been

said that a dislocation is revealed in the electron microscope by a compli-

cated analogue of photoelasticity and the detailed form of its image, which

is really an image of its displacement field, has no simple interpretation.

But the image can be calculated if the displacements are known and for

accurate measurements of the positions of dislocations, this needs to

be done.

VII. Conclusion

Any estimation of the influence of these various effects on deduced

values of stacking fault energy can, at the moment, be no more than a

personal guess. My guess is that all these things would have to be taken

into account if 1 percent accuracy is the target and a number of them would
have influences of over 10 percent. I have only considered one field of

application of the continuum theory of discrete dislocations but the same
thing is probably true in other situations, that with increasing accuracy and

sophistication of experiments, the theory of yesterday may no longer

be sufficient and its assumptions and approximations need continual

scrutiny in the light of today's needs.





THE IMAGE FORCE ON DISLOCATIONS AT FREE
SURFACES-COMMENTS ON THE CONCEPT OF

LINE TENSION

J. Lothe

Institute ofPhysics

University ofOslo

Blindern, Oslo, Norway

It is shown that a straight dislocation emerging at a planar free surface

is acted upon by a force distributed according to the law d¥ = \- x
{ — E

cotan 0+ dEld0)dk. Here 6 is angle of inclination to surface. E is disloca-

tion energy factor, and A. is distance from surface along the dislocation.

The proof involves use of a slightly generalized version of the energy flow

theorem for straight dislocations (Lothe, Phil. Mag. 15, 9 (1967)). The
above formula is the exact linear elasticity law corresponding to the usual

approximate line tension result. According to this law there are certain

angles of incidence for which the forces vanish so that the dislocation can

be straight. Similarly, when only elastic terms are considered, there are

certain node orientations for which the forces on the branches vanish so

that the branches can be truly straight (Indenbom and Dubnova, Sovj.

Phys. (Solid State), 9, 915 (1967)). In this paper a discussion is given of

how core energy terms may modify the results. It is concluded that also

for nodes in the characteristic orientation for no elastic forces on the

branches, some branch curvature will be present near the node.

Key words: Dislocation-surface interactions; dislocations-image series; line tension

of dislocations; dislocation nodes.

I. Introduction

The elastic energy per unit length between two cylinders of radii r0

and r coaxial about an infinite straight dislocation is

W/L = E\og (r/r0 ). (D

The prelogarithmic factor E, the energy factor, is well denned and inde-

pendent of r and r<>. Dislocation calculations are often performed in

the so-called line tension approximation in which an energy per unit

Fundamental Aspects of Dislocation Theory, J- A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970).
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12 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

length W\L as given by (1) is ascribed to the dislocations, and one is then

always confronted with the problem of deciding on appropriate cutoff

parameters r0 and r. However, let us temporarily ignore this difficulty

and consider the logarithmic factor as just some constant. Consider a

straight dislocation making an angle 6 with a free planar surface. From
the virtual displacement indicated in figure 1, one concludes that the dis-

location is acted upon by a force

F ~ (-E cotan d+dE/dd). (2)

Figure 1. A straight dislocation emerging at a free surface. Stapled line indicates a virtual

displacement.

Actually the force will be distributed according to a 1/X law,

dF=K- l (-E cotan 6+dEld6)d\. (3)

Here dF is the force on a dislocation element of length dk. A sketchy

proof of this theorem has previously been given by Lothe [1] for the spe-

cial case of normal incidence. In this paper a complete proof will be given.

The proof involves use of a somewhat generalized version of the energy

flow theorem for straight dislocations (Lothe [2]). Generalization of the

energy flow theorem is considered in the first part of this paper.

The above image law (3) and similar laws for the forces on the branches

of dislocation bends (Lothe [3]) or dislocation nodes (Indenbom and Orlov

[4]) can be used for a discussion of the validity of the concept of line ten-

sion in some of the simplest applications. However, in all of these laws

only purely elastic terms are considered. This paper concludes with a

discussion, in which the effect of core energy terms is also considered.
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II. Generalized Energy Flow Theorem

Consider an infinite straight dislocation in the x-z plane and parallel

with the z-axis. When the dislocation is moved a distance 8x in the nega-

tive direction as indicated in figure 2, the displacements at a given point

change by (du/dx)8x. Thus, an energy P6jc, where

P= j o-zi(dinldx)dS2 + j (Txi {diiildx)dSx+ j o-yi (dUildy)dSy (4)

will be transmitted through a plane cutting the dislocation. The trans-

mission factor P for that part of the plane which is between two cylinders

of radii n and r-> coaxial about the dislocation, can be written in the form

P = plog(r,ln) (5)

where the prelogarithmic factor p is independent of n and r>.

It will be shown that

p = E tan a-dE/dd. (6)

Figure 2. a is the angle between the jc-axis and the intersection line between the x-z

plane and the intersecting plane.

Here a is the angle between the x-axis and the line of intersection between

the x-z plane and the intersecting plane. See figure 2. The energy flow

theorem (6) has previously been proved by Lothe [2] for the special case

of an intersecting plane normal to the dislocation, a = 0.

Consider first the last term in (4),

Py = p y log (ro/r, )

=J
(Tyi{diiildx)dSy. (7)
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Now,

dSu cos \fjA
= dSz cos (8)

where cos i//, are the direction cosines for the normal of the intersecting

plane. In the z-projection the cross-section S is bounded by two circles.

Thus

p y cos ijjn = r cos iff

riTT

2 I CTfjiidUjldx)rd(f) (9)

where in the integral r is constant. See figure 3. Now, since generally

cr/j = r~ 1

otij ( <f>
) and (d Uj/dxj ) = r~ 1

((f)), where OL-,j ( (/> + it ) =— a// ((/) ) and

Pij(<f> + tt) = — j3ij((f)), (9) can be written in the form

p y cos = 2y cos t//2 I <jUi{diiildx)dx (10)

where the integral is along the L u line parallel with the jc-axis, figure 3.

(0,y)

/ y
t/Ap \

\
x

(x,0)

Figure 3. z-projection of the cross-section

It is clear that

hx I (Tyj(dUildx)dx
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is the energy per unit length of dislocation transmitted through an infinite

plane parallel with the x-z plane when the dislocation moves by dx.

If the integral is different from zero, it will depend on y as y" 1
. But this

would imply that the energy per unit length in a slab parallel with the

dislocation changes with a displacement of the dislocation parallel with

the slab, because of nonzero divergence dy_1/dy~ y~ 2
, and this is a con-

tradictory conclusion. Consequently the integral is zero, so that

Py= 0. (11)

For px the equation similar to (10) is

px cos
\l*3
= 2x cos j crXi(dUildx)dy, (12)

where the integral is now along Lx .

The energy factor E need not be defined by a circular integral as implied

in the definition (1). Using the same technique as in going from (9) to (10),

one sees that the energy factor E can also be defined by the relation

d(W/L) = (E/2x)dx, (13)

for the energy per unit length in a slab of thickness dx parallel with the

y— z plane and a distance x from the dislocation.

It follows from (12) that —px cos i//3 8x/2 cos ijjix is the energy per unit

length transmitted through an infinite plane parallel with the y— z plane

when the dislocation moves by dx. The divergence of this energy trans-

mission must correspond to the change of energy in a slab along this plane.

-8xd{E/2x)/dx. Thus

- (d/dx) {px cos i//3/2 cos ifjtf) =- {d/dx) (E/2x) (14)

or

Px = E tan a, (15)

since geometrically tan a = cos i/fi/cos 1//3.

The first term in (6) is now established. Lothe [2] has previously proved

that

Vz= -c)EldO. (16)
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III. The Image Force on Dislocations at Free Surfaces

Consider a straight dislocation ending at a planar free surface S, figure 4.

a is the angle between the x-axis and the intersection line between the

surface and the x— z plane. It will be shown that forces with a component

in the x-z plane act on the dislocation.

Forces act on the dislocation in so far as the stresses along the disloca-

tion are different from those characteristic of the infinite straight dislo-

cation. It follows that if external forces (T
ddS are applied to the surface S,

where (T
d

is the stress tensor characteristic of the infinite straight disloca-

tion, no forces act on the dislocation. When such external forces are

present, the displacements will also be the characteristics dislocation

displacements ud
. Next superpose additional external forces (r

rdS such

that

A free surface then results. The forces <r
rdS will give rise to additional

stresses <r
r
in the medium and additional displacements u r

. The forces

on the dislocation are due to cr
r

. Define cr
r as

dF = k~ l (E tan a-dE/d6)dk (17)

(T
rdS = -(T ddS. (18)

(T
r = h((T r

3)lb. (19)

Then the force dF on the element dk is

dF = v rbdk. (20)

5

E(0)

E(0)

Figure 4. Dislocation at free surface. A force dF acts on the element dk.
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dF = C r dS

FIGURE 5. A dislocation loop 8x8k in a half infinite medium.

Consider figure 5, a half infinite medium like in figure 4, but without

dislocation and only with external forces (fdS applied at the surface.

If a small loop 8x8k is formed, it will give rise to displacements 6u at

the surface. According to the general principle that the work done against

cr
r equals the work done on the external mechanism maintaining <x

r

(Eshelby [5]) one can write

The problem of determining cr
r in (20) would thus be solved if the integral

in (21) could be determined.

By superposition, the displacement field Su due to a small loop is the

same as that due to a corresponding bulge on a dislocation.

Let 8ud be the displacements due to a pair of bulges (say pair A in

fig. 6) on an infinite straight dislocation in an infinite medium. 8ud
is

Figure 6. The orientation of point (1) relative to the pair of bulges A is equivalent to the

orientation of point (2) relative to the pair of bulges B. Image stresses at C and D are

(21)

X2)

equivalent.
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different from the 6u due to one bulge under a free surface, and we
define the relaxation 8u r so that

8u = 8ud + 8u r
. (22)

It is now convenient to define functions v so that in the surface S

Su = vSxS\, (23a)

dud= Yd8xdk, (23b)

and

8u r = v r8x8k. (23c)

Equation (21) can then be written as

<r
rb = jv d ((r dd$) -j\r

(<rrdS) (24)

when (18) is used.

Since a stiff forward displacement 8x of the dislocation can be consid-

ered as due to bulges along the entire dislocation, it follows that

Too

du/dx— (du/dz) tan «= \d\, (25a)
Jo

dud/dx= f° vddk, (25b)
Jo

and du r/dx-{du r/dz) tan a=
|

\rd\, (25c)
Jo

where the left-hand side quantities are surface values.

The pair of bulges A, figure 6, will give rise to displacements at (1)

equivalent to those at (2) due to the pair B. The coordinates (r/A., </>)

are the same for the two cases, cj) is the angle between the axial plane

considered and the x — z plane. By dimensional considerations one can

show that the displacements will be in the ratio ri 2/r2
2

. Thus, one may
write

vd = r
-2
g

rf( r/x,^). (26a)

Similarly

v = r 2g(r/\, (26b)
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and
v'=r- 2g''WA,(/>). (26c)

Further, it will be convenient to introduce a function fri

(</>) so that in

the surface

CT^n =- o-'n = r" lfd (0 ) . (27)

n is surface normal.

The first term in (24) can now readily be connected with the energy

flow theorem (6), which we write in the form

f 277

(cr (ln)(du d/dx)d(f)^cos ip3r~
2 [E tan a - dE/dd] . (28)

Jo

By (25b), (26a), and (27) and with introduction of the dimensionless

variable f= r/X, (28) becomes

El!ma-dEldO = (cosi/^)" 1 (**
f
"
f

2fd (c£)g d
(f , (j))d(f>d^ (29)

Jo Jo

With the same substitutions, the first term in (24) becomes

j Yd (<rddS) = (cos 1//3)-
1

j^jj r- 2fd ((f))g
d
{rlk,(t>)d<t)dr

= X- 1 (cosi//3 )-
1

|^|^-
2f rf

((/))g
d(^(i))^

(3Q)

So, by comparison between (30) and (29),

jv d (<r ddS) =K~ l (E tan a - dE/dd) . (31)

The last term in (24) can be shown to be zero. Since u' is single-valued,

the conservation theorem (see Eshelby [5])

1

where

J
TdS = 0, (32)

Tij = wbij — (TjmdUml d%i (33)

can be used for a region bounded by a closed surface 2. w is energy
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density. Combining x and z components of (32), one may write

J"s
( du r/dx - tan adu r/8z ) (a rd$ ) = w r

( dSx - 1an adS* ) . (34)

Equation (34) can be applied to the surface consisting of two cylinders

coaxial with the dislocation and the section of the free surface between

the cylinders, figure 6. The integrals over the two cylindrical surfaces S'

and S" will exactly cancel. Stresses <r
r at equivalent points C and D differ

only in strength and will be in the ratio (r' )

~
l

l{r")
_1

. Thus w r at the two

points will be in the ratio (r )~-/(r")
-2

, and similar for the other terms in (34).

Corresponding surface elements will be in the ratio (r') 2
l(r")

2
. Corre-

sponding surface normals are oppositely directed.

On the free surface section, fl?Sj-=tan adSz , and the righthand side of

(34) vanishes.

It follows then that the lefthand side integral of (34) over the free surface

section is zero, or,

I

(
a

' n ) ( du r/dx - tan adu r
ldz)d(t> = 0. (35)

where the integral is along the elliptic intersection between a cylinder of

radius r and the free surface. Comparing (35) with the last term in (24) in

the same way as (28) was compared with the first term in (24), it follows that

v r
(cr

rdS)= 0. (36)

Equations (24), (31), and (36) prove the image force theorem (17).

IV. Discussion. Comments on the Concept of Line Tension

For simplicity consider the equilibrium of a glide dislocation emerging

at a free surface when only motion in the glide plane is allowed, figure 7a.

By simple line tension arguments such as outlined in the introduction, the

equilibrium inclination is determined by the condition

E tan a- dE136=0, (37)

and indeed, according to the image law (17), exact in the approximation of

linear elasticity, no forces act on the dislocation when it is in this orienta-

tion and it can be truly straight in this orientation. However, core terms

should also be considered. Roughly representing the core terms by a
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constant orientation-independent core energy, one concludes that the core

terms will tend to align the dislocation normal to the surface. However,

the overall orientation cannot change. If it did, long range image forces,

(17), will swing the dislocation back. The only possibility is an asymptotic

orientation agreeing with (37) and some curvature very near the surface

so that the orientation locally, at the surface, is a compromise between

elastic terms and core terms, figure 7b.

The effect of the core cannot be completely taken into account as just

a line tension contribution. Core terms should strictly be considered in

(Td and hence in the force distribution (TrdS of (18). Thus, the core terms

will contribute to the image stresses and lead to deviations from (17). How-

ever, as far as long range effects are concerned, the effect of core terms can

at most (depending on the model) amount to the equivalent of an external

point force applied at the point of emergence, and this would give stresses

decaying as k~'2 along the dislocation. It remains true, then, that (17)

is the correct long-range term, and that core effects only can cause

some curvature and alter the inclination very near the surface.

The problem of node equilibrium is somewhat more complicated.

Fulfillment of simple line tension criteria for equilibrium does not assure

Figure 7. (a) Dislocation at free surface. Virtual displacement is indicated, (b) Near the

surface, the dislocation will be curved. The stapled line gives the asymptotic orientation.

a.

Characteristic asymptotic orient.

b

absence of long range elastic forces on the branches (Indenbom and

Dubnova [6], Saetre [7], Indenbom and Orlov [4]). In general, forces
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will be present which tend to rotate the node. Only for certain orientations

of the branches are the forces absent so that the branches can be truly

straight in the approximation that only elastic terms are considered. It

is convenient to call such a node an equilibrium node. The line tension

criterion is a necessary but not sufficient criterion for equilibrium (Inden-

bom and Orlov [4]).

For the characteristic equilibrium nodes, the elastic forces balance.

However, if the core terms do not independently balance for the same

orientation of the branches, the branches must be curved very near

the node so that the core terms are given some relaxation.

Rough estimates indicate that local curvature and orientations differ-

ent from the characteristic asymptotic orientations should not be appre-

ciable (say 5° deviation) beyond ~ SOh from the nodal point or from the

point of emergence.

V. References

[1] Lothe, J., Physica Norvegica 2, 153 (1967).

[2] Lothe, J., Phil. Mag. 15, 9 (1967).

[3] Lothe, J., Phil. Mag. 15, 353 (1967).

[4] Indenbom, V. L., and Orlov, S. S., Sovj. Physics (Crystallography) 12, 849 (1968).

[5] Eshelby, J. D.. in Solid State Physics 3; F. Seitz and D. TurnbulL Eds. (Academic Press.

New York, 1956) p. 99 and p. 105.

[6] Indenbom, V. L., and Dubnova, G. N., Sovj. Physics (Solid State) 9, 915 (1967).

[7] Saetre, T., Master's Thesis, Univ. of Oslo (1967).



STABILITY AND SOME CHARACTERISTICS
OF UNIFORMLY MOVING DISLOCATIONS

K. Malen
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The stability of uniformly moving dislocations has been studied in the

case of elastic anisotropy using computer. The velocity for instability to

occur for a screw dislocation in an isotropic medium is so high, 0.98 C<,

with C t the transverse sound velocity, that it may well be unattainable. In-

clusion of anisotropy gives the possibility of more reasonable instability

velocities. Some data showing this for Fe, Li and Cr are given.

The stress field around a uniformly moving dislocation has been stu-

died. Increasing the velocity of a dislocation corresponds to some extent

to a change in the anisotropy of the crystal.

In uniform motion above the lowest velocity of sound in the direction

of motion one can have associated with the moving dislocation 2, 4 or 6

Qerenkov waves, above the next sound velocity 4 or 6 and above the

highest sound velocity 6 waves.

The formula developed earlier for the stress field around a uniformly

moving planar dislocation loop can be generalized directly to three dim-

sions using the theorems of Indenbom and Orlov for the fields from three-

dimensional sources using data for two-dimensional sources.

The generalization can also be made using the fact that the choice of cut

surface is arbitrary.

Key words: Anisotropic elasticity; Cerenkov waves; dislocation dynamics; dislocation

stability.

I. Introduction

As found by Beltz et al. [1], instability can occur for a straight screw

dislocation in uniform motion in an isotropic medium. Since the velocity

at which this happens is very high a computer study has been made of the

effects of anisotropy, In the latter case instability can occur at more

reasonable velocities. In this connexion the stability criterion is examined

(cf. Indenbom and Orlov [2]). An obvious extension to an expression for

Fundamental \spects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317. I, 1970).

369-713 OL - 71 - Vol I - 23
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the stress field around a curved nonplanar dislocation loop in uniform
motion is closely related to the stability criterion, cf. [1, 2]. A study is

made of complications in (^erenkov wave creation at a uniformly moving
straight dislocation due to elastic anistropy.

II. Stability Criterion

A recent analysis of the stability criterion for a static dislocation bend

is given by Indenbom and Orlov [2]. This stability criterion is derived by

Lothe [3], by studying the restoring force on a bent dislocation for a bend

with angle (tt — O) (fig. 1). X, #, and dl are defined in figure 1.

\ sin 6 tan 6 dO / (1)

E(6) is the energy factor defined through the elastic energy W{6) per

unit dislocation length in a cylindrical annulus with inner radius n and

outer radius r2 around a straight dislocation with the direction determined

by 6.

W(d)=E(6) In (r2/r,). .

In the limit of a straight dislocation this gives, for stability,

dF= 1k (^W+^'W)^ 0
- (2)

This criterion is thus the same as that for zero or positive line tension.

As Indenbom and Orlov have shown [2], a plot (E{6))~ x as a function

of angle can be used to graphically construct dF in these eqs (1) and (2)

Figure 1. Force on a dislocation bend.
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FIGURE 2. Construction of the force (dF) on a dislocation bend

dF = OA-OC
dl S.wb

where Saob is the area of AOB. The figure shows an unstable dislocation bend.

(fig. 2). Points with a common tangent correspond to a possible bent con-

figuration (cf. Head [4]). Some consideration also shows that equation

(2), with an equality sign, describes a flat portion of the curve and that

a convex part of the curve defines a stable direction and a concave one an

unstable (fig. 2) [4]. It is also clear that points with a common tangent

giving real stability are on two convex parts of the curve and other such

combinations are metastable.

III. Instability of Dislocations in Uniform Motion

As shown by Beltz et al. [1], the stability criterion for a bent and a

straight dislocation in uniform motion is found from the criterion for the

static case by replacing E(0) by L(6), where the Lagrangian factor L is

defined as L = E — T with E = total energy factor and T— kinetic energy

factor. The criterion

L(0)+L"(0) 2=0

has been examined for anisotropic media.

(3)
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Beltz et al. [1] showed that a screw dislocation with velocity v in an

isotropic medium becomes unstable at v — 0.98CV for 0 < v < 0.5, where

C t is the transverse sound velocity and v is Poisson's ratio.

It is known (e.g., Head [4]) that, in anisotropic media, dislocations can

be unstable already at zero velocity. For v = 0.98C, resistance to the motion

might make the velocity unattainable, cf. Rogula [5, 6].

For an edge dislocation (i.e. b =^= [HI] in Fe lying along [112] in the

(110) plane, and moving in the [111] direction, the critical velocity is

found to be v 0.80C, with Ct= (C55/p)
1/2 (=2975 m/s) the appropriate

shear sound velocity for this direction, p is the density. The interaction

of two edge dislocations in the same slip plane changes sign at a higher

velocity (v — 0.92CV). A screw dislocation (i.e., b= [112]) under the

same conditions as above is stable at all velocities below Ct. The critical

velocity above which (Jerenkov waves are created is v — 0.95CV. (See

table 1.)

Table 1. Velocities for instability (zero line tension) and velocities for change of sign of

the interaction between like dislocations in the same slip plane (zero Lagrangian) as well

as the limiting velocity. The dislocation is along [112] and moving in the[lll] direction.

Materials studied are Fe, Li, and Cr.

Material

Velocity (v/C f ) for

.
zero line tension

Velocity (v/C,) for

zero Lagrangian Limiting

velocity

(v/Cr)

A

2.36

H
[10 11

dyn cm -2
]

Edge Screw Edge Screw

Fe

C, = 2975 m/s 0.80 stable 0.922 > 0.93 0.948 12.9

Li

C, = 2860 m/s 0.50 0.65 1 0.803 1 0.794 1 0.808 9.4 1.93

Cr

Ct = 4300 m/s stable 0.90 0.87 >0.95 0.97 0.69 -10.0

1 Teutonico [7] gives for zero Lagrangian v/Ci — 0.804 for an edge

and v/Ct = 0.794 for a screw

He also gives the limiting velocity v/C, = 0.809

A = 2C44(Cn -Cli)- 1
; H= 2C 44 + C v,-C n .

In Li, which has a very high anisotropy coefficient,

A = 9.4 (A = 2C44/(Cn-Cvz) A for Fe- 2.36),
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FIGURE 3. Line tension for edge and screw dislocations in Fe. Li and Cr. The

dislocations are along [112] and are moving in the [111] direction.

the effect is still more pronounced. Edge dislocations (as above) become

unstable at v — 0.50C? and screw dislocations become unstable at

v — 0.65C f (Ct — 2860 m/s). The interaction of edge dislocations moving

in the same slip plane changes sign at v — 0.80C? and for screw dislocations

the interaction changes sign at v — 0.79CV. i.e., before the edge. The

critical velocity for Cerenkov wave creation is v — 0.81CV. These three

last data agree with the data found by Teutonico [7] and are thus a check

of the computer program.

It is interesting that, contrary to the behaviour for isotropic media, the

instability velocity is lower in these cases than the velocity for the change

of sign of the interaction between like dislocations in the same slip plane.

For Cr, which has an anisotropy coefficient smaller than 1, (/J = 0.69)

one finds for the special direction chosen (direction [112] and motion in

the [111] direction) that the edge dislocation is stable for all velocities

and that the screw dislocation becomes unstable at v — 0.90C t {Ct = 4300

m/s). Data for Fe, Li and Cr are collected in Table 1 and in figure 3.
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IV. Stress Field Around a Uniformly Moving Straight Dislocation

It is a well-known fact that anisotropy can change the general charac-

ter of the stress field around a dislocation, e.g., Lie and Koehler [8] or

Chou [9]. This can be said to be due to higher order terms becoming more

important as anisotropy increases [8]

.

The same effect of course arises when one increases the velocity of a

dislocation (see fig. 4). The motion increases the effect of higher order

terms. In particular, one notices that stresses change considerably in

the region where a Cerenkov wave appears at higher velocities. This is

the same behaviour as for the isotropic case where the stresses are most

affected around the plane x = 0 in motion along the jc-axis with the dis-

location along the z-axis. The plane x = 0 is where a Cerenkov wave ap-

pears as the dislocation attains the transverse sound velocity. In the aniso-

tropic case this need not be this plane, but can be any plane containing

the z-axis depending on the elastic constants.

FIGURE 4. Stress field (o-i 2 ) around an edge dislocation in uniform motion in Cr, Li and

an isotropic medium. The dislocations are along [112] and are moving in the [111]

direction.

The change of character of the stress field noticed by Chou [9] on chang-

ing the degree of anisotropy is also found as the velocity increases. This

is not surprising, as the effect of increasing the velocity is to make the roots

of the sixth-order equation determining the properties of the medium
more and more real, i.e., making the imaginary part go to zero. The same
thing happens as Chou changes his parameter C toward — 4. C + 4 = 0

implies real roots.
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V. Possible C^renkov Waves During Supersonic Motion

Supersonic motion in the isotropic case gives rise to new (^erenkov

waves only as one increases the velocity past a sound velocity. (See,

e.g., Stroh [10]). Thus, at sufficiently high velocities (above the highest

sound velocity) six waves are developed. In an anisotropic medium
there is possibility for a more complicated behaviour.

Mathematically the situation can be analyzed by considering the slow-

ness surface in the yir2 -plane for cylindrical waves with the dislocation

direction as axis (7.3)- The equation for this surface which is used in the

theory of wave propagation in anisotropic elastic media, is (e.g., Stroh [10]

)

||
Cn,ay\ ~ (Cilk2 + CWi )y iy , + C i2k2 yl pd ik \\

=0, (4)

where Cyw are the elastic constants for the medium and p the density.

The criterion for development of a Cerenkov wave at a dislocation is that

there is a real root (p) to the equation

\\CMi+p{C ilk2+ C i2ki) +p 2C i2k2 - pv*d4 = 0 (5)

(v is the dislocation velocity).

We see that setting

y-2 =—pv~ 1

lefines the
Cerenkov waves accompanying a dislocation moving in the x , -direction at velocity v.
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makes the two equations equivalent and a study of the first one (4) gives

information about the solutions to the second one (5). The surface (4) (a

cylinder with generators parallel to the y:r axis) is a sextic surface in the

space j\ consisting of three closed sheets. Thus the form can be as in

figure 5 (See e.g.. Duff [11]). The plane

thus cuts the curves for u= 0 at no point, but as v is increased one starts

to cut the outer surface and there one can get 2, 4 (!) or 6(!) cuts and thus

real roots (p=— J^Jx) (at tangency there is a double root). Thus, at any

velocity above the lowest velocity for Qerenkov wave creation one can

have 2, 4, or 6 waves. When one has started to cut the next sheet the

possibility is 4 or 6 and cutting the innermost sheet (i.e., at sufficiently

high velocity) leaves the possibility of 6 waves only.

This use of the slowness surface to give information on (^erenkov waves

is of course easily explained in physical terms— and gives the same

criterion as is usual for (Jerenkov waves. Anisotropy simply complicates

matters somewhat.

The radius vector to the slowness surface represents a possible wave
normal in the medium with the inverse length representing the phase

velocity (fig. 6a). Figure 6b shows the normal construction of the wave

front for a (^erenkov wave. Comparing cos a — Cc/v shows that the criteria

indeed are equivalent.

ss surface

v

FIGURE 6. Comparison of ^erenkov wave velocity C c constructed from

a) slowness surface

b) wave front

cosa=(l/Cr)/(l/t;)=CP/r

The two methods of construction are equivalent.
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VI. Formula for the Stress Field Around a Curved Three-

Dimensional Loop in Uniform Motion in Terms of Data for a

Straight Dislocation

It is worth mentioning here that the formula developed by Beltz et al.

[1] for the stress field around a uniformly moving curved dislocation in

terms of data for a straight dislocation also applies to a three-dimensional

loop (the proof in [1] applies only to a planar loop moving in its slip plane).

The extension to three dimensions follows immediately from the proof

of the general three-dimensional theorem given by Indenbom and Orlov

[2]. The important thing for the proof is that the field drops off as r
_1

. In

the case of uniform motion this still holds if one replaces r by

r* = V(i-M) 2 + (y-Vyt) 2 +(z-vzty
2

and use of appropriate data for uniformly moving dislocations (cf. [1])

gives a formula similar to the one for the static case.

The three-dimensional relationship can also be deduced directly from

the expression for a planar loop. In the static case it is well-known that the

cut surface defining the dislocation can be chosen at will as long as it

is spanned by the dislocation loop, when one is interested in the stress

and strain fields. One can thus divide a loop into infinitesimal planar

loops as in figure 7 and use the theorem for planar loops. The field point

must lie on all these loop planes and must thus be at P in figure 7. As the

cut surface can be chosen at will this gives no restriction to the possible

FIGURE 7. Use of infinitesimal loops to construct the stress and strain fields around a

three-dimensional loop from Brown-Lothe's theorem for a planar loop [13. 3]. P is the

field point. A new surface is needed for every point P.
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field points. The loop sides connecting the original loop with the field

point P sum up to give zero net contribution and one is left with an integral

around the original dislocation loop

o-=^(2 + a 2S/ac/)
2 )r- 1^ (6)

where 2 is chosen as in the planar case.

In uniform motion the same argument holds as in the static case. This

can for instance be seen through the possibility of transforming the surface

integral describing the strain field into a line integral over the dislocation

loop. (This is shown in general by Mura [12].) This line integral can then

be transformed by Stokes theorem into a surface integral over an arbi-

trary surface spanned by the loop. In general this has to be done for

every moment of the dislocation motion. In uniform motion one can,

however, choose the same shape for the whole motion. It is thus pos-

sible to study the field at a point moving with the dislocation using the

method described above as in the static case.

VII. Summary

The stability criterion for a uniformly moving straight dislocation is

that the polar plot of L~ l (d) should be convex, which is equivalent to the

criterion

L(e) + d 2L(0)/d02 >0. (7)

This corresponds to a similar relationship in the static case with E{9)

instead of L(d).

This criterion used on a uniformly moving dislocation in an aniso-

tropic medium shows that instability can be introduced at more reason-

able velocities than in the isotropic case [1].

A relationship given by Indenbom and Orlov [2] has been used to

derive an expression for the stress field around a uniformly moving

nonplanar dislocation loop in terms of data for straight dislocations. A
simple proof based on [1] and on the possibility of deforming the sur-

face spanned by a loop when calculating the stress or strain field might

throw more light on the relations in [2].

The change of the stress field around a straight dislocation on increas-

ing its velocity is to some extent similar to the changes one finds on vary-

ing the degree of anisotropy observed by Chou [9].

(Jerenkov wave creation is shown to exhibit a more complicated be-

haviour when anisotropy is introduced. The appearance of six simul-

taneous wave fronts at the lowest critical velocity for ^erenkov wave

creation is possible.
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THE DISLOCATION IN A SEMI-INFINITE
ISOTROPIC MEDIUM

D. J. Bacon and P. P. Groves
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The displacement associated with an infinitesimal dislocation loop (dis-

placement dipole) of arbitrary orientation in an isotropic, semi-infinite

elastic medium has been obtained, and on integration this yields the dis-

placement associated with a finite dislocation loop. The solution for the

infinitesimal loop has been obtained by finding the relationship between

point forces and displacement dipoles in an infinite medium, and using the

same relations with Mindlin's solution for the point force in an elastic

half-space. This approach leads to a rather simpler analysis than that of

Steketee, and the expressions for the displacements of all the infinitesimal

loops near a free surface are presented here for the first time. The solu-

tion is being used to study the stability of a prismatic dislocation loop on

a glide prism of square cross-section near a free surface. Preliminary

results are presented for the forces on the loop sides and changes in loop

energy on rotation for the situation in which the Burgers vector is normal

to the surface.

Key words: Dislocation loops; elasticity; finite bodies.

I. Introduction

A dislocation near the free surface of a crystal experiences forces

induced by the presence of the surface which, if larger than the lattice

frictional force opposing dislocation motion, can remove the dislocation

from the crystal or change its shape and orientation. A good estimate of

these forces can be obtained by using linear elasticity theory to evaluate

the stress field of the dislocation, and in the present work this method is

being used to investigate the stability of a prismatic dislocation loop near

the free surface of a semi-infinite isotropic medium. This was prompted

by a similar study [1] of the influence of a free surface on the edge

dislocation dipole, where it was shown that the effects on the stability

and equilibrium orientations can be significant.

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit. and R. Bullouidi.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970).
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In order to carry out the present investigation, it is necessary to obtain

the stress field associated with a dislocation loop of arbitrary shape,

orientation and Burgers vector in an elastic half-space. The method of

Hankel transforms used by Bastecka [2] to determine the stress field of a

circular loop with Burgers vector normal to the surface is not appropriate

for a situation without cylindrical symmetry. We have used a method

which, although analogous to the general procedure of Steketee [3]

,

avoids the tedious integrations and analysis of his approach. Our method

uses the fact that the elastic field of a finite dislocation loop can be deter-

mined by using infinitesimal loops, and that these may be constructed

from certain combinations of point forces. We have therefore used the

solution for the point force in half-space in order to provide a basic

solution for the finite dislocation loop. The analysis is described in section

II, where we describe how dislocations and point forces are related and

then derive expressions for the displacements of an arbitrary infinitesimal

loop near a free surface. As an example of the case of a prismatic dis-

location loop near a free surface, we are considering a loop on a glide prism

of square cross-section. For simplicity, the loop is being taken to be planar

and rectangular in shape, and we are first studying the case when the

Burgers vector is normal to the surface. Preliminary results are presented

in section III. The results of the paper are discussed in section IV.

II. The Arbitrary Infinitesimal Loop in Half-Space

We introduce rectangular Cartesian reference axes with unit base

vectors x
(
so that the coordinates x\ of the point with position vector x

are given by x = #/x/. (Repeated suffices imply summation; and later the

convention ,i=djdxi is used). The displacement u(x) = a;(x)x; at point x

due to a point force F(x') =F/(x ,

)x; acting at x'=^'iXi has the com-

ponents

ut(jL)=Uv(x-x')Fj(x'), (1)

where the t/y(x— x') are components of the tensor Green's function,

which for an infinite isotropic medium are given by [4]

f/0 (x) = Q [ (3- 4v)8ulx + XiXjjx*] , (2)

where Q = l/1677>i( 1 — v)
, fi is the shear modulus and v is Poisson's ratio.

Consider now a dislocation line of arbitrary shape, orientation and Burgers

vector b = 6«x/, the sign of which is defined by the FS/RH convention.

Following de Wit [4] , it may be shown that the displacements at x due to
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such a dislocation are given by

U[ ( x) = bj CjkmnUmi,n(x— x' ) — Mj(x' ) Cjfcmwf/mi,n' (x— x'

)

(3)

where Cj/fmn are components of the elastic stiffness tensor, S is the surface

of the cut used to formally generate the dislocation, and A is the traction-

free outer surface of the body. Thus, the displacements due to an infinites-

imal loop ('displacement dipole') of area dS and normal components

dSk at the origin are

Ui (x) = bjdSkCjkmnUmi,n (x) — Uj (x' ) CjkmnUm i,n> (X — X ' ) dA
'

k . (4)

Here, the itj(x') appearing in the integral make ^ traction free, but

evaluation of the integral can be avoided as follows. We note that the

integral vanishes for a medium of indefinite extent, so that for the case

of isotropy for which Uij(x) in (2) is symmetric, eq (4) reduces to

w/(x) = fjibjdSi tfy,*(x)+t/l
-*

fj (x) +
2v

H-2v)
8jkUim,m(x) (5)

where £/y(x) is given by (2). Equation (5) completely defines the rela-

tionship between dislocations and the classical "point nuclei of strain" [5].

For example, for a pure edge loop with bi = 8i3b and dSi = di3dS, say,

Ui(jl) =2jjLbdS tfi3,s(x) +
(1-2*0

Uiktk (x) (6)

so that the loop is equivalent to a "double force without moment" plus

a "centre of compression." For a pure shear loop with bi = 8nb and

dSi = di3dS, say,

^(x)=^[f/u,3(x)+C/i3,i(x)], (7)

which is a pair of "force dipoles with moment," the moments being of

equal magnitude but opposite sense about x2 . The way in which force

dipoles and displacement dipoles (infinitesimal loops) are thus related

enables results in a recent paper [6] to be easily understood [7].

These relationships may also be used to derive the displacements

associated with infinitesimal loops in a bounded isotropic medium
provided the appropriate force dipole displacements are used. Thus for

the half-space, for which Mindlin [8] has given the point force solution.
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the displacements due to force dipoles with or without moment can be

determined by differentiation, and the displacements due to an arbitrary

infinitesimal loop written down immediately. This method avoids the

integrations of Skeketee's [3] approach. If the reference axes are such that

the origin is on the surface with x3 orthogonal to the surface and pointing

into the medium, then Mindlin's solution [8] for the ith component of

displacement due to a unit force acting in the Xj direction at (0, 0, c)

can be shown to be given by:

Mu (x, cx, ) Uij (x - cx3 ) + Fy(x + cx3 ) , (8)

where Uij is given by eq (2) and,

Vu (x) =Uij(x) + 2c<7i3j (x) +
tl^2v)

^, fci(x)-2(l-2.)Q||
j

+ 4(1-^(1- 2v)Q[l - 26(i)3] .

(for /= 1, 2);

Vu (jl) = (3-M[/0-(x) -2ct//3J (x) + 2ct/ jA., A.(x)- ^ Uik,,jU)

-4(l-v)(l-2v)Q[\n (x+ acj,)], i (for ;= 3).

By expanding M,j(x, cx) using Taylor's theorem, the displacements

due to force dipoles in half-space can be derived by differentiation. (Care

must be exercised since even though these displacements are of the form

Mjj, ^(x, cx;i) ,
they are not equal to Uij, /t(x— cx 3 ) + (x 4- cx 3 ) when

&= 3). Then, using the force dipole relationships discussed above, the

displacements due to an arbitrary infinitesimal loop may be obtained.

The w, (x) due to an infinitesimal loop at cx 3 in half-space can be denoted

by:

tti (x) = tt*(x)+a/(x)+iAf(x), (9)

where w
;

x (x) are the displacements due to the loop at cx3 in an infinite

medium, w
;

7 (x) are the displacements due to a loop of opposite sign at

— cx3 in an infinite medium, and w^(x) are the displacements required to

completely annul the tractions on the surface. The displacements uf

and Ui can be obtained directly from eq (5), and the terms uf can be

derived from the force dipole displacements determined from eq (8).

After some analysis the displacements uf for the 9 distinct infinitesimal

loops in half-space are found to be given by the following 4 equations:
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(a) b = 6x3 , dS = dSx3 (edge loop ):
—

(10a)

(b) b = 6x/, dS = dSxj; j=l or 2 ( edge loop ):
—

ttf(x)=x{(4y- 2vA i3 ) ^-2{l-v)R tijj+ 2v
x3 \ (x% \

R).a
- c

iR) VJ

+4a _,)c(|^+2(1 _ v)(1 _ 2r)(1 _ 28 ,0(_^)J, (10b)

(j is not summed in this equation)

(c) b = 6xj, dS = dSx3 ; or b = 6x3 , dS= dS^;j= 1 or 2 ( shear loop):-

uHx)=Kc\-Ai +

(d) b = 6xi . dS = dSx2 ; or b = 6x 2 , dS = <iSxi ( shear loop ):

(10c)

u?(x)=K\2(l-v) i)/(f).,-(i).-8-

•if) +2(l-y)(l--2y)(l-25„)
(

*'
,

R/,il2 \A+JC;{ + C/,/i
(10d)

where

K=6<iS/47r(l-^);^y-2^H-4(l-^)8y; /?
2 = xf + xf + (*3 + c) 2

.

The displacements associated with a finite dislocation in half-space

may be obtained by integration of the displacements in eq (9) over the

surface of the cut used to generate the dislocation. The stresses due to

the dislocation can be found by applying Hooke's law before or after the

surface integration. In either case, the stresses arising from the terms

u'f- and uj in (9) are the same as those given by the Peach and Koehler

equations [4] and are thus obtained from a line integral rather than a sur-

face integral. It does not appear to be generally possible to transform the

double integral for the stresses arising from the displacements u? to a

line integral by using Stoke's theorem, but because the expressions in

eqs (10) have been left in differential form, the double integral for the

stresses does reduce to a single integral in many cases.

369-713 OL- 71 - Vol I - 5
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III. The Prismatic Loop With b Normal to the Surface

The analysis of the preceding section has been developed in order that

a study may be made of the effect of a free surface on the stability and

equilibrium orientation of a prismatic dislocation loop. Because of its

geometrical simplicity, we are considering first a planar loop of rectangular

shape on a glide prism of square cross-section. For the preliminary results

to be presented here, the situation in which the Burgers vector b of the

loop is normal to the surface has been considered. The prismatic loop is

shown diagrammatically in figure 1, where the loop ABCD is shown

rotated through an angle 6 from the pure edge orientation with its centre

a distance a from the surface. The glide prism size is given by h, and at

present we have only obtained results for the case h = 506.

The stress tending to make segments of the loop move by glide has been

determined at a number of points on the loop perimeter. It has been found

convenient to express the stress at a point as the sum of three parts arising

from the terms uf, u\ and uf in the displacement of the infinitesimal loop

(eq (9)). As noted in section II, the first two parts in the stress can be ob-

tained from the Peach and Koehler integrals, and so the relevant stresses

due to the straight segments AB, BC, CD, DA and their images can be

evaluated directly from the analytic expressions for the stress field of a

finite straight segment given by Li [9]. The third part of the stress at a point

may be found by applying Hooke's law to w-
s given by eqs (10a) and (10c).

and integrating over the surface of the loop. Because of the differential

form of the right-hand side of eqs (10a) and (10c). this double integral easily

FIGURE 1. Diagrammatic representation of a rectangular loop ABCD on a glide prism of

square cross section with axis normal to a free surface.
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reduces to a single integral which we have evaluated numerically on a

computer. The stresses arising from u\ and uf are finite on the loop itself,

and infinities in the terms arising from uf may be avoided at all points

except the corners because the segments AD and BC experience no

self-stress and the self-stresses of AB and CD may easily be found from

Brown's definition of self-stress [10] and Li's stress expressions [9].

Forces on any segment within a distance of 5b of a corner have not been

considered because the stress on one side due to the adjacent side diverges

as the distance from the corner decreases.

Consider first the pure edge sides AD and BC. Curves showing how the

force per unit length (in units of /x6/47r(l — v) ) due to the infinite body

part of the stress, F x
, the image part, F 7

, and the surface traction erasing

part, Fs
, at the midpoint of AD varies with 6 for different values of a are

shown in figure (2a); the variation of the net force FT
is shown in figure (2b).

{v has been taken as 1/3 in all calculations). The forces are taken to be

positive when acting away from the surface. Similar curves for the mid-
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Figure 2. Variation of the force per unit length (units of /x6/47r(l — v)) with 6 at the midpoint

of AD ((a) and (b)) and BC ((c) and (d)). F x is the infinite body force, F' is the force due to an

image loop, Fs
is the force due to the other traction erasing stresses, and F ' is the net force

(=F- +F' + FS
).
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point of BC are shown in figures (2c) and (2d). It can be seen that the

forces F r on AD and BC tend to rotate the loop from the unstable equilib-

rium orientation 6 = 0 to the orientation 0= 38°. The side AD is attracted

to the surface by the forces F 1 and F s for all values of whereas the side

BC is sometimes repelled. F 1 and F s are of the same order of magnitude

and act in the same sense for most values of 6. The magnitudes of the

forces change with position along the sides, the changes being com-

paratively small for F 1 and F s (< 20% when a = 506 and < 2% when

a = 200b) but large for F x (100-300% for 0<#^60°). The variation

in F T
is less than that in F x for finite a. Simple line tension calculations

indicate that if curvature of AD and BC due to this effect were allowed,

it would be small.

The sides AB and CD are identical by symmetry and we need only con-

sider the forces on AB. The force F* is zero at the midpoint of AB and the

forces F 1 and Fs attract AB to the surface for all 0 and a, their magnitudes

being larger for points closer to the surface. Again, Fs
is of the same order

of magnitude as F' except when 6 is large. Curves showing how F' and

F s and the net force per unit length F T
(all in units of pt6/47r(l — v)) vary

with 0 and a at the midpoint of AB are presented in figure (3a). The force

F ' increases in magnitude towards the corners A and B, and its effect

is to produce a torque on AB tending to rotate it to 0= 0 for all values of

i.e., it opposes the effect of F x on AD and BC. This effect is modified

by the forces F'and Fs
, as can be seen in figure (3b), where F T on AB at

points 56 from ends A and B is plotted against 6 for a = 506 and a = oo;

FIGURE 3. Variation of the force per unit length (units of ixbl^rr{ \ — v)) with 6 at (a) the mid-

point of AB, and (b) points 56 from ends A and B on AB.
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curves for a= 1006 are indistinguishable from those for a = oc for the scale

used for F T
. It can be seen that the surface has a considerable effect on

points at the A end of AB as 6 increases and they can in fact be attracted

to the surface because of strong image effects.

The rectangular loop on a square glide prism of side 50b in an infinite

medium has a minimum in its elastic energy at 6 — 26° [11]. The results

of figures 2 and 3 indicate that such a loop can only achieve this orienta-

tion against the opposition of the forces on the rotating sides. We have

therefore examined the relation between the forces on the loop and its

energy for finite values of a by determining the change in loop energy

for various rotations from the edge orientation. This has been done,

not by the usual elastic energy calculation methods, but by calculating

the work done by the forces discussed above in producing a given rotation

i.e., we have integrated F T along each side and then integrated the

result over 0. The results are shown in figure 4 where AE (in units of

pc6
:

V47r( \ — v)) is plotted against 6. A positive AE indicates that a positive

amount of work has to be done on the loop to enable it to rotate to the

particular value of 6. The equilibrium orientation when a — 30 is at # = 30°,
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which is close to the value found previously [11]; the difference is probably

associated with our cutoff of 56 at the corners. The effect of the surface

is to deepen the energy minimum and displace it to larger values of 6.

The elastic energy will of course decrease again when AD comes close to

the surface.

In principle, the results of figures 2—4 can be used together, so that

for a given value of a, the minimum energy orientation of the loop can be

found and then, assuming a value for the lattice friction stress opposing

dislocation motion, the stability of the loop under the action of the forces

examined. The results of this approach, however, are difficult to interpret

because of the magnitudes of the F x terms near the loop corners. It may
be more reasonable to ignore the force F* altogether, or to consider

its value only at the midpoint of the sides. Because of the complex nature

of this problem, we shall leave this discussion to a later paper when
results for other loop sizes and Burgers vector orientations are available.

IV. Discussion and Conclusions

The only previous study of a dislocation loop near a free surface was

by Bastecka [2] who considered a pure edge circular loop with Burgers

vector normal to the surface. Her method of using Hankel transforms is

only suitable for cases of cylindrical symmetry and cannot therefore

be used to determine the forces on loops with more general shapes and

orientations. We have used an approach which enables the displacements

and stresses of an arbitrary infinitesimal loop to be determined directly

from Mindlin's point force solution [8]. This leads to a solution for

the arbitrary finite loop which can be expressed as the sum of three parts

(eq (9)). Two of these can be obtained from the well-known infinite body

solutions, and the third involves a double integral which in many situa-

tions reduces to at most a single integral. Our method is similar in prin-

ciple to that of Steketee [3] who also makes use of the relationship

between point forces and dislocations, but by making use of Mindlin's

solution we have avoided the integrations of Steketee's procedure for

they have, in effect, already been carried out by Mindlin. Steketee's

presents the displacements for just one infinitesimal loop with ^ = 1/4,

and eqs (9) and (10) of the present paper give the displacements due to

an arbitrary infinitesimal loop in half-space for the first time.

Our investigation into the stability of a prismatic dislocation loop near

a free surface is in its early stages and in section III we have presented

only the preliminary results. Several important features emerge however.

First, the forces arising from the stresses which, with those of the image

loop, make the surface traction free are not negligible for any values of a

and are generally of the same order of magnitude as the forces due to the
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image loop. Second, the form of the forces for glide on the loop perimeter

varies strongly with loop orientation and proximity to the surface. Third,

the results for the forces are in some cases difficult to interpret because

the force can vary markedly along a side and because the forces on

adjacent sides can tend to oppose each other. This problem is likely to

arise in any analysis in which the loop is restricted to a planar form. An
attempt has been made to relate the forces on the loop to the energy

changes associated with loop rotation, but difficulties are still encountered

in deciding how to deal with the force F x
. We have therefore been content

to merely present the results and to leave a full discussion of loop stability

near a free surface to a later paper.
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The energy changes and equilibrium separations associated with the ex-

tension of V2 (110), {111} dislocations in fee metals into Shockley par-

tials have been calculated and were found considerably smaller than the

previous corresponding values due to Seeger and Schock. The new
results may be shown to be credible on the basis of the following simple

estimates:

The theoretical shear fracture strength of a crystal may be written as

TCrit= Glq, with G the appropriate shear modulus, and the numerical

parameter q near 30 for {1 1 1} planes in fee metals. The resolved shear

stress required to force the Shockley partials into coincidence at vanish-

ing stacking fault energy, {Teq)Max, must approach but cannot exceed Tcru

so that (req)Max < G/30, i.e. much smaller than the value of V6GIStt^G/9
previously assumed. Similarly, the stacking fault energy cannot exceed

the value of yCru—Gal V6q with a the lattice constant, and the dislocation

core energy must be in the order of Ec — 2r0 ycru — VaEu where E,> is the

total dislocation energy, and the core radius, /*
0 , is taken to be that

distance from the dislocation axis at which the resolved shear stress on

the slip plane would become equal to Tcru in linear elastic behavior.

Lastly, D 0 , the actual equilibrium separation between the partials must be

considerably smaller than D 0*, the separation calculated from linear

elastic theory, as long as D 0
* < 2r0 . One finds easily that Do* *s 2r() for y

> y'crit/6 andy > yCritllO for edge and screw dislocations, respectively, de-

Fundamental Aspects of Dislocation Theory. J. A. Simmons. H. de \\ it. and K. Bulloiigh.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970).
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pending somewhat on Poisson's ratio, so that only in silver will edge dislo-

cations have an equilibrium separation a little larger than 2r0 , but much
less than 2r0 in the other common pure fee metals. For D 0 = 2r0 , when the

core energy is reduced by about V3 according to the rule of the square of

the Burgers vectors but the elastic energy is virtually unaffected, and re-

membering that work 2r0y with y — yCritl6 must be done to spread out the

stacking fault, the relative energy gain due to the extension of edge dislo-

cations is simply estimated as (AE/ED ) ± — [VsEc/iEc — l
/&yentitycrit]

— 4% which may be compared to the calculated value of 4.6% in silver.

Key words: Dislocation geometry; stacking faults; Shockley partials.

I. Introduction

The geometrically and experimentally well-known extension of the

common i( 110) ,{111} glide dislocations of fee metals into i(112) par-

tials has received comparatively little theoretical attention. This is the

more surprising because this effect is believed to govern cross slip,

which in turn is widely held to determine the magnitude of rin , the stress

at the onset of stage III. Particularly lacking are reliable estimates

for the fractional energy gain associated with dislocation splitting, as

well as for the resolved shear stress required to force the Shockley

partials of an extended dislocation back into coincidence. For these

two quantities, the earlier estimates by Seeger, and Seeger and Schiick,

based on a sinusoidal interaction potential are almost universally accepted.

These are, with respect to the fractional energy gain as shown by

Seeger [1] and Seeger and Schiick [2], 11.2 percent for edge dislocations

in copper assuming a stacking fault energy of y = 40 ergs/cm2 and 3.7

percent for aluminum with y = 200 ergs/cm2
, and with respect to the

maximum shear stress to force coincidence as given by Seeger [3],

(Teq) Max= V6G787T (D

where G is the modulus of rigidity. Note here that eq (1) does not depend

on Poisson's ratio, which certainly must be involved, and thus could not

possibly be reliable. Further, no expression seems ever to have been given

to relate the values of (Teq ) Max to the relative orientation of the disloca-

tion, i.e., whether the unextended dislocation is of edge, screw, or mixed

type.
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II. Estimate of the Maximum Stress of Repulsion Between
Shockley Partials

The reason for the lack of theoretical information in the field under

discussion lies in the great mathematical difficulties encountered for small

separations. The problem concerns the interaction between overlapping

cores of partial dislocations. In this, the Peierls-Nabarro treatment is

greatly complicated by the fact that two nonparallel Burgers vectors are

involved. Moreover, the assumption of basically sinusoidal interaction

potentials between the atoms on either side of the slip plane is inadequate

since it greatly overestimates the critical shear, and with it rcrit , the

highest resolved shear stress which a defect-free crystal could support on

the slip system considered. This is a most important aspect because, on

the one hand, the highest shear stress which can occur on the slip plane

within the dislocation core cannot much exceed rcrit , while, on the other

hand, rcrit must be reached at or in the core. Hence, it seems a foregone

conclusion that a stress not far from rcrit will be needed to force two partials

together, but that this same stress, (req )Max , cannot possibly be larger

than Tcrit , the stress which spontaneously generates dislocations all

over the slip plane.

Most conveniently, r crit should be written as

Tcrit= G/q (2a)

since, to a good first approximation, the critical stress for any potential

slip plane and any crystal structure is expected to be proportional to the

relevant modulus of rigidity. The factor q = G/T crit , then, is primarily of

geometrical nature. For the case of {111} planes in fee metals, the value

of q = 30 found by Mackenzie [4] has been widely adopted as the best

estimate, while for a simple sinusoidal interaction potential, much as was
used in the calculations leading to eq (1), one readily obtains

qa= 2irhlp (2b)

where h is the separation between the slip planes and p is the periodicity

interval. For slip on {111} planes from a regular position into a stacking

fault position, h = a\ V3 and p = a/ V6 with a the lattice constant so that

for this case one finds q s = 2Tr V2 and (r crit ).s = G/ VStt. By our preceding

argument this latter value should be the upper limit of, but not far from,

( Teq) \iax f°r the case of sinusoidal interaction potentials. Not surprisingly,

the ratio of (req )Max of eq (1) to (r crit ).s is found at V3/4 == 0.865, i.e., (Teq )Max

is found just below the value of rcrit that corresponds to the model used.
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However, while eq (1) is thus consistent with the model on which it was

based, this model is quite unrealistic because it predicts q s = V877 — 9

while the best accepted value is g = 30, as pointed out above. Correspond-

ingly, one must suspect eq (1) to be an overestimate by a factor on the

order of 3 or 4.

III. Estimate of the Energy Gain Due to Dislocation Splitting

As there is no reason to believe other than that the replusive force

between the partials assumes its largest value at coincidence, no exten-

sion will occur, and thus no energy will be gained due to extension, if the

equivalent stress on the partials due to the surface energy of the stack-

ing fault is larger than (Teq ) M ax; i-e -^ the critical stacking fault energy

above which no extension takes place at all is given by

7crit= (Tecl ) MaxalV6^GalV6q (3)

Table I. Upper limitfor the values ofthe stackingfault energy which the metal listed

could have

Ga
Metal

Al 147 ergs/cm2

Cu 229 ergs/cm2

Ag 164 ergs/cm2

Au 157 ergs/cm2

Ni 372 ergs/cm2

which, with q = 30, yields the values listed in table I. Thus dislocations

in aluminum cannot be extended and no energy can be gained unless

the stacking fault energy is significantly less than 147 ergs/cm2 — much
less than the 200 ergs/cm2 usually assumed as the correct value. 1 In

any event, the stacking fault energy of aluminum cannot be as high as

200 ergs/cm 2
. Namely, it could not possibly require a shear stress in

excess of rcrit to produce a stacking fault by shear of a {111} plane through

the displacement of a/V6 in (112) direction, i.e., from the faulted posi-

tion into the stacking fault position. Hence, the stacking fault energy

1 A recent, careful determination of the intrinsic stacking fault energy of aluminum due

to P. S. Dobson, P. J. Goodhew, and R. E. Smallman, Phil. Mag. 16, 9 (1967), has yielded

the value of y = 135 ± 20 ergs/cm2
.
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must be less than rcrit a/ V6, so that ycrit of eq (3) and the values in table

I are, at the same time, the highest possible values of the stacking fault

energy.

Previously, Kuhlmann-Wilsdorf [5] has interpreted the core radius of

dislocations as the distance from the dislocation axis at which the resolved

shear stress on the slip plane would reach the value of T crit
= G/q according

to linear elastic theory. For distances closer to the core than that, linear

elasticity must certainly be a very poor approximation. Since the misfit

on the slip plane within the core represents about the highest possible

energy density on the slip plane which, as we saw, is given by ycrit , we

may estimate the core energy as

E c = 2r„ycrit qbycrit/TTg Gb 2
/ VSirg (4)

where b = a/ V2 is the Burgers vector of undissociated V2 < 110 > {111}

dislocations and g is an orientation factor, equal to (1 — v) for edge disloca-

tions and equal to unity for screw dislocations. Thus, at least to a first

approximation, the dislocation core energy is independent of q, i.e., is

independent of the choice of slip plane and of core radius, as previously

pointed out by Cottrell [6]. Further, the core energy seems to depend on

the elastic constants, Burgers vector, and relative dislocation orientation

in the same manner as the elastic energy of the dislocation. Consequently,

the dislocation energy may be written as

E={Gb 2/i7Tg} {ln(/?/r0)+C} (5)

with C — 4/ V3 — 2 according to eq (4). Thus with R/r 0 — 600, which would

follow for r ()
— qb\2iTg — 16A and R — 1 micron, the core energy amounts

to roughly one-quarter of the total dislocation energy.

The equilibrium distance of separation between Shockley partials,

assuming completely elastic interaction, as given by Read [7], is

D»* = Gb 2
( 1 - v\2 - v cos 2<j) ) / { 12tt ( 1 - v ) y } (6a)

where cj) is the angle between the dislocation axis and the Burgers vector

of the undissociated dislocation, or

(Do* ) 1 = Gb 2
( 1 + v\2 ) / { 12tt ( 1 - v)y } (6b)

for edge dislocations. Generally, A* as given in eq (6) is an overestimate

for the actual separation between the partials because the shear stress in

the cores, and with it the repulsive forces between the partials, is less than
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calculated from linear elasticity theory. The corresponding discrepancy

between Do, the actual equilibrium distance of separation, and Z)0* of

eq (6), is considerable as long as the cores of the partials overlap, say,

for Do < 2r0 .

As may be seen from eq (6b), an edge dislocation will split to

(Z)o*)_l— 2r0 when the stacking fault energy equals about 1/6 of y crit ,
i.e.,

with an assumed stacking fault energy of 40 ergs/cm 2 in copper, the

partials' cores of an extended dislocation would still overlap. As the

greatest possible fractional reduction in core energy due to splitting is

about 1/3, while the core energy amounts to about 1/4 of the total disloca-

tion energy, we thus expect the energy gain to be less than about 1/12, i.e.,

less than about 8 percent, unless the partials are well separated, and hence

conclude that the value of 11.4 percent for copper assuming y=40 ergs/cm 2

quoted in the introduction, must be a substantial overestimate.

IV. Evaluation of Equilibrium Separation, Maximum Repulsive

Stress, and Energy Gain, on the Basis of a Simple Model

In accordance with the considerations in the preceding sections,

realistic values for (req ) Max , for D 0 , and for the relative energy reduc-

tion due to the extension of glide dislocations to their equilibrium con-

figurations can be derived as follows:

The energy of the undissociated dislocation is given by

E u = Gb 2 {In (#/r0)+C} {1 - (v/2) (1 + cos 2<j>) }/{4tt(1 - v) } (7)

where

r0 = qb {l-(W2)(l + cos 2*)}/{2tt(1-i/)}, (8)

while the energy of the dissociated dislocation is the sum of the energy

of the two partials when widely separated (assuming R to remain the

same), plus their interaction energy, plus the energy of the stacking

fault ribbon stretched out between the partials. The sum of the energy

of the partials is

Epl +Ep2= Gb2{2-v- (v cos 20)/2}{ln ( V3R/r0 ) + C}/{12tt(1 - v) }.

(9)

Here, for simplicity's sake, the core radii of the two partials are taken

to be equal to r0/ >
= r0/V3, i.e., the slight difference in core radii due to

the reorientation of the Burgers vectors is neglected.
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The interaction energy between the partials consists of the elastic

interaction energy,

^int
= G62{l-W2-^cos2(A}{ln [R/(rJ VS + }/{12tt(1 - v) } (10)

and the interaction energy between their cores, cEmt . An expression

for c^int may be derived from the following three requirements: (i) The

reduction in core energy due to splitting shall be in the same relation to

the elastic constants, the Burgers vector, and the angle (/), as the re-

duction in the elastic energy, (ii) For Do = 0 the core energy of the un-

dissociated dislocation shall be equal to the sum of the core energies of

the two coincident partials plus their interaction energy forD^O, plus

the energy of that part of the elastic stress field which lies between

r0P= r0/V3, the smaller core radius of the partials, and r0 , the core radius

of the undissociated dislocation, (iii) The core interaction energy shall

decrease monotonally with increasing separation between the partials

such that at separations of D0 > 2r0 the linear elastic solution shall become
an increasingly good approximation.

With the above requirements for the core interaction, assembling
the different contributions listed, and after some arithmetic, one finds

for the relative energy reduction at equilibrium separation

(AE/EU ) 0 - B(4>){\n (l+D Q /rnp ) + (2C*/7r)arc tan (/Z)0/rop )

-ZVW/{3(ln(#/r0)+C)} (Ha)

with

B((f)) = {l-v/2-v cos 2(/>}/{l-(W2)(l + cos 2*)} (lib)

with

C* = C-3 In V3 = C-1.65, (11c)

with € an adjustable parameter not far from unity, and with Do as given

by eq (6). Varying € within reasonable limits has only an insignificant

influence on the numerical results.

Figure 1 gives DJD% as a function of D0 /rop for different assumed
values of the core energy parameter, C, which as explained in section

III is believed to be near 2. Values of (A£'/E u ) o/B((j)) as a function

of (y/Gb)IB(<j)) are given in figure 2, again for different values of C.

Lastly, the maximum stress between the partials is found as

(Teq) Max = {rcrit£((/>) ( 1 + 2C*M }/2 (12)
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FIGURE 1. Equilibrium distances of separation between Shockley partials, D0 , compared to

D*, the separation distances which would be calculated assuming linear elastic behavior

throughout.

(y/Gb)/B«>)

FIGURE 2. The relative energy gain due to the extension of 1/2(110), {111} dislocations

into Shockley partials, (AE/E U )() , as a function of the stacking fault parameter yjGb. The

function /?((/>), representing the dependence on relative dislocation orientation, is given by

eq (lib).
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i.e., not far from but somewhat smaller than rcrit in conformity with

the considerations in section II above.

Table II summarizes some of the pertinent data for the case of edge

and screw dislocations with q = 30, C= 2, /?/r0= 600, and f =1 for six

fee metals. A more detailed treatment of the model is given elsewhere

by Kuhlmann-Wilsdorf and Duncan [8].

Table II. Approximate values of (AEIE U ) 0 , the fractional energy gain due to the extension

of 112 (110), {111} edge and screw dislocations into partials, and of Z)<>, the equilibrium

distance between the Shockley partials, calculated for the values of Poissons ratio, v,

stackingfault energy, y, and shear modulus, G, as listed, assuming q = 30, C = 2, /?/r0 = 600,

and f =\. These latter values are believed to be the most likely or representative.

Metal V GX 10" 11

{dyne/cm2
}

y assumed

{erg/cm2
}

— xlO3

Gb

Edge dislocations Screw dislocations

(A£/£M)o

percent
D Q{k} (A£/£„)o

percent
D 0{k}

Al 0.34 2.68 200 26.0 0 0 0 0

Cu 0.35 4.64 85 7.2 1.1 11 ~ 0.06 ~3
Ag 0.37 2.94 20 2.6 4.6 48 ~ 2.0 ~ 18

Au 0.42 2.82 55 6.7 1.4 15 ~ 0.02 ~ 1

Ni 0.31 7.85 300 16.0 0 0 0 0

ct-brass 0.37 3.8 8 0.8 9.7 150 ~5 ~ 90
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SCREW DISLOCATIONS IN
INHOMOGENEOUS SOLIDS

G. P. Sendeckyj

School ofEngineering

Case Western Reserve University

Cleveland, Ohio 44106

The problem of screw dislocations interacting with free surfaces and in-

homogeneities is reconsidered and a general method is presented for solv-

ing a large class of screw dislocation problems. The method is based on

knowledge of certain general solutions in the theory of antiplane deforma-

tion of elastic solids. It can be shown that all the known screw dislocation

solutions for solids undergoing antiplane deformation can be found by

using this approach.

As an illustration of the method, three new solutions for screw disloca-

tions near inhomogeneities are given. These are the screw dislocation

near ( 1 ) an elastic elliptic cylindrical inclusion, (2) two circular cylindrical

inclusions, and (3) a curvilinear cavity or rigid inclusion. The interaction

energy between the dislocation and the inhomogeneities is also computed.

Key words: Dislocations-elasticity; dislocation surface interactions; finite elasticity;

inhomogeneities.

I. Introduction

Even though the interaction of dislocations with free surfaces and

inhomogeneities is of considerable importance in materials science, only

a handful of solutions can be found in the literature [1—12]. This seems

to be due to the apparent complexity of the elastic boundary value prob-

lems that have to be solved.

In the present work, the problem of screw dislocations interacting with

free surfaces and inhomogeneities is reconsidered and a general method is

presented for solving a large class of screw dislocation problems. This

method is based on knowledge of certain general solutions in the theory of

antiplane deformation of elastic solids. It can be shown that all the known
screw dislocation solutions [1-12] for solids undergoing antiplane

deformation may be found by using this approach.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullou^h.

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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In the next section the required general results are summarized. Next

the problem of a screw dislocation near an elastic elliptic cylindrical

inclusion is considered. The analysis simplifies considerably for the case

of a curvilinear cavity or rigid inclusion; and the general solution is found

for this case. The problem of a screw dislocation near two elastic circular

cylindrical inclusions is also solved. Finally the interaction energy be-

tween the screw dislocation and the inhomogeneities is computed. Some
general features of the interaction are discussed.

II. General Results in Antiplane Deformation

In the case of antiplane deformation (Milne-Thomson, [13]), one has

u = v = 0, w— w(x,y) , (1)

where u, v, w are the displacements along the coordinate axes. The

nonzero stress components are related to w{x, y) by

(T;X = fi(dw/dx) (ryz = fi(dwldy), (2)

where jx is the shear modulus. In the absence of body forces, the general

solution of the stress equilibrium equations can be written as

fjiw = Re{F(z)}, (3)

where F(z) is an analytic function of the complex variable z= x-\-iy and

Re { } is used to denote the real part of the function in the brackets. The

stresses are now determined from

crzx — iayz = dF/dz. W

Curvilinear Coordinates. Let us consider two complex planes, the z-

and £-plane. Letting p and \jj be polar coordinates in the £-plane, we have

£ = pe'^. Consider the transformation

(5)

from the £-plane into the z-plane. Equation (5) maps the unit circle |£| = 1,

or p= 1, in the £-plane into a closed curvilinear contour 2 in the z-plane.

Points exterior to the circle |£| = i are mapped uniquely into points

exterior to 2 if and only if the coefficients A n are restricted appropriately.

For example, in the transformation

2= a)(£)=c[£+^n£- w
],
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coefficients c andA n must satisfy the conditions

c>0, O^An^Vn;

otherwise the mapping function will not transform the exterior of the unit

circle |£|
= 1 into the exterior of the curvilinear contour 2. Variables

p and
\fj

can be thought of as forming a curvilinear coordinate system for

the z-plane, with p=l corresponding to the curvilinear contour 2.

In terms of p and iff . the displacements and stresses are

!xw=Re{F(0}, (6)

trp9 -ur+z= lF'(Qlp\<o'(Q\ (7)

where a prime on a function is used to denote differentiation with respect

to its argument. From (7), it is seen that the stresses will, in general, be

singular at the points

\co
J

XO\=0, (8)

which are the singular points of transformation (5). Furthermore, (5) maps

points inside |f|
= l all over the z-plane: that is, points inside the circle

p= 1 do not necessarily correspond to points inside 2. This precludes the

use of classical conformal mapping techniques in solving elastic inclusion

problems.

The difficulties are readily avoided by using the following procedure:

The elastic fields inside the inclusion are assumed to be given by a function

of z. Equations (5). (6). and (7) are used to write the displacements and

stresses on 2 in terms of p and ijj.
1 The boundary conditions are then

satisfied at the interface by the appropriate choice of the complex potential

for the matrix. This yields the desired solution. This approach is used

below to get some general results for curvilinear inclusion problems.

Inclusion Problems. Consider an elastic matrix containing a single

curvilinear inclusion whose boundary is given by 2. Letting subscripts 1

and 2 on elastic quantities refer to the matrix and inclusion respectively,

the boundary conditions at the interface corresponding to a perfect bond

1 This can always be done since conformal mapping (5) is not applied to the inclusion

region. It is only used to write the stresses and displacements, due to the assumed elastic

fields inside the inclusion, in terms of p and iff on 2. This may be seen from the following

argument: An unbounded region, with properties of the inclusion, is loaded so that the elastic

fields inside the region, bounded by 2, are equal to the assumed ones. The stresses and

displacements on boundary 2 of the inclusion region are expressed in terms of p and ib by

using conformal map (5). which applies in this case.
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are

w x
— w2 , o-pz\ = (Tpz-> forp — 1. (9)

It is required to find the general form of the solution satisfying (9). This

is easily done by following the procedure outlined above. Hence, one has

THEOREM 1: The general form of displacement potentials Fj(z) satisfying

boundary conditions (9) on X in the z-plane is

F 1 (z)=f(z)-kf[co(UQ-l, F2 (z) = (l+K)f(z), (10)

where z = a>(£) and

K=(fl,-lJL 1 )/( fJL 2 + lX 1 ). (11)

PROOF: That this is the solution is readily verified by direct substitution

of (10) into boundary conditions (9).

REMARKS: It should be noted that the stress field inside the inclusion is

given in terms of the variable z and that the region inside 2 is not trans-

formed. The conformal mapping is used only as a convenient tool in satis-

fying boundary conditions (9).

As a consequence of Theorem 1, it follows:

COROLLARY 1: (Smith, [1]) The general solution of the circular inclusion

problem is

F l (z) =f(z) -Kf(Uz), F2 (z) = (l + K)f(z). (12)

COROLLARY 2: The general solution of the curvilinear cavity (rigid inclu-

sion) problem is

F(£)=/(£)±/(l/£), (13)

where the plus (minus) sign should be taken.

COROLLARY 3: The ellipse, and its geometric limits, is the only inclusion

shape for which a uniform applied stress at infinity induces a uniform state

of stress inside the inclusion.

PROOF: Let the stress be uniform inside the inclusion, that is

F 2 (z) = (\ + K)Az,

where A is a complex constant. By Theorem 1,

F,(z) =Aoj(X) -AKa>(VO =Ac i+^A ni-A-KAc\^+%A n^
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Upon substituting this expression for F \{z) into (7), one sees that terms

with n > 1 induce stresses that are not uniform at infinity. Hence for

constant applied stress at infinity, A n = 0 {n > 1) and, consequently,

<*>((,) =c[£-f-/4i£
-1

] , which is the mapping function for an ellipse. Q.E.D.

Joined Half-Spaces. Another useful result is the general solution for

two joined half-spaces which may be stated as:

THEOREM 2: Consider two joined elastic half-spaces undergoing antiplane

deformation. Let the interface lie along the x-axis. Let subscripts 1 and 2

on elastic quantities refer to the upper (y > 0) and lower (y < 0) half-planes,

respectively. If a source of stress with complex potential f(z) is put in region

1, then the solution satisfying the conditions of a perfect weld at the

interface is:

F,(z)=f(z)-Kf(z), F 2 (z) = (l + K)f(z). (14)

PROOF: This result is readily verified by substituting (14) into the boundary

conditions.

Now let us turn to the application of these results to problems of screw

dislocations in inhomogeneous solids. In the next section, a screw disloca-

tion near a curvilinear inclusion is considered.

III. Screw Dislocation Near Curvilinear Inclusion

Screw Dislocation near an Elliptic Inclusion. Let us consider application

of the general results to the problem of a screw dislocation near an

elliptic inclusion. In this case, the appropriate mapping function is

z = w(£)=c[£ + \£- 1
], c>0,0^\^l, (15)

where c and k are real constants related to the semi-axes a and b of the

ellipse by

c=(a + 6)/2, \=(a-b)/(a+ b). (16)

Assuming that the interface between the matrix and inclusion is

mechanically coherent (that is, boundary conditions (9) must be satisfied

at the interface), putting the dislocation on the jc-axis at a distance

Zo(a<Zo<°°) from the center of the inclusion as indicated on figure 1,

and using Theorem 1 yields

*F t (z) = (^,&,/2m){log [«(£) -o>(/3)] +£log [o)(l/£) -o>(j8)]}, (17)

lF2 (z) = (inborn) (1 +K) log (z-z () ), (18)
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y

b

X

z-plane C-plane

FIGURE 1. The complex z- and £-plane for elliptic inclusion problems. Dislocation is put

at point A.

where J27ii) log (z — z<») is the potential for a dislocation acting at

the point z 0 and (S is the point in the £-plane corresponding to z () in the

z-plane. Equation (17) can be rewritten as

1F 1 (z) = (^i6,/2m) {log log (£-1/0)+ log (£-X/j3)

+ Klog a-pi\)-(l + K) log£ + logc + /i logc£},

from which it is seen that 1F\(z) consists of some rigid body terms and

five dislocations in the £-plane, placed at £ = 0, /3, 1/(3, /3/A, A.//3. The term

containing (3/k corresponds to a dislocation in the matrix at £= /3/A in the

£-plane. It violates the condition of a dislocation only at /3; hence, it must

be eliminated by putting a dislocation at the corresponding point in the

z-plane. This introduces a dislocation at £ = /3/k 2 in the £-plane. Repeating
this procedure, one finally gets

z = w(0 = c[c + AC
1

]

x

F,(z) = ( i
LL 1W2m) £ (-^) B {log[ft)(£)-"a>(/8/X»)]

+ K\og[a>(UQ-<o(pi\»)]}, (19)

F2 (z) = (n 1b zl27ri)(l + K) J (-^)Mog[z-a)(/3/X»)], (20)

which is the required solution. An alternate expression for F 1(2) is
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F 1 (z) = (fJLibJ27ri) {log U-P) +K [log (t-llp) -log £]

+ (1-K 2
) 2 [log(£-X« + Vi8)-logJ]}. (21)

By using (21) it is easily shown that this solution contains the results of

Smith [1] and Dundurs [2] as special cases.

Screw Dislocation near a Circular Boundary. The solution for a screw

dislocation near a circular inclusion of radius a can be obtained directly

from Corollary 1. Thus for a dislocation with Burgers vector b = (0, 0, b z )

placed at the point z = zo(|z 0 |

> 0), one has

F x (z) = (mbzfciri) {log (z-z„) +K [log (z-a 2/z 0 )
- log z-rri] },

F2 (z) = (iLtb xl2m)(l + K) log (z-z 0 ). (22)

For a dislocation, put at z= Z\{ \zi \
< a) inside the inclusion, Corollary 1

yields

F 1 (z) = (/x 2^/2m-)[l/(l+^)]{log (z-zj) + /<[log (z-a 2
/*i) -log z-iri] },

F 2 (z) = { lx,b zl2rri) log (z-zi). (23)

From the first of equations (23), it is seen that the solution contains an

inadmissible singularity in the matrix. Removing it by another application

of Corollary 1 results in

Ft{z) = (fi2bgl2m){(l-K) log (z- Zl ) -K logz-Kiri},

F2 (z) = (fJL2b z l27ri) {log (z- Zl)-K log (z-a 2/z0}, (24)

which is the desired solution. Solutions (22) and (24) are in agreement with

the results of Dundurs [2] and Smith [1]. Upon letting the rigidity of the

matrix or inclusion go to zero, one recovers the solutions, due to Siems [3]

and Eshelby [4], for a screw dislocation inside a circular cylinder and in

an unbounded solid containing a cylindrical cavity.

Screw Dislocation near a Curvilinear Cavity or Rigid Inclusion. The
solution for a screw dislocation near an elastic elliptic inclusion gives

some indication of the complexity of the general curvilinear inclusion

problem. In fact, it seems that only limited results can be generated for

the case of an elastic inclusion.

If the inclusion is rigid, the analysis simplifies considerably and the

general solution can be found immediately from Corollary 2. Thus, the
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solution is

F(£) = (^/2m){log U- Co) + log (?-I/?o) -log (25)

where £ is related to z by z= o>(£) . The transformation co(£) must be

restricted so that it maps the exterior of |£|
= 1 into the exterior of 2. The

dislocation is put at the point z 0 which is related to £ 0 by z 0 = co(£o). In

the case of a rigid elliptic inclusion, (25) reduces to the results of Smith [1].

For a dislocation near a curvilinear cavity, Corollary 2 yields

F(£) = (^/2m) {log (£-£o) - log (£ - l/£o) +log £+ 7ri}. (26)

For an elliptic cavity, (26) reduces to the results of Smith [1].

IV. Screw Dislocation Near Two Circular Inclusions

Now consider the problem of a screw dislocation near two circular

inclusions. For the sake of simplicity, assume that both inclusions are of

unit radius and have the same shear modulus. Superscripts I and II will

be used to distinguish the two inclusions. Let a screw dislocation with

Burgers vector b z be put at z = z 0 as shown in figure 2. By Corollary 1, the

potentials satisfying the boundary conditions between inclusion I and the

Figure 2. Screw dislocation O near two equal inclusions of unit radius.
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matrix (interface I) are

Ft(z) = (Mi6,/27ri){log (z-zo) +K log [l/(z-b) + &-z0]},

F'2 (z) = (MlW2m)U + £) log (z-z0 ).

Even though the boundary conditions at interface I are satisfied, those

at the inclusion II — matrix interface (interface II) are not. They can be

satisfied by applying Corollary 1 to inclusion II. This yields

F l (z) = ( fx l bJ27Ti){hg (z-z0)+K[\og{ll(z-b)+b-z0 }

+ log{l/(z + &)-6-z-0}]+£ 2 log [l/{l/(z + 6)-26} + 6-z 0 ]}.

F[{z) =
{ lx x b z l2Tri){l+K) log (z-zo),

F»(z)=(nib z l2m)(\ + K){\og {z-z 0)+K log [l/(z-b) + b-z0]}.

The continuity conditions at interface I are now violated. Applying

Corollary 1 to this interface will guarantee the required continuity at

interface I, while violating the conditions at interface II. Repeated

application of the corollary finally yields

Fl(z)=(/AiW27Ti) log (z-Z0)+2^ 1 (^-1 + 6-Zo)
I n=l

+ log (h2n-i — b — z0)]

+ |)£
2»[log (g2n-b-z0)+\og (h2n+ b-z0)] j, (27)

n=l J

F*
2 (z)=(fJLibzl27ri)(l+K) {log (z-z0)+ 2 [K^ log - 6-z"0 )

+ K2» log (fe«+ 6-io)] ], (28)

F«(z)=(pM2ni)(l + K)
{
log (z-z0 ) + £ [K2"- 1 log (g2n-i + b-z0 )

+ K2" log (g2n-b-z0)] I, (29)

where

fci = l/(z + 6), h2n =V(h2n-i-2b), h2n+ i
= ll(h2n+ 2b),

(30)

g i = ll(z-b),g2n=ll (g2n-l + 26) , ^2 „+1 = 1/ (g2 „ - 26) .
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Contractions h n and g n may be rewritten in a more tractable form as

(31)
(z + b) n _ a„ + i8 w (z-6)

d n + e n {z + b) ' " 8n+ 7n(z— 6)

here

wiIt Ii

a n = d n -i, cn= en-u an= 8n-i, /3„ = y M -i, (32a)

= a„_i + 2bd )}-u <?« = cn-i + 2be n-i,

(n odd), (32b)

6„ = a„_i — 2b8„-u yn = fin-\ — 2by n-u

d n = fln-i
— 2bd n-u e n = c n-i — 2be n-i,

(n even), (32c)

d n =an_iH-268„_i, y« = /3„-i +26yn-i,

ai = Ci = o:i=yi = l, Ci = <ii = 5i =0. (33)

That (27), (28) and (29) constitute the desired solution is readily verified

by using contractions (31).

V. Screw Dislocation in Solids With Plane Boundaries

Finally, consider application of theorem 2 to screw dislocations in

solids with plane boundaries. Using the notation of theorem 2, the solution

for a screw dislocation at zo in region 1 of the two joined half-planes is

F 1 (z) = (fjirh^iTi) {log (z-zo) +K log (z-fo)},
(34)

F2 (z) = (fi 1b zl27Ti) (l+K) log (z-z () ).

This solution can be shown to be equivalent to the results of Head [9]

.

Solutions for solids with more complicated plane boundaries may be

obtained by the procedure used in the two inclusion problem. Since the

results for most problems of practical interest are available in the litera-

ture (Chou [6, 7], Head [8], Leibfried and Dietze [10]), these solutions

will not be repeated here.

VI. Energy of Screw Dislocation Near Finite Inclusions

The strain energy due to the presence of the dislocation may be com-

puted as the work required to introduce the screw dislocation into the

material, that is,

W dx, (35)
y=yo
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where R is a distance corresponding to the material size and e is the core

radius of the dislocation. Since (Tyz =— Im {dF (z) /dz}, one formally has

(Siems, [3])

where F*(zo) consists of the part of the potential remaining after the dis-

location singularity has been removed. The first term in (36) is the self

energy of the screw dislocation. Equation (36) is the appropriate expres-

sion for the interaction energy of a screw dislocation put in the matrix.

The results have to be modified for a dislocation inside the inclusion.

Since the dislocation tends to seek the region of minimum interaction

energy, some qualitative insight into the interaction of a dislocation with

finite inhomogeneities may be gained by examining the energy surface or

function. This is done next.

Dislocation Near a Circular Inclusion. Equation (36) is applicable in

the case of a screw dislocation near a circular inclusion. Substituting (22)

into (36) yields

r=(/^ 2/47r){log (i?/€)-£ log [(zozo-a*)lz0z0 ]}

= (/*, 6
2/4tt) {log (/?/€)+ /Hog [/3

2
/(/3

2 -D]}, (Kj8<oo), (37)

where (3 is the radial distance from the center of the inclusion. The strain

energy tends to a maximum or minimum value at the interface as K varies

from one to minus one. Since the dislocation seeks the minimum energy

configuration, one immediately has that the dislocation is repelled by a

hard inclusion (K > 0) and attracted by a soft one (K<0), with no

equilibrium positions near the inclusion.

Dislocation Near a Curvilinear Cavity or Rigid Inclusion. The energy

for a screw dislocation near a rigid curvilinear inclusion can be found by

substituting (25) into (36) and using the result that F\ (z) is identically

equal to F\ (£). Thus one has

Similarly for a screw dislocation near a curvilinear cavity, (26) gives

(/x6 2/4tt) log (R/e) + (b/2) Im {F*(z 0 )}, (36)

r=-(£V4ir){log (file) -log [(£o£o- l)/£o£o]}. (38)

r=(6V4«r){log (/?/€)+ log [(£o£o-i)/£o£«
:

o]}- (39)

From (38) and (39), it is seen that a rigid curvilinear inclusion will alicavs
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repell a screw dislocation, while a curvilinear cavity will attract the dis-

location. Furthermore, the conformal nature of the mapping used indicates

that no equilibrium positions exist near the inclusion.

Screw Dislocation Near an Elastic Elliptic Inclusion. For a screw

dislocation near an elliptic inclusion, (21) yields

W= (6V./477) |
log (Rle)+K log [/3

2
/(/3

2- 1)]

+ (1-/C 2
) ]T (-£)'< log [/3

2
/(/3

2 -A''+')]}, (40)

n=() J

where (3 specifies the position of the dislocation on the x-axis through the

transformation x {)
= c[(3 + . It seems that a hard inclusion {K > 0)

will repell the dislocation, while a soft one (K < 0) will attract it. Whether

an equilibrium position exists near the inclusion can not be ascertained

without summing the series; but it seems that no such equilibrium posi-

tion exists, based on the structure of the energy function.

Screw Dislocation Near Two Circular Inclusions. For the screw dis-

location near two circular inclusions, (27) gives

W= (At,6I/47r) {
log (Rle)-^K^ [log +

+ log (/>£,_, -6-Z,,)]

-^K 2" [log te!n-&-z0)+log (htn+b-zj) }, (41)

where g* and hf are the contractions given by (31) evaluated at z = z 0 .

A close examination of (41) indicates that hard inclusions will repell the

dislocation while soft ones will attract it. Furthermore, no equilibrium

positions exist near the inclusions.

VII. Conclusion

The approach illustrated in the previous sections is completely general

and, hence, it may be used to solve other screw dislocation problems

in a systematic manner. Furthermore, it indicates the best procedure

to be followed in solving edge dislocation problems. The procedure is:

First, find general results corresponding to theorems one and two for

the case of plane deformation. The results will then yield simple and

systematic solutions of edge dislocation problems.
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SUBSONIC, SUPERSONIC, AND TRANSONIC
DISLOCATIONS MOVING ON AN INTERFACE

SEPARATING TWO MEDIA OF
DIFFERING ELASTIC PROPERTIES

H. M. Bers, J. E. Bloom, H. Ishii, R. H. Marion, D. E. Pease,

D. T. Spreng, J. B. Vander Sande and J. Weertman*

Materials Science Department and Materials Research Center

Northwestern University

Evanston, Illinois 60201

This paper examines the problem of a dislocation moving on an inter-

face separating two isotropic elastic media that have differing elastic con-

stants and densities. This problem has application to the phenomenon of

diffusionless transformations. Solutions are found for moving screw dislo-

cations, gliding edge dislocations, and climbing edge dislocations. It is as-

sumed that the dislocation velocity lies in either the subsonic, the

transonic, or the supersonic velocity region. We have generalized the

analysis that was used in a study of the elastic displacements and stress

field of subsonic, transonic, and supersonic dislocations moving in an or-

dinary elastic medium. The results given in the present paper are formally

identical to those obtained in that simpler analysis.

Key words: Dislocation dynamics; interface dislocations; supersonic dislocation.

1. Introduction

The problem of a dislocation moving on an interface separating two

media of differing elastic properties is interesting from both the theoretical

and the practical viewpoint. Diffusionless transformations in crystals

probably involve dislocations moving on the interface between transformed

and untransformed material. Since the amount of energy released in such

transformations may be large, high dislocation velocities are to be ex-

pected. In fact, Eshelby [1] has proposed that dislocations may move at

supersonic velocities in diffusionless transformations.

* Students and Instructor of Advanced Dislocation Class at Northwestern University.

Fundamental Aspects of Dislocation Theorv, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I 1970).
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One of us, Weertman [2], has considered the problem of a discrete

screw or gliding edge dislocation moving with a subsonic velocity on an

interface between two elastic media of differing physical properties. In

the present paper we consider a smeared out dislocation (either screw,

gliding edge, or climbing edge dislocation) moving with a uniform velocity

which may be in the supersonic, transonic, or subsonic velocity range.

The fundamental equations used in our analysis are reviewed in the next

section. The derivation of these equations can be found in the review

article 1 of Weertman [3] or in the literature cited therein.

II. Review

Let the elastic constants 2 (Lame constants) of the two elastic half-

spaces be fJLi and A, , where i = 1 refers to the material above the interface

and i=2 to the material below the interface. Let the density of the two

materials be p,. The shear wave velocity en is given by the relationship

c fi = IJLi/pi and the longitudinal wave velocity c/2 by c'f2
= (\ l + 2/n,)/p,-. It

is assumed that the slower shear wave velocity always occurs in the upper

half-space (cu < c2 i).

Assume that the net displacement D across the interface plane is

governed by some non-linear periodic force law such as shown in figure 1.

That is, at any point on the interface plane the stress required to produce

a given net displacement across the plane varies periodically with the

net displacement.

The displacement D is equal to W\—w>, where W\ and w 2 are the dis-

placements at the interface in the upper and lower medium, respectively.

When the two halfspaces are identical in their properties by symmetry

W\ =— iv-z. In general, W\ ^ — w*.

A dislocation density function B(x) is defined by the requirement that

B(x)8x equal the total strength of the Burgers vectors of all dislocations

lying between x and x + 8x on the interface plane. The distance x is

1 This article discusses the problem of smeared out subsonic, transonic, and supersonic

dislocations moving on an interface separating two identical elastic half-spaces. The
reader may find it helpful to read this review article before considering the more general

problem treated in the present paper.
2 In this paper the subscripts on any term, say Hy, have the following significance: The

first subscript refers to the half-space (i = 1 for the upper and i = 2 for the lower half-space).

The second subscript refers to the sound velocity upon which the term depends (j= 1 for

the shear wave velocity and j= 2 for the longitudinal wave velocity). If the term contains

only one subscript it refers to the half-space.
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measured in a coordinate system moving at the same velocity as the

dislocations. The function B{x) also equals the derivative — dD/dx, which
in turn is equal to — dwJdx-\- dw 2/dx.

FIGURE 1. Various laws of stress cr versus displacement D. (a) Subsonic, (b) Supersonic,

(c) Transonic, (d) Subsonic which starts in unstable equilibrium, (e) Transonic which starts

in unstable equilibrium. (Note that laws (d) and (e) are more likely to lead to a supersonic

dislocation of partial Burgers vector b' than a subsonic or transonic perfect dislocation of

Burgers vector b.)
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When the two elastic half-spaces have differing physical properties it

is convenient to define two new dislocation density functions,

B\ (x) = — dw
i

/

dx and B> (x) = dw >/dx.

Thus B(x) = Bi(x) + Bzix). The displacement D(x) is equal to

\
B(x)dx= f [B l (x)+B2 (x)]dx

Jx Jx

and the total Burgers vector b of all the infinitesimal dislocations lying on

the interface plane is equal to j \_B\{x) + B->(x)~\dx.

The displacement field of a moving edge dislocation can be separated

into two independent fields: one which involves only the shear wave

velocity Oi and another which involves only the longitudinal wave velocity

c/2- Therefore the distribution function B,{x) can be considered to be
2

the sum of two dislocation distribution functions, B\(x) Bjj(x) ,

where B-,\{x) arises from the displacement field which is a function of

the shear wave velocity and Bjo(x) from the field which is a function of

the longitudinal wave velocity. For a screw dislocation B\\(x) =B\{x)

and BrAx) = 0.

Consider a smeared out dislocation which lies parallel to the z-axis and

which moves in the x-direction. The existence of a dislocation density

Bjj{x) will produce on the interface plane (y=0 plane) a stress [cr/(jc)]j,

where o~, stands for the shear stress [cr^] , in the case of a screw dis-

location, the shear stress [cr^y], for a gliding edge dislocation, and

the tensile or compressive stress [cr yy ]/ for a climbing edge dislocation.

At any subsonic dislocation velocity V (where V<cn ) the stress [cr,]j

is given by

[o-i(x)]j= (fJuCijlir) j Bij(x')(x — x')- l dx' (1)

where C/i=/3j for a screw dislocation; C\\ =2a?/j8i and Cri = 2yt for a

gliding edge dislocation; and Cn =2/3i and C,-i = 2af/yi for a climbing edge

dislocation. Here pf = 1 - F2
/cf, ; yf

= 1 - V2/c%
; and a\= 1 - V2

/2cf
]

.

Equation (1) can be inverted to give

Bij(x) =— (l/TTHiCij)
\

[o-i(x')]j(x— x') xdx' (2)
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At any supersonic dislocation velocity (V>c r > for an edge dislocation

and V> c/i for a screw dislocation), eqs (1) and (2) are replaced with

[a i (x)] j
= -

f
jL

iS ijB ij (x) (3)

where Sn = (3f for a screw dislocation; S-n = — 2af//3* and S/2 = 2y* for a

gliding edge dislocation; and S,\=2(Bf and 5/2 = — 2c*?/y* for a climbing

edge dislocation. Here /3f
2=—

j3f and y* 2=— yf.

For edge dislocations moving at a transonic velocity (ca < F< c; 2 ),

eqs (1) and (2) are valid for the dislocation density function B rl and eq (3)

is valid for the function B,\.

In the case of edge dislocations, there is an additional traction across

the interface plane besides the traction given by eqs (1) and (3). A stress

[r
i
(jc)]j can exist, where n stands for the stress [cr y y]i for gliding edge

dislocations and for the stress [orxy ] i for climbing edge dislocations.

The stress r, is given by

[Tiix^j^-l-iy^TijBijix) (4)

where Tix
= 2 and T-rl = 2a? for gliding edge dislocations and Tn =— 2a'f and

T}2 =— 2 for climbing edge dislocations. Equation (4) is valid over the

entire velocity range (0 ^ V < 00
)

.

III. Screw Dislocations

III.l. Subsonic (V< cn < c2i)

The shear stress acting on the interface plane must be continuous across

it. Thus it can be seen from eqs (1) and (2) that fJLi(3iB u (x) = HifiiB-i\ (x).

From this relationship the following equations are derived easily:

(rW = [(/iij8;/X2/82)M/i 1j8i + /Lt2j82)]

f*
B(x') (x-x') ~'dx' (5)

B(x) =- [(fjL^,^ fjL,(3 2 )l7T(fjL^ lfji 2^)]
J"

or(x'){x-x')- ldx' (6)

where cr(x) = a yz (x) is the shear stress acting across the interface and

B(x)=B n (x)+B 21 (x).

Equations (5) and (6) can be satisfied by any periodic stress-displacement

law, such as is shown in figure la, in which the work done per unit dis-

Cb
tance of dislocation motion,W=—

J
crdD, is equal to zero (see Weertman

[3] ) . A dislocation can move at any arbitrary subsonic dislocation velocity
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when such a stress-displacement law exists at the interface. The "width'*

of a smeared dislocation goes to zero as V approaches cn .

III. 2. Supersonic (V > c 2\> c u )

The shear stress on the interface plane in this velocity range may be

obtained from eq (3) and the condition that the shear stress is continuous

across the interface plane.

<r(x) =- [(fiiPt^)K^Pt+ li2P!)]B(x). (7)

Any periodic stress-displacement law (such as that shown in fig. lb) which

has the characteristics that the interface initially is in unstable equilib-

rium and that the stress does not change sign up to the displacement

D = b will satisfy eq (7) (see Weertman [3]). The interface does an amount
fb .

of work W=— crdD > 0 as a dislocation moves across it. The width
Jo

of a smeared out dislocation approaches zero as V approaches c%\. The

dislocation can move at any arbitrary supersonic velocity.

III. 3. Transonic {cu<V< c-?i)

Setting the stress given by eq (1) equal to the stress given by eq (3) pro-

duces the following equations:

<r(x) = [(inPfMIUiuP*)** (^ 2j8 2 )
2
}] [~ (Hfii$*)B(x)

+ (1/77^202)
j

X
B(x'){x-X')- Idx'] (8)

B(x) =- (l/fji^^o-ix) - (l/7TfjL 2 (3 2 )

J"
a{x'){x-x')-'dx'. (9)

Equations (8) and (9) are satisfied (see Weertman [3]) by a stress-

displacement law (such as that shown in fig. lc) which has the character-

istics that the interface gives up energy as a dislocation moves across it,

W=— I crdD > 0, and that the interface is in stable equilibrium at the
Jo

displacement D = 0. Thus the stress must change sign when/) increases

from D = () to D = b.

A dislocation cannot move at an arbitrary velocity in the transonic

region. For example, for the stress-displacement law (see Weertman [3])

o- = o- 0 + Wtt) log {(b-D)ID}, (10)
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where cr 0 and fJLo are positive constants, a dislocation can move only at

the velocity which satisfies the equation

PtiP2=(li2llLi)(liol<ro). (11)

IV. Edge Dislocation

The edge dislocation problem involves the four dislocation distribution

functions Bij{x). Four independent equations are required to determine

these four functions. Two of these equations are obtained from the re-

2 2

quirement that the traction ^ and the traction ^ [T »'WL"
j=i j=i

be continuous across the interface plane. A third equation is

B(x)dx = b,

where B(x) =Bn (x) +B 12 (x) + B 2x (x) +B 22 (x).

The fourth required equation is obtained by noting that the displace-

ment normal to the displacement D must be continuous across the inter-

face. For gliding edge dislocations, this is the displacement in the

y-direction normal to the interface plane; and for climbing edge disloca-

tions, it is the displacement in the ^-direction parallel to the interface

plane.

Let [w;(%)L, represent the displacement on the interface plane which

is normal to the displacement D and which is produced by the dislocation

distribution functions Bij(x). For V < c-n or V < c t2 this displacement is

(Weertman [3])

M*)L=(G 0 /27r) j^Bui*') log {x-x'Ydx' (12)

apart from an arbitrary constant term. In this equation G\\ = 1//3; and

Gi-i=y\ for gliding edge dislocations and Gn =— /3i and G vl
=— for

climbing edge dislocations.

For V> c,i or V> c rl the displacement [u t (x)]j is shown easily from

results in Weertman [3] to be

[ui(x)]j= Hij j Bij(x)di (13)

where Hn = l/)8* and Hi2—— y* for gliding edge dislocations and Hn =)8*

and Hi> =— 1/yf for climbing edge dislocations.
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IV. 1. Subsonic (V<cu<c 2 i)

The dislocation distribution functions Bij(x) are determined from the

four independent equations:

2 Bij(x) =B{x) (14a)

2 mTijB ij (x)=0, (14b)

2 (-l)^ <CfJB 1JW=0, (14c)

2 (-l) iG ijB ij (x)=0.

From these we find that:

o-l x) = (jilir)

j
B(x' ){x — x')~ ldx'

(14d)

(15)

and

B(x)=-(\IJm)
\

<t(x
, )(x-x ,

)-Hx' (16)

where (t(x), the stress acting on the interface, is <jxy (x) for gliding edge

dislocations and cr yy (x) for climbing edge dislocations. The constant

/x is given by

/Lt = /Lt 1 (C 11A„ + C 12A 12 )/A (17a)

where An, A 12, and A are the values of the determinates

1

fJLlTu

-Gu

1 1

fJi-zC-zi

1

G22

(17b)
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— fiiCvi

G 2 \-G [2 G22 (17c)

A 12=

— fXiT

(JL\C

G

1

1

fJLoC-21 /X 2C 22

G 22G 2 (17d)

Equations (15) and (16) are valid at any subsonic velocity F for stress-

displacement laws which fulfill the requirement that the interface does no

work [W= (tcID— 0 I . When /x is a positive quantity a stress-displace-

ment law such as is shown in figure la satisfied eqs (15) and (16). Should

jl be a negative quantity a stress-displacement law such as is shown in

figure Id is needed to satisfy eqs (15) and (16). This displacement law

requires the interface to be in unstable equilibrium at D= 0. (The law

shown in figure Id is more likely to produce a supersonic partial dislocation

than a subsonic perfect dislocation.)

For the supersonic dislocations, eqs (14a) and (14b) remain unaltered.

In eq (14c) S y- replaces the term dj and in eq (14d) Hij replaces the term

Gij. Equations (15) and (16) are replaced with

where An, A J2 , and A are given by eqs (17b), (17c), and (17d) when

dj is replaced with Sy- and Gij with Hij. Solutions of eq (18) exist for stress-

displacement laws of the form shown in figure lb. These laws describe

a situation in which the interface does a net amount of work (// =

dD > 0) and the stress does not change sign. Solutions of eq (18)

exist for any arbitrary supersonic dislocation velocity V for which (5nA n

+ Si 2Ai 2 )/A is a positive quantity. (When this term is a negative quantity

the interface plane absorbs rather than gives up energy.)

IV. 2. Supersonic (V > c Vz and C22)

o-(*) =- [/x 1 (S 11A 11 + 5 12A 12 )/A]5(^) (18)
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IV. 3. Transonic (en < V < c J2 or c 22)

In this velocity region the dislocations are moving faster than the slower

shear wave velocity but slower than the faster longitudinal wave velocity.

Equations (14a) and (14b) again remain valid. Equation (14c) is replaced

with

£ (-1)^.1
{Cijl7r) BiAx'

)~
ldx']

0 (19)

SijBij(x)

where the upper term in the bracket is used when V < cy and the lower

the lower term is used when V < Cy.

Equation (14d) is replaced with

j:(
_

1)
j(^)j>ou')u-^)-wj =0 m
[ -HijBijW J

where again the upper term in the bracket is used when V < c,j and the

lower term when V > c\j.

From the form of eqs (19) and (20) it follows that the functions B\j(x)

must have a solution of the form

B u (x)=N ijB(x) + (Mij/TT) B(x')(x-x')- ldx' (21)

where Njj and Mij are constants. If eq (21) is inserted into eqs (4a), (14b),

(19), and (20), and use is made of the relationship

B(x) =-(1/77*)
j

X

j

X

B(x")(x' -x")- 1 (x-x')-^dx"dx\

four equations are obtained of the form

B(x')(x-x')- ldx' = 0.^F ijB(x)^F?j
(

The quantities F/j and Ffi are velocity-dependent constants. Equations

of this form can hold at any arbitrary point x only if

2 f«= 0 and £ *&=<>.
ij i,j
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Thus we find the eight independent linear equations

2<-M3X}- s<->ms<h
1221

which determine the eight constants 7V,-j and Mfj. Again, the upper term

in each bracket is used when V < Cij and the lower term when V > dj.

The stress cr{x) (where cr(x) is crXy(x) for gliding edge dislocations

and (Tyy(x) for climbing edge dislocations) which acts on the interface

plane is given by the equation

o-(x)=-fJL,PB(x)+ (^RItt)
j

X

B(x')(x-x')-'dx' (23)

where

and

R =-SuMn + \

ClfZ \- (24b)-S l2M 12

The upper term in each bracket is used when V < c v? and the lower term

when V > c vl . Equation (23) can be inverted to give

B(x)=[l/^(P 2 + R 2
)] Pa(x)-(R/ir) (j{x')(x-x')- ldx (25)

When P and R are positive quantities, a stress-displacement law of

the type shown in figure lc can satisfy (23) at some unique velocity.

For the stress-displacement law given by eq (10) the velocity must be

such that the equation R/P= /jlo/ctq also is satisfied. If R is a negative

quantity and P is positive, a stress-displacement law of the type shown

in figure le can satisfy eq (23). Again, only at some unique velocity is it

possible to satisfy eq (23). (For a stress-displacement law of the form given

by eq (10) but with in that equation a negative rather than a positive
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quantity, the velocity must be such that the same equation R/P= /jloIctq

is satisfied.) At velocities where P is a negative constant no solution exists

because the interface must absorb rather than give up energy.3

V. Summary

We have shown that the solution of the problem of smeared out dis-

locations moving on an interface between two media of differing elastic

properties is formally the same as the solution for smeared out dislocations

moving between two identical elastic half-spaces. If the stress-displace-

ment law is such that the interface cannot give up energy the dislocations

move at an arbitrary subsonic velocity, where a subsonic velocity is de-

fined to be any velocity smaller than the smaller shear wave velocity. If

the stress-displacement law requires the interface to give up energy and

if the stress never changes sign as the displacement changes, the disloca-

tions move at an arbitrary supersonic velocity. A supersonic velocity is

defined to be larger than the faster longitudinal wave velocity for edge

dislocations and larger than the faster shear wave velocity for screw dis-

locations. If the stress-displacement law requires the interface to give

up energy but the stress changes sign when the displacement is changed,

the dislocations move at a unique transonic velocity. A transonic velocity

for screw dislocations is larger than the slower shear wave velocity but

smaller than the faster shear wave velocity, and a transonic velocity for

edge dislocations is larger than the slower shear wave velocity and smaller

than the faster longitudinal wave velocity.
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Discussion on Papers by A. K. Head, K. Malen, and
D. Kuhlmann-Wilsdorf and T. R. Duncan.

GRANATO: I'd like to ask Dr. Malen in what sense he means that the line

tension goes negative at reasonable velocities? I would say that those

were unreasonable velocities because they are never achieved under or-

dinary circumstances (for example, for yield stresses at room tempera-

ture).

MALEN: \ou can get instability already at zero velocity, as Professor Head
mentioned. I have only performed the calculation for certain directions,

and you can find instability for lower velocities than you get in the

isotropic case.

GRAXATO: I thought that you implied that it still had to be within 59c and

10% of the speed of sound. My point is that I don't know of any "ordina-

ry" circumstances where you get those speeds.

MALEN: \es. But these are more reasonable velocities than in the isotrop-

ic case, although I have not shown any very reasonable velocities here.

However you can find instability already at zero velocity for some

directions: so I suppose you can find more reasonable velocities.

GRAXATO: The Lowest velocity is zero?

MALEX: That is well known already, that you can have unstable

directions.

TEUTOXTCO: On the same point. I think it is misleading to compare

the dislocation velocities to the transverse velocity. If you take the ratio

of the velocity at which you get the instability to the limiting dislocation

velocity in the cases you have shown, I think you will find that it is much
higher than .9 or .95. because the transverse velocity is not the limiting

velocity of dislocations — as you point out.

MALEN: You are right. But, for instance, for an edge dislocation in lithium,

you find the ratio you mention to be 0.6 — See my table 1.

TELTOXTCO: The ratio of. say. the velocity in lithium at which the insta-

bility occurs to the actual limiting velocity (which is about one half of the

speed of sound in lithium for that direction) is very close to unity, which

makes it even less reasonable.

KOEHLER: One point is that your calculations work for room tempera-

ture, is that correct?

MALEX: Yes. But not for lithium.

Fundamental Aspects of Dislocation Theorv. J. A. Simmons. R. de Wit. and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I, 1970).
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KOEHLER: For lithium the instability which is associated with zero

velocity occurs at low temperature. Is that correct?

MALEN: I think that's right.

BESHERS: I would like to address my question to Professor Kuhlmann-

Wilsdorf and Dr. Duncan about their paper. They are talking about the

separation of close partials in stacking faults. What meaning can you

give to the stacking fault energy when the partials are so close together

that the cores are overlapping?

KUHLMANN-WILSDORF: This is a very relevant question. I have been

aware of the difficulty of assigning a value to the stacking fault energy

between close partials for a long time. We have chosen simply to employ

the normal value of the stacking fault energy, also, in this case. I believe

that the same has been done almost uniformly in the past by other wor-

kers in the field and, for want of a better solution, we continued this

practice. It is, however, true that this choice involves some ambiguity.

Instead, one should calculate from the local atom-atom interaction

potentials the local stacking fault energy which is dependent on the ac-

tual displacement across the slip plane at the point considered. Very for-

tunately, the error involved in neglecting the said strain dependence of

the stacking fault energy is probably small for the reason that the atomic

interaction potentials across the slip plane are presumably far from

sinusoidal, being rather flat at the top. Therefore, the error in assuming

the stacking fault energy to be independent of strain is comparatively

small, as the interaction energy is always near its maximum value.

SAADA: I would like to ask two questions. The first one is to Dr. Malen.

Don't you think that the fact that the sound velocity varies with frequen-

cy could be in some cases more important than the effect of anisotropy,

for example in lithium where the acoustic phonon dispersion curve has

a singularity?

MALEN: I didn't consider the question, and I don't know.

SAADA: The second question was for Professor Head. You pointed out

that the stacking fault modifies the modulus locally. I think that the

stacking fault is a long range perturbation, so that you don't have a kind

of two-phase system, but something more complicated.

HEAD: This is very true, and although the conventional model of a

stacking fault is a billiard ball stacking, it certainly relaxes to some ex-

tent on either side. It is not just close packing. It still is true that there

are some atoms there which are in hexagonal symmetry configurations

and the stress and strain field of the dislocation are moving these atoms

from a hexagonal basis. Their response will be quite different from
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atoms which are in a cubic environment. However, a stacking fault is

certainly not a sharp plane, as you say.

BULLOUGH: I would just like to complement Professor Head's remarks.

As you will see in the paper by Dr. Englert and myself on copper, using

a fairly rigorous interatomic potential, the relaxation around a stacking

fault causes the energy per unit area to drop by 15%. There are other

points but they will be made in the paper.

HIRTH: Seeing Dr. Malen's picture of an inverse energy plot used to pre-

dict an instability criterion reminded me that there was an analogue in

dealing with surface energy, and there are two instability criteria in that

case. If there is an analogue for the dislocation energies there might

possibly be a second criterion there. One criterion is the one that Dr.

Malen discussed of having positive curvature in a polar plot, and the

other is that in such an inverse Gibbs-Wulff surface energy plot all orien-

tations (including convex ones) lying between points of tangency of the

plane fitted on to the inverse Gibbs-Wulff plot are also unstable. So, for

example, possibly there would be instability of the second kind for a little

region of negative curvature in Malen's plot.

MALEN: You can find these instability criteria discussed in the analysis of

Indenbom and Orlov. (In the appendix of ref. [2] of my paper.) But there

is one thing which you have for crystals that does not apply here (e.g. for

the Wulff construction): there is a constraint about constant volume that

does not exist for a dislocation.

HEAD: I would like to comment on Professor Hirth's comments. We have

made a lot of measurements on the unstable angles in (3 brass where

there is quite a large difference between the two instability criteria, and

there is no doubt in my mind that all our measurements support the

physical correctness of the tangent construction. It includes more

directions than given by negative line tension, and the difference can ex-

tend to 10 or 15° on either side in these cases.

LOTHE: These two different stability criteria— isn't that just a question of

spontaneous instability of the original straight line versus an instability

over an activation barrier? Is that right — I mean that you really have to

zig-zag it out to get it down into the valley?

HEAD: There are a number of ways of explaining the difference. It is really

a problem in the calculus of variations, and it depends on what condi-

tions you impose. You get the negative line tension by considering a state

which is close both in position and direction to the straight line. If you

remove the constraint of closeness in direction of the line, but are still

close in position (that is you now can have a large change in direction.
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but zig-zagging so it is always close) you get the second criterion. You get

both from the calculus of variations depending on whichever condition

you like.

LOTHE: When you are outside the region of negative line tension but you

are still in the instability region, starting with an infinite straight line,

don't you in some initial stage have to increase the energy to get the

dislocation into an unstable position and over into the zig-zag configura-

tion?

HEAD: Not in the ideal case where you can have infinitesimal elements of

the dislocation doing anything they like. In a physical case, yes, I guess

so, because you have the atomic structure underneath you, but it is not

true in the mathematical sense that you ever have to go uphill first in

energy. You can always pick a path that goes downhill in energy all the

way. I think this is true.

LOTHE: Well, I don't see that, because wouldn't any small initial deforma-

tion from the straight state be describable in terms of the curvatures,

which again leads to the line tension concept? [At this point Professor

Head drew a picture on the board showing how a straight dislocation seg-

ment could go downhill in energy to a zig-zag configuration without going

uphill first. See fig. 1.] I agree with that.

MALEN: [Written contribution] I would like to add two comments on

Professor Head's zig-zagging dislocations: (1) The analysis by Lothe,

Brown, or Indenbom and Orlov (references [2], [13] and [3] of my
paper) do not cover this case. It only gives the force on a bent dislocation

or on a straight dislocation with a small bow-out. (2) The length of the

dislocation is increased and an argument based on energy per unit length

for the dislocation thus leads to the conclusion that the zig-zag disloca-

tion has higher energy than both the straight and the bent dislocation.
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TEUTONICO: I have done some calculations of line instabilities in hex-

agonal metals. The difference between the two instability criteria was

greatest in thallium. Using the negative curvature criterion, one finds an

instability range of approximately 45° near the edge orientation; the dou-

ble tangent construction gives an instability range of approximately 90°.
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Using the language of integral projection operators, the linear elastic

distortion field of an infinite anisotropic body is decomposed into its in-

ternal and external components. The kernel of the external projection

operator is identified as the elastic field due to force dipoles while that of

the internal field corresponds to internal distortion fields due to displace-

ment dipoles.

By integration of the projection operator for the internal distortion field,

an alternative description for internal distortion fields in terms of disloca-

tions is given. The Mura-Willis formula as well as the distortion field due

to a rational dislocation element (in the sense of Eshelby and Laub) for an

anisotropic body are then obtained as integrals of the basic displacement

dipole kernel for internal distortions.

Further integration of the displacement dipole kernel provides a

description of the internal distortion field due to a rational incompatibility

element. The general formula for the stress function due to an incompati-

bility distribution in a general infinite anisotropic body is then given and

shown to reduce to the formulation of Kroner for isotropic bodies.

Finally, explicit methods to compute kernels for internal distortions

due to incompatibilites are given and discussed.

Key words: Anisotropic elasticity; dislocations; Green's tensor; incompatibility;

internal stress; source kernels; stress functions.

I. Introduction

The problem of finding the stress or strain distribution induced by an

imposed incompatibility distribution has been solved for isotropic solids

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloudi.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970).
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by Kroner using the important method of stress functions [1]. The general

anisotropic problem, again using stress functions, was also discussed by

Kroner [2] but no useful general solution was found. Eshelby [3] has treated

the same question and written a prescription whereby, in principle, one

can find a solution to the incompatibility problem using the Green's tensor

for anisotropic elasticity, but this prescription is difficult to use. More

recently Kunin [4] developed one explicit solution for the general incompat-

ibility problem in an infinite body using operational methods and the

Green's tensor. Kunin's solution promises to be useful, but has not been

studied in detail.

We present here a general technique for obtaining stress fields, particu-

larly internal stress fields, due to distributions of stress sources in infinite

anisotropic elastic bodies. 1 The starting point is a general decomposition

method for elastic distortion and stress fields using projection techniques

similar to those employed by Kunin [4]. The sources of these elastic fields

are identified using integral projection operators whose kernels are funda-

mental source tensors for force dipole and displacement dipole densities.

That part of these elastic fields induced by force dipoles— or, alternately,

body forces — is the force induced component, and the part induced by

displacement dipoles is the residual, or internal component.

The generation of residual stresses from plastic deformation and "extra

matter" is presented as is the physical equivalence of the source kernel

approach for residual stresses with Eshelby's stress-free strain ideas [3, 6],

which have also been extensively developed by Mura [7, 8] and applied

to dislocations in a dynamic formalism. Antisymmetric stresses and

disclinations are also touched upon.

The properties of the source kernel for internal distortions are investi-

gated and used to obtain explicit integral representations of source kernels

for dislocations and incompatibilities, thus providing an identification of

other ways of characterizing the internal distortion or stress fields and

several expressions in terms of source functions for computing them. This

source tensor approach is shown to contain the Mura-Willis formula [9, 10]

in the case of infinite anisotropic bodies as well as Kroner's stress function

approach in the case of infinite isotropic bodies. Finally, general source

function solutions for stress functions valid in infinite anisotropic bodies

are presented and concrete expressions for source kernels solving the

incompatibility problem are given in terms of the Green's tensor for

anisotropic elasticity.

1 The more complex problem dealing with sources of internal stress fields in finite bodies

is treated elsewhere [5J.
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II. The Decomposition Theorem

One way of viewing decomposition theorems is in terms of projection

operators — a projection operator being any linear operator P such that

P 2=P [11]. We refer to two projection operators, P and Q, as being inde-

pendent if QP = PQ = 0. Thus, for instance, P and (1 — P) are always

independent and the sum or difference of any two independent projection

operators is a projection. The idea of a decomposition theorem, then, is

to decompose the identity operator into a sum of independent projection
.v

operators, which we may write as 1 = V P. . When dealing with physical
n=l

fields, we often recognize each projection operator as identifying that

component of the field due to a given physical process. Since the sum of

the operators is 1 we have an exhaustive decomposition of the field into

its component parts. Naturally, it is usually possible to obtain different

ways of "looking at" the physical field and it may also be possible to

decompose a particular projection operator into independent sub-operators

which then give a finer way of looking at the same physical process.

In the case of integral projection operators whose kernel is a source

function— or Green's function— one can often use the Green's function

to identify the physical sources of the field. If one starts with the identity

operator which has as its kernel a S-function of some type,2
it is often

possible to represent the S-function kernel in terms of source functions

and thus obtain a complete decomposition of a field and identify its

physical sources.

As an example, in the static electromagnetic case suppose we consider

an arbitrary well behaved vector field v which we may imagine to be com-

posed of both suitably dedimensionalized electric and magnetic fields. We
may then write -

vm (r') =
J

8mi8(r'-r)vi(r)dV (2.1)

where dmi8(r— r') is the kernel of the identity operator. Now, if we
introduce the harmonic Green's function

G(r'-r)=-p- Ir'-rl" 1

, (2.2)
4*77

which satisfies the equation

G.Ji (p
, -r)+8(p , -r) = 0, (2.3)

2 S-functions and other kernel functions used in this work are to be understood as gener-

alized functions, or distributions, in the sense of Laurent Schwartz [12. 13].
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we may decompose the vector field v according to Helmholtz theorem [14]:

vm (r') = j 8im G,jj>(r' — r)vi(r)dV

= -4tt j G,m'{v'-r)p(v)dV

4

tI €kimG,k,(r'-r)Ji(r)dV. (2.4)

Here the indices after the comma signify differentiation with respect to

the primed or unprimed variables as indicated.

The first equation in (2.4) involves the representation of the identity

kernel and the second equation defines two projection operators which

serve to define the electrostatic and magnetostatic fields, respectively.

Associated to these projection operators, of course, are the field operators

that allow one to identify the physical sources— charge and current

densities:

c

Let us now turn to the problem of the elastic field with sources of in-

ternal stress. We consider in detail the decomposition of an arbitrary

distortion field p m»(r) in the infinite anisotropic body B
x

. It is a little

simpler to obtain decomposition formulas for the stress or strain fields

but we choose to consider distortions to make clearer the irrelevance

of rotations. We shall indicate, where appropriate, the kernels required

for allied decomposition problems.

In the linear elastic continuum, where we do not distinguish between

initial and final states, any elastic distortion j8 must satisfy the equations

of elastic equilibrium:

Cmp kl,j{r) +/4(r)=0, (2.5)

where f (r) is the body force at r and C ijk i are the elastic constants satisfy-

ing the relations:

C ijki = Cjiki — Cknj (2.6a)
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and, for arbitrary ($:

CijkipijPki>0, (2.6b)

unless P— 0. Now, given the body force field f determined by eq (2.5)

one can employ the concept of the fundamental Green's tensor solution

of the elastic equations to write down a displacement field uF whose

associated distortion field exactly reproduces the body force field f: Thus,

from the elastic Green's tensor G x
(r' — r) for B

x— which for convenience

in this work we denote simply by G(r' — r) — defined by:

CijkiGmkt ij{r' — r) +8jm8(r' — r) =0 for r in (2.7a)

and satisfying the symmetry relations [15]:

Gmn (r' — r) =Gmn (r— r') = G lim {r' — r), (2.7b)

one can define uF by:

<(r') -
j Gmi{v'-v)fi{r)dV

=-j Gmi(r'-r)Cmp kl>j(r)dV

=
j Gmij(r'-r)C ijkll3kl (r)dV, (2.8)

where the last form is obtained by integration by parts assuming

/3(r) = 0(|r|
_1

) at infinity. The distortion field PF associated to uF is

defined by:

PL (r') - < n , (r') = | Gmi,n'(r'-r)fi(r)dV

=
j GmUn,j{v'-v)Cmp kl (v)dV. (2.9)

3

One can then easily verify, using eqs (2.5), (2.7), and (2.9), that the body

forces associated to PF are the same as those associated to the original

3 The reader will note from this equation that we have adopted the convention of adding

on differentiated indices to the right. This convention is counter to several recent papers

in dislocation theory which seem to stem from the notation of Schouten where the index

is added on the left. Although the reader may readily find both types of notation in the dis-

location literature, the convention we have adopted is that predominantly followed in other

relevant branches of theoretical physics, mathematics and continuum mechanics.
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distortion field /3, even though the fields pF and /3 need not be equal:

ff (r) - - Cmf$
F
kl>} (r)

= - C ijkl(3klJ (r) =/,( r0 ) . (2.10)

We shall call pF the force induced component of p.

From the above considerations, one can introduce an integral operator

F, with a kernel F, which induces the distortion field PF from /J:

PFmn = F (p) - | F mnfcZ (r' -r)/3 fcZ (r)dF, (2.11)

where

Fmnki(r' — r) = djkiGmi, n'j(r'-r). (2.12)

It then follows from eq (2.10) that F is a projection operator.

Let us now consider the projection operator R

R = 1-F, (2.13a)

complementary to F. R may also be written as an integral operator, so that

if we set

R(/3)=/3-F(j3)^/3*, (2.13b)

then ,

#L(r') =
J
R mnki(r'-r)l3 ki(r)dV, (2.14)

where the kernel R is given by

Rmnkiir' — r) =8 mk 8 n i8(r' — r) —C ijklG mi , n'j{r'
— r). (2.15)

One recognizes from eqs (2.10) and (2.13) that the distortion field pR has

no body force sources, that is

Cy*ij8glfJ
(r)=0. (2.16)

Such a field is termed "residual" or "internal." Any residual distortion

field p H produced by the operator R is then energetically independent of

any force induced distortion field P F produced by the operator F; this

means that the interaction energy between two such fields is always null:

f
C ijklpfj (r)^l

(r)dV=Q. (2.17)

Equation (2.17) follows from equation (2.16) by using integration by parts

and the fact that P F possesses the displacement potential uF as given by

eqs (2.8) and (2.9).
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Finally, we wish to introduce here the kernel S for the residual stress

associated to the elastic distortion /3:

Smnklir' — r) = C mnpqRpqkl{r' ~ r)

= Cmnkl8(r— r') — CmnpqCijkiGpi, q>j{r'
— r) . (2.18a)

Smnki(v' — r) is symmetric in mn and A/ and obeys the other symmetry

properties:

Smnkdr' — r) =S WW fc/(r — r') =Skimn{r' — r) (2.18b)

which follow directly from the symmetries of C and G.

Thus far, we have thought of P as the elastic distortion field (as though

this were a restriction) and eq (2.13) above as providing the decomposition

of the elastic distortion field into its force induced and residual

components:

PF-+PR = P (2.19a)

or, in operator form,

F + R = 1. (2.19b)

But the operator equation (2.19b) together with the general definitions of

the kernels F and R which in no way restrict P (except to place mild

asymptotic restrictions at infinity and weak restrictions on the coefficients

of p as generalized functions 4
) indicate that P may be considered as an

arbitrary distortion field, so that equations (2.19) provide the sought

after decomposition not only of elastic fields but of any distortion field.

In this context we may say that any distortion field may be considered as

an elastic distortion field which is acting in the presence of body forces

and sources of residual distortion. The operators R and F then decompose

P in situ (without reference to any "deformation" from an initial state)

into its force induced and residual parts, P h and P R
. The body forces

serving as a source for PF are then defined by equation (2.5) and the resid-

ual component, P R
, is what remains when PF

is removed from /J. The

sources for PR at the same "level of integration" as the body force sources

of P h are — as is well-known — dislocations. The relationship of P R with

its dislocation sources is treated in section IV. An alternate, and in some

4
It seems sufficient here to assume that the coefficients of /3 behave as no worse than

first distributional derivatives of piecewise smooth locally integrable functions in and

that these coefficients are o(|r| _1
) at infinity.
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ways more basic, set of sources for /3
F and PR in terms of dipoles will

be discussed in section III.

Decomposition formulas analogous to (2.19) can easily be given for

the elastic strain fields or stress fields. Thus, we have the symmetrized 5

kernels (Fmnki)(mn) and (R mnki)(mnh which we denote by (F) and (R), as

the source kernels for the decomposition of the elastic strain emn = P(mn)'.

e OTn (r') = ej;
jl
(r')-r-eJn (r

,)= j (F) mnkl (r' - r )e kl (r)dV

+ | (R)mn kl (r'-r)e kl (r)dV- (2.20)

To obtain a decomposition formula for the stress, we see that given the

stress field crki(r), which— as will be applied in section III — we do not

assume to be necessarily symmetric in k and /, and using C to denote

the inverse elastic constants (elastic compliances), we may use the defini-

tion of F in eq (2.12) and the symmetries of C and G to write:

P(j (r')=j F ijpq{r'-v)ppq {v)dV

=
j FijPq {r' -r)epq{r)dV

= j FijPq {r' — r)CMki(rki{r)dV

=
j {Gik ,n )m {r' -v)<rki{r)dV, (2.21)

so that

0-£n (r')= CmnijPfjir')

=
j Cmnij(Gik ,j>i)(ki)(r' — r)crki(r)dV

=
J

(F) kimn(r' — r)crki{r)dV

s | {F)tnkl (r'-r)<rki{r)dV. (2.22)

Then using (2.22), the kernel for the symmetric residual component of the

5 The symbol (ran) refers to the symmetrization on the indices ra and n; that is \

"(ran + nra)".
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stress field is obtained from:

<(r') = CtnnijPfjir')

[(8mk8 n l)(mn)8(r' —r) — (F) kimni r ' — r) ] (J hi (r) dV

{R) kimn{v' -r)(Tki(r)dV

(R)t nkl {v'-v)cr k i{v)dV. (;(2.23)

The kernels (F)* and (R)* for the stress representation are thus the

"transposes" or adjoints, respectively, of the kernels (F) and (R) for

the strain representation. Further, it is apparent that no information con-

cerning the antisymmetric part of cr is obtainable using source functions;

this indicates the proper decomposition of the stress is into its two sym-

metric residual and force induced parts together with its antisymmetric

part— a decomposition analogous to that of the strain given in section V.

The dependence of the kernel F on the symmetric part of /3 also demon-

strates the irrelevance of rotations in the linear elastic continuum. One
consequence of this fact is that disclinations can produce no new sources

of symmetric stress. As will be shown— and is actually clear from the

Mura-Willis formula— the rotational component of the residual distortion

field PR
is determined by the dislocation density. In a body which has

distributions of infinitesimal rotational disclinations, the rotational com-

ponent of fi
R is presumed to be undeterminable and the strain is used as

the relevant field. In that case (R) and (F) provide the representations of

the residual and force induced strain fields. However, since R and F
themselves exist, being constructed from the Green's tensor only, we can

construct distortion fields pR
. ($

F
. and fi= fi

R + fi
F whose strain fields are

exactly the same as when disclinations are presumed present. Put in an-

other way. the rotation is a hidden ignorable variable when the strain is

chosen as the physical field. 6

III. Stress Free Strain and Dipole Densities as the Sources for

the Elastic Field

Although in subsequent sections we shall obtain descriptions of sources

for the elastic field in terms of dislocations — or incompatibilities — and

body forces, the decomposition formula given by (2.19) is in one sense

6 The above considerations say nothing about disclinations as sources of antisymmetric

stresses. Although we discuss antisymmetric stresses somewhat— in the context of force

dipoles, no systematic investigation of this topic is undertaken in this work.
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the most basic of decomposition formulas in that the unique kernels

R and F provide the genesis of all subsequent source kernels.

It seems worthwhile, then, to investigate the physical meaning of F and

R. These kernels will be shown to be interpretable in terms of elastic

fields due to force dipole and displacement dipole sources. These dipole

sources can also be thought of as internal boundary conditions, imposed

on the body in situ, to which the elastic fields must conform. Further, as

seen in later sections, such sources serve to define through differentiation

"higher order" source quantities such as body forces, dislocations and

incompatibilities.

In this section we shall also discuss the intimately related problem

of finding the elastic fields induced in the continuum by externally imposed

sources which are themselves representable as force and displacement

dipole densities. These can be thought of as imposed on the elastic body

in an undeformed state, thereby giving rise to a deformation in which

elastic force and displacement dipoles are induced in the body to counter-

act the imposed dipole fields. As an application of this dipole approach,

we shall treat the problem of finding the elastic fields due to stress-free

strains plus inhomogeneities and we shall give an explicit solution for

a small, inhomogeneous, anisotropic spherical inclusion in an anisotropic

matrix.

Consider first the definition of the kernel F given by (2.12). We wish to

show that one way of interpreting Fmnki(r '
~ r) is as the kl components

of the stress field at r produced by a force dipole density of type ran at r '.

By a force dipole density we mean here the analogous concept in elas-

tostatics to that employed in electrostatics, that is a distribution through

space of pairs of equal and opposite forces. 7 Given such a pair of forces,

fo at r' + 8r' and — fo at r', the dipole tensor is given by the dyadic

product i(/(r' + Sr') -f(r')) <8>;6r' = f0 <S>
, 8r'. A density of such

dipoles distributed throughout space, then, has the dimensions

f ®5r'® dV, where f is a covariant force vector, Sr' a contravariant

position vector, and dV a third order covariant antisymmetric volume

density. Deliberately neglecting to distinguish between covariant and

contravariant indices,8 we may designate such a density by TmndV,

where the first index refers to the force components and the second to

the vector components; such a dipole density need not, a priori, be sym-

metric in its two indices— such symmetry implies the absence of body

moments. Since the product of the force magnitude and vector length

occuring in r must remain constant, standard arguments show that in

7 cf Kroner [16] for a considerable discussion on dipoles in the elastic continuum.
8 These arguments may be made completely rigorous by introducing the Euclidean metric,

but if the distinction between contravariant and covariant quantities is retained, the only

need for this metric is in discussions of tensor symmetries.
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the limit as the vector length goes to zero, the distortion field, /3y(r),

produced by a singular force dipole density at r=r' with coefficients

Tmn (thus r(r) = Tmn8 (r— r'

)

dV) is just TmnGmi,n'j(r' — r) from which

the interpretation of F directly follows. Additionally, one notes that by

treating tcLV as a vector density with force coefficients, the divergence

theorem for such densities [17] clearly demonstrates that force dipole

densities are natural potentials for body force densities. In fact, an equiva-

lent way of writing such a force dipole density is obtained by contracting

the contravariant vector 8r in t with the volume density dV to yield a

tensor of the type f (*D dA (where dA is a covariant antisymmetric area

element) whose dimensions and interpretation are identical with that

of the general nonsymmetric stress tensor, cr.

We also introduce the concept of displacement dipole density, energeti-

cally conjugate to that of force dipole density mentioned above: We
consider a small oriented element of surface 5A, which can be represented

in tensor form as a second order antisymmetric contravariant tensor; and

we consider, proceeding in the positive direction across the surface ele-

ment, a discontinuity in displacement, v 9
. We then define a displacement

dipole as the product of these two tensors, v 0 8A and denote this tensor

as yijA-, where y is antisymmetric in the last two indices. Such a displace-

ment dipole can be considered as generating a small dislocation loop

around the boundary of 5A with Burgers vector v (but y is not the disloca-

tion tensor a for the loop), 10 and such a loop is analogous to a small current

loop in magnetostatics. A density of displacement dipoles may than be

expressed in the form y <S> dV, or alternatively, by contracting the contra-

variant area part of y (the second and third indices) with the third order

covariant density component dV, we can express the displacement dipole

density in the form f3n, where the first index of /3 is contravariant and the

second index is covariant. The tensor /3, then, has exactly the dimensions

of distortion with the interpretation that upon moving a small distance

Sr, one accumulates discontinuities in displacement amounting to /3,/§r/;

hence displacement dipole densities are equivalent to internally imposed

distortions and are closely related to Eshelby's notion of stress-free

strains [6].

We have already observed that the elastic stress has the same form as

a force dipole density and the distortion has the same form as a displace-

ment dipole density. Thus, it is possible to view elasticity as a theory of

force and displacement dipole densities, and the elastic stress-strain

9 This discontinuity formulation is an alternate way of treating dipoles. Neglecting the

average value of the displacement at SA. we could as well have thought of a displacement

of 2V on the positive side of SA and — iv on the negative side of SA.
10 A discussion of dislocation loops is given by Kroupa [18].
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relations then become constitutive relations between displacement dipoles

and the symmetric force dipole density they induce in the elastic con-

tinuum. This situation is exactly analogous to the dielectric and

diamagnetic-paramagnetic medium in electrostatics as has been discussed

by Kroner [16, 19].

With this viewpoint of the elastic continuum, one can give to the kernel

F an interpretation using displacement dipoles alternate to that given

earlier in terms of force dipoles. Let us consider a singular elastic dis-

placement dipole density at the point r\ /3A/S(r — r' ), with the associated

elastic force dipole density Tij(r)dV= Cijkif3kid(r— r'). Then, as pre-

viously, the elastic distortion due to this singular force dipole density is

j3mn(r) = Gmi , y w (r — I*'
' )C ijklfikl

= Gm i, n'j{v' — I*)C ijklfik!

=Fmnki(r' — r)/3ki.

Thus, Fmnkt(r' — r) may also be interpreted as the force induced elastic

distortion field of type mn at r' produced by the force dipole equivalents

of the displacement dipole density of type kl at r. A similar dual interpreta-

tion of the source kernel R for residual fields in terms of dipolar sources

is also easily obtained.

These interpretations of the physical meaning of the dipolar source

kernels have thus far been a way of looking at the elastic fields, them-

selves, as dipolar fields and of interpreting the projection properties of the

kernels so that one can see how each component, force induced and

residual, reproduces itself. Let us now turn to an important application

of the dipole kernels which will provide another way of thinking about

them and at the same time give a direct link to the theory of stress free

strains.

We consider externally applied distributions of force dipoles, <r
A

, and

displacement dipoles, ($
p

, to be imposed upon an undeformed body. 11

The body reacts, producing an elastic distortion field P and stress field O"

(which need not be symmetric). To find these elastic fields, we shall

make certain assumptions, particularly:

(1) We assume that the applied dipolar fields have the same charac-

teristics as the elastic fields in that they may be superimposed upon the

elastic fields. Thus

(TA (T IT 1
(3.1)

11 The terminology fi'
J

which was called plastic distortion and the relation (3.3) originate

with Kroner [20].
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and

P'' + P = P r
(3.2)

where (T
T and (i

T represent the total stress and distortion fields,

respectively.

(2) The total stress, tr 7
, must satisfy the equations of elastic equilib-

rium. 12 Since &' includes both applied and elastic field quantities, it

must then be free of body moments and body forces.

(3) The total distortion field must have a displacement potential, i.e.,

there must exist a displacement field u T such that

PIjW^uTjir). (3.3) 11

To solve the above problem we begin by examining the consequences of

assumption 2. The absence of body moments in (TT demands that cr 1 be

symmetric, so that

[<T]mn = CT[mn] = ~ 0"fmn] (3.4)
13

and the freedom from body forces is simply expressed by the operator

equation

F(o-H=0. (3.5)

cr

Here the operator F is, as always, the force induced projection operator,
cr

but the kernel for F must be that for the stress problem as given in (2.22).

cr

Then if one applies the operator F to both sides of equation (3.1), one

obtains:

f(<r) = <rF= -f(<xA ). (3.6)

12 We deal throughout this work with a linear continuum in which the distinction between

initial and final state is somewhat obscure. However, as regards this postulate, it obviously

holds rigorously in the final state configuration rather than the initial state configuration to

which it is applied here on the assumption that the strains are small. In those situations where

this is not formally correct, such as problems involving singularities, it is sometimes possible

to formulate the problem in the final state configuration (or in a corrected initial state formula-

tion) and solve it by iterative methods.
13 The symbol [mn] refers to the antisymmetrization on the indices m and n; that is i

"(mn — nm)."
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Similarly, employing eqs (3.1) and (2.21), one may write

Pmn(r')=- j
(G m Ln'j )( ij )(r'-r)o-l

j
(r)dV. (3.7)

Equation (3.6) gives the expression for icr) F and (3.7) that for PF in terms of

fiA \ and these force induced fields may be thought of as generated by the

"elastic dipole" reaction, — er4
, to the applied dipole density, o-4

. Turning

to assumption (3), we observe that for any displacement field u, eq (2.10)

and the uniqueness theorem for classical elasticity [21] imply that

and therefore

R(Hi,j)=0,

whence

R(/8r ) = 0.

Applying R to eq (3.2), we thus obtain

R(p)=p" = -R(p F
). (3.10)

Equation (3.10) provides the desired expression for the residual distor-

tion field, and therefore the residual component of the stress field, from

a knowledge of the imposed displacement dipole density. As with the

relation between the force induced field and force dipoles, the residual

distortion field may be thought of as induced by the elastic displacement

dipole reaction, — pp
, to the applied (or plastic) dipole density, PP

.

Together with eq (3.7), eq (3.10) completes the solution of the dipole

source problem and we can write

P = P F+P H=h-<rA
) + *(-pp

)* (3.11)

where F is the form of the force induced operator whose kernel is given

in eq (3.7). Also

p<=P< + P= U-<T A
) + t(P P

)
= t(P p -£<T A

) (3.12)

which, from the form of F, allows us to write down directly the displace-

(3.8)
14

(3.9)

14 In finite bodies equation (3.8) would have to be altered to include a possible constant

rotation. This physically unimportant rotation is excluded in the infinite body by assuming

appropriate asymptotic fall-off of the field /3 at infinity.
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ment potential u T in eq (3.3):

u T
m (r') = j Grni.rir' -r)((a)tj(r) -CijklpUr))dV. (3.13)

Finally,

<r= Cp-[(rA ] (3.14)

and

aT= Cp+((TA
). (3.15)

It should be noted from the above solution that the antisymmetric part

of the force dipole density field, o"4
, has no influence on the elastic dis-

tortion, which is only affected by the antisymmetric part of the displace-

ment dipole density fi
p

. By the same token, the antisymmetric part of the

displacement dipole density has no influence on the elastic stress, which

is affected only by the antisymmetric part of crA . Thus, only symmetric

displacement dipoles— or "stress-free strains" [6]— have any influence on

the elastic stress. Such symmetric displacement dipoles can always be

considered as a combination of a number of dipoles where the displace-

ments are normal to the dipole surface, so we can think of the sources of

residual stress as equivalent to a distribution of prismatic dislocation

loops— these loops being mathematically equivalent to displacement

dipoles with normal displacements or to what Kroner has called "extra

matter" [16].

In formulating the above dipole source problem, it was stated that this

problem was directly linked to the problem of stress-free strains discussed

by Eshelby [6]. We now wish to make that connection explicit by showing

how the above problem can be used to solve the stress-free strain problem

where not only extra matter, but also foreign matter— that is, inhomo-

geneities whose elastic constants differ from that of the matrix— are

introduced. It will be seen from this solution that each particle of foreign

matter can formally be replaced in the homogeneous continuum by a

similar particle of extra matter together with an appropriate force dipole:

1. We imagine cutting out a small volume element from the continuum

at the point r and replacing it by a new piece of material with elastic

constants C,j/^ + AC/j/^r) and with a shape related to that of the original

by the "stress-free transformation" S,j+ /3^ (r).

2. We then apply to the detached volume element an elastic deformation

dij— Pfj(r) which induces a "plastic" force dipole density crfj (r) =— {Cijki

+ ACijki(r))p%
{
(r) in the element.

3. If we now replace the strained volume element back in the hole, it

again fits perfectly. Performing this process at each point r (with the

possibility that the material is not altered, in which case AC(r)=0.
and/or no stress-free transformation is applied, in which case pp {r) =0)

369-713 OL - 71 - Vol 1-9
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we obtain what we shall call the initial state of the continuum, where the

elastic distortion /S(r) =— /8
p (r) and the elastic constants are given by

Cijki+ ACijfcz(r). This initial state is clearly not in elastic equilibrium,

so that we must have forces throughout the body to hold it in this condition.

4. We now relax any imposed forces and the body undergoes an elastic

deformation given by ur to reach a final state which is in elastic equilib-

rium with no body forces present. The stress-free strain problem consists

in finding u 7 from which the elastic fields in the final state may easily

be derived.

The elastic distortion in the final state is

P=~P*
}+pT

where

/Bg (r) = «/,,(!).

These equations coincide with eqs (3.2) and (3.3) above. The stress in the

final state, which we shall call cr
r

, is

o-J(r) - (Cyfci+ AC0«(r))/8«(r) (3.16)

and €TT must satisfy the equations of elastic equilibrium as in assumption

(2) of the dipole problem. Let us define

(T ij (r) = Cmpki(r) (3.17)

and

crfl(r)=ACtfW (r)j8*i(r) (3.18)

so that eq (3.1) is satisfied. It is now clear that we have satisfied the

conditions of the dipole problem with (as seen from eq (3.18)) all foreign

matter effects being incorporated into force dipoles situated at the foreign

particles, themselves. 15 Further, from the solution of the force dipole

problem, it is possible to write down at once an implicit solution for the

13 This formulation must, of course, be understood as purely formal. In the real, now

inhomogeneous material, there are no applied force dipoles and the fields are purely residual.

There is thus no interaction energy between the elastic field, /3, and the fields induced by

any additional real applied forces.
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general "stress-free transformation" problem. From eq (3.13), noting

that cKis symmetric,

ul(r') = j
GmU,(r'-r)(a?j (r)-C ijkl(3

l

i;i
(r))dV

=
j Gmi,f(r'-r)(AC ijkl (r)p kl (r) C ijklp

l

k\(v))dV

=
j G miJI (r'-r)(C Ukl (r)ul l

(r)-(C ijkl+AC ijkl (r))K.l
(r))dV

=~
j (G mi ,r (r'-r)AC ijkl (r) ), l ul(v)dV

-
j Gmi>f (r'-r)(Cm + ACm (r ) ) j3& (r) dV. (3. 19)

The last two equalities in equation (3.19) follow from (3.2), (3.3) and

integration by parts. Equation (3.19) provides a singular integral equation

for u T which, in general, is very difficult to solve; however, approximating

solutions can be obtained in certain instances such as the isolated singular

inclusion.

To see a specific application of the above solution, we shall explicitly

solve the problem of a small spherical inclusion of foreign material in a

matrix. In that instance we take (r) = p kl 8{r) and ACy^(r)— ACij^2«(r)

where Xa is the characteristic, or Heaviside, function of a small ball of

radius a. We shall later let the radius of the ball tend to zero. Then (3.19)

takes the form

uTm (r
' ) =-Gmur (r

' ) (CW + )Pm

-
j Grni,ri(r

, -v)ACijklXa(r)ul(r)dV

+
I

Gmurir -^AdjkiulMmMdS. (3.20)

From the form of (3.20), it is clear that the answer will be a perturbation

of the leading term on the right side of (3.20) which, because of the known
properties of Green's tensor functions, is homogeneous of degree —2.

The displacement, u r
, must be continuous and we expect it to behave as

|r|
-2

outside of the sphere and in a fashion not more singular inside the

sphere. Consequently the second term on the right side of (3.20) will become
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negligible for sufficiently small a and we shall approximate the third term

in (3.20) by assuming that G m ij' is constant over d£ a . Then (3.20) becomes:

ul{v') = Gmi,Av f ){^Cmiul-[Cmi+ (3.21)

where

u T
kl = Um ul(r)m(r)dS. (3.22)

a^O J dla

To obtain the explicit solution for u r
, we define

Gmnij = -
I

Gmi,n(r)nj(r)dS. (3.23)
J dl a

Since the Green's tensor gradients are homogeneous of degree —2, Gmn ij

is independent of the radius a and can be obtained directly for general

anisotropic media using the Fourier transform G of the Green's tensor:

Gmnij=T- I
kjknGmi(h) dCl. (3.24)

Here the integral of (3.24) is performed over the unit sphere, d£, of

reciprocal space. In the case of the isotropic matrix, Gmn ij can be more

simply evaluated by direct integration:

G •--

L

(3.25)

where /x is the shear modulus and v is Poisson's ratio.

From (3.21), (3.22), and (3.23),

Ulln
= ~ G m nij(^C ijk iU

T
kl
- [Cijki+ACijki]^), (3.26)

which can be written as a matrix equation involving nine by nine matrices

where the indices from one to nine run over all pairs of numbers ij, i = 1, 2,

3; j= 1,2,3. Thus u T
mn becomes a vector in this terminology and we write

(I + GAC)u 7'=G(C+ AC)^ (3.27)

from which

= (I + GAC)- 1G(C+ AC)^ (3.28)

where I is the identity matrix and (I + GAC) -1
is the inverse matrix to
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(I + GAC). The solution to (3.28) together with (3.21) solves the small

spherical inclusion problem. Explicit numerical results for an isotropic

matrix can be obtained using (3.25) and yield the same results as Eshelby

Finally, it is also interesting to interpret the formula F+R = 1 in a way
involving dipole sources. Let us imagine imposing into the elastic body

sources of internal stress described by a distribution —
fi
p

. We may
imagine that the body physically breaks up — /3

P into its two components,

F(— ($
p

) and R(— fi
p
). But, since ultimately only R(— pp

) remains (which

is what is meant by — ft
1

' being a source of residual distortion) the com-

ponent represented by F(— PP ) must radiate into the body as elastic

waves. The net force and dipole contents of F(— /3
P

) must always be

contained in the distribution of elastic waves reverberating throughout

the body and the energy of these elastic waves is, of course, the self

energy of F(— /3
P

) plus the amount of heat energy contributed to the body
by the applied force fields due to the imposition of — fi

p
. This fact and the

exact mathematical analogy between point forces in elastostatics and
charges in electrostatics suggest that further continuation of the electro-

magnetic analogy— as summarized by Kroner [19]— into elastodynamics

may produce many fruitful ideas.

IV. The Mura-Willis Formula and the Decomposition of the

Elastic Distortion Field at the Dislocation Level

In the previous sections we have given and discussed the primitive

decomposition of the elastic distortion field into its force induced and

residual components in terms of dipole sources. We now wish to develop

the decomposition for the infinite body appropriate to sources at one higher

level of integration, notably body forces and dislocations. The identifica-

tion of body forces as sources for the force induced component of the dis-

tortion field has already been given in equation (2.9) and this component

was seen to be connected through an integration by parts to a distribu-

tion of force dipole sources.

There remains, then, only the task of representing the sources of the

residual distortion field through an integration process. This representa-

tion is already provided in one form by the Mura-Willis formula [9]. [10]:

[6].

(4.1)
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where the dislocation density a is defined by

a kl (r) =€igpl3kp,g(r), (4.2)
16

and in an alternate fashion by the concept of rational dislocation element

formulated for the isotropic body by Eshelby and Laub [23].

In order, however, to develop this representation in terms of the dipole

decomposition (2.19), let us reconsider the kernels R and S given by

(2.15) and (2.18).

Because of the symmetry of S and its interpretation as a residual stress

kernel, it is not surprising and, in fact, easily verified that S is divergence

free in all four indices:

Smnkl, m(r' — r) = Smnkl,n(r' ~ r) = S tnnkl,k(r' — r) =Smnkl,l(r ' ~ r )
= 0-

(4.3)

It then follows that, since the symmetrized distortion kernel (R) is linearly

related to S, (R) is also divergence free in its last two indices:

(R)mnkl,l(r' -r)=(R) rnnkl,k(r' - r) = 0. (4.4)

Equation (4.4), only, is needed to discuss the strain decomposition or

incompatibility problem. For our present purpose, however, the slightly

stronger result that the kernel R, itself, is divergence free in its last

index, that is

KmnM,i(r'-r)=0, (45)

is required. Equation (4.5) can be verified by direct calculation.

Equation (4.5) implies the existence of a tensor field D such that

— D(r' — r) x Vr= R(r' — p); that is

eiqpDmnkp,q(r' — p) = Rmnkl (p ' ~ p) . (4.6)

D is by no means unique but is essentially determined up to a gradient.

For instance, one form for D, which we shall call D*, may be obtained

Hi We have here adopted I lie FS/RH convention of Bilby. Bullough. and Smith [22]. This

definition of a is also consistent with the analogous definition in magnetostatics of the cur-

rent density in terms of the magnetic field.
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directly from the definition of R and the representation of the 6 function

in terms of the Green's tensor given by eq (2.7):

Rmnki(r' — r) = 8mk8 nld(r' — r) —C ijk iG mi
, n 'j(r'

- r)

€ Ipq^spnC ijksGmi
,
jq(r I")

€lpq\_€spn.C ijksGmi
,

**)] ,q

= *lqpD *nnkp,q( Y
'

where

D ?nnkp(r
'-

r ) =*nPsCijksGmi,j(r' — r). (4.7)

An alternate form for D— which we shall denote as D x
-can be con-

structed by use of the Helmholtz decomposition theorem [14]:

DmnkA v '
~ r)= n̂ j

eiqpRmnkp, q {r' -r")\r"-r\-
ldV

~+^( 8»*€»«*lp/_r r;i
1

+ 1 CyfcgGm^nT'(r'-r'
,

)e,.s.g |r'
/ -r|;;,^''Y (4.8)

No matter which form of D is used, one may employ eq (4.6) and integra-

tion by parts to identify dislocations as the sources of residual distortion

in B x
:

ffnn (r')= j Rrnnkl(Y'-v)P kl {v)dV

=
j eiqpDmnkP) q (r'

— r)pki(r)dV

=—
j eiqpDmnkp (r' — r)f}ki, Q (r)dV

=
j Dmnkp(r'-r)akp (r)dV (4.9)

where a is the dislocation density tensor given in (4.2).

In summary, then, we may extend the basic decomposition formula
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(2.19) for general anisotropic bodies with internal strains to include a

decomposition at the dislocation level:

/Wr')=
f
Fmnki(r'-r)p ki(r)dV+ j R mnk i(r' -v)p kl (r)dV

=
1 Gmi,n>(r'-r)fi(r)dV+ j D mnkl (r' - v)a kl {v)dV. (4.10)

The second part of eq (4.10) provides the analog in elastostatics of the

Helmholtz theorem for vector fields given by eq (2.4). From this expression

one can construct f$ from a knowledge of its dislocation and body force

sources. This construction is still valid when these sources occur in sheets

or lines which produce singularities or discontinuities in the normal or

tangential components of ft; such sources are then considered as distri-

butions, or generalized functions. 17

If we turn to the comparison of equation (4.10) with the previously

cited Mura-Willis formula, equation (4.1), it is immediately clear that

if the kernel D is taken to be D* as given in equation (4.7), the second part

of equation (4.10) provides the Mura-Willis decomposition of the distortion

field. On the other hand, if the kernel D is taken to be D°°, then one has

what may be called the rational dislocation decomposition of the distortion

field. In order to see this most easily, let us consider the distortion field

at r', which we may call fi
D (r') produced by a rational dislocation element

b kdli at r— as introduced by Eshelby and Laub [23]:

P$ln {r')=Dlnkl {r'-r)b kdl l (4.11)

Equation (4.10) tells us that the superposition of such distortion fields

weighted by the dislocation density at each point r will produce the

residual distortion field f}
R due to that dislocation density. However, the

individual element b kdU is not a physically valid dislocation distribution

since it does not close— that is, it is not divergence free in the index /.

Thus if we calculate the dislocation density due to which density must
be divergence free, we shall obtain a physically valid dislocation-field

which includes the rational dislocation element bkdl\. If we call such a

dislocation density aD , then from (4.8), (4.11)

al n (r') = b mdlMr' -v)-^b mdl q \r' -r\ :n\,, (4.12)

since the integral expression involving G has a vanishing curl in the second
index. Equation (4.12) is exactly the rational dislocation density of Eshelby
and Laub.

17 cf [20].
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V. The Incompatibility Problem

In this section we wish to continue the source kernel approach to obtain

the solution for the incompatibility problem for internal stresses. The

incompatibility v) of an arbitrary distortion field /3is defined by the relation

l)kl(r) =— (ekmp€lnqPmn,pq(r))(kl) (5.1)

(r) (5.2)

where the strain eij{r) is given by

eii(r)=i()8y(r)+fti (r))- (5.3)

In terms of the dislocation density a, (5.1) may be written

7?A-/(r) = {eknqOCnl,q{r) ){kiy (5.4)

The concept of incompatibility as an alternate source of residual stress

has been discussed by several authors [3. 20, 24, 25]. In terms of residual

distortions, however, since the incompatibility, 17, is a function of the

strain field, it is clear than 17 can serve as a source of the residual strain

field eR only, rather than as a source of the residual distortion field fi
R

.

this means that to formally treat the incompatibility problem, we must

provide an alternate decomposition of the total distortion field in which

the rotations are separated.

Let us. then, define the projection operator W with kernel W which

identifies the rotational or antisymmetric components of the distortion

field:

W()3)=/F (5.5)

where

(r )=i(P,nn(r' ) -Pnm(r' )) = j Wmnkiiv' -v)pki{r)dV (5.6)

and

Wmnki(r' — r) =i(8mk8n i
— 8nk8mi)8(r' — r) (5.7)

The kernels W, (F). and (R) are easily seen to define another set of
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independent projection operators decomposing the elastic distortion field

according to:

iSmn(r')=«M (r')+ej;n (r') +^n (r')

=
j Wmnki(r

, -r)p k,(r)dV+ j (F)mnki(r' -r)fi ki(v)dV

+ j (R)mnki(*'-r)pki(r)dV

=

J
Wmnkl {v'-Y)p kl {r)dV+ j (Gmi,n')(mn)(r'-r)fi(r)dV

+ j (Dmnki){mn)(r' -r)aki{r)dV. (5

Equation (5.8) provides a decomposition of the distortion field in terms

of the strain and rotation. In view of eq (4.4), however, one notes that

there are possible source tensors— which we may designate by (D) —
such that

(D) mnkl (r' — r) = (D)nmki(r' — r)

and

€lqp{D) m nkp,q(r' —r) = (R) mnkl{r '
— r)

, (5.9)

but where

€i qp(D) mnkp, q (r'
— r) Rmnki{r' — r).

These source tensors will then produce from ct the correct residual strain

field, but a distortion field which may differ from /8 by a rotation field.

Such source tensors need not correctly reproduce the original dislocation

density a. 18

18
If we designate .

j8ffi(r') =
J

(D)mnki(r'-r)akl (r)dV

so that

= CO

is a pure rotation field, then

differs from a^iir) by the curl of the rotation field to:

ttfc/(r) -a(

k
D
l

) (r) = eiqp a)kP ,q(r).

Dislocation fields of the type a— aIO) which have a rotational potential have been called by
Mura "impotent dislocation fields" [26].
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The second part of eq (5.8), therefore, has the disadvantage that the

source field a is not reproduced exactly by the source kernel (D) for e I{

if we use the appropriate defining relation (5.9). On the other hand, as

seen from eqs (5.2) and (5.4)

where

tj* (r) ^-ekmpelnq
eRmn)Pq (r), (5.10)

so that, as mentioned above, the incompatibility is truly an invariant of

residual strain field.

The converse problem is the incompatibility problem, and we shall

look for a kernel I which provides a source kernel for the residual strain

in terms of the incompatibility. That is:

(**')=
J

Imnki{r'-r)7] ki(r)dV. (5.11)

Equation (5.11) will then permit an extension of eq (5.8) to include a decom-
position in terms of incompatibilities:

/Wr')= j WmnM{r'-r)p kl(r)dV+ j (Gmi , n')(mn)(r' -v)fi(r)dV

+ j Imnkl{v' -v)l) kl {v)dV (5.12)

We seek, first, conditions needed to characterize I. Let us note that since

I operates on tj, which is the symmetric part, only, of rf :

it is required that

T7*(r) =-ekmp einq(3m ti,pq(r), (5.13)

ImnPq,t(r' —r)ePQt = 0 (5.14)

to permit the substitution of 17* for 17 in eq (5.11).

Equation (5.14) is identically satisfied if I mni)q (r' — r) is symmetric in

p and q. However, it can be seen that any kernel I* (symmetric or not)

obtained using the Mura-Willis kernel D* defined in (4.7) also satisfies

(5.14) whose generality, therefore, has some use. The construction of
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such a kernel I* is described in the final section.

To see the necessity of eq (5.14) we set

Mr) =\r)p
q
{r)€pqt

= -hPij,ki{r)e ikp€jiqepqt
= -h(XppAr) (5.15)

and write for the residual strain field

<%n(r') = j ImnPq(r'-r)r)pq(r)dV

=
j ImnPq(r' -r)j}%q (r)dV-j Imnpqir' -r)epqt\ t(r)dV

=
j ImnPq(r' -r)r)*q (r)dV+ j Imnpq,t(r' - r)epqtaku {r)dV

from which the necessity of (5.14) follows. We shall now assume that I

satisfies eq (5.14) and proceed by integrating the right-hand side of eq

(5.11) with v) replaced by 17*:

eL(r') = j ImnkAr' -r)r)*
l
{v)dV

= — j Imnkiir' — r)€kps€tqt(3pq,st(r)dV

= j Imnkl, s(r' —r)€kps€lqtPpq, t(r)dV

= —
j Imnki,st(r' — r)ekpS eiqtPpq(r)dV. (5.16)

From (5.16) we conclude, by comparison with eq (5.8), that Inc 1= (R),

i.e.

— Imnkl,st(r' — r)6pks€ qit= (R)mnpq(r' — r) . (5.17)

By examination of (5.9), (5.10) and (5.17) it is also clear that — V r
x I(r' — r)

- (D)(r'-r), i.e.,

(D) mnp i(r
f — r) = Imnki,s{r' —r)€Pks, (5.18)

defines a dislocation source tensor for the strain field— although such a

(D) cannot be expected to be a satisfactory source kernel for the distortion

field. Thus, for our purpose the incompatibility problem will be solved if

we can obtain a source kernel I satisfying equations (5.14) and (5.17). I, of

course, is not unique and each source tensor I will also provide an expres-

sion for a dislocation source tensor (D) for residual strains.

Two methods are generally available for finding such an I : the harmonic

Eshelby-Eddington approach [3] and the biharmonic approach of Kr6ner[l].
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The Eshelby-Eddington approach follows from the observation that

given any tensor field Sij and a tensor field c/>,j such that A<£/j = S/j and

(f>ij,j
=

(f>ij, i
— 0, one can find by a short calculation that if 7y = 4>ji — (frnnCiji

then Inc T = S.

On the other hand the biharmonic approach says that if one can find a

tensor field \U such that AAxy = Sij and Xy,i= Xy.i == 0, then setting

T = Inc x yields IncT=S with the additional property here that

T ij , j=T ij , i
= 0.

For our present applications we may assume that S is such that Sij= Sji,

and S,j,j = 0.
19 We can then define the appropriate

<f>
and x by setting:

^' )=-iS^7\ dV ,5 - 19)

and

*>(*')— / Su(r)\r'-r\dV. (5.20)

The symmetry of |r' — r| in r and r' and an integration by parts suffice

to establish that both </> and x are divergence free.

It should be noted that the biharmonic integral will generally diverge

unless Sij= o (
|r|

-4
) — which is not the case for our particular application.

However, this difficulty can be overcome in two ways: (1) If T (which in

our case will be the fourth order source tensor Imnki) is to be reintegrated

with another quantity 77 (in our case, the incompatibility), generalized

function theory allows us to interchange the order of integration if t) is

sufficiently well behaved at o° and thereby calculate / |r' — r| r){r)dV

first. This approach leads to Kroner's stress function method in infinite

isotropy as we shall discuss in detail in the next section, but it does not

permit the identification of a source tensor I. (2) The other approach is

to make use of the fact that T = Inc x and to interchange the order of

integration and differentiation— also permitted by generalized function

theory— to write:

^.j.SgSs
I

Skl (r)\r'-r\,„ dV

=_± f S u (r)-S„„(r)8 0

477J |r'-r|

-g^|s,,(r)|r'-r|,yrfK. (5.21)

19 Even in the finite body B these formulae hold provided that S satisfies the additional

boundary condition on B:

SijT}j=0.
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The second equation follows after a brief calculation and integration by

parts using the divergence conditions for S. This result gives a direct

comparison between the Eshelby-Eddington and biharmonic approaches.

The first term on the right hand side of (5.21) is the Eshelby-Eddington

solution for T while the second exhibits the incompatibility free term which

is required if one desires T to be divergence free.

If we choose for the tensor Sy(r) the fundamental source tensor

(R)mnij{r' — r), which by (4.4) satisfies the required divergence condi-

tions, then we can write, using the Eshelby-Eddington formula and eq

(2.15):

+ (C yfc( -8*A»p) \- "-'Z--r\
r
"

] dV"
) <5 -22 >

J I

r r
|

. / (mn)

The additional terms in the biharmonic solution for I may also easily be

written down. It is clear by construction that the I given in (5.22) and

the corresponding biharmonic expression satisfy eq (5.14) and (5.17)

and thus provide acceptable source kernels for the incompatibility

problem. We note that, at least in the case of infinite isotropy where

these expressions can be explicitly evaluated, the biharmonic solution

has a substantially simpler form than does the harmonic. A method for

calculating I is outlined in section VII.

VI. The Stress Function Problem

The technique of stress functions may also be developed using the more

general source kernel approach exposed herein: Associated to an in-

compatibility source tensor I which gives expressions for the internal

strain, we can define a source tensor T which describes the internal stress

field:

Ttnnkliv' — r) = Ctnnrslrskli^'
— r) (6.1)

from which it follows that Inc T = S:

— €kps€iqtTmnpq , st(r' — r) — S mnki(r' — r). (6.2)

T is symmetric in both mn and kl when Imnki is symmetric in kl, but T is

not symmetric with respect to interchange of the pairs mn and kl. From
the properties of S and the manner of construction of I, it is also clear that

T actually describes an internal stress field (Tmnki, n'(r' — r) = 0) due to

a rational incompatibility of type kl.
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Using the integration methods described in the preceding section, one

expects it to be possible to integrate T to find a stress function source

tensor Thus the biharmonic formula gives

•t- (i \ 1 f Tmilki{r" — r) — T,t„ki(r" — r)8mn 11/t ,

VmnkAv —r)=—— -7^
n dV

477 J |r — r
I

^ Tm)ki{v" -r)\r" -r'\, in>n'dV" . (6.3)

The kernel 1lr would then provide a solution to the stress function problem:

notably, given an incompatibility distribution 7) one could write down a

stress function tensor due to the incompatibility distribution:

*m»(r')= j ^mnki{r'-r)y)ki{r)dV, (6.4)

so that Inc i//= o-*. where (Tw is the residual stress field associated to rj.

Unfortunately, the above stress function source tensor fails to exist in

the ordinary sense in the infinite body since the integrals involved diverge

in the same way as does the integral of r~2 in all space. This difficulty was
discussed earlier in the previous section except that here there is no way

out except the first approach discussed therein. This allows ifj to still be

defined as a generalized function in terms of the "convolution" of two

generalized functions, but this process can be made valid only if the dis-

tortion field is "zeroey" enough at infinity.

The above source kernel approach to the stress function problem is not

the same as that suggested by Kroner and actually solved by him for the

isotropic body [1. 2]. Nonetheless. Kroner's isotropic solution may be

generalized to the infinite anisotropic body by the techniques developed

above. Accordingly, we follow Kroner by introducing (c.f. deWit [27]

)

XA-/(r") =
J

\r"-r\r)kl {r)dV, (6.5)

which satisfies, since r) is divergence free, the auxiliary conditions:

Xki,k(r)=Xki,i(r) = 0. (6.6)

Let us note the following identity for convolutions:

jf(r' -v")g{r"-r)dV"= |/(r- r")g(r" -r')dV", (6.7)

where / and g are arbitrary, suitable even functions. Then, applying (6.7)



118 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

to (6.3), we may write

Vmnki{r r) ^ j \r"-r\

| TppUl {r"-v')\v"-v\,mndV". (6.8)

From (5.21) with the tensor Sy(r) identified with the stress kernel

(r' — r), we also have

rp / , tt\ If Smnklir ' — r"')— S mnqq(r'— r
f ")8k i

Tmnkl (r -r )=--
J |r"'-r"|

JF

| S fflHW(r'-r'")|r'"-r"U.r#'". (6.9)

Since, by (6.7) and (6.9),

Tmnkdr" — r') = Tmnki(r — r"), (6.10)

we may now usefully substitute (6.9) directly into (6.8) to obtain:

^mnkiir' — r) =—^ J
[Sm„A;z(r'— r'") — S mngg(r'—..r'")£w

—Sppki{r' —r"')8mn+ SpPqq (r' — r'")8ki8mn] |r"' — r\dV"

~
9oV / t^™^ 1

*' -1'"') — Sppqq (r' — r'")8mn ] \r"' — r\*k»'V'dV'"

9o~77 / [5^(r
' _r'") ~ 5PPw(r

' — r,,/
) 8*Jl r

'""~ v\ Z,m>"n">dV'"

_
28^077 /

SPPm(r
, -r' n

)\r''\-r^mn,nn,km lmdV''\ (6.11)

Here we have performed one of the volume integrals by using the results

f, „, f''„ r -27r|r"'-r|, (6.12)
J \r -r \\r —r\

j
Ir
^~,!^",|" dV"=-\ k'"-p|?«»'.'», (6.13)
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and

j \r" —r"\, m» n»\r" — r\ }k>n»dV" =— ^ |r"' — r\ 5
, mn,n,nk ,,,V n>, (514)

these results being understood to be valid in a formal sense, that is they

only take on meaning when the result is reintegrated with the second

derivative of some well behaved function.

Now to find the stress function */f given in (6.4), we observe that since

t) is divergence free, the second and fourth integrals in (6.11) give zero

contribution to i//. In addition, the first integral occurring in (6.11) may
be seen by comparison with equation (5.21) to provide the Eshelby-

Eddington form for the stress function kernel, Therefore, the Eshelby-

Eddington formula giving the full generalization to infinite anisotropy

of Kroner's isotropic stress function method is:

*K(r') = kl(r' — r '__')— Smnqq (r' — r")dkl

— Sppki(r' — r")8 mn + Sppqq(r'—r")8 kl 8m n]Xki (r")dV" (6.15)

where \ is given by eq (6.5). \^f
EE however, does not satisfy the gauge

condition

$mn, n(r) = lfjmn ,
m(r) = 0. (6.16)

In order to achieve this gauge condition one must employ the full bihar-

monic form given in (6.11) by adding to \jj
EE the term ^>,m'n'(r'):

0(r')=-^; | [V/ir'-r'l-V^r'-r'IM^tr'')^'. (6.17)

where

<Mr") s
| \r"-r\*ri kl (T)dV. (6.18)

As a special case we may check this general formulation for an infinite

isotropic body. The expression for S is, from (2.18) and the isotropic

Green's tensor: 20

369-713 OL - 71 - Vol I - 10
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2vjJL

l-v 8mn8pq8(r)+2n(8mp 8 np 8(r)) ( m n

JL
477 l-v (8mn\r\,jjpq+8pq \r\ ,jj m n

,

+ 2(8 mp\r\,jjnq ) (6.19)

Substituting (6.19) into (6.15) and (6.17) and using (6.6) and the analogous

condition on <I>, notably

®ki,k(r) = ®ki,i{r) = 0, (6.20)

we obtain the result

i//m „(r') = 2/x Xmn(r') l-v 8mnXpp( r
'

(6.21)

which is seen to coincide with Kroner's stress function solution [27] in

this isotropic case.

VII. Discussion

The question as to how one calculates a dislocation source tensor D
has been discussed in section IV while formulas for the calculation of

the incompatibility tensor I have been presented in section V. We would

like to indicate here some perhaps numerically useful techniques for

calculating such source tensors in the infinite body. Because of the ex-

plicit representation for the dislocation source tensor in terms of the

Green's tensor derivatives given by eq (4.7)

D* nkl {r' -r) = 6nisCijkSG mi ,j{r' -r)

and because of the similar methods involved in calculating D and I, we
have chosen to explore only the calculations of the less well-known

incompatibility source tensor I. On the other hand it should be admitted

that although defect descriptions in terms of incompatibility avoid ex-
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traneous rotational terms, the physical usefulness of the more complex

incompatibility source tensor may be open to question. This is particularly

true as long as no experimental situations occur in which physical data

are given directly in terms of incompatibility sources.

We first present an explicit expression for a dislocation source tensor

I* derived from the dislocation source tensor D* and given in terms of

easily numerically evaluated integrals of the Green's tensor.

/* (r)1 mnpq\* > (r) GpmjGqis m r

~^TT3 {ePjmajn(x3Xq— |r|
26 g3 )

~ €pjm€^sbj nXs
\

T
\

(mn)> (7.1)

Here

and

ajn{e, 0)= f* Kjn (e,k)dk—£- (

2n

Kjn (e, k)dk
JO 67Tjo

1 f
6

f""
bjn(6)=- r-77 sin fjbdfJL

\
Kjm {fJL, k)dk

Ztt sm-t) Jo Jo

Kjn (6, <t>)
= \r\xiCijkiGnk,i(r).

(7.2)

(7.3)

This result may be derived from the following lemma which will be

started without proof:

LEMMA. Given a vector field v each of whose components, vu is homo-

geneous of degree — 2 such that V *v(r) =0 for r^O and such that

j |r|v rdS = 0

for any sphere containing the origin, one can write:

V X w = v

and w • r = 0 for the vector field w given by:

w(r) = rx(vln|r|-^
ki

2 r

(7.4)

(7.5)

(7.6)
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where h (O) is the vector field on the sphere:

h(0, (/)) =A(0, 0)n^ +B{0)n^

A (6^) =
J*

g(0, X) sin 0dA -^ Jj"
g(0, k) sin

w^ To
d[xr^ x) sin^ (7 - ?)

#(0, ^)) = |r|vr, and a?i<i are the unit normals in the 0 and 4>

directions, respectively.

The Eshelby-Eddington formula (5.22) for I can also be made somewhat

more palatable if one integrates by parts and rewrites the expression as

TEE ( ' _ \ — _J_ / 5wn§A7 ~ &mk8nl
iumkikr r^-

47rV |r'-r|

+ (C ijki-8kiC ijpp ) I \r" -r\, fGrnuwir' -r")dV") . (7.8)
J /(mn)

The components of the Green's tensor derivatives in (7.8) are exactly those

that must be tabled in any useful numerically computed Green's function.

Also, using the fact that the Green's tensor is homogeneous of degree

— 1, it is possible to rotate a spherical coordinate system so that the vector

r' — r is along the x 3 axis and carry out the radial integration showing

that I defined by the Eshelby-Eddington formula is homogeneous of

degree —1; the explicit angular integrals, however, would have to be

carried out numerically.

Pending a forthcoming computer program for numerically calculating

Green's tensors and their derivatives, important applications can still

be made employing the source function approach, since the Fourier

transforms for arbitrary anisotropic bodies are readily available as rational

polynomials. Thus G, the Fourier transform of G is given by:

G ik (h) = k ik (k) (7.9)

where /^(k) =CijkMjki and K represents the inverse matrix to K. The
source function method now provides a powerful technique for calculating

the Fourier transforms of internal stress and strain fields, since these

fields are obtained in the infinite body as convolutions of the source

function kernel with the appropriate distribution of sources of internal

stress. Consequently, the Fourier transform of the internal field is merely

the product of the Fourier transforms of the source kernel and of the
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internal stress source distribution. All the source kernels have themselves

been expressed as convolutions on the fundamental tensors R and S.

The transforms of R and S are, however, homogeneous rational poly-

nomials of degree zero in reciprocal space simply obtained from the

expressions for the transforms for the Green's tensor, so that it is a

practical possibility to calculate the Fourier transform for the fields of

many types of both residual and force induced stress fields.

The uses for these transforms have not been thoroughly explored, but

their importance to problems such as diffraction is self-evident. Kuriyama

[28] for instance has already developed an explicit expression for the scat-

tering matrix elements directly in terms of the Fourier transform of the

residual displacement field, whose transform can readily be written down
at least for infinitesimal loops.

Another important application for the Fourier transforms of the internal

fields is in finding interaction energies. This approach is being investi-

gated by Mura [29, 8]. The general point to note is that Parseval's theorem

from Fourier Transform theory tells us that given two functions/ and g in

three dimensions with Fourier transforms / and gin reciprocal space, one

has the relation

j
r(r)g(v)dV=-^

J
f*(k)g(k)dV. (7.10)

where * indicates the complex conjugate. Thus, one can take the integral

of the Fourier transform of a plastic strain source field with the transforms

of the stress field from another such source to obtain the interaction

energy.

For example, if P 1P and )8
2P

, are two plastic displacement dipole dis-

tributions, the interaction energy of their induced residual stress fields is

(2tt)-3
J
SiMVkFWkHVdV. (7.11)

This interaction energy, involving only one integral over reciprocal space,

may in certain cases be more practical to evaluate than the real space

interaction integral.
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SERIES REPRESENTATIONS OF THE ELASTIC
GREEN'S TENSOR FOR CUBIC MEDIA
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Two representations for the cubic Green's tensor components as power

series in the anisotropy factor co = 1 — (en — cvi)2ca4 are developed, and

first order corrections of anisotropy to the Green's tensor and to the in-

teraction energy between two "mechanical" point defects are calculated.

It is shown that the best successive approximation scheme is that which

constructs the zeroth order (isotropic) approximation to the Green's ten-

sor by identifying the Lame constants k and fx as k = c !2 ,
/jl= c44 .

Key words: Anisotropy; cubic materials; elasticity; Green's tensor.

I. Introduction

The static Green's tensor for an infinite elastic continuum, Gu(r— r')
,

is defined as the ith component of the displacement at r produced by a

unit force in the /th direction at f ; Gu is symmetric in i and /. Closed

analytical expressions for Gu have been constructed only for materials

exhibiting isotropy or transverse isotropy [1, 2].

Knowledge of the Green's tensor and its derivatives allows one to con-

struct the elastic fields of dislocations [2-5] and point defects (repre-

sented in a continuum by "crossed double forces without moment" [6, 7]

)

in linear anisotropic media. An iteration technique devised by Willis [8]

utilizes the Green's tensor method to treat the more general case of dis-

locations in nonlinear anisotropic materials. Because both dislocations

and point defects play such an important role in the plastic deformation

of cubic metals, it is desirable to consider the effect of cubic anisotropy

upon Gu(r—r )

.

The construction of numerical and approximate analytical solutions for

the cubic Green's tensor and its derivatives has intrigued several inves-

tigators. Lifshitz and Rosenzweig [9] and Eshelby [10] obtained first order

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I 1970).

12o
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contributions of cubic anisotropy to the Green's tensor and the dilatation

associated with three orthogonal sets of double forces, respectively. Gu

was extracted numerically by Flinn and Maradudin [11] from the long

wave limit of the discrete lattice Green's tensor and by Lie and Koehler

[12], who followed Fredholm's classical analysis [13]. From their numerical

results Lie and Koehler, after conjecturing that a useful expansion in

spherical harmonics could not be expected, were able to approximate Gu

as a double trigonometric series. Bross [14] avoided the cumbersome

Fredholm technique and used the more direct Fourier transform approach

[15] to derive an expansion for the Green's tensor in terms of cubic har-

monics. Although the Bross representation obviously reflects the cubic

symmetry of Gu, a measure of the effect of anisotropy of the elastic

constants is not easily deduced from it.

The present work considers a very natural method for analytically

displaying the effect of anisotropy upon Gu(r-f'), i.e., the representation

of the cubic Green's tensor components as power series in the anisotropy

factor

I Cu — Ci2w=l ——
ZC44

(normally O^w < 1, although cases in which w < 0 exist [16]). Because

only three of the quantities en, Ci2 , c44 and w are independent, such expan-

sions may be obtained in several ways. We shall treat the two cases in

which the independent elastic variables are taken to be

(a) w, c44, C12

(b) w, C44, cn ,

compute first order anisotropy contributions to Gu and the dilatation due

to three sets of crossed double forces, and compare the results with

previous calculations of a similar nature [9, 10]

.

II. Construction of the Cubic Green's Tensor

The elastic equilibrium equations determining Gi/ for a cubic medium
are

3

c44V 2C !7 +(ci2 + C44)d/^ djGji — 2c44wdidiGu + 8u8{r— r') = 0;

j=i

i, /=1,2, 3. (1)

The Xi are cartesian coordinates to which the elastic constants c# are

referred, d; = d/dxi, du is the Kronecker delta, and 6(f — f) is the three-
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dimensional Dirac delta function. (1) may also be written

c^V-d, +(cn - C44 ) di 2 djCji +2c44wdi (^djCji - d }Gji\ + 8U8 (
r- f ) = 0

j=i V=i 7

(2)

An iterative procedure for solving (1) may be developed in the following

manner. Taking the Fourier transform of (1) yields

where

m(k) =
jjj

X

eikrCn (f)d3r (4)

and k= \k\, y; =

y>j = 7i7j, P = C44/ (ci 2+ C44)

.

We now write

C44A:
2,

Simple matrix algebra inverts (7) and (8) to yield

3

fin

1 Yr 7/*

(5)

= 2 (2^)^;;
,)

, (6)

substitute (6) into (3), and compare coefficients of wn to obtain

i(sy+^)^<>= (y/lV,?-"- (7)

8«
n = 0. (8)

?' = S( 8y-Tf« )(yj)v
J
?- 1

'. «*i (9)

^'=7^( 8«-T^)- HO)

Let [Q] represent any 3x3 matrix whose elements are Q-,j. Using

induction and the recursive relation (9), one finds that [g], the Fourier

transform of the Green's matrix [G], may be written as
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W=2?i(2»)»([«]tM*])». ill)

(12)

Had we started with (2) rather than with (1), an analogous iterative

procedure would have yielded

W =J§2(-2^)"([n[M])-, (13)

M,J 6,J
1 + 0'

P' = c44/(cu -c44 ) ( (14)

Tij= yij—Rij.

Leibfried [3] and Mura [17] have indicated how the elastic fields of

and the interaction energies between dislocations may be expressed as

line integrals involving the Fourier transform of Gu, so that the first several

terms in (11) and (13) could be used to estimate anisotropy effects in such

calculations. Equations (11) and (13) may be written in a more compact

form, since

jr (2w)»( [R] [M*] )"= { [I] -2w[R] [M*]}-' (15)

2 (-2w)"([T] [M] ) " ={[/]+ 2w[T] [M]}~\ (16)

H = 0

(provided, of course, that the series are convergent), where

and — 1 denotes the inverse matrix.
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(17)

The Green's tensor components are obtained from

GH (f-f) = (2tt)- 3

JJ
j" e-*^ gu(k)d3k.

Following Fourier inversion, our two iterative procedures yield

[G] = [G *]+8^j^7| 2 (18)

[G] = [G°]+ .
2 j. _,. ^(-2wY I

2
" [m]([K][m])»dV (19)

»77^C44 r— r ~ Jo

with

S6,J 1+/3

1+0'

«i = cos cos 6 cos ^ — sin 0 sin

a2 = cos ip sin 0 cos ^ + cos 0 sin ^
=— sin <£> cos ^

A u = aij(i=j)

Kij= aij-Aij.

6 and <p are angular spherical coordinates of f—r', e.g.,

%i — jci= |f — r'| sin ^> cos 0.

The matrix [G*] is given by

1

(20)

ij
87TC44(l + i8)|f-f'|

77 (2j3+l)8y +
!

(21)

(22)

and [G°] is the same with /3 replaced by /3'

.

It should be mentioned that the reduction of the three-dimensional

inversion integral (17) to the one-dimensional integrals (f8) and (19) is

most easily accomplished by representing the integrand in spherical polar
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coordinates in A:-space and integrating over k=\k\ first. This integration

yields a delta function (e.g., see [11]), so that in (17) only those unit Fourier

wave vectors perpendicular to f — f contribute to Gn [18]. In fact, a,- is

merely the direction cosine between such a vector and the x\ axis ex-

pressed in terms of Eulerian angles 6, <p,
y¥.

Using (18) and (19), the first order contribution of cubic anisotropy to

the Green's tensor may be determined. To first order in w

So

477c 44 1 r— f

'

(1-71?) + ntnl + nl(\ — n$)

with

8jj — TliTlj

87rc44 (l +5) r-r'
1 +

(l + £) 2

IV

3(2-nf-nf)

Sjnfnj + nj( 1 - nj) )
- 5 + (8U + nf + nj)+C

+
(1+5)

Xi X{
rii — yz—ITT\r-r

|

B = (3 or/3'

C = 0if£=/3 Z
= 4y8'

2 iiB = p'

(23)

(24)

The corresponding first order expansion obtained by Lifshitz and Rosen-

zweig ([9], eq 2.12) was

47TC44
1
r— r

-A\ + w(\-n)

S„cJ^f-f\ {1+T (25)

which, by comparison with (23), is obviously incomplete. Consider Al, Cu.

and Li, the three cubic media discussed in [12].

Al: u;= 0.180, 0 = 0.312, £' = 0.350

Cu: w= 0.687, 0 = 0.383, £' = 0.810

Li: w = 0.894, 0 = 0.464, 0' = 2.69

A smaller relative first order anisotropy contribution to the Green's

tensor components for Al and Cu is obtained by choosing B = fi and
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C = 0 in (23) (e.g., the contribution C/(l + B) when B = is significant for

Cu). In the case of Li, the series (16) and (19) do not converge (note

that C/{ 1 + B) ~ 8 for B = (3' ) ; the expansions (15) and (18) are always

convergent for iv > 0 (see Conclusions), although the convergence for

lithium is not rapid. This essentially means that [£*] is a better zeroth

order approximation to [G] than is or that the best choices for the

"zeroth order" Lame constants k and /x are

/X=C44 , k=Cv2 .

Choosing [G°] as a zeroth order approximation is equivalent to the

identification

/x = c44 , k= cu — 2c44 .

III. Applications to Point Defect Interactions

Consider as a mechanical model for a point defect in a cubic metal three

orthogonal sets of double forces without moment, each set being of

strength Pi. The interaction energy between such a "defect" and another

of strength P> is given by [6, 7]

Eint= -PiP2didiCu. (26)

In (26) summation over repeated indices is implied so that djdiGu = A.

the dilatation associated with three crossed double forces, each of unit

strength. Noting that the Fourier transform of A is —k-yigij-yj and using

(11) coupled with the identity

"*y~J
1 + /3

after some manipulation one can show that

A

a,-,

:h{ (l + fl)

Fn (6, <p) is defined by

F„ (6, <p) =^ L[A] ( [to*] [A])»- l acW.

(27)

(28)

(29)

where a is the column vector wijh components a/, and a is its transpose

(a row vector).
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Equation (28) can be simplified somewhat by the decomposition

V-
\r-r'\

-o(f-r') f Fn (6, <p)dn + ,3 Vg
2F„(fl, <p)\ (30)

sin <pd(p\ dip / sin- <p d0-
(31)

and (1 is the surface of the unit sphere. (28) may then be rewritten as:

^A = -(T
^){l +^(T^)|i

(2w)»/
n
F„(.,^ft} 8(,-n

1 / 0 \„ 1

(32)

The terms in (32) proportional to 8(f— f') do not contribute to the inter-

action energy (26), but they do yield the only contribution to the total

volume change associated with the "unit mechanical point defect." To

first order in w,

Eim = P lP2
(y^g)

2

^1^13 (f - < '<'<? + "I<1- rq ) >
}

(33,

where Tii, /?2, are direction cosines of the line joining the two defects,

i.e., ?— ?'. Equation (33) is similar to a result obtained previously by

Eshelby [6, 10]. Eshelby's approximate technique replaces ( ^ ) in (33)
1 + /3

c°
by ——— , where cf, is not uniquely defined, but rather depends upon

the choice of "zeroth order" Lame constants.

Second and third order anisotropy contributions to the interaction

energy may be obtained using

F2 (d,<p)= j*"{h--^}dV (34)

(W (35)

th

1,(9, <p; V) = 2 {otj(0
v <p; (36)

j= "
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IV. Conclusions

Two series expansions for the cubic Green's tensor have been derived;

the essential difference between the two representations is the manner

in which a zeroth order or isotropic approximation is split off from 6',y . The
question of convergence of the series (i.e., the validity of eqs (15) and (16)

is most easily treated in the following manner.

The expansion (15) is valid provided

(37)

|j*-i|<r,

J*=Det{[I]-2w[R][M*]})

where Det means "determinant of." Now

j*=\-2w^—+ 1 + pw)(yW + yl (1 - yl) ) + yq^(3 - 2w)y*Myl

(38)

Since

0 yfyly§ - ~
(39)

0^y?yi + 7|(l-7§) ^|

if 0 w < 1, condition (37) is satisfied, and (15) is a valid representation

of df.

Similarly the expansion (16) is valid if

But

\J-\\<\,

j=Det{[I]+2w[T] [M]}

(40)

J =—y j *- (41)

For lithium, ,/ ~3,/*, and direction triplets (yi, y-i, y.-?) exist for which

(40) is not satisfied, even though (37) is.
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Any useful successive approximation scheme of analytically representing

the cubic Green's tensor must be based upon a convergent technique.

Normally such schemes involve splitting the Voigt constants c-
tj so that

dj = cjj + clj where the c-j satisfy the condition for isotropy. As Eshelby

[6] has remarked, "there seems to be no way of arranging that the

c'u shall be convincingly smaller than the c$." Indeed, the present calcu-

lation indicates that the validity and rate of convergence of such ap-

proximations is critically dependent upon the choice of c". At the present

time identifying the zeroth order Lame constants for a cubic medium as

\= c12 , n = c44

provides the most useful splitting of c-,j. Leibfried [3] has proposed a

splitting based upon an averaging of the c-,j over all possible crystal orienta-

tions; the convergence of a successive approximation scheme based

upon this technique has yet to be investigated.
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Muskhelishvili's inversion formulae for singular integral equations are

shown to be special cases of a more general result which is then employed

to deal with two types of problems. In the first we consider the distribu-

tion of dislocations in a double periodic array of screw pile-ups in an ar-

bitrary stress field. The second type is concerned with screw pile-ups ter-

minating at phase boundaries, again for arbitrary stress fields.

Key words: Dislocations-elasticity; dislocation pileups; phase boundaries.

I. Introduction

Current practice for the determination of dislocation distribution

functions (Leibfried [1]) is to formulate the condition of equilibrium as a

singular integral equation and to solve this equation by the inversion

procedures of Muskhelishvili [2]. However, there are situations of physical

interest which lead to integral equations to which Muskhelishvili's

formulae do not apply. The development of analytical techniques appli-

cable to such cases is the prime purpose of this work.

We proceed first to introduce the "path function". By this term is meant

a function of a complex variable which defines, in the complex plane,

the end points and weight to be accorded each of the lines of integration

of the integral equation specified by the problem. We then show how
such functions may be employed to invert the relevant singular integral

equations.

To illustrate this approach we first obtain Muskhelishvili's results and

then consider two other types of problem. In the first we examine the

behavior of a doubly periodic array of screw dislocation pileups (or cracks

in antiplane strain). In the second we consider pileups which terminate

at a phase boundary.

Fundamental Aspects of Dislocation Theorv, J. A. Simmons, R. de Wit, and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317. I, 1970).
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II. Analysis

Suppose that the dislocations are of screw character, lie parallel to

the z-axis, and that they can move only in the ^-direction. Suppose further

that they lie in the intervals

Let f(x) be the dislocation density at any point in these intervals, with the

conventions that f{x) is positive where the dislocations are positive and

that a positive dislocation tends to move in the positive x direction under

the action of a positive shear stress. Let g(x) represent the applied shear

stress.

We obtain the equation of equilibrium from the condition that the total

stress must vanish at every point of the array. We obtain

where A = /jlKI27t, /jl is the shear modulus, and X the displacement of a

unit dislocation. Here the weighting factors ot r have the values

and have been included to allow for situations in which dislocations in

different regions are effectively of different strengths. For brevity we
write eq (1) in the form

where it is to be understood that integration is to be carried out, with the

required weighting, over the union D of line segments D u D >
—D n . We

now introduce the path function k(t) of which we, so far, require only

that it define the line segments D r and the weighting factors a r . Proceeding

formally we write

(x0 , y0 )
— (xu yo), U2, yo) — Us, yo),

(*o,yi)- (*i,y>), (*2,yi)- (*3 ,yi),

-1 *s a, • ^ 1

(2)

Ji> t — yjf) x — t t-y
dt

(3)

We then generalize a result originally due to Hardy [3] to interchange
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the order of integration 1 and have

-^k(y)f(y)+j
D
f(X)dx

\D
k(t)

(t
_
yf(x _ t)

where C is a constant independent of y. Now substituting for f(y) from

eq (4) in eq (2) we have

Inverting the first integral of (5) as in (4) we see that a necessary con-

dition for the validity of these procedures is that

-7 f k(t)g{t)dt [ yy-yT ^ rA Jo
wew

Jo k(y) (y-u)(t-y)

+ f T7~T — f f(x)dx ( k(t)j- ^ tt=0. (6)
Jo k{y) y-u ) D

JK
'

J D
yj (t-y)(x-f)

If this condition is satisfied and if additionally the second term of eq (4)

vanishes we have

/(y)=-L2*(y) f
k(t)g(t)-^- (7)

7T-L- J D t — y

We now seek to define the circumstances under which these two con-

ditions will be satisfied. To this end we examine the contour integrals

corresponding to the integrals of (6) which contain the factors (y— u)~ x

(t — y)~ l
. To begin we consider the characteristics of the contours em-

ployed. From our original assumptions as to the nature of a path function

we expect that the contour consists of lines traversing the lines of integra-

tion twice in opposite directions and of a circle at infinity (vide, fig. 1).

A consideration of the contour integrals indicates that towards the sat-

isfaction of (6) we introduce the following additional restrictions on k(x)

:

(A) k(z) —> z" as z—> °°, with z= x + iy where n is a finite integer, posi-

tive, negative or zero.

1 For the class of functions with which Hardy was concerned C= 1
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(B) k{z) and l//c(z) have no poles.

(C) k(z) I (z — u) (t — z) and l/(k{z) (z — u) {t — z) ) provide no residues

when u and t lie on the line of integration.

We have for the following several cases:

(i) n = 0. Equation (6) is satisfied.

(ii) n > 0. The first integral of (6) vanishes whilst the last integral

of the second term gives a polynomial of degree n — 1 in x and y so

that (6) reduces to the condition

(a.y-' + a.y"- 2 a n ) ^ r=0 (8)
k(y)(y—u)

which may be seen to be satisfied if conditions A and B are satisfied.

(hi) n < 0. The second term of (6) now vanishes whilst the second

part of the first integral leads to a polynomial of degree n— 1. We
then require that

j g(t)Mt){b,t"-^b2t
n-2 bn)dt = 0. (9)
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Taking these results with (4) we have:

Case (i), n = 0

^> =+^c4mL1(^w ^- ,10)

Case (ii), n > 0

where the coefficients C , are arbitrary constants.

Case (Hi), n < 0

{W=^dk(y)SDk{tMt)̂ -
y

(12)

provided

f gr(t)A(0 f*df= 0 (13)
J D

for

0^5 ^ n-1

It remains to identify the functions k(z). This we shall do for four cases

of physical interest in the succeeding sections.

III. The Cases of Muskhelishvili

As a first exercise we shall recover Muskhelishvili's results by con-

sidering that \a r |

= 1 and that the lines of integration are a finite number
of elements of the x-axis. In this case the analysis is not restricted to

screw dislocations.

In the absence of an analytic process which will determine k(z) it is

necessary to guess this function. However, this process can be rationalized

so as to severely restrict the number of possible choices. Thus, we note

that k{z) is to define the end points of each of the lines of integration and

is to be without poles. Accordingly we consider functions having branch

points at the end points of the lines of integration. Again, since the path

function must also define the lines of integration we must expect that the

branch points are arranged in pairs so that k(z) is single valued with a

line of discontinuity between them which is the line of integration. Func-
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tions having these properties can be built up by forming products of

constituents having any of the forms:

,
{z-ayi2 {z-byi 2 or (z- a)-^{z- b)' 1 ' 2

. (14)

Furthermore, functions formed in this way satisfy the requirements

A, B, and C so that in these cases (6) is also satisfied. It may also be

verified that here the constant C introduced in (4) has the value unity and

that the weighting factors ar—±\.

We remark finally that substitution of such functions in equations (10).

(11), (12), and (13) leads immediately to the results given by Muskhelishvili.

IV. Stacked Arrays

We suppose dislocations to lie in periodic arrays such as that illustrated

in figure 2 and that cur= ±l. We suppose further that the dislocations

are of screw character so that we may follow Louat [3] in his consideration

of the same problem and write the equation of equilibrium as

a\ f(z)—=-g(t). (15)
J I) z — t

Figure 2. Contour for singly periodic dislocation arrays.
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Toward the determination of the appropriate path function we recognize

that the weighting factors are here the same as in Muskhelishvilfs case

and so expect that k{z) will be the square root of a periodic function

(Period h) having simple zeros and infinities at and only at the ends of the

lines of integration. This prescription defines functions in which the

algebraic factors of (14) are replaced by hyperbolic sines, e.g., sinh

(x — a). Functions corresponding to the second and third members are

acceptable only in pairs since otherwise the number n introduced in

section III would be infinite. Thus, we are concerned only with the

case 7i = 0. With k(z) as defined the only inversion formula applicable is

(10) and the results given by Louat (loc. cit.) are immediately available.

Additionally, the restriction which he imposes, namely, that f(z) =f(x)
on all the lines of integration is seen to be unnecessary.

It remains to remark that for asymmetrical pile-ups the constant C
introduced is not one.

V. Periodic Arrays

Proceeding as in the last section we suppose dislocations to lie in

the doubly periodic array as illustrated in figure 3 and that a r = ± 1

.

FicURE 3. Contour for doubly periodic arrays.
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We again suppose that dislocations are of screw character and have

a\ f(z)—=-g(t). (16)
J I) z — t

We now expect that k(z) will be the square root of a doubly periodic

function having simple zeros and poles at the ends of the lines of integra-

tion. It is then natural to consider Jacobian elliptic functions.

Among such functions the function

cn{z,k)lsn{z,k) = P(z,k) (17)
Def

is of particular interest. It is characterized by periods 4& in the x-direc-

tion and 2K l in the y-direction. K and K l are defined by the equations

(18)K= P {(l-x2)(l-k*x2
)}

l '2dx
Jo

and

K l =
j

1

{(l-x2 ){l-(l-k2 )x2 }- l l2dk. (19)

P{z,k) has simple zeros at

z=(2m+l)K+ 2niK ]

(20)

and simple poles at

z = 2mK+ 2niK 1
(21)

where m and n are integers or zero. Thus, pole follows zero along lines

y— constant.

We now consider the function

_ cn(z-b)KIS-cn(z+b)Kle cn(a-b)Kle-cn(a + b)Klf m)U) ~ sn(z-b)K/f-sn(z + h)K/e sn(a- b)Kle-sn(a + b)K/f

When k is chosen such that K l = hKjf (vide fig. 3), L{z) is characterized

by simple infinities (poles) at and only at

z=±b + 2ml + 2iuh
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and simple zeros at and only at

z=± a + 2m/ + 2iuh

where m and n are positive or negative integers or zero. It then follows

by analogy that (L(z) )

l/2 = k(z) is the required path function.

As in section IV we are restricted to the case n — 0 and have from (10)

1 \cn(z-b)Klf-cn{z + b)Klf

tt
2AC2 [sn(z-b)KIS-sn(z + b)Klf

cn{a-b)Klt-cn(a + b)KI
' sn(a-b)KI{-sn(a + b)Klf

1 2

g(t)
cn(t-b)K//'cn(t + b)Klf

L r

cn(a-~b)KIS'cn(a + b)KltW dt

sn(a-b)Klf'sn(a + b)K/f J t
(23)

For the case of most interest in which g(t) = constant = cr, the integral

in (23) may be simplified by taking account of the periodic character

of the integral. We obtain

2o- f
2/+ih [cn(z-b)Klf-cn(z + b)K!fC2<f+ih

J ih€ J ih {sn(z-b)Klf-sn(z + b)Klf

cn(a-b)Klf'cn(a + b)Klfyi2

= (2)
&n(a-b)KIS'sn(a+ b)KIS}

This quantity which we have identified with the constant C introduced

in (4) can, it would seem, only be evaluated by numerical means. The
number of dislocations in a particular array is similarly difficult to de-

termine and will not be evaluated here.

VI. Screw Dislocation Pileups Adjoining a Phase Boundary

We suppose that screw dislocations lie in the plane y= 0 and are forced

against a barrier at the plane x=0 by an applied stress — g(x) and that

there is a discontinuity in elastic modulus at that plane. We suppose

further that the distribution is unbounded at the end point x=0 and

bounded at x= b.

We take account of the discontinuity in elastic modulus by using the

imaging properties of screw dislocations (Head [4]) and write the equation
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of equilibrium in the form

f~" dx f b dxfW— + fix) —=-g(t)
J-b X— t J a X — t

(25)

with/U) =±f(-x) and for t > 0 (26)

<*=
,

• (27)

pti and fJL 2 are respectively the shear moduli for the elastically isotropic

and semi-infinite bodies to the left and right of the boundary.

Here the weighting factors are not ± 1 and it is instructive towards the

determination of the path function to consider the contour integral

WI+1/2 (I?
'

'

; x >0, 0< n < i (28)
(z + 6)-'»(2-6) 1 /2 z-jc

with the contour shown in fig. 4. We find the relation

xm +>l'2 dxf° x in+1 ' 2 dx [>
Un /7Z7T

—
:

; \-

J- b (b-x) m(b-x)^ x-t Jo (b + xj'Hb-x) 1 ' 2 x
7T (29)

in which the two intervals of integration have been accorded different

weighting. This function is not the one we seek since it is not symmetrical

as required by (26). However, this result does suggest that the required

weighting can be obtained through the presence of a branch point of order

m at z = 0.

It is readily seen from symmetry that there can be no such branch points

at z= ±b. For analyticity we then require that the effect introduced on

following the contour past the point z=0 in one direction be removed on

passing it in the opposite direction. We note that this could be achieved if

the function were to invert on passing around the end point z=b. We
now note that the quantity

Vz 2 -b* (30)

changes sign in following the contour around z—b. Accordingly, we con-

sider the equation

B
I) H D

(31)
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whence we sec that for a branch point to exist at z= (), H — b. and that

/->=.v. We arc thus led to the function

b- \ b 1 b-Vb
b+\ b-

(32)

and thus as matter of preference to the path function

b + i\'z*-b-
"

/,<;)

b-iVz*-b (33)

Along the lines of integration k{z) the real part of k{z) behaves as required

taking the values indicated in figure 4.

\^ ith this trial path function we now proceed as before and consider

the quantity

--AC- \ b~iX z--b- I J«*
1

\b-iVt*-b 2 ) t-z
(34)

Figure 4. Contour for section 5.
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f(z) is the solution of (25) only in the sense that it is the complex function

which when integrated around the circuit D of figure 4 leads to real

integrals which satisfy that equation.

For the case — g(t) — cr we find in this way that

fix)
2A sin mir b=Vb-

(35)

This is equivalent to the result given by Tetelman and Barnett [5].

It may be verified by trial that these procedures also give solutions

when the applied stress is a function of position.
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SOME RECENT RESULTS ON DISLOCATION PILEUPS

J. C. M. Li

Materials Research Center
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Morristown, New Jersey 07960

A few results intended to illustrate the usefulness of orthogonal

polynomials and singular integral equations for the problem of dislocation

pileups are described. A simple method of solving a few special integral

equations is suggested. The usefulness of a Moutier cycle for the calcula-

tion of stress concentration is shown.

Key words: Dislocation pileups; Moutier cycle; stress concentrations.

I. Introduction

Eshelby, Frank, and Nabarro [1] showed the usefulness of orthogonal

polynomials for the problem of dislocation pileups. In a single-layered,

single-ended pileup of n dislocations with the first one locked in position,

the rest of the dislocations assume equilibrium positions which are zeros

of the first derivative of the nth Laguerre polynomial. Chou [2] found later

that, if the locked dislocation has a Burgers vector mb instead of 6, the

equilibrium positions are then given by the zeros of the ( az — 1 ) th gener-

alized Laguerre polynomial of order 2m — 1. Stroh [3] and Chou [2] were

both able to use the properties of the polynomials to obtain analytical

results for the stress field and strain energy of the pileups.

Leibfried [4], and Head and Louat [5] showed the usefulness of singular

integral equations in the problem of pileups. A simple method for obtain-

ing the solution is suggested here for a few special singular integral-

equations. The force exerted on the locked dislocation is calculated by

the application of Moutier's theorem [6].

II. Single-Layered, Double-Ended Pileups Without External

Stress

Eshelby, Frank, and Nabarro [1] also solved the following problem:

Between two locked dislocations at (±r/, o), let n — 2 dislocations of the

same Burgers vector assume equilibrium positions without the influence

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317. I, 1970).
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of any applied stress. The equilibrium positions were found to be the

zeros of the first derivative of (n — l)th Legendre polynomial. The force

exerted on the locked dislocation is ±n(n — l)A/4a where

A = (L[bi+bl+bl(l-v)]

for an isotropic medium and A = K e b
2
x -\- K nb%+ K s b

2
z for an anisotropic

medium with /jl, v, Ke , /<„, and K s all functions of elastic constants. The
problem is extended here to determine the effects of locked dislocations

with different Burgers vectors. Let m x b be the Burgers vector of the locked

dislocation at (a, o) and m 2 b be that at (—a, o). Then the equilibrium

positions are found to be the zeros of the (n — 2)th Jacobi polynomial of

orders 2m x
— 1 and 2m 2 — 1. The forces exerted on the locked dislocations

are now:

-2)(tt-3 + 2m, + 2m,) + 2m
4m

at (a, o)

and

(yi-2)(7i-3 + 2mi + 2m 2 ) +2ffi,m 2

4m.)
at (—a, o)

The stress field and energy can all be derived analytically. Results will

be sent upon request.

Instead of using discrete dislocations, the same problem can also be

solved for continuous distributions of dislocations of infinitesimal Burgers

vectors. The relevant integral equation is

f{x)dx
0 for any — a < t < a

and the solution is

f(x) = nlirVi

which is obtained by substituting x = a sin 6 and noting that ddj (t — a sin 6)

integrated from — 7r/2 to tt/2 is zero for any t
2 < a 2

. The strain energy

can be obtained by making a cut in the plane of the pileup from (—a, o)

to (R, o), where R is the size of the specimen, applying tractions on the

two cut surfaces to maintain the elastic state of the system and reversibly

removing the pileup. The result is simply

(n 2A/2) In (2R/a).
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The stress field can be obtained by contour integration and the results

agree with those of the case of discrete dislocations for large n.

III. Single-Layered, Double-Ended Pileups with External Stress

This problem is solved for the case of continuous distributions of

dislocations with infinitesimal Burgers vectors. The relevant integral

equation is

A solution for the case in which f(x) is unbounded at both (a, o) and

(—a, o) is

where (£, o) is a point at which /(£) is zero. This solution can be obtained

as before as follows: Since the integral equation is true for any £, it is

true for i=£. Subtract the two integral equations to obtain an integral

which equals zero. Then make a substitution of x= a sin 0 and remember

that d6/{t — a sin 6) integrated between — 77-/2 and tt/2 is zero for any

t
2 < a2

.

The numbers of dislocations with opposite signs are not equal to each

other. They are

The net number with one sign is then tf)crlA. In the case of £= 0, the

numbers of dislocations with opposite signs are each equal to aba/irA.

The strain energy is obtained by making a cut in the plane of the pileup

from (—a, o) to (R, o) where R is the size of the specimen, applying

tractions on the two cut surfaces to maintain the elastic state of the sys-

tem, and reversibly removing the pileup. The result is simply

for any — a < t < a.

f(x) = ah i~x
ttA Va 2 — x-

The force exerted on the locked dislocation can be obtained by using a

Moutier cycle: A cut is made in the plane of the pileup from (—a, o) to

{R, o) and the pileup is removed as just described. The cut is then made
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a little longer, from (—a — 28a, o) to (/?, o), and a new pileup is formed

without altering the position of J until the applied stress is again <x. Then

the locking agent is replaced by an external force and the pileup is reversi-

bly shortened to the original length. The total reversible work for the cycle

is zero. This gives the following forces at the locked dislocations:

a 2 b 2 (a-0 2l4aA at (a, o)

and
a 2b 2 {a + 0 2l4aA at (-a, o)

.

These results are believed to be useful in theories of yielding and

fracture.

IV. References

[1] Eshelby, J. D., Frank, F. C, Nabarro, F. R. N., Phil. Mag, 42,351 (1951).

[2] Chou, Y. T., J. Appl. Phys. 38, 2080 (1967).

[3] Stroh, A. N., Proc. Roy. Soc. A218, 391 (1953).

[4] Leibfried, G., Z. Physik 130, 214 (1951).

[5] Head, A. K., Louat, N., Austr. J. Phys. 8, 1 (1955).

[6] Guggenheim, E. A.. Thermodynamics (Interscience, New York, 1949) p. 78.



THE BEHAVIOR OF AN ELASTIC SOLID
CONTAINING DISTRIBUTIONS OF
FREE AND FIXED DISLOCATIONS

E. Smith

Department ofMetallurgy

University ofManchester

England

There are many situations in metal physics where the stresses acting on

fixed dislocations have an important bearing on a physical phenomenon,

and the paper derives a general expression relating these stresses when
fixed edge dislocations are contained within an infinite elastic solid in

which there are also free edge dislocations that occupy equilibrium posi-

tions.

Special cases are considered in detail, particular attention being given

to the situation where all the dislocations are of the same type, the free

ones having identical Burgers vectors b while there are two fixed disloca-

tions with Burgers vectors pb and qb; all the dislocations lie in the same

plane within an infinite solid. This is the most general model for which the

stresses on each dislocation and also the equilibrium positions of the free

dislocations may be determined analytically. It is indicated how the model

degenerates into all the others that have been discussed analytically in

terms of classic polynomial functions.

The results are briefly discussed in relation to the problem of cleavage

crack nucleation in crystalline solids.

Key words: Crack nucleation; dislocations-elasticity; internal stresses.

I. Introduction

The inhomogeneous nature of plastic deformation in crystalline solids

is intimately associated with many situations in metal physics, and in

considering these theoretically, idealized models are often employed and
consequently the dislocations are usually assumed to be linear, being
either entirely edge or screw in character. In conducting such procedures,

the majority of the dislocations in the system are free to move of their own
accord, while a limited number are fixed in position by some mechanism.

Fundamental Aspects of Dislocation Theory, J. A. Simnws, R. de Wit, and R. Bullough.
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970). lol
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The free dislocations occupy equilibrium positions such that the total

energy of the system is a minimum, and for each equilibrium configuration

non-zero stresses act on each fixed dislocation. Such stresses are important

in practice since they may be high and consequently play a major role in

localized phenomena such as, for example, crack nucleation. This paper

gives consideration to the magnitude of these stresses when edge disloca-

tions, all being of the same type, are contained within an infinite solid, and

section II derives a general expression relating the stresses acting on the

fixed dislocations; some simple special cases are considered in section III.

The most general situation for which these stresses may be determined

analytically (section IV) is if there are two fixed dislocations with Burgers

vectors pb and qb together with a number of free dislocations of Burgers

vector 6, all the dislocations lying in the same plane within an infinite

solid, which is not subject to an applied stress. The equilibrium positions

of the free dislocations are then related to the zeros of the Jacobi poly-

nomials, and it is indicated how the model degenerates into all the others

(1-4) that have been discussed analytically in terms of classic polynomial

functions. Section V briefly discusses the case where there is an externally

applied stress; in this situation, of course, it is impossible to discuss the

problem analytically. Finally, the results are discussed in relation to the

problem of cleavage crack nucleation, with particular reference to the

effect of a free surface on the number of dislocations required for fracture.

II. General Theory

Let an infinite elastically isotropic solid (shear modulus /x and Poisson's

ratio v), which is subject to the applied shear stress p X y = cr
A

, contain

edge dislocations that are parallel to the z axis and have Burgers vectors

parallel to the Jt-axis (positive dislocations have their associated extra

material in the positive y-direction). Moreover suppose that n L fixed

dislocations with Burgers vectors b\ are situated at the points L*, while n F

free dislocations with Burgers vectors b[ occupy the equilibrium positions

Fu

The free dislocations occupy equilibrium positions when the total

energy of the system is stationary, a situation which corresponds to the

requirement that the force acting on each free dislocation is zero. Thus
if p Xy {A —> B) is the shear stress at B due to an edge dislocation situated

at A, the equilibrium positions of the n F free dislocations are given by

the following set of n F equations:

<r
A +2 P*w (*J^ Fd +2 P'* F

< )
= 0 (D
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for i = l, 2 . . . n F
. Since the stress at a point (x, y) due to an edge

dislocation of Burgers vector b situated at the origin is

pxy = Kbx(xi-y*)l(x* + y*y2

where K= /u/27r(l — v) , it immediately follows that

bfPxy(Fj^> Ft) +b*Pxy (Fi-> Fj) = 0 (i *j)

btpxyiLj-* Li) + bip xy (L i
^L

j)=0 (i *j)

btPxy(Fj-+Lt)+bj
,

pxy (Li-+ Fj)=Q (all i and;

whereupon multiplication of each of the n F equations (1) by bf and

summing, using relation (2). gives

<r*Y,br+j,j,brp, w(Lj^F t)^0 (3)

1=1 j=i

The p xy component of shear stress at the site of the fixed dislocation

at Li due to the remaining fixed dislocations, the free dislocations and

the applied stress is

Si =0-^+2 PsyiFj-^Li) + 2 Pxy (Lj^Li) (4)

for i= 1, 2 . . . n L
, whereupon multiplication of each of the n L equation;

(4) by b[ and summing, using relations (2) and (3), gives

2 m, 2 (5)

Special cases of this general relationship will be considered in the subse-

quent sections.

III. Some Simple Special Cases

III. 1 . One fixed dislocation

If there is a single fixed dislocation with Burgers vector b\ together

with (n— 1) free dislocations, relation (5) gives the shear stress acting
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on the fixed dislocation as

Si = 0-^+^- V M (6)

1

reducing, when the (n — 1) free dislocations have the same Burgers

vector b, to

(tt-l)6cH
Si= .<H H (7)

The validity of this result does not necessarily depend on all the dis-

locations lying along a single plane but only the existence of an equilib-

rium situation; its range of application does, however, include the case

(with cr and b[- both positive, and the fixed dislocation situated at x = 0,

y= 0) where all the free dislocations are situated on the plane y= 0 (i.e.,

along the negative x axis). Relation (7) is then the result derived by Chou

[3, 4], and for the special case where 6f=6, that obtained by Eshelby,

Frank and Nabarro [1].

If all the free dislocations occupy equilibrium positions along a single

plane (not necessarily that containing the fixed dislocation), the validity

of relation (7) is independent of their mode of distribution; thus they may
either be discrete as envisaged so far in this paper, be in the form of super-

dislocations with Burgers vectors whose sum is (n—l)b, or be smeared

into a continuous distribution of infinitesimal dislocations with a total

Burgers vector (n — l)b.

III. 2. Two fixed dislocations

If there are two fixed dislocations with Burgers vectors b[ and b!> to-

gether with (71— 2) free dislocations, expression (5) shows that the shear

stresses Si and S 2 acting on the fixed dislocations are related by the

equation

(b{S l + bkS 2 )=(TA
(n-2)

(8)

reducing, when the (n — 2) free dislocations have the same Burgers

vector b, to

(MSi + WS 2)=cH [(«+#) + (7i-2)&]. (9)

Again this result does not rely on all the dislocations lying along a

single plane, but of course it encompasses the situation where this is the
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case. Thus for cr. b{, bh all positive and all the dislocations situated on

the plane y=0 with the fixed ones at x=±a, equilibrium configurations

exist with the free dislocations contained within the range — < x < + a:

relation (9) is then true irrespective of how the free dislocations partition

themselves between the intervals — x < x < — a and \x\ < <7, although the

actual magnitudes of Si and5 2 are dependent on the method of partitioning.

For the symmetric situation where all the dislocations have the same

Burgers vector 6, and are situated symmetrically on each of two parallel

planes, relation (9) gives the shear stress on each fixed dislocation as

n<jA \2. This particular model was discussed in detail by Ichikawa and

Yokobori [5] (see also Smith [6]), and in this respect the present paper

is a generalization of their work; it is important with respect to the prob-

lem of cleavage crack nucleation by slip bands. For if it is assumed that

nucleation occurs when the stress on a fixed dislocation attains some criti-

cal value (see for example Cottrell [7]), the result implies that for a given

number of dislocations, the necessary applied shear stress is markedly

dependent on the mode of distribution of the dislocations in the slip band:

thus the stress required if the dislocations are situated on two planes is

twice as large as when they are situated on a single plane.

IV. The Special Case Where the Applied Stress Is Zero, All the

Dislocations Are on the Same Plane, Two Being Fixed and the

Remainder Having the Same Burgers Vector

A particular case of the model of section III. 2. arises when the applied

stress is zero, all the dislocations lie along the same plane, two being fixed

and the remaining (n — 2) have the same Burgers vector b: relation (9)

then shows that the stresses Si andS 2 on the fixed dislocations are related

by the equation

b[Si + b!>S> = 0. (10)

In this situation the magnitudes of Si and S 2 can be determined analyti-

cally, together with the equilibrium positions of the free dislocations.

This is the most general model for which such an approach is possible,

but hitherto the stresses on the fixed dislocations have not been deter-

mined, although Head and Thomson [2] have indicated that the equilib-

rium positions of the free dislocations are related to the zeros of Jacobi

polynomials.

Suppose that the (n— 2) free positive dislocations of Burgers vector

b are situated at the points x = x\ (z = l, 2, . . . n — 2) along the plane

y=0, while the fixed dislocations of Burgers vectors b[= pb and bk= qb
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are situated respectively at x = — c/, y= 0 and x — + a, >= 0. The free

dislocations will be in equilibrium if

Px (xi-Xj)
+ A

{xi + a) (xi — a)
0 (11)

for i=l, 2, . . . (n— 2), with A = fxbl2rr{ 1 — v) ; substituting kj= Xila

so that the equilibrium positions are represented in dimensionless terms,

relations (11) become

n-2
i

2 (A.,- — \j) (X,+ l) (X,— 1)

= 0. (12)

for i=l, 2, 3 . . . (n-2).

Following Eshelby, Frank, and Nabarro [1], and introducing the poly-

nomialf(ki of degree (n — 2) and whose zeros are X,(i— 1, 2 . . . (n — 2)):

it immediately follows that /(X) satisfies the differential equation

(13)

roo+2 (X+l) (X-l)
/'(X) + <?(*, X)/(X)=0 (14)

provided that ()(ft, X) is chosen so that /(X) has a polynomial solution of

degree {n — 2) with real and distinct roots, while Q(n, X) does not have a

pole at any of these roots. The appropriate value for Q{n, X) is

ni x\
-("-2)(rc-3 + 2p + 2<?)

Q(n, X) =
(X2 -l) ( *

when equation (14) reduces to

(l-k 2)f'(k)+2[(p-q)-(p + q)k]f(\)

+ {n-2)(n-3 + 2p + 2q)f(X)=0. (16)

This equation is satisfied by the Jacobi polynomial Fj^S"
1

'
2p-1) (X), where-

upon the (ra — 2) free dislocations occupy the equilibrium positions

#j= ai>i the v\ being the (/i — 2) zeros of 2/>_1)
(^).
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The Pay component of shear stress at a point (x, 0) (not coincident

with the site of a free dislocation) due to the free dislocations is

with k = x/a. Accordingly for the present model

F[X)
a' P^<^(k) (18)

and, by evaluating this expression and adding the stress due to the fixed

dislocation at x——a. the total shear stress on the fixed dislocation at

a is

S(a)= ^ (19)

Similarly the total shear stress acting on the fixed dislocation at x =— a is

s( a)
-A[(n-2Y+{n-2)(2p + 2q -l)+2pq]

4>pa

Expressions (19) and (20) for the stresses on the fixed dislocations clearly

satisfy the general relationship (10).

It has been implicitly assumed so far that p and q are both positive, when
an equilibrium configuration is possible only if all the free positive dis-

locations lie between the fixed dislocations. However, if either p or q

(but not both) is negative such that (p-\- q + n — 2) < 0, equilibrium con-

figurations are possible with all the free dislocations lying respectively

in the intervals x > a and x < — a, and expressions (19) and (20) are still

valid. In such situations the free dislocations are situated where Xi= avi

the Vj still being the (n— 2) zeros of the Jacobi polynomial P^HT 1
'
2/'~ n

([v )

.

but with |v/|> 1. When p and q are both negative, no equilibrium con-

figuration is possible.

The results for all the other models (1, 3, 4) that have been discussed

analytically will now be deduced, by observing the special properties of

Jacobi polynomials. If p = q=l, the model reduces to that of/? identical
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dislocations of Burgers vector b, two of them being fixed at x = ±a, and

the free dislocations lie within the range \x\ < a being situated at the

points Xi = aui, where the m are the (n — 2) zeros of P'n -\(u) , the first

derivative of the (n — l)th Legendre polynomial, while the stresses on the

locked dislocations are ±An(n — l)/4a; these results have been obtained

by Eshelby, Frank, and Nabarro [1]. If p = q and p and a both tend to

infinity such that 2Ap/a'2 equals a constant C, the model becomes that of

(n — 2) free dislocations subject to the applied stress — Cx, and the free

dislocations are situated at the points x\ = Wi(A/C) 112 where the w% are

the (n — 2) zeros of Hn-i{w)., the (n — 2)th Hermite polynomial, a result

that is also in accord with that derived by Eshelby, Frank, and Nabarro [1].

If a new system of co-ordinates is introduced such that x= x+ a the stress

on the fixed dislocation at x = 0 is given by relation (20), while the free

dislocations occupy the positions x — a~\-avi where the v\ are the (n — 2)

zeros of the Jacobi polynomial p(2?-i,2p-i) However, if q and a both

tend to infinity in such a way that Aqj2a is equal to o% the model reduces

to that of (n — 2) free dislocations of Burgers vector b forced against a

fixed dislocation of Burgers vector pb by an applied shear stress — cr,

and the free dislocations occupy the positions x\ = p\A\2v the p, being

the (n — 2) zeros of the generalized Laguerre polynomial LtfP^Kp) »

while relation (20) gives the stress on the fixed dislocation as — (n—2+p)crlp.

These results agree with those derived by Chou [3, 4] and also with

those obtained by Eshelby, Frank, and Nabarro [1] for the special case

when p = 1; in this latter situation the free dislocations are situated

at the points x i
= yifiAI2a where the ^ are the (n — 2) zeros of L'n-iiV)

the first derivative of the (n — l)th Laguerre polynomial.

V. Discussion

The previous section discussed the situation where dislocations of

Burgers vectors pb and qb are fixed respectively at x =— a, y= 0 and

x = -\-a, y=0, while (n — 2) free dislocations lie along the plane y= 0,

there being no applied stress. If p and q are both positive, all the free

dislocations must lie within the interval \x\ < a, but if either p or q (but

not both) is negative such that (p + q + n — 2) < 0, an equilibrium con-

figuration is possible with all the free dislocations situated outside the

interval \x\ < a; in all cases, however, the stresses on the fixed dislocations

are given by expressions (19) and (20).

The situation becomes more complicated when there is an applied shear

stress, for the equilibrium positions of the free dislocations are then not

given by the zeros of a classic polynomial function, and the stresses on

the fixed dislocations cannot be determined analytically. If p and q are
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both positive and the applied shear stress is p./// = cr
l =— cr where cris also

positive, then writing /3=(ralA and proceeding as in section IV, it follows

that the equilibrium positions of the (n — 2) free dislocations are given

by X( = akj(i= 1, 2, . . .n — 2) where the X; are the zeros of the function

/(A) satisfying the differential equation

/(X)+2^-
X+l) (X+l)

f(k)+R(n, X)/(X)=0 (21)

provided that R{n, k) is chosen so that /(X) has a polynomial solution

of degree (n — 2) with real and distinct roots, while R(n, k) does not have

a pole at any of these roots. The appropriate value for R(n, k) is

R(n>k)=^0^} (22)

when equation (21) reduces to

(l-V)f"(k)+2[(p-q)-p-(p + q)k + (3ki]f(k)

+ [<D - 2p(n - 2)X]/(X) = 0 (23)

For the special case that arises when p = q=l and all the dislocations

in the system have the same Burgers vector, relation (23) reduces to

(l-X2)/'(X)+2[-/3-2X +
i
8X2F(X)

+ [$ -2/3(7i- 2) X]/(X)=0, (24)

an equation arising in the theory of the ionised hydrogen molecule [1],

and for which there is an extensive literature (see, for example, a recent

review by Buckingham [8] on the subject). Introducing a new variable

such that w= (X — 1), relation (24) becomes

w(w+ 2 )/' (w) + 2 [2 + 2w - 2(3w f3w
2
]f' (w)

+ [2(3(n-2)w + X]f(™)=Q- (25)

There are clearly (n—l) values of x lor which equation (25) admits of a

polynomial solution of degree (n — 2), each value of x corresponding to a

certain number of dislocations being contained within the interval \x\ < a
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(i.e., — 2 < w < 0), the others lying within the range x > a (i.e., w > 0).

For example, one value of x corresponds to the case where all the free

dislocations lie within the interval \x\< a, while another corresponds to

the situation where they all lie within the range x > a. In all cases f(w)

can be expressed in the form

f(w) = 2 amwm (26)

and since the stress at a point (jc, 0) (not coincident with the site of a free

dislocation) due to the free dislocations is Af'(w)/af(w), it immediately

follows from relations (25) and (26) that the total shear stress on the fixed

dislocation at x — ^a is

S{a)=-t+ Ta-° ,27)

while that acting on the fixed dislocation at x~— a is

S^^=ta-i- {n-^- (28)

Expressions (27) and (28) for the stresses on the fixed dislocations clearly

satisfy the general relationship (9). From physical considerations it is

clear that the greatest value of x corresponds to the case where all the

free dislocations lie in the range x > a, whereas the lowest value describes

the situation where all the free dislocations lie in the interval |#|<a.

The problem therefore resolves itself into determining the values of

X in terms of /3, but the general situation for an arbitrary number of free

dislocations is beyond the scope of this paper. It will be considered in a

subsequent communication when the model is applied to a discussion

of the flow stress of a solid containing ordered particles. However, the

case where there is a single free dislocation may be immediately dis-

cussed, for then n = 3 and equation (25) gives

X = 2(/3-l)±2(/32 +l)^ (29)

and the stresses on the fixed dislocations are given by relations (27) and

(28) as
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and

S(a)=-

S(-a) =

(ff-l)
,

(j8
2+I)^

2 ~ 2

(/3-1)
,

(^+1)1/2

2
_

2

2a
cr

2a
2cr

(30)

(31)

the positive and negative signs corresponding respectively to the cases

where the free dislocation lies within the ranges x > a, and \x
\

< a; is

equal to era/A.

The validity of the general expression (5), and consequently its applica-

tion to the associated special cases, depends on all the dislocations being

of the same type and the fact that pxy (A^> B) equals — pxy (B^A),
where pxy (A^> B) is the stress at B due to a dislocation of Burgers vector

b situated at A; as illustrated in section II the latter condition is clearly

satisfied when a dislocation lies within an infinite isotropically elastic

solid. For the special case where n similar dislocations are forced by an

applied shear stress cr
4 against the leader (which is assumed to be fixed

by some mechanism), the stress acting on it is ncrA (see relation (7)).

The same result is obtained for edge dislocations piled up on a plane

parallel to y— 0, and lying within a semi-infinite solid bounded by the

surface y=0, provided that their Burgers vectors are parallel to the

x axis; in this case the pXy component of shear stress at the point (x, ~h)
due to a single positive edge dislocation of Burgers vector b situated at

(X, -h) is

Pxy
fib

2(1

1 (x-k)
(x-k) [4/*

2 + (x-X)] 2

I2h2 (x-k)
[4/i 2 + {x-k) 2

]
2 [4A 2 + U-X) 2

]
:

(32)

and pXy(A-^B) =—pxy (;
B—>A) provided that A and B lie along the same

plane. The same state of affairs exists when dislocations lie along a

single plane within an infinite slab with faces parallel to the x axis, pro-

vided the Burgers vector of the dislocations is parallel to this axis. How-

ever, the ncr A result is not valid when the dislocations have a component of

Burgers vector that is normal to the slab faces, or indeed in any situation

where pxy {A—>B) ^ — pxy (B^A) . Thus assuming that cleavage crack

nucleation occurs when the stress on a fixed dislocation attains a criti-

cal value (7), it is concluded that crack nucleation in the vicinity of a sur-

face is dependent on the orientation of the slip plane that is responsible

for nucleation.
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THE ELASTIC INTERACTION BETWEEN GRAIN
BOUNDARIES AND SCREW DISLOCATION

PILE-UPS

M. O. Tucker*

Department ofPhysics

University ofSurrey

Guildford, Surrey, England

The configuration of an array of parallel infinitive straight screw dislo-

cations, in equilibrium under a constant applied stress, and piled-up on a

plane inclined to a grain boundary at an arbitrary angle is considered. The
model used for the grain boundary is the plane interface between two

elastically anisotropic half-spaces welded together. Using this approxima-

tion of a continuous distribution of infintesimal dislocations the integral

equation expressing the equilibrium conditions is solved using a Wiener-

Hopf technique and approximate expressions are presented for the

stresses near to the tip of the array when the dislocations are parallel to

orthotropic symmetry axes in each half-crystal.

Key words: Anisotropic elasticity; dislocations-elasticity; dislocation pileups; grain

boundaries.

I. Introduction

To investigate the propagation of plastic deformation and the nucleation

of fracture at grain boundaries in polycrystalline aggregates, a suitable

elastic model of a piled-up group of coplanar dislocations at interfaces is

required. The interaction between an infinite straight dislocation and a

plane boundary separating two isotropic half-spaces of different elastic

constants was derived by Head [1, 2]. However, this analysis can only be

applied to boundaries between different materials, or different phases of

the same material, and not to grain boundaries. Since the difference in

elastic properties of neighbouring grains arises solely from their relative

*Now at Central Electricity Generating Board. Berkeley Nuclear Laboratories. Berkeley.

Gloustershire, England.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit. and R. Bulloujrh.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970). 1 g3
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orientation, Head's model must then be replaced by two elastically aniso-

tropic half-spaces joined by a plane interface. The solution to this problem,

for materials exhibiting the most general elastic anisotropy, has been given

by Tucker and Crocker [3] and Tucker [4].

Using the approximation of a continuous distribution of infinitesimal dis-

locations Barnett [5] obtained the stress field and configuration of a group

of coplanar screw dislocations in equilibrium under a constant applied

stress, piled-up perpendicular to a plane boundary in an elastically iso-

tropic material. This solution was obtained using an iterative technique

based on the inversion theorem of Muskhelishvili [6] for singular integral

equations. More recently Chou and Barnett [7] have extended this solution

to the case when the materials on either side of the interface are elastically

anisotropic, provided that they have high symmetry in the direction of the

dislocation line. Kuang and Mura [8] have found by means of a Wiener-

Hopf technique the equilibrium distribution of edge dislocations piled-up

perpendicular to a plane boundary between two isotropic half-spaces.

Their results do not appear in a closed form however, and this prohibits an

algebraic determination of the stresses due to the pile-up.

In the present paper the calculation using a Wiener-Hopf technique of

the equilibrium distributions of screw dislocations piled-up at angles other

than 90° to a plane boundary in an anisotropic solid is discussed. The form

of the solution obtained allows the stresses near the tip of the array to be

expressed in a simple form.

II. Dislocation-Boundary Interactions in Anisotropic Materials

Tucker [4] has presented exact expressions for the force experienced

by one of a pair of infinite straight dislocations, of arbitrary Burgers vector,

lying parallel to each other and to a plane boundary in an elastically an-

isotropic bicrystal. The results are valid for composite materials consisting

of two different anisotropic half-spaces which are either welded together or

may slip freely relative to one another, and also for a single half-space

bounded by a free surface. Since in each case the materials are assumed to

exhibit the most general elastic anisotropy, the expressions for the force

on the dislocation contain complicated functions of the 21 independent

elastic compliance constants Sijki, and are too lengthy to be included in the

present paper. However, the nature of this force may be approximately

described in terms of "image" dislocations, provided that the anisotropy of

the component materials is not very large.

Consider two dislocations labelled (1) and (2), having Burgers vectors b(1)

and b(2) respectively, situated on one side of a plane boundary, as shown in

figure 1. The force on dislocation (1) in the presence of the boundary is
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approximately the same as that due to (2) and to the image dislocations (1')

and (2') when the boundary is absent and the solid homogeneous. The
Burgers vectors b(r) and h{2

'

] of the image dislocations depend upon b (1)

and b(2) respectively, the elastic properties of the two component half-

spaces and the type of boundary joining them.

An elastically anisotropic medium is termed orthotropic if there exists a

set of rectangular cartesian axes 0^- such that using the reduced notation

512, 5i3 and 523 are the only non-zero off-diagonal elements of the matrix of

compliances. If, in the above problem, material (I) is orthotropic and ori-

ented so that the dislocation lines and the boundary are parallel to the axis

0*3, the complexity of the solutions to the boundary-value problems is

greatly reduced. In particular, when the dislocations are of pure screw

type the expressions for the forces they experience may be written in a

form resembling those obtained from isotropic theory as given by Head [2],

even in the most general case when medium (II) possesses no symmetry

elements and therefore the elements Sy are all independent and non-zero.

U')
(id

(2')

(I)

b<
2

> Vu>
/

/

/

/

boundary

FIGURE 1. The approximate representation of the interaction of one of a pair of dislocations.

(1) and (2), of Burgers vectors ba) and b (2) respectively, with a plane boundary separating
two elastically anisotropic half-spaces. The undislocated material in region (II) may be
replaced by the material in (I) containing image dislocations (1') and (2') of Burgers vectors
b (1 '> and b (2 '».
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FIGURE 2. The array of n right-hand screw dislocations on the plane £1 =0 inclined at an

angle {tt/2 — i// — to the plane of the welded boundary between two elastically anisotropic

half-spaces. The ith dislocation of the array cuts the plane of the figure at the point (0, .

Consider an arbitrary array of n parallel right-hand screw dislocations

lying on a single plane inclined at an angle (tt/2 — i// —
<f>) to the welded

boundary between two anisotropic half-spaces, as shown in figure 2. In

the following analysis quantities pertaining to media (I) and (II) will be

indicated by superfixes (I) and (II) respectively. Material (I) is assumed

to be orthotropic relative to axes Ojc, , and the dislocations arrayed on the

plane Of i
= 0 and lying parallel to 0jja= 0xa. If the jth dislocation cuts

the £.3 = 0 plane at (0, f£**), then the ^-component of the force it experi-

ences due to the other n — l dislocations takes the form

x
2
cosf = x

1
sin¥

elded bound ery
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where

X = ^ arctan {2i7
(I) (sin (/) cos V'

2
cose/) sini//) cos (4>-\-ijj)

X [i7
(1)

cos'- + — (sin(/) cos t/"
2

cos </> sin i//)
2
] }

_1
, (la)

v
O= [sfflWlsjjg]- 1!* and G^= [4?4?]" 1/2

-

The constant K, and its complex conjugate K, are complicated functions

of the elastic compliances of both half-spaces.

III. Dislocations in Equilibrium Under an Applied Stress

To find the equilibrium configuration of n screw dislocations of equal

strength b when they are piled-up against the boundary under the action

of an applied stress 023=— (T
A

, referred to axes Of,-, it is convenient to

represent the array approximately by a continuous distribution of in-

finitesimal dislocations whose total Burgers vector between f2 and

f2 + 2 is hg{^i)d^2^ where b is the magnitude of the Burgers vector of

a single dislocation in the discrete model. The condition for equilibrium

of the array is that the net force acting on every dislocation is zero. By
assuming that the frictional stress opposing the motion of the dislocations

may be represented by a constant stress 023= crF , from eq (1) the equi-

librium conditions may be written

= 27Tcr[G^b~]-' (2)

where cr=cr A — <j F and L is the length of the pileup.

The singular integral equation (2) has been solved [9] using a Wiener-

Hopf technique with Mellin transforms for the case when K is real. The
solution for is a function of the roots a of the equation

COS TTOL-\- K COS k(X= 0 (3)

which in general are infinite in number and may only be obtained nu-

merically. However, in the special cases when A. = irpq~ x
. where p and q

are integers, the roots of equation (3) occur in the form

fn= 6, 1,2,...
±[9(2w+1)±

^(/=l,2, . . .„«

369-713 OL - 71 - Vol I - 13
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where a, are the q values of a in the range 0 < a-, < q. The periodicity of

a in these cases permits the distribution function g{^>) to be expressed in

terms of generalised hypergeometric functions 2qF2Q-i [ (£2/L) 2
9] . It is

convenient to define the functions

2qT->q-\{aj; bi\ x) = xaj-Hq (aj; 6<)

X 2qF2q-\
aj + 2i-S)/2q; 2i -2)/2q;

x2q

jijlq; (2q+ aj -bi)'/2q; (aj.+

b

t)' I2q;

where

tq (aj; b i )
= {2q)^jY{l-aj!q)\_Y(2-aj)]^

xf[ {TKbi-aA^ni-ibi+ aj)^]

In the function 2qF2q-\ single terms such as (aj + 2i — 3)/2q represent a

sequence of q terms obtained by placing i=l, 2, . . q, and dashes

indicate that terms for i=j are omitted. The distribution function may
now be written

+ 2g7V 1 (2<? -aj ; ai;ft/L)}, (4)

where

^=(27r)-»*f[{r[(l + 2^-a < )/2g]r[(i + ai )/2rf}.

In the limiting case when \=0, corresponding to a pile-up perpendicular

to the plane boundary, eq (4) reduces to

g(£2 )
= 2o-(G^by)- 1 sinh^TT- 1 sin" 1 y cosh" 1

(L/f 2 ) ]

,

where y= [ ( 1 — K)/2] 1/2
, which is the result previously obtained by

Barnett [5]. The number of dislocations, n, contained in the pile-up is

given by

n=j\(Odi = 2aL(G^b)- l (^y-qqA
[f[ sin (77^/2?)

j'*'
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C*2

/

FIGURE 3. Schematic illustration of the array of screw dislocations in equilibrium under

constant applied stress, in the example discussed in Section III, showing the relationship

between the rectangular cartesian axes 0£;, Oxt and the cylindrical polar coordinates (r, d, z).

To illustrate how the stresses in the vicinity of the leading dislocation

may be calculated consider the simple case of two semi-infinite materials

(I) and (II) whose elastic constants have orthotropic form referred to the

same set of axes Qjcj, and which are welded together along the plane

x-) = 0. The dislocations are distributed on the plane fi = 0. which is in-

clined to the plane X\=0 at an angle (/>, as shown in figure 3. The value

of \ is obtained by placing i//= 0 in eq (la). The solution to this problem

for 4> = 0 has been obtained by Chou and Barnett [7].

Using the system of cylindrical polar coordinates r. 6, z(= x3 ) the

stresses at points (r, 6) in medium (II) due to a single screw dislocation

at (0, f •?) may be most simply expressed in terms of the functions

R = rP(6)P(<b)-'

and

£ = arctan{ [t/
11

' cos $ sin 6 — r)
{l) sin </> cos 6]

X [cos <b cos 0-E 7)
(iyn) sin <b sin BY 1

}
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where

P(S)= [cos 2 0+7^ sin 2
^]

1 / 2
,

P(0) = [cos 2
(f) + t?

(,)2 sin 2 0] '/2
.

Clearly R = r and £=# — <£ when the materials are isotropic. If

cos 6= (cos2 0- V 1
)
2
sin2 d)P(6)-\

sin 6'= (1-V n >
2

) sin 0 cos 6P{6)-K

cos /3= (cos 0 cos (/>-77 (V n)
sin 0 sin c/))P(0)- 1

and sin /3' = (sin 0 cos $ — r)
{l)

r)
{U) cos 0 sin 0)P(0)"1

, then

o-,, = G< 1 ^(27T)- 1 (l + A')[/? cos 8-fa cos£][f|-2£>/? cos 5+

o-fe = -0% ( 2tt)
- 1

( 1 + K ) [R sin 8' - & sin £'] [g - 2f27? cos £+tf 2
]
-i

where

[G(,I, -r;( , >][G( II) +G< 1 )]-i.

The stress component <j*
z due to the entire pileup is calculated from the

integral

Jo

and a similar expression holds for <Jq
z . Although the forms of the resultant

stresses are complicated, near to the tip of the array, where r<^L, they

are given by

cr* ~S(/?/L)«i-i{cos 8 sin [(a x
- 1) (tt- £)]

— cos [3 sin [ai(7T— f)]}(sin £ sin 7rai)
-1 -hCi (5a)

a* ~-5(/?/L)« 1
- 1 {sin 5' sin [(«! - 1) (tt- £)]

— sin /3' sin [0:1(77 — £)]}(sin J sin Tra x
)- 1 + C2 (5b)

where

S= 2ir<r(\ + K)Atq(a1 \ at).

ai is the smallest of the roots a,-, and Ci and CL> are functions of
<fi

and 0,

but independent of r.
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Discussion

The stresses ahead of a blocked slip band vary with r, the distance

from the leading dislocation, as r~m , where the value of m depends on the

size and the elastic nature of the obstacle. If it is simply a fixed disloca-

tion m=I/2, whereas if it is a plane boundary m is a function not only

of the elastic constants of the materials each side of the boundary, as

shown by Barnett [5] , but also of the inclination of the slip band to the

boundary, as demonstrated by eqs (5a) and (5b) in the present paper.

The solutions presented above are of use in deciding whether a slip

band will initiate plastic deformation in the adjacent grain or nucleate

fracture by coalescence of the leading dislocations. Furthermore the solu-

tions apply to a stationary crack loaded in anti-plane strain and can be

used to formulate a criterion for the propagation of fracture in the adja-

cent grain. Cracks and slip bands inclined at small angles to the boundary

can induce intergranular fractures and grain boundary sliding, particu-

larly at high temperatures, and the present paper provides for the first

time a realistic model suitable for investigating these effects.
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Discussion on Papers by J. A. Simmons and R.
Bullough, and D. M. Barnett.

BULLOUGH: We observe that Lie and Koehler can get an accurate

representation in trigonometric series for the cubic Green's ten-

sor—even for lithium — in a very few number of terms. 1 We can replace

their trigonometric functions by spherical harmonics and the same

number of finite terms is still required. Having done that, one is then in

a position to calculate a very beautiful closed expression for the incom-

patibility source tensor. I am sure you didn't fail to recognize the beauty

of the final slide of Dr. Simmons' talk. 2

KOEHLER: The convergence difficulty associated with the spherical har-

monic series can be clarified as follows: If one converts the double Fouri-

er series into spherical harmonics the
(f>

terms are similar, but the 6

dependence gives difficulty. For given
(f>

dependence (say cos 4$) the

coefficient associated with a given Pn
m (cos 6) contains contributions

from all terms of the double Fourier series associated with cos 4c/>. Thus,

for example, the coefficient ofP4
4 (cos 6) includes contributions from the

terms cos 4c/>, cos 4(/> cos 20, cos 4(/> cos 40, cos 4(/> cos 66, etc. Since

lower order double Fourier series terms give contributions, it is not sur-

prising that convergence of the spherical harmonic expansion is bad (see

E. Hobson, Theory of Spherical and Ellipsoidal Harmonics, p. 147,

Cambridge University Press, 1931).

BULLOUGH: I'm afraid I don't understand your point. I merely replaced

the trigonometric terms in your series by spherical harmonics; it's

exactly the same series.

KRONER: I have one comment on Dr. Barnett's paper and one on Dr. Sim-

mons' paper. I do not know any theory in mathematics which states that

any function can be better developed in terms of spherical harmonics

than in trigonometrical series or power series. I think it depends on the

circumstances, so I can believe that in some situations the double

trigonometric series are better than the spherical harmonics, but I am
quite sure that the spherical harmonics are better in other situations.

Also, I would like to say that in the spherical harmonics expansion which

was used by Burgers and in my first paper, one should use, of course,

only the spherical harmonics of cubic symmetry in this case, and then

1 Lie, K.-H. C, and Koehler, J. S., Adv. in Phys., 1 7, 421 (1968).
2 This slide gives an expression for the spherical harmonic expansion of the incompatibility

source tensor in terms of a spherical harmonic expansion of the elastic Green's tensor. See

Simmons, J. A., and Bullough, R., Theory of Defects and Stress Sources in Linear Anisotropic

Elasticity, to be published.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ, 317, I, 1970).
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it is exactly the same series as used by Professor Bross which he called

cubical harmonics. This is my comment on Dr. Barnett's paper.

Concerning the paper of Drs. Simmons and Bullough, I worked on this

incompatibility problem in 1954 and I was very interested in your paper.

[At this point Professor Kroner went to the board and gave a brief ex-

position of his techniques as contained in the papers: Z. fur Phys., 139,
175 (1954); 141, 386 (1955).] I can derive your results in such a way:

Consider the sixth-order differential operator/( V )= det (Cykidjdi) where

djki is the Hookean tensor of elasticity. Let us introduce a sixth-order

stress function tensor \Jjki from which the stress tensor o-y is derived by

using a certain tensorial differentiation of sixth order: (iij = Xijki ( V) ijjki.

We can determine Xyki ( V) in such a way that the equations dktyki
= 0,

diCTij = 0 and /( V ) V 2^ = 17^ hold simultaneously. Here 7]ki is the incom-

patibility tensor.

By using the well-known Fourier representation of the Green's function

of the last equation, it can easily be shown that this function gives rise to

the solution of Simmons and Bullough.

In the last equation, the incompatibility problem has two parts: the

elastic part represented by/( V) and the harmonic part represented by

V 2
. It seems to me that considerable complications implied by the

operator /( V ) V 2 may be avoided if V 2 can be removed in such a way

that the resulting equation is /( V ) Xki = 17w where \ki is now a fourth-order

stress-function tensor.

I have proved in my 1955 paper mentioned earlier and rederived just now
in a different manner that the indicated simplification is, in fact, possible

in the case of cubic symmetry. It is also possible for the two-dimensional

problem of any symmetry. Since Indenbom and Orlov succeeded in

representing the three-dimensional Green's function through the whole

set of two-dimensional Green's functions (one with respect to each

direction in space), it appears quite feasible to assume that the combined

elastic-harmonic problem can be reduced to a purely elastic one in three

dimensions for any symmetry.

SIMMONS: If I understand your comments correctly, you're pointing out

that one form of our incompatibility source tensor T can be written

down from a sixth-order differential operator acting on JU(r
f — r)\r\~ 1dV,

which is the Green's function of / ( V ) V 2 when U is the Green's function

of/( V ) , and that's quite right. You would then like to get rid of the V 2

and do the incompatibility problem with just the operator/( V ) by means

of a hypothetical fourth order differential operator, which I'll call Yjjki, so

that lnc ijkiCkimnYmnp(i=&ipSjqf ( V ), where C are the elastic compliances.

I agree that it would be nice if your hypothesis were correct and one

could remove the harmonic component from the incompatibility source

tensor, but I don't think this is likely to be true in general. The reason the
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harmonic integral occurs has nothing to do with the elastic constants or

the Green's tensor. The harmonic integral arises from inverting the in-

compatibility operator which is very closely related, as you know, to the

Laplacear operator. In fact, you can see in our paper that if one wishes

to obtain a stress from the plastic distortion fi
r rather than the incom-

patibility tj, then you don't need the harmonic integral part; it only arises

when inverting the incompatibility operator.

So, it's not clear what symmetry properties the elastic constants have to

have to satisfy your hypothesis that V'2 can be absorbed into /(V), but I

think they're quite strong. Anyway, it's possible to test your guess, which

I note is more general than that in your 1955 paper, by comparing it with

a general expression for our source tensor T— but the algebra is very

messy.

However, I'd like to make another, slightly more general point, and that

is that when dealing with such complex functions as the function U you

have mentioned, which essentially have to be computed numerically, or

in power series, differentiation is much more difficult than integration.

Writing down a quantity like the Green's tensor components or the

source tensor T as high order derivatives is no help. It's much better to

deal with direct representations of these quantities, preferably in in-

tegral form. This is what we have tried to do and I'm not sure that high

order stress functions, whose use we have deliberately avoided, will ever

have any practical utility for general anisotropy.

ESHELBY: May I add a separate comment. There is one class of problems

which you can do, because you can find the anisotropic Green's tensor

ever so easily, namely when C44 — — Ci 2 . I thought of this, and I know a

lot of other people have too, but I thought it was too bogus for publica-

tion. I used to be impressed by some of the results got by the lattice

dynamics people for the interaction of point defects, but then I

discovered that their lattice model was just the one which in the con-

tinuum limit goes over into the particular elastic solid I'm talking about.

I believe it is called the Rosenstock-Newell model. Now, is this fair, and

does any material approximate to it? Professor Maradudin, would you

like to comment? Is he here? No,3 well, it is a pity because it could keep

people in business for years; having done the whole of three-dimensional

elasticity for isotropy you could do it all again for this anisotropic materi-

al. It is true that iron pyrites have a negative C12, but it is not nearly nega-

tive enough to cancel the C 44 . I have hopes that some other materials

with the same rather odd cubic crystal structure might do it, maybe

platinum arsenide. I do wish someone would measure those elastic con-

stants.

3 Professor Maradudin did comment the following day. See p. 250.
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The single particle picture of cohesion in metals is briefly reviewed in

the light of modern knowledge of their band structures. Periodic com-

ponents in the electron density distributions (intimately connected with

the same band structures) are important in the determination of the effec-

tive potential between ions.

In simple metals, defined to be those with tightly bound core states, the

net binding of the metallic state is basically a remnant of a competition

between kinetic (Pauli principle) and Madelung energies of ostensibly free

conduction electrons. Various corrections (for correlation, for exchange,

etc.) must be included, and the Madelung energy (which is normally ap-

propriate to a uniform electron gas in a Coulomb lattice of point ions) can

be modified as necessary for departures from Coulomb's law. Terms in

the total energy also arise from periodic variations in conduction electron

density; for perfect lattices these are naturally dependent on the ionic ar-

rangement and will vary in importance from crystal structure to crystal

structure. Electronic density variations arising from disorder (e.g. dis-

tributions of defects) also introduce corrections into total energy.

The structurally dependent terms in the total energy can be evaluated

to second order in the pseudopotential: to this same order the total energy

may be written as a sum over pair potentials between ions whose form is

quite straight forward to evaluate. As with many inter-atomic potentials,

the ion-ion potentials demonstate "hard-core" effects at small separation,

and are rather weak at large distances.

Extending the simple theory to transition metals or metals exhibiting

additional band structure more akin to itinerant narrow-band behavior,

can be carried through by incorporating Born-Mayer interactions

between tight binding atomic states. This procedure is, of course, only

valid in situations where the Bloch method itself is applicable. While the

core-core exchange term approximated by the Born-Mayer interaction is

quite small in the simple metals it is appreciable for metals like Cu. Ag
and Au, and in fact is basically responsible for fixing the equilibrium den-

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit. and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I, 1970).
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sity. Its addition to the otherwise "simple-metal" like ion pair potentials

modifies the behavior at short range.

Key words: Band structure; cohesion; core-core interactions; electron density; inter-

atomic; one-electron potentials; pseudopotentials.

I. Introduction

In spite of particularly difficult problems connected with the determina-

tion of the actual single-particle periodic potential of a crystal, theories of

band structures of solids 1 have progressed to a point now where first

principles calculations can give reasonable predictions of a variety of

properties. Approaches which are somewhat less than "first principles"

such as the pseudopotential method are also generally highly successful

in accounting for properties explicitly related to the Fermi surface.

Extending the method to energies away from the Fermi energy (such as

occur in optical properties) requires, in general, a knowledge of the energy

dependence of the pseudopotential. Calculations of the total ground state

energy of a metal by this method have not been numerous enough to decide

whether or not it is an unqualified success, although on balance it looks

as though, at least for simple metals it is quite promising. Since the simple

metals are in great measure, free electron like, the use of the method really

lies in its ability to provide corrections to large electron gas terms.

Almost without exception lattice theories of cohesion in metals

have been formulated in the independent particle approximation. The

effective electron-ion potential seen by a single electron (which results

from this approximation) is well known to be partly nonlocal. The nonlocal

contribution, or the exchange part, can be traced back to the requirements

of antisymmetry in the many electron trial wave functions. Slater's [2]

famous "p 1 /3" approximation to this term (and subsequent refinements of

the numerical factors [3]) renders the single particle problem more tractable

by providing a completely local potential to work with. But, the valence-

valence exchange is only one contribution to the potential. The others,

including the basic Hartree potential, valence-core exchange, core-core

exchange and so on, must also be calculated. The work of Herman [1]

and co-workers has shown that with remarkable care the separate terms

For a summary of the various methods available see Ref. [1].
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can all be included with fair precision. However, band structures cal-

culated with these potentials still require slight modification to match

easily identifiable experimentally determined points. 2 Frequently the

aim is to take the derived band structures and their associated potentials

and use the knowledge to calculate other properties of the solid. Along

these lines it often makes good sense to avoid the first principles deter-

mination of the potential and to extract it (or its matrix elements) once

and for all from experiment and use them in subsequent calculations.

This is very much the approach of the pseudopotential method: here

however pseudopotential matrix elements rather than real potential

matrix elements are determined and the subsequent calculations must

be performed in a consistent manner with pseudowave functions rather

than the real valence states.

In the next section we shall expand on this in the context of binding

and pair interactions in simple metals. However, before we do it is worth

pointing out here that the pseudo-potential method runs into difficulties 3

for metals with sets of valence states which are neither compact and

tight-bindinglike or are completely itinerant and free-electronlike. The
d-states fall into this category for metals in the transition series. Although

they have, in most cases, been approximated by Bloch tight binding states

the widths of the resulting d-bands somewhat negate the initial starting

assumptions. Against this however is the fact that many qualitative fea-

tures of transition metals (the specific heats trends for example) are

reasonably well accounted for in form.

In the transition metals the role of the d-states in mechanical properties

is far from passive: the opposite is true for the corresponding core

electrons in simple metals. Indeed by a simple metal we mean one in

which core electrons play a minor role. Their core states are tightly bound

and as a consequence have large ionization energies. Nonsimple (including

transition) metals have characteristically small ionization energies for

electrons in <i-shells. Electrons in the c/-band contribute to the total

ground state energy of the metal and its volume derivaties. Electrons in

tightly bound simple metal core bands also contribute, but since the core

wave-function overlap only little, their share — the core-core exchange

term (or Born-Mayer term) — is small. It becomes progressively larger

however, as the core size increases in relation to the atomic volume (and

indeed may be large enough in some cases to cause ordered electronic

states such as ferromagnetism and antiferromagnetism). This is exactly

the situation in the transition metals if we view them from the tight binding

2 As is done for example in interpreting the optical properties of the semiconductors.

3 See however, Ref. [41.
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approach. But if the core electrons are becoming more loosely bound then

we have in addition to core-core repulsion terms and possible covalent

effects the familiar attractive terms arising from the fluctuating dipole or

van der Waals attraction. These are, of course, modified by the presence of

the interacting gas of s-derived electrons: consider the usual semiclassical

argument leading to the r~6 attractive force. A fluctuation of electron charge

density at one atom produces a dipole of strength p and at a distance r away a

field of roughly p/r3
. In turn this field induces a dipole of strength ap/r3 (a is

the core electronic polarizability) in an atom at r and in combination the two

dipoles attract with an energy proportional to r
-6

. If we proceed to include

the effects of s-electrons, then the fields which induce dipoles must be

reduced by screening. The potential of the induced dipole is of order

r~ 2 and this is reduced to r~ 2e~ Xr in a Thomas-Fermi approximation. The

polarizing field is thus proportional to r~ 3e' kr
{\ + \r} and we expect in

this crude approximation a potential behaving as r
_6

e_Ar{H- kr}. 4 If

we go beyond the tight binding approach we expect substantial deviations

from this form. As it is, it merely accounts for the leading term in the

interaction between closed shell atoms and we have no guarantee that

when working to specified accuracy the total potential energy of a collec-

tion of atoms can be written solely in terms of two-body potentials. In

a similar way we may expect ^/-electron exchange and correlation to be

screened, a point we return to briefly in section III.

II. Simple Metals: Cohesion

In both this and the section on the transition metals we will find it

convenient to express total energies as functions of ionic rather than

electronic densities or separations. While the latter is commonly used in

simple metals the lack of a clear cut valence in many of the transition

metals forces one to use ion densities which are unequivocal. Linear

dimensions will be given in atomic units {a0 — 0.529 A) and energies in

Rydbergs (13.59 eV). The total energy is to be regarded as the internal

energy; terms arising from configurational entropy are generally small.

Immediately after the introduction of Fermi-Dirac statistics and their

application by Sommerfeld to the free electron gas, Frenkel [5] suggested

that the basic mechanism operating in cohesion is a competition between

the kinetic energy of confinement (of free noninteracting electrons in

the metal) and the potential energy they have as negatively charged

4 Because of the existence of a sharp Fermi surface we expect asymptotic oscillations of

the Ruderman-Kittel type in the interaction.
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particles in the field of positively charged ions. Using Wigner and Seitz's

[6] original idea 5 that on average one atomic volume Cl (approximated

by a sphere of radius r„: 4/37rrjja2 =0) holds a neutralizing complement

of Z valence electrons, we can imagine the metal to be constructed, in

the simplest approximation by an array of neutral slightly overlapping

spheres. These have only weak multipole type interactions with each

other so that the energy in this uniform sphere approximation is the total

of kinetic and potential energies required to build up each sphere: The
kinetic energy (expressed Rydbergs per ion) is

UKt: =Z^ (2.21) I rl (1)

and elementary electrostatics gives the potential energy of the sphere

of constant density in the field of a point ion is (again in Rydbergs/ion)

T j
-1.8Z2

Upe=— (2 )

The combination of (1) and (2) exhibits a minimum when r0 = 2.45/Z 13

which at least indicates that polyvalent metals may be more tightly bound

than monovalent metals, but does not in any way account for the striking

density trends within isovalent series. This calculation is performed

within the so-called Hartree approximation. The constant electron density

is appropriate to a many electron wave function which is simply a product

of single particle wave functions (these being just plane waves). No infor-

mation on the spatial correlation of electrons one with another can of

course be present in this wave function which neglects their mutual

Coulomb interactions. Nor is any account taken that the total product trial

wave function should at least be antisymmetrized to properly represent

a collection of Fermions. Thus in calculating (2) which includes the elec-

trostatic energy of the uniform cloud of electrons, it is necessary to in-

corporate the fact that two electrons with parallel spins are forbidden

by Pauli exclusion from approaching each other arbitrarily close (which

constant particle density assumes is possible). The Coulomb energy of

closely spaced electrons with parallel spins (and equal charge) is thus

reduced; hence by allowing for this exchange term (2) in fact becomes

more negative. The exchange correction is [8]

U, =nM!6 Z4/3. (3)

5 For an expanded review on this section the reader is referred to the article by H. Brooks.

Ref. [7].

369-713 OL - 71 - Vol I - 14
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To this we must also account for the fact that in an interacting electron

gas, electrons with antiparallel spins tend to avoid each other because

of the strong Coulomb repulsion between them (present also, of course,

between electrons with parallel spins). Again contributions to (2) arising

from electrons at small separation are reduced and the total becomes

more negative still due to correlations by an amount 6

t/cor=- (0.115-0.031 In {r0jZ^))Z (4)

At this point exchange and correlation corrections to the elementary

uniform sphere approximation gives, for point ions,

u_ z , l
J2.2l) 1.8Z2 0.916Z4 /3

fo r$

- (0.115-0.031 In r0jZ^)Z Rydbergs/atom (5)

and again it is clear isovalent metals are erroneously predicted to have

the same equilibrium densities.

To proceed from here we can first correct for the fact that the uniform

sphere approximation leads to small overlaps between neighboring

spheres. A direct calculation of the energy of a lattice of point ions in a

uniform electron gas (the Madelung energy first calculated for a metal

by Fuchs [9]) shows that the energy is remarkably close to (2); i.e.,

T T
-1.792Z2

(f ,

UpE = . (6)
r

0

Actually (6) depends on the ionic arrangement but only weakly: as we
have given it (6) is accurate to 3 places for each of the structures f.c.c,

b.c.c. and h.c.p. Indeed, for a Liquid metal the term is changed only by
— 1 73Z 2

a small amount to j~
0

[10] which indicates its lack of sensitivity to

extreme changes in structure. Thus (5) is replaced by

U= 75/3 lg41) _ 1
•
792Z2 _ Qjjj> Z4/3_ (0.115-0.031 \nr0/Z^)Z (7)

where again, we emphasize that the calculation is for point ions.

6 This result is due to Pines and Nozieres [8] and differs only slightly from other correla-

tion corrections.



ASHCROFT 185

The next step is to relax the restraint of point ions to a physically more

meaningful situation. We replace point ions by ions with characteristic

atomic sizes. These sizes are, of course, determined principally by the

core electrons and in introducing their presence in a physical way we

concurrently introduce more terms in the energy. One of these we can

dispose of immediately: the core functions of the ions overlap slightly

and produce a Born-Mayer or core-core exchange interaction. For the

simple metals we may neglect this term but will return to it in connection

with the transition metals. We shall also neglect any effects arising from

the polarizability of the ion cores.

Far more important is the effect of the extended ion on valence electron

wave functions and on the potential that the valence electrons experience.

At large electron-ion separations a single electron will surely see a poten-

tial of the type — Ze2
jr. But for small separations the deviations from this

form are marked. In the one-electron picture we are now confronted with

the difficulties in calculating the potential alluded to in the Introduction.

Terms like valence-core exchange contributions which now arise (and for

reasons similar to those outlined for valence-valence exchange) are

difficult to estimate with accuracy. In a careful calculation of the binding

energy of Al, Kleinman [11] estimated the uncertainties of about 0.2

Ry/ion. 7

One other effect of extended ion cores is the following: For point ions

we can, in principle, consider a uniform density of conduction electrons

throughout the crystal. But in the presence of ion cores the valence wave

functions are only sensibly flat in the interstitial regions. Within the ion

core the charge density in valence wave functions is certainly not uni-

form. In fact, we know that since the valence states are one group of eigen-

states of the crystal Hamiltonian, they are orthogonal to the other class,

the core states trapped in the deep crystalline potential.

But it is now known that although the single particle potentials may be

strong, the resulting band structure may be surprisingly free-electronlike.

The simple reasons for this are (a) the mobility of the conduction electrons

and their ability to reduce the total self consistent potential by screening,

(b) the fact that where the one-electron potential is strongest (i.e., near the

ion) the valence electrons are forbidden from entering. Pauli exclusion

by the core states already there considerably reduces the efficacy of the

potential. It is therefore possible to describe the band structure by a weak

periodic pseudopotential providing we use, in a consistent manner, linear

combinations of plane waves to represent the pseudowave function. 8

7 But nevertheless arrived at a final cohesive energy within 0.01 Ry of the observed value.

8 For a discussion of cohesion in terms of phase shifts, see Ref. [12J. Note also that the

normalization of the pseudowave function may result in the use of a small effective charge

correction on the ions as discussed in reference [13].
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The essential aspects of pseudopotential theory [13] can be summarized
as follows. Let the one electron self consistent real potential be V(r).

We can distinguish between two classes of states, valence \tyv > and core

\tyc > satisfying

|^V 2 +F(r))
| |¥ c> (8)

and

|-V 2 + K(r)) |^> = ec |^> (9)Zm )

(Since the Hamiltonian is periodic each state may be labeled by Bloch

wavevector k and the superscripts v and c are taken to include this.)

If we define a projection operator

then it follows that the operator

h V 2 + F(r)+PO (10)
Zm

has precisely the same valence eigenspectrum as

Zm

i.e.,

(~£ v " + {V{r)
1 <t>
v>=ev

i
**> <m

The only requirement on the arbitrary operator 0 is that it have the

translation group of the lattice. 9 For different choices of O we naturally

generate different forms of wave functions
| <f)

v > but for each the energy

is unchanged. The main observation is that whereas plane wave matrix

elements of V(r) may be slowly convergent, the elements of V,)S —V(r)

9 So that the same Bloch wavevector labels the states of (11). By taking 0 as a simple

function {0 =—V for example) or as an operator diagonal in core states (0 = e — H) the

pseudo-Hamiltonian is assured to be Hermitian.
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+ PO are much more quickly convergent. Hence, a secular equation

derived from using a plane wave basis (—
~J~^~'~^

S1 can represent the

band structure and yet be of much lower order than a secular equation

based on (8).

In many practical applications of the method one simplifies V,JS to a

local form and deduces its local matrix elements from experiment, typi-

cally Fermi surface data. Corresponding to this choice the pseudowave

function is now the sum of a few plane waves. To apply the method to

the problem of cohesion we observe that the energy terms can easily be

calculated for a weak pseudopotential for a single plane wave representing

the pseudowave function. A single plane wave deposits electron charge

uniformly: corrections to the inherent periodic variations in charge

density will follow in a moment.

We imagine that on each lattice site we place an ion with a "bare"

electron-ion pseudopotential v{r). We can write this as

v(r)=-^+Mr) (12)

where A(r) is the difference between the point ion potential and the

pseudopotential

Mr)=^y+ v(r) (13)

In a constant background of charge deposited by one plane wave the poten-

tial energy for the point ion part is just the Madelung term

To

But there is also a term coming from the correction A(r). Since the elec-

tron density is n e this is (per ion)

A£/pe =^ j (nedr) 2 A(r-r,)

crystal
1

where i labels the ion sites. Thus
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At/PE — t"~— [ c/rA(r)=j^-lim [dve*>A{r]

O crystal O

4— Il
m„{— + ^' [

3™*

where i>a- is the Fourier transform of the local unscreened pseudopotential.

We may write this as

with

rv72

At/™ = Rydbergs (15)
r0

3 \Stt vk
a= -— lim i

— -77

if vk is measured in atomic units. For uniform electron density, the total

energy per ion is

^=^Z5/
3_M£^_MMZ,3_ (0 . 115 _o.0311„r0/^3)Z+^ (16)

and we now have a term which explicitly depends on the properties of

the ion and may therefore be expected to change even in isovalent series.

The final correction we shall consider is that arising from periodic

variations in electron density, a manifestation of the electronic band

structure. These are most easily thought of by considering a general

arrangement of ions at positions n. The effect of electron-ion interactions

(as described by the pseudopotential) is surely to cause nonuniformities

in electron density. We have ignored this in calculating the terms in (16);

but as we now see the nonuniform distribution of electrons introduces

additional terms into the total energy. The argument is as follows: consider

a volume dr of the solid in which n,(r)dr ions are present, n\(r) being

the local ion density. Because the ions interact with the electrons, they

will induce at a point r' an induced charge density in the electron gas a

charge density pind (r'). The energy of interaction between the electrons

induced in dr' at r' and the ions in dr at r is

m ( r ) c?rpind (
r

'
) dr'v ( r — r

'

)
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where, again, v(r— r') is the local pseudopotentiaL The total energy per

ion is thus (allowing for double counting)

Ubs =
\~N j Ui^ dr j dr'v(r-r')p m(l (r') (17)

which we may simplify by introducing the Fourier transforms

UBS= 2ff^ni(k)vkpiIld (-k) (18)

where BS refers to "band structure."

We may calculate Pind(~~ k) by noting that Poisson's equation gives

Pind(-A') =(~1 ) {kZvkl8TT)n,(k) (19)

(again working in atomic units). Here €a is the wave number dependent

dielectric constant and may be taken for an interacting electron gas [8] as

fix
(7ra 0kF )x-

; x= k/2kF

with

/(*:
1

,
l-x-

2 \x
In

l±x
l-x

where g(x) is a correction for exchange. 10

Collecting (18) and (19) we get

2N (20)

and since a perfect solid p k = N8k ,K where K is a reciprocal lattice vector,

we find

UBS=-li): (^)->tl + 0.166r,/(xA )/Z>%/] W(xK )

v(xk)V
(Ryd/ion)

(21)

10 For 0 < k < 2kF this is a factor of order 1.
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where vc (k) = Strlk 2
. However, in a solid with defects (assumed at equilib-

rium), or in a disordered solid the expression must be modified. If we
define the average structure 11 by

S(k)=±<m(k) n t (-k) > (22)

as is usual then (20) becomes

M 1

f- f(x) ( v (x) V

(23)

(note that f(x) ~ x~ 2 as*—>°°).
This is precisely what one would write down for the band structure

energy of a liquid metallic system for which (22) is recognized as the static

structure factor. For a highly defected solid the contribution from structure

will lie between (21) and (23) with concomitant changes in the Madelung

energy. It is clear from (23) that the importance of the structural term is

quite sensitive to the valence, a result that will remain true for disordered

or defected metals.

If we keep to perfect solids then (21) is easily evaluated when the

pseudopotential is known [10]. The binding energies of several simple

metals (the heat of sublimation plus the characteristic ionization energy

sums) are given in table 1. These figures are obtained by actually eliminat-

ing a with the zero pressure condition {dU/dr0 ) eqm — 0) and using the

observed densities. The elastic constants may also be computed by taking

appropriate derivatives 12 of the total energy. It is found [10] that the band

structure term (21) has relatively little effect in monovalent metals but

gives a large contribution in the polyvalent metals.

11 For example by taking ensemble averages over microscopic regions of the solid con-
taining statistically large numbers of atoms.

r)P12 The compressibility K at T ~ 0 is given by -= - V— or in terms of m and U it isA dv

i 8 r a du
K dm [

1

drij
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TABLE 1. Theoretical and Experimental binding energies (in Ryjatom) of metals calculated

using the pseudopotential method. (Ref. [10]).

77th— (J
IVexp— U

L,l
n rii
U.511

INa A A C AU.454 0.460

K 0.383 0.390

Rb 0.344 0.366

Cs 0.318 0.345

Mg 1.72 1.78

Zn 2.20 2.10

Al 4.23 4.14

Pb 6.20 7.16

III. Simple Metals: Ion-Ion Potentials

We may use arguments very similar to those used in the calculation of

the ground state energy to obtain expressions for the effective interaction

between two simple metal ions. 13 First we imagine the ions to be sepa-

rated by a distance r and situated in an electron gas of uniform density.

Then if r is large enough that the Born-Mayer potential may be neglected,

the interaction of the ions is simply expressed by Coulomb's law:

cf) c = Z'1 e'1 jr

<j)c (k) = 47rZ2e*lk2 . (23)

Next, we allow one of the ions to induce (via the electron-ion interaction)

a charge fluctuation p in d(r') at r\ In an element dr' located there we

find induced charge p ind (r')dr' which in the pseudopotential field of

the other ion gives an energy contribution:

d(pe> = dv'

p

ind (r' )v(v— r')

or a total .

c^(r) = J^r'p ind (r'Mr-r'). (24)

13 A discussion of pair potentials in simple metals may also be found in Ref. [13].
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FIGURE 1. Pair interactions between two sodium ions. Energy is measured in Rydbergs

and separation in A. The arrow indicates the nearest neighbor distance observed in the

b.c.c. phase.

Thus the "electron-ion" contribution to the ion pair potential is

4> e\{k) =p in<\(k)vk

and again, by Poisson's equation, the charge induced by a single ion is

PindW

hence

The total potential between two ions is thus (in atomic units)

^ +^ 2f+£S dkeH7k

-
i )£ vi

-
(25)
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We may observe that (25) does not simply lead to the total energy of

the metal by summing over pair potentials. Summing over (25) in the

presence of the neutralizing background in fact leads to the band structure

term, and the Madelung energy term, but does not account for the electron

gas terms. Thus the pair potentials may in fact be regarded as set relative

to an overall potential term fixed by structure independent contributions.

Within this limitation and within the limitations of linear response theory

which we have been using, the total energy of the metal must be constructed

from the sum of pair potentials. Since the energy depends on volume as

well as ion-ion separation the conditions under which the Cauchy relations

are satisfied are not met.

Pair potentials calculated using (25) are shown in figures 1 and 2 and

are valid for the normal pressure densities of the metals. The screened

pseudopotentials used in their calculation have been deduced from Fermi

surface data and are shown in figures 3 and 4. As found by other authors

[14] these are all characterized by steeply rising repulsive parts and much
weaker attractive regions. The position of the crossover (which we may
take as a measure of the effective ionic size) depends somewhat on the

pseudopotential and on the degree of its nonlocality. For very large separa-
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tions, the asymptotic form of the potentials exhibit oscillatory behavior

(Friedel oscillations) arising from the existence of a logarithmic singularity

in the dielectric function [15].

x —-

Figure 3. Fourier transform of the effective screened electron-ion interaction in metallic

Na. Wave vectors are measured in units of 2k h {x = k\2ki-•) and energies in units of (2/3) Ey.

0.2-

0 0.2 04 0.6 0.8 1.0

Figure 4. Fourier transform of the effective screened electron-ion interaction in Al. Again

wave vectors are measured in units of 2k F (x= k/2ky) and energies in units of (2/3) E F .
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IV. Transition Metals

Compared with the simple metals we have been discussing the band

structures of the transition metals are considerably more complex [16].

Certain features, however, do appear to be common in a great many cases.

Recent first principles band structure calculations in a number of metals

indicate that on the whole the basic results can be summarized in terms

of a nearly free-electronlike structure with an overlap of d-states, the

latter forming a system of comparatively narrow bands. This is indicated

schematically in figure 5. To calculate the ground state energy of the

metal we need, of course, to sum the single particle energies of the elec-

trons in the bands and to finally incorporate the potential energy terms.

This is an extremely difficult procedure and we are forced to resort to a

somewhat more simplistic approach.

Early estimates of the form of the rf-bands relied heavily on the Bloch

tight binding method [17] (ignoring the possible mixing with s-derived

electrons). The resulting bands, often 2-3 V wide suggest that the per-

turbations to the atomic states are substantial. Nevertheless the method

has produced qualitative success in its description of various properties

and lately has been combined with the pseudopotential method [18] in

an attempt to incorporate the s-derived parts of the band structure.

Proceeding within the framework of the tight binding approach we
may extend the methods outlined in sections II and III to include an esti-

mate of the contribution of of-electron states to both cohesion and ion

pair potentials. For neutral atoms in close proximity we normally expect

two basic terms to appear in the mutual interaction viz, the repulsive

Figure 5. Schematic representations of s-derived and J-derived electron bands in transition

metals.
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core-core exchange interaction and the attractive fluctuating dipole inter-

action. 14 The same basic terms may be expected to occur in the interactions

between reasonably compact Estates situated on the ions of transition

metals. (These were first quantitatively discussed in the problem of co-

hesion by Fuchs [9] in connection with copper.) But since we now have in

addition the possibility of the presence of s-derived electrons, certain

physical differences are bound to occur. As outlined in I the polarization

field set up by fluctuations in the ^-electron system are screened, hence

if the atomic states remain compact the van der Waals type of inter-

action common in covalent systems will be considerably weakened. In a

similar way, calculating the Born-Mayer with screened exchange would

appear to lead to a weakened repulsive interaction. But these expectations

will be partly offset by the fact that in the condensed metallic state the

d states are more extended than they are in isolated ions. Again, an a

priori calculation of the form of the modified potential is difficult. But

since we are not concerned here with large changes in volume (and hence

in ion-ion separation) we can express the Born-Mayer and screened van

der Waals potential over a limited range in terms of the (m, n) form:

where 0 min is the minimum value of the potential function and r=cr is

where $dd vanishes. Here the r~m and r~ n terms may be interpreted as

the leading powers originating in an expansion of the core-core and

fluctuating dipole contributions to the pair energy. Because of the screen-

ing action we expect m and n to differ from the familiar empirical values

of 12 and 6. We put

R = pr0

where R is the nearest neighbor distance (in f.c.c. a 3 =
,
in b.c.c.

14 Suggested to contribute a large term to the cohesive energy (Ref. [19]).
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a^ — STr). Then the energy per particle resulting from 4>dd is

where y-, is defined in terms of the interionic spacing n by

yt=nlR.

Table 2. Values of the lattice sums A m = ^Yi m taken from reference [20].

(m, n) BCC FCC

A m A m

4 22.64 25.34

5 14.76 16.97

6 12.25 14.45

7 11.05 13.36

8 10.36 12.80

9 9.89 12.49

10 9.56 12.31

11 9.31 12.20

12 9.11 12.13

13 8.95 12.09

14 8.82 12.06

15 8.70 12.04

The lattice sums n have been tabulated for cubic metals by Jones and

Ingham [20] and some of their values for various n are reproduced in

table 2. Writing (27) as

(with (3r0 =R) we find that the total energy per ion is (with C expressed in

Rydbergs)
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U= Z 5/3 (Mil_ 1
•
792 Zl -Mlj> Z 4/3 (0.115-0.031 In r0\Z^)Z

• o • «

+ 3 ^ o /3
To /

( ^ )
Ry/ion. (28)

As with the band structure term Ubs in the simple metals, the contribution

Udd has a very pronounced effect on the values of the derivatives of U and

is thus quite important in determining the equilibrium separation and the

elastic constants. 15 Note that in computing the zeroth Fourier component

of the energy we must include the influence of the <i-states on the effective

potential seen by the s-electrons. This term can also be eliminated by using

the zero pressure condition.

Some idea of the relative importance of the ^-electrons may be obtained

by ignoring Ubs and the correlation terms. In this approximation the

equilibrium energy density is

U
Z 5/32.21 1.792Z 2 + 0.916Z 4 / ;

1.5/

i)

where the strength parameter C is typically < 0.1 Ry. From

1 d

K dni

or its equivalent at equilibrium

1 1 d*U

K 0 \27rr0 al dr2
0

15 But its absolute contribution to the cohesive energy at observed densities may still be

small. In the noble metals whose d-band widths are ~ 3eV, there is some evidence that

Udd has only a minor effect on the overall cohesive energy, Ref. [21].
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we may extract the compressibility K () i.e.,

J_ _J_ r-Z5 / 32.21 1.792Z 2 + 0.916Z 4 / 3

£0
~ 127rrjaj" |_ 0.5r* 0.5ro

§{•<—> (is)(sr--«--»(^)(5)"}]

For fairly large values of m and n the constants A m and ^„ approach the

coordination numbers appropriate to the given lattice [see table 2]. It

is therefore apparent that even with C as low as < 0.1 Ry the core-core

exchange term may represent a sizable contribution to K provided, of

course, that <r ~ r0 . In the case of the simple metals we have seen that the

ionic separation is much larger (typically more than a factor of two) than

the ionic diameter. It follows that (cr/r0 )
HI < < 1 and this more than com-

pensates the factor m{m — S)A m . But for the transition metals the ions

are "touching" in the sense that typical values of the ionic diameter are

very close to the interionic spacing. Although we cannot hope to include

the details of band structure (including the important s-d hybridization)

in a model of this simplicity, it does demonstrate, however, the fact that

to put the analysis on a firmer footing a more thorough treatment of the

flf-states (including a discussion of their self-consistent band structure)

is required.

As to the form of the pair potential, to eq (25) we must now add the core-

core exchange term. 16 Thus in the approximation of tight binding the ion-

ion interaction in transition metals may be approximated by

The determination of the effective pseudopotential v(k) presents a

problem: in some cases [14] it can be estimated from transport properties

of the metal if the d bands are totally contained below the Fermi energy

and the states there are principally s-like. In others it may be obtained from

combined tight-binding plane-wave interpolations to the band structure

[18]. The coefficients of the core-core contribution may be obtained,

in principle from calculations of the energy arising from the effective

exchange changes [22] associated with the tight binding states. This has

been carried through for the noble metals by Hafemeister [23].

16 This again assumes that pair forces dominate the contributions to the total energy of

a collection of atoms.

0
877 3

J
dk fk r 87TZ 2€ 2

1 +

369-713 OL - 71 - Vol I - 15



200 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

V, Acknowledgement

Supported in part by the Advanced Research Projects Agency through

the Materials Science Center at Cornell, MSC Report #1147.

VII. References

[1] For a summary of the various methods available see Methods in Computational Physics

8, Energy Bands of Solids (Academic Press, 1968).

[2] Slater, J. C, Phys. Rev. 81, 385 (1951).

[3] Gaspar, R. Acta Phys. Hung. 3, 263 (1954); Tong, B. Y. and Sham, L. J., Phys. Rev.

144, 1 (1966).

[4] Harrison, W., Phys. Rev. 181, 1036 (1969); Moriarty, J., Phys. Rev. (1970) (to appear);

Fong, C. Y., and Cohen, M. L., Phys. Rev. Letters 24, 306 (1970).

[5] Frenkel, J., Z. Physik 49, 31 (1928).

[6] Wigner, E. P., and Seitz, F., Phys. Rev. 43, 804 (1933).

[7] Brooks, H., Trans. AIME 227, 546 (1963).

[8] Pines, D., and Nozieres, P., The Theory of Quantum Liquids I (W.A. Benjamin, New
York, 1966).

[9] Fuchs, K., Proc. Roy. Soc. A151, 585 (1935). The result for HCP Structures is due to

W. Kohn and D. Schecter and is quoted in W. J. Carr, jr., Phys. Rev. 122, 1437 (1961).

[10] Ashcroft, N. W., and Langreth, D., Phys. Rev. 155, 682 (1967).

[11] Kleinman, L., Phys. Rev. 146, 472 (1966).

[12] Hayes, T. M., and Young, W. H., Phil. Mag. 18, 965 (1968).

[13] Harrison, W., Pseudopotentials in the Theory of Metals (W. A. Benjamin, New York,

1966).

[14] Ashcroft, N. W. and Langreth, D. C, Phys. Rev. 159, 500 (1967).

[15] Langer, J. S. and Vosko, S. H., J. Phys. Chem. Solids 12, 196 (1959).

[16] Mott, N. F., Adv. Phys. (Phil. Mag. Suppl.) 13, 325 (1964).

[17] Fletcher, G. C, Proc. Phys. Soc. A65, 192 (1952); Asdente, M. and Friedel, J., Phys.

Rev. 124,384(1961); 126,2762(1962).

[18] Mueller, F. M., Phys. Rev. 153, 659 (1967); Hodges, L., Ehrenreich, H., and Lang,

N. N. D., Phys. Rev. 152, 5051 (1966).

[19] Friedel, J., Proc. Phys. Soc. B65, 769 (1952); and by Mott, N. F., and Stevens, K. W. H.,

Phil. Mag. 2, 1364(1957).

[20] Jones, J. E., and Ingham, A. E., Proc. Roy. Soc. 107, 636 (1925).

[21] Gubanov, A. I., and Nikulin, V. K., Phys. stat. sol. 17, 815 (1966); Brown, J. S., Phys.

stat. sol. 31,297(1969).

[221 Dick, B. G., and Overhauser, A. W., Phys. Rev. 1 12, 90 (1958).

[23] Hafemeister, D. W., J. Phys. Chem. Solids 30, 117 (1969).



Discussion on Paper by N. W. Ashcroft.

CHANG: Some interesting results were encountered in our search for the

simple pairwise ion-ion potential for the transition metals employing the

Born-Mayer potential plus the attractive potential, subject to the condi-

tions that: First, the calculated cohesive energy must equal the experi-

mental value. Second, the lattice energy is a minimum at the equilibrium

separation corresponding to the experimental lattice parameters. We
have found that the attractive term is of the Van der Waals type of power

six, invariably, for all the transition metals — whether it is b.c.c, f.c.c. or

h.c.p. — whose d-shells are more than half filled. From this we feel that

there may be a simplification in getting a pairwise ion-ion potential for

the transition metals.

ASHCROFT: What I was trying to point out is this: If one ignores for the

moment the s-d hybridization, which is a difficult problem as you already

know, putting in the s-electrons in a manner which has been successful

up to now, at least gives you a method for getting some of the powers, let

us say, of the attractive part of the potential.

GEHLEN: How sensitive are the potentials that you get to the choice of the

bare potential? The potentials that one obtains using neutron diffraction

patterns from liquids are often quite different from pseudopotentials.

They do not necessarily have a pronounced minimum in the vicinity of

the equilibrium lattice parameter. In some cases that minimum is on the

positive side of the energy axis. Frequently, they do not have Friedel

oscillations. Is it possible to bring pseudopotentials and "liquid" poten-

tials in agreement by varying the bare potential? Do you see what I

mean?

ASHCROFT: I see precisely what you mean. I think by liquid theories you

mean the measurements of the structure factor which are done in k-

space, up to a few wiggles, and then subsequently Fourier transformed

into real space. Then the potentials are extracted from, let us say, the

"Percus-Yevick," or "Born-Green" theories of the liquid state.

GEHLEN: Yes, let me point out that Dr. J. E. Enderby and I
1 have solved

the Born-Green equation in reciprocal space. That eliminates most of the

tedious corrections that have to be brought to the data when one works

in real space.

ASHCROFT: Providing, of course, that you believe in the superposition

approximation at high density. I think the answer here is that if one takes

1 Enderby, J. E., and Gehlen; P. C, J. Chem. Phys., 51, 547 (1969).

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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potentials like these and works the other way, that is, if I take a calcu-

lated pair potential— and we have done this — then feed that into the

three equations for the radial distribution function, and then make ad-

justments on the potential, the differences in s(k), (the static structure

factor), are extremely difficult to see. Therefore, I think the question

really is: With what sort of confidence can you extract those potentials

working the other way when the data you are dealing with has got experi-

mental error in it in the first place?

GEHLEN: Let me ask the question like this: Assuming that from the liquid

data you get a potential with a minimum on the positive side of the ener-

gy axis, could you use the pseudopotential theory in reverse and obtain

a bare potential that is realistic?

ASHCROFT: I guess again it depends what you want to do with them, but

I don't think I would expect unrealistic ones. As ycu probably know, the

screening is different in the band structure case from what it is in the

ion-ion response case, but I don't think the differences will be large.

BULLOUGH: Actually, I think the structure factor data at low q is most

unreliable.

ASHCROFT: I am delighted to hear you say it, but one can appreciate

why. It is a very difficult experimental region to work in.

GEHLEN: It is correct that the structure factor data is least well known at

low q. However, for liquid lead, at least, it is not possible to generate a

potential that looks like a pseudopotential even if you assume extremely

large errors in the data.

SAADA: I would like to ask two questions. The first is about your potential

V(k). In the simple metals you can calculate it from different approxima-

tions, but in complicated metals like copper or the transition metals you

don't calculate it. You take it from experimental measurements.

ASHCROFT: In fact, in most cases we take it from experiment. But in the

case of copper, for example, what you would interpret w(q) is here the

pseudopotential in the presence of this itinerant set of ^-states.

SAADA: I don't understand how you can calculate it that way because

then the difference in energy between ^-states and s-states is not large

enough because of mixing. I don't understand how you can de-mix them.

ASHCROFT: Are you familiar with the work of Mueller, Ehrenreich and

company? 2

SAADA: Not very much.

ASHCROFT: Perhaps this is best discussed privately, but let me tell you

the way we did it. If you go to liquid copper, the d-bands are known to be

2
c.f. Ref. [18] of previous paper.
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completely contained beneath the Fermi surface and it's only through

the symmetry at the particular point / in the face centered cubic struc-

ture that they cause significant cMike contributions to the wave function

at the Fermi energy. If you remove the symmetry, on the average, by

melting it, then the wave function becomes more s-like on the Fermi sur-

face. So what we have done is to extract this potential here by just apply-

ing simple s-wave transport theory. Then we argue that part of it is in fact

the potential for the s-electrons in the presence of the d-electrons.

BULLOUGH: What I am intrigued to know is whether the potential you got

for aluminum gives a good agreement with the phonon dispersion data.

ASHCROFT: Well, the calculations we have done for the dispersion rela-

tion in aluminum, I think, can only be described as sort of quasi-good.

There is a very difficult problem in the polyvalent metals because the

electron-ion contribution to the dynamic matrix swamps the basic Cou-

lomb lattice contribution and the thing you are left with is very sensitive

to what you put in, for example, for the dielectric function. We have been

using simple diagonal form in the calculations we did, for example, on

the alkali metals, and I am just worried that if one did a better job of cal-

culating the dielectric constant by putting in the band structure, this

could swing the results quite a bit. The potential we have in aluminum

seems to be reasonably good in other respects; I think it is a computa-

tional difficulty one has in doing the lattice spectrum, and I just really

don't know the answer to your question.
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The dispersion relation for the one-dimensional continuum of localized

modes associated with a screw dislocation is obtained in the long

wavelength limit, as a function of the wave vector parallel to the disloca-

tion line. The result has the form (o
2
(q) = s 2

q
2 — gjo

2 exp( — const./g) where

s is the speed of sound for transverse acoustic waves, and co0 is a typical

Brillouin zone boundary frequency.

Key words: Dislocation-phonon interactions; dispersion relations; lattice dynamics;
localized modes.

The problem with which I will be concerned in this paper is that of

determining the frequencies of localized vibration modes associated with

a screw dislocation in a solid, and the conditions necessary for the occur-

rence of such exceptional modes. Localized modes are modes whose

frequencies lie outside the ranges allowed the normal modes of a perfect

crystal, in which, because they lie in a stop band for the crystal, the

atomic displacements decrease exponentially with increasing distance

from the line of the defect. In the case of a (straight) dislocation a crystal

retains its periodicity in the direction parallel to the dislocation line. A
one-dimensional continuum of localized modes can appear, for which the

displacement pattern in each such mode is wavelike parallel to the defect

and decays exponentially in directions perpendicular to the line of the

dislocation. Such modes are labeled by the component of the wave vector

parallel to the defect. One of our problems will be to find the dispersion

relation between the frequency of the localized mode and the wave vector

component parallel to the dislocation line.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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This problem has been studied previously by Lifshitz and Kosevich

[1]. Oversimplified though their formulation of this problem is, and

despite qualitative differences between their results and those to be

reported here, this work reflects the essence of the problem, and has

a heuristic value for all work which follows it, including this one.

Although the basic equations which underlie this work were originally

derived on the basis of a lattice theory of the kind used previously to study

the core structure of discrete screw dislocations [2], the integral equations

which arise in the theory appear to be analytically solvable only in the

long wavelength limit. Consequently, because elasticity theory is the long

wavelength limit of lattice theory, and because it is probably much more

familiar to those interested in dislocations than is lattice dynamics,

I have formulated the problem I wish to discuss from the start in

the language of continuum theory rather than in the language of lattice

dynamics.

The starting point for our discussion are the equations of motion of

an arbitrary nonlinear elastic continuum [3]

In these equations u r {a u a 2 , t) is the r-Cartesian component of

the displacement field expressed as a function of the coordinates

(ai, a 2 , a.3 ) of a point in the undeformed medium;

x r= a r+ u r (a) (2)

is the position of the point a in the deformed body; the elements of the

matrix J are given by

Jrs= S rs+
d^; (3)
da s

the elements of the Lagrangian strain tensor are defined by

1 tdUr.dUs v du t dU t \ ...

VrS
=- -—1--—^rr ; (4)

2 [da s da r t da r da s J

the mass density in the deformed medium p is related to the mass density

in the undeformed medium p 0 by

P =\I+ 2r,\- l
'*Po; (5)

and finally, the strain energy <$> can be expanded in powers of the strain
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parameters according to

$=^2 QfcW»?fcl + jT 2 CijklmnVijVkl r) mn +. . . (6)
ijfc/ ijkimn

where the {Cyw}, {CyfczWn}, • • . are the second, third, . . ., order

elastic constants, respectively.

The substitution of eqs (2) — (6) into eq (1), together with some algebraic

manipulations, yields the following nonlinear wave equations for the deter-

mination of the displacement field,

d 2Ur V C d 2U k n d 2U k du m
po
——=

A, Lrskl 1~ A, Ursklmn
, (7)

of ski dasdai sklmn dasdai da n

where only the leading nonlinear terms on the righthand side of this

equation have been retained. The coefficients D rSkimn are given by

Drsklmn = Crsklmn H~ Crsln&km + Cismn&rk + Cnskl&rm + Crl?nn&sk Crsmn§kU (8)

Although the {DrSkimn} do not have the symmetry properties of the third

order elastic constants under the interchange of indices or pairs of

indices, from the transformation properties of the elastic constants

under the operations of the point group of the crystal, it follows that

the {Drskimn} transform as the components of a sixth rank tensor,

D rsklmn
-

^} SrpSsaSkKSixSmixSnvDpa-Kkfivi (9)

p(TK\(JiV

where S is a 3 X 3 real, orthogonal matrix representative of the operations

of the crystal point group. In particular, if the crystal point group is one

of the cubic point groups, it follows that the only nonvanishing elements

of Drskimn are those for which each subscript, 1, 2, or 3, appears an even

number of times.

We now express u(a; t) as the sum of a static displacement field

v(a), describing the screw dislocation, and a dynamic displacement

field £(a; t), describing the vibrations of the elastic medium about the

dislocated configuration,

u(a; 0=v(a) + £(a; t) . (10)

In substituting eq (10) into eqs (7), we linearize the latter by retaining

only terms of first order in £(a; t) on the righthand side,
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dt- ±j dasdai „,£'sdai s *ffnn dasdai da n

VD ( d 2Vk djm ,
dvm d 2

jk \

±f dasdai £rLn - \dasdai da n da„ dasdai J

The equilibrium condition for the dislocated medium is obtained by

equating to zero the time independent terms on the righthand side of

this equation

0 = Crskl h ^Drsklmn '—~ —
-j- t m m

tkl
9(lsdai sidfnn da*dai da n (12)

The equations of motion of the dislocated crystal are therefore found to be

po S c"^r^+2 (a) r"*'(«) £&-
dt-

jft
dasdai %t da„ £f dasdai

(13)

where

Trmn(a) = YUrsklmn
9

^ (14a)

Trskl{a) = ^Drsklmn—^- . (14b)

For a screw dislocation with its Burgers vector directed along the

a.s-axis, the displacement field v(a) has only an a3 component, which is

a function only of a x and a 2 ,

v(a) = (0, 0, v3 (au a 2 )). (15)

The equation determining v^(ai ,
a 2 ) in a medium of cubic symmetry, with

the coordinate axes along the cube axes, or in an isotropic medium, in

the linear approximation is

C4J (^ +^) = 0, (16)

which possesses the solution

b_

2lT
"*

CL\

vs{au a 2 )
=— tan -1 —

, (17)

where b is the magnitude of the Burgers vector. It follows, therefore, that
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for this case

Trmn (ai, a-z) = [Z^r 13 1 mn ~ D r232mn~\ TT" 1 ~> 7v7

^2 q2
+ [PrlZlmn + D r i32mn] 7T

-
/ 9 , 77? (18a)

TrSki{a x , a_>) =D rSkiz2^- , TV >\—^™/c/3i 7~TT~m~ • (18b)

Because 7Ymn (a) and TrSki(a) are independent of it follows that the

solutions of eqs (13) can be chosen to have the form

£(a; 0=fo(fli, a2)e^a3e- iQ,t
. (19)

In what follows we will expand the amplitude vector £o(#i , #2) in a double

Fourier series

fo(ai, 02) = 2 f jfc2)e«*
lfll +?»">, (20)

where (i = 1, 2)

^_27nii
n . = 0,±l,±2,±3, . . ., (21)

and L 3 = Fis the normalization volume for the medium.

When the solution given by eqs (19) and (20) is substituted into eqs

(13), and use is made of the orthogonality of the complex exponentials,

the equation for fr(&i, kz) takes the form

2 Crs (kik2 ; q; <»*)h(kih) =iJJ Trs (kik2 ;
k[k 2 ; q)ts {k[k2 ). (22)

The matrix C(k||; q; co
2
) (k||= (ki, k 2 )) has the following form for an

isotropic elastic continuum

(\ + /x)A-,A-
;

C(k||; q; or)

{X + lx)k x q

(k+ u)k2q(k+ fi)kxk-> (k+ 2(ji)ki + nk?

+ fiq-— poO>-

{k+ fi)k,q (k+ 2/J,)q-+ iJL(k* + kl)

— poW-
y (\+fl)klq

(23)



210 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

where X and /jl are the Lame constants for the medium. The elements of

the matrix r(k||; kf|; q), which are singular at the point k|| = k[|, will

not be presented here in full; only the elements actually required will be

introduced at the appropriate point in the calculation.

The inverse of the matrix C(k||; q; a>
2
) has a very simple form,

Cr-/(k||; q; a>
2)=±\ *** -+ 777^7%^^ A (24)

p 0 [cf(k
z

-\- kr
z
-\-q 2

) —a) 2 c2
t
{k\+ k\+ q

2
) — a)

2
J

where

c'f= (A + 2p,)/po G?= /x,/p0 ,

and

_ {ku k2 , q)
e

(ki + kt+ q
2
)

1 '2
'

The integral equation (22) can be rewritten as

|r(kn) = »2;2 c«(%«; *»*)?
,

-(k||; k'n; »)i«(kf|). (26)
S<

kfl

Since the kernel of this homogeneous integral equation is pure imaginary

and singular, it is convenient to transform this equation into one with

a real, nonsingular kernel. If we separate £(k||) into its real and imaginary

parts,

|(k||) = |(»(k||)+i|(2)(k||), (27)

and substitute eq (27) into eq (26) we obtain the pair of real equations

^)(k||)=-2E C-

(

k H5 * «>
2)^(k||; kf,; q)h2)

(^\\) (28a)

^2)(kn)=22 c-(k n; « »2)^*n; Mi; rtfMWi). (28b)

kf.

Thus, knowing one of the functions f
(1) (k||) or ^ (2) (k||), the other can

be obtained by quadratures. Combining eqs (28a) and (28b) we find that

f(1) (k||) is the solution of the equation

^)(k||)=-2 C-(k||; q; a>
2)^Vst(h li; kf,; q; co

2)h 1}W\) (29)

t
kf.

(25a)

(25b)
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where

Vst (k\\; kf|; q; (o
2
) =^^Tsm {k\\; kfj; q)

mn k(|'

XC n̂(kf
(

; q; a>
2
)7V(kfi; kf

(
; 9). (30)

Equation (30) is in the canonical form for determining the displacement

field in a perturbed crystal.

The solution of the set of coupled homogeneous integral equations (30)

is in progress. Here, in order to simplify the analysis, we solve an ap-

proximate form of these equations which bears the same relation to

the exact equations that the Rosenstock-Newell-Montroll-Potts (RNMP)4

model of a simple cubic lattice with nearest neighbor central and non-

central force interactions bears to a more realistic model: we approximate

the matrices C(k||; q; w 2
) and 7*(k||; kf|; q) by their diagonal elements

only. By so doing we neglect the coupling between the ai-, a 2 -, and

a3-components of the displacement field. It is known from the results

of lattice dynamical calculations based on the RNMP model that this

kind of approximation yields qualitatively correct results for many quanti-

ties of physical interest.

In the sense that after formulating it exactly only an approximate version

of this problem will be solved exactly here, what follows represents work

in progress. Nevertheless, the treatment described here provides valuable

guidelines to the solution of the exact problem, which will be summarized

later, and is free from the inessential complications which attend the

solution of a matrix integral equation.

With this approximation, the equation determining ^/^'(ku) becomes

where we have put Cl2 = cfq2
a)

2 > 0, and where

Fn (k||; kf
(

; q; or)
po L4 ^ cfk'f+cf^+n2

1 (bg) 2
£/(k,i; k;;)£/(k;;; kf,)

(32)

where

tf(kn; k') = Akl(k2 -ki)^B(k l -k ,

1 )(k2 -ki) (33)

(k x -k[) 2 +(k 2 -k'2 )
2
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with

A = i^lll331 +-^131131 = 2Ci66 + C44

B — Z)ll3113 ^123213 = C456 (34)

C= Z)i21332 + ^131232 = 2C456 + 2C44 .

Equation (31) therefore takes the form

^i>--(s)'.«+|^§** l!kfi;0)^ (35)

With the approximations made, the equations for ^ 1} (k||) and ^^(kii)

have exactly the same structure and will not be discussed further here.

To obtain the dispersion relation connecting fi with q from the integral

equation (35), we use the fact that we are working in the long wavelength

limit together with the fact that the numerator of the expression on the

righthand side of eq (35) is already proportional to q
2

, to set k\ and k2

equal to zero in the function K(k\\; kf|; fl) . The omitted terms are of

higher than the second order in hi, A
-

2 , and q. The integral equation we
must solve is therefore

(36)

This equation is a homogeneous integral equation with a separable

kernel. The condition that it have a nontrivial solution is that

1 = AV^J-y g(0;kii;Q)
(37)

and this equation is the dispersion relation connecting fl with q.

In solving this equation we will set c, =q= s, a step which greatly

simplifies the integrals over angles without changing any of the qualitative

features of the result. In fact, this step leads to a denominator of the form

obtained in the full matrix Green's function formulation of this problem.

It is convenient to convert the sum over k|| into an integral, with the

result that



MARADUDIN 213

We have cut off the integrals at values of the wave vector components

of the order of the reciprocal of a lattice spacing, Kq = l/a0 . Such a cutoff

arises naturally in a lattice theory, where the allowed values of the wave

vector are restricted to lie inside the first Brillouin zone for the crystal,

but it must be imposed explicitly, from without, in a continuum theory.

We now go over to polar coordinates, and obtain the equation

/277PoY_ f* k{K(0;k; ft) >

where

(K(0; k; ft)> = j*" d6K(0; k cos 6, k sin 6; ft).

An explicit expression for K{0; kj|; ft) is

K(0; k„; ft) = {-A + B +C)^
kffk?c^ +^ + n2

Bk[kj - (B + C) k[fa + (A -B)k x k'2 + {-A + B + C)hh
(k[-k x )

2 + (k!2 -k2 )
2

(40)

= ^(0;-k||;ft). (41)

Rewriting this expression as an integral in polar coordinates we obtain

K(0;k;(l)= —
j o

dk^-^
f 2« dO

Jo k' 2 + k 2 -2k'(k 1 cos 6 + k>> sin 6)

X [Bk' 2 cos2 6 sin2 0+ (A —B)k'ki cos (9 sin2 0

-(B+ C)k'k2 cos2 0 sin 0+ (-/4 + 5 + C)W2 cos 0 sin 0]. (42)

If we make the changes of variables

0-a= <p (43)

where

cos a=~= kx sino;=y = 4, (44)
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and k' = kz, we can re-express K(0; k; 11 ) as

T„ * ^ (-A + B + C) C^Koin) z
con d

4tt252
Jo z2 + f

2
Jo 1 + z2 — 2zcos<£

X {£z 2 [/^ cos 4 + 4^4+ A) cos 2
<p sin 2 <p+ k\k\ sin4

«p]

+ (A-B)z[{k\-2k\k\) cos sin 2
c^ + ^J cos 3 tp]

- (5+ C)z[(£l-2£ffi) cos <p sin 2 + cos 3
<p]

+ {-A+B + C)k 2M (cos 2 <?-sin 2
<p)} (45)

where g= £l/sk. To evaluate the integrals over <p we break up the range

of z into two intervals (0, 1) and (1, f (sK0/Cl)). When this is done, and

the average of K{0; k; O) over the angle 6 defined by k\ = cos 0, k 2 = sin 6

is carried out according to eq (40), it is found that the former interval

makes no contribution, and we obtain

8* 2
J, z2 + f

2

(-A + B + C) B V O2 r
8s2 [2 1 + f

2

Q4-£-C)
1

V s>KU \. (46)

2f-

The dispersion relation (39) takes the following form when eq (46)

is substituted into it,

_ /2tt£o\ 2

= (-A+B + C) f* 1

\bq )
"

8s4 J (n/SK0)
* f (1

s
2Kl

[2
ln

i+e-
X hrln

x

, , V " ^ L ln ' »' (47)

It is convenient to break up the integration range into two intervals,

((Q/sKo), 1) and (1, °°). Since the limits in the latter range are independent

of fi, the only dependence on H from this integration comes from the

explicit dependence of the integrand on ft. Denoting this integral by
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72 , we have

/2=
f

ln
(
1+V)/f^?oT^

2 v s2^;j,
"s

The integrals over f all converge to give numerical coefficients, and

we see that in the limit as O —* 0, 1% is dominated by

r
B, s 2K$ f * d% (B, a

The contribution from the range ((£l/sK0), 1) will be denoted by Iu
and is given by (a = Cl/sKo)

/l -2 ln^J a ?(TT?^ 2 ln (1+a
)

ln-5-
f(l + £

2
) 'l + £

2

p In (1 + g)+ 2
J„ + (50)

In the limit as a—»0, /i is dominated by the contributions from the first

and third integrals which yield the result that

7i ~ - f lniri (_ln a) +f
(_ (ln a)2) +0(ln a)

=+ fl(ln a) 2

-f (In a) 2 + 0(ln a)

=f('»I)'-»('"I) «

Consequently, in the limit as O —> 0, the dispersion relation becomes

-
("ftfj

= 8?
2

ln
\7kJ

(52)
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Thus, if B {-A + B + C) < 0, we obtain

/27rp0y
V bq )

B(A-B-C)
16s 4

(53)

or

£l = sK0e [B{A-B-oyi»bq> (54)

which can be rewritten as

16tts2p 0 1

to-p= s2q* — s 2Kle [bm-b-o]V 2
6«. (55)

The result obtained by Lifshitz and Kosevich differs from the above

result in that the second term on the righthand side has the stronger

dependence on q, exp(— const. Iq
2

) . This is a consequence of the pro-

portionality of the righthand side of their dispersion relation to the first

power of In (Cl/sKo) rather than on the second, as here. This in turn is

due to the fact that their phenomenological approach to the problem does

not predict that the kernel of the homogeneous integral equation for the

Fourier coefficient of the displacement field is pure imaginary, which

fact leads to a more complicated real integral equation to solve than

considered by Lifshitz and Kosevich.

What clues does this simplified calculation give us which will help in

the solution of the complete matrix integral equation? The more important

is that only those terms which are logarithmically divergent as O—»0 need

to be retained on the righthand side of eq (29). This means that in the

expression for the Green's function matrix C~ 1 (k||, q; co
2
) only the contri-

bution from the transverse branches needs to be kept. It is only this part

which gives rise to a logarithmic singularity as the frequency co approaches

Ctq, the bottom of the band of unperturbed acoustic modes from which

the localized modes appear. It also means that in the kernel Vst (k||;k|i;g;a>
2
)

of the integral equation (29) for the real part of the Fourier coefficient of

the displacement amplitude only the terms which are explicitly propor-

tional to q
2

, i.e., are independent of k\ and hi, need to be retained. The

terms which are proportional to powers of k\ and A 2 other than the zeroeth

do not lead to divergences as O—*0. These two approximations have the

consequence of uncoupling the equations for the au 0,2, and a3 components

of f
(1) (k||). The dispersion relations associated with £^)(k||) and f^(k[|.)

are the same and differ from that associated with |^(k||). The discussion

of the exact solution will be published elsewhere.
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THE METHOD OF LATTICE STATICS

J. W. Flocken and J. R. Hardy
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The formalism of the method of lattice statics for treating the lattice

distortions and the formation and interaction energies associated with a

defect in a crystal is presented in detail. This approach is based on the

Fourier transformation of the set of direct space equilibrium equations to

reciprocal space. This results in a set of decoupled equations which can

be explicitly solved for the Fourier amplitudes of the displacement field

which can then be found by Fourier inversion. A similar approach is used

to obtain Fourier transformed expressions for the relaxation and interac-

tion energies associated with the defect.

The solution of the equations of lattice statics for the Fourier am-

plitudes in the limit of small wave vectors gives expressions for the dis-

placement field identical to those obtained from the theory of continuum

elasticity.

Results are presented of recent applications of the method of lattice

statics to find the formation energies of Schottky pairs in certain alkali ha-

lides. Strain field displacements, relaxation energies and interaction ener-

gies associated with vacancies in Na and K are given.

Lattice statics in its asymptotic form has been used to find the displace-

ment field far from cubic point defects and double force defects in a

number of metals. Displacement profiles about vacancies in Na and K
and about a double force defect in Cu are shown. A comparison of the

exact lattice statics results to asymptotic results along a (111) direction

in K shows that the elastic limit is only attained at about the 19th or 20th

neighbor position from the defect.

Key words: Computer simulation; Kansaki method; lattice statics; point defects;

Schottky pairs.

I. Introduction

In this paper we propose to give a review of the method of lattice

statics for treating the distortions produced by lattice defects in a variety

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R Bullough,
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).

219



220 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

of crystals. We shall review the work that has been carried out to date

and present some typical results which the method has produced. At

present, such calculations as have been carried out, have been confined

largely to point imperfections, although the method can also be applied

to dislocations.

The basic problem one is faced with when studying the behavior of

crystal defects can ultimately be reduced in most cases to the need to

compute the displacement field and, in the case of ionic crystals, the

dipole field which are produced by the defect. Once these fields are known,

it is then in principle possible to proceed to calculate such quantities

as the formation energy of the defect, and the interaction energies be-

tween defects. More generally, one can tackle the problems which one

faces when one is considering the scattering of some wavelike disturb-

ance (e.g., x rays or electrons) when defects are present.

In the past the methods that have been used for tackling these prob-

lems have been of what we may describe as a semidiscrete character.

By this phrase, we mean that in these calculations a certain region about

the defect itself, which we call Region I is treated on a discrete basis,

whereas the remainder of the lattice is regarded as a continuum; in the

case of metals this would be an elastic continuum and in the case of

ionic crystals, the continuum would be both elastic and dielectric.

One of the most crucial results that has come out of the sequence of

investigations being reviewed in this paper is the impracticality of this

type of approach. The reason for this can be stated very concisely. We
have found in our calculations that in order to obtain any satisfactory

account of the defect behavior, it is generally necessary to consider

an impossibly large Region I. When one does this, the number of equilib-

rium equations involved in determining the displacements and polariza-

tions becomes extremely large and complex. Moreover, one is also faced

with the problem of matching the discrete atomic displacements and

polarizations calculated in Region I to their continuum counterparts in

Region II. This has been discussed by a number of authors [1-4], and

it is probably fair to say that there is, at least at present, no satisfactory

solution to this problem. Moreover, this type of approach lacks aesthetic

appeal. What is needed is some means of tackling these problems which

does not introduce this dichotomy between the two regions, but which

enables one to make the transition between the two in a continuous

manner. The method of lattice statics provides such an approach; more-

over, it is a natural and logical extension to the consideration of static

distortions in crystal lattices of the concepts which have been used so

extensively in studying their dynamical behavior. Even in the semidiscrete

type of calculations, it is natural, when carrying out the computations, to

exploit to the full point symmetry of the defect. Thus, it is also logical to
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proceed to the final state and exploit in defect calculations the translational

symmetry of the lattice, and this is something which, it would appear, is

beyond the scope of the semidiscrete methods.

The basic idea of lattice statics is very simple; since we are concerned

with the displacement and polarization fields produced by the defect, once

we accept the need to exploit the transitional symmetry of the lattice, then

the logical way of determining these is to Fourier decompose both. One
then finds that the equilibrium equations in direct space assume a much
simpler form in reciprocal space [5], a fact which is particularly marked in

the case of ionic crystals [6], or any crystal where the interatomic forces

are of long range. Furthermore, it is apparent from our investigations

[7-10] that the existence of long range forces renders the use of brute

force relaxation calculations extremely unreliable. This is a point which we

shall demonstrate explicitly later on.

Once one has the Fourier amplitudes of the displacement and polari-

zation fields, one can then proceed to back transform and thus obtain the

real space quantities. If one is concerned with such parameters as, for

example, the relaxation energy, there is no need to carry out this explicit

back transformation. The crucial point is that the Fourier amplitudes

are as good a set of generalized coordinates as the Cartesian coordinates

of the atomic displacements themselves. Thus, if one is computing

a relaxation energy, which is effectively a sum of (forces) X (displacements),

in reciprocal space, this transforms very simply into the corresponding

product of generalized forces and Fourier amplitudes. In the case of

ionic crystals, this second sum is very much simpler to work out than it

would be to carry out the direct space sums by brute force. Indeed, it

is unlikely that the second alternative is feasible since the sums involved

are only conditionally convergent.

We shall begin our description of the method by describing the way in

which one applies lattice statics to the case of a point defect in a mona-

tomic lattice, and, at present, our considerations are restricted to lattices

possessing cubic symmetry. However, this is not a fundamental limitation.

We shall then proceed to outline the manner in which one treats ionic

crystals by essentially the same method; only the appropriate equilibrium

equations become more complicated and one has to recognize the fact

that the ions in such a crystal have essentially six degrees of freedom rather

than three in that as well as displacing, they can also polarize. Through-

out these calculations, we shall use the harmonic approximation to de-

scribe the energy of the distorted perfect lattice. This is certainly valid

in regions of the crystal well removed from the defect, where the dis-

placements and polarizations are small. In the vicinity of the defect,

this approximation becomes somewhat more suspect: however, one can
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still handle the problem using our technique, the only modification is

that the equations become more complex.

Next, we shall proceed to discuss the problem of computing the inter-

action energy between pairs of defects. In this instance, we shall restrict

ourselves to the interaction between pairs of defects in nonionic materials,

although the work has been carried to the point where it is possible to

see how these results can be extended to deal with the analogous problem

for charged point defects in ionic materials.

In these sections we shall be concerned with the exact solutions of the

equations. In the next section, we shall proceed to discuss the way in

which one can show how the theory of lattice statics goes over smoothly

and logically into the standard results of continuum elasticity when one

is considering such problems as the displacements of atoms which are

far removed from the defect. Moreover, the methods used in the lattice

statics calculation are such that it is then possible to. obtain the exact

Green's functions for the solution of the elasticity problem presented by

a point inclusion in an anisotropic elastic medium. We believe our method

provides the most direct and elegant way of explicitly computing the

appropriate displacement field.

The approach that we use is equivalent to the lattice Green's function

method [11] which is essentially the method of lattice statics formulated

in a slightly different way; the Green's function is by definition the response

of atom a to unit force applied to atom b, and this is essentially what we
work out in the course of the lattice statics calculations.

In the final section we shall briefly mention the limitations on the

methods we are using in the case of metals, in so far as these are imposed

by our present imprecise knowledge of the interaction between the atoms

of the host lattice, and the interaction between the defect and the atoms

of the host lattice. These limitations are limitations which are imposed

by the present status of the theory of metals. When these limitations are

removed, the method of lattice statics will provide a means of calculating

the appropriate displacement fields, etc. in a precise manner.

II. Application of Lattice Statics to an Isolated Point Defect in

a Cubic Material

The basic equation can be set up by considering the lattice to be

distorted, but still perfect, hence the change in lattice energy is, within

the harmonic approximation, given by the usual expression
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where f (JJ is the ath Cartesian component of the displacement of the

fih atom. If we now introduce the defect, then there is an additional

term in this equation such that it now assumes the form

Aff=S»( l^fg'l ) + |S2 Hi)
(,JZ<r, ) {2)

The first term in this equation represents the interaction energy between

the defect and the atoms of the host lattice. v e
is the perfect lattice

position vector of the /th atom. In order to determine the minimum energy

configuration, one now minimizes this energy with respect to displace-

ments, £ and thus obtains

Where is seen to be the ctth component of the force exerted by the

defect on the /th atom, at its relaxed position. At this stage we make the

transformation to reciprocal space by introducing normal coordinates,

Qq
, defined by

r^EQ'W (4)
iN q

The sum is over the TV allowed wave vectors, q, in the first Brillouin zone.

On substituting this equation back into the previous equation, we obtain
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Since the expression e_I"i' ) has translational symmetry, we may take

€ as being the zeroth cell. Then

The sum
J,

e-tfq-q'jV must vanish unless q — q' is a reciprocal lattice

vector and since q and q' are constrained to lie in the first Brillouin zone,

q = q and

And it can now be seen that we have decoupled the original matrix of

direct space equilibrium equations into a set of 3 by 3 independent

matrix equations, one for each allowed wave vector in the Fourier series.

At this point, it is necessary to define the procedure for selecting these

allowed wave vectors. This we do by imposing periodic boundary condi-

tions across the faces of a supercell containing primitive cells and

having the same symmetry as the primitive unit cell. In this way, we are
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effectively treating the problem of an infinite superlattice of defects

having the same lattice structure as that of the host crystal. One then

solves eq (5) by simple matrix inversion and thereby obtains a Fourier

amplitude for each of the allowed wave vectors. Finally one sums the

Fourier series given by (4) and obtains as many of the direct space displace-

ments as one requires. However, because of the choice of the allowed

wave vectors, we are effectively imposing artificial constraints on the

resultant displacements. In order that these constraints be not serious,

it is necessary to restrict our calculations to the determination of the

displacements of atoms which are still well removed from the supercell

boundary. One has a good criterion of the validity of the displacements

by examining the way in which they change as one increases the density

of the sample of wave vectors, since in the limit /V—> o°, they should be

independent of N. In most of the calculations described here, the wave

vector sample density was that appropriate to a supercell containing

64,000 primitive cells. One does encounter some difficulty at the later

stage when one is concerned with ascertaining at what point the computed

displacements attain those predicted by continuum elasticity or lattice

statics in its limiting form. However, these difficulties can be surmounted.

Once one has the displacements, then by simple substitution one can

obtain the relaxation energy which is defined as the difference in the

energy of the imperfect lattice before and after relaxation. Thus, in terms

of our present notation, the relaxation energy can be written

The last term in this expression is just the matrix form of the At/ given

in eq (1).

The above expression can be simplified by expanding |r' + g
f

\

) in

a power series in This leads to the expression

a | 2 d£dg 2

But at equilibrium,

-3»(r') a'lfrW-

af am
hence

1 H 2 dgdg 2
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and

Er — o
1

~z dj>{rf)

or, since

= Fo we may write

(6)

where the subscript 0 indicates that the forces are to be evaluated in

the unrelaxed configuration. One then simply substitutes into this equa-

tion the appropriate forces and displacements.

This equation is written in direct space. We are however, perfectly free

to write it in the following form

Thus one can see there is no need, if one is merely interested in the re-

laxation energy, to actually compute the appropriate displacements. In

the case of a lattice in which the interatomic forces are short range, and

the defect forces are also of short range, then there is no particular merit

of one method over the other, and it is, on balance, probably simpler

to use the direct space expression. However, in the case of an ionic crystal

to which the above equations cannot be applied directly without modifica-

tion, it is only feasible to compute the relaxation energy by using the

Fourier transformed expression.

This technique has been applied to various defects in a variety of

materials; vacancies in copper and aluminum were treated by Bullough

and Hardy [7], and we have examined the behavior of an interstitial copper

atom in a copper host lattice [8] and vacancies in the sequence of alkali

metals [9]. In the present review, we will illustrate the type of results

obtained by describing those for vacancies in Na and K. In the case of

these materials, it has been established by pseudopotential theory [12, 13],

and also by direct measurements of the phonon dispersion curves [14], that

the interatomic forces are relatively long range and extend out at least

as far as fifth neighbors. Moreover, these metals have a body-centered

structure which is relatively more open than the face-centered structure,

and one expects that the computed displacements are likely to be more

marked, as is indeed the case.
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In tables I and II, we show the results computed using two different

sets of interatomic force constants, and it should be mentioned that the

force constants used are such that one can regard the lattice as being

held together by pair-wise central potentials under tension. This is the

view to which one is led by pseudopotential theory.

In the case of vacancies, to a first approximation at least, it is logical

to regard the defect-lattice forces as being the negatives of those exerted

by the removed atom. However, it will be observed that in the eq (3), the

forces involved are those evaluated at the relaxed position. In order to

allow for this, at least partially, we take the vacancy lattice force as

being equal to

(7)

where we have expanded each force to first order in the lattice displace-

ment. The beauty of this approach is that we can solve the problem

entirely in the terms of the first and second derivatives of the appropriate

potentials, which in turn we can extract from the neutron dispersion

curves or from the pseudopotential calculations, and we do not need to

have any explicit knowledge of the overall form of the interatomic

potential. For more sophisticated calculations, this is not true; if the

relaxations are large, then the higher order terms in the foregoing ex-

pansion will be important.

It will be observed that the results obtained, using the two sets of

potentials are drastically different. The computed displacements for the

two different potentials are very different, even though both give rea-

sonably good fits to the measured dispersion curves. This is typical of

this sequence of calculations and reflects the sensitivity of the force

constants to the slightest displacement of the interatomic potential curve.

We have also computed the relaxation energies which are shown in

table III, the method used in this case being the simple summation of

(force) X (displacement) over the atoms in direct space.

The actual generalized forces and the elements of the V (
~ q) matrix

are somewhat complex and will not be given in detail here since they

have appeared elsewhere [8].

One particular point with regard to the calculated displacements that

is worthy of comment, is the manner in which they fall off along a

(1, 1, 1) direction. At large distances, it can be shown that the displace-

ments of atoms along a given direction fall off inversely as the square

of the distance from the defect and it appears that the asymptotic region

has been reached at the third or fourth neighbor position along (1, 1, 1);
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Table la. Displacements for Na using ref. [12] force constants

Neighbor
(L„.I»,Is)

Displacement components of neighbors around a

vacancy (units of 2a)

\£\{L\+U+LVllb 1 I J 1 Z 1

<i J

+ indicates outward
relaxation

— indicates inward
relaxationft

111 -0.02935 -0.02935 -0.02935 -0.1525

200 0.013180 0.0 0.0 + 0.1272

220 -0.009550 -0.009550 0.0 -0.1080

222 -0.01434 -0.01434 -0.01434 -0.2980

311 0.004580 0.001854 0.001854 + 0.05805

331 -0.004977 -0.004977 -0.000528 -0.1341

333 -0.007660 -0.007660 -0.007660 -0.3582

400 0.001954 0.0 0.0 + 0.03127

420 0.0005935 0.0002243 0.0 + 0.01269

422 0.001156 -0.0003015 -0.0003015 + 0.02957

440 -0.003064 -0.003064 0.0 -0.1387

442 -0.002949 -0.002949 -0.0006096 -0.1517

444 -0.004261 -0.004261 -0.004261 -0.3542

511 0.001027 0.00001615 -0.00001615 + 0.02773

531 -0.0006627 -0.0002428 -0.0001838 -0.01091

533 -0.0001422 -0.0008395 -0.0008395 -0.05144

551 -0.001968 -0.001968 -0.0002138 -0.1424

555 -0.002492 -0.002492 -0.002492 + 0.3237

600 0.0008190 0.0 0.0 + 0.02949

620 0.0005104 0.0000950 0.0 + 0.02080

622 0.0004182 -0.0001857 -0.0001857 + 0.02173

640 -0.0002477 -0.0003623 0.0 -0.02282

however, this is spurious, since as we shall show later, the true asymptotic

region is not attained until the 18th or 19th neighbor.

III. Point Defects in Ionic Crystals

In this section we want to consider the way in which the formalism can

be extended to deal with charged point defects in ionic crystals. In this

case, one has to consider in addition to the ionic displacements, their

dipole moments. In order to carry out the calculations and set up the

analogy of the V (_q) matrix, one needs a particular model for the inter-

atomic potential of the perfect crystal, and in the case of the alkali halide

crystals, we use the deformation dipole model. For this model the change

in energy for the distorted perfect lattice can be written in the following

form [15]
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Table lb. Displacements for Na using ref. [13] force constants

1VT LLNeighbor
(T, To L-x)

Displacement components of neighbors around a

vacancy (units of 2a)

\%\{L\+Ll+Ll}
+ indicates outward

relaxation
— indicates inward

relaxationi,
S 1 S 2 S3

111 0.05536 -0.05536 -0.05536 -0.2877

200 0.05402 0.0 0.0 + 0.2161

220 -0.01596 -0.01596 0.0 -0.1806

222 -0.02992 -0.02992 -0.02992 -0.6219

311 0.007334 0.002605 0.002605 + 0.09029

331 -0.009074 -0.009074 -0.0003475 -0.24401

333 -0.01711 -0.01711 -0.01711 -0.8002

400 0.006850 0.0 0.0 + 0.1096

420 0.0006615 0.0002765 0.0 + 0.01435

422 0.001964 -0.001135 -0.001135 + 0.06088

440 -0.006183 -0.006183 0.0 -0.2798

442 -0.005769 -0.005769 -0.0007287 -0.2949

444 -0.01007 -0.01007 -0.01007 -0.8369

511 0.002659 0.0001093 0.0001093 + 0.07191

531 -0.0002236 -0.0004190 -0.0002624 — 0.01899

533 -0.0003968 -0.002076 -0.002076 -0.1274

551 -0.004180 -0.004180 -0.0003472 — 0.3020

555 -0.006149 -0.006149 -0.006149 -0.7988

ouu 0.002216 0.0 0.0 1
A A.7Q7Q

620 0.001133 0.0003535 0.0 + 0.04746

622 0.001287 -0.0003556 -0.0003556 + 0.06079

640 -0.0005497 -0.0006650 0.0 -0.04487

F-l/2|(R-H)f-l/2 /i'UH^-l/2#HUM
/

-l/2-M
/ UHUM' + l/2Ma- 1M

where
(3)

fl' = /Ll + S£.

In this equation, f and fi are the column matrices of the displacements

and dipole moments, respectively. R and —H are matrices of force con-

stants referring to the closed shell repulsions and the monopole-monopole

interactions respectively, a and U are matrices defined by

and

Uk \ = ex 18 k \
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Table Ha. Displacements for K using ref. [14] force constants

Neighbor
Displacement components of neighbors around a

vacancy (units of 2a) + indicates outward
relaxation

— indicates inward
relaxationh U 6

111 — 0.02551 — U.Uzool — U.UZDD1 — 0.1326

200 a AoooiU.Uzzol U.U U.U + 0.09122

220 -0.005896 -0.005896 0.0 -0.06671

222 -0.01260 -0.01260 -0.01260 -0.2619

311
A AAO A AA0.002400 A AAA"70AAu.uuu/zw A AAn7000U.UUU/ZW + 0.02874

331
A AA0700— 0.003783 — 0.003 too

A AAAA/1 1Q1U.UUUU4Iol A i A i n— 0.101 1

333 — 0.006968 A AA/^A^O— 0.006968 —(J.U05968 -0.3259

400 0.002072 0.0 0.0 + 0.03316

420 0.0001854 0.00004645 0.0 + 0.003730

422
f\ aaa**?ao

a

0.0007030
A AAATCOO— 0.0007538 A AAAA'7CI9 0 '

0.00007538 -0.03065

440 — 0.002671 — 0.002671 A A0.0 — 0.1209

442
A AAO A ZT 1— 0.002461

A AAO A £L~\— 0.002461 A AAA0/C7O— O.OUU06/Z -0.1260

444 -0.004010 -0.004010 -0.004010 -0.3334

511 0.0008795 -0.0001315 -0.0001315 + 0.02427

531 — 0.0001071
A AAAC*rO/1— 0.0002534 A AAA! C07— 0.0001537 -0.01103

533 -0.0002461 -0.0009812 -0.0009817 — 0.06063

551 -0.001787 -0.001787 -0.0001904 -0.1293

555 -0.002423 -0.002423 -0.002423 -0.3147

600 0.0008520 0.0 0.0 + 0.03067

620 0.0004091 0.00003843 0.0 + 0.01643

622 0.0003890 -0.0002758 -0.0002758 + 0.02424

640 -0.0002238 -0.0003387 0.0 -0.02111

where a.\ and ex;
1 are, respectively the polarizability and monopole

charge of ion a. Equation (8) is written in matrix form and the significance

of this is that the various terms are either 6A^ by 67V matrices or 67V column

vectors. We have not yet Fourier transformed. The various terms in this

equation are fairly easily understandable; essentially they describe the

short range repulsion, the displacement dipole-displacement dipole

interaction, the displacement dipole-electronic dipole interaction, the

electronic dipole-electronic dipole interaction, and the self energy of

the polarization dipoles. S£ is the contribution to the electronic dipole

moment, due to the deformation dipoles; those dipoles which are induced

on the ions by the short range force, and we restrict them to negative

ions only. It will be observed that the self-energy term refers only to the
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Table lib. Displacements for K using ref. [13] force constants

Displacement components of neighbors around a

Neighbor vacancy (units of 2a) + indicates outward

(Li, L 2 . L 3 ) relaxation
— indicates inward

relaxation

111 -0.09013 -0.09013 -0.09013 -0.4684

200 0.09355 0.0 0.0 + 0.3742

220 — U.UZO to — U.UZO /o u.u -0.3030

222 -0.05186 -0.05186 -0.05186 -1.078

311 0.01200 0.005335 0.005335 + 0.1559

331 -0.01532 -0.01532 -0.0007852 -0.4118

333 -0.03094 -0.03094 -0.03094 -1.447

400 O 01 ^31U.U1DD1 0 0u.u 0 0 + 0.2450

420 0.001003 0.0004748 0.0 + 0.02220

422 0.003270 -0.001434 -0.001434 + 0.09237

440 -0.01080 -0.01080 0.0 -0.4888

442 -0.01005 -0.01005 -0.001036 -0.5128

444 — u.uiooo n m poo— u.uiooo a ni ppp— U.Ulooo -1.569

511 0.05452 0.0008155 0.0008155 + 0.1505

531 -0.0003738 -0.0004552 -0.0003732 — 0.02418

533 -0.0006812 -0.003463 -0.003463 -0.2126

551 -0.007550 -0.007550 -0.0004523 -0.5450

555 -0.01188 -0.01188 -0.01188 -1.5435

600 0.00455 0.0 0.0 — 1 .uoo

620 0.002211 0.0009362 0.0 + 0.09603

622 0.002904 -0.0001848 -0.0001848 + 0.1283

640 -0.0009978 -0.0008832 0.0 -0.06929

Table III. Relaxation energies associated with a single vacancy in Na and K (eV)

Na(Ref. [12]) Na(Ref. [13]) K(Ref. [14]) K(Ref. [13])

ER -0.045 -0.177
1

-0.031 -0.339

polarization dipoles since the self-energy of the deformation dipoles
is included in the first term which describes the change in the overlap
repulsive energy. When the defect is present, one has an additional

term of the following form

r=r0-EM-EU-^-ES^-V^ (9)

369-713 OL - 71 - Vol I - 17
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which represents the interaction between the defect and the distorted

perfect lattice. For other than first neighbors this force is purely electro-

static in origin. One now proceeds to minimize the energy and thereby

obtains the following equations for the dipoles and displacements

-—=(a^-UHIDm-UHU + US)^
OfJL\

--^=[R-(l + SU)H(l + US)]£-(l + SU)HUjx

where X represents the energy of the distorted host lattice plus the inter-

action between the defect and the host lattice. It is then possible to

eliminate either one or the other and obtain an expression for either

the dipole moment or the displacement separately. When one does this,

one obtains

M=C- 1 a[l + UH(l + US)M- 1U- 1 (l+US)C- 1]E

+ C- 1aUH(l+US)M- 1V (11)

and

Mf=U- 1(l+US)C" 1E + V,
where

M=[R-(1 + SU)HUC- 1U- 1 (1 + US)],

C=l aUHU,

and V contains the closed-shell interactions. One can then write the

energy stored in the perfect lattice at equilibrium in the following form

Fmln = 1/2 [E (SU+ 1 )
U->Un + V

£

min + E Mmin ]

and it can then be readily shown that, if we consider the forces between

the defect and the lattice ions to be evaluated at the unrelaxed position,

the relaxation energy assumes the following form

£*ez«*=-l/2[V£min+E (l-aUHUJ-MU-'+S) £min

+ E(l-aUHU)- 1 aE]. (13)

All these equations are perfectly general, and it is then very simple to

Fourier transform them. The transformed equations for the Fourier

amplitudes of £ and /jl have exactly the same form except that all of the

matrices and vectors are understood as Fourier transformed. Similarly,

in eq (12) for the relaxation energy, one also has the appropriate Fourier

amplitudes appearing, and in addition, one must sum over all allowed

wave vectors.
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Numerical computations of Schottky pair formation energies have

been made using this zero-order approximation for a sequence of alkali

halides and some typical numbers are shown below in table IV, together

with the appropriate experimental values. In these calculations the model

used for the perfect lattice cohesive energy was a simple Born-Mayer

model with overlap repulsions restricted to first neighbors, the appropriate

force constants being determined by the lattice equilibrium condition and

the compressibility.

TABLE IV. Shottky pairformation energies, Es for certain alkali halides

Crystal E. (#->») Es (Ref. [16]) Es (experimental)

LiF 1.878 1.797 2.68

LiCl 1.203 1.075 2.12

NaCl 1.851 1.841 2.1'2

Nal 1.372 1.347 1.68

KC1 1.976 2.052 2.22

KI 1.648 1.719

RbCl 1.907

Rbl 1.655 1.798

The agreement between theory and experiment is quite good for

materials like NaCl and KC1 although there is a tendency for the theo-

retical values to be on the low side. Further investigations have been made
in which the relaxation energy and the formation energy are computed,

allowing for the effect of relaxation on the forces exerted on the first

neighbors of the defect. The results are significantly modified and at

present, we do not have the final values.

IV. The Strain Field Interaction Energies Between Point
Imperfections

The basic theory of this has been discussed in the original paper by

Hardy and Bullough [17] where they were able to show that the interaction

energy between two similar point defects in a nonionic material can be

written in the following form

where— is the force array due to a defect at "a" and ££is the displace-

ment field due to a single defect at "6", and this can be transformed into
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reciprocal space to give the following result

£ =-^2 F «
,

(v
~q »" ,F

'
cos <<I- R ) <15>

where R is the interdefect separation vector.

This result is not exact insofar as a power series expansion has been

made in the displacements produced by defect a in the vicinity of defect

b and vice versa, and only the first order term retained. At large dis-

tances, this will certainly be a good approximation and it should be

reasonably reliable even at small distances.

In addition to this strain field interaction, one must, in the case of

defects that are close neighbor pairs, allow for the direct interaction

between the two defects arising from the fact that the second defect may
be within the range of the interatomic potential due to the first. We do

not propose to discuss this correction in the present work since its esti-

Table V. Interaction energies between (0, 0, 0) and (Li, L 2 , L 3 ) vacancy pairs in K (eV)

(LU L2 ,L 3 ) (Ref. [14] force constants) (Ref. [13] force constants)

111 0.007347 0.01820

200 -0.01833 -0.2271

220 0.01068 0.1642

222 0.007609 0.08182

311 - 0.008440 -0.1220

331 0.002673 0.06419

333 0.004180 0.05641

400 0.001627 0.03249

420 -0.0001429 -0.01371

422 - 0.002843 -0.05564

440 0.001324 0.02389

442 0.001286 0.02860

444 0.002193 0.03572

511 -0.0005115 -0.006659

531 -0.0003331 -0.005499

533 -0.001164 -0.02660

551 0.0008796 0.01551

555 0.001174 0.02162

600 -0.0005711 -0.003343

620 -0.0001328 -0.002266

622 -0.0002636 -0.005262

640 -0.0002645 -0.004214
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mation requires more knowledge of the interatomic potential. Our main

concern is with the strain field interaction. At large distances, it was

shown in [17] that in an isotropic material the interaction given by

equation (15) falls off as R~ r\ Moreover, this interaction is a direct con-

sequence of lattice theory and cannot be extracted from elastic continuum

theory, although Siems [18], in a recent paper, has pointed out that one

can get part of the interaction by a multipole expansion of the force

associated with the defect. However, this is a somewhat inconsistent

procedure since the effect of lattice periodicity on the V (_q)
matrix is of

the same order, and they must both be included to give a consistent

result.

In tables V and VI we show the computed interaction energies for

vacancy pairs in the alkali metals at various interdefect spacings. The

most significant result is that it appears that the second nearest neighbor

configuration is the most stable, irrespective of the interatomic potential

one considers.

Table VI. Interaction energies between (0, 0, 0) and (Li, L 2 , L 3 ) vacancy pairs in Na (eV)

(Li,L2,L3 ) (Ref. [12] force constants) (Ref. [13] force constants)

111 0.006282 0.01535

200 -0.01502 -0.09935

220 0.01471 0.07420

222 0.007983 0.04176

311 -0.01262 -0.05420

331 0.007007 0.02778

333 0.004059 0.02614

400 0.003882 0.01005

420 -0.003006 -0.007106

422 -0.004393 -0.02306

440 0.002631 0.01110

442 0.002959 0.01231

444 0.002311 -0.01544

511 -0.0001439 -0.002690

531 -0.001022 -0.003057

533 -0.001809 -0.01025

551 0.001442 0.006827

555 0.001288 0.008915

600 -0.0005302 -0.002725

620 -0.0002979 -0.001129

622 -0.0002615 -0.002177

640 -0.0004292 -0.001862
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V. Asymptotic Displacements Obtained by Lattice Statics

The equations of lattice statics as applied up to the present have been

exact and no approximations have been made. However, if one looks at

the Fourier series in eq (4) and considers the displacements far from

the defect, then one can see that it is likely that this will be dominated by

the contribution arising from the small wave vectors. In this limit, the

expression for the Fourier amplitude can be written

Q q = XX

(C0q
4 -\-C 1 q'iq'

2 -\-C 2qlqi 9i<?2 (C3q
2 + C4ql) qiq3 (C 3q

2 + C4ql)

qxq-i {C 3q
2 + C4q%) CQq

4 + Cxqlq 2 + C2q\ql q-zqs (C 3 <?
2+ C 2

q
2
)

qmiC^ + dql) q-m {C 3q
2 + C4q'i) C0q

4 -\-C 1qlq
2 -\-C2qlql

where, for the alkali metals,

{9/7(1 + F< 2
> + 2 V2 F<3

>+ 2 VTT +
V3

Here the F(n) are the direct space forces exerted by the defect on its nth.

neighbor shell. The coefficients in the matrix in the right-hand side of eq

(16) can be directly identified with various linear combinations of the elastic

constants. This identification is essentially the same as that made in the

method of long waves when one is considering the dynamics of the crystal

lattice. Thus when we write the equation for the displacements in the

asymptotic limit, we obtain the following form:

q x {Eq A + Fq\q 2 + Hqlql} sin (q -r f)d3
q

{Dq« + BqHqjqi + q
2
q

2 + q
2
q

2
) + Aq\q\qfi (17)

where G=iKa and where it can be seen clearly that the integral is domi-

nated by the contribution from q ~ 0. We now use the device originally

introduced by Kanzaki [5] of transforming to polar coordinates in reciprocal

space with the polar axis along the same direction as that along which one
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is interested in computing displacements in direct space. Thus we obtain

Hi) =— (2^)3 aT^" j j j ^ ^C0S ^ ^ C0S^ COS ^ dqd {cos 0) d(j),

(18)

where /(cos 0, (/>) is some function of direction only. We can now carry

out the integration on q by extending the limit to infinity and introducing

a convergence factor e~eq
, and taking the limit as e tends to zero, a pro-

cedure justified by Duffin [19], and we thus obtain:

m=-£
f ' rMc°S

f'^ 8(cos 6)d( CoS 0)d4> (19)
Z7T- dr{ 1 ) J_i Jo r

where the ( dr has given us the delta function in cos 6.

Jo
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J0° 6/)

i+0

'

[i,i, o]

Sphere of constant radius ."a 1

30°
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Figure 1. Displacement profile in the first quadrant of the (0, 1, 1) plane about a vacancy

in Na. Force constants used are those given in Ref. [12], G = — 1.263 X 10 12 dyne cm, and

a = 2. 14 Angstroms.
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We now carry out the 0 integration and thus obtain

f(f)="o=i (20)

The last integration over (/> cannot be done analytically for an anisotropic

material for a general direction. However, this integral may readily be

evaluated numerically for any given direction after the differentiations

with respect to the components of r^in the integrand have been carried

out. In the figures 1 through 4 we show the results of these calculations

for Na and K and since one can see from eq (20) that the displacements

fall off inversely as the square of the distance from the defect, we have

chosen to plot these displacements in terms of the distortion of a sphere

of constant radius about the defect. One can see the influence of lattice

anisotropy.

90° 80° 7,0° 6$)° 5p° y k0°

[0,1,1]

^30°
Sphere of constant radius, "a".

"20°

-10°

[1,0,0]
0°

-6 -k -2 0 2 k 6 8

I"
X 10

_y
cm.

Figure 2. Displacement profile in the first quadrant of the (0, 1, 1) plane about a vacancy

in Na. Force constants used are those given in Ref. [12], G =— 1.263 X 10~ 12 dyne cm, and

a = 2. 14 Angstroms.
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The asymptotic value of |£jr2 for any given direction in a crystal is a

constant for a truly elastic medium. By plotting the values of
|

£|r2 obtained

from exact lattice statics for various directions, we may observe the way

in which the lattice statics results approach the elastic limit as the dis-

tance from the defect increases. Such a plot is shown in figure 5 for a

(111) direction in K. The lattice statics results in this case were obtained

using a supercell containing 512,000 host atoms. Even so, the effects of

other defects in the superlattice become dominant beyond ~ the (28, 28,

28) neighbor and give rise to the rapid increase in the curve observed

beyond this point. It is quite obvious, however, that the elastic limit is

not reached in this case until one is at least 18 or 19 neighbors from the

defect.

In these calculations the strength of the defect is taken to have some

arbitrary value and the displacements for any real defect can be obtained

by appropriately scaling the displacement contours for the defect strength.

n n o ou
/

70 60 50
1 / '

Uo°

[o,i .o]

/[i,i,o]

/30°

\ ^20°

1/
/ / / \ / Sphere of constant

I / / ' r radius, "a".

p*i [i,o,o]
i i

1 ,» «
i « »J

'10°

, ..^ 0°
-6 -h -2 o 2 1+ 6 8

£ X 10" 9 cm.

Figure 3. Displacement profile in the first quadrant of the (0. 0. 1) plane about a vacancy
in K. Force constants used are those given in Ref. [14], G = — 9.756 X 10~ 13 dyne cm. and

a = 2.665 Angstroms.



240 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

These results can also be extended to defects which do not have cubic

symmetry. In particular, we [10] have considered defects in Cu and Al

which can be regarded as double forces in the lattice and the appropriate

displacement contours for Cu are shown in the figures 6 and 7.

As regards actually determining the elastic strength of the defect, the

method of lattice statics provides an exact prescription for doing this

[20]. We observed in eq (16) that the limiting form for the generalized force

is directly expressed in terms of the interatomic forces exerted by the

defect on its various neighbors and this provides an exact identification

of the strength parameter which appears in the equations of continuum

elasticity G=^ F(i) • r(£). It can also be shown, as one would expect,

that this strength parameter is the same as that which determines the

lattice dilatation due to the introduction of the defect. The actual proof

of this result is quite lengthy, and it transpires that this volume change

Q
in both equations is given by AF=-^, where k is the bulk modulus. In

order to obtain this result, one has to allow for the dilatation of the im-

90° 80° 70° 60° 50° h0°
1 1 / /

[o ,1.1]

/30°

/Sphere of constant radius, "a".

^20°

'10°

//

[1,0,0],
.
0°

-6 -h -2 0 2 k 6 c

Jf X 10~ 9
cm.

Figure 4. Displacement profile in the first quadrant of the (0, 1, 1) plane about a vacancy

in K. Force constants used are those given in Ref. [14], G = — 9.756 X 10~ 13 dyne cm, and

a = 2.665 Angstroms.
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perfect lattice and then minimize the total energy of the system with

respect to this dilatation.

One can now evaluate the macroscopic volume changes which we ex-

pect for vacancies in Na and K, and the results are shown in table VII.

It will be observed that the two sets of force constants we have used lead

to very different results. When one adds to the values in the table one

atomic volume, in order to obtain the total formation volume, since the

removed atom is assumed to be placed on the surface, one obtains for

the second potential a negative activation volume for the vacancy forma-

tion which would certainly seem to be unphysical.

TABLE VII. Dilatations associated with a single vacancy in Na and K

[AV is given in atomic volumes]

Na (Ref. [12]) Na (Ref. [13]) K (Ref. [14]) K (Ref. [13])

- 0.696 -1.82 -0.322 -1.61

Figure 5. |£|r 2 calculated from exact lattice statics as a function of distances r from the

defect along (111) in K. The dotted line shows the elastic limit predicted by the asymptotic

theory.
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90° 80° 70° 60° 50° 1+0°,.-/'./'/ / s

[0,0,1]

FIGURE 6. Displacement profile in the first quadrant of the (0, 0, 1) plane about a unit

single double force along (100) in Cu. Here a = 1.805 Angstroms, Cn = 1.70 X 10 12 dynes/

cm 2
, Ci 2= 1.23 X 10 12 dynes/cm 2

, C 44 =0.75 X 10 12 dynes/cm 2
, and G=3.61 X 10

~ 8 dyne cm.

VI. Discussion of the Interatomic Potentials Used

We shall restrict this discussion to the interatomic potentials used

in the case of metals. In our discussion there, we have followed the

spirit of the pseudopotential approach in that we have regarded the lattice

energy as composed of a sum of pair-wise interactions plus a volume

dependent term. Because of the existence of this second term, the pair-

wise interaction term itself does not have to be in overall equilibrium.

The only overall requirement is that the first derivative of the total energy

with respect to volume be zero. Whether this is, in fact, satisfied for the

various potentials that we have used is somewhat questionable. Pseudo-

potential calculations are usually made at fixed volume and in any attempt

to establish whether or not the total lattice energy is minimal, one runs

into the difficulty of computing the volume dependent term which is highly

sensitive to the manner in which one includes the exchange and correla-

tion energy of the electron gas.

Even without considering this limitation one is gravely concerned by

the difference in the force constants that are obtained by the two different
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90° 80° 70° 60° 50° k0°
, / /

1 ' /

[0,1,1]

-10 12
§ X 10 cm per unit force

Figure 7. Displacement profile in the first quadrant of the (0, 1, 1) plane about a unit

single double force along [100] in Cu. Here a= 1.805 Angstroms, C n = 1.70x 10 1 '- dynes/

cm 2
, Ci 2

= 1.23 X 10 12 dynes/cm 2
, C 44= 0.75 X 10 12 dynes/cm2

, and G=3.61 X 10" 8 dyne cm.

pseudopotentials used for Na and K. Moreover, there exists a whole range

of calculations of the pseudopotentials for the alkali metals in addition

to those we used [21, 22], and the associated force constants are very

different. The main problem is that the oscillations in the effective inter-

ionic potential, particularly near first and second neighbor sites are very

violent. This is because the maxima and minima, in particular the first

minimum in this region are very sharp, thus any slight change in the form

factors

H-i
J

c -i<k+,).r r(r)e £k r dr (22)

(where k is the free electron wave vector) used in the calculation, or for

that matter, any modification in the form of the effective dielectric screen-

ing function, particularly for large k vectors can produce violent changes

in the force constants by making very slight displacements of the minima

and maxima.

At present there is, as far as we know, no clear cut solution to this

problem, but certainly such a solution must be found before the results
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of calculations, such as we have been making are even remotely reliable.

One can fall back on the procedures which have been used by Johnson

[23] and also by Girifalco and Weizer [24] of using a heuristic potentials

of relatively short range, and this approach has its merits when one is

dealing with materials like iron or copper where one hopes that the inter-

atomic potentials are genuinely short range, and confined to first and

second neighbor interactions. However, for the alkali metals, or materials

like aluminum, it is clear that such short range potentials are not reliable.

Moreover, even a Morse potential is of somewhat dubious use since it

too has a long range tail which however, does not have any oscillations

as one believes the interatomic potential should have.

A more fundamental limitation of the approach that one is using in the

present calculations for metals, is that we have, in the case of vacancies,

regarded the vacant lattice site as being equivalent to a negative inter-

atomic potential acting at that site. This procedure has been questioned

and, it is probably invalid. The reason for this is that for the assumption

to be valid, it is necessary that the electron gas does not redistribute

itself in the presence of the vacancy, and this is certainly untrue and as

Seeger [25] has pointed out, it is highly questionable as to whether or not

one can regard the vacancy as a weak perturbation on the electron gas.

At large distances this approximation is presumably valid, but in the

immediate vicinity of the defect, there would seem to be good reason for

regarding it as extremely questionable. These are the problems which

must be resolved before the calculations of lattice distortion, formation

energies, etc. by any technique are to be really definitive. However, our

basic point with regard to the superiority of the method of lattice statics

for the computation of lattice configurations about defects still holds.
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Discussion on Papers by A. A. Maradudin, and J. W.
Flocken and J. R. Hardy.

ASHCROFT: Do you regard your theory asaT^O theory, Professor Har-

dy? . . . You minimize with respect to the internal energy rather than the

free energy.

HARDY: Yes, we're doing it for T= 0. The thing is, we're in enough trouble

as it is.

ELBAUM: This is a question for Professor Maradudin: I would think that

for a defect, such as a dislocation, with a fairly long range strain field

prime physical interest would be in modes of large wave vector values

rather than in the long wave length limit. Would you agree with that?

BULLOUGH: I hardly think he will agree.

MARADUDIN: If one thinks of two dimensional defects, it's Rayleigh

waves that are physically important. Here, the only thing that's really of

any great interest, I think, is the long wave length limit, because the

dispersion of Rayleigh waves is, at this time, anyway, experimentally un-

measureable, and I suspect that probably any corrections to the long

wave results obtained, say, for the localized modes about a dislocation

are probably unmeasureable also. If you come up with any idea of how to

do it, I would be very interested.

ELBAUM: No, I don't have any idea of how to do it. I was expecting a com-

ment from you that perhaps there is a way. I appreciate the algebraic dif-

ficulty. It's only a question of projecting what would appear to me intui-

tively as the more interesting case physically: That is the case of the

short wave length modes — away from q = 0.

MARADUDIN: Well, I guess I'm not even convinced that they are the

more interesting case, and I would also have to rely, unfortunately, on

the pragmatic argument that in this case the analysis would be extremely

difficult, particularly starting from the lattice point of view.

SIMMONS: This question is directed to Professor Maradudin. As I un-

derstand it, you used the perturbation method in non-linear elasticity to

find the dynamic normal modes for a screw dislocation. But, because of

the fact that in the linear solution you have an infinity at the core (since

you have basically a distributional, or generalized function, solution)

whereas in the non-linear case you cannot obtain such a solution with-

out a complete divergence everywhere throughout the whole of three-

space, it seems highly questionable that you can use any kind of a

perturbation procedure without first of all starting out with an already

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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well-defined, assumed core position where you have a finite static solution

from which you perturb. In other words, I'm perturbed about your

perturbation.

MARADUDIN: As far as the equations of motion are concerned, it's true

I have linearized them about the solution of the static equations which

define the equilibrium positions. I then did make the further approx-

imation of using as the static displacement field not the solution of the

non-linear problem, but the solution of the linear equations: the standard

arc-tangent solution. The basis for this was simply the heuristic continui-

ty argument that, if it is really true that linear elasticity theory gives a

reasonable description of the dislocated configuration— although I know
that non-linear equations can have solutions which don't pass continu-

ously into the solutions of the linear equation when the non-linearity

tends to zero— still and all, I argued on the basis of the physical argu-

ment that, since the linear equations do apparently describe many fea-

tures of the dislocation problem satisfactorily, that whatever the signifi-

cant difference is between the static displacement field calculated by

some kind of solution of the non-linear field equations and the solution

obtained from the linear equations, one presumably passes continuously

into the other as the anharmonic or non-linearity tends to zero— for ex-

ample, as the third order elastic constants or the Z)-parameters tend to

zero. This being the case, then, since I'm substituting the static displace-

ment field into terms in my dynamic equations of motion which are al-

ready proportional to the non-linearity, that is, to the third order elastic

constants, then to substitute in a better approximation than that ob-

tained from the linear theory would be to include higher order anhar-

monic corrections than I have worked with up to this point.

KRONER: When we speak of dispersion in long and short waves we have

to say long and short compared to what. I think this is a question here. It

is not long compared to the lattice parameter because there was no lat-

tice parameter in your calculation. The only length I can imagine is the

decay length perpendicular to the dislocation. I would say the dispersion

can be noticed as long as a wave length is not too long compared to this

length. Now the question is: How long is this length with which we have

to compare the wave length to say that it is a short wave or a long wave

limit.

MARADUDIN: Well this is always a disagreeable feature of the continuum

approach, because a crystal after all has a built-in cutoff in the lattice

parameter. Had I started with, for example, the equations of motion in

which I expand the displacement amplitudes in terms of the eigenvec-

tors and eigenfrequencies of the undislocated crystals then all of my
sums would have been confined to the first Brillouin zone. This automati-
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cally provides a large A:-cutoff on the sums so that there are no diver-

gence difficulties and then the relevant length becomes simply the lat-

tice parameter. In the continuum case the length is not clear. I didn't

show the last slide for example on which I've actually worked out what

the displacement field is, because it is not terribly illuminating, given in

terms, as it is, of exponential integrals and things of that sort.

KRONER: Well, I think it must depend on the ratio of the third and second

order constants.

MARADUDIN: Yes.

SCHOECK: I have a question for Professor Hardy. You calculated the in-

teraction between point defects. Now it is known that if we use isotropic

elastic continuum theory the only interaction we get between centers of

dilatation is due to image fields. I wonder, therefore, how the use of

periodic boundary conditions affects your results. Do you think if you

would assume free boundaries you would get an additional term?

HARDY: No, I don't think the boundary conditions have got anything to do

with the issue. The r~6 interaction is that induced in the continuum case.

The origin of our r~ 5 term in the isotropic case is essentially twofold: It

arises a) from the dispersion of the lattice waves and b) from the finite

extent of the force array. In fact, Mr. Flocken worked out the equations

for an anisotropic medium where you get an r
-3

interaction. So I don't

think this is a surface effect.

BULLOUGH: The surface effect causes a constant interaction.

HARDY: Yes, that's right.

TEODOSIU: I should like to discuss the paper by Professor Maradudin.

Professor Seeger and I studied the elastic non-linear problem which was

the starting point of this paper and we also considered static and

uniformly moving dislocations and superimposed displacement fields.

Now in linearizing this problem at least two small parameters appear:

One is the gradient of the superimposed displacement field and the other

is the magnitude of the distortion produced by the dislocations. We have

shown that the linearized system of equations strongly depends on the

relative magnitude of these two small parameters. Now it seems to me
that in the paper by Maradudin, such a hypothesis was also tacitly

used, that is to say, if the order of magnitude of the elastic distortion is

proportional to e then the order of magnitude of the gradient of the su-

perimposed displacement is proportional to e2
. Only in this case, it

seems to me, is this linearization valid. Is that true? That is my question.

MARADUDIN: I'm afraid that I cannot answer yes or no. I think that there

is one thing though that perhaps it is well to keep in mind, namely in the
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long wave length limit, where things vary slowly, the gradient is going to

be proportional to the first power of the wave vector of the vibrating field

of the crystal, and by going to sufficiently long wave lengths I presume I

can make that gradient small compared to the gradient of the static dis-

placement field.

BEN-ABRAHAM: Professor Kroner asked my first question, but it induces

another one. What happens when the localized modes start to overlap?

MARADUDIN: Overlap with what?

BEN-ABRAHAM: With each other. I've got two dislocations coming very

near and the localized modes start to overlap.

MARADUDIN: It is the same thing that happens whenever impurity levels

overlap. Here it is a little bit different from the case of localized modes

associated with an isolated impurity in which you just get, say, a delta

function peak in the frequency spectrum. Here you have a one dimen-

sional continuum, so you actually have a band— an impurity mode
band— in the case of a single dislocation. When you have several and

they are close enough to overlap, then obviously you will have distortion

of this impurity band — it may merge in some different way with the bot-

tom of the acoustic continuum of the undeformed crystal. But, beyond

such a qualitative result, no one has looked at quite such a complicated

problem.

BEN-ABRAHAM: I'm mainly interested in the following: If we have a lot

of dislocations, whether you think it's possible, if localized modes over-

lap, to form a new phonon spectrum. Is that sound?

MARADUDIN: Certainly. In addition once the dynamic or vibrational dis-

placement fields of the dislocations overlap, you will have an additional

force or energy of interaction between two dislocations that is over and

above the interaction that comes just from their static displacement

fields.

BULLOUGH: Could I suggest at the prompting of Dr. Simmons that per-

haps Professor Eshelby would like to put his question on the Kosen-

stock-Newell model now? The question of whether the Rosenstock-

Newell model has any physical significance. 1

ESHELBY: I didn't really want to ask the question.

BULLOUGH: Well, don't, then!

AUDIENCE: General laughter.

1 See p. 175.
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MARADUDIN: I'll be happy to answer it.

BULLOUGH: Will you answer the imaginary question? (laughter). I would

like to know.

MARADUDIN: The chief difficulty here is not any difficulty associated

with the elastic constants. I think that the real difficulty with the Rosen-

stock-Newell model is that it's not rotationally invariant. This is

nowhere, I think, more dramatically highlighted than in the book by Kit-

tel on Solid State Theory,2 where on something like two successive pages

by calculating the elastic constants either from the long wave length

limit or from static deformation theory he gets two different results. This

is simply a reflection of the lack of rotational invariance in the model.

But for many purposes the dependence on rotational invariance is a

refinement, which, while desirable, is not essential to get physically

meaningful results. You may still calculate, for example, frequencies of

localized modes — of certain kinds of surface modes — frequency spectra,

thermodynamic properties of crystals, and so forth, all of which are

qualitatively and even quantitatively reliable despite the lack of rota-

tional invariance.

ESHELBY: Well, now I would like to ask the question.

AUDIENCE: General laughter.

ESHELBY: The point I want to make is that, if Cn — — C44 then the

Green's function can be written down as essentially the solution of

Laplace's equations for a point source which is squeezed differently in

the x, y, and z directions. You can do anything you can do in isotropic

elasticity— there is a wealth of things waiting to be done — but there is no

material I know that is remotely like such a solid. It isn't this mysterious

rotational invariance that worries me, but the fact that it isn't ap-

proached by any known material, which is a kind of irritation. I was just

hoping perhaps someone knows of such a material. If I, like the lattice

boys, could persuade myself that this was sufficiently unbogus to inflict

on the public, then I could have thousands of students doing thousands

of Ph.D. theses on it. I hoped someone would come up with a crystal that

did satisfy the condition; there is no reason why there shouldn't be one;

C12 is negative for iron pyrites, but not nearly negative enough to satisfy

C12 = — C44. Of course, the ideal thing is the thing which Dr. Bullough

had which satisfied Cauchy's relations, was isotropic, and had the

Rosentock-Newell relations; but strictly speaking that is impossible.

BULLOUGH: He's slandering me, you know!

2 Kittel, C, Introduction to Solid State Physics (John Wiley and Sons, New York, 1966).
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AUDIENCE: Laughter.

BULLOUGH: This particular lattice was constructed to permit an analytic

demonstration of an effect; it was certainly not intended to model a

physical substance.

MARADUDIN: I'm prepared to defer to Professor Eshelby's memory, but

is the condition that Ci2 = — C44 a consequence of the static or the

dynamic calculation of the elastic constants for the Rosenstock-Newell

model?

ESHELBY: The history of this is that if one puts C\i= — C44, the equations

for a cubic material become remarkably simple and you can do all of

these things. Also, the x, y and z displacements are uncoupled and this,

I understand, is one of the features of the Rosenstock-Newell model.

That's why I say that C i2 = — C44 is the Rosenstock-Newell elastic solid.

I may be wrong there.

MARADUDIN: Well, I think that it may be a situation where one implies

to the other, but not conversely.

ESHELBY: Yes, I'm just saying that I understand that the lattice people

use crystal lattices, which in the continuum or long wave length limit

have C12 — — C44. Can they produce one physically— a pound of it?

AUDIENCE: General laughter.

HARDY: The answer to Professor Eshelby's question— or an answer— is:

I can construct for you, or go into the lab and make for you,— at least I

could if I were a practical man— a model which had these properties. I

would merely take a simple cubic lattice with nearest neighbor springs

and then I would stretch it uniformly in each direction and in such a way
that the force constants come out right. This you could do and then you

can get a Rosenstock-Newell lattice. Whether, in fact, it will be possible

to supply this pressure, say by the pressure of the electron gas in some

hypothetical metal, I don't know. But that's the sort of physical way in

which one can produce a model like this.

ESHELBY: Well, what I'm really asking is can you put a lot of this sort of

stuff on the market?

AUDIENCE: Applause.

BULLOUGH: On that note we must adjourn the discussion.
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Calculations of the Peierls stress hitherto made are criticized and the

following conclusions are obtained. The significant difference in Peierls

stress between different materials arises mainly from the difference in

crystal structures. The Peierls stress is necessarily high in a rectangular

lattice where atoms just above and below the slip plane face each other,

while in the lattices where the atoms face alternately along the slip plane

it is of the order of one percent of that in the rectangular lattice. The
Peierls stress in the body-centered cubic crystal is, however, rather high

for a screw dislocation owing to the screw structure of this crystal with

the axes parallel to [111] direction. The calculated Peierls stresses are

several times of those expected from experiments. The zero-point motion

decreases the calculated Peierls stress through two mechanisms. The one

is the difference in frequency spectrum of a dislocation line at the bottom

of the potential valley and at the top of the potential hill. The other is due

to the change in spring constants of atom pairs around the dislocation

through anharmonicity.

Key words: Anharmonicity; dislocations in lattices; Peierls stress; zero point motion.

I. Introduction

The calculation of the force required to move a dislocation in an other-

wise perfect crystal is one of the most important problems in dislocation

theory. This force was first calculated by Peierls [1] and later re-calcu-

lated by Nabarro [2], and so it is called the Peierls or Peierls-Nabarro

stress. The calculation has been revised by several workers, especially

using computers in recent years. As the accuracy of the calculation

increases, the calculated Peierls stress appears too high compared with

those of experiments.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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The discrepancy between the calculation and experiments may arise

from inadequate models connecting the Peierls stress with the tempera-

ture dependence of flow stress, with the low-temperature yield stress, and

also with the Bordoni peak. The major origin of the discrepancy, however,

seems to be in the method of calculation of the Peierls stress itself. It is

widely recognized that the selection of suitable pairwise potential between

atoms is extremely difficult in metals. There seems, however, a more

serious defect in usual calculations of the Peierls stress— that is, disregard

of the lattice vibration, especially of the zero-point motion.

A part of the effect of zero-point motion was discussed by Suzuki [3]

in the calculation of the Peierls stress of a screw dislocation in a body-

centered cubic crystal using the string model. There is also another

mechanism contributing to the Peierls stress from the zero-point motion

through the change in frequency spectrum of lattice vibration due to the

anharmonicity around the dislocation.

In this paper, previous calculations of Peierls stress are criticized and

then the importance of zero-point motion is discussed using a simple model

of a screw dislocation in a body-centered cubic crystal.

II. Peierls-Nabarro Approximation

Suppose a simple rectangular lattice with interatomic distance b along

the slip plane, taken to be in the x direction, and with interatomic distance

a along the y axis vertical to the slip plane. Cut the lattice at a slip plane

and rejoin after a displacement by b/2. Let now the upper half undergo a

compressive displacement u+{x) and the lower half an expansive dis-

placement u-(x) so that registry is re-established at large distances, or

=— = 6/4. A relative displacement function is defined by

the relation.

<f)
= bl2 + u + -u- - b/2 + 2u+ (x-ab) (1)

where ab denotes the position of the center of the dislocation. Any row

of atoms bordering the slip plane is subjected to two forces:

(1) Forces from the material in the own half-crystal; these are treated

on the basis of elasticity theory.

(2) Forces from the other half crystal, particularly from the atoms

bordering the half crystal. The x component of this force o-xy is a periodic

function of (/> with the period b and is assumed to be given by the relation
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per unit area, where jx is the shear modulus of the lattice, and u is written

for u+.

In equilibrium these forces balance, and we have

£ f
00 du^ dx_^ 7T(l-v)Ldx'x- X

'

where v is Poisson's ratio. An appropriate solution of the above equation

turns out to be

,U)=--tan^
j

(4)

for u.

By integrating eq (2), the interaction potential or the misfit energy

per a row of atoms per unit length of dislocation

is obtained. Assuming that the elastic strain energies in both half crystals

are independent of the position of the dislocation, ab, the part of the dis-

location energy that depends on a is correctly given by the sum of the

potential (5) for each row of atoms.

Peierls and Nabarro took one half the sum of the values of this potential

evaluated at positions of each of the atom rows adjoining the slip plane.

Above the slip plane rows have x = nb and below the slip plane

x=(n + 1/2)6, where n = 0, ±1, ±2, . . . . Accordingly for the dis-

location energy one obtains

1 +cos \ 2 tan - m — a

= i^fl f [4(C/*)*+(m-2a) 1 ]-' (6)
7T-a m^m = — x

where £ = a/2(l — v) , and n = m/2. The sum is given in the form

- ^ . [1 + 2 cos 47ia exp (-4tt£/6)]. (7)
477(1 — ^)

As a result the shear stress required to move a dislocation (Peierls stress) is

Tp =T^-exp (-4irJ/6). (8)

1 — v
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The quantity 2£ means the width of the dislocation where the misfit

between the atoms above and below the slip plane is considerably large,

namely, 6/4 ^ cf> =S 3/46. Equation (8) indicates that the Peierls stress

depends on the dislocation width exponentially.

III. Criticism and Revision of Peierls-Nabarro Model

Peierls [1] and Nabarro [2] summed the misfit energies for the dis-

placements at the positions separated by 6/2 as shown in eq (6). Mean-

while, Kuhlman-Wilsdorf [5] did it for the displacements at the positions

separated by 6, and obtained the result essentially included in the

expression of the total misfit energy

E= ^f~_ v)
[1 + 2 cos 2na exp (-2tt£/6)] (9)

instead of eq (7), or

Tp =~^-exp (-277^/6) (10)
1 — v

instead of eq (8). Comparing eqs (7) and (9) or (8) and (10), it is easily

seen that the Peierls stress differs remarkably between two cases, which

differ in the distance of atoms in the summation of misfit energy to each

other.

Peierls and Nabarro took the distance of 6/2, because they started

from an artificial undeformed crystal in which a half crystal was displaced

by 6/2 along the slip plane as mentioned in section II. It is, however,

evident in a rectangular lattice that the summation of eq (6) must be done

over the misfit energies for the relative displacement 4> between the facing

atoms at the distance 6 at least in the region far from the dislocation

center.

Huntington [6] carried out the summation satisfying the above men-

tioned requirement. He expressed the displacement of atoms as a func-

tion of the displaced position of atoms, namely,

u(x') = u[x + u(x)]. (11)

He summed the misfit energies for the displacement u(x') and obtained

considerably higher Peierls stress than the eq (8).
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The displacement of each atom, however, had been calculated as a

function of the initial position of atom but not of the displaced position

in the elasticity theory. The relative position of the atoms just above

and below the slip plane is denoted by x+— %'-= u+(x) — U-(x) + const.,

but not by u+(x'+) — U-(x') = u+[x+ u+(x) ] — u~[x-\- u~(x) ] + const.

Here the terms of const, denote the rigid displacement of the half crystal

above the slip plane relatively to the other half crystal. Therefore, the pro-

cedure by Huntington is not correct, and the summation 1 satisfying the

above-mentioned requirement is simply to take the distance b. As a result

the Peierls stress for the rectangular lattices is given by eq (10).

On the other hand, in lattices where atoms face alternate along the slip

plane, the misfit energy of a row of atoms at x just above the slip plane

depends almost equally upon the positions of rows at x — b/2 and x+b/2
just below the slip plane. The total misfit energy, therefore, obtained by

summing over the misfit energies of rows of atoms for the displacement

at the positions separated by b/2. Finally we obtain eq (8) as the Peierls

stress in lattices with atoms facing alternatively along slip plane.

Assuming v = 1/3 and a = b, one obtains the quantity about 2.4 X 10~ 4
/x

for the Peierls stress in lattices with atoms facing alternately along slip

plane. Meanwhile the Peierls stress in the rectangular lattices is about

5.2xl0 _2
/u, from eq (10). The difference between these two quantities ex-

plains naturally the difference in the Peierls stress between covalent crys-

tals and metals. The atoms just above and below the slip plane face each

other in the diamond lattice which is typical of covalent crystals, while the

atoms face alternately along the slip plane in metals. The hydrogen bonded

crystals belong to the former group, and ionic crystals such as alkali and

silver halides belong to the latter group. The Peierls stress in covalent

crystals such as germanium and silicon is supposed to be of the order of

100 Kg/mm 2
, while that in face-centered cubic metals is of the order of or

less than 1 Kg/mm 2
.

The force-displacement relation (2) assumed by Peierls and Nabarro

is of course too simple. Forman, Jaswon, and Wood [7] modified this rela-

tion so as to decrease the restoring force for large displacement while

keeping it constant for small displacement. The weaker the restoring

force for large displacement, the wider is the dislocation. The Peierls

stress decreases remarkably with the decrease of the restoring force. The

sinusoidal low (2), however, is a rather good approximation for the shearing

displacement along slip plane as discussed in section V. The Peierls

stresses obtained from eqs (8) and (10) do not seem to be modified in the

order of magnitude.

1 This summation is correct approximately for edge dislocations. However, the adequacy

of this summation is easily seen for screw dislocations provided that the distance between

rows of atoms parallel to the screw dislocation is substituted for the atomic distance b.
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IV. Numerical Computations on Atomic Configurations and
Peierls Stress of Dislocations

Peierls' approximation is of course very crude to calculate the core

structure. It is the next step to calculate the position of each atom assum-

ing a pairwise potential between atoms. The interatomic potential, how-

ever, is difficult to define, especially in metal crystals. In the case of ionic

crystals and in inert gas crystals, the nature of the interatomic force is

rather well understood and approximated by a central force which

depends only upon the distance between atoms or ions. The core structures

of edge and screw dislocations in NaCl crystal were calculated by Hunting-

ton, Dickey, and Thomson [8]. Kurosawa [9] calculated the Peierls stress

for an edge dislocation in an ionic crystal.

Some calculations have been carried out for metals assuming appro-

priate potentials. In the case of face-centered cubic metals Cottrill and

Doyama [10, 11] used Morse potential which is given by

<Mry)=Z)[exp {-2a(r0—

r

0)}-2exp {- a( nj -

r

0 ) }]. (12)

They demonstrated that a perfect dislocation dissociates spontaneously

into two half dislocations connected by stacking fault.

Core structure of a screw dislocation in body-centered cubic metals

are discussed by Chang [12], Bullough and Perrin [13], and Suzuki [3].

The former two assumed interatomic potential shown in table I, while

the last used a simplest form of potential between closest-packed atomic

rows which are parallel to the Burgers vector. According to Chang's

calculation [12], a screw dislocation a/2 [111] dissociates symmetrically

Table I. Interatomic potential used for iron. $(r) is in eV and r is in Angstroms.

R. Chang [12, 14]

<Mr) =- 0.15614r4 + 0.815729r3 + 1.24594r2 - 12.2404r+ 16.0183

(2.40 < r=£ 3.3894)

= 34.0878r4 - 327.9263r3 + 1 184.7172r2 - 1905.7946r+ 1 152.0160

(r^2.40)

R. Bullough and R. C. Perrin [13]

<t>(r) =- 2. 195976 (r- 3.097910) 3 + 2.70406r- 7.436448

1.9 ^ r ^ 2.4

= - 0.639230 (r- 3.1 15829

)

3 + 0.477871r- 1 .581570

2.4 ^r^ 3.0

= -1.1 15035 ( r- 3.066403

)

3 + 0.466892r- 1 .547967

3.0^ r*£ 3.44
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into three partials a/6 [111] on three {110} planes with faults of one atomic

distance width as shown in figure 1, where each circle indicates a [111]

atomic row normal to the plane of the figure and the numerals in the

circles denote the positions of atoms in the unit of 6/3. Here b is the

distance between atoms in the [111] atomic row. Suzuki [3] obtained the

same core structure by a very simple calculation, in which the interaction

potential between [111] atomic rows was given by a sinusoidal function

of relative displacement of atomic rows and no relaxation was allowed

in other directions than the dislocation line. Meanwhile, Bullough and

Perrin [13] reported asymetric dissociation, using the potential in table I.

In the calculation of the Peierls stress for a dislocation in a discrete

lattice, one must be careful to specify the position of the dislocation and

to correct the interaction energy between the dislocation and the surface

of the model crystal. These two points are not very important in the

calculation of the position of atoms around the dislocation. Some of the

calculations of the Peierls stress hitherto made seem to be incorrect

because of ignoring these two points.

The most reliable calculation of the Peierls stress is due to Kurosawa

[9]. His calculation is for an edge dislocation in NaCl type crystal, of which

the slip plane is (110) and the Burgers vector is a [110]. The interionic

© © © © ©
© © © © ©
© ©*©...© ©
© ©)©*© ©
© © r© © ©
© © © © ©

FIGURE 1. Atom arrangement of screw dislocation in b.c.c. iron viewed along the dislocation

line. The dislocation a/2 [111] dissociates into three partials with the Burgers vector a/6

[111]. The stacking faults are shown by broken lines. (Based on the calculation by Chang

[12])
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potentials are assumed to be

-7+^exp[-(r-a)/p] (13)

between ions of the opposite sign, and

e 2
lr (14)

between ions of the same sign, where aM is the Madelung constant, and

a is the lattice constant.

In the case of edge dislocation on (110) plane in NaCl type crystal, the

straight rows of ions parallel to the dislocation line are rigid and the

displacements are only in its normal direction. The potentials between

the rows of ions are given by

for like rows, and

, , x 4e- ( rrr\ aMe 2
p f (r— a) ) .

<Mr)=__ i^_j +__ exp |
—_j (16)

for unlike rows, per length of a. Here Ko(z) is the Bessel function of order

zero with imaginary argument.

In the calculation of the Peierls stress Kurosawa divided the crystal

into two regions C and D. In the region C the positions of rows of ions

are independent variables, while in the region D the displacement of

each row of ions {8x, 8y) is given by

(8x, 8y) = (u(xi-£, yi)—u(xu yd+vyu v{x
t
-^ y,)-v(xi, y*}), (17)

where u(xi— £, y,) and u(x\, y( ) are the ^-components displacement of

row of ions at (xt, yi) due to the edge dislocation at (f , 0) and at (0, 0), re-

spectively, v(x{— y-,) and v(xu yd are the y-components of the same
quantity, and cry, is the displacement by homogeneous shear in the

^-direction. At first regarding a and £ as independent variables he cal-

culated the positions of rows of ions in the region D by means of (17).

Next he calculated the equilibrium positions of rows of ions in the region C
under the boundary condition given by the positions of rows of ions

in the region D. If cr and f are properly taken each other, all rows of ions

are force free. Otherwise the rows in D, particularly the rows in the vicin-
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ity of the boundary of C, are not in equilibrium. Correct combinations

of a and £ are searched for by this criterion. He adopted the moment

M=^Fixyi (18)

as the equilibrium criterion, where F\x is the x-component of the force

acting on i-th row, and the summation is taken over the region D. Then
the relations between a and £ were calculated as shown in figure 2.

The maximum strain cr corresponds to the ratio of the Peierls stress to

the shear modulus fx. The Peierls stress was about 2~6XlO _3
/i, as

shown in figure 3. The calculation by Kurosawa is for rather a small num-

ber of rows of ions due to the limitation of the capacity of computer,

but he took into account correctly the boundary condition.

M>0

/ M = 0

\

M<0

M>0

M<0 M =

(a) (b)

FIGURE 2. Illustrations of the relations between M, cr, £, the state of M = 0 corresponds

to the minimum energy of the dislocation in the left figure and to the maximum in the

right one. (After Kurosawa [9])

FIGURE 3. The critical yield strain crc and stress rc as a function of a/p. (After Kurosawa [9])
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V. Peierls Stress for a Screw Dislocation in a Body-Centered
Cubic Crystal

The Peierls stress of a screw dislocation in a body-centered cubic

crystal is considerably higher than a face-centered cubic cyrstal. Chang

[12] obtained a value of Peierls stress comparable with observation,

while Suzuki [3] obtained a value of about ten times of that. However,

Chang assumed that the energy of a screw dislocation is a periodic func-

tion of its position with the period of V6 a for the motion along {110}

plane, where a is the lattice parameter. It is, however, evident that a

perfect body-centered cubic crystal is invariant for the translation a/2[llll.

The component of this translation normal to the dislocation line is V2/3a.
The energy of a screw dislocation must be identical at positions of this

separation, provided that we neglect the interaction with the crystal

surface. Chang obtained, however, different values of potential energy

of dislocation at positions separated by V2/3a. His estimation of Peierls

stress was based on this energy change, so it is reasonable to suppose

that the Peierls stress differs considerably from his result if the calcula-

tion is carried out correctly.

The Peierls stress of a screw dislocation in a body-centered cubic

crystal was calculated for a simple potential in the previous paper [3].

Then the calculation was continued for a different potential given by the

following expression

where

cos

M^ 2

2V37r2 (l-4a)

(19)

(20)

Here zu Zj are the coordinates of atoms in the ith and jth atomic rows,

b the magnitude of Burgers vector, /jl the shear modulus, and a a con-

stant. In order to have only one maximum and minimum of potential energy

during one atomic distance displacement, the value of a must be limited

in the range

- 1/4 < a < 1/4. (21)

The relations between $y versus (z, — zj)/6 are shown in figure 4 for vari-

ous values of a. The values of <f>ij is denoted in the unit of fib
2 and the zero

is taken at the value of for z\ — Zj= b/3. The curves differ from each

other so markedly for different values of a, especially for the values

larger than 0.2.

The interaction energies between neighbouring two [111] rows of

atoms are also calculated from the pairwise potential used by Chang
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0 0.1 0.2 0.3 OA 0.5 0.6 0.7 0.8 0.9 1.0

(Zr Zj)/b

FIGURE 4. Interaction energy between two [111] rows of atoms calculated from eq (19)

for various values of a, which are denoted by numerals on each curve. The energy is shown

in the unit of fxb
2

, and the zero of the energy is taken as the energy between the rows in

the perfect crystal configuration.

[12, 14] and Johnson [15] or Bullough and Perrin [13]. The curves are

calculated for different distances between rows of atoms and shown in

figures 5 and 6. From these curves we can obtain the interaction energies

under the conditions of no force in the direction normal to the row of

atoms, and also of suitable force in that direction compatible with strain of

the surrounding material.

The interaction energy denoted by eq (19) may be a good approximation

of the effective interaction energy allowing the relaxation in the direction

normal to the row of atoms if the value of a is selected appropriately. Com-
paring figure 4 with figures 5 and 6, it is evident that the possible inter-

action potential is given by eq (19) for the values of a between —0.1 and

0.05.

The potential energy of a screw dislocation was calculated for the posi-

tion of atoms evaluated by isotropic elastic theory. The model crystal

was composed of 380 arrays of [111] atom rows.

The energy of the dislocation was also calculated, locating the disloca-

ion at different positions which would satisfy the translational symmetry

if the crystal had infinite size. The difference in these energies give the

interaction energy between the crystal surface and the dislocation and

used for the correction of the potential energy of the dislocation by

interpolation.

369-713 OL - 71 - Vol I - 19
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FIGURE 5. Interaction energy between two [111] rows of atoms calculated from Johnson's

pairwise potential. The numerals on each curve mean the difference of the distance

between the rows from its equilibrium value. The unit of energy is jxb 2
.

FIGURE 6. Interaction energy between two [111] rows of atoms calculated from Chang's

pairwise potential.
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FIGURE 7. Various energy differences plotted against a. The triangle net shows atom
arrangement of body-centered cubic crystal viewed along [111] direction. A number in

the circle shows the position of an atom in each [111] atom row in the unit of one third of

the atomic distance. The unit of energy is fx^b
2
/2 V377 2

.

Curve 1: The potential energy difference between P and A.

Curve 2: The potential energy difference between Q and B.

Curve 3: The potential energy difference between B and A.

Curve 4: The zero-point energy difference between P and A.

Figure 7 denotes the difference of potential energy of a screw dislocation

between at some representative positions. The relative height of potential

energy between the triangle A and B is reversed when the value of a
increases beyond 0.106.

The equipotential curves for a= 0 is shown in figure 8. The map of these

curves changes considerably if a increases more than 0.07. Centers of

both kinds of triangles A and B are the positions of potential minimum for

0.07 < a < 0.125. Then the dislocation moves passing the line connecting

the centeres of neighbouring triangles. The plausible values of a for actual

body-centered cubic crystals are less than 0.05, and correspond to the

potential map shown in figure 8.

The magnitude of the Peierls stress is estimated from the potential

energy difference between the stable and saddle points. In the region of

plausible values of a, the Peierls stress is about 0.05/u, and is larger by

one order of magnitude than that expected from experiments as already

mentioned in a previous paper. (Suzuki [3]). The discrepancy may
decrease by employing more suitable potential between atoms and allow-

ing full relaxation of the position of atoms. The high Peierls potential for
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FIGURE 8. Potential energy of a screw dislocation in a body-centered cubic crystal for the

interaction energy of a = 0. Filled circles indicate the positions of rows of atoms. The

numerals in the figure indicate the energy in the unit of fx 0b
2/2 VStt 2

.

a screw dislocation in a body-centered cubic crystal arises, however,

from the geometry of the crystal as discussed in the previous paper.

The above-mentioned calculation indicates that the height of Peierls

potential does not change significantly over wide range of the value of a.

The decrease of the potential energy due to the relaxation in the direc-

tion of the rows of atoms is only about twenty percent of the Peierls

potential itself.

It must also be mentioned that the most plausible calculation of Peierls

stress by Kurosawa on ionic crystals with NaCl type structure is several

times larger than the values expected from experiments. We can, there-

fore, conclude that the discrepancy between the calculations and the

experiments can not be removed completely only by the calculation in

which the positions of atoms are determined by minimizing the total

potential energy of the crystal and the Peierls stress is denned as the

maximum value of the derivative of the total potential energy differentiated

by the position of the dislocation.
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VI. Zero-Point Energy of a Vibrating Dislocation

Kuhlmann-Wilsdorf [5] has arrived at almost the same conclusion in

the previous section because the core energy change during the motion of

dislocation must be less than 10
~ 4 of the core energy itself if the Peierls

stress is less than 1 Kg/mm 2
. She introduced the concept of the uncer-

tainty in the position of dislocation and pointed out a possibility to decrease

the Peierls stress. Her concept of the uncertainty in the dislocation

position is based on the uncorrelated motion of atoms in the crystal, but

the motion of atoms at very low temperature is in the ground state and

necessarily correlated. At high temperatures, the motion of each atom

becomes to be uncorrelated, but we must use free energy including the

entropy which may reverse the discussion based only upon the potential

energy.

The present author [3] pointed out that the zero-point energy of disloca-

tion line is less at the top of the potential hill than at the bottom of poten-

tial valley, so the Peierls stress decreases by the zero-point motion. The
previous calculation, however, for straight dislocation. Then we would

like to estimate the zero-point energy at the saddle point during the forma-

tion of a double kink.

The vibration of a dislocation about the saddle point configuration of

the formation of double kink has been discussed by Celli, Kabler, Nino-

miya, and Thomson [16] and by Seeger and Schiller [17]. Celli et al.

especially discussed the localized and the translation modes associated

with the double kink. We will discuss the effect of zero point motion based

on their treatment.

For simplicity assume the Peierls potential made up of pieces of

parabolas,

II E(x)=Pa 2IS"P(x-al2) 2
l2 for a/4 < x < 3a/4 (22)

The equation of motion of the dislocation under external stress, t, is

I E(x)=Px 2
/2 for \x\ < a/4

III E(x)=P(x-a) 2
/2 for \x — a\ < a/4

M d 2x= T
d 2x dE(x)

dt 2 dz 2 dx

d 2X= T^-Px + rb in regions I and III

= T^~+ P(*-a/2)+T& in region II (23)
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where M is the mass of the dislocation per unit length, and T is the line

tension of the dislocation.

Since the effect of zero-point motion is to decrease the effective Peierls

stress, the saddle point configuration of the double kink formation must

be wider than that determined only by the potential energy consideration.

However, for simplicity we neglect the difference between these two

configurations.

T *>t

x= *o + fe
iW

(24)

where xo is the static solution denoting the saddle point configuration.

The time independent equation of motion for the small oscillation about

the saddle point is then

T-£^+ (Ma) 2 -P)£= 0 in region I and III

7
,

-^J-+(Afft)
2 +P)^= 0 in region II

At the boundary between different regions the value of f and dg/dz must

be continuous, and the following relation must be satisfied

The most importan t are the modes with the frequencies below than

wo, where a)o = \ rjM. As discussed in detail by Celli et al. there are two

translational modes associated with the double kink. The one is a longitu-

dinal motion of the double kink in which both members of kink move in

opposite direction, tending to expand or contract the double kink. The

other is the translational motion of the double kink. In this mode both

sides of the double kink move in the same direction, and their net separa-

tion is not changed during the vibration. The two translational modes are

newly introduced by the formation of double kink.

There is no localized mode with the frequency below than o)0 other than

the translational modes provided that the saddle point configuration is

determined by static equilibrium condition.

For the vibrational frequency above co0 , dislocation segments in both

regions vibrate as if those are independent segments of straight disloca-

tions with suitable boundary conditions. The difference between the

zero-point energy between the infinitely straight dislocation approxima-

tion, and in the case of double kink formation is then shown schematically

in figure 9.
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k

FIGURE 10. The effect of the widening of the double kink on the zero-point energy difference

in the finite length string model with the Debye cutoff.

In the infinitely straight dislocation approximation, the relations be-

tween (o and k at the bottom of the potential valley and at the top of the

potential hill are shown by smooth curves, respectively, while in the

case of double kink there are only discreate points. The zero-point energy

in the infinitely straight dislocation approximation is proportional to the

shaded area bounded by the two smooth curves and coordinate axes in

the figure (a), while in the double kink the difference is proportional to the

area shaded in the figure (b).

It is easily seen from these figures that the approximation of infinitely

straight dislocation overestimates the effect of zero-point motion. However,

it must be mentioned that if the width of double kink at the saddle point

increases, the frequencies change as shown in figure 10, and the effect

of zero-point motion increases considerably, approaching to infinite length

approximation. Then the zero-point energy has the effect of decreasing

the Peierls potential itself in the calculation of the static equilibrium of

the saddle point configuration.
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VII. Change in Zero-Point Energy Due to Anharmonicity

As mentioned in the previous section, the Peierls potential decreases

by the zero-point motion of dislocation. The amount of decrease, however,

is only about ten per cent of the Peierls potential in body-centered cubic

transition metals. Thus the zero-point motion of a dislocation line is not

enough to explain the discrepancy between the calculation and observa-

tion. However, it must be mentioned that the zero-point motion of a dislo-

cation line bears only a part of the change in the zero-point energy caused

by the formation of a dislocation. A more important effect may take place

through the anharmonicity of the crystal.

It is very difficult to evaluate the change in frequency spectrum of lat-

tice vibration due to the change in force constant of each atomic row pair

around a dislocation. Then we estimate the average change in shear

modulus of the model crystal. The shear modulus along the atomic row is

assumed to be proportional to the average of force constants between

atomic rows, namely

cos (2tt -4a cos (4tt
Zj — Zj

(27)

where

A = K=
2V37T 2 a-4a)' V3N (28)

Here N is the number of atomic rows in the model crystal, /z,0 is the shear

modulus of the perfect model crystal in the direction [111]. Putting

W(a) = 2^ cos (^77 ^-^-^a cos {^ir^-^j
(29)

we have

JL= W(a)

fio 3Ar(l-4a)
(30)

If the change in shear modulus is very small,

Aw
2 fJLo'

(31)

We have calculated the shear modulus change for the shear in the direc-

tion [111]. Taking [111] direction as z axis, the shear moduli C44 and

C55 change according to eq (30). Another independent shear modulus
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Cfi6 may change in the same sense with C44 and C55, but we neglect

the change. Then the frequency of 4/9 of the total normal modes changes

according to eqs (30) and (31). Using Debye approximation, the change in

zero-point energy per unit length dislocation due to the anharmonicity

is given by the relation

2
n

ho)D Af(a)
126 l-4a (32)

where cod is the Debye frequency of the lattice vibration, AW(a) is the

difference of W(a) between two specified positions of the dislocation.

If we assume the value cod, the relative difference of zero-point energy

between two positions is obtained. The curve 4 in figure 7 shows the

difference, A£o, between the saddle point P and the position A assuming

the Debye temperature of the crystal to be 300 K. It must be noticed that

AEo increases very rapidly with increasing a, and the magnitude is com-

parable with the potential energy difference in the region 0.10 < a < 0.15.

Of course the values of a in this range do not seem to appear in real

crystal. The change in zero-point energy given by eq (32) may be negligible

in the real crystal. It must, however, be mentioned that the energy change

(32) is the possible least value, and the actual value must be larger than

this. If the calculation of zero point energy difference due to the change

in force constants between rows of atoms were carried out correctly, the

effect mentioned in the previous section must be included in the

calculation.

VIII. Conclusions

In this paper the calculations of the Peierls stress hitherto made are

criticized and the following conclusions are obtained.

a. The Peierls-Nabarro approximation may provide rather a good

answer for the Peierls stress problem if the summation of the misfit

energy is carried out correctly. Peierls' and Nabarro's result is for the

lattices where the atoms face alternately along the slip plane, while the

result by Kuhlman-Wilsdorf is for the lattices in which the atoms face

each other along the slip plane. Significant difference between two results

explains the different Peierls stresses between metals and covalent crystals.

b. The Peierls stress in the body-centered cubic crystal is necessarily

high for a screw dislocation due to the crystal structure itself.

c. The Peierls stress depends strongly upon the crystal structure,

but only weakly upon the details of the interaction potential between atoms.
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d. The calculated Peierls stress ignoring the lattice vibration seems

to be considerably higher than those expected from experiments.

e. The change of zero-point energy depending on the position of

dislocation appears to be the most plausible origin of the discrepancy

between the calculation and observation, but the quantitative discussion

on this effect is extremely difficult.
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A new pair potential for copper has been constructed from a set of ten

interpolated cubic polynomials. The form of the potential is such that at

short range it agrees with the usual Born-Mayer repulsive potential and is

in satisfactory agreement with the available phonon dispersion data and

the observed stacking fault energy and vacancy formation energy for

copper. The potential has been used to study the atomic configuration as-

sociated with various point and line defects in copper. In particular,

because of its fit to the stacking fault energy, it provides a consistent

result for the degree and nature of the dissociation to be expected for an

edge dislocation in copper.

Key words: Computer simulation; copper; dislocation structure; pair-potential; point

defects.

I. Introduction

Many physical phenomena depend on the detailed atomic configuration

associated with point and line defects; thus, for example, the ductility

of a metal is closely related to the atomic configuration in the dislocation

cores. Also the various aging processes, involving the migration to and

subsequent strong interactions between point defects and dislocations

are dominated by the interactions arising from the long range configura-

tion fields of the defects. These and many other important problems

* Visiting Research Associate, Harwell, Summer 1968.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit. and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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cannot even be discussed until we have some estimate of the relevant

atomic configurations.

At the present time the only feasible way to obtain an estimate of the

atomic configuration associated with a defect as topologically complicated

as a dislocation is to assume that the atomic interactions can be ade-

quately described by a relatively simple two body potential. The required

configuration can then be obtained by an iterative procedure with the

aid of a large high speed digital computer. Such a procedure has been

followed in several recent investigations [1, 2, 3] and will be followed

in the present work. In section II we describe the physical basis and the

construction procedure for the two body potential. A particular feature

of the potential is its oscillatory form, which has arisen by carefully

matching it to the pertinent phonon dispersion data and the observed

stacking fault energy for copper. This potential is used, in section III, to

obtain the energies and atomic configurations associated with a vacancy,

a divacancy, an intrinsic stacking fault and finally an edge dislocation.

The relation of the present results to previous relevant theoretical results

and their possible physical significance will be discussed.

II. The Pair Potential for Copper

The total potential consists of two parts: a volume dependent poten-

tial and a pairwise potential; the former simulates the cohesive energy

arising from the free electron gas and the latter describes the ion-ion

interactions which arise via polarization of the electron gas. In this work

we shall ignore local changes in the volume dependent potential which

probably occur in regions where the atomic configuration is far from

perfect, and suppose that the effective interatomic forces can always

be adequatly described bv the appropriate derivatives of the pair potential.

This model, though obviously open to criticism, has the distinct ad-

vantage over the simple central force models [2] with no volume term,

that it does not erroneously enforce the Caughy relations between the

elastic constants.

The pair potential V(r) is constructed from a set of 10 interpolated

cubic polynomials (a so called "spline function") and extends up to

the third neighbour separation in the perfect copper lattice at which

point it is arbitrarily set to zero with zero slope and curvature. At inter-

atomic distances less than the first neighbour separation in the perfect

lattice the potential was carefully matched to the Born-Mayer repulsive

potential

V(r)=A exp [— p(r—

r

0 ) /r0 ]
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with the constants ,4 = 0.051 eV, p=13 A and r0 = 2.551 A as determined

by Vineyard et al. [4] from radiation damage experiments. The spline

function may be represented by the equation

V(r)=AK(r-rK) 3+BK(r-rK)
2+ CK(r-rK)+DK

where K runs from 1 to 10 and rK are the interatomic separations at

which adjacent cubics are joined (with continuous first and second

derivatives); such points are usually referred to as knots. The numerical

coefficients Ak, Bk, Ck and Dk have been determined by ensuring that

V{r) satisfies the above criteria at each end of its range together with

the following data:

(i) The pair potential plus the volume dependent potential should

lead to a stable face-centred cubic copper lattice with the correct lattice

spacing of 3.608 A.

(ii) The derivatives dV/dr and dWjdr2 of the pair potential should

have values at the first and second neighbour equilibrium spacings that

are consistent with the axially symmetric force constants for copper.

The latter have been computed by Bullough and Hardy [5] who fitted a

harmonic lattice model to the elastic constants and to the phonon dis-

persion data of Sinha [61. If ai — l^r^ (n) and j8i = -
(n), with

dr2 n dr

z = l or 2, are the axially symmetrical force constants at n = 2.551 A and

r2 = 3.608 A and the elastic constant values [7] Cu = 1.67, Ci2=1.23,

C44 = 0.75 are adopted then we find, from Bullough and Hardy [5]:

r2 (3.608A)

0.0294 X lO" 4 dynes

0.0559 X 104 dynes/cm.

(iii) The pair potential should lead to a vacancy formation energy

Ej that is in good agreement with the most recent experimental value

value of 1.14 ±0.06 eV [8]. In fact we have, for the face-centered cubic

lattice:

£j:= 6 V(n)+S V(r2)-E$

where V(r\) and V(r2 ) are the interaction energies at the first and second

neighbour distances respectively and E$ is the relaxation energy as-

dV
dr

dW
dr2

in)

(n)

n(.551A)

-0.573

3.349
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sociated with the vacancy. This last (correction) quantity can only be

obtained when the pair potential has been fixed and the numerical pro-

cedure for estimating E v
r will be described in the next section.

However, we know from previous experience that E% rarely exceeds

10 percent of the total Ej and thus we simply adjusted the spline potentials

V(r\) and V(r2 ) so that the contribution of the pair potential exceeded

the experimental value of E v

f
by 10 percent. The result of the subsequent

accurate relaxation, which will be described in the next section, lead to a

theoretical Ej value of 1.09 eV which is sufficiently close to the experi-

mental value.

(iv) Finally, the pair potential should lead to the experimentally

observed intrinsic stacking fault energy of about 70 ergs/cm 2
[9]. If e s

2 0 3 0 4 0

rtt)"

FIGURE 1. The pair potential for copper in electron volt units, rx , r2 , and r3 are the first,

«pcond and third neighbour spacings.
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is the stacking fault energy per atom in the {111} plane then we have

e s = 2V{rs)-e r

where V(r s ) is the interaction energy at the particular separation

rs
= [8/3]

1/2n and e r is the energy change per atom due to relaxations from

the perfect stacking fault configuration. The procedure for calculating e r

and some detailed results are given in the next section. Again it was

necessary to fit the potential value at r s to a fault energy larger in magni-

tude that the observed value in order to compensate for its eventual

reduction by relaxation. In fact to obtain satisfactory agreement with the

experimental value of 70 ergs/cm 2 we set the unrelaxed value to 80

ergs/cm 2
.

These criteria can be satisfied with a certain choice of the positions of

the knots; the final positions rK and the corresponding numerical values

of the coefficients AK, B K , Cr, DK are given in table 1; the units of the

coefficients are such that V(r) is expressed in electron volts with r and

rK in Angstrom units. The rather interesting oscillatory form of the

potential shown in figure 1 has arisen as a direct consequence of the en-

forced stacking fault condition (iv) above, and such consistency with stack-

ing fault energy data, is, of course, of paramount importance if we wish

to use the potential to study the core configuration of a dislocation.

Table 1. The coefficients of the pair potential for copper, given by a spline function con-

sisting of 10 cubic equations

V(r)=A K(r-rK)* + B K(r-rK )
2 + C K(r-rK)+D K

each valid for rh- *s r =s rK +i- V is in eV and rK in A.

K rKU) A K BK CK D K

1 1. 667.9458 1081.8838 -628.5649 138.1100

2 1.5 49.0449 79.9655 -47.6408 10.8050

3 2.0 -3.2382 6.3981 -4.4591 0.8453

4 2.551 -0.258148 1.045285 -0.357854 -0.210930

5 3.061199 -2.221407 0.650164 0.507164 -0.155699

6 3.341810 1.507669 -1.219882 0.347295 -0.011272

7 3.607658 -0.080144 -0.017445 0.018353 0.023168

8 4.209149 2.186182 -0.162063 -0.089620 0.010455

9 4.311190 - 1.575972 0.507171 -0.054405 0.001945

10 4.418461 0.0 0.0 0.0 0.0

Several applications of this potential are discussed in the next section.
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III. Atomic Configurations Around Defects in Copper

The atomic configuration associated with each defect was obtained by

simulating the particular defect in an appropriate atomic assembly, or

crystallite, of face-centred cubic copper. The free atoms adjacent to the

defect were allowed to find their minimum potential energy configuration

by what is now a standard dynamical relaxation procedure [10]. In every

case investigated the dynamical relaxation procedure resulted in a satis-

factory rate of convergence to the desired minimum potential energy

configuration.

As we have discussed in the previous section the single vacancy and

the intrinsic stacking fault were each necessarily studied in the course of

actually constructing the potential V(r). For the vacancy a cube assembly

of atoms bounded by {100} crystallographic planes was used. With the

vacancy located at the centre of the cube, twelve shells of neighbours,

or 248 atoms, were treated as independent particles and the atoms in the

boundary layer of the cube were held fixed. The minimum energy configur-

ation under the potential V(r), corresponded to a vacancy formation

energy of

£;=1.09 eV,

and was obtained after 65 preliminary relaxation sweeps through an

assembly of half the linear size followed by 55 relaxation sweeps through

the complete assembly. The displacements of the atoms in successive

shells around the vacancy are shown in figure 2. In this figure the circles

(joined by a curve) indicate the radial displacements in units of n, the

first neighbour distance.

002

z
uj O Ol

111

OUTWARD
|
<

INWARD 1 £
I Q

< O Ol

a.

o-oa

12 3 4
DISTANCE FROM THE VACANCY. (UNITS OF r,)

Figure 2. Displacements of atoms in successive shells around the vacancy in units of

ri, the 1st neighbour distance.
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We also show by crosses the displacements predicted by Bullough and

Hardy [5] around a vacancy using a harmonic lattice model for copper.

Apart from the 1st neighbour displacements the two sets of results are in

very close agreement. We see that the 1st, 3rd, 4th, 6th and 7th neighbours

all move inwards towards the vacancy and the 2nd neighbour moves

outward; the 5th neighbour also has a very small outward displacement.

The disagreement on the 1st neighbour displacements between this

work and the harmonic lattice calculation is to be expected and in-

dicates the magnitude of the error in adopting a simple harmonic lattice

model in very close proximity to the defect.

To obtain the relaxation energy and associated atomic configuration

of an intrinsic stacking fault we constructed a parallelepiped of atoms

consisting of 40 closed-packed (111) planes bounded by the appropriate

orthogonal {112} and {110} faces. Periodic boundary conditions were

imposed across all the bounding faces and each (111) plane contained

four atoms. An intrinsic stacking fault was introduced across one of

the (111) planes near the middle of the parallelepiped and the entire

assembly was allowed to dynamically relax under the potential V{r).

The only displacement which occurs was that of an entire (111) plane

in the orthogonal [111] direction. The magnitude of the numerical comp-

utation was considerably reduced by taking advantage of the obvious

symmetry across the fault plane. The relaxation energy was found to

be surprisingly large; thus an ideal geometrical stacking fault energy

of 79.8 ergs/cm2 dropped to 70.5 ergs/cm2 after complete relaxation.

The actual displacements of the adjacent (111) planes are shown

in figure 3 and we see that for the potential V(r) the sets of (111) planes
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Figure 3. The displacements of the adjacent close-packed planes parallel to an intrinsic

fault, in the [111] direction orthogonal to the fault. The displacements uz are all away

from the fault (at z = 0) and are given in units of n, the 1st neighbour distance. The relaxed

stacking fault energy is 70.5 ergs/cm 2
.
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on either side of the fault each move away from the fault plane; the

distance between the two neighbouring planes across the fault exceeded

the corresponding distance in the unrelaxed configuration by almost

2 percent. The sense of this displacement is related to the sign of the

stacking fault energy. Similar relaxations have been performed for

various types of potentials and only when the potential was such that

the corresponding fault energy was negative did the adjacent planes

show a relaxation towards the fault.

The cubic array of atoms used to simulate the single vacancy has

also been used to study the divacancy. In particular by removing two

neighbouring atoms at the centre of the assembly and then relaxing

the remaining atoms into their minimum potential energy configuration

we obtained an estimate of the divacancy binding energy

=- 0.31 ±0.01 eV

which is in very good agreement with some previous theoretical esti-

mates, 1
[11, 12, 13]. Unfortunately due to contamination difficulties,

for which copper is infamous, a reliable experimental value cannot

be quoted.

The core structure and dissociation of an edge dislocation in this

"copper" lattice is being studied in some detail and we shall report some

of our results for this defect which justify several interesting conclusions

but also emphasize the need for further careful investigation. To study

the dislocation a parallelepiped with (110), (111), and (112) faces con-

taining 2700 freely interacting atoms was constructed. The assembly

was only six layers thick in the [112] direction and as extensive an

possible in the other two directions. To enable a straight edge disloca-

tion (parallel to the [112]) to be studied we impose periodic boundary

conditions across the two (112) faces, and the dislocation is then intro-

duced through the centre of the (112) planes by moving the atoms to

their anisotropic elastic positions with the elastic singularity (the dis-

location "line") placed midway between two appropriate (111) layers.

The boundary atoms in the (110) and (111) surfaces of the parallelepiped

are then held in the above elastic positions and the remaining internal

atoms are allowed to find the configuration with lowest potential energy

(subject to the boundary displacement constraints) by the dynamical

relaxation procedure. By using simple linear anisotropic elasticity and

a constant stacking fault energy of 70 ergs/cm2
it can easily be shown

1 This value is not in good agreement with the divacancy binding energy obtained by

Bullough and Hardy. This poor agreement further emphasizes the danger of using a harmonic

model in regions very close to defects.
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that the equilibrium separation of the two elastic partials defining the

above edge dislocation will be almost 86, where 6 is the magnitude of

the total Burgers vector (the nearest neighbour distance). Since we
expect that the extent of dissociation in our lattice model will be of

comparable magnitude it was very soon clear that we could not study

this dissociation dislocation without the partials getting rather close

to the surfaces. The total number of mobile atoms in any numerical

relaxation procedure is strickly limited by considerations of computer

storage and speed. To obtain the precise equilibrium separation of the

two partials in our model we had to proceed as follows.

The anisotropic elastic solution for a pair of parallel partial elastic

dislocations which together constitute the anisotropic elastic model

for a dissociated edge dislocation was obtained for arbitrary separa-

tion of the partials. This, rather complex solution, was used to fix the

boundary conditions corresponding to three possible partial separations

of 46, 66, and 86. The internal atoms were completely relaxed for each

of these possibilities and the final potential energies were computed.

The boundary constraints were such that the partials in the lattice always

remained at the separations defined by the surface atom positions (the

initial elastic solution) but the final potential energies of the three pos-

sibilities were not equal. The 46 energy was greater than either the

66 or 86 whereas the 86 energy was only slightly greater than the 66.

The final configuration for the 66 case is shown in figure 4. This figure

shows the atomic configuration adopted by the atoms that were in one of

the (112) crystallographic planes; for clarity the atoms originally in the

other five (112) planes have been omitted. The perfect lattice positions

and the final dislocation positions are both indicated; also we show

the border atoms held in their anisotropic elastic positions (hatched).

The centre of the faulted region is indicated by the usual dislocation

symbol and the two cores on either side can be clearly seen. It is also

apparent from this projection that the atoms above the slip-plane (the

x, z axis) are under a high compressive strain whereas the atoms below

the slip plane are under a high tensile strain.

We also note that the usual concept of a dissociated dislocation con-

sisting of two partials separated by a region of constant stacking fault is

in this case fallacious. The cores are so wide that their misfit spreads

almost completely across the fault and even in the 86 nominal separa-

tion case there is only 26 of genuine perfect fault. It follows that the

misfit energy, rather than the stacking fault energy will be the energy

controlling quantity and thus explains the almost identical energies of

the 66 and 86 nominal separations. Such relative insensitivity certainly

suggests, for instance, that stacking fault energy estimates based on

equilibrium node measurements may be rather questionable.
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It is intended to extend this work by obtaining a quantitative estimate

of the diffusivity in the fault and core regions and also to obtain the

spatial variation of the binding energy of point defects to such a dis-

sociated dislocation.
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The elastic continuum theory treatment usually fails near the core of

dislocations. Atomic calculations of edge and screw dislocations in solid

krypton were carried out using a pairwise potential. In rare gases, the

electron redistribution of the electron density is small, thus, this method
is useful in studying the properties of dislocation cores.

Key words: Atomic calculation; interatomic potential; krypton.

I. Introduction

The elastic-continuum treatment of dislocations in solids has always

suffered from difficulties associated with the dislocation core. The stress

due to a dislocation, derived by this method, becomes infinite at the center

of the dislocation. It is clear that such a singularity does not occur in a

real solid. This difficulty is usually overcome by treating separately

that part of the solid which lies inside a small cylindrical core whose

axis is the dislocation line and the radius of which is rc , say. This part

is referred to as the dislocation core, where the linear elastic theory

is said to break down. This procedure is, of course, unsatisfactory in

estimating the energy and the atomic configuration within the core.

The difficulties associated with these points can be successfully

overcome by the use of an atomistic model. In this model the interaction

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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potential between atoms was assumed by a central force function. Discrete

atomic positions were obtained by minimizing the energy of the crystal

containing a dislocation. The interaction potentials in metals are not

well understood and the problem of the redistribution of the electron density

in metals with lattice defects is difficult. In the previous treatment this

redistribution of the electron density was ignored. In solid rare gases,

however, it should be small and this method is particularly suitable for

these solids. In this paper the energies and atomistic configurations of

dislocations in solid krypton were calculated with the aid of the Argonne
CDC 3600 digital computer and processed with a HITAC 5020E digital

computer. The pairwise interaction between atoms was represented by a

truncated Morse potential function.

In the present calculations the interaction energy between atoms

was represented by a Morse function, a central-force function. The

interaction energy E(r%j) of a pair of atoms is then given by

where is the distance between the two atoms, D is the dissociation

energy of the pair, r0 is the equilibrium separation distance of the two

atoms, and a is a constant which is effectively a measure of the "hardness"

of the interaction. The energy of any atom in the crystal is then E%, where

Ei = V E(rij). Here J is the number of atoms in the sphere of influence.

J is related by a geometrical factor to the distance over which the inter-

action extends. The values of the constants must, of course, depend

upon J . If J were 12 (i.e., of only nearest neighbors interact) then r0

would be equal to the nearest-neighbor distance. In variational calculations

of the type used here, the successive relaxations of atoms are rather

time consuming even when the latest computers are employed; so it

becomes impracticable to consider long range interactions. Moreover,

one cannot be certain that the field of an atom is still adequately described

by a Morse function at distance greater than a few nearest-neighbor

distances. One would expect screening effects from other atoms to

modify the field. In the work described here the potential was truncated

at V9.4 nearest-neighbor distances and the constants were r0=4.1063 A,

a = 1.3125 A" 1
' D = 0.0158135 eV. The energy of sublimation, the bulk

modulus and the lattice constant were used to determine these constants.

An additional constraint was that the Born stability criteria have to be

satisfied.

II. Interaction Potential Function

E(rij) =Z){exp [— 2a{nj — r0 )] — 2 exp [— a(nj— r0 )] }
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III. Method of Computation

A. Edge Dislocations

The edge dislocation examined in this study lies along a (112) direc-

tion. The slip plane is a {111} plane. Its Burgers vector was of the type

(ao/2)(110). The six different resolved atomic positions (Elasto-atomic)

of the atoms are given by the linear elastic continuum theory. The atomic

configurations and the energy of the complete edge dislocation can be

obtained by minimizing the energy of each atom, restricting the dis-

placement perpendicular to the edge dislocation line.

Starting with the atomistic positions of the complete edge dislocation,

the atomic configuration and the energy of dissociated edge dislocation

can be also obtained by minimizing the energy of the crystal, relaxing

each atom three dimensionally.

B. Screw Dislocations

The screw dislocation investigated in this paper lies along a (110)

direction. Its Burgers vector was therefore of the (a0/2) (110) type. There

are just two nonequivalent types of plane normal to a (110) direction in

the fee lattice. The positions of atoms of the elasto-atomic screw disloca-

tion were fed into the computer. The atomic configuration of the complete

screw dislocation was obtained by relaxing the atoms parallel to the screw

dislocation. After this treatment, the atomic configuration of the dissociated

screw dislocation was obtained by relaxing the atoms three dimensionally.

IV. Results

A. Edge Dislocation

The atomic configuration of a complete edge dislocation in solid krypton

could be obtained by relaxing the atoms perpendicular to the dislocation,

thus preventing the dissociation into the Heidenreich-Shockley partial

dislocations. After the atomic configuration of a complete edge disloca-

tion was obtained, the atoms are relaxed three dimensionally. If the

complete edge dislocation is in a metastable state it would not be dis-

sociated into partials. The results showed, however, this is not the

case. This means that the complete edge dislocation is not metastable

but unstable: it split into a pair of Heidenreich-Shockley partial dis-

locations with no thermal activation energy. Figure 1 is the view looking

down onto the slip plane for the dissociated edge dislocation. It shows

the position of atoms in the {111} plane immediately below the slip plane

(circles), and the {111} plane immediately above the slip plane (triangle).

The dissociation can easily be distinguished by observing the figure

from either side at a low angle. The energies of the elasto-atomic, com-
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Figure 1. Positions of atoms in two {111} planes, one above, and one below, O, the

slip plane of a dissociated edge dislocation. The region of stacking fault which separates

partial dislocations can easily be distinguished by observing the figure from either side

at a low angle.

0 5

0 1 0 2 0 4 06 10 2 4 6 10

DISTANCE FROM CENTER Of EDGE DISLOCATION
IN NEAREST NEIGHBOR DISTANCES

Figure 2. Energy within a given radius as a function of that radius as measured from the

center of an edge dislocation.
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FIGURE 3. Energy within a given radius as a function of that radius as measured from

the center of a screw dislocation.

plete and dissociated edge dislocation are plotted as a function of radius

in figure 2.

B. Screw Dislocation

It was also found that the complete screw dislocation was unstable

and it split into a pair of Heidenreich-Shockley partials with no thermal

activation energy. The energies of the elasto-atomic, the complete, and

the dissociated screw dislocations are shown in figure 3.

V. Conclusions

Atomistic calculations of dislocations in solid rare gases can be ob-

tained using a pairwise potential. In these solids, the redistribution of the

electron density is not so important, thus this method is particularly

useful. The atomic properties of the core can be studied in this way, and

the method also has potential utility in the study of other defect problems

such as jogs and the interactions between impurities, vacancies, or inter-

stitials and dislocations.
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A lattice theory model for a screw dislocation is discussed which is

similar to that of Maradudin. For the forces between neighbouring rows

of atoms, however, a sinusoidal, not a linear, dependence of their relative

displacements is assumed throughout the whole lattice. The displace-

ments are expanded about the elastic theory values. The conditions of

equilibrium then yield a system of linear equations for the deviations of

the displacements from the elastic theory values, which is solved by an

iteration procedure making use of Green's Function for a plane square

lattice. For a number of points in the vicinity of the source point and for

points in certain symmetry directions simple exact analytical ex-

presssions for the latter are derived, for points at larger distances an

asymptotic expansion is given. The displacements thus obtained are then

used to calculate the energies of the dislocation at the position of

minimum energy and at the saddle point and their difference, the Peierls

energy, by direct summation of the interaction energies of neighbouring

pairs of atoms.

Key words: Computer simulation; Green's tensors; interatomic potential; lattice

studies; Peierl's energy; screw dislocation.

I. Introduction

In Maradudin's lattice theory model of a screw dislocation [1] the follow-

ing assumptions are made concerning the displacements and the inter-

atomic forces:

(1) Only displacements parallel to the dislocation line are allowed.

(2) Only forces between neighbouring rows of atoms are considered.

(3) These forces are assumed to depend linearly on the relative displace-

ments of the rows.

The equilibrium displacements and energies are calculated for two

positions I and II of the dislocation line, corresponding to stable and

unstable equilibrium (fig 1). The energy difference is the Peierls energy.

Due to assumptions (1) and (3) the calculated energies will be too large:

Admitting radial displacements will allow the system to lower its energy,

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ, 317, I, 1970).
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Figure 2. Interaction energy E and Force F versus relative displacement Aw of neighbour-

ing rows of atoms. Dots: Equilibrium positions. Broken lines: Linear force law and parabolic

energy law. Full lines: Sinusoidal force and energy laws.
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and replacing the linear force law by a more realistic one with smaller

forces for large displacements (fig 2) will also decrease the energy. These

energy decreases are expected to be larger for the high energy configura-

tion (II), i.e., the Peierls energy will be lowered. The largest contribution to

a force law correction of the energy will come from the pair of atom rows

at positions (0, 1/2), (0,-1/2) in situation II (fig 1). Maradudin calculated

the displacements already under the assumption of zero force between

these two rows, and Celli [2] determined the energy change corresponding

to a sinusoidal force law for these two rows (the force laws for all other

bonds being linear). If one applies Maradudin's energy formulas and Celli's

correction to a [001] dislocation in a cubic crystal (for which the projections

in figures 1, I and 1, II form a square lattice with equal force constants

for vertical and horizontal bonds) one obtains a negative value for the

energy difference Eu —E l
. This might be due to the fact that, after Celli's

correction is performed, the largest remaining relative displacements

occur in situation I, so that an introduction of sinusoidal force laws for

all bonds would mainly decrease E l and thus make Eu — E l positive again.

In the present paper such a model with a sinusoidal force law for all

bonds is considered. The equilibrium equations are set up and solved

and from the displacements the Peierls energy is calculated. The force

laws are similar to those used by Suzuki [3] for a [111] dislocation in a

bcc crystal.

II. Lattice Theory Model With Sinusoidal Force Law

A [001] screw dislocation in a simple, b.c. or f.c. cubic lattice is con-

sidered. The projection of the atoms of the undisturbed crystal onto

the (001) plane yields a square lattice in this plane (see fig 3). The dis-

location is supposed to move parallel to most densely packed planes

which are depicted by broken lines in figure 3. Assumptions (1) and (2)

1

-A

bcc fee

A
x / r— <j>—

»

X' X f"trf~T~i
\ • x' y J-4--4-4-4

,X X i—f~+—

}

Figure 3. S.c, b.c.a, and f.c.c. lattices. The lower parts of the figure show the projection of

atoms onto the (OOl)-plane. Broken lines: Most density packed planes.
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are not changed. Instead of assumption (3), however, a sinusoidal depend-

ence of the forces between neighbouring rows of atoms on their relative

displacements is assumed: The force exerted by the row at position

H' = (m' , n') on its neighbour at position fi = (m, n) is:

Ffin'
=-B{2tt)-' sin [2tt(^ -w^ )/b] (1)

where is the displacement of the row fi and B/b is the force constant.

The interaction energy of these two rows is

8£
MM ,

=bB^7r 2 )- 1 {^-cos[27T(w
ll
-w

ll
,
)/b]} (2)

(the zero of energy has been chosen in such a way as to make the energy

of the undeformed lattice zero).

The equilibrium conditions are then, with Z^, = 1 or 0 for \fi-—fi'\ = 1

or 1 respectively:

si" [2ir(u;„ -«;„, )/6] =0. (3)

We want the dislocation solution of this system of equations. From the

symmetry of the arrangements of atom rows in figures 1,1 and 1,11 it

follows that the isotropic elastic theory solution

=b-(27r)- 1
cf)

fl
=6(2tt)- 1 arctg (n/m) (4)

is the correct solution of eq (3) for the rows (0, zi), (m, 0), (m, m)

,

(m, — m) in situation I and for the rows (0, m), (m, 0) in situation II.

It is hoped, and this hope is borne out by the results of our calculations,

that the elastic solution (4) is a good approximation also for the rows

between these symmetry directions. So, in order to facilitate the solution

of (3), this system is linearized by an expansion about the elastic theory

displacements:

M;

m =6(27t)- 1
(c/>m + t

?m ).

Keeping only the lowest orders in r) one obtains from eq (3) the linearized

equations

S ^„<{ (*),,- „<) cos (</> „-*„.)+ sin } = 0 (5)

The neglected terms are smaller by factors of order 77
2

.
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III. Solution of the Equilibrium Equations by an Iteration

Method

Introducing linear operators L and / denned by

M'

and the inhomogeneity term

/ =y Z , sin (</> -<£ ) (8)
/i MM V^M

M

the equilibrium conditions may be written in shorthand notation:

(L-J)V=I (9)

with the solution

ri=(L-l)- lI=(l-L-H)- 1L- 1I (10)

(L — l)~ l
is the Green's function operator of the system (9) and L~ l that

of the simpler system

LV = I (11)

or, in components: ]T Z^(% ~\. )
= /

M
•

m'

The factors {1 — cos —
</>^, ) } in /17 are smaller than 1. With a few ex-

ceptions they are even smaller than 0.14. The handling of these excep-

tional bonds will be discussed below. Expanding the right-hand side of

eq (10) one obtains successive approximations, in analogy to Bom's

series:

v = L lI+LHL 1I+ . . .

or

7] = 7)°-tr) 1 + . . . (12)

with

r}
n = L- 1

lr)
n - 1

.

We define Green's function of the problem (11) by the equations

VZ ,(G „-G,„)=8 „ andG =0.^ MM /in" MM ' MM 00

369-713 OL - 71 - Vol I - 21
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Simple exact expressions for Green's function G^^,, = *y_M >, = @ of

the problem (11) were obtained [4] for

(a) points ft in the vicinity of (00).

(b) points jx= (m, m), (m, /n + 1), (m, ro + 2), (m, m + 3) with arbitrary

(integral) rrc. For example

G . =-(1/77)
m 1

1+ £ (2/c-l)- 1

A=0 -1

with ra 55 0.

For large
|

/x
|

an approximate expression for Green's function is [4]:

G- = -(27r)- 1{y+1.5 In 2 + In r} + (24t7t2
)

- 1 cos 40

with fi= r (cos 0, sin 6).

The terms r)° = L~ 1
I, j)

l = L~ l
Irf in eq (12) are calculated successively:

v° = Y G 1 v
1 = y G

,
(Ztj°) m '.

The sum is carried out explicitly for rows yJ within a circle oi radius R
centered at the dislocation and is replaced by an integration for rows fx'

outside of this circle.

Actually the factors {1 — cos ~4>
ll

)} in eq (7) (c.f. eq (6)) are rather

large for the bonds

(3/2, 1/2) -(3/2,- 1/2) :.

2

in situation I, noting that (1/2, 1/2) — (1/2, —1/2) does not occur since

771/2, 1/2
=

t?i/2, -1/2 = 0, and for the bonds

(1, 1/2) - (1, -1/2) : .4

(0, 1/2) — (1, 1/2) : .553

in situation II, noting that (0, 1/2) — (0, —1/2) does not occur since

T70, 1/2
=

1?0, -1/2 = 0.

Therefore, to improve the convergence of the series in eq (12), the expres-

sion if] (eq (7)) was split up into two parts, one of which (/117) contained

only these bonds, while the other (/2 t?) contained all the others. The Green's

function corresponding to the set of equations

(L-l 1 )rl = I

was calculated [4]; it can be expressed in terms of the Green functions
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G^ , of eq (11). The values rj^ are then obtained, in the same way as ex-

plained before, from eqs (12) where now, however, L~ l
is replaced by

(L-h)- 1 and /by l2 .

The resulting values of r\ are shown in table 1.

Table la. The values of r) m , n for Sit. I. (r) n , m = — r} m , n )

\. n

m \. 1/2 3/2 5/2 7/2 9/2

1/2

3/2

5/2

7/2

9/2

11/2

0

0.04257

.01638

.00629

.00279

.00122

-0.04257

0

.01023

.00765

.00486

.00282

-0.01638

-.01023

0

.00328

.00354

.00284

-0.00629

-.00765

-.00486

0

.00153

.00188

-0.00279

— .00486

- .00354

-.00153

0

.00080

T, DI r IK rpL „
1 ABLE ID. 1 He values of 7) m , n for Sit. II.

1/2 3/2 5/2 7/2 9/2

1

2

3

4

5

0.12415

.04671

.01648

.00672

.00327

0.01747

.02669

.01873

.01136

.00696

0.00043

.00870

.01087

.00923

.00701

-0.00114

.00219

.00508

.00587

.00554

-0.00086

.00030

.00218

.00341

.00375

IV. Energy Calculations

The energy of the dislocated crystal was calculated by direct summation

of the energies (eq (2)) stored in the nearest neighbour bonds. For bonds

at larger distances from the dislocation line the summation was replaced

by an integration. To ensure a good convergence of the Peierls energy

sums, the energy differences of corresponding bonds in situations I and II

•{e.g.,

S^B, l/2)(2, -1/2)
-

l/2(8J£f3 /2 , l/2)(3/2, -1/2) +§£'(5/2, l/2)(5/2, -1/2))}

were formed first, and then the summation of these differences was
performed.

One thus obtains for the Peierls energy

Ep= Eu~E l = 0,20 bBI (4tt 2
) = 0,0050 Gb 1
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(with B = Gb) as compared to the value following from Maradudin's

model (for a square lattice) with Celli's correction:

E u -E l = -0A7bBI(4,7r2
) ~-0,012G& 2

.

Assuming a sinusoidal Peierls potential our value for the Peierls stress is

<Tp= 7rEPl(b
2)=0M6G.
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DISLOCATION AND CARBON IN BODY-CENTERED
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The interaction energy between carbon and a screw dislocation in

body-centered cubic iron near the core regions of the dislocation was cal-

culated atomistically using a pair-wise interatomic potential matching the

elastic properties of the material. In order to avoid the use of the iron-car-

bon potential, it was assumed that the iron-carbon octahedron of the

Johnson configuration (2 iron atoms separated by 1.225 a0 in the [100]

direction and 4 iron atoms separated by 0.958 a0 in the (100) plane, a0

being the lattice parameter) remains undistorted whether it is present in a

perfect or a defective lattice. Our first calculations yield, depending on

site location, binding energies varying from 0.04 to 0.55 eV.

Key words; Carbon in iron; computer simulation; dislocation-interstitial interaction;

interatomic potentials; lattice defects.

An understanding of the interaction between dislocations and impurity

atoms in crystalline solids based on first principles should be an impor-

tant step toward the development of the fundamental aspects of disloca-

tion theory. The interaction between a screw dislocation and interstitial

impurities such as carbon body-centered cubic iron is a timely subject of

interest to material scientists.

The apparent success of the application of pseudo-potentials to studies

of the material properties of simple metals and semiconductors suggests

that the same approach can be used to investigate the dislocation behavior

of crystalline solids. The crux of the problem is the availability of rigorous

and realistic interatomic potentials. This is indeed fortunate since the

pseudopotential method implies that, at constant volume, an effective two-

body potential, combining the structure- and volume-dependent parts of the

ion-ion, ion-electron and electron-electron potentials, can be used [1]. The

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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volume-dependent but structure-independent parts of the potentials can

be excluded since at constant volume they contribute a constant energy

term independent of the details of the atom configurations.

For transition metals, however, the construction of an effective two-

body potential via the pseudo-potential method is not yet possible. If the

potential could be constructed some other way so as to avoid quantum-

mechanical considerations, it might not be too bad, as a first order approxi-

mation, to treat all metals alike. We therefore choose to express the two-

body potential empirically in power series of the interatomic separation

and match the potential with the elastic properties of the material. Explicit

relationships exist between a two-body interatomic potential and the

second and third order elastic constants for b.c.c. metals [2]. The inter-

atomic potential so constructed for b.c.c. iron is used in this study. The

details of obtaining this potential from experimental elastic constants

data have been discussed by the author elsewhere [3].

The detailed core structures of a screw dislocation in b.c.c. iron (Burgers

vector along [111]) studied by the author using the two-body Fe-Fe
potential have been published [4]. Further investigation of the interaction

of a screw dislocation and carbon in b.c.c. iron cannot be carried out

without the availability of an Fe~C potential. An approximate Fe~C
potential has been proposed by Johnson [5] in his investigation of the

motional activation energy of an interstitial carbon atom in b.c.c. iron.

Johnson reported that the six iron atoms in the immediate vicinity of an

octahedrally situated carbon atom are separated by 1.225 a {) for the

two iron atoms in the [100] direction and by 0.958 a {) for the four iron

atoms in the (100) plane, a<) being the lattice parameter. Since Johnson's

Fe~C potential is at best semiquantitative, we choose to circumvent

the existing difficulty in our approach by assuming that the Fe-C octa-

hedron (composed of six iron atoms and one carbon atom of Johnson's

configuration) remains undistorted whether it is present in a perfect or

a defective b.c.c. iron lattice. The Fe-C octahedron is then placed at

various sites of the b.c.c. iron crystallite containing a screw dislocation

(Burgers vector along [111]) and the equilibrium positions and energies

of all the iron atoms surrounding the Fe~C octahedron are searched

according to our Fe-Fe interatomic potential. The binding energy E\

between a screw dislocation and a carbon atom located at site is

given by

Et= ef-e», (1)

where ef is the total energy of the dislocated crystallite containing N iron

atoms and one carbon atom at site "i" (at fixed volume) minus the energy

of the same dislocated crystallite without the carbon atom, and e 1' is the
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total energy of a perfect crystallite containing N iron atoms. Since the

Fe-C octahedron is assumed to remain unchanged whether it is present in

a perfect or dislocated lattice, the energy contribution from Fe-C interac-

tion (which according to Johnson's potential is short range and concerns

only the six iron atoms of the Fe-C octahedron) cancels according to

eq (1). We hope to arrive in this manner at a reasonable estimate of the

binding energy E\ regardless of the details of the Fe-C potential.

Since our relaxation of the iron atoms is carried out at constant volume

while the insertion of a carbon atom in both the dislocated and perfect

lattices gives rise to a change in volume, a dilatation correction to both

ef and ep in eq (1) is required.

Two methods of estimating the interaction energy E\ according to eq (1)

were used. In the fixed boundary method, the energy of all 720 atoms (30

atom planes each containing 24 atoms along the screw dislocation line

outlined by the rectangle abed in fig. 1) was monitored. The volume
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Figure 1. Projections of atoms (pertaining to three atom planes or one repeat distance) on

{111} plane along the screw dislocation line. Boundary abed (30 atom planes along screw

dislocation line) and boundary efgh (12 atom planes along screw dislocation line) represent,

respectively, the lattice volume used in the fixed boundary method and the moving bound-

ary method. Capital letters indicate the octahedral positions where the carbon atom is

located (nearly midway along the dislocation line): subscript numerals indicate the three

equivalent sites around the screw dislocation core outlined by AiA2A;i .
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change of the assemblage of atoms was estimated from the relaxed atom

positions of the surface atoms along the three Cartesian axes and correc-

tions for the interaction energies were estimated from the volume change

according to the interatomic potential [3]. In the moving boundary method,

the energy of those atoms within the dotted rectangle efgh in figure 1 and

the inner 12 atom planes along the screw dislocation line was monitored.

Since the surfaces outlined by the rectangle efgh and the two end bound-

aries (between the ninth and tenth atom planes and between the 21st

and 22nd atom planes along the screw dislocation line) were moving

during the relaxational procedures, any energy change associated with the

volume change was taken care of by the moving boundaries; therefore no

energy correction was necessary. The moving boundary method yielded

directly the screw dislocation-carbon interaction energy while the fixed

boundary method suffered inaccuracies inherent in the energy corrections

due to volume changes. It is believed that the accuracy can be further im-

proved by using larger crystallite dimensions. The crystallite size used in

this study was chosen as a compromise between accuracy and excessive

costs in computer time. The CDC 6600 computer was used entirely in

this investigation.

A total of eleven octahedral sites shown in figure 1 (lying nearly midway

along the dislocation line) were investigated. The screw dislocation-

carbon interaction energies corresponding to these sites are compiled in

table I. Four of the sites, Ai, Ci, Di, and Ei, yield negative interaction

energies. Site Gi (and corresponding site G2 ) yields a maximum binding

energy of about 0.5 eV. This value is about 0.2 to 0.25 eV smaller than

that estimated by Cochardt, Schoeck, and Wiedersich [6] from linear

elasticity calculations. Reasons for the possible discrepancy have already

been discussed by Hirth and Cohen [7] and by Schoeck [8].

Table I. Screw dislocation-carbon interaction energy according to the atomic model

Octahedral position

(see fig. 1)

E„ Interaction energy, eV

Fixed boundary
method

Moving boundary
method

A, <0 <0
B, 0.26 0.04

c, <0 <0
D, <0 <0
Ei <0 <0
F, Not Estimated 0.25

G, Not Estimated 0.52

G2 Not Estimated 0.59

H, Not Estimated 0.41

H 2 0.42 0.47

I, 0.41 0.33
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The concept of a dissociated all (111) screw dislocation has been in-

voked to explain the slip behavior in b.c.c. materials and particularly the

asymmetry of the critical resolved shear stress. No direct experimental

evidence of dissociation has been obtained, but the idea has received

some albeit conflicting support from discrete lattice calculations of the

atomic positions in the core. Chang, using isotropic elasticity for a-iron,

found that the dislocation core has three very narrow intrinsic faults.

These three faults are symmetric with respect to the screw axis. Bullough

and Perrin, on the other hand, found that the screw is split with faults on

two {112} planes belonging to the zone of the screw axis. The misfit is

spread over a distance of about 3b. On the third { 1 12} plane no splitting

was found to occur.

In view of these discrepancies, the calculations were repeated for

anisotropic and isotropic elastic boundary conditions and with different

interatomic potentials. Excellent agreement was found with Chang's con-

figuration even though a volume expansion term was added to the dis-

placements associated with the dislocation.

It was shown that the final configuration is strongly dependent on the

position of the dislocation line with respect to the lattice and at least two

metastable positions were found. Even though the atomic arrangement is

quite different, their energy is not more than 0. 1 eV larger than the energy

of the stable one.

Using the Johnson potential unmodified for long-range electronic ef-

fects, the dislocation was found to have the following characteristics: core

radius, 4-5.5 A; core energy. 0.20-0.25 eV per atomic plane; and an effec-

tive hole radius of 1 .35A.

It was shown that the final configurations are rather insensitive to the

model size and to the boundary conditions used.

Key words: Computer simulation; dislocation core structure; interatomic potentials;

iron.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,
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We have calculated the atomic positions in and around the core of the

a/2 (111) screw dislocation in a-iron. This dislocation is of great interest

because it appears to play a dominant role in the deformation behavior

of body-centered-cubic transition metals. The computational procedure

is essentially the same as used for the [001] (100) edge [1]. In particular,

the Johnson [2] potentials were used along with a modified version of the

GRAPE [3] computer program and anisotropic boundary conditions [4].

Particular care was taken with specifying the boundary conditions since

our calculations suggest that an improper choice could lead to spurious

results. In addition, a radial dilatation term suggested by Hirth [5], was

included. 1 This expansion, discussed by Seeger and Haasen [6] arises

from second order elasticity effects and was omitted in all previous lattice

calculations. Its physical basis lies in the observed change of lattice

parameter of cold worked metals during subsequent annealing [7]. Con-

siderable precautions were taken to avoid metastable configurations.

This calculation is of particular interest because two previous studies

for the same dislocation show significant differences. Bullough and

Perrin [8] found that the screw dislocation was dissociated on two {112}

planes 60° apart, while the misfit was quite narrow on the third {112}

plane parallel to the dislocation line. Chang, on the other hand [9], found

that the core was quite narrow and retained a threefold symmetry with

respect to the dislocation line.

The configuration that we have generated is very similar to the one

generated by Chang and the slight differences can definitely be attributed

to the fact that Chang used isotropic boundary conditions and his own
anharmonic potential [10] (which is slightly different from the Johnson

potential), while neglecting the volume expansion mentioned above.

The position of the screw axis with respect to the b.c.c. lattice had an

important influence on the core configuration. Suzuki [11] has pointed

out that if the dislocation fine is made equivalent to one of the (111)

screw triads, two different core configurations can be found. This was
confirmed by this study: two metastable configurations were found, the

one with the lowest energy corresponding to the triad with the same
sense as the dislocation itself (in our case both left handed).

The stable configuration was generated starting with the lower energy

metastable configuration and destroying the threefold symmetry on pur-

1 In the isotropic case, Hirth has suggested that the additional radial displacement, u r is

b 2

given by: u r— ~—
, where b is the Burgers vector and r the distance from the dislocation

Znr
line. Since the corresponding formula for the anisotropic case is not available, this one was

used.
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pose (say by displacing only one atom near the core). However, after

relaxation the symmetry was restored. It is rather surprising that the

potential energies of the stable and metastable configurations did not

differ by more than 0.1 eV per repeat distance (i.e., 3 atomic planes).

Even very close to the core, the metastable configurations can be

roughly approximated by using the elastic displacement equations.

However, the deviations from the elastic positions are considerable for

the stable configuration.

The dislocation can be characterized by several conventional parameters

which are obtained from a plot of dislocation energy versus the logarithm

of distance from the dislocation. The dislocation energy has two compo-

nents—a structure dependent and a volume dependent term. The struc-

ture dependent term can be calculated by pairwise summing of the bond

energies throughout the crystal (assuming the volume is constant). The
volume dependent term cannot be evaluated accurately and was esti-

mated by either treating a non-expanded configuration or else by using

an expanded perfect b.c.c. lattice as reference state. The results obtained

by these two independent methods are in good agreement. At large dis-

tances from the dislocation, the energy versus log distance curve is a

straight line whose slope is in excellent agreement with the slope calcu-

lated using elasticity theory. At small distances the following values can

be easily ascertained from the curve: if the Johnson potential II [2] (un-

modified for long-range electronic effects) is used

Core radius = 4- 5.5 A, 1.6-2.2 b

Core energy = 0.20 — 0.25 eV/atomic plane

o

Effective hole radius = 1.35 A, or b/1.8

These results are consistent with other theoretical predictions (e.g., Hirth

and Lothe [12]).

Subsidiary calculations show that the same core configurations are

obtained independently of whether isotropic or anisotropic elasticity is

used to specify the boundary conditions and that the model contains a

sufficiently large number of atoms for convergence on the correct

configuration.

Currently, the a/2 (111) screw dislocation is being studied using a

potential developed by Bullough and Perrin [13]. This potential is very

different from the Johnson potential since it includes third nearest neigh-

bor interactions (only second neighbors for the Johnson potentials) and

contains a large positive potential energy between second and third

neighbors. It is not known at the present time whether or not the configura-

tion is sensitive to the change-over to this potential and these results with
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the details of the present investigation will be presented in the near

future.
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Discussion on Papers by H. Suzuki, A. Holzler and R.
Siems, R. Chang, and P. C. Gehlen et al.

BEN-ABRAHAM: I would like to comment on the papers by Professor Su-

zuki, by Drs. Doyama and Cotterill, and by Drs. Holzler and Siems,

which are very much alike. Three years ago a student of mine, Joseph M.

Ya'eli, made a very similar calculation for copper and aluminum and also

for a simple cubic lattice. He used what he called an elasto-static approx-

imation in which he divided the crystal into cells, took the elastic values

for the displacement at the actual lattice points, and then instead of in-

tegrating, he summed them up. That method made it possible to apply

simple anisotropic elasticity, yet still account for the discreteness of the

lattice. I must say he got very similar results as were here presented by

Professor Suzuki. He also compared his results with results available at

that time by Drs. Cotterill and Doyama 1 and others. I wish to point out

that the result of this calculation was that the minimum energy position

is neither configuration I nor configuration II, but rather a point on

the diagonal. [See fig. 1 in the paper by A. Holzler and R. Siems,

and fig. 1 of this discussion.] I wish to point out that the value of this

approximation is that it is very simple indeed, so that you can save a lot

of computer time as compared with more sophisticated calculations. At

the same time, you can fare much better than by elasticity at estimating

core energies. So, it's something workable for everyday use. Thank you.

SIEMS: We also considered this type of approximation. We assigned to

any row of atoms that displacement which a dislocation in a continuous

elastic medium would produce at the same position. Summing up the

corresponding interaction energy yields a Peierls energy differing by

about 30% from the value calculated in our paper.

HIRSCH: I'd like to report on some calculations made by Vitek recently.

He also has calculated the configurations of the atoms around a screw

dislocation in a bcc metal using the Johnson type potentials, but giving

lower misfit energies on the {112} planes. These calculations were done

in collaboration with Dr. Perrin in Dr. Bullough's group. The results of

the calculations so far show that the dislocation tends to be dissociated

on {112} planes by very small amounts and the dissociation has three-fold

symmetry. In that respect, I believe, it differs from Dr. Chang's dis-

sociated model.

Cotterill, R. M. J., and Doyama, M., Phys. Letter 13, 110 (1964); Phys. Letters 14,

79 (1965).

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).
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Figure 1. Location of energy minimum for a screw dislocation in a simple orthorhombic

lattice, according to Ya'eli.

KUHLMANN-WILSDORF: As we all know, the Peierls stress is the

derivative of the dislocation core energy as a function of position. For

symmetry reasons, this function has to have extrema at the two sym-

metrical positions, i.e. the two extrema we saw on the slides. If now
there is a minimum of the energy, as Dr. Ben-Abraham pointed out,

on the 45° line, that gives four extrema to the curve per periodicity

interval. Did I misunderstand, or do you seriously think there are

four extrema?

BEN-ABRAHAM: I don't blindly believe in those calculations, but I do be-

lieve that they tell us that the crystal symmetry isn't conserved around

the dislocation, and therefore, there is no good reason why what is a sym-

metric position in a perfect crystal should be a symmetric position in a

dislocated crystal. On the other hand, it also implies what Professor Su-

zuki showed us, that the dislocation would dissociate at least locally in

terms of one or two Burgers vectors. I don't think we have a way to see

whether the difference is half an Angstrom or something like that.

HIRTH: I would like to comment on boundary conditions that are used for

many of the atomic calculations. Professor Haasen, in collaboration with

Professor Seeger, calculated some time ago that a dislocation line

produces an area expansion of the order of b 2
. This estimate is sup-

ported by measurements of volume changes accompanying cold-working

of a crystal. Professor Nabarro has discussed the elastic implications

which would indicate that this corresponds to a biaxial dilatation around
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the dislocation with a radial displacement field of the type t^A\2ur. This

field should vary with r until the distance from the core is about 56 or 106

and then become uncertain because of non-linear effects. However, in

putting the boundary conditions on the large cells of atoms to carry out

atomic calculations, the usual procedure is to apply only the displace-

ment field of the dislocation itself. It would seem that in many cases the

dilatational displacement field could also be appreciable at the bounda-

ry. Because of the high sensitivity quantities such as stacking fault ener-

gy to hydrostatic compression this could conceivably significantly affect

deduced dislocation dissociations and stacking fault energies.

BULLOUGH: Any comment on this point?

GEHLEN: For the dislocation configurations presented here, we have used

the correction that Professor Hirth mentioned. Some of the configura-

tions were generated with different proportionality constants in the ex-

pression for the dilatation term. This should affect the value of the

stacking fault energy and hence the splitting of the dislocation, if any.

However, since the core configuration remains unchanged when the

value of the proportionality constant is increased, one may postulate that

the core is not split.

BULLOUGH: It depends whether the core configuration is dominated by

the Peierls width or by stacking fault energy.

GEHLEN: But it seems to me that the stacking fault energy as well as the

Peierls energy would be affected in similar ways when the dilatation

field is altered.

ARSENAULT: I have two questions for Professor Suzuki: 1) Did you cal-

culate the Peierls stress of an edge dislocation? 2) By manipulation of

your potential or splitting it into two parts, could you get the Peierls

stress of an edge greater than that for a screw?

SUZUKI: I have calculated the Peierls stress only for screw dislocations.

I haven't obtained any numerical results for edge dislocations. I think for

the rather qualitative estimate using the Peierls-Nabarro approximation,

the Peierls stress for an edge dislocation is rather smaller than for a

screw dislocation in the b.c.c. crystal.

SCHOECK: I have a question for Professor Siems. You assume in the pri-

mitive lattice that the center of the dislocation is in the interspace

between two lattice planes. Could you not put the center also in a row of

atoms, and if you do so would this not reduce the energy since the center

row is then not displaced at all and the next atoms nearest to the center

which are displaced are further away?

369-713 OL - 71 - Vol I - 22
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SIEMS: The situation where the center of the dislocation coincides with a

row of atoms can be treated in the same way as the cases discussed in

the paper. An estimate of the resulting energy (taking only rows in the

vicinity of the dislocation into account) indicates, however, that the

resulting energy is higher than the energy of the situations discussed in

the paper.

ELBAUM: I just wanted to ask Professor Suzuki on the matter of the com-

parison he has made with experimental results on the Peierls-Nabarro

stress: What experimental results are you referring to?

SUZUKI: In the case of body-centered cubic crystals, I referred to the

values obtained by Professor Conrad,2 who estimated the Peierls-

Nabarro stress by extrapolating the flow stress to 0 °K and analyzing the

temperature dependence and the strain rate sensitivity of the flow stress.

Meanwhile, in the case of face centered cubic crvstals, I don't know a

reliable value for the Peierls stress as determined by experiment. It is

possible that we give the Peierls stress of the order of 1/kg/mm or less.

This value may not contradict all observations.

2 Conrad, H., in The Relation Between the Structure and Mechanical Properties of Metals

(Her Majesty's Stationery Office, London, 1963) p. 476.
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Dynamical theories of dislocation vibration and interactions with

phonons are surveyed. Eigenfrequencies of lattice vibrations in a crystal

containing a straight dislocation are calculated by using Lagrangian

formalism. It is found that there is one eigenfrequency of dislocation

vibration (wave number k) in each of the intervals of the normal mode
frequencies of in a perfect lattice. It is also found that there is

a band of localized dislocation vibration below the phonon band. The
mean squared amplitude of the dislocation vibration is determined

by the localized mode for an edge dislocation and by the resonance

modes for a screw dislocation. Phonon scattering by the fluttering

mechanism is next treated by using the above results and the condi-

tions of resonance scattering is given. Finally, the effect of the Peierls

potential and the vibration of a dislocation dipole are discussed. In the

Appendices the problem of quantization of dislocation vibration and the

extension of the above theories to a case of translational motion are

briefly described.

Key words: Dislocation-phonon interactions; dislocation vibration; internal friction;

localized modes.

I. Introduction

A dislocation in a crystal scatters phonons to give thermal resistivity.

For a dislocation which makes translational motion, the scattering results

in a frictional force acting on the dislocation. Two mechanisms of the dis-

location-phonon interactions have been considered based on treatments

of dislocation in an elastic continuum. One is the scattering due to large

strains around a dislocation because of the anharmonicity in the crystal

potential. In connection with thermal conductivity at low temperatures,

this mechanism was first investigated by Klemens [1] and reviewed by

Carruthers [2]. These theories have predicted too small thermal resistivity

due to dislocations compared with the experiments in alkali halides

Fundamental Aspects of Dislocation Theory. J. A. Simmons, R. de Wit, and R. Bullough.

Eds. (Nat. Bur Stand. (U.S.), Spec. Publ. 317. 1, 1970).
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(Sproull et al., [3]). Recently Bross et al. [4] have studied this mechanism

to explain thermal resistivity in copper alloys and have extended their

calculations to the cases of dislocation arrays. The frictional force on a

dislocation by this mechanism has been given by Mason [5] for a straight

dislocation and by Seeger and Engelke [6] for a kink.

The other mechanism of phonon scattering comes from the ease

of dislocation motion. Forced oscillation of a dislocation by an incident

phonon results in phonon emission and gives the scattering of the incident

phonon. This mechanism is called fluttering. Dynamic response of a

dislocation to an external force is quite often treated by assuming that

the dislocation has a line tension and an effective mass (the string model).

Although this model makes the problem quite easy to treat mathematically,

the concepts of the line tension and the effective mass have rather impor-

tant defects for general use. Essential points of the criticisms to this

model are the following:

(1) The interactions between dislocation segments are of long

range and it is not clearly shown how good approximation the line tension

is.

(2) For a dynamic problem, the long-range nature of the interactions

necessitates taking into account retardation in propagation of the strain

around a dislocation.

(3) From the field-theoretical point of view, the dislocation mass is

given by the self-force, as was shown by Eshelby [7] and Kosevich [8]. Then,

as in the line tension, the above points of criticism must be considered

for the mass, too.

Actually it has been shown by Laub and Eshelby [9] and by Ninomiya

and Ishioka [10] that, for a sinusoidal displacement of an oscillating dis-

location, the effective line tension and the effective mass can be defined

including the effects of both the long-range interaction and the retardation.

These are, however, dependent on the wavelength and the frequency. That

is, one cannot use a single line tension or a mass for an arbitrary motion

of the dislocation.

The kink model is superior to the string model in the respect that the kink

mass can be defined for a arbitrary motion (Ninomiya and Ishioka [10]).

When one deals with a chain of kinks, however, one must take into account

the long-range nature of the kink-kink interactions and their retardation.

Then, the problem becomes quite similar to that in the string model.

There is another defect which is common to the string model and the

kink model. The existence of a dislocation does not change the degrees

of freedom of the crystal, because the number of atoms in the crystal is

not changed by introduction of the dislocation. On the other hand, the

assumption of the dislocation mass increases the degrees of freedom. One
must remember that the effective mass is entirely determined by the self-
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force; that is, the dislocation has no eigen-mass (Ninomiya and Ishioka

[10]).

The above described objections to the use of the effective mass and the

line tension suggest necessity of developing a general theory of dislocation

dynamics without using these concepts. On the basis of the Peierls model

of a dislocation, Nabarro [11] calculated the response of a straight and

rigid dislocation to a phonon by balancing the stress on the slip plane.

Eshelby [7] treated motion of a kink by considering the self-force. Recently,

Ninomiya [12] has tried general treatments of dislocation vibrations in an

elastic continuum.

In the present paper the problems of dislocation vibration in an iso-

tropic and elastic continuum are surveyed. General treatments of disloca-

tion motion start with the expressions of the elastic and kinetic energies

of the elastic body in terms of dislocation field and phonon field and use

Lagrangian formalisms. The retardation in the strain propagation is taken

into account by the phonon field. Lattice vibrations in a dislocated crystal

are first treated along this line. Knowledge of the eigen-frequencies of the

lattice vibrations then gives directly the scattering cross-section of a

phonon by the fluttering mechanism.

Of course, these treatments of dislocation vibration in an elastic con-

tinuum are not valid near the Debye frequency. The vibration of a disloca-

tion in a lattice was first investigated by Kratochvil [13] for the one-

dimensional (Frenkel-Kontorova) model. Calculations of the vibration

in a three-dimensional lattice have been done by Litzman and Kunc

[14]. They studied the modes localized around an edge dislocation in a

simple cubic crystal in which the x, y, and z components of the displace-

ments are uncoupled. Although the present calculations for an elastic

continuum are considered to be complementary to their results, direct

comparisons between these calculations are not easy. The reason is that,

in the calculations done for the cubic lattice, the effects of anharmonicity

and of dislocation fluttering are mixed. Lengelar and Ludwig [15], Lifshitz

and Kosevich [16], and Brown [17] have also treated the lattice vibration

in a crystal containing a one-dimensionally extended defect. Their models

are, however, concerned with the linear array of impurity atoms, and the

physical relation to dislocations seems to the present author not very

clear, although it is expected that such an array may reflect some char-

acters of the dislocation core.

Dynamic theories for continuous distribution of dislocations are not

described in the present paper, because these will be treated in the session

of dynamic field theories.

In section II the equations of motion for vibrations in the crystal with

a straight dislocation are presented by using a Lagrangian formalism.

In section III the eigen-frequencies of the lattice vibrations are obtained
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for the modes accompanied or not accompanied with dislocation vibra-

tion. The change in the state density by introduction of the dislocation is

also given. In section IV the mean squared amplitude of the dislocation

vibration is discussed. It is found that for an edge dislocation the localized

modes make the largest contribution to the amplitude and for a screw

dislocation the amplitude is determined almost entirely by the resonance

modes. Section V is devoted to the problem of phonon scattering by the

fluttering mechanism. This becomes the extension to general cases of the

work by Nabarro. The condition of resonance scattering for oblique

incidence of a phonon on a dislocation is given. The next section (section

VI) treats the effects of the Peierls potential on the dislocation vibration

and phonon scattering. Finally the case of a dislocation dipole is discussed

(sections VII and VIII). In Appendix C the quantization of the dislocation

vibration is done and in Appendix D the energies of an elastic body in

which a dislocation makes translational motion in addition to infinitesimal

vibrations are given for future extension to calculations of frictional force.

Appendix E gives a brief comparison of the theoretical and experimental

determinations of the contribution of fluttering to thermal conductivity.

II. Dislocation Energies and Equations of Motion

In the present work, we will treat infinitesimal vibration of a straight

dislocation in an isotropic and elastic continuum.
Let us take the xz plane as the slip plane and consider that the dislo-

cation is along the z axis. The displacement f(z) of the dislocation from

an equilibrium position (a straight configuration) is expanded in a Fourier

series

The elastic field around the moving dislocation is different from that

around a static dislocation with the same configuration, because of

retardation in the strain propagation as stated in the introduction. The

displacement, strain and stress are decomposed into two components

as follows:

(1)

K

Ui = uf-\- uf (displacement),

(strain),

and

Pij=Ph+ Pfj (stress).

u\ is the static displacement corresponding to an instantaneous con-

figuration of the dislocation, uf is a deviation from the static displacements

and will be called dynamical one. Since the relative displacement b across
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the slip plane is given by the static displacement, the dynamical dis-

placement is continuous even across the slip plane. The superscripts

"5" and "d" attached to the strain and the stress represent similar mean-

ings. This splitting of the elastic field is convenient for treating the dis-

location-phonon interactions, because the dynamic field becomes just a

phonon field if we have no dislocations.

For the dislocation displacement given by eq (1) the static displacement

has a following form

ui^MxiyiK^iW+uU. (2)

K

The explicit formula offi(x, y :k) is obtained by integrating the displace-

ments due to infinitesimal dislocation loops and is given in Appendix A.

uf0 is the displacement when the dislocation displacement is zero.

The dynamic displacement uf can be expressed with the superposition

of plane waves in an isotropic elastic continuum:

uf = 2?(k, s) ei (k, s)e
ikl

. (3)

where s stands for the mode of the wave (transverse or longitudinal) and

e is the polarization vector.

The kinetic energy of the body containing the dislocation is

T =
f f2 K + "?)

2
*' =^2 <7(k >

s )<7*(k
'
5 >

i k, s

k k,s i
L J

22 f
\f>(x,y.K)ft(x,y.K)dxdy

pL

2

ef (k, s)<?(k, s)£*(k)

iwew. (4)

Here, we have considered the energy in the cube L3=V and chosen a

cyclic boundary condition. 2* means the summation over the modes which

have the wave vector kz = K. Let us write briefly as follows:

and

Bi(k, k)= PL j ft(x, y.K)e
i{k^ k

-« u)idxdy, (5a)

m(K)=pL V (f,(x, y.K)ff(x, y. K)dxdy=±£ £ Bf(k, »c)B^(k, K).

P
" ' (5b)
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In an isotropic continuum, we have (Appendix A)

5>(k, K)ct(k,s)=— [(eb)(kn) + (bk)(en)], (6)
i

C s h

where n is the unit vector perpendicular to the slip plane and

cs = c t or c/,

according as the wave is transverse or longitudinal. Let us define <p(k, s)

by

*>(k, 5) =-i[(eb) (kn) + (bk) (en) ]

then we have

V B,(k, K)ei (k, s ) =-^^(k, ,) = . ?(k, s), (7)

where o>o(k, 5) is the frequency for the wave (k, 5) in a perfect crystal.

The elastic energy is given by

— Ed + EdS + E s .

The elastic energy of the dynamical field Erf is written as

(8)

(9)

by using eq (3).

The interaction term ErfS between the dynamical and static fields is

found to vanish as follows:

'(Is=2 Ph4dv
ij J

=l\l P?jU?dsj-( Pljufdv
(10)

where the first term is the integral over the surface of the volume V.

This term vanishes because of the cyclic boundary condition. The second
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term is also zero because

Thus, there are no elastic interactions between the dynamical and the

static fields. We have the interactions between these fields via the kinetic

energy as seen in eq (4).

Here, we must notice that, when we consider the interactions between

static dislocations, the force acting on the dislocation is derived from

the elastic interaction energy to be

dfk= €kjmbipijdl 1 (11)

where dl is the dislocation segment. Since the dislocation has no elastic

interactions with the dynamical field, we have no direct reason to expect

that a force exerted on a dislocation by a phonon is also given by eq (11).

Next we must find an explicit expression of the static elastic energy E s

as a function of the dislocation displacements. The dislocation can be

regarded as an assembly of infinitesimal hair-pin dislocations. Let us

first consider the energy of two hair-pin dislocations (fig. 1). As shown

by Eshelby [18], the static elastic energy can be written in the form of a

surface integral:

* ij J ij L J&

p
sijdsj+ pfjdsj

s2

(12)

A ! B c' c

2

F D

5,
!

1

Figure 1. The static elastic energy is considered for two hair-pin dislocations, (see text)

The stress pf,- is the sum of the stresses due to each hair-pin dislocation:

P& = Ptf(*,y.*:fi)+pff(*,y,*:6).



322 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Displacement of an isolated hair-pin dislocation in the x direction does

not result in the change in a static self energy, if the interaction with the

surface of the body is neglected:

^bi pi]dsj = const.,

ij JSi

and /-

^?bi I Pijdsj= const.

i,j

The static elastic energy is dependent on f i and f 2 through the interaction

energy between the hair-pin dislocations 1 and 2.

Es = const. +

The second term of eq (13) is evaluated as follows. At first we decompose

the hair-pin dislocation 2 into the loops ABEF and BCDE (fig. 1). The inter-

action of the loop ABEF with the hair-pin dislocation 1 is dependent on

neither £i nor £ 2 . Next we consider the interaction of an infinitesimal

dislocation loop d£2
- dz 2 located at CD' with the dislocation 1. The

interaction energy is given as

const. d%2 dzzdzx ^iPiv Ua — z x
)d£2

• dz2 (£1 — £i)dzu

where P\j(z2 — z x )d£2 dz2 is the stress due to the loop d£'2 dz2 at the head
of the hair-pin dislocation 1. Therefore, the interaction energy of the loop

BCDE with the dislocation 1 is

const. dzt dz2 ^ d&—£L b iP iy (z 2 -z l )dz l dz 2

= const, dzi dz 2 (£ 2 -€ l)-^^?b iPiy(z2 -z 1 )dzidz2 (£2 -£ 1 )
2

.

i

Summing these energies, we have

9 2 ^'
I

Ptjdsj = const. + const. (£> — £\)dz\dz2

~|S biPiy(z2 -z 1 ) • (f 2 - £1 )
2dz1dz2 . (14)

i

When we consider all the hair-pin dislocations, the static elastic energy

is obtained by integrating eq (14) over z x and z2 . If the dislocation displace-

ment is given by eq (1), the energy is
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Es
= const.

+\^Z(k)^{k)\^^ ^b i
P iy (z)(expiKz-2 + exp-iKz)dz]

i

. (15)

The integral in the brackets is explicitly evaluated in Appendix A and,

here, is written briefly as

1 f
00

k2T(k) =— I ^ biPxy(z) (exp iKZ — 2 + exp — iKz)dz. (16)

Throughout this work, we consider that the core width of the dislocation

is zero and shall impose a Debye cut-off, if necessary, to avoid the difficulty

of infinity associated with the core.

From the Lagrangian L= T—E, we obtain the equations of motion:

5*(k, s)+a>jj(k, s)</*(k, s)

+-^]pKk, fc= A,)ei(^5)f*(K)=0, (17)

and

2 2"ft(k, ic)e,(k, s)$(k, 5 ) +m(ic)f (k) +Lk*T{k)£{k) = 0. (18)

k,s f

Multiplying eq (17) by ^BfQt, /c)e*(k, 5), summing over the modes
j

whose wave vector has the z component k2 = K, and comparing the re-

sultant equation with eq (18), we finally obtain

k*T(k)£(k) =A*]>>(k, s)g(k, s). (19)

Here we have used the conditions

5>i(k, 5) e;(k,5)=6v
s

Substitution of eq (19) for eq (17) eliminates the dislocation coordinate

««):

*>*(k, s)9*(k, ,) + <0§(k, s)*>*(k, f)9 *(k, s)

+ y(k, j)y«(k, 5) A , (k , ,» )3
»(k * s -) =0, ,20)
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where

g(K) = r/liv , and kz = k.
pVK2 l (K)

The third term of eq (20) gives the interaction between phonons via the

vibration of the dislocation. It is clear from the term that there is no inter-

action between phonons which have different kz . This fact of course

agrees with physical intuition for a defect extended in one dimension.

III. Eigenfrequencies of Lattice Vibration in a Dislocated

Crystal

In this section the eigenfrequencies of stationary states are obtained

from eq (20). For a stationary state eq (20) is

{ai|(k,*)-«*}e*(k,*)9*(k,*)

=*<") -mr~^ sV*<k >
s>2 <p(k '< *')9(k', •'). (20')

WolK, S)
k, s

,

There are two cases of the stationary states. One is accompanied with

dislocation vibration and the other is not. The former case is:

Casel. 2>*<k '
5 )<?*(k

>
5

) * °-

k\ 5'

In this case we have

j|>*(k, s)<f(k, S )

k ,
5'

t -^r-i
y(k

;:
)

^
(k

' ?±^^ '> • (21)

ft co5 (k, 5) («5 (k, s) -co 2

ft$

The eigenfrequencies are determined by the condition

F(a>>) = i
-gM ±-* M±>)<p*^;)

ft oil [K, s) co
2 (k, s) — co

2

ft
C0

2 (k, s)
ft

co
2 (k, 5) -co 2

= 0. (22)

If the eigenfrequencies of the lattice vibration modes of kz = k in a perfect
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crystal are &>oi, ft>02) • • • &>oi 5 • • • (o0m (g>oi < ce>02 < . . . < o>o?n)?

including both the longitudinal and transverse modes, F{oj-) changes

with the frequency or as shown schematically in figure 2. Therefore,

we have one eigenfrequency in the dislocated crystal in each of the

frequency intervals for the perfect crystal. That is, the number of the eigen-

states accompanied with dislocation vibration is equal to the number of

the levels of different frequency in the perfect crystal. There is one

and only one state which lies between zero and the lowest frequency

for the perfect lattice (g>oi = c (k) . This frequency is out of the unperturbed

frequency band and gives a localized state.

The above discussions are valid for all possible values of k. Therefore,

the localized states accompanied with dislocation vibration actually

form a band as shown in figure 3. Fico 2
) is evaluated in Appendix B.

F(uj
2

)

i

!

1

F(oo)
i

1

|]

1 1

1 l I

\
1

\

X 'V \ 1

(

\ |

i

Figure 2. A plot of Fiw-). The intersections of the curve with the oj
2-axis give the eigen-

frequencies.

K
Figure 3. The phonon frequency band in a dislocated crystal. The localized modes are

accompanied with dislocation vibration.
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For an edge dislocation, the frequency of the localized mode is given

in the limit of the long wavelength along the dislocation (k/Icd ^ 1). For

a screw dislocation the localized states exist very near the edge of the

phonon band.

Case 2:

The second case is that given by the condition

]>>*(k, s) 9 *(k, s)=0. (24)
k,s

As seen in eq (19), this condition implies that the dislocation does not

vibrate. In this case the eigenfrequencies are the same as those in the

perfect lattice. Let us assume that the frequency o>0 i is Tii-fold degen-

erate in the perfect crystal. Then, the modes with the frequency a>0 ? in

the dislocated crystal is (m— l)-fold degenerate because of the condi-

tion (24).

The total number of the lattice vibration modes in a dislocated crystal

is thus the same as that for a perfect crystal.

Now, let us return to the case of dislocation vibration (Case 1) and

discuss the change in the state density due to the vibration of a dislocation.

As shown by Maradudin et al. [19], the change in the state density

5G(co2
, k) is given by

8G(a)\ K)=-lm^-\nF(aj2 -ie). (25)
tt dor

If we write as

K 2T(K)F{a> 2 -ie) =F X (w 2
) + iF2 ((o

2
) ,

then we have

8G(o>2
, k) =i arctan (26)

tt dco2 ri{a> 2
)

Since the present treatment for an elastic continuum are not valid near

the Debye frequency, we shall discuss the state density in the region of

frequency much smaller than the Debye frequency. Fi(cd 2
) and F2(o> 2

)

for a screw dislocation in this region are shown schematically in figure 4

(see Appendix B). The change in the state density obtained from eq (26)

is plotted in figure 5. At the point (L) of the localized state we have the
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Figure 4. A plot of Fi(to-) and F2 (a>
2
). (schematic)

3

Figure 5. Change in the state density in the range of frequency much smaller than the

Debye frequency, (schematic)
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8 function. We also have the increase of the state density at the resonance

point {R) which satisfies

F1 {co
2)=0 and ^<0.

dOJ-

On the other hand, we have a decrease of the state density at the anti-

resonance point (A) which satisfies

FAco 2)=0 and
2̂
>0.

For an edge dislocation, we have neither resonance nor anti-resonance

points, although there is a localized state. The increase in the state

density at the localized state is compensated with slight decreases over a

wide frequency range.

IV. Mean Squared Amplitude of Dislocation Vibration

In this section the mean squared amplitude of dislocation vibration is

calculated. The purpose of the calculation is to find which vibrational

mode makes the largest contribution to the vibration of the dislocation.

Let us assume that the state / is accompanied with the dislocation

vibration with the amplitude fj. The displacement of the dislocation is,

then,

f (z) =2 fi exp {iojit + iKiz) . (27)

The mean squared amplitude is

<eu)f*oo> =2f'f* t2S)

i

where the averaging has been taken over both the dislocation length and

time.

From eq (17) the amplitude g/(k, 5) of the dynamical displacement

for the state / is given by

{co-Hk, s) - cofMk, s)qi(h, s) =^-j^-MK 5)^*(k, (29)
py (x) 0 i^k, s

)
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The elastic energy of the state / is

k~T {k)

L m BF{a>r)
(30)

The last form of eq (30) was obtained, because /''(wjO^O. The kinetic

energy, of course, is equal to the elastic energy:

T, = E
( (31)

Therefore, if some modes have very small value of dF (ooj) /dor, these

modes are expected to make large contribution to the mean squared

amplitude. F(ar) is explicitly evaluated in Appendix B after Dawber

and Eliott [20] and for the in-band modes we obtain

dF(or) _ 7TTTIP {oj-)

dor lm F{co'2 — ie)
|F(co2 -*e)| 2

irmvioS1

k-T(k)F.2 (o)
2

)

- [Ff(o) 2 )+F|(o, 2
)] (32)

where mv(cor) is the density of the frequency levels woi, o)
2^

tali, .... o>gm . From eqs (30), (31), and (32) we have

ftff=
Ei.+ T, ft (of)

TrLayfmv ( cof ) F2
( co

2
) + F2

( co
2

For the localized mode we have

E, + T,

6fi

Leo2
3F,

dor

(33)

(34)

because

K2 F(/<)F(aj2
)
= k2T(k)F(<o2 - U) =Ft (co

2
)

in the frequency region which is out of the phonon band.
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The mean squared amplitude is, then,

dw 2mp(o) 2)ir +
E,+ T,

\ to2
).

(35)

where the first term in the brackets is the contribution from the in-band

modes and the second term from the localized mode. At high temperature

0( >SD )

E,+ T/= A:«e

and, therefore,

<£(z)f*U)> =
2tt

dK
1 f 1

77 0>
2 F\ + F\

da)'*

0)

(36)

By using the formulas of Fi(co 2
) and F2 (a>

2
) given in Appendix B, we

can roughly estimate these contributions for the long wavelength modes

{k<Jcd). In the case of an edge dislocation, the contribution of the

localized mode is

and that of the in-band modes is

I f J_ F, , l

77 J o>
2 F? + Fi

aa)
10k*T(k)'

Therefore, the mean squared amplitude of the edge dislocation is almost

determined by the localized modes.

For a screw dislocation the contributions from the in-band modes are

larger because as shown in figure 4 we have the resonance point at which

F 1 (oj
2
) -0.

I rj_ f 2 2 _ i

77 J co
2 F\ + Fl

a0)
k*T(k)'

Most of the contributions come from the modes in the vicinity of the

resonance point. The mode localized around the screw dislocation has
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not a large amplitude, because the mode is quite near the band edge and

dFJdo) 2
is large.

Finally we must notice that, although eq (36) is obtained under the

condition 0 > Sd, this equation is valid even at fairly low temperatures

for the long wavelength modes (K<kn), because the mean squared

amplitude is almost determined by either the localized mode or the

resonance modes, which have the eigenfrequencies much smaller than

the Debye frequency.

V. Scattering of Phonons

As was stated in the introduction, the problem of phonon scattering

has a close connection with the problem of finding eigen states. In this

section scattering of phonons by the fluttering mechanism is discussed

in a rather general way compared with Nabarro.

We start again with eq (20') for a stationary scattering problem. If

the incident wave is a plane wave, we expect that the solution has a form

of the plane wave plus out-going waves. Thus, for the incident wave
0 s

<7*(k0 ,So) tne scattered wave g*(k, s) is given by

^nk,5)[5nk,5)8 A
.

A
.

08„0+ J*(k > sO]=^*(k,5) 9 nk,5)8A.AA

a)
2 <p(k,s)?*(k,s>

>2(k, 5) o>J(k, 5) — co
2 + ie

x2^(k',s')[9*(k',5')8^+ ?*(k',5')]
k',5'

(37)

where

(o
2 = a^(ko,s0 ) and k= koz {= z component of ko)

.

This equation leads to

F{(l> 2 — ie) a)J(k, 5)

<p(k, s)<p*(k, 5) ,0——— <P*(k0 , so) <7*(k0 ,

5

0 ) . (38)
oj

(
,(k, s) — wz + ie
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The lattice displacement of the scattered wave is

K

Ki(r)=2 g*(k,.s)ef(k, s)e~ /kr

r {(o
2 — ie)

x V—*»- </?(k,s)e;(k,s) _ikrA Z w 2(k,s) Wo2 (k, 5)- w 2 + /e
e

'

^

The asymptotic expression for the scattered wave, when r — (x 2 -\-y2)
1' 2

is very large, is obtained by using the method of stationary phase (Lud-

wig [21]).

} ~ 2(2tt) 1 / 2K2 r(/f)F(ft)- - ie)

The wave number of the scattered wave is determined from the conser-

vation of the energy:

csk=csoko,

and

with

K = koz and ky/kx = y/x.

When we consider the energy flow, we can define the scattering width

(the scattering cross section per unit length) for an infinitely long dis-

location as follows: the differential scattering width is

€0dw=e,yd6 (41)

when the energy is scattered to the 6 direction in the xy plane. Here

€o and es are the incident and the scattered energy flux respectively.

From eq (40)

a /A-<p(ko,So)<p*(ko,5»)cEfl ^ cs cf 1

dw=8^TH K)F(^-ie)F^^-U)^7^ s)^^ s) ¥- (42)
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The total scattering width is, after integrating dw over 0,

w
6 2/xV(ko,5o)^*(k 0 ,.$())

%k±T2 (k)F (co
2 -ie)F* (a)

1 - ie)

3

+
CS0 t

(43)

where
( CsokoY

>/2 '
( c s0ko \

>/2

[ \
c

> I

— K~
L\

Ct
)

K~

and

The explicit form of F(a> 2 — te) is given in Appendix B, When the real

Figure 6. A plot of \k2T(k)F (<D
2 -ie) \~2 for a screw dislocation in an isotropic medium

as a function ot k. (c t /ci)
2

is assumed to be 1/3 (Cauchy relation).
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part of F becomes zero, we have the resonance scattering of phonons.

This condition is satisfied for a transverse phonon incident obliquely on a

screw dislocation. The value of {k 4T 2 (k)F((o 2 — ie)F*(a) 2 — ie)}
_1

for

a screw dislocation is plotted in figure 6 as a function of the incidence

angle, that is, as a function of k.

When we deviate far from the resonance point, the order of magnitude

of the total scattering width is, for k0b < 1,

2tt 2

c 2

which agrees with the result of Nabarro for k = 0 (normal incidence).

When we consider a transverse phonon incident on a screw dislocation

in parallel, the scattering cross section becomes infinity, because k'
t
= 0.

We, however, have no physical trouble, because in this case the scattering

angle is zero.

VI. Dislocation Vibration in a Peierls Potential

The treatments of the dislocation vibration discussed in the preceding

sections were based on the continuum model of the elastic body. Taking

the lattice discreteness into account will be necessary for some problems

of dislocation motion. Dislocation vibration near the Debye frequency

is of course such a case. Besides, in the case of dislocation the lattice

discreteness leads to the existence of the Peierls potential and, there-

fore, low frequency vibrations of a dislocation will also be affected by

the discreteness. In this section we shall consider the effect of the Peierls

potential on the dislocation vibration just by adding the potential to the

above treatments. We confine ourselves to the infinitesimal vibration

in the potential. Then the potential is approximated to be parabolic.

Generally, the kinetic energy may also be influenced with the lattice

discreteness. But, here, we consider only the effect of Peierls potential.

Let us consider that the displacement of the dislocation is given by

eq (1). The Peierls potential energy is

PC PI
Ep=| J

P(z)dz~^((K)e*(K). (45)

The effect of the Peierls potential on the lattice vibration is, therefore,

obtained just by replacing k2T(k) in the preceeding sections by k2T(k) +P.
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The eigenfrequencies accompanied with dislocation vibration are

determined with the condition

fc
2r(/c) pVk'T(k) fa o>0

2(k, 5) o>0
2 (k, 5) -or

differing from eq (22) by the constant term P/k2T(k). Seeing figure 2,

we easily know that there is again one eigenstate in each interval of the

eigenfrequencies for a perfect crystal, and below the phonon band we
always have a localized vibration of the dislocation for every possible

value of k, although the eigenfrequencies increase with increasing mag-

nitude of the Peierls potential.

The scattering cross section of a phonon is rather largely affected

by the Peierls potential, especially at low frequencies. The total scattering

width is again given by eq (43) with k2T(k) replaced by k2T(k) + P. Such

a replacement results in change in the condition of resonance scattering.

In order to obtain a rather rough but more intuitive estimation about

the change, we will consider the scattering of a phonon with a frequency

much smaller than the Debye frequency. Let us define FP (to
2
) by F(co2

)

with k2T(k) replaced by k2T{k) +-P. In this frequency range,

{K-T{K)+P}FP ya)
2 -ie)

is roughly but briefly expressed as

{k 2T(k) + P}FP (oj- -ie)^m(a) 2 - co
2
) + k2T+ i -^co2

, (47)

by neglecting co or k dependence of the logarithmic terms in eq (B. 9)

and putting these terms constant (m and T). Here, co/; is defined by P = ma)f

and the imaginary term gives only the order of magnitude. If dislocations

are randomly oriented, we must use the cross section averaged over

the incident angle:

w
1 f fr <>

= w{ K)dK. (48)

Since the k dependence of the cross section w{k) is given almost by
\{k2T(k) + P} 2

Fi>(q)'~ — ie)F* (a)'
1 — ie)

|

_1
, we use a following approximate

formula of w(k) to evaluate eq (48):
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Here, we have used

<p(ko,So)<p*(ko,s0 ) -klb\

and put the terms in the brackets in eq (43) equal to /c0 . Then, the averaged

cross section w for a transverse phonon is given by

- = fi
2b4

J_ f 1 d
W

ST2 ' kjo (x2 -a
dx

)
2 + /3

2

dx

)
2 + /3

2
(50)

where

and

f
1 d

Skojo {x2 — a

mc2
( w|\

mcf

mc 2/T has a value of about 0.5 and 1.5 for a screw and an edge dislocation

respectively.

The integral in eq (52) changes with the frequency a>
2 as follows:

:

2 -a) 2 + (3
2 '

Case 1: co > ojp

1(a) —40 for a screw dislocation,

~ 0.5 for an edge dislocation.

Case 2: co ~ oj_p

I (a) has a sharp peak at this frequency. The peak height is

1(a) -0-3/2 -90 (screw),

- 18 (edge),

and the peak width is

(oj
2-w 2

) -±/3oj 2
.
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Case 3: o> <^ a>/>

/(a) ~ 2a>4/a>
4

) (screw),

- g>
4/4.5oj 4 (edge).

The large difference of the cross section between the screw and edge

dislocations at high frequencies (Case 1) is due to the existence of reso-

nance scattering for oblique incidence of a transverse phonon on the screw

dislocation. Below the frequency o>/> (Case 3), the scattering cross section

rapidly decreases with decreasing frequency as o>
3

.

For an edge dislocation the following approximate formula of the cross

section can be used in all ranges of frequencies:

The above discussions, of course, are not limited to the Peierls potential.

If a dislocation is surrounded with impurity atmospheres, the dislocation

feels an effective potential for an infinitesimal vibration. Kusunoki and

Suzuki [22] have applied eq (51) to lattice thermal conductivity data in

Cu-Al alloy.

VII. Energies of a Crystal Containing Many Parallel Dislocations

So far we have treated an isolated dislocation in a crystal. In this section

energies of a crystal containing many parallel dislocations and equations

of motion are obtained and in the next section the equations are applied

to a dislocation dipole.

Let us consider that dislocations are parallel to the z axis and the

position of the dlh dislocation is denoted by (xd, }>/). The displacement

frf(z) of the dislocation is again expanded in a Fourier series

c t (o
3

(51)w —
16

'

(co
2 -w 2

)

2 + /3
2w 4 *

frf(z)=2&(#c)e'** (52)

K

The static displacement of the elastic field is, then,

ii (53)

d

The kinetic energy of the body is given by
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T = ^2<7(k,s)<j*(k,s)

+222 ^'iiy e*•"x"+A•"'"" , «(1m)«(ic)

+^ 2 2 2^glff^ »
+^-^

(54)

where <p (i(k,s) is s) for the cfth dislocation.

The elastic energy is obtained by following the same way as in section

II. The energy of the static field is

E, = const.—
I 2 I

dzddzd'PiyiZd'— Zdid^d'ibd'^diZcjj— td'izd')]
2

,

d, d' i
J

(55)

where P-,j{zd' — Zd\ d, d' :bd) is the stress at the <ith dislocation due to

to an infinitesimal dislocation loop on the cTth dislocation. When the

dislocation displacements are given by eq (52),

E s = const. +§2 2 K
'

2T«M €A *) StM
* d k

~\ 2 5f-W«(«)[|J* JMV*; d,d':bd )dz

+ \^* ^ftrf'/P/i/fe d\ d: bd)dz

+ f I f* ^bdiP iy (z;d,d
f

: b d,)e-"*dz
1

d,d' x L^J-x
f

-

(f/*Y/')

+
| J" 2 fcrf'/P/iffe e*', d: b d)e

iKZdz

= COnst. +^YYK*Td(K)UK)£*(K)
d k

_l
L ^ / \**/ >

\^L^» <Pd>(k,s)<pd*(k,s)

X e i { l
'i(-

rd'- jrd )+k ij
(!J (i' yd))

j



NINOMIYA 339

X e' {Av
p
(j-d ,-jrd)+A |

,(i/d ,-|/d)} (56)

where we have used the results obtained in Appendix A to arrive at the

final expression.

The third term of eq (56) shows that in a many-dislocation system the

apparent line tension changes by

fJL
2L K= 0

22 x(xd,-xd)+ky(yd,-yd)}
m

pVK 2Td (K) d , lkf S)
cu§(k, 5)

frd)

The elastic energy of the dynamical field is, of course, given by eq (9).

From the Lagrangian L — T— E, we obtain the equations of motion:

5*(kw*) +o>B(k, s)qHk, s) +^ V«^4c*»«*^V*>«(jc) =0, (57)

and

+ 1 ^ ^ jU.
2Ly rf

(k, s)(pg,(k, s)
({i

L K 2Td (K) ^f-c
Wj(k,5)

<4(k,s)

H 2L

{xd-xdf)+ky(yd-yd >)}^d,(K }

d' k,

X ei{kxlxd'-xd)+ky(yd'-ydfi

VP^ £^ a>8(k,s)
(58)

d' ^' fc.s
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The equation corresponding to eq (9), which gives the force balance

at the dislocations, is

k 2T (,(k]

(V k.s

(*d)

o)s(k, 5)
£5(*)

d' k.s
rf)

= /*2 c^^(k,5)(?*(k,5)e-
i

'

(^^+^yd).
(59)

k,s

Although these equations are general for parallel dislocations, it is usually

difficult to find eigenvibrations of many-dislocation systems except

in some special cases. In the next section we shall treat an edge dislocation

dipole as one of the simple cases.

VIII. Vibrations of an Edge Dislocation Dipole

In ionic crystals, many dislocation dipoles have been found by Johnston

and Oilman [23] to be produced by plastic deformation. Therefore, it will

be of interest to calculate the eigenfrequencies of a dislocation dipole

and its cross section of phonon scattering as an application of the equa-

tions obtained in section VII.

In this section we treat an edge dislocation dipole in the equilibrium

configuration (fig. 7). Equation (59) now becomes

k 2 T(k) 1-gM 2
,°ft»(k,s)(p*(k,5;

,2ia(k r+k„)

o>S(k,s)

+ K*T(K)g(x) £ * {k
:i]?*[*'

s)
e«"(*x+*y)£f(*

k.s
w§(k,s;

(jl 2 <p*(k,s)q*(k,s)e iaikx +k y } (60a]

k.s

and

k 2 T(k
kl Wg(k,5)

+ K*T(K)g(K) 2
<p(k,s)<p*(k,s)

<u§(k,s)
2ia(fc^+fc,.)i*

(jl £ p*(k;5)g*(k,«)e- |fl<**+ *ir>. (60b)
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b, =

-
x % =

1^23—
Fk;L'RE 7. Dislocation dipole.

-b 2

For an edge dislocation, it is easily shown that

<p(—kx ,
— k y , k, s)<p*(—kx ,

—ku , k, s) =<p(kx, k y ,
k, s)<p*(kx , k t

and, therefore, we have

f W*(k,5) e2ia(kx + ky)= f <P<P*(k,s)
e
_ 2ia(kx+ky)

ks &>§(k,s)
fc

ft)g(k,5)

Let us define k) by

*(a, k) =- V ^i^^ cos 2a(/c, + /c y ).

A',

Then, eqs (60a) and (60b) give

2/x
n + ^W*(a,0)+g(K)*(a,K)}{ff(ic)--f'?(ic)}^-j=^.i4.

K~ 1\K )

and

2i>

k-Y (/<)

where we have defined A and # by

A=^ <p*(k, s)g*(k, 5) eos a(A-,. + A-,
y )

and

B = .2^*(k,5)^*(k,s) sin a(A-,. + A-,)
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respectively. Substitution of these equations for eq (57), gives

^(k, s)<?*(k)S )=2g(K) Bg^L
OJo(k,5) C05(k,5)— (A)

1

A cos a{kx + ky) B sin a{kx + k u )

g(K)ifr(a 9 0)+g(K)il/(a, k) l+g(K)*lt(a,0)-g(K)iKa, k)
(65)

for a stationary vibration. Multiplying eq (65) by cos a{kx + ky ) or

sin a(kx + ky) and summing over the modes whose wave vector has

kz = k, we obtain

l
1

l+^(ic)*(a,0)+^(ic)*(a,ic)f
a

o,i ^-^ cos a^+^ f

= 2g(/Q£ « co~ W*(k, 5)

l+#(K:)i//(a, 0) -g{K)\jj(a, k)£ co
2
, a>J— <w

2

X sin a (A^-h A: y ) cos a (/c.r + A:y) (66a)

or

J\ 2g{ K ) W*(k, s) . 1

l
1

l+^(/c)^(a,0)-g(K)^(a,K)^^' co^-co 2
Sm +

l+g(/<:)i//(a, 0) +g(/c)i//(a, k)^ w 2
,

co
2,-^ 2

Xsin a(A:j-H-A;y) cos a (A^ + ^y). (66b)

If we use eq (61), eq (66a) and eq (66b) are easily found to be zero. Eigen-

states are classified into three cases:

Case 1. A^O, B= 0 (£?(*) =-ff (k): symmetric)

In this case the eigenfrequencies are determined by the condition

/Ma>2)=l+#(/c)iMa, 0)+s(ic)*(a, #c)

-2^)2^-<^Wa(^ + ^)

= F(co 2 )+g(/<)i//(a, 0)

-gMV^^ cos 2a (*,+ *„)

= 0. (67)
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Case 2. A = 0, B^O (ff (k) =ff (#c): antisymmetric)

343

The condition to determine the eigenfrequencies is

F_(co 2
) = l+gU)i//(a, 0)-g(K)xjj(a, k)

F(co 2
) + *(ic)*(a, 0) +g( K ) V W * (k,

2

5)
cos 2a(kx+ kw )

= 0. (68)

Both these cases are accompanied with dislocation vibration. As in an

isolated dislocation (section III), in each case we have one eigenfrequency

in each interval of the eigenfrequencies in the perfect crystal. We also

have a localized state below the phonon band for each k.

Case 3. A=B= 0 (ff (#c) =~fJ(ic) =0)

Lattice vibrations in this case are not accompanied with dislocation

vibration. The eigenfrequencies are the same as those in the perfect

crystal.

Scattering of a phonon by an edge dislocation dipole can be treated

along the same line as by an isolated dislocation. The fundamental equa-

tion is obtained from eq (65) as

*>*(k, 5)[g*(k, 5)8kk0SSSo+4*(k, 5 )] =^*(k,s)g(k, s)S kko S SSo

gK }

a)8 coe-w 2 + ieLl+^(a, 0)+#/>(a, k)

X ^*(k', 5 '){9*(k',5')6,^ 05 s
-

So + 9*(k',5')} cos a{kx+k'y)
k's'

+7- f"
Q

n/
+^ \ V **(k', s'){**(k\ 5 ')8 k -

ko8^ So
l+#i//(a, 0) -g$(a, /c) j^/

+ <7*(k',s')} sin a(A"i + A-y)j.

369-713 OL - 71 - Vol I - 24
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After a little calculation, we have

<p*(k,s)4*(k,s)=2g(K)^.- T^'J y«(k.,»,).g*(k,,j.)
cut) coo — a)

z+ 1€

cos a(Ar 0j + A:()y) cos a(kx + k y ) sin (i(k [)x +

k

()y ) sin a(kx + k y )

F+(a) 2-ie) F-(co2 -ie)

(70)

By using the calculation given in Appendix B, we can estimate roughly

the scattering behaviors of a phonon as a function of the frequency. If

the frequency is much smaller than the Debye frequency,

Re K 2T(K)F+ (a) 2 -ie) - - moj 2 + k 2T+^ ( 1
--

47T \ CF/2cz 2

coB2«(fa+ *,), (71a;

and

Re k 2T(k)F~ ( oj
2— /e) - - mo>- + * 2^+^r (

1 ~^
)

/x
2L « W*(k, 5)

H 77\— 7T~r~ cos 2a(k jr + k y ). 71b
pV ^ CO,-) — W- + i€

When the phonon frequency is high enough so that

we have

K 2r(K)F + (a>--ie) - K 2TF-(cj--ie) ^-mw 2 + K 2 T.

Then the magnitude of the scattering cross section is about the same as

that for an isolated dislocation, although for a dipole we have a remarkable

angular dependence due to the coefficients cos a(kox -\- koy ) cos a(kx + k y )

and sin a(kox + kx ) sin a(kx -\- k y )

.

If the phonon frequency is low so that

Re ^,^(^-^^(1-1)1.
Re K 2 T( K )F-(co 2 -ie) - mw 2 + k 2 7\
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and a\k\ < 1, then the scattering behavior is almost same as that for a

dislocation in the parabolic potential (section VI).

IX. Appendix A. Static Strain Around a Dislocation and Static

Line Tension

In this appendix the static strain around a dislocation and the static-

line tension are calculated.

Let us consider a dislocation along the z-axis. When the displacement

of the dislocation is given by

£(z)=£(fc)e fK *, (Al)

the static displacement field in an elastic body is easily obtained by using

the Green's function (de Wit, [24]):

uf(x, y, z)= bmcmjkinj j Uki ,i{x, y, z — z )£ ( t<)e
iKZ 'dz

£(K)e iKZ
bmCmjkiri) Uki ,i(x, y, z - z

'
)eiK^~z

' hl{z - z
'

)

(A2)

Here, Uk i is the Green's tensor function and n is the unit vector perpen-

dicular to the slip plane. We have used the convention that a repeated

suffix is to be summed over x, y, z and sufncies following comma denote

differentiation. It is now convenient to use the Fourier transform of the

Green's function.

Uki (k) = j Uki(r)e-^rdv

1 /Ski 1 kkki

By usin;

\ A 2 2(1- v) k4
J' (A3)

C mjkl— mj8 /•/+ fl ( 8 ,„k8ji + 6 H,/8jk )

and biUi = 0, we obtain

ff (x, y:x) =-ifji
(~^J

bmnj j dkxdky{V
r

mtkj+ Ujtkm } e-'**

(A4)
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and

Z?,(k, k) =— ifJLpLb l>lnJ{U„ likj+djjkm }

-i k-(nk) + /?,(bk
C 2K 2

I

1
(A5)

Then, the relation

(c,lc,)
2 =(\-2v)l2(\-v)

gives the following simple formula

2*i(k,#c)ei(k, s)=-i [(eb)(kn) + (bk)(en)], (A6)
. C

SK

where cs = c t or ci according as the mode is transverse or longitudinal.

Next the static line tension defined by eq (16) is calculated by using

eq (A4). Imposing the Debye cut-off, we have

txbj f
l-2v

,
k% 1 k 2

\™ =17 W=v) ln
V>
+ 1 - 4(W) kfj

4tt [2(1— v) \ k- ) 1 — vkf,)

(A7)

Similar calculations are necessary to treat a many-dislocation system

(eq (56)). In this appendix another expression of the integral

\
[* X bdtnjPij (z; d, d'

:hd>)e-iKZdz
± J-x

f j

is derived. From the definition of P,j(z: d, d' :hd') we have

j

X

Pij(z:d, d' :h d >)e-
iKZdz

=- JJp^ K [Bt(lL,K:d')kj + Bj(k.; k id') kt] c-{**<**'-**>+iMyrf'-yrf>}. (A8)

We then have
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bdiBi(]t,K :d') kjHj-\- bdikiB k \ d')rij

= 2£,(k, k :^)ei(k, s) [(bde) (kn) + (bdk) (en)]
s

=_ . ^ fJiL(p d '{k, s)gjflk, s)

Therefore, the integral is written as

\ I

^bdiiijPijizid, d' :b d ')e-
iKZdz

=_^L ^(k ,)^(k, ,) ,, j( , rf
,_^ +?, v(>

,,_ v, )

}

_

X. Appendix B. Evaluation of F(o> 2
), F(co 2 — ie), etc.

Appendix B is devoted to the evaluation of F(w 2
) in relation to the

problems of localized states and phonon scattering.

r< 2\ i r ^ ^ 0)2 ¥>(k» s)<p*(k, s)
F{aj 2

) = l-g(K) X^Tl x 77T—x T • ,t,^^w§(k, s) o>5(k, 5)-o) 2 (Bl)

For the localized states, the summation can be replaced by an integral

if the number of atoms in the crystal is large. When we deal with the in-

band frequencies, F{oj 2
) is evaluated after Dawber and Eliott [20]:

F(o) 2
) =Re F(oj 2 -ie) +Im F{oj 2 -ie) cot 7rp(w 2

), (B2)

where p(co2
) is the value which satisfies

a)l(p)-(D 2 = 0. (B3)

By differentiation

~—;
^ = Re -^-r F(co2 — ie) +Im -^-r F(w 2 — le) cot irp(aj 2

)

-77 Im F(co 2 -/e){l + cot 2 7rp(a> 2
)} . (B4)

Because of (B3) dp 1 , ox

dp

where mv(o) 2
) is the state density of the frequency levels in a perfect

crystal. If the number of atoms in a crystal is infinity, mv(co 2
) also goes
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to infinity. Therefore, we must keep only the third term of eq (B4). Since

the value of cot 7rp(co 2
) is given by F{co 2

)
= 0, we finally obtain eq (32).

Thus, the evaluation of F((o 2
) is obtained after the evaluation of

F(o)2 — ie), which is also used in the problems of phonon scattering. To

make the calculation, the summation is replaced by an integral:

F(^-ie) = l-g(K) £ \\
-

2
•

2

W *
. . dkxdky. (B5)

Y J J wf, Wo — or + ie

In the case of an isotropic elastic continuum with a Debye cut-off, we have

F((t) 2— ie) =1 —g(K)

where

and

lkdk

tan0 =
k̂.r

(o
2
Q (k,s)=c 2k2 -

For longitudinal waves we have

/

rrh 2

^de=^[p%{k 2- K2
)
2+m^(k2- k 2

)],

and for transverse waves with polarization 5i and s-z

f 7rh 2

V <p<p*dd =^- [px(k
4 — K 4

) +/31(A- 4 -3k 2
A-

2 + 4k 4
)]

(B6)

(B7)

(B8)

The integration over /. is straightforward and

k 2T(k)F (a) 2 — ie) =0)
477

Pi In

ard and

CO
2

-k 2

cf

O)
2

-k2
D

c 2

CO 2

cf
K"

2

O)
2

1-2
f€D

2 t^l
4tt

—
I in

Clj

O)
2

K 2

c\

L2

CO 2

r 2W
— k 2
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,
1 l/cf\ 2

1/< 2C 2

+
2
+2Uj"2^ ln

w 2

K 2

to
2

L2

CO
k*

In

CO
2

K~

CO
2

c 2

L2

+«

+ 2

477

1 /<u

In

0>
2

-K 2

a.
2

c?

+ -+2-^ In

K 2

r 2W
L-2KD

CO
2

c'f

K 2

(B9)

here

#(x) = rif*>o

-i
-

= 0 x < 0 or a) > a>/;.

F(co 2
) for localized states is same as eq (B9) without the imaginary

terms.

Other functions which have been defined in section VIII for the prob-

lems of dislocation dipole are calculated quite similarly to F(co 2 — ie)

except that for these functions we need not the Debye cut-off because of

a finite separation of a dislocation dipole.

* <p(k, s)l*(k, s)

> —771 \ o . cos la {kjc + ky)
^ ojiilk, s) — to

2 -\-ie
J/

L 2 b 2

ilTCO 2
(3t<t>d2X^ap t)-pl®A2V2a(3,)-^(3 2

<i> 2 (2\^ap ( ]

C't

-i7T^^T
2
pt[Jo(2V2ap l ) + /4 (2 V2afr)]H\

L 2b 2
1

J7T^ 2co 2 t~k
4 )J,(2V2ap t )-pjJ A (2V

r

2ap l ,
H

where
(BIO)
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and

<I>i and <I>2 are denned by

and

o,w=|{iVo(W)+^4(W)}, if^>o

=-{Ko(\x\)+K4 (\x\)}, if **<0

&->(x)=irN0 (\x\) ifx 2 >0

=-2K0 (\x\) if x*<0,

(B.ll)

(B.12)

where and K, are Neumann and modified Bessel functions respectively.

i//(a, k) is obtained just by letting co tend to zero in eq (B.10).

*(#c)<Jr(a,*) = -f- [2^o(2V2a/c)

+ ^1-^^2V2 a/c +^|— ^!(2V2 a«)j

(B.12)

and

XL Appendix C. Quantization of Dislocation Vibration

In this appendix it is discussed how to quantize a system of phonons

and a dislocation.

The kinetic and elastic energies of an elastic body containing a vi-

brating dislocation have been given by eqs (4), (9), and (15). The formulas

seem to imply that this system is an assembly of phonons and dislocation

oscillators which interact through the second term of the kinetic energy.

If we follow a usual process of quantization, however, we meet a dif-

ficulty, because all dL/dq(k, s) and dL/d^(K) are not independent. This

is easily seen as follows. From the Lagrangian we have

AT

dq(k s)

= pVq *iK 5)+ 2) B '(k '
K-faMk.iJf *(«.), (Cl)

and

dL

df(ic)

=2S^*( k
<
K)ei(k,s)q*(lL,s)+m(K)t*(K). (C.2)

/ k. s
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If we multiply (C.l) by ^ #*(k, /<)ej(k, s)lpV and sum over the phonon
j

modes of k z = k, we reach eq (C.2). This difficulty comes from the problem

of the degree of freedom described in the introduction. Thus, quantization

of the dislocation vibration becomes possible after elimination of the

coordinates of dislocation displacements. The elimination is done by using

eq (19). Let us introduce new variables @(k, 5) defined by

<?*(k, 5)=V>*(k,5)?*(k, 5)

+gM ^ (k,
'}f*^

S)

± ?*(k', s')<7*(k\ s'). (C.4)
o>0 (k, s) kV

Then, the kinetic and elastic energies are given as

T^ v Q(k,s)Q*(k,s)

2 £ *>(k,5)?*(k,5) '

(C.4)

E
pV^ a)ij(k,s)Q(k,s)Q*(k,5)

and

•
.

...

2 £ ^(k,s)^*(k,i)

-^2 KMgM H(?(k, s )} f20*(k,3)} + E 0 , (C5)

where

g; ^(k,5)

The system is now an assembly of harmonic oscillators with the mutual

interactions given by the second term of the elastic energy eq (C.5) and

is easily quantized in the usual way.

XII. Appendix D. Translational Motion of a Dislocation

In the main text, infinitesimal vibrations of a dislocation have been
treated. A dislocation in metals and ionic crystals can move beyond the

atomic distance and, in order to treat the frictional force acting on a

dislocation by phonons, we must develop a dynamic theory for a transla-

tional motion over the atomic distances.
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In this appendix we do not develop a general theory but only give the

expressions of the energies for a straight dislocation which makes transla-

tional motion in addition to infinitesimal vibrations.

The displacement of the dislocation in the x-direction is given by

f(z) = fo+2f (D.l)

K

(#0)

where is the coordinate for the translational motion. We never restrict

ourselves to a uniform movement (constant velocity). The lattice dis-

placement is, then,

= 2// (* - fo, 7 : K)e'"*tM + afe (x ~ f o, y) (D.2)

and

k.S

The time derivative of uJ\ is

«?= 2/'(*-fo,y:K)e"<^(/<)-|»2Ue'«f(K)-|„-g?
)

K K

where

-—=— hm fi{x ]

— f0 , y

The elastic energy is given by

E=
^fX w <"(k

'
5 )^(k, a)flf*(k, s) icT(k) (k) +£0 , (D.3)

k,i- K"

because the translational motion does not change the elastic energy of

the static field. The kinetic energy is

T=| | J] (af*+ if)(i/+if)cto. (D.4)

From the Lagrange equations of motion, we have

Hk) =-j£rr 2 <p(k, s)<?(k, S ) e'^o, (D.5)
K * \ K ) k . s

which corresponds to eq (19). For the coordinate £o, we have, after some
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calculations,

2 2 W(k, s)e-'"^of(ic) 9 *(k, 5)

-£ s)g*(k, s)e-'<Mb= 0. (D.6)

K k
(*0)

k,s

Since we have assumed the vibration is infinitesimal, the first term can

be neglected and the eq (D.6) becomes

2 <P*(k, s)q*(k, s)e- ikx*o= 0.

k,s

(D.7)

To get the correct degree of freedom, we must eliminate some variables

by using eqs (D.5) and (D.7). We eliminate ^(k) (k ^ 0) and introduce

new variables

R(k, s) = e~ ik^o <p(k, s)g(k, s)e ik^o

Then, the kinetic and elastic energies are

1
2^ w*(k,*)

+
2 [J 3* ax

d*dy
K k,s

(*0)

£5

Z
k,5

+ fo2 ft(k,IC= 0)c».(k,5)c'*^oi(k,5),

k,S

and

F_P^vv ,
flfl*(k,5)

(#0)

2
^k(K)g(K) [2 #(k,s)e'«o 2jf?*(k /

,5
,

)e- lA^o

(*o)

K= 0

(D.8)

+ »»(k,*)ff(k,*)«*(ki*)+Eo. (D.9)
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As for the modes of k= 0, f0 cannot be eliminated easily and we elimi-

nate g(ki, Si) by using eq (D.7), where

ki = (0, h :

y , 0).

We further eliminate q(— ki, 5i) = <7*(ki, 5i) and introduce a new variable

v defined by

<pq(ltu 5i) — <p*g*(ki, s x )=2iv.

If the dislocation velocity f o is much smaller than the sound velocity,

the energies are quadratic of these variables except fo:

T pV « RR*(Il,s) 'pL\[ BuU duU ]
•

K k, s

(*0)

1

4 w*(ki, 5,)

K = 0' K = 0'

^ 2 *'(k.*)*'*(k',*')«(k.*)9*(k',«')e ,( ' r*-*' ,f '

k.s k',s'

-fxL^o *§'
*>(k, *)g(k, *)e***., (D.10)

where S' means the summation over the modes except (ki, 5i) and

(—kj , 5i). The elastic energy is

e=t2 S^(k S
) w*(k s)

k k, s

(*0)

2 fl(k,5)«'M.l[ ^ /?*(k\s>-'^oj
k,.s J*- k,s J

(*0)

+ 9 2 tt5(k,5)g(k,s)g*(k,s)+g—^- -r

+?7^7T^ S'
2 '^(k,5)^*(k',5') 9 (k,5) 9*(k',5')e'(*W^..

4 w (ki, si) £

(D.ll)
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From the equations (D.10) and (D.ll) we find that, when a dislocation

makes translational motion, we have an inelastic scattering of a phonon

and the momentum transfer to the dislocation.

Detailed discussions will be given elsewhere.

XIII. Appendix E. Thermal Conductivity

The present theory of phonon scattering by the fluttering mechanism

has been applied to thermal conductivity and compared with recent data

on deformed LiF by Takayoshi Suzuki of the University of Tokyo. In this

appendix the results of the comparisons are briefly described. (Details

will soon be published by him elsewhere.)

Figure 8. Thermal conductivity in deformed LiF crystals. Solid lines show the curves

calculated on the basis of the fluttering mechanism.
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The lattice thermal conductivity is given by the following equation:

v kB (kBTy , _n x*e* ,

(v~ l
) is an appropriately averaged sound velocity, tr is the total relaxation

time and x — hu>\kT. Here the effect of normal processes is neglected.

The experimental results by T. Suzuki are shown in figure 8 with the

calculated curves which are given by the solid lines. A specimen was

compressed by 6.2 percent by single glide. For the crystal the agreement

between the experiment and the theory is fairly good within a factor of

three. The other specimen compressed by 13.3 percent shows a weaker

temperature dependence on the lower temperature side of the peak than

the previous specimen. This may be due to the existence of many dis-

location dipoles produced by double glide.
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Note added in proof:

Pegel has also treated the vibration of parallel dislocations using the

Kosevich equations. Explicit results are obtained for the vibrations without

phonon emission, that is, for the localized modes. [Habilitations schrift,

Technische Universitat, Dresden 1968. phys. stat. sol. 29, K133 (1968)]

Recently, Stenzel has given the equation of motion of a dislocation

starting from the expression of the strain field in Kroner's form, and

discussed the vibration of a pinned dislocation in detail. [Phys. stat. sol.

34, 351, 365 (1969)]





Discussion on Paper by T. Ninomiya.

GRANATO: Could you amplify your remarks about the angular depen-

dence of the incident phonons?

NINOMIYA: The angular dependence of the scattering cross section is

largely determined by the denominator of the formula for the cross section

(Eqs 43 and B9 of my paper). The square root of the denominator can be

rewritten as K2T{K)F{a>—ie)=z —mw2 + k2T+ imaginary part, where m and

T are only weakly dependent on the frequency oj and the wave number

k. Therefore, the cross section is a function of the incident angle on a

dislocation. [See fig. 1.] Resonance scattering occurs when the real part

of the denominator is zero and this condition is satisfied at an angle

around 40° for a transverse phonon incident on a screw dislocation.

Figure 1. Illustrating Ninomiya's reply to Granato.

ELBAUM: On the subject of the influence of dislocations on the thermal

conductivity, you pointed out that there is only a small discrepancy

between the predictions of the calculation and experiment, but I noticed

that the curve which is labeled "undeformed" only reaches a maximum
conductivity of 50 or so watt units. Now, I wonder whether the calcula-

tion is relative to that curve or rather to what is known to be the thermal

conductivity of lithium fluoride at the maximum when the crystal is

isotopically pure, etc., and which is more nearly at 200 or 250 watt units,

which would make, of course, the discrepancy much larger.

SUZUKI: I will answer the question of Professor Elbaum. The thermal con-

ductivity of 200 or 250 watt/cm - °K is for a perfect crystal of isotopically

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I, 1970).

g^g
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pure lithium fluoride, but the experimental values referred to by Profes-

sor Ninomiya are for ordinary lithium fluoride. These values for un-

deformed crystals are the highest hitherto obtained from ordinary

crystals. The dislocation density measured by etch pits was 4.9 X 105

cur 2 in the undeformed crystals, so that the effect of dislocations is

negligible compared with surface or isotopic scattering. The scattering

due to isotopes is proportional to the fourth power of the phonon frequen-

cy and decreases the thermal conductivity in the temperature range

around its peak or at higher temperatures than the peak. The thermal

conductivity in the low temperature region, where we compared the

measurements with the calculation, is hardly affected by isotopes.

Therefore, we believe the discrepancy between the measurement and

the calculation is almost the same even if we were to use isotopically

pure crystals.

NINOMIYA: [Written Contribution] The theoretical curves shown in

figure 8, Appendix E, of my paper include the effects of isotope scatter-

ing and surface scattering beside the effect of dislocations. The process

of fitting theoretical curves to the experiments was as follows: (1) The

effect of isotopes has been investigated by Berman and Brock. 1 Because

Dr. T. Suzuki used the specimens as cleaved, the surface scattering was

determined to get the best fit to the experiments for an undeformed

natural crystal, by assuming that in this crystal the relaxation time is

determined by the isotope and the surface scattering as well as phonon-

phonon scattering. (2) The theoretical curves for deformed crystals

were obtained just by adding the effects of dislocation fluttering to the

reciprocal of the relaxation time.

GRUNER: You showed a peak in the frequency spectrum and I cannot

quite understand why you then get a very smooth temperature depen-

dence in the conductivity in the low temperature range. This should give

rise to a dent or something like that.

NINOMIYA: The condition of the resonance scattering is given as a func-

tion of both the frequency and the wavelength along the dislocation.

Therefore, resonance occurs for all frequencies.

GRUNER: Then this holds for moving dislocations, but not for stationary

dislocations?

NINOMIYA: Yes, not for stationary dislocations.

WEINER: Does your calculation procedure give you the shape of the local-

ized mode, that is, how far does it extend?

NINOMIYA: I have not made exact calculations of how far it extends. It

depends on the frequency difference of the localized mode from the bot-

1 Proc. Roy. Soc. (London) A289 , 46 (1965).
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torn of the phonon band with the same wavelength along the dislocation.

For an edge dislocation the frequency of the localized mode is about two-

thirds that of the bottom of the phonon band. The calculation may not be

difficult, although I cannot answer now.

[Written contribution] The localized mode has an asymptotic form of

r
_1 exp [— r{K~ — 0)'2/cf) , where r is the distance from the disloca-

tion. The extent of the localization, therefore, is given by (k2 — a>
2 /c 2

)

_1/2
,

which is about 1.3k" 1 for an edge dislocation.

GRANATO: Which effects do you think should be more important for

physical properties, the fluttering effects or the anharmonic effects? For

example, do you get a T4 or T2 temperature dependence?

NINOMIYA: I think that at lower temperatures the fluttering mechanism

is dominant. As you know, the Cornell group first presented the thermal

conductivity data with T 2 dependence, which suggested an anharmonic

effect despite the large disagreement in magnitude. But their recent data

have given the steeper dependence. As shown in figure 8 of my paper,

the specimen compressed by single slip shows a T 3 to T 4 dependence and

there is good agreement with the fluttering theory. If a crystal is

deformed by double slip, it is considered to contain many dislocation

dipoles and, in such a case, the thermal conductivity has been found to

have the T 2 to T 3 dependence. Therefore, it is likely that such weak de-

pendence comes from the fluttering effect of dislocation dipoles.





PHONON SCATTERING BY DISLOCATIONS AND
ITS INFLUENCE ON THE LATTICE THERMAL
CONDUCTIVITY AND ON THE DISLOCATION

MOBILITY AT LOW TEMPERATURES

P. P. Gruner

Boeing Scientific Research Laboratories

P.O. Box 3981

Seattle, Washington 98124

On account of the large strains associated with dislocations, the super-

position principle is violated. The resulting scattering of phonons limits

the lattice thermal conductivity and leads to a friction force which acts on

moving dislocations. The phonon-dislocation interaction is treated with

non-linear continuum theory. Terms up to the third order in the strains are

retained in the Taylor expansion of the elastic energy density. These third

order terms contain the phonon-dislocation interaction and the normal

three-phonon interactions. In the case of thermal conductivity, the trans-

port problem is solved with the variational method which leads to a

system of linear equations for the phonon occupation numbers. The coef-

ficients of this system of equations contain all the information on the scat-

tering mechanisms. The influence on the thermal conductivity of special

dislocation configurations such as piled-up dislocations and dislocation

dipoles will be discussed.

It will be shown that the friction force which acts on moving disloca-

tions on account of the anharmonicity can be obtained from quantities

that are known from the calculations of the phonon conductivity. A one

to one correspondence between friction force and thermal resistance ex-

ists, however, only if the dislocation velocity is small compared with the

sound velocity and if all parts of the dislocation move with the same
velocity.

Key words: Dislocation mobility; dislocation-phonon interactions; nonlinear elasticity;

phonons; thermal conductivity.

I. Introduction

In the neighborhood of a dislocation, the lattice is heavily strained.

Hence, physical properties like mass density, interatomic forces, etc..

deviate in the disturbed region from those of other parts of the crystal

Fundamental Aspects of Dislocation Theorv, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ, 317, I, 19701
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which do not contain defects. On account of these deviations, phonons

which travel through the disturbed regions are scattered. This interaction

between the phonons and the dislocation strain field limits the lattice

thermal conductivity. It also hampers the mobility of moving dislocations.

The influence of the scattering of phonons by lattice defects on the

thermal conductivity was first investigated by Klemens [1]. Comprehen-

sive articles on the theory of the thermal resistance by lattice defects have

also been presented by Carruthers [2] and by Ziman [3].

Klemens found that the phonon scattering cross sections of various

defects are characteristic functions of the phonon wavelength. In the

case of the scattering by the strain field of a single dislocation, the scat-

tering cross section is inversely proportional to the phonon wavelength.

On account of the sensitivity of the spectral distribution of the phonons

to the temperature at low temperatures, the wavelength dependence of

the scattering cross section is reflected in the temperature dependence

of the lattice thermal conductivity. For this reason, it is possible to dis-

tinguish different classes of defects by means of lattice thermal conduc-

tivity measurements. The scattering by single dislocations, for example,

leads to a quadratic temperature dependence.

In those cases in which the defects are sufficiently far apart from each

other or/and randomly distributed, they act as isolated scatterers; the

scattering is incoherent. The combined scattering probability is then

simply additively composed of the single scattering probabilities. This is

also the case when the crystal contains several kinds of defects (dis-

locations, impurities, vacancies, etc.), as long as they are thus far apart

from each other so that their strain fields do not overlap significantly.

The additivity of the scattering probabilities leads, at least qualitatively,

to the additivity of the reciprocal phonon relaxation times.

Callaway [4] has, based on the additivity of the reciprocal relaxation

times, treated the thermal conductivity in crystals which contain several

classes of defects. He also could include in his calculations the normal

three-phonon processes by using the fact that these processes do not

change the total momentum of the phonon gas. A justification of the

Callaway theory has been given by Krumhansl [5].

If the temperature is thus low that the dominant phonon wavelength is

comparable with the distances between the defects then the defects

cannot be regarded as single scatterers. The combined scattering proba-

bility is no longer equal to the sum of the single probabilities. In this

case the various phases of the scattered waves must be taken into account;

the scattering is then partly coherent, partly incoherent. This leads to

a structure factor in the scattering probability which is characteristic

for a particular arrangement of the defects. Two kinds of dislocation

arrangements shall be considered here, the pile-up of dislocations of
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the same sign and the edge dislocation dipole configuration. It is readily

seen that these configurations must, at sufficiently low temperatures,

lead to different temperature dependencies of the thermal conductivity.

In the case of the pile-up, the thermal resistance is increased in com-

parison with the resistance of single dislocations. The dipole configuration,

on the other hand, leads to a decrease of the resistance. The calculations

outlined in the next sections show that the arrangement of the dislocations

is also reflected in a characteristic temperature dependence of the

thermal conductivity.

We confine the following calculations to low temperatures. Here,

the wavelengths of the phonos are large in comparison with the lattice

parameter. The interaction between the phonons and the defects can

then be treated by continuum theory. In order to describe the scattering

of the phonons by defects, it is necessary to employ nonlinear continuum

theory, i.e., we must take into account, in the Taylor expansion of the

elastic energy, also terms which are of higher than second order in the

strains. For convenience, we restricted ourselves to the lowest degree of

the nonlinearity and retained only third order terms. In order to avoid

difficulties which arise from the fact that the displacement field of a

dislocation is multivalued, a formulation, given by Bross 1
[6], for the

elastic energy density of a continuum which contains self-stresses has

been used. The essential feature of this formulation is that the interac-

tion between the lattice waves and the defects can be represented in

terms of strains alone rather than in terms of displacements. The main

advantage of the continuum approach over an atomistic treatment is

that the third order elastic constants are known for a variety of materials,

whereas it is difficult to get reliable experimental values for the anharmonic

force constants. The approximation which is often made, the replacement

of the anharmonic force constants by a single parameter, the Griineisen

constant, is avoided in this approach.

The third-order terms in the elastic energy contain as well the phonon-

defect interaction as the normal three-phonon processes. The latter

processes conserve both the energy and the quaisi-momentum of the

phonon gas and are, therefore, as has been shown by Peierls [7], not

capable of establishing a stationary state. Nevertheless, the normal proc-

esses play an important role for the establishment of a stationary state

if the phonons are in addition scattered by momentum nonconserving

processes, i.e., by defects. This will be demonstrated later for the case in

which the phonons interact with the strain field of edge dislocation dipoles.

It turns out that without the help of the normal processes the scattering of

long wavelength phonons by dipoles is not strong enough to produce a

nonvanishing thermal resistance.

1 Reference [6] will be referred to by I.
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The Boltzmann equation which governs the distribution function of the

phonons in the stationary state is solved by means of the variational

method which has been described in I. We restrict ourselves here to a

brief discussion of this method. From Boltzmann's integral equation an

expression can be derived which is essentially equal to the density of

entropy production. This expression contains implicitly a quantity

X(k,/) which measures the deviations of the phonon occupation numbers

in the stationary state from those in the state of thermal equilibrium.

The unknown vector function X(k, j) is then replaced by the series

expansion

Z(k,;) =2 J jrZ(/, m, n, r) [Mk, (LI)

r=0 n=l m= —n

Here, k is the wave vector, j is a polarization index, co(k, j) is the

frequency of the vibration mode {k,y}, and h is Planck's constant divided

by 277. Ynm are spherical harmonics. The spherical coordinates of the

wave vector are k, 0, and (f). The variation of the density of entropy

production with respect to the expansion coefficients Z(y, m, n, r) leads

to the following system of linear equations for those coefficients

^M(v, v')Z(p')=N(v). (1.2)

v'

The index v represents the set of indices (j, m, n, r). The vector N(i>)

arises from the diffusion part of the Boltzmann equation and has the form 2

N(i») =- (KT)-< ^ [iV(k) + l]iV(k) [fto)(k)]'+>v(k) Y (6, 0) (I.3a)

k

With the phonon distribution of the thermal equilibrium

7V(k) = {exp [MkJ/Xrj-l}- 1

. (I.3b)

All information on the scattering mechanisms is contained in the

matrix M which is essentially given by integrals over transition proba-

bilities. Since the explicit form is rather lengthy, we represent M in the

appendix. Each kind of defects is represented by a characteristic matrix.

The total matrix M is given by the sum of the single matrices. Finally,

-We denote from now on the mode {k. j} simply by {k}. v(k) is the sound velocity of

mode {A}.
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the tensor of the thermal conductivity can be written :*

k=— {TV,)-^£N{v)Z{v). (1.4)

It should be noted that this treatment allows fully for the polarizations

of the lattice waves. The approach cannot account for umklapp-processes.

Yet, these processes are unimportant in deformed crystals at low tempera-

tures where the dominant contribution to the thermal resistance arises

from phonon scattering by dislocations. Since we are interested in the

thermal resistance at temperatures which are well below the Debye

temperature, it is justified to assume that the dispersion relations of the

continuum theory can be used.

In section II, we shall give a brief discussion of the formal theory.

Section III contains the application of the theory to special dislocation

arrangements and calculated results for the thermal resistance. In

section IV, the theoretical results shall be compared with experiments.

The relationship between the thermal resistance of resting dislocations

and the retarding force which acts on account of the phonon scattering

on slowly moving dislocations is treated in section V.

The calculation of the phonon-defect interaction begins with the elastic

energy density, ^, of the lattice vibrations in a body which contains self-

stresses. This energy density depends, as has been shown in I, in the case

of an isotropic continuum only on the strains and not on the displace-

ments if all quantities are referred to the coordinate system of the self-

stressed state. This is, as has already been mentioned, important in view

of the fact that the displacement field of a dislocation is multivalued.

The density, consists of mixed products between the defect strains

and the strains which result from the lattice vibrations. Those mixed

terms give rise to the phonon-defect interaction. We retain in the energy

density only terms up to the third order in the strains. 4 Among these third-

order terms are also terms which contain only the strains of the elastic

waves. The latter terms lead to normal three-phonon processes. Including

the kinetic energy density and employing standard methods for the

quantization of fields, the Hamiltonian of the elastic waves can be written

in the form

II. Formal Theory

H = H» + H (II.l)

:i V{) is the volume of the crystal.

4
It is consistent with this approximation, as shown in I, to insert in the mixed products

only those defect strains which have been calculated with linear elasticity theory.
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is the Hamiltonian of the noninteracting phonon gas and is given by

#,,=y Mk) {a+ (k)a(k) + l/2}.

k (II.2)

The quantities a + and a are creation and annihilation operators, re-

spectively. The phonon-defect interaction is contained in HDef which

can formally be written as

#Def.= 2 Mk,k') a+ (k)a(k') + . . . (IL3a)
k. k

where the coefficients V\ describe the coupling between the vibrational

modes, represented by their wave vectors k and their polarization vectors

e(k), and the defects which are represented by the Fourier transforms,

i, of their strain fields. A typical element of V \ has the form

r,=i4,(e-k)(e'-k')€(g) + . . . (IL3b)

Aj are linear combinations of elastic constants. Their definition is given

in I. Numerical values of the A\ are listed in table 1 for copper and mag-

nesium oxide. The coefficients V
x vanish, unless

k + k' + g = 0. (IL3c)

The last equation expresses the fact that the momentum of the phonons

is changed in collisions with the defects. A typical term in the operator

H\p which describes the creation of two phonons with wave vectors

Table 1. Material constants of copper and magnesium oxide

Copper a Magnesium oxide b

A< 0.994 1.71

A, -0.936 -2.68

Elastic constants in 10 12 [dyn/cm 2
] A, -4.58 -5.67

A, 12.16 15.21

A:, -15.60 -11.85

Mass density in (g/cm :!

] 8.9 3.58

Burgers vector in [Angstrom] 2.56 2.98

_
a After reference [27].

b Calculated with the help of reference [28] from anisotropic elastic constants [29].
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k and k' and the annihilation of a third phonon with k" has the form

HNP= 2 r2 (k,k',k") a + (k) a + (k') a (k") + . . . . (IL4a)

k,k,k

The coupling coefficient is in this case composed of terms which contain

triple products of wave and polarization vectors.

The coefficients V2 vanish, unless

k+k'+ k" = 0. (IL4b)

This has the consequence that the quasi-momentum of the phonon gas

cannot be destroyed by the normal processes.

On account of the coupling of the vibration modes, described by the

interaction operators, H De f_ and Hyp, phonons are exchanged between

the vibration modes. This leads to a rate of change of the average numbers

of phonons, ^V(k), in mode {k} which can be represented by 5

N(k) =2 ^(k, -k') [A^(k') -yV(k)]

+2 r <k ' k',-k") [(^V(k) + l)(yV(k') + l)7V(k")

-N(k)N(k')(N(h") + l)]

+ two similar expressions. (II. 5)

The first sum in eq (II. 5) represents the increase per unit time of the

average number of phonons in mode {k} which results from the phonon-

defect interaction. The coefficient JF(k, — k') is the probability rate for

the scattering of a phonon from mode {k} into mode {k'}. For static

defects one finds:

F(k, -k') stat .

= w(k, -k')S{a>(k) -co(k')} (II.6a)

with

w;= 27r[(27r) 3/Fopo] 2 |Fi(k,-k')| 2 [cu(k)co(k')]- 1

. (II.6b)

The 8-function in eq (II.6a) reveals that the energy of the phonons is

conserved in collisions with static defects. The remainder of eq (II. 5)

yields the change of the phonon occupation numbers which is due to the

normal processes. The explicit expression for fF(k, k',— k") has been

given in I. We note here merely that the energy of the phonon gas is also

conserved in three-phonon collisions, i.e., ^(k, k',— k") vanishes.

5 The complete form of eq (II.5) can be found in I.
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unless

a>+ a/-co" = 0. (II.7)

The influence of the normal processes on the thermal conductivity shall

be subsequently discussed in connection with phonon scattering by

dislocation dipoles.

We shall, in section V, study the relationship between thermal resistance

and the retarding force which acts on a moving dislocation on account

of the anharmonicity. The simplest case for a comparison of mobility

and thermal resistance is that of a straight dislocation which moves

with constant velocity. In other cases where not all parts of the dislocation

have the same speed, the comparison is more involved. Let a screw

dislocation, oriented parallel to the z direction, move with constant

speed v in x direction. The displacement in an isotropic and infinitely

extended continuum is then

uz ={bl2ir) tan^ 1 [yyl(x— vt)
:

], ux— uy= 0 (II.8a)

with

y=[l-(vlvry
2V 12

- (II.8b)

Here, v-y is the velocity of the transversal sound waves and b is the mag-

nitude of the Burgers vector. It is straightforward to derive from eq (II.8a)

the Fourier transforms of the strain tensor components. One finds

e, 8 (g) = (^/(8tt) 1 /-6(^) exp (
- igxvt)gyl (g;y- + gj,) (II.9a)

and

e23 (g) =~ (ib/(S7T) ] i 2 )8(g2 ) exp (
— igxVt)y2gxl(g%y-+gfl

).

(II.9b)

All the other tensor components are zero. If we are interested in the

thermal resistance which results from a resting screw dislocation then

we use in eq (II.3b) the Fourier components (II.9a and b) for v= 0. Sub-

stitution, on the other hand, of eqs (II.9a and b) with v 0 into eq (II.3b)

leads to a time dependent coefficient V\ and hence to a time dependent

perturbation operator H{t) De{. A standard time dependent perturbation

treatment yields that, in case of the uniformly moving dislocation, the

probability rate, ^(k, — k'), has the form

W(k, — k') raovin(?= tt;(k, — k') movinf , S{co(k) — w(k') — {kx — k'd)v}.

(11.10)
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If v/v-r < 1 then

w(k, — k') moving
= w(k, — k') + terms of the order of (v/vr)'

2

(11.11)

with w(k, — k') being defined in eq (II. 6b).

Aside from the velocity dependence of wm(nini ,, eq (II.6a) and eq (11.10)

differ in the argument of their S-functions. This difference expresses the

fact that in collisions with moving dislocations not only the momentum
but that, in contrast to the static case, also the energy of the phonon

changes.

One aspect in which the calculations of the lattice thermal conductivity

differ from those of the friction force, should already be noted here. A
heat current arises from the deviations of the distribution N(h) from

the thermal equilibrium distribution ^V(k). A retarding force on the

moving dislocation resulting from phonon scattering can, on the other

hand, already be obtained in the case where the phonon gas stays in

thermal equilibrium. In order that the phonons remain in thermal equilib-

rium, the average time between successive collisions of phonons with the

moving dislocation must be large in comparison with the phonon relax-

ation time. This condition is fulfilled if the dislocation velocity is small

with respect to the sound velocity, which is assumed to be the case in the

following treatment of the friction force.

III. The Influence of Dislocation Arrangements on the Phonon
Conductivity

It has already been mentioned that the concept of individual scat-

terers is only valid as long as the phonon wavelengths are small in com-

parison with the distances between the defects. At low temperatures,

however, this condition is often not fulfilled. Here, the scattering prob-

ability is not only a function of the wave vector, it depends also on the

spatial distribution of the defects. We mentioned in the introduction

that the defect strains which are to be inserted in the elastic energy

density i// are, in the approximation of the third-order elasticity theory,

those which were calculated with normal elasticity theory. The com-

bined strain field of the various defects can, therefore, be obtained by

linear superposition of the single defect strains.

In the first case, we consider a series of n closely spaced dislocations

of the same signs (pile-up) along the x axis which are parallel to the

z direction. The following consideration holds as well for edge disloca-

tion pile-ups as for screw dislocation pile-ups if we insert for the single

strains, e.s , either the strains of an edge dislocation or of a screw disloca-

tion, respectively. The total strain field, expressed in the single strains, is
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e/)(r)=^,(r-W. (III.l)

v= 1

The vector ix is a unit vector in the direction of the positive x axis, x v

denotes the position of the vth dislocation.

The strain field of two parallel edge dislocations of opposite signs

(dipole configuration), on the other hand, is given by

e/,(r)=e,(r)-e,(r-R). (III.2)

Here, e.s , denotes the strain of a single edge dislocation. For convenience,

we let again the dislocations be parallel to the z axis. It is assumed that

one of the dislocations is situated at r= 0 and the second one at r=R,
where R lies in the x, y-plane. The minus sign in eq (IIL2) arises on account
of the opposite signs of the two dislocations. From eqs (III.l and 111.2),

we find the Fourier transforms of the strains:

/(

Ip ( g ) = e.
s

• ( g ) 2 exp (
- igxXv ) (III.3a)

and

e/,(g)=^(g)[l-exp (-ig-R)]. (III.3b)

The probability rate, Wstat .
(k, — k'), depends, according to eqs (II.3b)

and (II.6b), on the absolute square of the Fourier transforms of the strains.

The exponential factors in eqs (IIL3a and III.3b) give rise to structure

factors in the scattering probabilities. Let ^s (k, — k') be the probability

rate that a phonon of mode {k} is scattered into mode {k'} on account

of the interaction of the phonons with a single dislocation, then the

probabilities for the combined scattering are

Wr=Ws 2 2 exp (
- igx (xv - xv

>

) ) (III.4a)

v=\ v' — 1

and

r/,=r.s -2[i-cos (g-R)]. (in.4b)

The vector g is, according to eq (II.3c) and eq (II.6a), equal to the differ-

ence of the wave vectors k and k'.

Equations (III.4a) and (III.4b) show that the arrangement of the dis-

locations is unimportant if the distances between the dislocations are

large in comparison with the phonon wavelengths. We find in this case that
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Wr = nWs (III.5a)

and

WD=2WS . (III.5b)

Hence, the thermal resistance is in this case given by the sum of the

single resistances. Deviations from the additivity of the resistances

occur if R/k < 1 (A.: phonon wavelength). This is the case at sufficiently

low temperatures. For gj(x r — x^^O, the probability Wi> approaches

the value n-Ws . Hence, with decreasing temperature the resistance of

the pile-up increases with respect to the resistance which is due to iso-

lated dislocations. The opposite result is obtained for the dipole con-

figuration. Here, one finds that if g • R -> 0 then WD ~* W.sig • R) 2
. The

thermal resistance decreases in this case with decreasing separation of

the two dislocations. This is due to the fact that the smaller the distance

between the dislocations of opposite signs is, the more the strain fields

of the two single dislocations cancel each other.

On account of the decrease in scattering strength the life times of

the phonon states which are limited by the phonon-dipole interaction

increase rapidly with increasing phonon wavelength. This would, without

the help of other scattering mechanisms, lead to a divergence of the

conductivity for small frequencies.

A quite similar situation arises in the case of phonon scattering by

point defects. There, the singularity in the conductivity for or-»0 arises

from the rapid drop of the strains with increasing distance r from the de-

fect center (strain ~ l/r3 ), However, on account of the normal three-

phonon processes which, in any case, must be included the divergence

can be removed, as was shown in a previous paper [8]. Although, the

normal processes do not limit the thermal conductivity by themselves,

they are important if the phonons are in addition scattered by lattice

defects in that they govern the frequency dependence of the stationary

state phonon distribution at the lowest frequencies. It has been shown

[9] that interactions between three phonons which belong to the same

polarization branch govern the frequency dependence of the mean phonon

life times at small frequencies. The life times were in these cases found

to be proportional to oj \ Using this result, it follows from Boltzmann's

transport equation that the deviations of the occupation numbers. A (k).

from the equilibrium distribution, 7V(k), must be independent of the

frequency for a>—* 0. This fact has already been used in eq (1.1). where

we started the expansion with a frequency independent term (r= 0).

We should note that, if we take into account boundary scattering,

the expansion (1.1) begins with a term which is linear in co.
H In both

6 If boundary scattering is included then the frequency dependence ofJV(k) is. for co— 0.

determined by this scattering mechanism.
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cases in which Z(k, /) is either proportional to oj
1 or to oj°, the singularity

in the conductivity is removed. This holds as well in the case of point

defects as it does for dislocation dipoles.

The explicit calculations of matrices M of the system of eqs (1.2) are

rather lengthy. They have been presented elsewhere. 7 Here, we confine

ourselves only to a few remarks on the symmetry properties of M. The

strain resulting from a straight dislocation is, according to linear iso-

tropic continuum theory, independent of the coordinate parallel to the

dislocation line. Hence, elastic waves which travel in the direction of

the dislocation line will not be scattered. The wave vector component

which is parallel to the dislocation line is, therefore, conserved. Hence,

we find in both cases, pile-ups and dipoles, in which we considered the

dislocations to be oriented parallel to the z-axis that the z-component of

the wave vector k is equal to the z-component of the wave vector k'.

This has the consequence that some of the elements of the matrix M are

linearly dependent on each other, in such a way that the determinant

of the matrix M(j\ 0, 1, r; /', 0, 1, r') vanishes. The component kzz of the

conductivity tensor is therefore infinite.

In the case of the three-phonon interactions a similar relation between

the elements of the matrix M yields that the determinant of M vanishes

identically. This is a consequence of the fact that energy and quasi-

momentum of the phonon gas are conserved in normal three-phonon

processes. Hence, if the phonons were only scattered by normal processes,

eq (1.2) had no solution. This result expresses the fact that a stationary

state of the phonon gas cannot be established by normal processes

alone.

Numerical values of the thermal resistance have been given in earlier

papers for screw dislocation pile-ups [10] and edge dislocation dipoles

[11] for various dislocation arrangements. Bross [12] discussed the

asymptotic behaviour of the resistance of dislocation groups for cases

in which the distances between the dislocations are not too small. The
dependence of the scattering strength of a special defect configuration

on the product Ro) yields that the thermal conductivity is a function of

RT. Below a certain value of RT which depends on the dislocation ar-

rangement the resistance of a group of dislocations differs from the resist-

ance of the single dislocations. In the case, phonon scattering by pile-

ups, the thermal resistance increases below that value. On the other

hand, a decrease of the resistance occurs for decreasing RT in the case

of phonon scattering by dipoles. For distances R of only a few Burgers

units and for temperatures in the neighbourhood of the temperature of

liquid helium, the resistance due to dipole becomes temperature inde-

pendent.

7 Gruner [10, 11] , Bross [12].
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FIGURE 1. Influence of dislocation arrangements on the lattice thermal conductivity in

copper (theory). Dislocation density is in all cases 5.12 • 10 10 cm -2
.

Isolated dislocations: random distribution of edge dislocations.

Dipoles: R = 10 b.

Pile-up (2): R = 10 b, 2 edge dislocations per group.

Pile-up (20): nearest neighbour distance R = 10 b, 20 edge dislocations per group.

The magnitude of the resistance is in this temperature region propor-

tional to the second power of R. Figure 1 gives a few examples for the

influence the arrangement of edge dislocations has on the thermal con-

ductivity. The average conductivity, defined by k= {kxx~\~ Kyy)~ l
, has

been calculated with the material constants of copper. The distance

between the two dislocations of a dipole was assumed to be equal to

10 Burgers units. That distance has also been used for the separation of

nearest neighbour dislocations in the pile-ups. The pileups contain

20 respectively 2 edge dislocations of the same signs which are parallel

to each other and which have all the same Burgers vector. The total

number of dislocation lines per cm2
is in all four cases equal to 5.12 • 10 ll)

.

As figure 1 shows, the increase of the thermal resistance, in case of phonon

scattering by closely spaced dislocations of the same signs, depends,

apart from the dislocation separation, also on the number of dislocations

in the group. Furthermore, the change in conductivity, at the lowest

temperatures, is more pronounced for the dipole configuration than it

is for a group of two dislocations of the same signs. This is due to the

low frequency behaviour of the structure factors (III.4a and III. 4b).

The scattering cross section for pileups has the same frequency depend-

ence for large go as it has for co ~ 0; only its magnitude is changed. The

frequency dependence of the scattering cross-section of dipoles, however,

differs by a factor or from that one for isolated dislocations, when &>—> 0.

We shall, in section IV, compare the theory with measurements of the

thermal conductivity in ionic single crystals. While in undeformed metals

369-713 OL - 71 - Vol I - 26
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the lattice thermal conductivity is, at temperatures below the tempera-

ture of the conductivity maximum, governed by the phonon-electron

interaction, the thermal conductivity is in electrical non-conductors at the

lowest temperatures limited by the scattering of phonons at the crystal

surfaces (boundary scattering). A rigorous treatment of the boundary

effect would require us to solve the transport equation with proper boundary

conditions which must be imposed on the phonon distribution. Since this

is a rather difficult problem, we used the phenomenological approach

which is based on the experimental evidence that at lowest temperatures

the phonon mean free path, A, is, in pure crystals with rough surfaces,

independent of the phonon frequency and approximately equal to the diam-

eter of the crystal. Hence, if boundary scattering is dominant, the relax-

ation time of the phonon gas does not depend on the frequency of the

phonons. This leads then to the well known P-dependence of the thermal

conductivity. In order to include the boundary effect in our studies, we
had to find the corresponding matrix M. It is possible to construct this

matrix for boundary scattering in such a way that it leads to the same

expression for the thermal conductivity as it is obtained if a frequency

independent relaxation time is used. Taking the definition of the matrix

M for phonon scattering by defects (A.l) and assuming that the scat-

tering is elastic and isotropic, we find

M(j, m, n, r;/, m\ n' , r') =— (
— \)

mWbm >, -m&n', m

X[V
{)(KT)r+I

"+s
l(h

3v5 A) ] (r'+ r + 2) !£(r+ r' + 2) . (III.6)

£ denotes the Riemannian Zeta-function. Inserting eq (III. 6) into eq (1.2)

and solving for Z yields, with the help of eq (1.4), the thermal conductivity

k=(1/Z)C vvsA (III.7a)

with

Vs =^ (llvj)
2/^ (1/vjYK (111.7b)

CB is the specific heat per unit volume.

Assuming that eq (III. 6) is also valid if the phonons are in addition

scattered by lattice defects, we calculated the thermal conductivity in

case of the combined scattering of phonons by edge dislocation dipoles,

normal processes, and boundaries. The calculation, in this case performed

with the material constants of magnesium oxide (table 1), renders the re-

sults of figure 2. All curves were obtained with A = 0.3 cm. Curves 1

through 3 were calculated for a dislocation density of 4.1010 lines per cm 2
.

The dislocation density in cases 4 and 5 is 4.109 lines/cm2
. Curves 1 and 4

represent cases in which the dislocations are regarded as individual
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Figure 2. Thermal conductivity in magnesium oxide, limited by boundary effect, by edge

dislocations, and by normal processes (theory). Mean free path, limited by boundary

scattering. A = 0.3 cm.

Curve 1: \\ = 4 10 1 " cm -. random distribution of dislocations.

Curve 2: iV»= 2 • 10 10 cm -2
, R= 20 b (dipole configuration).

Curve 3: Nn = 2 10 111 cm -2
, i? = 35b (dipole configuration).

Curve 4: Ar

.s
- = 4 10

:i cm -
-, random distribution of dislocations.

Curve 5: Nd= 2 10 9 cm -2
. R = 35 b (dipole configuration).

scatterers-isolated dislocations. Proceeding from low temperatures to

high temperatures, the transition from the T3 regime (boundary scatter-

ing) to the T2 regime (scattering from single dislocations) is here monot-

onous. Curves 2 and 3 were obtained for the case in which the disloca-

tions are arranged in pairs (dipoles). The distances R between the two

dislocations of a dipole are 206 and 356 for case 2 and 3, respectively.

The effect, the dipole configuration has on the conductivity is such

that, in the temperature region where dislocations govern the tempera-

ture dependence, the slope of the conductivity curve is reduced (smaller

than 2). In the low temperature region, however, where boundary scattering

dominates, the tendency toward the T 3 -dependence of the conductivity

is. in cases 2 and 3, more pronounced than it is in case 1. A pronounced
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effect of the dipoles, leading to an inflection point which separates the

T2 region from the T:i region, is only found if the dipole density is suffi-

ciently high or the width of the crystal is large. Otherwise, as a comparison

of curve 5 with curve 4 shows, the arrangement of the dislocations in-

fluences only the magnitude of the conductivity but does not lead to an

inflection point. If an inflection point cannot be found in the experiment,

the contribution of the dipoles to the thermal resistance can only be

studied with the help of a curve fitting procedure, provided that A is

known. Furthermore, the measured curve should exhibit a region where

k ~ T-, so that the total number of dislocations can be estimated fairly

accurate.

IV. Comparison of the Theory With Experiments and Discussion

In pure metals, the electronic contribution to the thermal conductivity

at low temperatures is one to two orders of magnitude larger than the

contribution by phonons. It is, therefore, difficult to separate the two

components. In dilute alloys, however, the electronic part is considerably

reduced on account of the scattering of the electrons by the solute atoms.

In this case, it is then possible to separate both contributions, as has

been shown by Hulm [13], Berman [14], Esterman et al. [15], and

others. The influence of plastic deformation on the thermal conductivity

has been studied by Esterman et al., Kemp et al. [16], and by Lomer and

Rosenberg [17] in silver alloys and in copper alloys. Since we are here

mainly interested in the influence the arrangement of dislocations has on

the thermal conductivity, we shall restrict the discussion to measurements

which indicate that the dislocation configuration affects the thermal

conductivity.

Recently, Zeyfang [18] found deviations from the r2-dependence of

the lattice thermal conductivity after strong plastic deformation which

can be attributed to groups of dislocations of the same signs. He deformed

Cu-Ga single crystals in tension in intervals of various temperatures

between 4 and 293 K. After each deformation interval, the thermal con-

ductivity was measured between 1.3 and 25 K. In stage I of deformation,

the lattice thermal conductivity varied as T2 between 1.3 and 10 K. In

stage II and III, however, it was found that k varied, at sufficiently low

temperatures, stronger than with the second power of the temperature.

The r 2-dependence of the conductivity indicates that the dislocations

act as individual scatterers and that, hence, the average distance between

them was in stage I larger than the dominant wavelength of the phonons.

In this case, the total resistance of the dislocations is equal to the sum of

the single resistances. Bross et al. [19] calculated, on the basis of the theory

outlined above, the resistance of a single edge dislocation which is oriented
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parallel to the z direction and which has a Burgers vector parallel to the

x axis. For a dislocation density of /V lines/cm 2
, the components of the

resistance tensor are, in the case of copper, given by

pxx= 6- 10- 9AT" 2 [cm degree Watt" 1

] (IV.la)

and

pyy= 15.2 • lO-W" 2 [cm degree Watt" 1

]
(IV. lb)

Using that part of the conductivity curve where k ^ T 2
, Zeyfang calculated

with the help of eqs (IV.la and IV. lb) the dislocation density /V which

he then compared with measurements of N that were obtained by electron

transmission microscopy. The values which he found with the former

technique were about 5 times larger than those obtained with the latter one.

The eqs (IV.la and IV. lb) were derived with values of the third-order

elastic constants which had been measured at room temperature. Salama

et al. [20] showed that the room temperature data of the third-order

constants are about 2 times smaller than those which one measures at

helium temperatures. Taking this into account, the ratio between the

values of /V which have been determined by the two techniques is further

reduced, probably by a factor of 2 to 3.

Figure 3 shows Zeyfangs measurements of the lattice thermal

conductivity of Cu-4 at percent Ga. The measured points, denoted by

(d), were obtained for a specimen which had been deformed at 293 K up

to the beginning of stage III. The magnitude of the conductivity in the

undeformed specimen (measured points denoted by (u)) is, in the linear

part of the curve (r 2-dependence), governed by the phonon-electron inter-

action. While for weak deformation (stage I) k was found to vary as T 2

(not represented in fig. 3), the conductivity of the strongly deformed

specimen departs from the r 2-dependence in a manner which indicates

the presence of groups of dislocations of the same signs. Zeyfang compared

also in this case the experimental and the theoretical results. He used

Bross' [12] approximate formulae for the resistance change on account

of the dislocation arrangement and calculated for a group of Ng parallel

edge dislocations, separated by not too small distances, the relative change

in resistance Ap/p0 . He found

Ap/p0 ~ m/TNg) 2 blR tt : (IV.2)

i i

'

Ru' is the distance between the ith and the z'th dislocation and p 0 is the

resistance of Ng single dislocations. Good agreement between theory

(curve 1) and the measurements of the deformed crystal (d) is obtained for

Ng= 20 and Rw = 35b \i - V |.
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Figure 3. Lattice thermal conductivity in Cu-4 percent Ga after reference [18].

Curve u: undeformed specimen (experimental).

Curve d: deformed specimen (experimental).

Curve 1: 20 equidistant (/? = 35b) edge dislocations per group (theory).

Whereas in metals the experiments and the theory agree fairly well,

larger differences between the calculated and the measured results

seem to be the rule in ionic crystals. The effect of plastic deformation on

the thermal conductivity of ionic crystals has been studied by Sproull

et al. [21], Moss [22, 23], and Taylor et al. [24]. It was observed that

the thermal conductivity decreases strongly with deformation. But, in

contrast to the case of metals, the number of dislocations obtained from

measurements of the thermal conductivity differ in ionic crystals often

by several orders of magnitude from those which are obtained by other

techniques. It has been suggested that part of the discrepancies might

be due to special dislocation arrangements which scatter phonons stronger

than randomly distributed dislocations do. This argument holds, however,

only if the dislocations are arranged in groups which consist of closely

spaced dislocations of the same signs; the dipole configuration would
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lead to a reduction in scattering strength. Yet, an increase in scattering

strength by a factor of hundred or even more on account of dislocation

grouping is unlikely. The suggestion was made that etch pit counts are

not necessarily representative for the number of dislocations if the

dislocation density is high. Comparison of etch pit counts and counts of

dislocation lines from electron transmission micrographs of deformed

magnesium oxide lend some support to this argument. The number of

etch pits was here found to be smaller by a factor of 5 than the number

that was obtained from counts of dislocation lines.

It was argued that vacancies or vacancy aggregates which are generated

during plastic deformation might account for the discrepancies. However,

the annealing studies of Taylor et al. in NaCl seem to rule out that possibility.

Apart from the fact that the magnitude of the measured conductivity

is too small to yield agreement between etch pit counts and the number

of dislocations obtained from the lattice thermal conductivity, Taylor

et al. found in several deformed alkali halides deviations from the In-

dependence of the conductivity. Furthermore, the temperature depend-

ence of the conductivity in a NaCl crystal which they deformed in com-

pression showed below some 5 K a stronger tendency towards the In-

dependence (boundary scattering) than was found in the same specimen

after being annealed for 15 min at 355 °C. While the temperature depend-

ence changed considerably (tended towards T 2
), the magnitude of the

conductivity increased only slightly in the temperature region where the

phonon scattering by dislocations is mainly incoherent. Hence, the total

number of dislocations could not have changed much during annealing.

This was also confirmed by etch pit counts. A possible explanation was

that during deformation groups of closely spaced dislocations of the same

signs might have been formed. These lead to a stronger temperature

dependence than T2 at the lowest temperatures. It is likely that during

annealing the distances between the dislocations had become larger in

which case the dislocations act more as individual scatterers rather than

as an ensemble.

Figure 4 shows the measured thermal conductivity (full circles, curve

(ex)) of magnesium oxide single crystals which had been deformed by

bending up to, approximately, an outer fiber strain of 2 percent. Etch pit

counts yielded a maximum density of 2 10 8 pits/cm 2
. Transmission

electron micrographs revealed that the majority of the dislocations formed

elongated loops (dipoles). The smallest observable distance between

the two branches of a loop was estimated to be 50 Burgers units. The
number of dislocation lines was estimated from the micrographs to be

10 9 lines/cm 2
. Between 6 and 15 K, curve (ex) in figure 4 exhibits the In-

dependence of the conductivity. Below 6 K, a gradual transition towards

the r 3-dependence occurs. One of the reasons why an inflection point
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Figure 4. Thermal conductivity in magnesium oxide.

Curve ex: deformed crystal (experimental).

Curve 1: dipole configuration (theory). Ni> = 2AS 10'" cm -, A = 0.0366 cm, R = 20 b.

Curve 2: random distribution (theory). Ns= 4< 9 • 10 10 cm " 2
, A = 0.0366.

Curve 3: dipole configuration (theory). Nn = 2A5 • 10 10 cm -, A = 0.3 cm, R = 20b.

cannot be seen is that the mean free path A which is limited by boundary

scattering and which had been determined from the conductivity of the

undeformed specimen was found to be only some 12 percent of the

specimen width. This unexpected small value of A might be the conse-

quence of phonon scattering by internal macroscopic boundaries. A sub-

sequent investigation with the light microscope revealed inclusions of

rectangular shape which were probably formed during crystal growth.

No change in the thermal conductivity of the undeformed and chemically

polished crystal could be found after the specimen surfaces had been

sandblasted. This indicates again that the external surfaces did not limit A.

The data, represented in curve (1), have been calculated with the following

parameters: Dipole density, Nn = 2.45 • 10 ,() cm~-; mean free path,

A= .0366 cm; dipole separation, R = 20b.

Curve (2) shows the calculated thermal conductivity (A =.0366) for

the case of randomly distributed dislocations. The density of the disloca-

tions was here taken to be Ns = 2Np. Results, obtained with R = 20b,

No = 2AS - 10 1() cm 2 and A = 0.3 cm, which is approximately equal to

the width of the crystal, are shown by open circles (curve (3)).
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The dislocation density which has been used to fit the experimental,

data at around 15 K is at least by a factor 50 larger than the density which

was obtained from line counts. The discrepancy between theory and

experiment seems to be somewhat smaller for MgO than it is for other

ionic crystals where the number of dislocations has been estimated from

the number of etch pits. The comparison of the fitted curve (1) with the

results which were obtained with the same total number of dislocations

but for a random distribution (curve (2)) shows that around 4 K the devia-

tion between curves (1) and (2) is largest. At higher and lower temperatures

both curves tend to join each other. Curve (ex) could not be fitted by taking

into account phonon scattering by isolated dislocations and boundaries,

only. The experimental data are much better represented by curve (1).

This seems to indicate the influence of the dipole configuration on the

thermal conductivity. It is hoped that further measurements of the

conductivity in stronger deformed MgO crystals which are free from

internal boundaries will lead to a more conclusive result.

Several reasons for the lack of agreement between the theoretical and

the measured thermal conductivity in ionic crystals have been listed,

such as dislocation arrangements, determination of the dislocation density

with etch pit counts, etc. But these reasons can hardly account for the

whole disparity. It is probable that the extension of the theory to the

anisotropic case might improve the situation. A further improvement may
be obtained by taking into account the temperature dependence of the

third-order elastic constants.

V. The Relationship Between Dislocation Mobility and
Thermal Resistance

Seeger and Engelke [25] calculated the retarding force which acts upon

a moving kink on account of the anharmonic interaction between the strain

field of a dislocation and the phonons. They used the fact that the negative

rate of momentum change of the phonon gas must be equal to the force

which tends to slow down the moving dislocation. If Umklapp-processes

can be neglected— which is the case if the temperature is sufficiently

low— then the quasi-momentum of a phonon, ftk, can be identified with

the ordinary momentum of a particle. The total momentum of the phonon

gas is given by

N(k) is here the number of phonons in the vibrational mode {k}.

On account of the interactions between the moving dislocation and the

elastic waves, phonons are interchanged between the various modes.

This leads to variations of the occupation numbers iV(k). Avoiding
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difficult many-body calculations, which were necessary in order to obtain

the time dependence of the phonon numbers, Seeger and Engelke confined

their investigations to the calculation of the mean retarding force. We shall

also follow this approach and shall, furthermore, restrict the comparison

between the mobility and the thermal resistance to the case of straight

dislocations. The average force can be written as

f=~2«k#(k). (V ' 2 >

Neglecting the normal three-phonon interaction, one can express the

average force, according to eqs (II.5) and (11.10), by

f=-2^kw;(k,-k') moving8{a>(k>- co(k') - (k- k' ) • v}

x [iV(k')-7V(k)]. (V.3)

The direction of the dislocation velocity, is here arbitrary. This is why
the scattering probability used in eq (V.3) differs slightly from eq (11.10).

We shall now assume that the time the dislocation needs to travel a

distance of the order of the phonon mean free path is large in comparison

with the phonon relaxation time. This is the case if the dislocation velocity,

v, is small with respect to the sound velocity, vs. The phonon distribution

is then, on the average, equal to the distribution of the thermal equilibrium.

In this approximation, the normal processes, which we already neglected

in eq (V.3), do not contribute to iV(k).

If we neglect terms of higher order than v/v8 in the force and define

the tensor of friction, rj, by

f=--n • v, (V.4a)

we obtain from eq (V.3)

i) = (V/KT) 2 kr (k, - k') stat.
[iV(k)+ l]JV(k) (k- k') . (V.4b)

r) is a symmetric tensor as can readily be verified by using the fact that

P(k, - k') stat.
= JT(k\ -kW •

(V.4c)

In order to write eq (V.4b) in terms which are known from the calculations

of the thermal conductivity, we express the wave vector, k, by the fre-

quency, o>(k, /), and spherical harmonics, Ynm {6, </)). This yields

k= J m)ha>(k,jjYlm (0, 0) (V.5a)

m= -i

with

{8
W , i

— 8,„, _i

(8m,i+ 8w,-i)/i .
(V.5b)

2 1 /2S,„,o
J
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Inserting eq (V.5a) into eq (V.4b) and using the expression (A.l) for

the matrix M, the friction tensor takes the form

V=-h* 2 m)M(j, m, 1, 1;/, m , 1, l)fO" ? ™')- (V.6)

i/'

Equation (V.6) shows that, for small dislocation velocities, the friction

coefficient can be obtained from the same matrix M which has been used

for the calculation of the thermal resistance. From eq (1.2) and (1.4) we

find a similar expression for the thermal conductivity which reads

K = -(TV0)-^Z(v)M(v, v')Z(v'). (V.7)

in'
1

Whereas £ is given in eq (V.5b), the vector quantities Z must be obtained

by solving the system of equations (1.2).

Equation (V.6) is valid for any shape of the dislocation line if all parts

of the dislocation have the same velocity v. We consider now the special

case of a straight dislocation which moves perpendicular to its line. Let

the dislocation line be parallel to the z axis. In the case of an edge dis-

location we let the Burgers vector b be in the direction of the positive

x axis. For a screw dislocation we take b in the positive z direction. Since

the probability rate, J^(k, — k') stat , remains in both cases invariant

under the transformation k x —> — k x and ky
—> —ky , the matrix M vanishes

unless m + m' is even.

Taking also into account that the friction force has no component in the

direction of the dislocation lines, r? can be written in the following form:

i?= i?A* (V.8a)

with

^,=-(477/3) 2DW0',/; 1, \)-M(j,j'- 1,-1)]/(W ), (V.8b)

jf

^=(4tt/3) £ MOW'; (vjvy), (V.8c)

jf

Vs= 0, (V.8d)

and

M(/',/; m, m')=M(j* m, 1, 1; /, m\ i, 1). (V.8e)
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Numerical values for the matrix M were obtained for edge and screw

dislocations by Bross et al. [19, 26] with the material constants of cop-

per. With the help of those results we calculated the following friction

coefficients: 9

«*wi«te=ELbLTI(vLO) ascrew/edge
(V.9a)

with the energy density of the longitudinal phonons

EL= **K4T4l(30h*vD. (V.9b)

ascrew an(j aedae are ijste(j m table 2. L is the length of the dislocation.

The retarding force which acts on the screw dislocation is larger than

that one which is felt by an edge dislocation. This result is consistent with

the results that were obtained from calculations of the thermal conductivity

which yielded K e
xfe > k s™w

.

In order to compare these findings with the results obtained by Seeger

and Engelke for the moving kink, we calculated the friction force for a

mixed straight dislocation of length L, the orientation of which is shown

in figure 5. Considering the mixed dislocation as being composed of a

screw dislocation and an edge dislocation and applying a simple coordinate

Table 2. Coefficients a of eqs {V.9a) and (V.12b) for copper

a

Screw dislocation

t

1

b
V 4.599 x 103

b

Edge dislocation 3.040 X 103

Mixed dislocation (W/a > > 1) /
/ V 4.599 X 10 !

b

9 G is the Debye temperature.
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W

Figure 5. Mixed dislocation (schematic).

transformation, the friction coefficient for the mixed dislocation, -n
mix

,

can be represented in terms of 7)f
crew and T7f

dge
. Here, T7

mix
is defined by

ft= -r!***v, (V.10)

where fv is the force component in the negative direction of the velocity.

We find

r)
mix = (ELbLTIviB)(l^(wlay2 )- 2{(wla)'2aSCT

.
ew+ aeAse

}. (V.ll)

We can now compare f^
mix with the results which Seeger and Engelke

obtained for the flat kink if we assume that the temperature is such that

the dominant wavelength of the phonons is small in comparison with the

length of the kink segment. This is the case if Tw/(aQ) > > 1. For

w/a > > 1, eq (V.ll) yields

^
mix ~ (E Lba/v L )A

mix
(V.12a)

with

A mix= Tal(wQ)ami* and a mix ~ ascrew
. (V.12b)
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In the case of the kink it was found:

-k,nk= (E Lbalv L )A(Tie, a/w), (V.13)

where A{T/Q, ajw) is given in reference [25].

In figure 6, we plotted both A m[x and A(T/Q, ajw) for w/a= 100. In

the temperature region where A mix and A(T/Q, ajw) can be compared,

i.e., above some 30 K, A mix
is larger than A(T/Q, a/w) by a factor of

roughly 2.7. This is probably due to the fact that Seeger and Engelke took

only into account the interaction between the dislocation and the longi-

tudinal phonons, whereas in T)
mix also the scattering of transversal waves

is contained.

VI. Appendix

The variational method which has been discussed in the introduction

leads to the following expressions for the matrices M. In case of phonon

scattering by lattice defects, M is given by:

-KTM(j\ //I, 7i, r; j", m\ n\ r')

= ^ WQlJ; -k',/') [N(kJ) + l]N(k\j')(ha>(k,j)) r -Ynm (e, (/>)

k,k",j"

x {&'(h(D(kJ)) r
'Yn'r,Ad, 4>) -W'*'\htaQL\j')yYn'm>(6\ (/)')}. (A.l)

The matrix for normal three-phonon processes has the form:

-KTM(j\ 77i, 7i, r; /, m\ n'
,
r')

k\ A-', A"

X (ha)(kJ)) rYnm(d, 4>) • {8ti'(hco(kJ)) r'Yn ,m'{0, cf>)

-28j'j"'(ho)(k' ,j'))''Ynm{0' , 0')} + two similar terms. (A.2)
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PHONON SCATTERING BY COTTRELL ATMOSPHERES

P. G. Klemens

Department ofPhysics and Institute ofMaterials Science

University ofConnecticut

Storrs, Connecticut 06268

The formation of Cottrell atmospheres can change the scattering of

phonons by dislocations and in some cases substantially enhance the lat-

tice thermal resistivity due to dislocations. The strength of the at-

mospheres can be changed by annealing. This changes thermal conduc-

tivity values at high temperatures first, since diffusion through shorter

distances is involved. The diffusion coefficient can be determined by

means of such annealing studies.

Key words: Cottrell atmospheres; mechanical properties; phonon scattering; thermal

resistivity.

Metallic alloys have generally an appreciable lattice component of

thermal conductivity at low temperatures. This component is sensitive

to lattic imperfections which scatter phonons. In particular, dislocations

can reduce the lattice components at very low temperatures, while

randomly distributed point defects tend to be important at somewhat

higher temperatures [1]. The reason is that dislocations scatter phonons

because of the relatively long-range strain field surrounding them, while

the perturbation due to point defects is only of short range. Long-wave

phonons are thus more sensitive to dislocations, short-wave phonons to

point defects.

If point defects are not randomly distributed, but with spatial correla-

tion, then the scattering of phonons is related to the appropriate Fourier

coefficients of the spatial correlation function; the theory for phonon

scattering [2] is then analogous to the theory of small angle scattering of

x rays by correlated solute atoms.

To explain an apparent dependence of the phonon scattering cross

section of dislocations on solute content, which had been observed by

Charsley et al. [3J in Cu-Al alloys, it was proposed that Cottrell atmos-

pheres of Al about dislocations reinforce the anharmonic scattering of

phonons by the strain field [4]. The argument used may be recapitulated

as follows.

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bulloujjh,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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The fractional change in phonon velocity due to a dilatation A is given by

8v/v= -yA(r) (1)

where y is the Grueneisen constant, and A can be regarded as a function

of position. The dilatation causes an inhomogeneous solute distribution;

the change in solute concentration in the limit of small dilatations is

given by

8clc= a(VK/kT0)A(r) (2)

where V is the atomic volume, aV is the excess of the atomic volume of

the solute over that of the parent metal, K is the bulk modulus, A the

Boltzmann constant and To the temperature at which the atmosphere

attained equilibrium. While (2) does not hold near the dislocation core,

it holds at a distance of a phonon wavelength, which is the most important

region for phonon scattering. If we now assume that the presence of solute

atoms change the local value of the phonon velocity, and that this change

is related to the concentration by

8v/v = (3c (3)

it follows that the total change in phonon velocity, due to anharmonicity

and the atmosphere, is given by

8v/v=- (y+ y')A(r) (4)

where
y'=- ap(VKIkT0)c (5)

and where c is the average solute concentration. Since the total scattering

is proportional to (y + y') 2
, anharmonic scattering is enhanced if y' is

positive. This requires that a solute atom should be larger than the

parent metal (positive a) and at the same time heavier (hence negative /3);

alternatively the atom may be smaller and lighter. The other combinations

result in negative values of y' and thus in a reduction of the phonon

scattering cross section.

This model leads to the prediction that Al atmospheres around dis-

locations in Cu-Al enhance the scattering of phonons and thus the lattice

thermal resistivity due to dislocation; the enhancement factor should be

about 3 for an 8 percent alloy. There should be several alloy systems

showing a similar effect, for example in Cu-Au the presence of 3 percent

Au should double the dislocation scattering.

It has been assumed so far that the solute atoms had an opportunity to

arrange themselves into their equilibrium positions. After plastic deforma-
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tion, when dislocations are torn from their original positions and new

dislocations are formed, the solute atoms must diffuse through distances

of the order of hundreds of Angstroms to form the atmospheres, for this

is the distance (comparable to the phonon wavelength) within which most

of the dislocation scattering occurs. To explain the observed enhancement

one must conclude that this diffusion has occurred between the time of

deformation and the time of measurement in Cu-Al, even though the

temperature of the sample did not exceed room temperature significantly.

One would expect diffusion of Al in Cu to be extremely slow at room tem-

perature, and one may perhaps expect to find aging effects in the lattice

thermal conductivity due to a slow formation of the atmospheres. Another

possibility, which would account for atmosphere formation more satis-

factorily, is that diffusion of solutes near dislocations is substantially

enhanced during and immediately after the deformation process, because

vacancies are created during deformation and are thus present for a

short time in concentrations well in excess of the equilibrium concentra-

tions which normally determine the diffusivity. On that model the

atmospheres form instantaneously.

We note that y' is inversely proportional to To, the temperature at which

equilibrium was attained. In many systems it may be possible to choose

an annealing temperature high enough for ordinary diffusion to occur,

but low enough to avoid the removal of dislocations. Under such circum-

stances it should be possible to decrease y' by a known fraction, and

observe a corresponding increase in the lattice thermal conductivity.

Furthermore, this change would not be instantaneous, and by following

the rate of change as a function of annealing time, it should be possible

to determine the diffusion coefficient.

We can put this on a quantitative basis by noting that the diffusion

problem can be solved best in terms of the Fourier coefficients of the

concentrations, while the phonon scattering problem requires a knowledge

of the same Fourier coefficients. Let c0 (r) be the new equilibrium concen-

tration and c'(r) the departure from it, so that c= Co+ c' . The diffusion

equation is

where D is the diffusion coefficient. Expressing c'(r) in terms of Fourier

coefficients of wave vector q, each component changes with time according

to

—-Z)VV = 0
dt

(6)

c'(q) a e~'/T
(7)

where

llr= Dq 2
. (8)
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At temperature T, the dominant phonons contributing to the thermal

conductivity have a wave vector

q - \aT\d (9)

where a 3
is the atomic volume and 0 the Debye temperature. The change

in thermal conductivity at temperature T after annealing at temperature T0

for a time t may be thus written as

8K(T) _
l
_ e

-
tl7 {m

8K0 (T)

where 8K0 is the change in thermal conductivity induced by annealing

until the new equilibrium has been reached. The characteristic time r is

given by

1 /4-
T
=D(Tu) (-

4r
e

(ii)

and this time depends on the temperature T at which the thermal conduc-

tivity is measured. At higher measuring temperatures the important

phonons are of shorter wavelength, the corresponding Fourier components

of the concentration are also shorter, and equilibrium is attained more

quickly. It should be possible to anneal for a time such that the new

equilibrium of the thermal conductivity is reached at higher temperatures

but not at lower temperatues. It should then be possible to determine the

diffusion coefficient at the annealing temperature by using eqs (10) and

(11). Since diffusion occurs through distances of the order of hundred

Angstroms, this method of determining diffusion coefficients may have

advantages over the conventional methods at relatively low annealing

temperatures.
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Discussion on Papers by P. Gruner and P. G. Klemens.

NABARRO: Is it really correct to concentrate attention on the sound
velocity or should one rather concentrate on the acoustical impedance?

KLEMENS: I don't know. I have always considered the theory as a pertur-

bation theory and it should come to the same thing if you do it right, but

maybe I haven't done it right.

BESHERS: Professor Klemens, you didn't really discuss what is probably

the most interesting case of a Cottrell atmosphere formed by the intersti-

tial atoms in a b.c.c. metal. These apparently form fairly completely at

room temperature or even low temperature in the case of hydrogen.

Would you expect, then, to see large effects?

KLEMENS: The conditions which have to be met to see the effect are

several: You must have a reasonable concentration of these impurities,

at least a few percent; they must form Cottrell atmospheres; and they

must change the velocity of sound effectively. Hydrogen might not meet

the last condition.

BESHERS: In what volume must the concentration be reasonable? And
within what distance of the dislocation, because you get terrific concen-

tration factors during segregation.

KLEMENS: I am only considering the long range tail end of the Cottrell at-

mospheres, not things that mechanical people consider. But the effect is

proportional to the average concentration of impurities, and the average

concentration must be of the order of a few percent.

GRANATO: I have a question for Dr. Gruner, who interprets the increase

in the temperature dependence to a higher than T 2 dependence to be

evidence for dipoles, but how do you know that it isn't the fluttering

mechanism?

GRUNER: I said that a temperature dependence of the conductivity which

is stronger than T 2 can arise from phonon scattering by closely spaced

dislocations of equal sign; the scattering by dipoles leads to a decrease

in the slope of the conductivity curve. I should think that in metals,

where the anharmonicity mechanism predicts the right order of mag-

nitude of the conductivity, one is on the safe side if the increase in tem-

perature dependence with increasing deformation is assumed to arise

from phonon scattering by dislocation groups. If fluttering were the

dominant mechanism, then one would expect that a deviation from the

T 2 dependence should also be present at lower degrees of deformation.

This is not the case in Zeyfang's results. 1 As to ionic crystals, I think, a

1 Zeyfang, R.. Phys. Stat. Sol. 24, 221 (1967).

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit. and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ, 317. I 1970).
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decision on the relative importance of fluttering or dislocation arrange-

ment cannot be made as long as there is still a large discrepancy

between theory and experiment concerning the magnitude of the con-

ductivity.

BULLOUGH: [To Professor Klemens] Your theory probably isn't ap-

propriate for carbon in iron, because presumably the impurities have to

form Maxwell-Boltzmann atmospheres — not Cottrell atmospheres. A Cot-

trell atmosphere isn't an atmosphere; it describes local precipitation at

the dislocation core.

KLEMENS: I don't know the distinction between the two, but I have used

an exponential distribution— which I suppose is a Maxwell-Boltzmann

atmosphere— then approximated the exponential by one plus the next
o

term, because I was in the region of small strains about 100 A away from

the dislocation core. Does that answer your question?

BULLOUGH: Yes, it's just the name Cottrell atmosphere that I do not like.

KLEMENS: You object to that?

BULLOUGH: Yes.

KLEMENS: I apologize.

AUDIENCE: General laughter.

SUZUKI: I would like to comment on Dr. Gruner's and Professor Klemens'

talks. Kusunoki and I
2 have measured the thermal conductivity of

copper-aluminum alloys and obtained almost the same results as

Zeyfang's data 1 on copper-gallium alloys. We explained the data as reso-

nant scattering of vibrating dislocations in Cottrell atmospheres and ob-

tained positive agreement. I am wondering whether Dr. Zeyfang's data

agree with the predictions of Dr. Gruner.

GRUNER: With a reasonable choice of the distances between the disloca-

tions and the number of the dislocations within a group, the theory and

Zeyfang's measurements agree rather well as to magnitude and tempera-

ture dependence.

KLEMENS: I think that I have only considered the anharmonic scattering

and the atmosphere reinforcement. I think that one would be very bold

to claim resonance effects have no effect in these alloys until one has

made really quantitative calculations and quantitative measurements

with a number of dislocations determined separately and then a mea-

surement which would look at the effect of atmospheres. I think that the

atmosphere mechanism that I have presented is only a theoretical

mechanism and nothing more.

2 Kusunoki, M., and Suzuki, H., J. Phys. Soc. Japan 26, 932 (1969).
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BY STRAIN-FIELD PHONON SCATTERING

A. Seeger and H. Engelke

Max-Planck-lnstitut fur Metallforschung

Institut fur Physik

and

Institut fur Theoretische unci Angwandte Physik der Universitat

Stuttgart, Germany

An expression for the dragging force on a uniformly moving defect by

scattering of phonons at its strain-field has been derived using nonlinear

elasticity theory. The quantization procedures and the formulation of the

master equation for the phonon distribution follow the techniques

developed in the theory of heat conductivity. Numerical calculations have

been performed for kinks in screw dislocations in copper. A comparison

with numerical results obtained in the theory of heat conductivity shows

quite good agreement. The formalism developed should prove useful also

for calculations of the electron drag on dislocations in metals.

Key words: Dislocation drag; dislocation-phonon interactions; electroresistivity; kink

motion; phonon scattering.

The lattice heat resistance of defects in crystals is produced by the

anharmonic forces between the atoms. These forces cause the scattering

of thermal lattice waves at the strain fields of the defects and also bring

about dragging forces when the defects are moved through the crystal.

The formalism of the theory of lattice heat conductivity at low tempera-

tures [1] has been applied to derive an expression for this dragging force

in the case of uniformly moving defects.

The starting point of this calculation is the Hamiltonian for the lattice

waves, which may be written in the following way

tf= #o+ #i(*), (1)

where

ffe=y*W» +J
.

aJ +1) (2)

kw k\ k k 2/

represents an infinite set of uncoupled quantized linear harmonic oscilla-

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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tors, hcoi is the energy of a phonon with wave-vector k and polarisation

index j, a +
{ and ak are the creation and annihilation operators. The

operator

#,(0 = 2 {///exp [i(kz -\-
k'
z )vt\ +H"} (3)

k. k

gives rise to an interaction (coupling) between the oscillators in two-phonon

processes and is due to the presence of a defect moving with constant

(average) velocity v in z-direction. Here kz and k'
z
are the z-components of

the wave-vectors k and k' of the phonons created and destroyed during

the interaction described by the term a +J'a£' in //, . H" represents the

effect of the non-moving part of the defect. Both H[ and H" are time-

independent operators, explicit forms of which may be derived from the

theory of heat conductivity.

Since Umklapp processes can be shown to be unimportant in the present

treatment, we may identify the quasi-momentum of a phonon with the

ordinary momentum. This means that the change of the momentum p
of the phonon gas in such a process is given by ft(k — k'). According to

actio-reactio the defect causing this transition undergoes an opposite

change in its momentum, and the force / exerted on the defect is given by

If N[ denotes the occupation number of the oscillator {j, k}, then the

total momentum of the phonon gas is given by

P = 2>k7V{. (5)

j, k

The calculation of the occupation numbers NJ

k
as a function of time would

require the solution of a complicated many-body problem. It is expedient

to introduce the average occupation numbers NJ

k
according to

#i=2 (6)

V

where the summation extends over all eigenstates v of the unperturbed

Hamiltonian Ho. The conditional probability

P(v- v; »>-/»(. . ., Nl, N{, ...,«)

gives the probability of finding at time t the occupation numbers

if the perturbation was switched on at t = 0 and if the occupation numbers
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at that time were NJ
k . By averaging eqs (4) and (5) and inserting eq (6),

the following expression for the z-component of the mean force on the

moving defects is obtained:

fz=2,%MzNiP(p; i>; t). (7)

J. k V

The conditional probability P{v\ v\ t) obeys the master equation

P(v; v; t)=^{W{v, v")P{v\ v)-W{v'\ v)P(y, v)} , (8)

v"

where the sum extends over all intermediate states v" and W{v, v") is

the transition probability from state v" to v. Inserting eq (8) into (7) gives

the final expression for the mean force f2 on the moving defect in terms of

W{y, v"). With only slight alterations this expression is valid also for

other Bose-type excitations. The intermediate states v" correspond to the

creation of one additional phonon (J) and the annihilation of one phonon

(£,). since only two-phonon processes are considered and the simultaneous

creation or annihilation of two phonons is excluded by energy conservation

reasons. The summation over v necessary in order to obtain the average

fz [eq (7)] requires averages over triple products of the occupation numbers.

Within the framework of the present approximation, we may replace these

averages by the products of the averages of the occupation numbers.

If we assume that before switching on the perturbation the phonons

were in thermal equilibrium, i.e., that the average occupation numbers

were (K= Boltzmann's constant)

N{=Ni = {exp [ha>i/KT] - l}" 1

, (9)
A" K k

we obtain as the final result for the average force (po — density of the ideal

crystal)

k k

X8((o J

k
-aj J

k
- (kz - kl)v) dr kdTk ,. (10)

The matrix elements F'^kk are proportional to the Fourier-transformed

time-dependent strain components of the moving defect and are familiar

from the theory of heat conductivity.

Formula (10) has been applied to a slowly moving (V<Ci, c x
= velocity

of longitudinal waves) flat (kink width w large compared with Peierls dis-

a-SJI
h(kz -k'z ) V'jy +y'jj'

l-kk' 2-kk'
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tance a) dislocation kink in copper in the limitation to logitudinal-longitu-

dinal-transitions of phonons 0=1, j' = l). By introducing the energy

density of the longitudinal phonons, £\, one obtains the following result:

(#= Debye temperature, b = dislocation strength).

The factor A is a function of temperature and kink width and is plotted

in figure 1. It shows a slight temperature dependence and increases with

decreasing kink width. The line denoted by Eshelby is the corresponding

value of A predicted by Eshelby's treatment of the flutter mechanism for

longitudinal waves only.

(11)

Eshelby

0 10 20 30 AO 50 60
Temperatur in [°K]

Figure 1
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The scattering of phonons at a kink may be approximated by the scatter-

ing at a suitable mixture of straight edge and screw dislocations if the pre-

dominant phonon wavelength is short compared with the kink width.

In this case a frictional force may be calculated using heat conductivity

results. This has been done by P. Gruner [3]. The factor A obtained in this

way, taking w;/a=100, has the same temperature-dependence as the cor-

responding factor in figure 1 but is 2.7 times larger than this. Since in

Gruner's calculation all transition types are considered whereas we have

only taken into account longitudinal transitions this result looks quite

reasonable.

Equation (7) may also be applied to calculate a dragging force on moving

dislocations due to the scattering of electrons. The calculation runs along

similar lines as calculations of the electrical resistance of dislocations

(see for example [4]).

Holstein [5] has calculated a dragging force (assuming free electrons)

by means of the change of energy per unit time instead of momentum.
Both procedures seem to give identical results in the approximation of

free electrons. The case of Bloch-electrons undergoing Bragg-reflection

needs further investigation.
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THERMAL ENERGY TRAPPING BY
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J. H. Weiner
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The steady motion of a dislocation along a piece-wise harmonic

Frenkel-Kontorowa model is considered. For suitable model parameters

there is one localized mode associated with either the stable or unstable

dislocation configuration and the remaining modes are non-localized or

extended. Because of the piece-wise harmonic character of the model, the

set of normal modes of the system changes at discrete instants of time,

referred to as transition times, as the dislocation moves along the chain.

In particular, the localized modes must move along with the dislocation

position and we refer to the localized mode momentum and energy as the

dislocation momentum and energy respectively. The particle momentum
and energy due to the sum of the extended modes is termed thermal.

At the transition times, it is necessary to expand atomic velocities in

terms of the new set of modes appropriate to the forthcoming state of the

crystal. It is found that a coordination effect exists between the transition

times and the thermal motion such that on the average over many transi-

tions, thermal momentum in the direction of the dislocation motion is

transferred to the dislocation momentum.

Key words: Computer simulation; dislocation-phonon interaction; Frenkel-Kontorowa

model.

I. Introduction

One of the inherent aspects of the steady motion of a dislocation is that

it involves the successive progression, in its core, from one stable equilib-

rium configuration to an adjacent one. This applies to the case of the

motion of the dislocation as a straight line, so that it moves from Peierls

valley to Peierls valley, or to a kink moving along a dislocation line through

successive "kink Peierls valleys." We wish to study the effect of this

particular aspect of the process on the interaction of dislocation motion

with the thermal motion of the atoms in the crystal. In order to do so we

Fundamental Aspects of Dislocation Theory. J. A. Simmons, R. de Wit, and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I 1970).
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utilize a simple model that focuses upon it, namely a modified Frenkel-

Kontorowa model. This model may be thought of as representing either

the motion of a straight dislocation or a kink along the dislocation (Sanders,

[1]). The modification of the Frenkel-Kontorowa model consists in taking

the substrate potential as piecewise quadratic so that the forces are

piecewise linear. We may say then that the model includes only the "es-

sential anharmonicity" necessary to permit the dislocation to move from

one equilibrium position to an adjacent one.

Much of the work we are going to describe has been presented pre-

viously (Weiner, [2], [3]). Here we have attempted to make clearer the

physical ideas involved, and to estimate the magnitude of the effect ob-

served. It has also proved possible to simplify and at the same time make
more general the probability discussion of [3].

II. Dislocation Motion in a Linear Chain

The modified Frenkel-Kontorowa model consists of a linear chain of

mass points with mass m interconnected by linear springs and with

equilibrium spacing b. In addition to the linear springs, each of the atoms

is subjected to a constant force cr, representing an applied stress and to a

periodic (with period b) substrate potential U(x) which is continuous and

piecewise quadratic (fig. 1). The horizontal line in this figure (hereafter

referred to as the transition line) separates the portions of the potential

surface with positive and negative curvature. An atom above this line is

referred to as a weak-bond atom; one below, as a strong-bond atom. The

equilibrium configurations of this model have been studied by Kratochvil

and Indenbom [4] and by Weiner and Sanders [5]. As shown there, for a

suitable range of model parameters, the stable equilibrium solution has

one weak bond while the unstable equilibrium solution has two weak

bonds.

...\£,/.. 1 A A A

b

Figure 1. Modified Frenkel-Kontorowa model. Potential wells and peaks (separated in

figure by horizontal line) are parabolic.
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FIGURE 2. Sequence of atom positions during dislocation motion.

We next consider the steady motion of such a dislocation down the

chain so that the successive states of the chain, denoted by 5, U, S\
U' , . . . etc.. have 1. 2. 1, 2. . . . weak bonds as in figure 2. Note that

the term state as used here denotes only the specification of the weak-

bonded atoms and leaves free the displacement of all atoms consistent

with that specification. During the successive intervals of time for which

each state exists, the equations of motion may be written in the form:

mqS+^Sijq^cr; tt<t<t2 (2.1a)

j

mq¥+^Uijq
l

)
= (r; U < t < t3 (2.1b)

j

etc.

where q$ is the displacement of the ith atom from its equilibrium position

under zero stress in the S state, that is when the atom i= 0 is the only

weak-bonded atom, and similarly q\ is the atomic displacement measured

from the zero-stress position in the U state. The potential energy matrices

Sij. Uij, . . . are constant during each time interval because of the

piecewise linear nature of the model forces.

Let A.£, a — 0. 1, 2, . . . be the eigenvalues of the matrix Sij with

associated unit eigenvectors a£j where the eigenvalues are ordered in

increasing magnitude and a%j is the displacement of the y"th atom in the

a mode. We also introduce the normal coordinates:

j

(2.2a)
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so that

9j=2< (2.2b)

The analogous notations are employed during successive time intervals

with the superscript changed to U, S' , etc. In terms of normal coordinates,

the equations of motion, eqs (2.1), may be written:

mQS+ X&Q^a^ah; t
x
<t<t 2 (2.3a)

i

mQi; + k l

aQ l

a = o-^ aSt ; *2 < t < h (2.3b)

etc.

As shown in [2], for a suitable range of parameter values there will

be a single localized mode aft in the S state corresponding to X.# > 0,

and a single localized mode afc in the U state corresponding to A./, < 0.

Attention is restricted here to this range of parameters. The importance

of the localized modes for the atomic displacements in the vicinity of the

dislocation has been emphasized previously (see Bjork [6] and Krumhansl

[7]). The argument, which applies of course to any of the states, S, U, . . .

etc., is as follows:

The set of eigenvectors aa j are both orthonormal and complete; that is,

^ aajapj= 8a(i (2.4a)

j

^ aaJaak= 8jk . (2.4b)

a

In this latter relation, let j= k, then

2 (aaj )
2=l-(a {)j )

2
. (2.5)

But since a^j is a mode localized near the dislocation, it follows from the

orthonormality relation that (aoj)
2 ~ 1 for j near the dislocation and that

therefore

^ (a aj)'
2 <l for j near the dislocation.

a#()

That is, even if all modes are equally energized, the localized modes have

the major effect on the atomic displacements and velocities in the vicinity

of the dislocation. Furthermore, in contrast to the extended modes, the

localized modes aft, and aft do not change sign with i so that the stress cr

produces a non-zero forcing term for them in eqs (2.3).
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In view of the previous considerations, it appears reasonable to refer to

that part of the atomic velocity due to the localized mode as the directed

portion of its velocity namely

Vi=ag&g, h<t<t2

Vb:=a^Q^ t><t<h (2.6)

etc.

and to the remaining portion of its velocity

B

<=2^js' t,<t<t, (2.7)

B
B*0

etc.

as the thermal or random portion of its velocity. Note that from this view-

point the notion of what constitutes the thermal portion of the atomic

velocity is redefined at each transition. We also will refer to the momentum
of the dislocation as proportional to Qo in the S state, to Qo in the U state,

etc. It is clear that Qjj or Qtf will vary somewhat as solutions to forced

harmonic oscillator equations (eqs (2.3)), but this variation whose relative

magnitude decreases for higher dislocation velocities is not of primary

concern to us. Rather, we are concerned here with the question of the

transfer of thermal momentum, that due to vt, to the dislocation momen-
tum. Because of the piecewise harmonic character of the model, there

can be such momentum transfer only at the transition times and it is this

we consider next.

Since qf{t) and qf(t) differ only in their fixed reference points, it

follows that qf
= qf{t). Therefore,

i i

i i,/3

or, by use of eq (2.7),

QUt2) = VB Qs
0 (h) +2 ag vf(t 2 ) (2.8)

369-713 OL - 71 - Vol I - 28
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where al)j aft and 0 < ViT < 1 since a,V, and a& are like oriented

i

but distinct unit vectors. Equation (2.8) may be interpreted as follows: At

the end of the S state period, the dislocation possesses momentum pro-

portional to Q§(t2 ). Not all of this momentum can be transferred to the

localized mode in the U state because the mode shapes a& and a& differ

somewhat. This imperfect transfer is given by the first term Vi? Qo(t->) .

That portion of the directed velocity Vf{t-?) that cannot be accomodated

in the mode a^] appears at the start of the next time interval t 2 < t < t3 as

a wave pocket of thermal velocity v\\ This represents the dissipated

mechanical energy appearing as heat. At the same time, some of the

thermal motion vf(t2 ) present at the end of the S interval is now assigned to

Q l as seen by the second term of eq (2.8). This represents the transfer

of thermal momentum to dislocation momentum.

The decomposition of the same atomic velocity distribution in terms

of two different complete sets of modes at the time of transition t2 is

shown schematically in figure 3. Of course the point of the new decomposi-

tion is that during the U state, the U modes are the appropriate ones

and there will be no further interaction between directed and thermal

velocity, as defined in figure 3(b), during the U state, that is for t> < t < t :i .

It is noted in figure 3 that the thermal velocity at the end of an interval,

in this case the S interval, is represented as relatively uniform; whereas

at the start of an interval, in this case the U interval, there is a local con-

centration or wave packet in the thermal velocity v\ due to the rejected

portion of the directed velocity Vf. The reason for this difference is that

FIGURE 3. Decomposition of atomic velocities into directed (Vi) and thermal (vj) com-

ponents at the time of transition from state S to state U according to (a) 5 normal modes

and (b) U normal modes.
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the thermal velocity is the sum of extended modes which may be repre-

sented by travelling waves. Therefore the wave packet will disperse

during the succeeding interval if it is long enough, i.e., if the dislocation

is not moving too rapidly. Alternatively if the temperature level is suffi-

ciently high, the perturbation in the thermal velocity distribution produced

by the rejected wave packet will be relatively small and may be neglected

even if time for its dispersion is not allowed.

Therefore we wish to examine the transfer of thermal momentum to

dislocation momentum at a typical transition, say S to U as shown in

figure 3, under the assumption that at the end of the S interval the extended

modes, Qj$, (3^0, correspond to thermal equilibrium at temperature T.

(Hereafter it is understood that the subscript (3 has the range j3 > 0.) For

this purpose, it will be convenient to think of an ensemble of models of

the type described, all in state S with identical values of Q§(t), but with

values of Q*(t), Q%(t), Qs
p
(t), which vary randomly over the members of

the ensemble. The ensemble mean (Q§(t)) is prescribed to correspond

to a given dislocation velocity, while in accordance with the assumption

of thermal equilibrium for the extended modes, Q$(t), Q§(t) are inde-

pendent normally distributed random variables with zero means and

((Q>(t)V) = kTlk>, ((Qs(tm = kTlm. (2.9)

It is seen from the definition of uf(t), eq (2.7), that

ivf(0>=2«g,<(?|W>=6. (2.10)

Therefore if the transition from S to U occurred at the same time for all

members of the ensemble, eq (2.8) would yield the result that the ensemble

average of thermal momentum transfer to dislocation momentum was zero.

However, this is not the case. A typical member of the ensemble will

undergo a transition from the S state to the U state at a time r when atom

1 crosses the transition line (see fig. 2) or equivalently when reaches

the critical value df. That is, the transition time r is given by the equation

= +2 a2,<?g(T)=.df (2.11)

and it is clear that r will vary over the ensemble, since the values of

Qp(t) do so. The appropriate ensemble average to evaluate the thermal

momentum transfer is therefore (vf(r)) T where the subscript t is used

to emphasize that r varies over the ensemble. In the next section it is

shown that because (for the S to U transition) r is determined by the

motion of the j=l atom, (vf (r)) T > 0.
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III. Coordination Effect

Since this discussion deals exclusively with the 7 =1 atom for the chain

in the S state, we simplify the notation by dropping the subscript 1 and

superscript S. We are dealing then with an ensemble of particles with

random independent positions q{t) and velocities q{t), where q(t) is

normally distributed with means (q(t) ) = V(t) and mean square deviation

({q(t) — V) 2
) = a 2 a specified constant. The transition time r is defined

for each member of the ensemble by the equation

q(r)=d.
What is desired is

(v(r))7 =(q(r)-V(r)),.

If V(t) has only small variation in a time interval comparable to the

dispersion in the transition times, then it is possible to replace V{t) by a

suitably chosen constant value. This assumption leads to a stationary

probability distribution p(q, q) defined for the phase space of the particle

ensemble.

Instead of computing the average q(t) over the set of all members of the

ensemble at the time r when each member crosses the line q==d, we may
expect intuitively to obtain the same result by averaging the velocity over

those members of the ensemble which are at q = d at an arbitrary instant

of time, say t= 0. However, since we are dealing with a continuous

probability distribution, the probability or fraction of elements of the

ensemble precisely at q = d at a given instant is zero. Kac and Slepian [8]

have indicated how this difficulty is to be circumvented. The average

velocity is first taken over all those members of the ensemble which

cross q = d in the time interval 0 < t < 8 with q > 0 (since we are interested

only in those crossing from the left), and the limit as S—» 0 is taken only

after this average is computed. 1

In order for a particle to cross as stated, it must, to first order in 6, lie

in the region d— q8 < q < d, q > 0. The fraction, /§, of the total ensemble

in this region is

fc=\~dq\
d

p(q,q)dq (3.1)

and therefore the normalized probability distribution for averaging over

1 This type of limit is termed by Kac and Slepian as a conditional probability in "the

horizontal window sense" (a term based on their orientation of the space-time axes for the

plotting of a sample path q{t)) . The calculation which they give ([8], p. 1217) for the time

average for a single sample function indicates that this is the proper type of limit for the

process under consideration here.
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this subset is p(q, q)lfs. The desired velocity average, (g(r)) T , is then

I

Qdq
\ p(q, q)dq

J ii J'l-q8
(q(T)) T= \im

I
dq

\ p(q, q)dq
Jo Jrl-qfr

q-p{q)dq

(3.2)

qp(q)dq

where use has been made of the fact (which follows from the assumption

of thermal equilibrium of the extended modes) that q and q are independent

random variables.

If next the normal distribution for p(q) (with mean V and variance a2
)

is used, we find

— *
, (3.3)

:V2>

a result which indicates that the particle has a tendency to cross a pre-

scribed barrier when it is going faster than its average velocity. This may
be understood intuitively since the particle travels a greater distance

when it is going faster than its average velocity than when it is going

slower. Two approximations to (v{t)) t may be derived from eq (3.3) for

small and large values ofa/V.

(v{r)) T -a2IV for (a/V) < 1

(3.4)

(v(r))r-^a for (a/V) > 1

We can now return to the question of the average magnitude of thermal

momentum transferred to the dislocation momentum at the transition

from one state to another. For an S to U transition, for example, it is seen

from eq (2.8) that the value of this momentum is

i

It has been just shown that (vf (r)

)

T > 0 because the 7=1 atom deter-

mines r. In the absence of such a requirement it appears reasonable
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to assume 2 that (v*(t)) t= 0 for 0. The transfer of thermal momentum
to the dislocation momentum is then

af,W(T)) T >0 (3.5)

with (vi(t))- computed by means of eq (3.3). Therefore, due to the co-

ordination effect, the thermal momentum transferred aids the dislocation

motion.

IV. Discussion

We have seen that, for the idealized one-dimensional model here con-

sidered, and under the assumptions made, there is a transfer of some

thermal momentum to the dislocation at each step of its motion with the

thermal momentum in the same direction as, and therefore additive to,

the dislocation momentum. In effect, then, the dissipative mechanisms

acting during the steady motion of the dislocation must account not only

for the energy input by the applied stress driving the dislocation, but

also for the thermal energy input due to the coordination effect. The

general qualitative features of this process have been verified by computer

simulation of this model for a particular set of parameters, [3].

We wish next to make a rough estimate of the relative magnitudes of

the thermal and stress energy input for this model. In order to motivate

the choice of numerical values for the model, we visualize a large planar

parallel set of such chains forming the slip plane of a cubic crystal with

lattice parameter b, and containing a dislocation. The substrate potential

represents the action of the lower half of the crystal on the atoms of the

slip plane, while the effect of the upper half is represented by an applied

force crb 2 to each atom, where a is the applied shear stress.

Consider a particular chain and assume that the motion is highly

localized, i.e., only one atom with directed velocity in the stable state.

In the absence of a coordination effect let its velocity be V. If, because of

the coordination effect this velocity is increased to V+v, this corresponds

to an energy addition Ec (per atom and atomic step) due to the coordination

effect of

Er = m(Vv + v 2
l2).

The stress energy input Ea per atom when it moves one atomic spacing,

b, is

2
It should be noted, as demonstrated by the computer simulation studies of [31 that this

assumption is made less critical because of the localized nature of a^.
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E (T
= crfr

The ratio of interest is therefore

mV'<Er
ab 3 V 2 \ V

We estimate the magnitude of v from eqs (3.4) for {v(t)) t . If we set

a 2 = kT/m, then for either of the two limiting conditions considered in

these equations,

Ej__ kT
E,T crb"

The magnitude of the coordination effect in this model should be reduced

from the above estimate by two effects not yet included:

(1) The mean square of the thermal velocity is less (by a factor of

(1 — ali)) than kT/m in the vicinity of the dislocation because of the pres-

ence of a localized mode. This is a direct consequence of the completeness

condition, eqs (2.4b) and (2.5).

(2) The thermal momentum transferred is given by eq (3.5), so that

the value of (v(t) ) t must be multiplied by the appropriate localized mode
component. The precise reduction produced by these two effects depends

on the model parameters, but we may estimate its magnitude as 0.1,

so that

^01^
E <T ab 3

'

In view of the highly idealized nature of the model, it clearly would be

unjustified to extrapolate directly from its behavior to that of real crystals,

and it is not clear at present to what extent one can expect thermal energy

trapping in more realistic models. Two questionable characteristics of

the present model are the requirement of a localized mode in the stable

state and the piecewise harmonic character of the potential. It may be

worth noting that the absence of these two characteristics does not rule

out a priori the possibility of some thermal energy trapping, although with

reduced effectiveness. For one can expect that the unstable mode, corre-

sponding as it does to a negative eigenvalue, will be localized. If it comes

into existence as an essentially uncoupled mode through the large excur-

sion of a single atom there may be a coordination effect operative. There

could then be some thermal energy trapping during the unstable portion

of the motion, with loss of localized energy from the core during the period

between unstable states when there is no localized mode available.
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Discussion on Papers by A. Seeger and H. Engelke,
and J. H. Weiner.

ESHELBY: May I refer to something in Mr. Engelke's curve. I've con-

vinced myself that the curve marked "Eshelby" ought to be raised about

a decade. It's not a mistake on anybody's part, mind you, but I got the

impression that he hasn't given it the most favorable interpretation

possible. That's just a little publicity!

What I really wanted to say: Could Mr. Engelke say something about

how he got the //i-curve?

ENGELKE: The operator H\ describes two-phonon processes; it contains

the Fourier transform of the time dependent part of the dislocation strain

field.

ESHELBY: That's fed in for ordinary uniform motion; is that right?

ENGELKE: Yes, we have considered explicitly a uniformly moving dislo-

cation configuration. To get the Fourier transform of the strain field we
started from the following equations derived by Bross:

div cr= s0 ,

where the total displacement field so consists of an elastic and a plastic

part:

So So
P

^ So^
3

^

•

THOMSON: This is a question both to Mr. Engelke and Professor Weiner.

I am disturbed about the use of the momentum conservation law. A
phonon doesn't represent actual physical momentum, it's a special kind

of "crystal" momentum. On the other hand when a dislocation moves,

that is a real momentum, and I believe there may be a subtlety here: I

wonder if you've thought about how one can put down the momentum
conservation in the way you did, although it's dimensionally correct. I

wonder, for example, if in Professor Weiner's calculations there is a

direct conservation law in the sense of the transfer of phonon momentum
directly into the dislocation? Does that really work out in the simple

minded way?

WEINER: In the calculations I did there is an interaction between the

dislocation momentum, which is represented by the localized mode mo-

mentum, and the phonon or thermal motion momenta only at the dis-

crete times of transition. In between these times there is no interaction

at all; that is between transition times there is scattering of the thermal

motion because of the perturbation of force constants, but there is no net

momentum transfer to the localized mode. So it does raise the sort of

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bullough.

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 197C).
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question that you've mentioned. Between transition times the momen-
tum transfer takes place between the thermal modes themselves with

none transferred to the dislocation momentum.

THOMSON: You mean it doesn't transfer physical momentum to the dislo-

cation?

WEINER: Not at any time except the transition time, because after all, the

localized mode is a normal mode of the system. If you write the equation

of motion for the localized mode, it is a completely uncoupled equation.

There is nothing on its right hand side that says anything about the ther-

mal motion, so there couldn't be any transfer. The only kind of interac-

tion that takes place is at the transition times, and thus what seems to

play the predominant role is this coordination effect.

THOMSON: I'm a little puzzled then. Does this mean that thermal motion

is interacting with local modes of the dislocation, but that the transla-

tional mode is peculiarly de-coupled from this thermal agitation?

WEINER: The localized mode does interact with the thermal motion, but

only at discrete instants of time at which transitions from one state to

another occur.

THOMSON: How much transfer gets from the thermal motion into the

translational motion of the dislocation?

WEINER: This is something that would be statistically determined by the

sort of picture that I've given you. If we said that kinetic energy of the

thermal motion is of the order of kT, then energy of that order is trans-

ferred to the dislocation modes.

NABARRO: I want to ask whether the localized mode is localized in the lo-

cality where the dislocation is moving.

WEINER: If the dislocation is moving down the chain and the atom i - 0

(fig. 2 of my paper) is the only atom on a hill of the substrate, then the lo-

calized mode S is appropriate and it is centered on and localized about

the i = 0 atom. When atom i = 1 crosses the transition line there are two

atoms on substrate hills. Then the S mode is no longer relevant and the

appropriate localized mode is the U mode which is symmetrical about

the position mid-way between atoms 0 and 1. So the localized mode sort

of jumps along.

KRONER: I would like to ask Professor Weiner: In the state U you have

two atoms that are loosely bound. Do you have two localized modes
then?

WEINER: This depends on the parameters of the model. It is easy for this

model to calculate the localized modes and to see how many one has, and
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the conditions for it, etc. You can choose the parameters in such a way

that you have only one localized mode in both cases. You can also choose

the parameters such that, as you say, you would have two localized

modes in the case of the two weak bonded atoms. In order to keep the

whole picture as simple as possible I restricted myself to the case where

you have only one localized mode in each case. That was for simplicity,

but certainly that leaves questions to be answered: namely it is not clear

what happens to this sort of process when you do have more localized

modes. This raises other questions that have to be looked at.

BRAILSFORD: I would just like to suggest that there may be an analogy

here between the motion of the defect and that of a small polaron in insu-

lating crystals. With regard to Mr. Engelke's paper, would either he or

Professor Eshelby remind us of the different ingredients in their two

models?

ENGELKE: [Written contribution] The two calculations are similar only

with respect to the use of field-theory. They consider different interac-

tions between the moving defect and the surrounding elastic medium. In

the case of Eshelby, the ordinary radiation damping arises already in a

linear treatment, while in our case the effect comes from non-linear

elastic interactions. The difference between the two mechanisms may be

seen most clearly at zero temperature where the Eshelby mechanism

gives a contribution to the dragging force but not the anharmonic in-

teraction, which depends on phonons being thermally excited.

THOMSON: Dr. Hobart just pointed out to me, concerning my previous

question, that there is a difficulty in transferring the calculation of

Professor Weiner into the momentum conservation rule for a dislocation

in a three-dimensional crystal. The reason is that the substrate can ab-

sorb an infinite amount of momentum. It is not necessary in that case, I

believe, to have a strict conservation law. But I'm still puzzled about the

three-dimensional case. It does seem to me that we are dealing with two

kinds of momenta.

LOTHE: I think Professor Eshelby could clarify this matter.

ESHELBY: First of all you have the ordinary momentum of the continuum,

shall we say, and you also have the quasi-momentum, or pseudomomen-

tum, or crystal momentum, or bogus momentum — it doesn't matter what

you call it— which is given to you by field theory (I've been reading this

book on field theory, you see). In fact, there is a law that says that the dif-

ference between these quantities is a constant provided a certain surface

integral, surrounding the region you are interested in, is zero. There are

two cases in which it is zero. One, if you can surround what you are in-

terested in by an enormous surface upon which nothing happens, and



418 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

two — this is more to the point — if you have periodic boundary condi-

tions. Then, in any time interval, the change of ordinary momentum and

the change of quasi-momentum are equal. So, apart from a constant dif-

ference which doesn't matter, they are identical, so you can use one in

place of the other.

While I'm up here — I don't know if Dr. Brailsford got the point — let me
say that what I did was to treat a kink which flutters as it goes along and

scatters phonons nearly exactly like an electron sliding along a wire (an

insulated wire) scatters photons. Mine was flutter and Mr. Engelke's was

the interaction due to non-linear elasticity and they are additive or com-

petitive—so that it isn't the same calculation done two different ways,

it's two different ones. I'm just plugging the fact that mine's a bit bigger

than stated, because I was irritated with that picture with "Eshelby" like

this: [At this point Dr. Eshelby held his hand about one foot from the

floor.]

AUDIENCE: General laughter.
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At low temperatures in insulators and superconductors, only reradia-

tion of elastic waves should limit dislocation resonance. This effect has

been calculated using Eshelby's expression for the reradiation. It is found

that the resonance is very sharp, and still persists even when a random
distribution of dislocation segment lengths is assumed.

Key words: Dislocation damping: dislocation resonance; internal friction.

The vibrating string model [1, 2] has been useful in rationalizing disloca-

tion damping measurements. This model predicts that pinned dislocation

line segments of the order of one micron in length will have resonances

typically at about 10 9 Hz.

Comparisons of theory and experiment have shown that this resonance

is normally overdamped by the viscous drag of the dislocation-phonon and

dislocation-electron interaction so that the dislocation inertia cannot be

measured. In the absence of these processes (low temperatures in insula-

tors or superconductors), only dislocation reradiation of elastic waves

should limit the resonance. This effect has been calculated using

Eshelby's [3] expression for the reradiation.

The results found in this way for the decrement as a function of fre-

quency are given in figure 1. The decrement A is normalized by the

factor flAoAL 2 and the frequency oj by the resonant frequency (x)o{y= co/o)0 ).

Here Cl is an orientation factor taking into account the fact that only the

resolved shear stress in the slip plane is effective; A 0 = 8Gb 2
/7r

3C where

G is the shear modulus, b the Burgers vector, C is the tension, A is the

dislocation density and L is the average dislocation loop length. The

measurement frequency is gj and the resonant frequency o>o is given by

(x)o = 7r{C/A) ll2/L, where A is the dislocation mass per unit length.

If all loops have the same length the thin curve is obtained, showing

that the resonance is very sharp. If a random distribution of loop lengths

is assumed, the resonance is broadened out somewhat, but remains

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit. and R. Bulloudi.
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Figure 1. Decrement as a function of frequency. The effect of a random distribution of

loop lengths is to broaden out the otherwise extremely sharp resonance. The decrement

and frequency have been normalized by values given in the text.

1.0 1.5 2.0

FREQUENCY
2.5 3.0

FIGURE 2. The maximum displacement £ of a dislocation loop as a function of frequency.

The maximum displacement has been normalized to the value obtained for low

frequencies.

quite narrow. The magnitude of the decrement at the maximum is much
larger than is the case for a resonance overdamped by phonon and electron

scattering. Also the frequency dependence of the decrement is different

and goes as cu
2 for oj < w 0 .

Near the resonance the dislocation displacement increases sharply.

The maximum value of the displacement fmax as a function of normalized

frequency is given in figure 2. The displacement amplitude has been

normalized to the maximum value at low frequencies. Although the

amplitude increases by a factor of 8.3, the maximum displacement is

still small compared to the loop length for typical ultrasonic strain ampli-

tudes. Thus nonlinear effects resulting from changes in dislocation tension

with displacement can be safely neglected. The displacement at the
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third harmonic increases somewhat over the background value but is

still small compared to that at the fundamental resonant frequency.

Experiments to check the calculations using ultrasonic attenuation and

thermal resistivity measurements are in progress. A more extended

account of the calculations including modulus changes and finite tem-

peratures will be given later.
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DISLOCATION RADIATION
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Thin walls of mobile dislocations have been produced. These can be

excited to emit macroscopic plane sound waves. Calculations have been

made to predict the properties of the reradiated waves on the basis of a

vibrating string model which neglects dislocation interactions. Measure-

ments of the relative modulus change AG/G and the decrement A (real

and imaginary part of the response) as a function of frequency permit a

check of the Kramers-Kronig dispersion relations. In addition, measure-

ments of the amplitude of the reradiated wave provide another check

since the amplitude is proportional to [(AG/G) 2
-h (A/77) 2

]
1

2

.

Key words: Dislocation radiation: dispersion relations: internal friction.

Thin walls of mobile dislocations have been produced. These can be

excited to emit macroscopic plane waves. The amplitude of the radiated

plane waves can be measured in addition to the decrement A and the

relative modulus change AG/G. We give here the relation between these

quantities.

A schematic representation of the paths taken by the incident and re-

radiated waves in a crystal containing a thin dislocation wall is given in

figure 1. For definiteness and to correspond with an experimental arrange-

ment actually used, the Z = 0 plane is taken to be the slip plane and the

y direction is the slip direction. The wall width W is here supposed to be

small compared to a sound wavelength k. For an incident shear ultrasonic

wave polarized in the v direction [110]. the dislocations in the boundary

oscillate in phase.

A plane wave solution for the displacement V for the radiated wave

with the required properties for small and large distances from the dis-

tances from the dislocation wall is

V=b\W£ exp [-i(kZ+cot)] (1)

Fundamental Aspec ts of Dislocation Theory. J. V Simmons. R. de Wit. and R. Bulluugh,
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Figure 1. A schematic representation of the paths taken by incident and reradiated sound

waves in a crystal containing a thin mobile dislocation wall.

where b is the Burgers vector, A the dislocation density, £ the average

dislocation displacement amplitude, k the propagation vector, and to the

frequency of the ultrasonic wave. This satisfies the wave equation and

reduces to the proper displacement field V=bAgW exp (
— itot) for

d< Z < A/277, where d is the spacing between dislocations in the wall.

The reradiated strain wave amplitude is given by \e r r\ = \dV/dZ\

= bK^Wk. The incident elastic wave amplitude is given by |e/n ]
= cro/G,

where cr 0 is the stress amplitude and G is the shear modulus. The ratio of

the reradiated strain amplitude to the incident strain amplitude is then

given by

6r
co (2)

CT 0V

where v is the velocity of the incident sound wave. The frequency de-

pendence of the ratio then depends on the product of the (frequency-

dependent) dislocation displacement £{co) and the first power of the

frequency.

For the displacement £(o>), we have taken the relation given by Granato

and Liicke [1] for the vibrating string model

- bao 8 (col— to
2
)
— icod

(3)
(co

2
0 -to 2

) + (cod)

where A is the dislocation mass per unit length, co 0 = 7r(C/A) ll2/L, C
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is the dislocation tension, d= B\A and B is the viscous drag constant.

But this can also be expressed in terms of the measurable quantities A
and A GIG by using the definitions of the decrement and measured modulus

change:

ifi
= CTp

\Gb
AG
G

(4)

Thus, substituting (4) into (2), we obtain

[ (¥)*+
1/2

V

This relation is general, and does not depend on the model used for the

displacement f

.

For the string model of an overdamped resonance, A and AG/G (also

taking into account a random distribution of loop lengths) are given as

functions of frequency in figure 2. The curves are normalized by the dimen-

FlGURE 2. The values predicted by the vibrating string model for the decrement, the modulus

change, the ratio of the decrement to the modulus change, and the dislocation displace-

ment for an exponential distribution of loop lengths versus the frequency of the exciting

elastic wave.
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sionless quantity 6A 0AL 2
, where A,» = 8Gb 2l7r

3C. The ratio r= A/(A6/G) is

a useful curve for determining the (normalized) frequency since it is a

monotonic function of frequency.

Measurements of the frequency dependence of the relative modulus

change AG/G and the decrement A correspond to the real and imaginary

part of the response of the system and permit a check of the Kramers-

Kronig dispersion relations. But here, in addition, measurements of the

amplitude of the reradiated wave provide another check since the ampli-

tude is proportional to [(AG'/G) 2 + (A/77) 2
]
1/2

.

An analysis of experimental results verifies this relationship. Disloca-

tion interactions are found to be unimportant since the measured ampli-

tudes are as large as those possible in the absence of such interactions.

At 10 MHz, the reradiated amplitude is typically several percent of the

exciting stress amplitude. The direct scattering loss (reradiation) is not

always negligible compared to the indirect scattering loss (viscous phonon

scattering), contrary to assumptions previously made implicity.
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The anharmonic properties of vibrating dislocations are discussed in

terms of the nonlinear stress-strain relation and of the higher harmonics

of an ultrasonic wave generated when an initially sinusoidal wave

propagates in a solid containing (mobile) dislocations. The treatment

takes account of both lattice and dislocation contributions to the anhar-

monic behavior of the solid.

Estimates of the amplitude of the harmonics (these estimates have been

confirmed experimentally) indicate that the lattice and dislocation com-

ponents are comparable for the second harmonic and that the dislocation

component is much larger than the lattice component for the third har-

monic. Therefore, by investigating the third harmonic, it is possible to ob-

tain detailed information on dislocation dynamics, without the complica-

tions of the lattice contribution.

Key words: Anharmonic properties; dislocation dynamics; ultrasonics.

I. Introduction

When a sinusoidal ultrasonic wave of a given frequency and of sufficient

amplitude is introduced into a nonlinear or anharmonic solid, the funda-

mental wave will distort as it propagates, so that the second, third, and

higher harmonics of the fundamental frequency will be generated. In

many solids the nonlinearity of the stress-strain relation (deviation from

Hooke's law) may arise from two causes. One is the anharmonicity of the

lattice which is a characteristic of all solids, and the other is the contribu-

tion of the nonlinear part of the stress-strain relation for dislocation dis-

placement; this cause applies to solids in which glide motion of dislocations

is produced by small stresses, i.e., to most metals. The remainder of this

discussion refers to the cases for which both contributions are present.

The dislocation contribution to the generation of second harmonics in

high-purity aluminum single crystals was demonstrated experimentally

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,
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[1, 2]. For the generation of the second harmonic the stress-strain relation

must of course be nonlinear, as well as not symmetric with respect to

displacement gradients. In the case of dislocations, therefore, the dis-

placement from the equilibrium position should be different for equal

positive and negative values of stress. This condition may be achieved,

for example, by applying a static bias stress in addition to the ultrasonic

wave, assuming that the dislocations are straight at the outset. The static

bias stresses usually required for this purpose are in the range 105— 106

dyn/cm2
; these stresses have no measurable effect on the coefficients of

the anharmonic terms of the lattice [1—4].

In the case of the third harmonic, however, the condition of nonsym-

metry is not required. A symmetric (nonlinear) stress-strain relation is

sufficient; in other words, the bias stress is no longer necessary for

dislocations to generate the third harmonic. In the case of the second

harmonic, the lattice contribution and the dislocation contribution were

found to be of comparable magnitude. Thus, in order to study experi-

mentally either lattice or dislocation anharmonicity it is necessary to

separate the two effects. On the other hand, the lattice contribution to

the third harmonic is found to be a factor of 10 or more smaller than the

dislocation contribution to the third harmonic (the dislocation contribution

is comparable for the second and the third harmonic). Therefore, by

investigating the third harmonic, it should be possible to obtain detailed

information on dislocation motion under stress without the complications

of the lattice contribution.

II. Equation of Motion

When a stress wave is propagated along a solid containing dislocations,

the dislocations will oscillate causing additional local displacement and

strain in the solid. If one denotes the longitudinal displacement of an

infinitesimal element of a solid in the x direction by u, then

11 = 111 + lid,

where ui is the displacement of the lattice, and u (i is the displacement

due to the dislocation motion. The one-dimensional form of the equation

of motion for the displacement u in the x direction is given by

where p is the density of the undeformed material, o~ is the applied

stress, and t denotes time. It is convenient to use the differentiated
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form (with respect to x) of eq (1)

Bui . diid \

dx dx )

d 2a
dx 2 '

(2)

Thus, the problem is now reduced to expressing dujdx and dud/dx as

a function of stress cr and to solve eq (2) with respect to cr. In the present

case, however, a sinusoidal wave of frequency to is introduced at one

end of the specimen (at x = 0). As the wave propagates, the wave form

will be distorted due to the nonlinearity of the solid. Therefore, at a dis-

tance x, the stress cr should be expressed in terms of the harmonics

of the fundamental wave, i.e.,

cr= Ao + Ai cos {cot — kx) -\- A% cos 2((ot — kx — S 2 )

where A 0 is a static bias stress, A u A 2 , and A 3 are the amplitudes of the

fundamental, the second, and the third harmonic waves, respectively,

28 2 and 38 3 are the phase angles of the second and the third harmonics

relative to the fundamental wave, respectively, and k is the wave vector.

It is assumed here that dispersion is negligible. The boundary conditions

are

Ai—Aio (the amplitude of the induced fundamental wave),

A 2=A 3= 0.

Since the nonlinearity considered here is not expected to be large, one

can assume that

Thus, if one expresses both sides of eq (2) in terms of the harmonics,

a comparison of the sine and cosine terms of the corresponding frequencies

will provide sets of equations which determine the amplitudes of the

harmonics.

A. Expression for duifdx

The one-dimensional relation between stress cr and displacement

gradient dui/dx of a solid, correct to the square terms is given by [5]

-\-A 3 cos 3(cot — kx — 83), (3)

at jt = 0.

r dui
,

/ dui

\

2

(4)
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Where E\ is the second-order elastic constant and a is a combination of

the second- and third-order elastic constants. Thus,

dui 1 a
,

5x E\ Ej
+

+ Ai a

E l E\

a

{2A 0A 1 -^A lA 2 cos 282 )

AiA 2 sin 28 2 I sin (cot— kx) +

-- (2A 0A 2 cos 2S 2 +
2̂

cos (<*)£— A:*)

cos zo 2

#1

cos 2(o)t — kx)

+ -=r sin 282 — 77:, 2A 0A 2 sin 2S 2

£1

+ ^cos 38 3 -j^(2A 0A 3 cos 3S 3 + ^i^2 cos 28,)

+ ^ sin 38 3-^ (2^o^3 sin 38 3 +/M 2 sin 2S 2

sin 2(o>f — Am:)

cos 3(a)t — kx)

sin 3(o>£ — /ex ) . (5)

B. Expression for 3u d /dx

The linear case of small-amplitude dislocation oscillations under the

influence of an externally applied oscillatory stress was treated, using

the vibrating string analogy, by Koehler [6] and later by Granato and Liicke

[7]. In these treatments [6, 7] the line energy is assumed to be independent

of the position and orientation of a dislocation. In fact, however, even in

an isotropic material, the line energy of an edge dislocation differs signifi-

cantly from that of a screw dislocation [8—11]. It follows that, in general,

the line energy of a bowed-out dislocation (under an external stress) is not

constant along the dislocation line. In the case of an anisotropic solid,

the energy difference between edge and screw dislocations could be quite

large as pointed out by Foreman [9], and deWit and Koehler [10].

The present study is concerned with nonlinear effects for which the

assumption of small displacement amplitudes does not apply. Under such

conditions, one has to take into account the effects of both the variation

of the line energy along dislocations and the higher order terms in (d£/dr?)

(for definitions of £ and 77 see fig. 1).

In order to obtain the equation of motion of dislocations, one has to

establish first the differential equation determining the equilibrium con-
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FIGURE 1. Bowed-out dislocation £ = f(r)). *q axis coincides with the straight-line configura-

tion of the dislocation before bowing out. b, Burgers vector.

figuration of dislocations under the influence of a static stress. For this

purpose, we follow the calculation carried out by Leibfried [11] and extend

it to the nonlinear case by retaining the higher order terms of (d^/dr?) in

the expansion of the energy expression [see eqs (10) and (11)].

The line energy of a dislocation (per unit length) in an isotropic material

is given by

for edge dislocations and

W«= (fJLbWir) In (RIRC ) (7)

for screw dislocations. Here \x is the shear modulus, v is Poisson's ratio, b

is the absolute value of the Burgers vector, R ( is an effective core radius

(in the order of 6), and R is an effective external radius. Typically. R/R,

is about 104 and the logarithm therefore is in the order of 10. Since W is

only logarithmically dependent on R/Rc the exact value of R/R ( is usually

considered to be of minor importance.
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In the string model, a line segment ds of a dislocation line has an energy

UiAs with

UI = We (bll&{ +Ws {b^V) = We(l-m cos 2
0).

(8)

Here, b± and b\\ are the components of the Burgers vector b perpendicular

and parallel to the segment, 6 is the angle between b and ds, and

m={We -Ws)IWe . (9)

In the following we will refer to a straight dislocation line along the r) axis

as the original and stable position. The dislocation motion is governed by

the change At/ in energy caused by deviations from the straight line. The

slip plane is taken as the (£, r\) plane and the dislocation line is defined by

f =/(tj) (fig. 1). Then, by using eq (8) the following is obtained:

Atf= j dWe\\ +/' 2

)
1

2

{ 1
- m cos- (6- 9') } - (1 - m cos- 9) ]

.

Here,/' = d£ldr), and 9 — 9' = 0 is the angle between the line segment

and Burgers vector; 9 and 9' are shown in figure 1. Introducing

tan 9' =/' we obtain

AC/=|^re{(l+//2

)
1/2

+ 2/' sin 9 cos 9+/' 2

sin- 9) (1—m cos 2 9) j' (10)

Assuming f'<l (i.e., moderate dislocation displacements), the integrand

of (10) can be expanded in powers of /'. If one keeps terms up to the

fourth power in/', the result is given by

AU=
J
dr)We [-2mf sin 9 cos 9 +| (1 + mcos- 9

-2msin 2
9)/' 2+/' ! sin9cos9- I (1+3th cos 2 9-4m sin 2 9)/' 4

]. (11)
o

If the dislocation is pinned at 17 = 0 and 7) = L, the deviations from the

straight configuration should be the same for equal positive and negative

stresses. In other words, At/ should be symmetrical in terms of /'. There-

fore, in eq (11) the terms containing/' and /' 3 should vanish.

The equilibrium condition for the line segment L can be obtained from

a variational principle; i.e., the total energy W=A.U—U T should be an

extremal, where U T is the work done by the external force and given by

Ur= rb
jo

L

f(v)dr,,
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and r is the resolved shear stress in the glide plane and in the slip direc-

tion. The equilibrium condition becomes

8W=8(AU-U T)=0

or, according to the Euler-Lagrange equation,

d_ dW_dW=
dr) df df

The result is then

-fWe [l + m cos- Q-2m sin 2 9)

-| (l + 3ro cos 2 G-4m sin 2 0)/' 2
] =rb. (12)

If one assumes that the line energies of edge dislocations and of screw

dislocations are equal, i.e., m = 0, then eq (12) becomes

which is the case treated in references [1—3]. If one assumes further that

the higher order term is negligible, the equation reduces to

-Wef= Tb,

which is the case of the linear approximation treated by Granato and

Liicke [7]. Even in an isotropic material, m is not equal to zero, and is

given by

m — p — -(p, roisson s ratio),
o

Thus, for an edge dislocation (0 = 7r/2), eq (12) reduces to

or, since WV/3 ~^pt6 2
,

-\»bT(l+^f") = Tb. (13)
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For a screw dislocation (G = 0),

-(4/3)rf,/'(l-(9/4)/'
2

)=r6,

-2^r(l-(9/4)/ 2
)=r6. (14)

Equations (13) and (14) reveal two important features: (a) The linear term

of eq (13), -\^b 2f\ is \ of the linear term of eq (14), -2fib 2f. This

means that for a small applied stress, the displacement of an edge dislo-

cation is approximately four times larger than that of a screw dislocation.

Therefore, for a small oscillatory stress, it is expected that the contribution

from edge dislocations is predominant for quantities such as attenuation

and velocity change, provided that the density and loop lengths of the

two types of the dislocations are similar [8, 11]. (b) The nonlinear term in

3
eq (13), —-f"2

is negative, while that of eq (14), + (9/4)/' 2
is positive.

This means that, the stress-displacement relation for edge dislocations

is "hardening" (as the applied stress increases, a larger stress incre-

ment is necessary to produce a given amount of displacement), while

the stress-displacement relation for screw dislocations is "softening"

(see fig. 2). Of course, the deviation from a linear stress-displacement

relationship, whether it is softening or hardening, is the source of the

harmonic generation.

The nonlinear relation between a static stress and the dislocation dis-

placement of a pinned dislocation leads to the following equation of

motion of a dislocation under the influence of combined static and oscilla-

tory stresses (damping proportional to dislocation velocity is assumed):

dt 2 dt

where

( Si]'
2
)

C
(dry ) ( dr) 2

bRa,

a is given by eq (3),

A = TTpb 2 (effective mass of dislocation per unit length),

B is the damping coefficient,

C=We (l + m cos 2 0-2m sin 2 6),

r , = 3 (l + 3m cos 2 9 - 4/7/ sin 2 0)
2 (1 + m cos 2 6-2m sin 2 0)

'

m and 0 are the quantities defined in the previous section

b is the Burgers vector,

R is the resolving shear factor converting the axial stress to the shear

stress in the slip plane and in the slip direction.
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Screw Disloca tion

Dislocation Displacement

FIGURE 2. Stress-displacement relationship of screw and edge dislocations (schematic);

straight lines give linear approximation.

The nonlinear differential eq (15) can be solved approximately by iteration.

First, utilizing the Fourier expansion of bRcr, one obtains a solution £ i for

the linearized form of eq (15)

£l = flO+ fll + fl*+fl (16)

where

^bRA
x

(2n
{>

Att ^ (2n+l)S
/!

/2

u
(2/1 + 1)177?

L'o

cos (a)T— kx — &\n)
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with

Sn=M-W2
)
2+M) 2

,

con=(2n+l)(7TlLo)(CIA)H\

tan Si,* = cod/ (co
2 — o>

2
)

,

d= B/A,

t 4>bRA 2 ^ 1 1 v . (2n + l)77T? , .

with

tan 2§ 2 «

A#„= {fi>*- (2o>) 2
}
2 + (2W) 2

,

2W
a)

2n-(2w) 2

4<bRA 3
~ 1 1 . (2n+ 1)7777

with
r={co 2

! -(3w) 2
}
2 +(3oj^) 2

,

tan 3S 3n
(a>

2„-3oi 2
)

In the following analysis, only the first terms (n = 0) of each infinite series

are taken into account. 1 Inserting £ = £i + £ 2 mt0 e(I (15), where f2 is

the iterated solution, and retaining those nonlinear terms containing

only f 1, one obtains the equation

^ sin ^7^+ sin^) {A {)P + AiQ cos (cot — kx — §10)
4 \LoJ \ Lq Lq

+ A 2K cos 2 (wf - kx - 62 - 820) +AJ cos 3(^-A^-63
-8

:?0)}
3

, (17)

where

4bRL 2 ibR ., >\bR

7T
3C ' ^ ^TrS// 2

' ^ttm;/2 '

7
^TrT^2

'

1 The displacement of the modes corresponding to n > 0 decreases very rapidly with in-

creasing n and may be neglected for the purposes of this calculation.
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Neglecting the term sin (37r7)/Lo) and retaining the terms up to the third

harmonic in the right-hand side of eq (17),
2 one obtains the solution f2 ,

6= 60+61 + 62+ 6 (18)

where

t 7 . TTlTj L~
60= n sin —

L () 7T-C
A$P3+^A0PAiQ'2

61 = h sin
7TT) 1

Lq ASq I
AiQ* + 3^^!^] cosM - - 25n.

62 — ^ sin

6s = h sin

^ 1

Lo AM\ ~

ITT] 1

Lo ATI*

^^AoPA.QA.K cos (Q)t-kx-28.>-28*o)],

-AoPA'fQ 2 cos 2(cj£ — kx — 8 U) — 820)

+ 3A 2P 2A 2K cos 2 (art- kx- 82 - 8.

^?(> 3 cos 3 (of - for - 8i«, - 830)

+ 3y4fjP
2
y4 3t/cos 3(o)£ — A:* — 83 — 28:30

)

+ 3^ 0P^i^2^cos3 I atf-ibc-3 (810+ 282+ 2820+3830)

Thus, after one iteration, one obtains for the solution of eq (15),

f=6+6i (19)

where 6 and 6 are given by expressions (16) and (18).

Once £ is obtained in terms of 77, du (i/dx can be calculated by the relation:

dud= Nbq

dx L 0 Jo
(20)

where N is the effective dislocation density and q is a factor converting

the shear strain to the longitudinal strain.

2 When the term sin (37T7j/L0) is retained various parts of the solution are multiplied by

numerical factors of order unity.
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III. Amplitude of the Second and Third Harmonic

The amplitudes of the second and third harmonic are derived by solving

the differential equations obtained from inserting expressions (3), (5) and

(20) into eq (2) and equating separately the sine and cosine terms of each

harmonic. After some simplifications the following results are obtained.

1
— /f 10< (21)

with a, = (p(o 2g/2k) [Q sin S10 + {Sh/ASy2)A 2P2Q sin 2 5 10 ) , (22)

k2 — a 2= po) 2 —j^Ao+g Q cos $io + -^rj^A$P2Q cos 2 S 10 j, (23)

where Am is the amplitude of the induced oscillatory stress at x= 0,

and g=2Nbq/7T.

Expression (22) represents the attenuation of the fundamental wave.

Since k = o)/v and v— (E/p) 112 {v is the velocity of sound in the material),

the first term of the expression (22) can be written

a x o =WE i b
2 qRco 2 dlvAiT 2So , (24)

which agrees with Granato and Liicke's [7] results. The second term of

the expression (22) represents the effect of bias stress on the attenuation.

Although it increases with the square of the bias stress, its contribution

to the attenuation turns out to be negligible in the stress range of interest

here.

From eq (23), one can derive the velocity change Av/v of the fundamental

wave,

(Avlv) = (a/E 2)Ao-$E 1g{Q coso 10+ (3h/AS!>' 2 )A 2P 2Q cos 25 10 }. (25)

The amplitude A-> of the second harmonic is:

A* ^3 sin 28-2 —
| A^i/2

A

-2a x x — f) —a 2 x
B^ljl £

A-

Au)
a2 -2a,

(26)

with

a2 =(poj 2g/k){K sin 2820 + (3h/AMV 2 )A-2P 2K sin 4820 }, (27)
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where the following relation should also be satisfied:

d2A, Idx 1 = [4>k
2 - 4pw 2

{ ( )
- (2alE-l)A {) + Kg cos 2S,„

-f {$hglAMV 2)AlP*K cos 4820}]^2 + 4pG)2{(a/2£?) cos 282

-I (hglAMi l2)A 0PQ 2 cos 2(82
~ 610- 820) (28)

If one compares the expression for a-> [eq (27)] and that of the fundamental

wave «i [eq (22)]. it is easily seen that a2 is equivalent to the attenuation

of an independent wave propagating with a frequency 2co. This means

that since dispersion is assumed to be negligible, the following relation

between k and a> should also hold.

4P-af = 4paJ
2 [(l/£ 1 )

- (2a/Ef)A0

+ g{K cos 2820 + (3h/AMl !2 )A 2P2K cos 4820 }]. (29)

Substituting the expressions (26) and (29) into (28), one obtains the follow-

ing relation for the phase angle 62 between the fundamental and the sec-

ond harmonic wave:

_ g/2g,
- (ShlAM^)ApPQ2 cos 2(8 10 + 82(,)

tan 25, =
(Sh/AMll2)A0PQ2

sin 2 (8 10 +M (30)

If one neglects the dislocation contribution to the second harmonic, the

phase angle becomes,

2S 2 = 7t/2.

On the other hand, if one neglects the lattice contribution, 2(82 — Sio— 82o)

is very close to 7r/2. Thus, one can express the amplitude of the second

harmonic with reasonable accuracy as follows:

2 e-2a Y
x — e-a2x

A2
=^— \X2

H~ Y2 2JCY cos 2(S10+ £o)] 1/2 ^?0
, (31)

k ol2 — 2aj

where

X = a/2E2

Y=4,Mb4R3qC'Aol7riAzSoMll2L*,

furthermore, in the case where too ^> 4co. the factor

COS 2(8io + 8>o)

369-713 OL - 71 - Vol I - 30
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can be replaced by

(GHjSoMl l2)X(ai-5to2d*)..

The amplitude A-A and the attenuation a
:i
of the third harmonic are:

_3 p<o
2ghQ3A 3

l0 sin 3(83-810-830) e-^-e-"**
A*~8 k AT)}'1 a3 -3a,

(32)

3 pu2
g

J sin 3$30 +-^ A 2P2
J sin 68»0

J,
(33)

As in the case of the second harmonic, expression (33) indicates that the

third harmonic generated in the solid attenuates in the same manner as

an independent wave of frequency 3gj introduced into the solid. This

leads to the following condition determining the phase angle 38s between

the fundamental and the third harmonic wave:

tan 3(83 — 810 — 830) = 6k/ (a3 + 3«i).

Since the right-hand side of the above equation is a very large quantity,

3(83 — 810 — 830) is positive and very close to it/2. Thus, one can express

the amplitude of the third harmonic with reasonable accuracy as follows,

_ 1 2p(x)
2Nb4qR 3CC'A

?()
e-^x^ e -a 3x

A '

A ~
kA+Sf'T^Ll a 3 -3a,

(34)

It should be emphasized that expression (41) represents the contribution

of dislocations only to the third harmonic and that the lattice contribution

is neglected.

IV. Consequences of the Model

(a) Two contributions to the second harmonic have been treated. One
of these arises from the lattice anharmonicity which is represented by
the first term of expression (31), the other arises from the nonlinear

dislocation motion which is represented by the second term of this ex-

pression. In addition, the existence of the phase angle 2 (810 + '820) be-

tween the two components leads to the cross term in expression (31).

The factor Y is a function of dislocation density, of bias stress (internal or

external), and of loop length (which in turn depends on bias stress), while
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X is independent of the bias stresses in the range considered here and is

a constant for a given solid and mode of wave propagation. In general,

a separation of the two contributions is quite difficult because of the

cross term in expression (31). Under certain circumstances, either X
or Y is dominant and the cross term is unimportant. A separation of the

two terms is also possible, of course, when 2(810 + 820) ~ (tt/2) (810

and 820 depend on loop length).

In the case of the third harmonic, the lattice contribution does not

appear in the expression (34). This is simply because the terms in powers

higher than the square of the displacement gradient are not included in

expression (4). Although for the lattice part the magnitude of the cubic

term relative to the linear and the square terms is not known at present,

it is reasonable to assume that in most solids the lattice contribution to

the third harmonic is negligible, compared to the dislocation contribution.

Thus, the third harmonic observable near room temperature is considered

to be due predominantly to the nonlinear motion of dislocations.

(b) The amplitudes of the second and third harmonic are proportional,

respectively, to the square and cube of the amplitude of the fundamental

wave as long as the dislocation loop lengths remain constant.

(c) At x = 0, the amplitude of the harmonics is zero. As the fundamental

wave propagates along the x axis, it starts generating the harmonics.

However, both fundamental and harmonic waves suffer attenuation. The

resulting initial buildup followed by a decay of the amplitude of the second

and third harmonics as a function of propagation distance x are

represented, respectively, by

Each factor has a maximum at a distance (*2 ) max and (*3 ) max given by

)/(a2 -2ai) (35)

and

-e-Q^)/(a3 -3ai). (36)

Xz) max
In (201/02)

2a x
— a->

(37)

^3) max
In (3ai/a 3 )

3a: 1
— a 3

(38)

(d) Since C appears in the factors So, Afc and To, the magnitude and

the sign of the harmonics depend on the values of C and C, which are, of

course, a function of the orientation angle 9. In figure 3, the factors
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I I I I I I I

0 15 30 45 60 75 90

Orientation Angle @ (degrees)

Figure 3. Variation of the factors /8 and C ' with orientation angle G.

(3 = C\We = 1 + ra - 3m sin 2 G
and

£, _3 ( 1 -h 3/72 — 7/71 sin 2 B)
~2 (l + 77i-377isin 2 0)

are plotted as a function of G, taking m = v=l/3 (v is Poisson's ratio).

As can be seen, C changes its sign at approximately Q = 61.S deg. This

means that the harmonics generated by dislocations with 6 in the range

0 < G < 67.5 deg are opposite in sign to the harmonics generated by dis-

locations with G in the range 67.5° < G < 90°. In the case of the second

harmonic, the applied static stress A 0 is, in fact, a parameter to indicate

the degree of deviation of a bowed out dislocation from its straight-line

configuration. Therefore, regardless of whether the static stress is tension

or compression, the absolute value
|

Aq
|
should be used in evaluating the

expression (31). Thus, except for the factor C, the quantities that appear

in the dislocation contribution are all positive. The contribution of the

dislocations may be of the same or opposite sign as the lattice term.
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depending on the relative signs of X and Y, as well as on the sign of

((*)% — 5o) 2d2
) — see eq (31). In the case of the third harmonic, the absolute

value should be used in evaluating the expression (34).

The factor (3 (as well as C) also depends on the angle 0. The larger

the value of C, the smaller is the corresponding dislocation displace-

ment for a given stress. Since the amplitude of the harmonics depends

strongly on the dislocation displacement, it is expected that the dis-

locations with smaller C values will generate larger harmonics, other

factors being the same.

As an example the 0 and loop-length-dependent part of the amplitude

A 3 (disregarding the attenuation factor)

CC'IS$*T8*L* (39)

is calculated numerically for edge, screw, and 7r/3 dislocations as a func-

tion of loop length L0 , for a single loop and using the following values,

^ = 7.6X10- 15
g cm- 1

, £ = 5X10- 4 dyn s cm" 2
, oj = 2t7X10 7 s"1

,

We = 1.2fAb
2

,
jLt = 3x 10 11 dyn cm-2

, 6= 3 X 10-8 cm. The results are given

in figure 4. As can be seen, the maximum amplitude of the third harmonic

Dislocation Loop Length (cm)

Figure 4. Amplitude of the third harmonic A 3 and attenuation of the fundamental wave
a, for edge, screw, and 77/3 dislocations as a function of loop length. (Arbitrary units
for^ 3 andai).
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arising from edge dislocations is considerably larger than that arising

from screw or tt/3 dislocations. In this figure, the attenuation of the

fundamental wave a\ is also plotted for the three types of dislocations.

In each case, the loop length for the maximum amplitude of the third

harmonic coincides approximately with loop length corresponding to the

inflection point in the attenuation curve. The maximum of the third

harmonic, therefore, corresponds approximately to the transition between

underdamped and overdamped behavior. The condition determining the

loop length for the maximum amplitude A s is given by

coo/w- 1.12(d/w) 1/2
. (40)

In plotting figure 4 the absolute values are taken for the third-harmonic

amplitude As. As mentioned earlier, the amplitude A 3 for dislocations

whose orientation angles B are in the range 0 < B < 67.5° are opposite

in sign to those whose orientation angles are in the range 67.5° < B < 90°.

0 2 4 6 8 10 x I0" 4

Dislocation Loop Length (cm)

FIGURE 5. Amplitude of the third harmonic A 3 and attenuation of the fundamental wave

a] averaged over the range 0 < G < 90°.
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Therefore, cancellations of amplitude A3 will take place when the dis-

locations in the two ranges operate simultaneously. To see this effect, a

simple average of the expression (40) over the range 0 ^ B ^ 90° was

calculated as a function of loop length using the same numerical values

as given above. The results are shown in figure 5. The cancellation occurs

approximately at the loop length of 1.9 X 10~ 4 cm. Whether this effect

becomes significant or not depends, of course, on the orientation distribu-

tion of dislocations.

V. Summary and Conclusions

The predictions of the model were found to be consistent with experi-

mental results. This was demonstrated by studying the effect of small

bias stresses on A3 in single crystals with different initial dislocation loop

lengths [12]. It is concluded, therefore, that the model provides a correct

phenomenological description of harmonic generation due to dislocations.

In view of the difficulties in separating lattice and dislocation contribu-

tions in the case of the second harmonic, dynamic properties of disloca-

tions are studied more easily through the generation of third harmonics.

Attention is called to the fact that in order to study lattice anharmonicity

by means of second-harmonic generation, it is necessary to eliminate

the dislocation contribution.
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A SOURCE OF DISSIPATION THAT PRODUCES
AN INTERNAL FRICTION INDEPENDENT

OF THE FREQUENCY

W. P. Mason

Department ofEngineering and Applied Science

Columbia University

New York, N.Y. 10027

Many measurements of the internal friction of metals and other materi-

als such as the earth's crust show that there is a component at low frequen-

cies which produces a value independent of the frequency. It has been

shown that this component is associated with dislocation motion.

Using a model for which dislocation motion results from the motion of

kinks, it is shown that such a loss can be associated with the energy dis-

sipated when kinks cross Peierls barriers. Theoretical calculations have

shown that the energy dissipated in mechanical vibrations requires a dis-

sipative force equal to from 0.01 to 0. 1 of the Peierls stress to replace the

energy lost. At the low stresses used in internal friction measurements, it

requires a thermal activation to cause motions of the kinks. The lag of the

motion behind the applied stress produces a drag coefficient B
proportional to the temperature. The energy due to kink dissipation

produces an internal friction to modulus change ratio (3, equal to the ratio

of the dynamic to the static kink stress. Measurements in copper and in

the alloy Ti-6A1-4V indicate that this ratio is about 0.03, in agreement

with calculations.

Key words: Internal friction; kink motion; Peierl's stress.

I. Introduction

It has long been known that metals and a wide class of materials—
such as the earth's crust [1] — have an internal friction Q~ l which is

independent of the frequency. Early measurements by Wegel and Wal-

ther [2], shown by figure 3f~3, page 3-95, of the American Institute of

Physics Handbook (1963), show that the internal friction for nonmagnetic

materials is either constant or slightly decreasing with frequency. While

no tests were made to ascertain the cause of the internal friction, it ap-

Fundamental Aspects of Dislocation Theory. J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I, 1970).
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pears that the only defect which can move fast enough to cause the internal

friction is the dislocation. More recently, measurements [3] have been

made over wider frequency ranges — 1 Hz to 40 KHz— with similar results.

Tests have shown that this background internal friction is due to dislo-

cations. It seems probable that the internal friction in the earth's crust

is also due to dislocation motions, since the rocks are polycrystalline

materials under enough pressure to generate a considerable number of

dislocations.

As long as dislocations were assumed to lie across Peierl's energy

barriers, as in the Granato Liicke model [4], the only cause of dislocation

damping was due to the communication of energy to phonons and elec-

trons, and this produces a drag coefficient proportional to the velocity.

However, in the last few years, convincing evidence [5] has been pro-

duced that dislocations lie partly in Peierl's barriers with these parts

connected by kinks lying across energy barriers, as shown by figure 1.

When a stress is applied to the crystal, the dislocation moves by the

kinks moving. As shown by Seeger and Schiller [5], such kinks have

masses and damping constants and also kink energy barriers which have

been calculated [6] to be

where (Tk is the kink stress, W the kink energy barrier, v is Poisson's

ratio, b the Burger's distance, w the kink width, crp the Peierl's stress,

(1)

w

w
/

b

en

CD

c

distance

Figure 1. Dislocation kinks and kink energy barriers.
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Figure 2. Modulus change and internal friction as a function of the temperature. Measure-

ments made at 10 MHz. Dashed curves show calculated value of an activation energy

process (after G. A. Alers and K. Salama).

and fi the shearing modulus. As shown by figure 2, the best evaluation of

W comes from the work of Alers and Salama [7], which indicates that

half the modulus defect has disappeared as the temperature is lowered

to 0.1 K. This decrease in modulus defect requires a distribution of

activation energies centered around ^=1.25xl0 -4 eV=1.5xlO -16

ergs, as can be seen from the calculation given in Section II. This cor-

responds to a kink stress of 4.5 X 107 dynes/cm2
,
corresponding to a strain

of 1.1 X 10~ 4
. This should also be the elastic limit at 0 K for very pure

copper, which glides by kink motion [8]. Most measurements are from
10~ 5 to 10 _4jii but at a temperature for which thermal activation can

lower the limiting stress.

Since it requires strains in excess of 10 -4 to cause kink motion over

barriers, the strains of 10~ 8 to 10 -7 usually used for internal friction

measurements are not large enough to cause the kinks to cross their kink

barriers. It requires thermal energy to accomplish this and this produces
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a slight lag of the motion behind the applied stress, which results in a

drag coefficient B of the same order as that calculated by Leibfried [9] for

interactions with phonons. The thermal model and its consequences are

discussed in section II.

In order to obtain an internal friction independent of the frequency,

we have to have a source of energy loss proportional to the number of

kink displacements rather than to their velocity. Such a source of loss

has been calculated by Weiner [10] and by Atkinson and Cabrera [11].

Using a Frenkel-Kontorova model, they have shown that it takes a dynamic

Peierl's stress of from 0.01 to 0.1 of the Peierl's stress to keep the dis-

location moving after it first crosses the barrier. This stress is necessary

to replace the energy lost to mechanical vibrations when the dislocation

moves discontinuously across the barrier. Since on this thermal activa-

tion model, the displacement and hence the energy loss is proportional

to the applied stress, this is equivalent to impressing a force t* = r(l —jf3)

on the string model where /3 is the ratio of the dynamic to the static

Peierl's stress. Section III shows the effect of applying such a stress to

the string model. A low-frequency component results with a ratio of the

internal friction Q~ x to the modulus change AE/E equal to (3. At high

frequencies, the drag coefficient B produces the highest internal friction.

Using the results of Thompson and Holmes [12], the value of /3 appears

to be from 0.04 to 0.09, which is within the calculated values. A recent

measurement of one alloy Ti-6A1-4V gives a value of 0.03.

II. Thermal Activation Model for Kink Motion

The actual motion of the kinks for all stresses applied for internal

friction measurements will be one Burger's distance or less. Hence the

potential well model that we have to consider is the two-well model shown

by figure 3, where the separation between wells is one Burger's distance b.

FIGURE 3. Dislocation potential well model.
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The value W is the height of the potential barrier. The effect of a stress

is to lower one barrier in the direction of motion and to raise the other

in the direction away from the motion by amounts

W l
= W- 1^1 and W2=W+'1̂ - (2)

where r is the applied shearing stress and rab is the force exerted on the

kink, where a is the kink height.

From reaction rate theory it is known that the average time to cross

the barrier in the positive direction is

t = t0e
2 " (3)

where to is the time that kink will be attempting to cross the energy

barrier. If vq is the vibration frequency —usually taken to be about

10 13 — then to is usually taken to be

to^TT-=— = L6 x 10-14 s - (4)
ATTVq (0o

The number of jumps per second — a Vi — in the forward direction is

(5)

After the kink has crossed the barrier there is a certain probability that

it will jump back against the applied stress. This results in the number

of jumps per second «2i given by

a 21 = a)oe-{lv^ ab2'2)lkT
. (6)

Hence the net rate of jumps per second is

c*i2- a 2l = me - wlkT [e™b2 l2kT- c-«*Wr] . (7)

For shear stresses corresponding to strains of 10"" often used in internal

friction measurements, 7= 4 X 104 dynes/cm2
, a is in the order of 2 X 10~ 8

cm, and 6 = 2.55xl0~ 8 cm for copper. Hence rab 2l2kT < 1 even down

to 0.1 K. Similarly the term e~ wlkT is near unity for all values of T above

5 K. Hence the number of jumps per second should be

a vl -an = 2TT* 10 ]
rab'2

kT
(8)
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At room temperature for a strain of 10~ 7— stress 4x 104 dynes/cm2 — the

number of jumps per second should be about 8 X 108
. If we assume that

it takes 2ir jumps in the time of a cycle for a dislocation to follow the

applied stress, this corresponds to a frequency of 125 MHz.
At low temperatures, on account of the exponential factor, there will

be some frequency for which the dislocation will not follow the applied

stress. According to figure 2, for measurements made at 10 MHz, half

the dislocations are not able to follow the stress at 0.1 K. This allows one

to estimate the value of W as

107 1
P-wim.\) = _ = _—_ iq\

3
/4 x 104 x 2 x 1Q-8 x 6.5 x lQ-"\ 3.75 x 104

[ }

\ 1.38 xl0" 16 x 0.1 )

orW= 1.5 X 10- 16 ergs = 1.25 X 10" 4 eV. It will be noted that this mecha-

nism does not result in a peak in the attenuation as assumed in the dashed

line of figure 2, since it results only in a gradual elimination of the number

of dislocation loops that can move.

The lag in the dislocation motion behind the applied stress does result

in a drag coefficient proportional to the velocity and the absolute tempera-

ture of the same order as that calculated by Leibfried [9]. To calculate

this value we assume that there are no pinning points. The total dis-

placement D of the dislocation kink per second will be

D= b{oi\z — a-zi
WjkT

m
(10)

kT

Hence this lag in displacement results in a drag coefficient B equal to

rh kTewlkT
B= Tr=~-r-= (1.7) x io- 7 r. (11)

At room temperature B will have the value

£ = 0.5X 10-4 dyne sec/cm2
, (12)

which is in the same order as the drag coefficient calculated by Leib-

fried [9] for interactions with phonons.

For slowly applied stresses, the number r) of kinks crossing the barrier

reaches an equilibrium value, since the kinks crossing the barrier have a

stored energy of o>a£> 2
/2 gained from the negative slope of the barrier.

The potentials on each side of the barrier reach an equilibrium value when

(r) {)
— rj)rab 2l2= {crk — r)a6 2

/2 or 17 = tjot/ox

where 170 is the total number of kinks.
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III. Internal Friction Independent of the Frequency

In order to obtain an internal friction independent of the frequency,

we have to have a source of energy proportional to the number of kink

displacements rather than to their velocity. Such a source of loss has been

calculated by Weiner [10] and by Atkinson and Cabrera [11]. Using a

Frenkel-Kontorova model they have shown that it takes a dynamic Peierl's

stress of from 0.01 to 0.1 of the Peierl's stress to keep the dislocation

moving after it first crosses the barrier. This stress is necessary to replace

the energy lost to mechanical vibrations when the dislocation moves

discontinuously across the barrier.

For the model shown by figure 1, an equivalent string model can be

obtained by equating the area swept out by the kinks to the area deter-

mined by the displacement of the dislocations assumed initially to be

straight lines. For the low frequency case considered here, we can neglect

the damping due to the drag coefficient B. For N{1) dislocations of length

/, we can set

nab = N(l)xl = N(l)Al*l6 = TN
}

l

l

l
*

(13)
OfJLD

where n is the number of kink jumps, x is the average displacement of

the string, and A a constant given by eqs (21) and (23) with (3 and d set

equal to zero. If n0 is the number of kink jumps occurring when the kink

stress (Jk is applied, then n0 is

N(l)o-kbl*
1

N(l)rbl* nor n „
n0 =— —— ; also n =— — or n= (14)

6/jLab3 bfxab 6 o- /,

When a kink crosses the barrier under the applied stress alone, it

acquires an energy (Juab~\2 from the negative slope of the potential well.

This energy is applied to stretching the dislocation and hence the energy

required to obtain the maximum extension of the dislocation is

IWr^)--^- (15)

The energy stored in the crystal is

<rl a?, o-,
2

2fJL
1
1^

(16)

where yj is the elastic constant including the effect of the dislocations

and fi
E

is the elastic constant without dislocations effects. Hence
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^=Emi (I7)
jx 6

The energy dissipated when the kink goes over the barrier is equal to

AW= {
xl%)mdval)l = (V2) (n/3(Tkab-

2
) (18)

where /3 is the ratio of the dynamic Peierl's stress to the kink stress.

Hence the ratio of the energy dissipated to the energy stored, which is

by definition the internal friction of the system, is equal to the ratio f3.

However this is the internal friction of the dislocation system alone. To

determine the internal friction of the complete crystal we have to multiply

the denominator by the ratio (A/x//ll) and hence for the crystal

Q- 1= P(AlillJ,). (19)

For lower stresses and higher temperatures, the motion is accomplished

by abstracting thermal energy from the bath of an amount required to

take the kink across the barrier. The energy lost for this motion is again

the value given by (18) and hence the same value of energy dissipated to

energy stored is obtained.

For sinusoidal motions the same result is obtained by applying a stress

t* = t(1 —j/3) to the string model. At the same time the effect of the drag

term B can be evaluated. Applying this stress to the string model we have

for the stress applied in the shear plane, for simple harmonic motion

- o)
2Mx + j'cjBx - T0= r(l -j/3)b (20)

where M is the mass of the dislocation per unit length, B the drag co-

efficient and T the tension of the dislocation which is often taken to be

jn6
2
/2. For a slowly varying stress, a solution for the loop shape, assuming

that the loop is pinned on both ends, is

x=(Aly-f)~=-2A (21)

where x is the displacement at any point y measured from one pinning

point. Dislocations are overdamped, i.e., M can be neglected compared

to B. Substituting (21) in (20) and integrating with respect to y from

0 to /, the loop length, the constant A takes the form for sinusoidal vibra-

tions
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+ fjLb
2Al = r(l-jp)bl (22)

or

A = r(l-JP)

fib 1 +jojd
where d

Bl2

6fjib
2 (23)

The average displacement x is from (21)

x =
y j

xdx =
6

'

(24)

The effect of N(l) loops per cubic centimeter (of length /) on the shear

strain Ss is obtained by adding to the elastic strain Sf a plastic strain

SI* such that

Ss= Sf+ S'
8

' = Sa + N(l)sb (25)

where 5 is the area of displacement of a single loop. Hence the shear

modulus jJi' is, since fJb' = T/Ss ,

1 = 1 N(l)sb = l
|

N(l)bxl = l

|

jV(/)g [" 1 — 7/8

fJi' fJL T fJL T fJL 6fJL \l-\-jcod
(26)

or since the last term is small compared to unity

1+-
7V(/)/ :} [l-j(j8+V)

1Wd2 (27)

Hence for a single loop length, we find

fJL
—

fx' _ A/x N(l)P 1 A/x co/
2£

(28)

upon introducing the value of d from (23). We see for low frequencies,

for which (S exceeds to/?/
2/6/x62

, that

(29)

For any other type of stress, such as a longitudinal vibration, the same

solution holds if we introduce an orientation factor R which relates the

369-713 OL - 71 - Vol I - 31
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average shear stress in the glide planes to the applied stress. This results in

AE_
E

6

Actually the loops are not all of one length but probably follow an expo-

nential law whief] has been assumed by Koehler [13] to take the form

N(l)dl=^e~VUdl (31)
' A

where N is the total number of dislocations per square centimeter lA is

an averaged pinned loop length. Since the internal friction value Q 1 can

be divided into two parts, one proportional to AE/E and the other to

(AE/E) {(ol 2B/6flb2
) , we can use a calculation due to Oen, Holmes, and

Robinson [14] to evaluate the effect of the distribution of dislocations

on the modulus and Q 1

factor. This calculation is shown schematically

on figure 4, which shows the ratio of AE/E to NRl\ and Q~ x to NRl\.

This part of Q~ ] will be the part determined by the drag coefficient B.

The other part due to the loss determined by kink barriers will be (3 times

the value of AE/E.

Souk- idea of the value of can be obtained from the measurements of

friction Q 1 that can be removed by neutron irradiation. For the low

frequencies of 12,000 to 15,000 Hz the ratio of Q ]

to AE/E was found to

be

(3= Q ] /(AE/E) =0.04 to 0.09 (32)

for the ten crystals given. These values are intermediate to the calculated

values [10. j I |. More recent measurements [15] in the alloy Ti-6AI-4V

give a value of 0.03.

If we assume a value of /3=0.03, we see from figure 4 that the low-

frequency and high-frequency internal friction values will be equal when

o) 7.5 X 10-'{— =7.5X 10 or b)
= —

. (33)
Oi-i til\

Granato and Stern [16] showed that for very pure copper, the internal

friction at 15 KHz was in the order of the high frequency component. From

eq (33) this would require the average loop length LA to be equal to 1.8 X 10 -4

cm or larger, a not unreasonable value.

N( I )!<!'

1 +
\6ab2

)

AE
E 6fJ.b-

(30)
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FIGURE 4. Internal friction and modulus change for an exponential dislocation distribution

assuming a velocity drag coefficient damping (after Oen, Holmes, and Robinson).

Some other evidence for the loop length dependence of the internal

friction is the rate that it disappears when the material is neutron irradi-

ated. Using a torsional pendulum Routbort and Sack [3] find that the value

caused by deformation disappears much more slowly than the high-

frequency component. This is consistent with the square law loop depend-

ence for the low-frequency component compared to the fourth power

dependence of the high-frequency component. Granato and Stern [16] also

found two components one of which disappears much faster than the other.
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Discussion on Papers by J. A. Garber and A. V.
Granato, R. O. Schwenker and A. V. Granato, and

W. P. Mason.

GILMAN: I would like to comment on Professor Granato's paper. In

general, it seems to me this is a very nice technique, but there are some

subtleties associated with the interpretation which make the given in-

terpretation doubtful. One of the treacheries is that it's well known in

deformed crystals, and especially alkali halides, that the density and the

local modulus become changed. The simple proof is the fact that the re-

gion becomes birefringent. Therefore, the acoustic impedance is

changed and one espects scattering from this, whether the dislocations

move or not. Also, the given proof that radiation damage suppresses the

reflection is not sufficient, because one knows that the damage is selec-

tive. That is, there is enhanced colorability in a deformed region. By Le

Chatelier's principle it would tend to reduce the changed density and

changed modulus selectively; and therefore, cause the acoustic im-

pedance to come back to the normal value. Hence, the acoustic reflec-

tion would be suppressed by radiation. Let us now put the question of

whether one is really getting a reflection as a result of motion of the dislo-

cations aside, and assume you really get that effect. Then, it is known

that in these crystals the relative concentration of monopoles compared

with dipoles concentration is very small. So, most of the dislocations

exist in dipoles, at moderate total dislocation densities. Therefore, they

are strongly coupled one to another, and the spring constant associated

with this coupling must be more important than the spring constant as-

sociated with the loop length. One can still use the formalism, probably,

except that instead of the parameter L being the "loop length," it

becomes the dipole moment. At very high dislocation densities one

should probably properly consider the system to be essentially a disloca-

tion plasma where everything is interacting with everything else.

Another thing one has to be careful about is the fact that the wall has a

finite width. Therefore, if there is a change in the acoustic impedance in

the slab, there will be an apparent attenuation associated with the phase

shift between the front and the back of the wall, and this makes it dif-

ficult to get an absolute value of the attenuation.

GRANATO: Well, I appreciate the chance to discuss some of the experi-

mental aspects that I felt I should leave out of the talk due to lack of

time. The finite width of the wall is indeed a problem. In fact, we've

never been able to get a wall that's completely satisfactory. [Here

Professor Granato continued at the board.] For instance, the little echos

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough.
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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from the wall don't completely disappear upon radiation, some part is

left and the part that's left varies. But we tried to account for it by assum-

ing that the local modulus could change in those regions, for example, in-

stead of by the assuming scattering from dislocations. But you just can't

quantitatively get this size of effect that way. You have to assume that

the elastic constants change by a factor of three, or something like that,

which is out of the question. You simply can't get this magnitude effect

from this kind of wall. Also the radiation level is extremely low, too low

to produce any mechanical effects besides dislocation pinning.

About the business of monopoles and dipoles, all I can say is that the

comparison of theory and experiment just supports the string model.

There is a tremendous volume of data that fits the theory quantitatively;

all the predictions are proved out. I've never seen a theory for dipoles

that can predict enough data to be taken as seriously as the simple

monopole string model.

ARSENAULT: I would just like to make one comment on Professor

Granato's statement on measuring the Peierls stress. You would have to

be extremely careful that you did not get any geometrical kinks in your

crystal before you start doing any measurements, because, you would

get unbelievably small values for the Peierls stress if you had any

geometrical kinks in the dislocations.

ESHELBY: This isn't really a question. It is more a confession. I believe

Professor Granato said he used my value for the radiation which I calcu-

lated in 1949. Unfortunately it is too low by a factor of two which I

discovered in 1962. People have used it all that time— it just shows

nobody checks anything.

GRANATO: The figures shown are drawn using the corrected value.

ESHELBY: Oh, good! Can I also put a plug in for the fact that for an edge

dislocation the answer is almost exactly the same— it's about 10%

bigger, and not 10 times as big as stated somewhere in the literature.

HIRTH: I would like to address my question to Professor Granato. Assum-

ing that one did have a perfect tilt wall, and, particularly, if one had a

fairly high angled tilt wall, then it seems to me that the dislocations

would be strongly coupled together. Rather than behaving as a vibrating

string in that case, they would perhaps behave as a vibrating membrane.

GRANATO: I would like to say, first of all, these were not tilt walls. We
tried to make tilt walls and never found one that was mobile. Also you

wouldn't have enough dislocations in a tilt wall, if it is just one line wide,

to get an observable signal. About the interactions, we also thought that

the interactions should be important, because the dislocations are fairly

close, of the order of a micron spacing. But, if you use only the restric-
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tions that would come from the tensions in a string model, you can calcu-

late the displacement and it is within a factor of 2 of the observed dis-

placements. I think that the main effects of any interactions would he to

reduce the amount of displacement, and we take this fact, that there is

such good agreement, to mean the interactions are less important than

are the pinning interactions.

BACON: I have a question for Professor Mason. In your model the energy

dissipation arises from a dynamical Peierls stress which you suggest is

between .01 and .1 of the static Peierls stress. Do you think that is really

significant in f.c.c. metals?

MASON: This is the calculation of Professor Weiner here; that's just a

model, isn't it. These particular figures are for the Frenkel-Kontorova

model.

BACON: A second aspect of this question, also to Professor Mason. How
is this interpretation related to the microstrain results obtained by, for

example, Roberts and Brown, Meakin and Lawley, 1 and many others, on

h.c.p. and f.c.c. metals?

MASON: I am not sure how high a strain value they go to, if they go to a

point where dislocation breakaway is a factor, then that could be the

cause of the microstrain. You would certainly get an effect here, though,

and it would not be very large. I don't know whether you could measure

it at that low a strain value.

LOTHE: Perhaps I may ask one question, myself. I think it is very impor-

tant what Professor Mason has pointed out about this frequency inde-

pendent background. But I don't understand the model, quite. I don't un-

derstand how one can retain so to speak this low temperature velocity in-

dependent friction force in a range where thermal activation is very easy.

I don't see, then, that the mechanism pointed out by Weiner, for exam-

ple, applies. That is, I can see the model for low temperatures, but I

don't see that you can retain this as something that you superpose at

higher temperatures where thermal activation is easy.

MASON: The mechanism applies at all temperatures, since the kink stress

to cross the barrier is greater than the applied stress. Hence, thermal ac-

tivation is required. After the kink has crossed the barrier, the energy

stored from the negative slope of the kink barrier causes the kink flow to

be shut off. In a paper presented at the Internal Friction Conference at

1 Roberts, J. M., and Brown, N.. Trans. AIME, 2 1 8 , 454 (1960); Lawley. A., and Meakin. J.

D., Acta Met., 14, 236 (1966).
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Brown University it is shown that the rate of kink flow is

«i2
—

«2i = co0 [exp( — w/kT)] [n„T—n<Jk\ab 2lkT

where (an — «2i) is the number of kinks per second crossing the barrier,

n0 is the total number of kinks, r is the applied stress, n is the number
of kinks that have crossed the barrier, a is the height of the kink, w0 is

the attempt angular frequency, and w is the height of the barrier. Hence

the equilibrium number of kinks that have crossed the barrier is

n = n0T/(Tk-.
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The extension of the dislocation concept to arbitrary crystalline inter-

faces is discussed. It is shown that invariance and continuity of the Bur-

gers vector can be conserved and that in high angle boundaries the func-

tion of the standard or primary dislocation is the delimitation of ranges of

coordination between the two crystals. In certain relative orientations

where the superposition of the two crystals forms a highly periodic pat-

tern (which is energetically favorable such that the crystal tends to con-

serve it) a slight deviation from that optimum pattern is corrected by a

network of secondary dislocations. There is complete balance between

the Burgers vectors of primary as well as secondary dislocations.

Key words: Dislocations; grain boundaries; interfaces: twinning.

I. Introduction

It is well known that the interface of two crystals of the same kind

which slightly deviate from each other in orientation consists of a network

of dislocations. The theory of these so-called subgrain boundaries was

initiated by Frank [1] , worked out and reviewed by Amelinckx and Dekey-

ser [2] and formulated in a dualistic manner by Bollmann [3]. The most

recent reviews are given by Nabarro [4] and Hirth and Lothe [5].

The problems of high-angle boundaries were treated on the basis of

the coincidence site lattice essentially introduced by Frank cited by

Ranganathan and developed ey Brandon et al. [6], Brandon [7] and

Ranganathan [8].

A geometrical approach was given by Bollmann [9]. This approach

allows an extension of dislocation networks to general crystalline inter-

faces. However the concept of "dislocation" will have to be reconsidered

in this context.

We first develop the general geometrical theory of crystalline inter-

faces and then shall investigate what aspects of "dislocations" are con-

served for arbitrary interfaces.

Fundamental Aspects of Dislocation Theory .1. A. Simmons, K. .). Wit. and R. Bullough,

Kds. (Nat. Bur. Stand. (U.S.). Spec. Publ, 317. I, 1970).
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II. The O-Lattice

The basic idea of the general theory can be introduced the following

way:

Instead of two crystals joining at a boundary the two respective trans-

lation lattices (named lattice 1 and 2) are considered as interpenetrating.

The interpenetrating lattices represent two possible sets of positions for

every set of atoms, one in lattice 1, the other in lattice 2. We may choose

for convenience a lattice point in lattice 1 as origin and translate lattice 2

so that one of its lattice points coincides with that origin. Now we may
look for positions within the two interpenetrating lattices where the two

lattices ''match best." We may set the boundary through such positions,

and then place the atoms at lattice points of lattice 1 on one side and of

lattice 2 on the other. The boundary itself is then a remnant of the inter-

penetrating lattices.

The basic problem of this theory is to find an appropriate mathematical

definition of what is meant by "best matching" of two periodic structures;

and the next step is to localize those best matching spots within the

interpenetrating lattices.

A first choice of positions of best fit may be the "coincidence sites"

i.e., coincidences of lattice points of both lattices, which leads to the

"coincidence site lattice." Mathematically expressed the two lattices

are two translation groups i.e., two classes of points within the same

space which may be related by a linear nondegenerate transformation

A that usually is homogeneous

x<2I ->= Ax<1L
\ |A|#0. (1)

(The index L means lattice point.) |A| 0 is the condition for a point

to point relation of the two lattices. In this way all the lattice points of

lattice 1 and of lattice 2 are "paired" by the relation (1) and hence the

two classes of lattice points are related to each other. Coincidence sites

in this terminology are coincidences of elements of related classes. They
are not coincidences of related elements, as these are related by eq (1)

and hence can coincide only at the origin.

This concept of the coincidence site lattice is not yet satisfactory be-

cause its configuration is strictly discontinuous with respect to any

change in orientation of lattice 2 (while lattice 1 is considered as fixed).

There may be orientations which furnish a high' density coincidence

site lattice, but a slight change in orientation destroys it completely

while the change in the physical situation is expected to be continuous.

The coincidence site lattice may be generalized by considering not

only the lattice points but the whole space i.e., not only a translation group
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but also all its cosets. A coset is obtained by starting from a point inside

a unit cell of the lattice and adding to it all the translation vectors of

the translation group. Hence a coset which again is a class of points has

a representative point within every unit cell of the lattice, and in a co-

ordinate system where every lattice point has integer coordinates (and

which we call the crystal coordinate system) all the points of a given

coset have the same "internal coordinates"; thus the class of points

may be named by them.

The coordinates of a specific point may be (12.318, 7.243, —4.421).

Of these, the integers (12, 7, —5), which we may call the "external co-

ordinates", characterize a specific element; and the internal coordinates

(0.318, 0.243, 0.579) indicate the class of that element. The internal

coordinates shall always be positive and < 1.

From a point of a given class we obtain any other point of the same class

by adding a translation vector. Every coset in lattice 1 (as well as the

translation group) has its image in lattice 2. A lattice is now not only

represented by one class of points but by an infinity of them. A subdi-

vision of the whole space into distinct equivalence classes is named a

"partition." A related partition of lattice 2 is given by

x(2)= Ax(1)
(2)

where now x(1) resp. x (2) can be any point of the space. Hence instead of

dealing with one pair of related classes we handle an infinity of them.

Thus, every point in space belongs to two equivalence classes but for most

points the two classes are not related by the transformation A.

Now, in order to find a generalization of the coincidence site lattice

we are looking for coincidences of elements of related classes regardless

of the values of the corresponding internal coordinates. We call this kind

of coincidence points 0-points and indicate them by x ((})
; and consider

them as the points of best matching of the two lattices. Lattice coinci-

dence sites are coincidences of elements of the class [000] , and as such

they are special 0-points.

In order to find the 0-points we start with an arbitrary vector x (1) of

lattice 1 with arbitrary external and internal coordinates. It belongs to a

class which we name C (1)
. Its related element (its image) in lattice 2 is

x (2)= Ax (1)
. This point belongs by definition to the related class named

C (2)
. On the other hand we obtain a point belonging to the same class as

x(1) i.e., to C (1) in lattice 1 by adding a translation vector of lattice 1 which

we name b (L)
. Hence x (1) and x (1) + b (L) belong to the same class C ll)

while Ax (1) is an element of the related class C (2)
. If two such points

coincide, we call the coincidence point x (0)
, i.e.,
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Ax(,
)= x<Hb(L»-x<°>

From this we obtain the equation for x (t))
:

x(0)= A -lx (0)+b (L)

(I-A-^x^b^ (3)

(I = identity).

We obtain all x (0) — positions by solving eq (3) for all possible translation

vectors b (L) of lattice 1. In contrast to the coincidence site lattice, the

0-lattice is in general a continuous function of the transformation A i.e.,

of the relation between the two crystal lattices. While a slight rotation of

lattice 2 with respect to the fixed lattice 1 the coincidence sites of lattice

points disappear, the 0-points are just displaced continuously a small

amount.

Instead of considering translation vectors, distributed over lattice 1,

we form a separate lattice by translating them such that they start at a

common origin in a separate space, the 6-space. This lattice so formed is

called the ^-lattice; hence b (L)
is a lattice vector of the ^-lattice. The

^-lattice as a whole is identical with lattice 1.

We can now consider eq (3) as an imaging relation between the 6-lattice

and the 0-lattice with the latter located within the two interpenetrating

crystal lattices.

There is a second interpenetration of the 0-lattice. Starting from a

given origin we define lattice 2 from lattice 1 by the transformation A.

We can show that we obtain the same lattice 2 in the same position from

the lattice 1 by the same transformation A but starting from different

origins. The pairing of related points is different for different origins. The

0-lattice is the lattice of all possible origins of this kind. With

x(2U= Ax< 1L)

(x (2^-x (0)
)
= A(x (1,'>+b< L) -x<°>)

leads to eq (3). For a new origin x (,,) another lattice point of lattice 1,

namely x (lL) + b (L)
, is related to x ( - L)

. The general theory of the 0-lattice

is given in reference [9].

On applying the theory, first the transformation A (i.e., the relation

between the two lattices) has to be formulated, such that it relates the

nearest neighbors in the two lattices. Then eq (3) is determined and solved

by routine linear algebra techniques.
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We call the solutions of eq (2) "O-elements." These may be 0-points,

O-lines, or 0-planes according to whether the rank of the matrix (I-A-1 )

is 3, 2 or 1.

If the rank of (I-A 1

) is 2 then the three linear equations represented

by (3) are linearly dependant. Hence, in order to furnish solutions certain

restrictions have to be given for b, which, in geometrical terms, confine

their values to those lying in a plane through the origin in 6-space. We call

this plane a two-dimensional 6-subspace. Hence only ^-lattice points

within that 6-subspace are imaged as an 0-line. The orientation of the

0-line then is determined by the invariant eigenvector (eigenvalue k—l)
of the transformation A. (In the case that rank (I-A-1

) = 1 the 6-subspace

is a line through the origin and the O-elements are parallel planes.)

The complications arising when few or no 6-lattice points lie within

the 6-subspace are discussed in reference [9]. 6-lattice points lying

next to the 6-subspace can be perpendicularly projected onto the b-

subspace and be imaged as O-elements if within the transformation A
translation is allowed perpendicular to the 6-subspace.

We now separate the different O-elements by cell walls and so introduce

a cell structure into the interpenetrating lattices. The most appropriate

cell walls appear to be the images of Wigner-Seitz walls between b-

lattice points. This leads, for a cell wall between the primary origin

and a neighboring 0-element, to the equation:

This equation is derived in reference [10].

As mentioned above, every 0-point (within any 0-element) can be

considered as an origin of the transformation A between the whole of

lattice 1 and the whole of lattice 2, but is considered only as an origin

for the relation between the two lattices within the corresponding 0-

lattice cell. Thus there are an infinity of origins throughout the two inter-

penetrating crystal lattices. At the cell wall the pairing, the coordina-

tion, changes by the vector b which is the difference vector between the

two 6-lattice points, the images of which are the two O-elements adjacent

at the cell wall.

We summarize here briefly the procedure for calculating the 0-lattice:

(a) The transformation A between the two lattices eq (2) has to be for-

mulated. This point will be further discussed in the next chapter.

(4)

with b (L)= transpose of b (L)
i.e., a line vector;

G= metric tensor of the chosen coordinate system.
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(b) The 0-lattice is calculated by means of eq (3), and

(c) the cell walls using eq (4).

III. The Transformation A

The formulation of the transformation A is discussed in references

[9], [10], and [11]. We describe here briefly the basic problems.

There are many possibilities of imaging one lattice onto another. As an

example we may think of a square lattice where A may be a rotation by 10°.

The same lattice 2 is obtained by a rotation of 90°+ 10° etc. but also by a

rotation of 10° and then a shear etc. Every transformation furnishes a

different 0-lattice and the question arises which one is physically the most

significant. Obviously it is the one for which A relates the nearest neighbors

in the two lattices. This is the one for which the determinant |I — A _1
|

has the smallest value and hence furnishes the largest unit cell for the

0-lattice. On varying the transformation continuously (e.g., increasing the

angle of rotation) it may be needed to switch transformations in order to

relate always the nearest neighbors. For example, for rotation over a range

of 90° on the {112}-plane in the bcc-structure, four different transforma-

tions are needed as shown by the author and A. J. Perry [10]. Hence,

although the two crystals may be of the same nature, they often have to be

treated as if they had different unit cells in order to relate the nearest

neighbors. From the mathematical side there is very little difference

whether we are dealing with grain- or with phase-boundaries.

IV. Problems Related to the Choice of the Crystal Boundary

When we choose a crystal boundary within the interpenetrating lattices

we place it as far as possible through 0-elements. By doing this we have

to cut cell walls. We call the line of intersection of a cell wall with the

chosen crystalline interface a "mathematical dislocation" as it is the line

where the coordination changes. Parallel to the choice of the crystal

boundary we pick out all the 6-lattice points corresponding to the inter-

sected 0-elements. All these 6-lattice points together form the 6-net.

We now consider two limiting cases:

(1) The 0-lattice unit is large compared to the crystal unit.

(2) The 0-lattice unit is about the same size as the crystal unit.

In the case (1) the mathematical dislocation becomes a "physical dis-

location" by relaxation of the atoms. The Burgers vector of this dislocation

can be obtained from the ^-lattice through the dualism between the

dislocation network and its "6-net" (ref. [3]).
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We summarize briefly the dualism between the dislocation network

and the 6-net.

Dislocation net nor/, (L)

(1) To every L-fteld (0-elemrnt)

limited by dislocations

(2) To every L-node in the

dislocation network

(3) A dislocation line separates

two L-fields while

corresponds

corresponds

the

corresponding

b-net

a b-node (/^-lattice point) in the

/>-net.

a closed b-polygon in the

6-net.

Burgers vector connects the two

corresponding nodes of the 6-net

(^-lattice points).

The sign relation between line sense of the dislocation and the Burgers

vector is given below by (4). It is a dualism between rotation (curl) and

divergency. The line sense of the dislocation fixes a curl around the L-field

and as such determines a curl vector perpendicular to the L-field (right

hand screw). A Burgers vector can point out of a 6-node or into it and thus

defines a sign of a divergency (positive if the vector flows out). In this term

the dualism 4 becomes:

(4) If the curl vector of the L-field of a given

0-element points into crystal 2

the divergency of the corresponding 6-node

(/^-lattice point) is positive.

These dualisms hold for any mathematical dislocation network. The
general meaning of these dislocations and Burgers vectors will be

discussed in section V.

For example for the case of rotation by an angle 6 of a fee lattice around

its (lll)-axis, the 0-lattice is a hexagonal line-lattice with the 0-lines

parallel to the axis of rotation, and the cell walls form a hexagonal honey-

comb structure. The 6-subspace is the {lll}-plane of the ^-lattice.

Choosing the boundary perpendicular to the axis of rotation furnishes a

twist-boundary; and choosing a cut parallel to the axis a tilt-boundary

which can be straight or stepped (reference [3]). For small angles 6 of

rotation eq (3) reduces to Frank's formula

b<L>= [0Xx<°>]. (5)

We may distinguish two kinds of problem related to the choice of the

boundary:

(a) The two crystals with their relative orientations are given and hence

the 0-lattice with its cell structure is determined. The question is as to

what kinds of boundaries are possible and which ones are the most

favorable. This type of problem was mentioned above in relation to sub-

grain boundaries.

369-713 OL - 71 - Vol I - 32
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(b) The two crystals are given but their relative orientation has to be

determined such that a boundary (which is to be determined too) is stable

in the sense that any change in the orientation of the boundary as well as

of the crystals leads to an increase in energy.

For this type (b) of problem an energy criterion has to be defined.

The calculation of the actual energy of a general phase boundary is

very complicated. For a general grain or phase boundary formed by a

"physical" dislocation network the actual energy function may be re-

placed by a geometrical function with the single property of behaving

monotonically with the energy. With d the spacing of one type of dis-

locations in a dislocation network and b the absolute value of their Burgers

vector, the following replacement function p was chosen:

where the sum is taken over the number of independent sets of disloca-

tions (which may be 1 or 2).

This function is positive except when the dislocation spacing goes to

infinity. Then p becomes zero but then there is no boundary left, p has

a meaning only in the limiting case (1) (0-lattice unit large compared to

crystal unit).

The procedure for calculating a boundary was tested on a monoclinic-

triclinic two-phase system (exsolved alkali feldspar) where the calcu-

lated relative orientations of the crystals (see ref. [11] by the author and

H.-U. Nissen) as well as the orientation of the optimal boundary agrees

well with the previously measured values for this mineral.

The most striking aspect of that calculation is that the result is right

although the only crystal data used are the two sets of six lattice constants.

No knowledge was needed of how the unit cells are filled with atoms, nor

of atomic forces, atomic positions and elastic constants. This shows

that the best geometrical fit is (at least here) also energetically the most

favorable one.

In the case No. 2 where the 0-lattice unit is comparable in size with

the crystal unit, the "mathematical dislocations" may no longer contract

to physical dislocations. But low energy boundaries will still be possible

due to a highly periodic pattern of the lattice points (coincidence site

lattice). We may divide the total pattern of the lattice points of the two

crystal lattices into "pattern elements" i.e., the parts of the pattern

within one 0-lattice cell. A periodic pattern will consist of a finite number

of different pattern elements; a nonperiodic one of an infinity of them.

For a given transformation A a pattern element is given by the internal

coordinates (i.e., the equivalence class) of its 0-point. Hence, in order

(6)
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to find the number of different pattern elements one has to find the number
of different related equivalence classes containing coinciding elements.

A computer technique for this purpose was developed (ref. [10] )

.

If a minimum energy pattern exists and if the energy is such that the

crystal tends to conserve the pattern on a slight change in orientation

of lattice 2, then the crystal accomplishes this by means of a disloca-

tion network of "secondary dislocations" or boundary dislocations.

These secondary dislocations are calculated analogously to the primary
ones except that the 02-lattice is now an 0-lattice of two 0-lattices instead

of two crystal lattices (ref. [9], p. 395). More about secondary dislocations

is given in the next section.

V. Dislocations in Crystalline Interfaces

As we shall extend the notion of dislocation to general crystalline

interfaces, we shall have to point out a few known properties of single

dislocations, and then we shall investigate what properties are conserved.

We know the dislocation as a line with a strain field. Attributed to the

dislocation is a pseudo-vector, the Burgers vector. The Burgers vector

is invariant along the line and continuous on branching of the lines

(Frank's node condition).

We should point out that dislocations with the invariance properties

of the Burgers vector are only possible in a periodic or elastically dis-

torted periodic substratum. In a continuum one could introduce a wedge-

shaped Volterra cut. and there an invariant Burgers vector could not

be defined. For the standard dislocations this substratum is given by

the crystal itself. We shall see that for secondary dislocations the sub-

strata are different.

First we have to review the definition of the Burgers vector. Frank's

definition by a Burgers circuit imaged onto a reference lattice is a spe-

cific way to express that the Burgers vector is a coordinate difference

independent of any elastic distortion of the coordinate system of the real

crystal. Only as a coordinate difference is it conserved.

There is another way of defining the Burgers vector from the kinetic

behavior of the dislocation through the so-called "movement rule."

A dislocation line (line sense 1, Burgers vector b) moving through a

crystal in the direction v virtually divides the crystal into two parts.

Then the part marked (i.e., labeled) by

m=[lXv] (7)

is shifted by b when the dislocation passes by. The other part is con-

sidered as fixed.
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Here only the state of the perfect crystal before and after the passage

of the dislocation is considered. No strain field has to be taken into

account. We ask, what does the (perfect) dislocation do to the crystal

on moving through it? The answer is that it translates one part with

respect to the other but such that the arrangement of lattice points, the

pattern, is the same after the transition as before i.e., that structure as

well as the position of the pattern is conserved. This definition is con-

sistent with the others, i.e. , with the pseudo-vector character of b.

We shall now see how far these definitions and properties hold for

dislocations in crystalline interfaces. We defined the "mathematical

dislocation" as the line of intersection of the crystal boundary with the

0-lattice cell wall, and the Burgers vector by the dualism between Gl-

and ^-lattice.

The question now arises how the above definitions by the Burgers

circuit and the movement rule hold for the general "mathematical dis-

locations" e.g., in a twist boundary where the twist is 30°. Here surely

the strain field of the "dislocation" will be completely different from the

one of the single dislocation in the crystal.

A Burgers circuit may be started in crystal 1. Then we may pass in

steps of translation vectors to a point x (lL) in the field on the 0-element

0, go to x (2L) which is related to x (lL) by the eq (8)

From here we move within crystal 2 around the dislocation into the

field of the 0-element 0' and from there back to crystal 1 (eq (9).

We can introduce a reference lattice also here as a help for counting

the coordinate steps. The related coordinate steps in lattice 1 and 2

are equivalent and points related by eq (8) resp. (9) are identical in this

reference lattice.

Now, the Burgers circuit has to be such that its image in the reference

lattice is, closed. If the Burgers circuit forms a right-handed screw with the

line sense /, b points from the beginning to the end of the circuit in the

crystal lattice. It can be shown that all the steps cancel out except the

two transitions from one lattice into the other.

By eliminating x(2L) from eq (8) and (9) one obtains:

x(2D_ x (0) =A(x(lL)_ x (0)
)> (8)

x(iL)'- x(o)'=A-i(x^)- x«))').
(9)

(I-A- 1

) (x ( °)' - x«») - x<lL>' - x< lL>. (10)

Hence the closure failure is a difference of two lattice vectors, and thus
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a translation vector of lattice 1. On the other hand it follows from eq

(3) that

(I-A- 1 )(x(0)'-x(°>)=b(, ')'-b(L)
, (11)

which shows that the closure failure is identical with the difference of

the two 6-lattice vectors related to the two 0-points. If we begin and end

in crystal 2 in the same sense of rotation we obtain a closure failure of

X(2D_ X(2L)' anc| tYiis difference vector transformed to lattice 1 equals

b<L'>-b<L>:

A -l (x(2L)_ x (2l-)'
)

= b (l-)'_ b (I.)
- (12 )

It thus corresponds to the Burgers vector defined by the dualism be-

tween the dislocation network and the b-net.

Actually the closure failures in the two crystals are two different vectors

(in our example they are rotated by 30°) but if we consider them as the

Burgers vector we have to understand them as the identical coordinate

difference in the two different coordinate systems of the two crystals

related by the transformation A.

The situation is exactly analogous to that of the single dislocation in the

otherwise perfect crystal. The vector steps in the elastically distorted

crystal which differ from place to place are taken as identical, just as we
take the related coordinate differences in both crystals as identical.

The Burgers vector defined in this way is conserved not only within the

crystals but also throughout the boundary. Even if a dislocation branches

off from the boundary into the crystal there is complete balance of the

system (ref. [12] ).

The definition of the Burgers vector by the movement rule can be

extended into the bounary as well. If a dislocation is moved by a definite

amount v, so that a 0-point moves into the position of its neighbor, then

that lattice which is marked by m moves by one of its own translation

vectors.

In these terms practically every crystalline interface is a ''dislocation

network" even if the dislocation spacing is of the order of the lattice

constant. Exceptions, however, are undisturbed twin boundaries which

fit over a whole 0-plane.

We call the dislocations discussed up to here in this section "primary

dislocations." These include the standard dislocations in low angle

boundaries but also the "mathematical dislocations" (intersection of

boundary with 0-lattice cell walls) in arbitrary interfaces.

It was pointed out before that a dislocation with an invariant Burgers

vector can only be defined on a periodic substratum. It may happen that
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the pattern formed by the superposition of the two crystal lattices becomes

highly periodic such that at the boundary the arrangement of a small group

of atoms is periodically repeated. Such a pattern may form a minimum
energy state, which the crystal tends to conserve on slight deviations from

the optimum orientation. In the case of such an optimum pattern, the

balance of the primary dislocation network can be closed and the whole

pattern can be regarded as a new "perfect crystal" i.e., a periodic sub-

tratum for dislocations, the secondary dislocations. The Burgers vectors

of secondary dislocations are, according to the movement rule, displace-

ments which conserve the structure of the pattern but not necessarily its

position. The periodic pattern is a kind of moire pattern which can be dis-

placed while one crystal is translated with respect to the other. The
Burgers vectors of the secondary dislocations are rational fractions of

those of the primary dislocations. Hence the Burgers vectors of the

primary dislocations are included in the secondaries but a displacement

by such a primary Burgers vector always conserves the position of the

pattern as well. The analysis of patterns and the calculation of secondary

dislocations are given in reference [10].

If we look at the problem of interfaces from the standpoint of primary

dislocations, we can consider the two crystals as one crystal which con-

tains a dislocation network. On the other hand if we investigate secondary

dislocations we have to treat the two joining crystals as a sandwich of

three crystals, crystal 1, the periodic interface and crystal 2, and we

have to balance the Burgers vectors with respect to all three of them.

BOUNDARY ENERGY

TYPE OF DISLOCATIONS:

MATH. PRIMARY

PHYS. PRIMARY

PHYS. SECONDARY

(X PERIODIC SUBSTRATUM)
PERFECT CRYSTAL

FIGURE 1. Schematic diagram of the ranges of different kinds of dislocations in boundaries.
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In reference [12] figure 2 the situation of an edge dislocation passing

through a twist boundary of 0= 36°52.2' on the {0.01} face in a cubic

system is discussed. This twist furnishes a highly periodic pattern (ref.
[
10]

table I). From the standpoint of primary dislocations, the edge dislocation

in crystal 1 is identical to the one in crystal 2. The boundary network is

balanced. But a secondary dislocation is left in the boundary. Hence from

the standpoint of secondary dislocations, the edge dislocations in both

crystals are different.

Figure 1 gives a schematic view of the ranges of different kinds of

dislocations.

VI. Summary

It was shown that by means of the 0-lattice theory the dislocation

concept can be extended to arbitrary crystalline interfaces. The extension

of the standard dislocation is the primary dislocation. If a certain con-

figuration forms a minimum energy pattern, then deviations from that

pattern are secondary dislocations. On moving through the crystal primary

dislocations conserve the structure as well as the position of the pattern,

while in general secondary dislocations only conserve the structure but

displace the pattern. The Burgers vectors of the secondary dislocations

are rational fractions of those of the primary dislocations. While primary

dislocations can exist throughout the crystals, secondaries are only

possible within the boundary.
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STRUCTURAL AND ELASTIC PROPERTIES OF
ZONAL TWIN DISLOCATIONS IN ANISOTROPIC
CRYSTALS
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Metals and Ceramics Division

Oak Ridge National Laboratory

Oak Rid e, Tennessee 37830

A descriptive definition of zonal twin dislocations for compound twin

systems is given based on the well established rational crystallographic

elements. Geometric characteristics of zonal twin dislocations in double

lattice structures are thoroughly discussed. Equilibrium shapes of an in-

coherent twin boundary have been analyzed by using the anisotropic

elastic properties of edge dislocations. Short-ranged structural properties

of zonal twin dislocations are discussed based on a Peierls-Nabarro

model. It is found that the "anisotropic parameter.
,, K rS (W , correctly pre-

dicts the active mode of crystallographically non-equivalent conjugate

twin systems.

Key words: Dislocation geometry: twinning: zonal dislocations.

I. Introduction

Frank and van der Merwe [1] first pointed out that a state of strain

similar to that around a perfect dislocation exists around a step in a coher-

ent twin interface. Frank [2] defined this step as a twin dislocation and

called the glissile-type a twinning dislocation, 1 of which Burgers vector,

bf, is the closure failure of a Burgers circuit that would close in a perfectly

coherent twin. The magnitude of the Burgers vector is determined as the

height of the step multiplied by the twinning shear, g\ such that for a

single twin dislocation b t
— g'd, where d is the interspacing of twin

lattice planes. When such a twin dislocation moves along the twin inter-

face, the result is to transform a layer of the lattice from matrix to twin,

or the reverse, depending on the direction of movement.

1 All the twin dislocations considered in this paper are Shockley type imperfect dislocations

since their Burgers vectors lie in the twin plane, hence twinning dislocations. But for brevity,

they will be called twin dislocations throughout the discussion.

Fundamental Aspects of Dislocation Theory. J. A. Simmons, R. de Wit. and R. Bullough,
Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I 1970).
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In double lattice structures, the structures based on two interpenetrating

lattices, a single step must necessarily be the one with the height of an

integral multiple of d in order that the equivalence of the atomic configura-

tion at the new interface to that at the original interface be maintained.

This feature was first pointed out by Thompson and Millard [3], who
suggested that for {1012} (1011) twinning in hexagonal-close-packed

(h.c.p.) structure a "double" twin dislocation which signifies a step with

the height 2d would be physically more meaningful than a single twin

dislocation although the "double" twin dislocation would be energetically

unstable due to the repulsion between its two components. Recognizing

the fact that homogeneous shear occurs on every second (1012) twin

plane, Westlake [4] proposed that it would exist, not as two twin disloca-

tions, but as one zonal twin dislocation, in analogy to the zonal slip dis-

locations in complex structures that were originally conceived by Kronberg

[5]. The concept of zonal dislocations was extended by Rosenbaum [6] in

his study of atom movements and formation of faults during { 1122} ( 1123)

slip and twinning in h.c.p. structure.

In view of the fact that deformation twinning is one of the two funda-

mental processes of plastic deformation in crystalline solids, slip being

the other, it is deemed necessary to give a full account of geometric

characteristics of zonal twin dislocations and to elucidate some basic

properties inherent to these dislocations. In this paper a descriptive

definition is given of zonal twin dislocations for compound twin systems

in metallic structures, which is followed by a discussion on the geometric

characteristics. For a total of fifty twin systems in various metals selected

from cubic to orthorhombic crystal system, the long-range elastic

properties of zonal twin dislocations are calculated by using anisotropic

elasticity theory and applied in an analysis of stable configurations of an

incoherent twin boundary. Some typical results are presented and dis-

cussed in this paper. Based on a Peierls-Nabarro type model an "aniso-

tropic parameter" is introduced and tested as a factor of energetic criteria

for operative twin modes.

II. Zonal Twin Dislocations

Consider a compound twin system with the well defined rational

crystallographic elements, Kt, K>, 171, and r)>. The macroscopically

homogeneous deformation of twinning can be completely described in

terms of these crystallographic elements and the parameters that are

given in figure 1. When a reference unit cell with the base vectors, 171,

rj2 , and S, where S is the translation vector normal to the plane of shear

5, is sheared homogeneously as described in figure 1, the result is a

unit cell of the twinned lattice with the base vectors, r) u V)',, and S. That
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is. while Ki, f)\. and S remain fixed. K* and rjz are rotated about S by

(77 — 2ip) to become A.V and 17'. respectively, where (p is the acute angle

between 771 andi}2 I
or 170 ). Hence, the twinning shear is g=2 cot <f= er\ x Iqd,

where q is the number of K\ lattice planes intersected by the vector

t)!. and e is a numerical factor that depends on crystal structure [7]. From
the following general relationship

^-=-
[*,!- M) 2

]
1'2 (l)

2 17,

the expressions for e for the fifteen compound twin systems in structures

ranging from cubic to orthorhombic crystal system are obtained and are

given in tables 1 and 2 together with the crystallographic elements and

other parameters. The numerical value of e is simply 2/3 for both of the

twin systems in cubic structures, whereas for the rest e is related to the

axial ratio or angle of the unit cell of the Bravais lattice of the structure.

In double lattice structures inhomogeneous motion, shuffling, of some
atoms in addition to a homogeneous shear deformation of the reference

unit cell is generally required if the original crystal structure is to be

restored after twinning. When q is even, however, as in all the compound
twin systems under consideration, one can show that the atoms (or the

double motif unit) at every nth twin plane are sheared to their correct

positions, where 2n = q. and that the shuffling is periodic with the period

of nd. Therefore, a zonal twin dislocation can be regarded as a step in

the interface with the step height of nd.

Based on the geometrical relationships described above, the Burgers

vector of a zonal twin dislocation in compound twin systems can be

expressed as b, = 7?b r . where h, is the Burgers vector of a unit tain

dislocation as named by Yoo and Wei [7] . and may be given as bf
= {e!q)r}i.
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Table 1. Crystallographic elements and parameters ofcompound twin systems, y

a = rhombohedral angle, and A= (1 — cos a) (1 + 2 cos a)

Crystal

structure

(type)

f.c.c. (Al)

b.c.c. (A2)

f.c.t. (A5)

In

b.c.t. (A6)

Sn

rhombohedral

(A7, A10)

orthorhombic

U (A20)

{111}

{112}

{101}

{301}

{110}

{130}

{111}

{112}

{101}

{ioT}

{001}

{Ho}

(112)

<TTi>

(ioT)

<T03)

(ool)

;

(3l0)

(112)

(111)

(101)

(101)

(110)

(110)

(110)

(llo)

(olo)

(010)

(llo)

tool]

l

V2

1

V2

3y2 -l 3y^-l 3y*-l

2y 9y^ + l y^ + 1

2 V2 cos a
cos a

2 cos a

VT 1 + cos a

/r—

3

^-3 £ 2 -3
2/3 F + 9 ^+1

TABLE 2. Crystallographic elements and parameters of compound twin systems in h.c.p.

c
structure (A3). y~~^

K 2 *l2

{1012}

{loll}

{1122}

{1121}

{1012}

{1013}

{1124}

(0002)

= OoTT>

(1012)

(1123)

<TT26)

= (ioTi)

(3032)

(2243)

(1120)

(1210)

|<1210>

(lloo)

(Tioo)

y 2-r
yV3

4y 2 -9
4yV3

3y

l

y

y-'-3*

y- + 3

4y--9
4y- + 3

y' + l

4y 2 + l

4y--9
4y- + 27

21^2
y- + 4

*Absolute value of the difference.
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Hence, the Burgers vector of a zonal twin dislocation can be denned as

k=f* '2)

for the compound twin systems. 2 The present definition by eq (2) is con-

sistent with the one given by Saxl [10], who used the notations introduced

by Bilby and Crocker [11]. The Burgers vector of a zonal twin disloca-

tion can be determined graphically also with a Burgers circuit by means

of the start-to-finish right-handed rule given by Frank [2]. The Burgers

circuit must be constructed following a lattice network generated by the

two interpenetrating reference lattices with a translation vector [1/2,

1/2, 0] as shown in figure 2. The closure failure denoted by SF in figure

2b is equal to h z as defined by eq (2).

When q= 2 (rc = l), as for {111} (112) in face-centered-cubic (f.c.c),

{112} (111) in body-centered-cubic (b.c.c), {1121} (TT26) twinning

in h.c.p. structure, etc. (see table 1), it follows that the zonal twin dis-

locations are simply reduced to their unit twin dislocations. Furthermore,

in the cubic structures the unit twin dislocation is identical with the

imperfect slip dislocation. Such relationships between slip and twin

dislocations can be generally correlated by using eq (2). Since 171 is a

(a) (6)

FIGURE 2. Start-to-finish right-handed Burgers Circuit in (a) a coherent twin boundary and

(b) an incoherent twin boundary. The plane of drawing; is the plane of shear and also Z = 0.

2 An alternative definition is given by Mendelson [8. 9].
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lattice vector, e/2 must be equal to a ratio of two integers in order for

any dislocation reaction involving perfect and imperfect dislocations to

give rise to a zonal twin dislocation. Such a condition is satisfied only

for f.c.c. and b.c.c. structures, that is, e/2 = 1/3. This may be a feature

which constitutes the essential difficulty in envisaging a dislocation

model of twin nucleation in non-cubic crystal structures. By whatever

the nucleation mechanism, however, once a twin interface is created,

production of zonal twin dislocations can be fully accounted for by various

dislocation reactions possible at the interface as discussed by Bilby [12].

In an analysis of the incorporation processes of slip dislocations into twins,

for instance the work on h.c.p. structure by Yoo [13], the concept of zonal

twin dislocations ensures that no single imperfect slip dislocation trailing

a fault behind it, will result in a twin when a slip dislocation is incorporated

into the twin.

Figure 3. Twinning in ordered cubic alloys. <7 = 4, <p = 70°32'. (a) AB A alloy with Ll 2 (Cu :!Au)

structure, (b) AB alloy with #2(/3-brass) structure. Squares represent A atoms, and circles

represent B atoms. Filled symbols represent atoms in the plane of projection, and open

symbols represent those on the adjacent planes.
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The present definition of zonal twin dislocations is a general one and

applicable also to ordered structures. For fully ordered cubic structures

(Ll 2 and B2 types), as depicted in figure 3, 171, r)>, S, and q should neces-

sarily be twice as large as those for the corresponding Al and A2 stru-

tures, their fully disordered structures.

The anisotopic elasticity theory of dislocations developed by Eshelby

et al. [14] is applied to calculate the elastic properties of zonal twin

dislocations. Since twin dislocations are situated in the twin interface,

their long-range elastic properties will vary with the extent of the aniso-

tropic media on both sides of the interface. Possible configurations of

a twin in an infinite medium may be classified into the following three

cases: (a) N=n, a monolayer twin, where Nd is the thickness of a twin;

(b) N > n, a twin of a finite thickness; and (c) N > n, the thickness of

a twin is much greater than the step height. The intermediate case (b)

is a realistic representation of a twin of finite volume embedded in the

parent matrix. For this case, one must solve a boundary value problem

of anisotropic elasticity theory in order to obtain a solution of zonal

twin dislocations. In this paper, the solutions of an edge zonal twin

dislocation for the case (a) are calculated numerically using the pro-

cedures developed by Stroh [15], and, as a first approximation, they are

used in the analysis of dislocation interactions.

With respect to the Cartesian coordinate system chosen such that

x
:?-axis coincides with the dislocation line, and x-> — 0 plane is K x plane,

the stress fields of a straight dislocation in general can be given as

where b is the Burgers vector, and K is an energy factor. A ija ,
B-,ja , and K

are real coefficients related to the elastic constants and also to rQ and

qa which are the real and imaginary parts of the complex roots for a sextic

equation. Since a pure edge dislocation (jt:raxis) lies perpendicular to

the plane of shear 5 which is a symmetry plane, the secular equation

governing the elastic solutions is a quartic equation, and a=l, 2. For

such a case in general, the numerical solutions of r« and qa and the

explicit expressions of K, A ija , and Bija have been obtained, which will

be reported elsewhere [16]. As a typical result, crn. 0-22. o"i 2. and cr33

stress fields and A e dilatation field are presented by contour plots in

figure 4 for an edge twin dislocation of a-Fe with b f =l/6 [111]. As con-

trasted to the case discussed by Chou [17], where = 0 is also a symmetry

III. Elastic Properties

2?7 £ (x\ +rax->)--\- (qaXz)'
2 '

Kb * AjjgXl +BjjgX>
(3)



486 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Figure 4. Stress fields and dilatation field of an edge twin dislocation. {112} (111) twin

of Fe.

plane, the symmetries of the stress and dilatation fields with respect to

jci-axis and also to x2 -axis are no longer present, that is, 6 # 0 and 6i # 0

in figure 4. Also, the other zero-stress contours in cri 2 and (T22, that is,

62 and 03 in figures 4(b) and 4(c), deviate from the ±45° lines of the iso-

tropic case.
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Figure 5. Interaction forces between two parallel edge zonal twin dislocations, { 1012

}

type twin in Zr and Zn.

Interaction forces. F\ and Fo. between two parallel edge zonal twin

dislocations have been computed, and the results for {1012} type twin

in zirconium and zinc are given in figure 5. As may be expected from the

feature of an field discussed earlier, the centrosymmetry with respect

to the origin is not present in the F\ plot. This means, for instance, that

in the case of zinc a dislocation situated at {xi/nd) experiences greater

repulsive force than it would experience at — (xi/nd). The reverse holds

true in zirconium, as shown in figure 5.

In the analysis of equilibrium shapes of a twin, only the F\ component

is of importance and becomes a controlling factor since twin disloca-

tions are subjected to glide in their twin plane. Consider an incoherent

twin boundary, which consists of A^ straight edge zonal twin dislocations,

in equilibrium under an applied stress r«. If it is assumed that an ob-

stacle effectively blocks the leading dislocation, but not the other dis-

locations, then the equilibrium condition for an array of N dislocations

is that the effective force on each dislocation be equal to zero; that is,

for each dislocation the sum of the external force due to the applied

shear stress and the interaction forces by all other dislocations must be

zero. For {1012} (1011) twin in zinc, the equilibrium positions of the

dislocations have been obtained numerically for various values of A^ and

t«, and the results for N=7 are given in figure 6 for the three values of

Ta= 0.9, 1.8, and 2.7 kg/mm2
. It is apparent from figure 6 that by doubling

and tripling t« the equilibrium distance between a dislocation and the

leading dislocation is reduced to approximately one-half and one-third.

369-713 OL - 71 - Vol I - 33
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r
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X= x
(

/2d

FIGURE 6. Effect of applied stress, r«, on equilibrium shape of an incoherent twin boundary

consisting of /V straight edge zonal twin dislocation. /V=7. {1012} (1011) twin of Zn.

Vertical scale is expanded four times.

respectively, of the original distance. This feature was pointed out by

Marcinkowski and Sree Harsha [18], who made an analysis of equi-

librium shapes of a blocked twin using isotropic elasticity theory. It

was also noted that doubling t„ while holding (N—l) constant is in effect

equivalent to doubling (N—l) at a constant ra . Figures 6(c) and 6(d)

together exhibit the asymmetry of an incoherent twin boundary which

is a direct consequence of the Fi interaction curve for zinc shown in

figure 5.

IV. Structural Properties

In order to illustrate a point that the atomic model of dislocation de-

veloped by Peierls [19] and by Nabarro [20] can be directly applied to

the present case of zonal twin dislocations, the cross section of an edge

zonal twin dislocation is depicted in figure 7. A cut is made on a perfectly

coherent twin along Ki plane (Y=0) such that the medium above A'—

A

surface be the parent matrix, and the medium below B'~B surface be

the twin. Before these two surfaces are welded back together, the relative

displacements as indicated by the two arrows are applied across the inter-

face, which may be considered to arise due to a continuous distribution

of infinitesimal edge dislocations as suggested by Eshelby [21]. The net
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X

FIGURE 7. Schematic illustration of the cross section of an edge zonal twin dislocation. The

atomic configuration is depicted for f.c.c. structure (Al).

result is a step in the twin interface as depicted in figure 7. Therefore,

due to the close analogy, the original Peierls-Nabarro model or any

model derived from it may be directly applicable to a zonal twin disloca-

tion. One important point, however, is that a Peierls-Nabarro type model

does not take into account the inhomogeneous motion of the atoms that

must shuffle in a double lattice structure.

The Peierls-Nabarro stress, the stress necessary to move a zonal twin

dislocation along the twin interface, depends sensitively on a factor

exp (—Qbz). The exponent, which is a measure of ease of gliding, is

given by Eshelby [21] as

where g is the twinning shear. It is expected that the larger the

parameter, the higher the probability is of a certain twin system to be

active. As pointed out by Bilby and Crocker [11], that g must be small is

the primary one of the geometric criteria for operative twin modes. Ke

and Sm are both anisotropic coefficients varying with orientation. Hence,

as a counterpart to g, the product (KeS««) may be defined as an "aniso-
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tropic parameter" of energetic criteria such that in a crystal the higher

the value of (/sCe5««), the higher is the mobility of dislocation.

In comparing the crystallographically non-equivalent conjugate (or

reciprocal) pair of a compound twin system, the prevalence of one con-

jugate system over the other should be correctly predicted in terms of

the (KcShh) anisotropic parameters since all the geometric factors (g, q,

and shuffling) are essentially common to both systems. Other than {1121}

(1126) twinning in h.c.p. structure, of which conjugate system is (0002)

( 1120) basal slip, the twinning shear of observed compound twin systems

in non-cubic metals are small, and in most cases g < 0.3 and hence

81.5° < < 90°. Therefore, one can be certain that crystal orientation

with respect to the loading axis is not a critical factor, since at such a

high value of <p the Schmid factors will be nearly the same for both con-

jugate systems. The validity of the present argument is tested by examining

the five non-equivalent conjugate pairs for eight metals selected as listed

in table 3. It is indeed found in each conjugate twin system that the higher

value of {KeSm) is associated with the observed mode, according to the

review by Christian [22].

In the case of rhenium it has not been clearly established as to whether

or not the twin modes listed in table 3 are operative. Judging from the

calculated values of anisotropic parameters, however, one should expect

{1122} twin mode to be prevalent if and when the compound twin system

is activated.

In comparing one compound twin system to another, it was found that

the exponent (ilb z ) could serve only as a major factor but not as a com-

TABLE 3. Anistropic parameters {KeSm) for non-equivalent conjugate twin systems. All

values at room temperature, except 80 K for Hg

Metals Twin systems KeS (i(i Metals Twin systems KrSr,H

/3-Sn
{301}<l03>*

{loTXioi)

2.019

1.866
Mg

{10ll}<1012>*

{10l3}(3032)

1.362

1.285

Bi
{iio}<ooT)*

{001}<110>

1.944

1.362
Re

{1122}<1123)

{1124} (2243)

1.302

1.216

Hg
{110} (001)*

{ooi}<iio)

4.147

3.157
Zr

{1122}<1123)*

{1124} (2243)

1.390

1.294

£*-U
{130}<3l0)*

{lToxiio)

1.345

1.306
Ti

{1122X1123)*

{1124} (2243)

1.444

1.409

*The only, or more frequently, observed mode.
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plete criterion for the relative mobilities of twin dislocations. The reason

for this is of course the neglect of atomic shuffling. For instance, in h.c.p.

structure, the main reason why {1011} (1012) twinning seldom occurs in

spite of its small g may be due to the complex atomic shuffling involved.

On the other hand, more common occurrence of {1121} (1126) twinning

despite a large g is attributed to the relatively simple shuffling. Also, in

each case of the ordered structures shown in figure 3 those A and B atoms

with the stroked symbols must change places in order to reconstitute the

stable ordered cubic lattice. Such atomic shuffling would not be energeti-

cally feasible at low temperatures since the atoms must move a large

distance, 1/2 (112) and 1/2 (111) in Ll> and B2 structures, respectively,

and the lattice resistance resulting from the disruption of A-B bonds will

be extremely high. Hence the mobility of a zonal twin dislocation in the

fully ordered alloys is expected to be very low.

Finally, the anisotropic parameters (KeS^) at high and low tempera-

tures have been calculated for zirconium and titanium and plotted in

figure 8. The results show that the differences in (KSmYs between

{1122} and {1124} conjugate modes existing at room temperature and

4.2 K diminish at the high temperatures, 1133 K and 1156 K for zirconium

and titanium. This suggests that {1124} (2243) twinning may become
equally probable mode as {1122} (1123) twinning at the high tempera-

tures. It is also interesting to note in figure 8 that the parameter for

{1121} twin is greater than those for other twins at low temperatures,

Figure 8. Anisotropic parameter (KrS (^) versus 0, the angle between c axis and twinning

direction, for Zr and Ti.
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but becomes smaller at the high temperatures. Therefore, insofar as

(KeSfw) anisotropic parameters are involved, {1121} (1126) twinning

in zirconium and titanium may occur much more readily at low

temperatures.

V. Conclusions

1. A general definition of zonal twin dislocations is given as h z= (e/2)i|i,

and some geometric characteristics of the dislocations are discussed.

2. The (Tij stress fields and the A r dilatation field of edge zonal twin

dislocations have been calculated numerically by using anisotropic

elasticity theory.

3. The interaction forces, F\ and F->, between a pair of edge zonal twin

dislocations are obtained and used in the analysis of equilibrium shapes

of an incoherent twin boundary.

4. Due to the close analogy to perfect dislocations, a Peierls-Nabarro

type dislocation model can be directly applied to a zonal twin dislocation.

5. (KeStiti) is introduced as an anisotropic parameter of energetic

criteria for operative twin modes. The calculated parameters correctly

predict the more active mode between a conjugate pair of crystallographi-

cally non-equivalent compound twin systems.
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NON-PLANAR DISSOCIATIONS OF DISLOCATIONS

S. Mendelson*

2660 Somerset Blvd.
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Non-planar dissociations of dislocations are studied in hep, fee, bee,

diamond lattice, tetragonal and orthorhombic crystal structures. The
geometric and energetic conditions are shown to be favorable for various

dissociations in each crystal structure. A general equation is formulated

for dissocations into partials which are glissile on various twin planes of

a common zone. The Burgers vector of the twinning dislocations are ex-

pressed in terms of orthogonal unit vectors which lie in the "plane of

shear" of the twin mode. The twinning dislocations are generally of the

"zonal" type, chosen to be consistent with minimum shear-strain and sim-

ple atomic shuffling criteria for twinning, and applied in derivations of the

twinning elements and shear-strains for various twin modes. The sign of

the shear-strain determines the "stress sense" characteristics for disloca-

tion resistance and twinning and are shown to be consistent with behavior

in various hep and bec metals. The maximum repulsive force on the

twinning partials ym is computed using anisotropic elasticity, and com-

pared with evaluations of twin lamella energies y. In many cases it is

found that ymly>\, leading to an increase in dislocation resistance,

locking, or twinning at lower temperatures. In the cases where 0 < ym/y
< 1 the partialized dislocation model reduces to the "modified pseudo-

Peierls-Nabarro model" for dislocation resistance.

Among various effects, the dissociations account for all twin modes in

hep metals and for the extreme difference in the flow behavior of Cd and

Zn on one hand and Ti and Zr on the other. The stress dependent activa-

tion energies for motion of dissociated 60° dislocations in germanium are

computed and compare favorably with the data of Kabler. A "lock" for

kinks on 60° dislocations is described which can account for dragging

points in the model of Celli et al.

Key words: Dislocation dissociation; lattice shuffling; partial dislocations; twinning;

zonal dislocations.

I. Introduction

If a dislocation can dissociate into partials which are glissile on oblique

planes, dislocation locks tend to form which have an orientation and

^Consultant Scientist.

Fundamental \>p.'< t> of Dislocation Theory, J. A. Simmons, R. de Wit, and K. Bullough,
Eds. (Nat. Bur. Stand. (I .S.), Spec. Publ, 317, I 1970).
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temperature dependent strength. The conditions necessary for non-planar

dissociations are (i) that the dislocation line be parallel to the axis of

stacking fault or twin planes, (ii) that the partial dislocations have Burgers

vectors corresponding to the shear strain for stacking faults or twin lamel-

lae on these planes, and (iii) that the resolved force on the glissile partials

be repulsive. Earlier application of these conditions to various crystal

structures suggested a partialized dislocation model for dislocation re-

sistance [1
_
3]. In this study, anisotropic elasticity is applied to disloca-

tion dissociations in h.c.p., f.c.c, b.c.c, diamond lattice, tetragonal, and

orthorhombic crystal structures. This is preceded by formulations of the

dissociation equation, zonal dislocation, twinning elements, and forces

on the glissile partials. For conciseness the Burgers vectors are expressed

in bi-pyramid or Thompson tetrahedron coordinates.

II. Formulation of Dissociation Equation and Twinning
Parameters

When a dislocation line is parallel to the zone axis of several twin planes

the possible non-planar dissociations can be represented by a general

equation in which the Burgers vector, bo, of the perfect dislocation on

each twin plane K\ in the twinning direction y)\ is taken as a linear sum of

orthogonal unit vectors ^ft,,, and Y£m which line on the plane of shear

Sm defined by the subscript m.

Various nomenclatures have been used for the twinning parameters

and it is not possible to be consistent with any single set. The crystal-

lography for twinning is illustrated in figure 1. The elements of the second

undistorted (rotated) plane are k 2 and r)>. The normal to the plane of

Figure 1. Twinning elements in crystals. k 1 is the twin plane and rji the shear direction.

k-2 and 172 are the elements for the second undistorted plans. Sm is the plane of shear

containing ^ll,,, and T£„, orthogonal unit vectors.
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shear is given by S H!=TO Hi X Y£,„ and the Burgers vector of the perfect

dislocation on its twin plane is
1

bo=[p^n» (
+o-Y^, i ] (i)

where p and <t are positive integers.

The Burgers vector of the twinning dislocation is

b, = sb<> (2)

where s is the fraction of b () which produces the twinning shear. The

shear-strain for twinning is given by

S = sb {) /nd (3)

where d is the spacing of twin planes and n is the number of twin planes

in the twin lamella. In multiple lattice structures such as hep and diamond

cubic (regarded as consisting of two interpenetrating lattices) each

twin plane of spacing d may correspond to a rumpled plane or to two

closely spaced planes.

The direction rjz is given by

rj 2 = [2nD + sb(>] (4)

where D is the twin normal of magnitude |D|=c?. k> is established by

the requirement that it contain the vectors [MfH H! X Y£»,] and r)±, i.e.,

its normal is given by k2 = [^PUm X Y£m ] X yj 2 .

The general equation for dissociation of dislocation QP into multiple

twinning partials on various twin planes of a common zone is given by

(5)

The first summation on the right corresponds to the q— 1 glissile twinning

partials on their respective twin planes and the second bracketted vector

is the stair-rod dislocation between them.

Since s has been measured for only a few twin modes in a few metals,

it must be assumed. The choice is governed by minimum shear-strain

[4, 5] and simple atomic shuffling [6] criteria. The first of these, originally

proposed by Kiho [4] and later by Jaswon and Dove [5], suggests that the

1

rj, as given in various papers and books has unit indices and does not in general have the

magnitude of b 0 .
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twin modes with smaller shear-strain will be favored. Bilby and Crocker

[6] give a systematic description of the atomic shuffles which often occur

and summarize the criteria as (i) the twinning shear should be small,

(ii) the shuffle mechanism should be simple, (iii) the shuffle magnitudes

should be small, and (iv) the shuffles should be parallel to the twinning

direction rather than perpendicular to it. Conditions (iii) and (iv) are not

mutually exclusive, since a smaller shuffle distance is often possible if it

is permitted to have a component normal to the twinning direction [10].

The distortion energy of the twin boundary must also be considered as

a criterion for twinning.

When a second twin mode has elements such that k[ = k2 , K2 — K1,

7]l
= r)2 and 7)2 = 7)i it is said to be a conjugate or reciprocal twin mode.

Both have the same shear-strain and similar, but not equal, atomic shuffl-

ing. Kiho [4] proposed that the more favorable conjugate twin mode will

have the smaller b/, while Bilby and Crocker [6] conclude that the mode
with simplest atomic shuffling will be preferred, and that when no shuffles

are necessary (homogeneous shear) both composition planes should be

equally favorable. The twin boundary distortional energies must also be

considered, since they can be very different for coniugate twin modes

[10] and can play a significant role, at least when the first twinning partial

passes through the virgin lattice.

If twinning occurs by homogeneous shear the smallest Burgers vector

is often large and dissociation less likely. In many cases various dis-

sociations become possible when the twinning dislocations are of the

"zonal" type [7—11] since their Burgers vectors can be small. The con-

cept of a zonal dislocation is inherent in the earlier studies [4-6] and

corresponds to non-homogeneous shear in which a smaller s is paid for

by atomic shuffling in a multi-layer twin lamella.

If n is the number of layers in the twin lamella which forms as the

dislocation glides [11],

s = ns'—p (6)

where s' is the shear for a single layer twin and p is an integer which gives

the lowest absolute value of s. When p = 0 (n=l), s = s' and twinning

is homogeneous, often with a large shear-strain. The zonal dislocation

results for n > 1 and p ^ 1, and permits a reduction in shear-strain at

the expense of atomic shuffling. Of the many possible values of s which
satisfy eq (6) and for which dissociation is energetically favorable, the

ones for which n is small give the best balance between the two effects;

thicker lamellae require more atomic shuffling and are more difficult to

nucleate and propagate. The sign of s determines the direction in which
the partial must move, and consequently its stress-sense characteristics.
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This can be illustrated by simple examples of twinning in cubic crystals.

For bcc metals Ki = {112}, bo=l/2[lll] and s' = 1/3 giving, for homo-

geneous shear, br = 1/6[111] and S=l/V2. For fee metals fCi = { 1 1 1}

,

bo=l/2[112] and 5' = 1/3 giving, for homogeneous shear, b,= l/6[112]

andS=l/V2. Substituting n= (2 + 3/V) or (1 + 3/V) where N=0, 1,2 -

gives |^| = 1/3 and no change in b,. If only the minimum shear-strain

criterion applies, S—> 0 as n—> 0°, and thick lamellae would be favored.

The obvious anomaly is due to the neglected atomic shuffling which

results when n > 1. For n = 2 (/V= 0, extrinsic stacking fault)

5= 2(1/3)-!=- 1/3

and the same Burgers vector must glide in the opposite direction, with

atoms on the intermediate plane shuffling through 2h t . In hep metals

twinning occurs on higher order planes for which the homogenious shear-

strain is generally large. In these cases the atomic shuffling, resulting

when n > 1, permits a significant decrease in ht and S, making these modes

more favorable.

III. Forces on Twinning Dislocations

The resolved force on the twinning partial is computed by a force

balance, where only the components which act in the twin plane are

equilibrated. The morphologies of the partialized dislocations for sym-

metric and non-symmetric dissociations are illustrated schematically in

figure 2. (a) shows a perfect dislocation while (b) and (c) correspond to

symmetric and non-symmetric dissociations respectively. 1 and 2 are

Figure 2. Schematic of twin lamellae morphologies for dissociation of dislocations, (a)

perfect dislocation, (b) symmetric dissociation and (c) non-symmetric dissociation.
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glissile twinning dislocations and 3 is a sessile stair-rod dislocation, s

is positive at both partials for the symmetric case in (b). For the non-

symmetric dissociation in (c) s is positive for 1 and negative for 2.

The initial dislocation energy E is equated to the energy of the resulting

morphology and given by

E = E, +£2 +£., +W, 2 +W, s +Wsa+ yi/i , + y,r2 , (7)

where E, are the self energies of the partials, W-,j are the interaction

energies for a separation between partials of ry and y, are the energies

of the stacking faults or twin lamellae. The self and interaction energies

are given by [12]

Ei=(K|b?/27r) In (r/r„) (8)

Wy= (Kb, • bj/277) In (ry/ro) + K(b, ry) (bj ry)/r?j (9)

where b, is the Burgers vector of the ith dislocation and K the elastic

energy factor for the dislocation on its slip plane.

If the dislocations are constrained to translate by glide only, the force

between two partials is given by

Fy=-.dW,j/aPy= (K/27T)bi • bj/py. (10)

For the symmetric and non-symmetric dissociations the maximum stack-

ing fault energy, ym , is equated to the force, F,, on the twinning partial

[13] resolved parallel to the twin plane when the partials are separated

by 03= a [14]. This is

ymi = F,= (K f-/27ra)[b; • b, + l/2b, • b2 ] (11)

where i is 1 or 2 for the glissible twinning partials and b :} is the Burgers

vector of the stair-rod dislocation. If n3=ea and e > 1 the values of ym
would be divided by €.

If each ymilji > 1 the dissociation can be spontaneous. For symmetric

dissociations yi = y-i = y and the equilibrium separation r, 3 is given by an

expression similar to eq (11) (i.e., substitute a = r, 3 and ymi = y). If a is the

angle between the twin lamellae the equilibrium separation for non-

symmetric dissociations are obtained by the solution of two simultaneous

equations given by

y, = (K,- /2tt) [b, • b :{ In , + (b, • b 2 In, ) (n , - n 3 cos a) ] (12)

with

r'i 2
= H 3 + ri a

~~ 2r, 3 r2 3 cos a
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where i is 1 or 2 for the glissible twinning partials and b : $ is the Burgers

vector of the stair-rod dislocation. If r
i:i
= ea and e> 1 the values of y„,

would be divided by e.

Tj can develop when dislocations pileup. When the dislocation dissociates

at an existing twin eq (13) does not apply, since no new twin boundary is

created, and the dissociation can be spontaneous when y,„ > 0. Similarly

after the initial dissociation the residual dislocation may spontaneously

dissociate into successive twinning partials of the same twin mode.

Dislocations of large Burgers vector can generally dissociate into more

than two glissile twinning partials on twin planes which are parallel to the

dislocation axis. For q— 1 glissile partials eminating from the stair-rod

dislocation, with rIQ — a. y,„ is given by

where bi , bo bg_i are the Burgers vectors of the glissile twinning

partials and h q is that of the stair-rod dislocations between them.

A dissociation is considered to be favorable when all y,„;>0, and

spontaneous if all ym tlyi > I. If the y-, are known, the equilibrium separa-

tions, rig, can be computed by solving q—\ simultaneous equations similar

to eq (12). The more favorable dissociations correspond to those for which

R= (Tih(.s)7//7>h(/)7s) is largest, where ym (S ) and ym (i) are the smallest

and largest values of ym respectively; ys and yi are their respective twin

lamellae energies. When internal stress fields exist many less favorable

morphologies for which ym > 0 are possible.

The elastic energy factors for edge twinning dislocations in h.c.p. metals

were computed numerically [15] with the equations developed by Eshelby

[16]. For screw dislocations in h.c.p. metals they were approximated by

K(6) = (S:»Sw)~ 1
'

2 where 6 is the angle between the dislocation and

the basal plane, the S33 and S H« are the transformed elastic compliances.

This equation gives exact values when # = 0 and 90°[17]. The errors are

estimated to be less than several percent [15]. Similar approximations,

having maximum errors estimated to be less than a few percent, are

applied to dislocations on higher order fault planes in f.c.c. metals. The

tabulated data of Head [18] are used to approximate the energy factors

for screw dislocations on higher order planes in f.c.c. metals. For f.c.c,

b.c.c. tetragonal, and orthorhombic metals, various energy factors are

taken from published work [19-22] or computed with the analytic equa-

tions developed by Foreman [17].

y,'ni = (Tib+ y,„t) > yi. (13)

ymi = (K,/2to) [b, • bQ+ 1/2 2 *>/ • hj] (14)
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IV. HCP Metals

In hep metals the reported twin modes correspond to seven {211/}

and {101/} planes, where /= 1, 2, 3, and 4 for the {211/} zone and

1=1, 2, and 3 for the {T01/} zone. A {3034} habit is also found in Mg
[23-25], but it is not known whether this is a new twin mode or a rotated

{1011} twin; the latter has not been successfully rationalized [26-28].

The {3034} habit can be a real twin mode [10, 24] with elements Ki = {3034}

,

rj, = (2023) , k, - {1012} and rf > = (TOlT), and a shear-strain of S =-0.27.

The dislocations which meet the criteria for partialization on the oblique

planes of the two zones are AB edge, AB 60° and A/jl Shockley partials

on the basal plane, AB mixed and <t>0 edge and mixed dislocations on

the first-order prism plane, <j>0 edge and mixed dislocations on the second-

order prism plane, and [AB + <£0] edge, screw and mixed dislocations

on the second-order {2112} pyramidal slip plane. The vector representa-

tion corresponds to the bi-pyramid notation [29] as modified by Nabarro

et al. [30]. The Burgers vector of perfect dislocations are listed in table 1

in bi-pyramid notation, Miller-Bravais, and Cartesian coordinates.

The Burgers vector of the perfect dislocations on the twin planes are

b 0 = [pAB + o-/K0] for planes of the {211/} zone (15)

bo= [pAfA + afJiO] for planes of the {101/} zone (16)

For the {211/} zone a= 2l and p=(S/2)h; for the {T01/} zone cr = 2/

and p = 3h. The h and / are indices in Miller-Bravais coordinates of the

[hkil] Burgers vector of the perfect dislocation on its twin plane. The

values of p and cr are listed in table 1.

The single-layer and multi-layer twin shears for small n are given by

s' = l/[p+(cr2/4p)(c/a) 2
] _ for (17)

{211/}
s= [n-p- (cr-/4p)(c/a)-]/[p + (cr-/4p) (c/a) -] planes (18)

s' = l/[(l/3)p+(^/4p)(c/a) 2
] _ for (19)

{101/}
s=[n-(H3)p-(o-V^p)(c/a)']/[(l/S)p+ (o^/4p) (c/a) 2

] planes (20)

Values of s for the seven reported twin planes, with small n, are listed in

table 2. For the modes with n > 1 p is taken as unity in eq (6) giving eqs

(18) and (20).

The shear-strain for twinning is given by eq (3) where

6 0 = a[p 2 + (l/4)o- 2 (c/a)^]'/ 2
(21)

for {211/} planes

d=al2[_l + Mplcj)HalcyY^ (22)
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TABLE 1. Types of dislocations in h.c.p. metals
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Miller-Bravais

coordinates

Bi-pyramid
notation

Cartesian

coordinates

Dislocation

energy

Twin zone

Plane
Burgers
vector

6o

p (X

Burgers
vector bo

Burgers
vector bo EIK - bl

First-order

pyramidal

zone

{Toi/}

(0001) 1/3(1010) 1 0 AAft l/o < 3V d U > 1/3

{Toil} (T012) 3 4 OA.. 1
• ") JL l\oAfi + 2<pu 1/2 < 3 V 3 4 > 3 + 4(c/a) 2

{3034} (2023) 6 6 £L A 1 O J./1oA/u. + 5q>u < 3 V3 3 > 12 + 9(c/a)-

{1012} (Toil) 3 2 DA.. 1 J /ioAjU + <ptf 1/z < 3V 3 2 > 3 + (c/a) 2

{1013} (3032) 9 4 OA., i n i/i l /o — A Q A fo A \1/z < y 3 V 5 4> z/ +4(c/aJ-

{1010} [0001] 0 2
J» /J raa 1

1

looij (c/a)-

Second-order

pyramidal

or

{2110} 1/2[0001] 0 1
i /o rAA 1 1l/zLUUl J (1/4) (c/a) 2

(0001) 1/3(2110) 1 0 A I)Ad / 1 AA \
( 100) 1

zone

{ZLLl} {2111} 1/3(2116) 1 4 AD 1 OJ.AAr> + z0t7 (102) 1 + 4(c/a) 2

{2112} 1/3(2113) 1 2 ab + <j>e (101) 1+ (c/a) 2

{2113} 1/3(2112) 3 4 3AB + 200 (302) 9 + 4(c/a) 2

{2114} 1/3(4223) 2 2 2AB + 00 (201) 4+ (c/a) 2

and

60 - a [ ( l/3)p 2 + ( 1/4) o-2 (c/a) 2
] ^ (23)

for {101/} planes

e7= a/2 [(1/3) +4 (p/3cr) 2 (ale) -] »/* (24)

Taking \4>'Q'
|

= 1/|<£0| = a/c, rjo is given by eq (4) with

D= [o-AB-2p</)0']/2[o- + 4(p 2/o-)(a/c)-] for {211/} planes (25)

D = [3o-A/*-2p<f>0']/2|> + (4/3) (p
2
/o-) (a/c) 2

] for {l01/} planes (26)

369-713 OL - 71 - Vol I - 34
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IV. Dislocation dissociations

A. AB Edge Dislocations on the Basal Plane

The general equation for dissociation of an AB edge dislocation on the

basal plane into single twinning partials on {211/} planes is given by

AB-^ [(l-ps)AB + o-s<^]+s[pAB + (r/*0] (27)

For symmetric twinning partials on {211/} planes it is given by

AB^ (l-2ps)AB + s[pAB + o7A0]+s[pAB + cr0M ] (28)

and for non-symmetric partials on {211/} planes by

AB^ [(l-5 1p,-5 2p 2 )AB+ (s-.o-.-s.cr,)/^]

4- 5, [p, AB + cr, ix6] + s-> [p,AB + o- >6/jl] (29)

B. AB 60° Dislocations on the Basal Plane

The general equation for dissociation of AB 60° dislocations on the

basal plane into single twinning partials on {101/} planes is given by

AB -> [AB + psLiA + crsOfi] + s [pAfx + a/xO] (30)

For symmetric twinning partials on {101/} planes it is given by

AB-^ [AB + 2ps/nA] +s[pAix+afi0] + s[pA/u,+ oSfx] (31)

and for non-symmetric partials by

AB^ [AB+ (pi 5, +p 25o)/i,A+ (<r>s 2 — cr,5i) fjid]

+ 5, [p, A/jl + o-, (jlO] + s, [p-,A/jl + cr , Op] (32)

C. AB Mixed Dislocations on the {0110} First-Order Prism Plane

AB dislocations on the first-order prism plane (cross-slip plane) can

dissociate into twinning partials on {211/} and {101/} planes when they

assume specific orientations. For {211/} planes these orientations are

(2116), <2113), (2112) and (4223) for /=]_, 2, 3, and 4 respectively,

while for {101/} planes the orientations are (2113), (4223) and (2111)

for Z=l, 2, and 3 respectively. For single twinning partials on {211/}

planes eq (27) applies, and for single twinning partials on {101/} planes

eq (30) applies.
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D. A/x Edge Dislocations on the Basal Plane

The equation for dissociation of A/jl edge dislocations into twinning

partials on {101/} planes are the same as eqs (30) to (32) when AB is

replaced by Aft. Their morphologies are the same as those for AB 60°

dislocations with, in this case, the stair-rod dislocations being pure edge.

E. [AB + (/>#] Dislocations on the {2112} Second-Order Pyramidal
Slip Plane

{2112} second-order pyramidal slip is common in Cd and Zn [31-37]

when basal slip is unfavorable, but is found to be more difficult in other

metals [38-45], and is not expected in terms of the usual criteria for

the choice of slip system. The discrepancy is attributed to its stabilization

by dissociation on the {2112} slip plane [10]. Various zonal dislocations

are possible [9, 10, 46]. The partial dislocation could have a Burgers

vector sbo with 5 = 5', corresponding to single-layer twin fault, or s = 2s'

for double-layer twin fault. Smaller Burgers vectors can result for thicker

lamellae; this is the case in Cd and Zn for four-layer twin lamellae, and

in metals for which c/a < V8/3 for three-layer twin lamellae.

Atomic shuffling is least when 5 = 5'. and if y is not too high the

[AB + <£>0] dislocation can dissociate into q= 4 glissile partials in metals

for which c/a < V8/3, with S\ = s 2 = 5
;
> = 5' and 54 — 1

— 3s' and n= I, 2,

and 3 layers between successive partials. For Cd and Zn q could be 5

with Si —s-2 = 5:5 = 54 = 5' and 55 = 1 — 45' and n = l. 2, 3, and 4 layers

between successive partials. The large Burgers vector of [AB + c/>0]

allows for many non-planar dissociations given by eq (5), with

QP= [AB + 00],

^H,,=AB and Y£,„ = for {211/} planes, and HWL ltl
= AfjL for {101/}

planes. Edge dislocations dissociate into twinning partials on {211/}

planes; those on {101/} planes result when the orientations are (2113)

(pure screw), (2243) and (2753) for /= 1, 2, and 3 respectively.

The 5' [AB + 4>0] dislocation could also dissociate into single glissile

twinning partials on {211/} and {101/} planes. y„, is positive for twinning

partials on {2111}, {2114}, and {1012} planes in all metals and for

{1011} and {1013} in metals for which c/a < V8/3. The ym are too

small to initiate a twin lamella, but could enhance spontaneous dissocia-

tion at an existing twin and may contribute to nucleation of a twin at

a dislocation pile up. Similar dissociations apply to <f>0 dislocations on
first and second order prism planes [47].
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F. Discussion

Values of y have been approximated [10] by applying anisotropic elas-

ticity to changes in the closest atomic approach [48] at the twin boundaries,

and when compared with ym permit an estimate of the tendency to dis-

sociate for the various twin modes. These show several cases for which

AB dislocations could lock. In these cases ym ly < 1 for Cd and Zn and

> 1 for Zr and Ti which show a strong temperature dependence for both

basal and prism slip, but less so for prism slip [49]. This is consistent

with the smaller y,„ for dissociation of AB on the prism plane.

Dissociations of AB and [AB + <f>6\ dislocations can account for all

the twin modes and various plastic flow behavior [47, 11]. For </>& disloca-

tions it is found that y,,,ly > 1 in many cases, indicating that the disloca-

tions would lock soon after they form. The only evidence for <f>6

dislocations is in Zn [32] and Be [45] when [AB + (f>0] dislocations dis-

sociate. This does not rule out a possible role in twinning if their formation

preceded twinning, but it is unlikely that the origin of [AB + <f>0] dis-

locations is due to the interaction of AB and <f>0 dislocations [50].

The dissociation processes are affected by orientation and stress-sense

effects. The {2111} and {2113} twin modes, with n=\ (5 = +), are favored

by tension along cf>0 and compression along AB, while the {2112} and

{2114} twin modes, with n = 3 (5 = —), are favored by opposite stresses.

The {1011} and {1013} twin modes with n=4< (5 = —) in metals with

c/a < V8/3, are favored by compression along <f>6 and tension parallel

to Afx. This behavior is consistent with {1011} twinning in Mg [51, 52].

For the {1012} twin mode, twinning is favored for compression along

<f>0 and tension parallel to Aft in Cd and Zn (5 = —), and for opposite

stresses in metals for which c/a < V8/3 (5 = +). The lack of {1011}

and {1013} twins in Cd and Zn could be attributed to the large shear-

strain (small ym when n ^ 4) and to the availability of the more favorable

{1012} twin mode for the same stress conditions. In Mg, where {1011}

and {1013} twins are found [25], the orientation and stress-sense effects

are opposite to that of {1012} twins. In this case {1011} and {1013}

twins are more favorable than {1012} twins for compression parallel to

<f>6 or tension parallel to A/jl. The {3034} twin mode has the same stress-

sense characteristics as {1011}. ym is greatest for the {1013} twin mode
when AB dislocations dissociate, while it is greatest for the {1011} twin

mode when [AB + <f>0] dislocations dissociate.

Of the {211/} twin modes in Zr and Ti, {2113} is least frequently found

[53-55]. This is consistent with the large shear-strain and smaller y m

and ymly values when n = l in most of the dissociations. In cobalt {2111}

twins are reported by Davis and Teghtsoonian [56], while Seeger et al.

[38] find {2112} and {2114} twins. The difference may be due to orienta-
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tion and stress effects; these modes have opposite stress-sense char-

acteristics. In Zr {211/} twin modes of lower / are more numerous at all

temperatures [53, 54]. This is also the case in Ti at high temperatures

[57, 58], but at — 196 °C the {2114} twin mode is found to be more numer-

ous [55]. ym is largest for {2114} twins when AB dislocations dissociate,

while it is largest for {2111} twins when [AB 4-
<f)0] edge dislocations

dissociate. Rosi et al. [55] find that the {2114} twins, which form in tita-

nium at — 196 °C in tension, increase in frequency as the AB pole is ap-

proached. This is consistent with the stress-sense characteristics and

with the view that locked AB dislocations in these crystals may not be able

to thermally unlock at these low temperatures [49, 11].

The preference for {211/} twinning of lower / at higher temperatures

suggests that these twin modes may be due to dissociation of [AB + </>0]

dislocations. This is consistent with studies in zinc. Burr and Thompson

[59] find that {2112} slip preceeds {1012} twinning at room temperature.

These crystals were stressed parallel to the basal plane and show that twin-

ning results in tension tests at 20 or 77 K at lower stresses than are required

at room temperature, consistent with stress-sense effects and with the

partialized dislocation model. Second order pyramidal slip is found in

cadmium [31-34], zinc [35-37, 32], cobalt [38], zirconium [39, 40],

hafnium [39] and beryllium [41-45].

V. FCC Metals

If AB (b = 1/2 [1 10] ) dislocations are not dissociated into Shockley

partials on their {111} slip plane, they may dissociate into partials which

are glissile on oblique planes [3]. The edge dislocation line is parallel to

the (112) zone axis of higher order fault planes. The general equation for

symmetric dissociations of AB is given by

AB-^ (l-2ps)AB + s[pAB + o-Dd]+s[pAB + o-5D]. (33)

D8= 1/3 [111] and p and cr are integers given by <x= 3/ and p = 2(h — I) ,

where h and / are indices of the [hkl] Burgers vector of the perfect dis-

location on the fault plane. Various planes and Burgers vectors of this

zone are listed in table 3 in Miller and Thompson tetrahedron [60] coordi-

nates, s is given by eq (6) and

s' = 3p/[3p 2 + 2<72 ]. (34)

{241}, {152}, and {174} are imperfect boundaries with properties

similar _to {2111} and {2113} simple shear faults in h.c.p. metals [10].

while {131}, {021}, and {132} are perfect twin boundaries, similar to

{2112} and {2114} twin boundaries in h.c.p. metals. The distortions are
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TABLE 3. Types of dislocations in f.c.c. metals.

Plane {110} {241} {131} {152} {021} {174} {132} {111}

6„
1/s<lll> V2 <312) V2 (714) (201) V2<5l2) <3ll) (421) 7,(110)

P 0 1 3 2 3 4 6 1

(T 1 3 6 3 3 3 3 0

bo D8 AB+3DS 3AB+6D5 2AB+3D8 3AB+3D8 4AB+3D5 6AB+3D8 AB

more severe for the imperfect twins, limiting them to a possible role in

Martensitic transformations. For the perfect twins the distortions are

normal to the twin boundary and increase as p/cr increases; {131} is the

most favorable. The symmetric dissociation of AB into twinning partials

on {131} planes is given by

AB -»
( 1 - 65 )AB + s [3AB + 6D5] a^+s [3AB + 65D ]

,

s7l) . (35)

The y m values for 5 = 5' are listed in table 4. y,„ is also positive for non-

symmetric dissociations when the number of layers in the fault lamella

for the second partial is (1 — s)/s; these thicker lamellae are less likely to

develop.

Non-edge dislocations on the {111} plane with Burgers vector

AD=1/2[101] could also dissociate into glissile partials on these higher

Table 4. y,„ values for dissociation of dislocations in f.c.c. metals. The units are ergs/cm 2
.

The first column refers to the equations in the text.

Equation a-brass Al Cu Au Pb Ni Ag Th

35 130 83 144 104 38 232 104 115

36 305 206 355 235 88 609 251 294

38 152 90 167 109 52 282 117 144

39 136 84 148 105 39 241 107 120

41 164 133 189 143 50 320 140 144
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order twin planes when AD assumes an orientation (hkl) which lies in

the twin plane. For the {131} twin mode (hkl) corresponds to the screw

orientation of AD and the dissociation is given by

AD ^ l/ll[3AB+6D6],i;
t i
+ l/ll[3BD + 6Aa] (T,,, . (36)

The y ,„ values are listed in table 4. Both partials are glissile on the (131)

cross slip plane. This dissociation becomes more favorable in higher {111}

stacking fault energy metals.

The distortion energy of the faults can be approximated from changes

in the closest atomic approach by [48].

y= (1/2) ade2^ (37)

where e is the elastic strain, d the spacing of distorted planes, E& the

tension modulus (Young's modulus) in the direction of the distortion, and

a the number of distorted planes in the fault or relative density of distorted

atoms in the fault. The resulting distortion energies for 1/11 (714) { 131}

faults are listed in table 5. Comparing ym for eq (36) with the values in

table 5 shows that ymly — 1 for dissociations of screws in a-brass, Pb,

and Th, and 0.6 to 0.9 in the other metals. The tendency to dissociate

by eq (36) may impose a drag on screws tending to lower their mobility at

lower temperatures. For symmetric dissociations of edge dislocations on

{131} planes, y,„ly — 1/3. This is too small to affect isolated dislocations

but might be effective at complex dislocation dipoles and braids, during

work-hardening, where opposite sign partials may interact.

Table 5. y values for {I'M} faults in fee metals. The units are ergs/cm'1 .

Metal a-brass Al Cu Au Pb Ni Ag Th

y 302 347 405 297 87 730 282 298

For dissociation into partials on the {021} twin plane the orientation

of AD is (312) and the dissociation is given by

AD
( ,T2>

-* 1/5 [BD + 3AB
|

fiy] + 1/5 [3AB + 3D6] (021) . (38)

The y„t values are listed in table 4. They are smaller than those for eq 36.

and since y is also larger on this plane, this dissociation is less favorable.

The AB screw dislocation could also slip on other planes ({001} and

{110}) of the zone which has its axis parallel to (110). For slip on {001}.

which is the next most widely spaced plane, the edge dislocation line is

parallel to the (lIO) zone axis of symmetric {Tll}(ll2) and {ill} (112)
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twin systems and can dissociate according to

AB
(ooi

) -> A/J(Tl , ) + Pa + aB (1 n >• (39)

The y,n values are listed in table 4. Comparing these with reported values

of y show that ym/y > 1 in cx-brass, Cu, Au and Ag; y„,/y — 1 in Pb,

Ni and Th and y,„ly < 1 in Al. It suggests that {001} slip is possible in

aluminum but much less likely in the other metals. Equation (39) is the

well-known Lomer-Cottrell lock proposed for interactions of 1/2(110)

dislocations on different {111} planes. It can also form by cross-slip of

AB screws from {111} to {001} [61]. Nabarro discussed Stroh's evaluations

for the stability of this lock [62]. {001} slip is reported in aluminum

[63-65].

For l/2( 110) {110} slip, edge dislocations might dissociate according to

l/2[ll0]-> 1/2[100] + 1/2[0T0]. (40)

If one partial separates into the compressive region of the second, the

closest atomic approach is reduced by Vl/2a — l/2a, severely distorting

the lattice. If it separates into the tensive region it can reduce the Burgers

vector of the second partial by this amount without affecting the closest

atomic approach. This is given by

l/2[lT0]-» (l-s)l/2[100] + l/2[sl0] (41)

where 5=1— VT/2 = 0.293 and ym has the values listed in table 4. This

dissociation could lock the edge dislocation if these values are greater

than the energy due to the change in coordination from 12 to 9; {110}

slip has been proposed [66, 67], due to the smaller elastic energy factor

for dislocations on this plane.

Equation (41) also applies to edge dislocations in the NaCl lattice.

Many of these slip on the 1/2 (110) {110} system and show avalanche

behavior in glide band formation [68, 69]. In this case the dissociation

depends on the nature of the ionic forces and relative ionic radii. Various

twin modes are found in this lattice. In PbS several {hhl} twins are

reported [70, 71]. These are of the same zone with a common {110}

plane of shear, and are readily explained by this model [72].

VI. Diamond Lattice

The AB dislocation in the diamond lattice can dissociate into Shockley

partials on the {111} plane [73]; ymly > 1 in both silicon and germanium.

This is a double-lattice fee structure, with the intrinsic stacking fault

being a one-layer (double-plane) twin having two low-energy coherent

twin boundaries. Motion of the Shockley partials (which can be considered
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as zonal dislocations [3, 74]) creates and dissolves the twin lamella, and

can be described in two equivalent ways: (i) by shear between closely

spaced {111} planes as contrasted with shear between widely spaced

planes for the perfect dislocation. This requires breaking three times as

many atomic bonds and should be more difficult [75], (ii) by shear between

widely spaced planes accompanied by a rotation of atom pairs through

120° as the first Shockley partial passes and a similar rotation as the

second one passes [76] [see fig. 3a]. In the latter it is necessary that atoms

along the dislocation line pass through a 12 percent reduction in the closest

atomic approach, consistent with the high Peierls-Nabarro lattice resist-

ance, and thermally activated flow behavior.

Due to the open nature of the lattice, various stacking faults are possible

for which both the closest atomic approach and coordination number are

maintained. A Type II fault [77] of this type corresponds to a V6[lll]

displacement which, for dissociation of an AB type dislocation, results by

V2[10l] -> ye[llT]+ ye[212], (42)

where ym= Kal24>7r, the same as for the Shockley dissociation. This is

illustrated in figure 3(b). The Burgers vector is along [111] but the separa-

tion is along [112] on (111). The Shockley dissociation is likely in annealed

crystals whereas eq (42) may be favored during plastic flow if rotation of

atom pairs to form the intrinsic twin fault is difficult. Since the V6[lll] par-
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tial has a component normal to the (111) slip plane its formation would

tend to stabilize edge dislocation dipoles.

Dislocations in this lattice could also dissociate into partials which are

glissile on {132} planes [3]; this is a report twin plane [78] in various

semiconductors. For symmetric partials on {132} planes the dissociation is

AB ->
( 1 - 1

2

5 )AB + s [6AB + 3D5] (tm+ s [6AB 4- 35D ] (,

,

2) . (43

)

For s = s' = 1/7, given by eq (34), the distortions at the twin boundary are

very severe. 2 A non-symmetric fault which maintains the closest atomic

approach results when s = —1/14. In this case y„, = 4<3\ and 516 ergs/cm 2

for Ge and Si respectively. The elements of the second undistorted plane

are k-2 = ( 1 1 0 ) and i|2 = ( 11 1 ) , and the shear-strain for faulting is S = 0.524.

Non-edge AD dislocations on the {111} plane could dissociate into

partials which are glissile on the {132} plane when they assume the

(532) orientation. In this case

AD<532>^ l/14[18yD + 3«5
|

CB] + 1/14[6AB + 3D8] (1S2) . (44)

y,,, = 334 and 424 ergs/cm 2 for Ge and Si respectively. The sessile partial,

of the form 1/14 [326], can further dissociate into a yD Shockley partial

giving

AD<532) -> l/14[4yD + 3«5
|

CB] + yD (1m+ 1/14[6AB + 3D8] (1:{2) . (45)

y,„ on the Shockley partial is 368 and 453 ergs Icm2 for Ge and Si respec-

tively, and on the 1/14[6AB + 3D5] partial it is 211 and 248 ergs/cm 2 in

Ge and Si respectively. If AD is dissociated into widely spaced Shockley

partials on the {111} slip plane, the Ay partial can dissociate according to

Ay (532) -> l/14[4yD + 3«5
|

CB] + 1/14[6AB + 3D5]<,:,2) (46)

y,„ = 121 and 141 ergs/cm 2 for Ge and Si respectively.

VI. 1. Dislocation mobilities in germanium

Both the planar and non-planar dissociations predict a high dislocation

resistance in this lattice [79, 80]. Studies of glide band formation in silicon

[81], deformed at low strain-rates, show characteristics quite similar to

that found in alkali-halide single crystals [68, 69]. The narrow glide bands

taper to a single plane at opposite ends and the dislocation morphology

2 This is so great that it is questionable whether the reported defects are mechanical twins.

Christian [28] suggests that later work makes it doubtful the {123} twins do in fact exist in

diamond lattice.
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in the bands, as revealed by their phase retardation birefringence charac-

teristics, are in the form of large concentric loops on neighboring planes

with staggered sources in the central region of the band.

Dislocation motion in this lattice is strongly temperature dependent

and can be expressed by

where E(t) is the activation energy for motion of the dislocation. Kabler

[82] made careful studies of the motion of isolated dislocations in ger-

manium and found that the activation energy for 60° dislocations decreases

from 2.25 eV at stresses of r < 0.8 kg/mm 2 to 1.49 eV at r > 8 kg/mm 2
.

The activation energy for screw dislocations is found to be independent

of stress and equal to 1.47 eV.

If the pre-exponential term, Vo, is constant or an increasing function of

stress, a plot of In v versus In r would be concave upwards. In Kablers

studies the curve is concave downward, and can only result if Vq is a

decreasing function of stress for the intermediate stresses. To account for

this behavior, Celli et al. [83] proposed that the dislocation lines contain

randomly distributed dragging points which limit the movement of kinks

along the dislocation line. The orthogonal kink on the 60° dislocation

makes an angle of 30° with the Burgers vector, 6V2
C
off the (532) orienta-

tion. If the kinks are at 83 V2
0
instead of 90° they can lock and serve as

dragging points. Since only large kinks can lock, dragging points are not

expected at low stresses, while at much higher stresses the dragging points

can be overcome. Locking is possible for kinks on screws only when they

make an angle of 36V2
0
with the dislocation line.

The decreasing activation energy with stress for 60° dislocation can be

accounted for if the high activation energy for t < 0.8 kg/mm corresponds

to motion of dissociated dislocations and the lower value for r > 8 kg/mm
to motion of almost perfect ones. The decreasing intermediate values could

then be related to the energy required to constrict and recombine the

Shockley partials. The activation energy is given by [84]

where E( is the constriction energy, R the recombination energy, and x*

the length of the recombined segment, equal to the critical kink separation

/. When / > x* the dislocation can dissociate ahead of the line to effec-

tively displace the segment by a distance h. The sequence of configurations

during a thermal vibration of the activated process is similar to that

proposed by Friedel [84].

The recombination energy for a pair of Shockley partials at a 60° dis-

location is given by [85]

v=Vi) exp [—E(t)/J(T] (47)

E[t]=Ec + Rx :

(48)
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R=(Ka2l2^rr) In (d/eb) (49)

where a is the lattice parameter, b the Burgers vector of the perfect

dislocation, and d the spacing of the partials. The constriction energy

is given by [86].

Er = 0m2Gb1d[\n (d/eb)]" 2 '50)

where G = K(1 — v) and the core radius is taken as ro= eb, as for recombi-

nation.

The separation of partials depends on both the applied stress and the

effective stacking fault energy, and is given by [85]

d=Ka2
l24,7T(y+ Tbi) [51)

where b\ is the Burgers vector of the Shockley partial.

The interaction energy for kinks on a dissociated dislocation can be

approximated from that for a perfect dislocation [87, 88] by

Ek = [ (Gb-h-p ) /8tt/] [1 + s (do- d)J (do- eb) ] (52)

where h
x
is the height of the Shockley kinks, do the separation of Shockley

partials at 7=0, and (3= (1 — 2v)/(l — v) for kinks in approximately

screw orientation. The first term on the right corresponds to the inter-

action energy of kinks on a Shockley edge dislocation while the second

term includes the interaction from the kinks on the neighboring Shockley

partial. 5 is a normalizing factor ( = 5.75) chosen to give the interaction

energy of kinks on a perfect dislocation when d— eb.

The critical separation of the kinks, l= x*, occurs when Ek = W where

W=rbhl is the work done by the applied stress to displace the segment.

This gives

** =
{ (G6-/3/36V3t7t) [1 + s(do - d)l (do - eb) ] (53)

Substituting eqs (49), (50), (51), and (52) into eq (48) for a value of y= 192

ergs/cm 2
, the E(r) values are plotted in figure 4. The theoretical curve

is compared with the activation energies computed from the data of Kabler

[82]. For 0.8 > r > 8 kg/mm*-, E(r) is taken as the constant upper and

lower values corresponding to dissociated and almost perfect dislocations

respectively. The value of £=1.47 eV for screws is consistent with

undissociated dislocations, since the repulsive force is smaller and

dangling bonds must be created by dissociation [73].
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60° DISLOCATIONS IN GERMANIUM
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FIGURE 4. Activation energy for dislocation motion by double-kink formation at dissociated

dislocations in germanium when y=192 ergs/cm2
. These are compared with the activa-

tion energies computed from the data of Kabler [82]

.

The pre-exponential term has the form vo = Br'" in each of the three

stress ranges. For r < 0.8 kg/mm 2
, mi =3.32 and B] = 1.55 X 10 H)

; for

1 < t< 6 kg/mm 2
, m2 =-4.64 and B2 = 7.87 X 109

, while for t > 8 kg/mm 2
,

m:i
= 2.l and B* = 4.33 X 10 4

. The negative value of m*2 for intermediate

stresses is attributed to dragging points at deeper kinks which develop

by coalescence of unit kinks as the stress increases. Unit kinks which

form at lower stresses cannot lock, while at higher stresses the dragging

points can be overcome. The value of y=192 ergs/cm 2
is twice the re-

ported stacking fault energy [89]; this may be related to effects which

prevent equilibrium separation under dynamic conditions for the intrinsic

twin stacking fault, or it may correspond to the Type II stacking fault.

Hirth and Lothe [74] place the two partials on different planes displaced by

1/2DS and propose that the second partial glides by shuffling a row of inter-

stitals (or vacancies). This description is equivalent to shear between widely

spaced planes accompanied by a rotation of atom pairs, but the assumption

of different slip planes is not necessary since the equivalent model of

shear between closely spaced planes creates the perfect twin fault lamella

with shear on a single plane. Ice crystals show similar flow behavior [90],

The basal plane of this lattice is a double layer structure with a similar

intrinsic stacking fault, consistent with the above model for the flow

In bcc metals both screw and edge dislocations meet the criteria for

partialization. The low index Burgers vectors in this crystal lie on a

behavior.

VII. BCC Metals
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bi-pyramid of {110} surfaces. The (001) square base, ABCD, has /x at its

center and (100) edges; the oblique edges of the pyramids are 1/2(111)

with 6 at the top of the pyramid, and </) at the bottom of the inverted

pyramid. In this notation^ AB = [100] ,
AD_= [010] and 00= [001];

A0=l/2[111], B0=l/2[111], C0=l/2[111] and _D0 = 1/2[111];

A/i=l/2[110], AC=[110], B#c=I/2[110] and BD=[110]. The other

(110) vectors are given by sums such as [101] = [AB + 00] etc. Simi-

larly all other vectors are represented by sums of unit vectors which lie

on the plane of shear for the fault mode.

A0 screw dislocations are parallel to the zone axis of three {112} and

three {110} planes and can dissociate into three sA0 partials which are

glissile on these planes, or three 5AC type partials which are glissile

on {110} planes [91-96]. 5=1/3 for A0 partials and 1/8 for AC type

partials. The dissociations are given by

A0*-> 1/3A0 + 1/3A0+ 1/3A0 (54)

A0.s. 1/2A0 + 1/8AC + 1/8 [AB 4- 00] + 1/8 [AD + 00] . (55)

The faults which result for separation of 1/3AG partials on {112} and

{110} planes have a 5.73 percent reduction in the closest atomic approach

normal to the boundary. If the partials lie on the slip plane the dislocation

is glissile but an additional resistance results as the stacking fault wedges

its way through the lattice. Taking e = 0.0573, d=2d(m) (c?<ii2> is the

spacing of {112} planes) and a = 2, the energy of the {112} fault can be

approximated with eq (37). If the distortions are permitted to relax e

can reduce to €r = 0.01523 with a = 6. €r is computed by permitting

the two sides of the stacking fault to separate to an equilibrium distance

for which the remaining reduced spacing is equal to the increased spacing

with neighboring atoms. The resulting unrelaxed and relaxed stacking

fault distortion energies are listed in table 6. yn may apply to twin lamelae

or widely extended faults, while y would apply to stacking faults at par-

tialized dislocations. The values of y are four times those given by

Wasilewski [48].

For 1/8 [110] (110) faults the crystal structure changes to b.c. mono-

clinic, which is almost orthorhombic. The parameters are a' — (3' = 90°,

y' = 88.1°, c' = a, a'/c' = 0.885 and b'/c' = 1.132. The elements of the

second undistorted plane are a<2 = {430} and r^z= (340) and the shear-

strain is S = 0.25. In this structure two nearest neighbors increase their

spacing by 2.19 percent, while a next-nearest neighbor becomes a nearest

neighbor with the same spacing. The distortion energy can be approxi-

mated by equating it to that of the three distorted bonds. The resulting

values are approximately 1/4 of those for {112} faults listed in table 6.
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Table 6. y values for { 1 12} and {103} faults in bcc metals. The anils are ergs/cm-.

Fault

plane

Fault

energy

a-Fe Ta W V Cr Mo Nb

{112} y 168 171 345 100 204 271 82

{112} ju 36 37 74 21 44 58 17

{103} y 1018 1218 2960 959 2525 2020 935

This does not include the effect of an increase in coordination number

from 8 to 9 for a single-layer fault and to 10 for a multiple layer lamella.

As noted by Crussard [97] the larger interstitial sites enhance fault

formation when interstitials are mobile.

Single-layer fault forms on {110} when the dislocation dissociates into

1/8[110] partials by [97, 98].

A0-> 1/8AC + 1/2 [2A0+ 00] + 1/8AC (56)

and double layer fault when it dissociates into 1/4 [110] partials by

A0^ 1/4AC + fid+ 1/4AC. (57)

ym is 60 percent greater for the double layer faults but the distortion

energy is estimated to be about twice as large, while still only about

1/2 that of 1/6 [111] faults. The ym values for eq (57) are listed in table 7.

Table 7. y,„ values for dissociation of dislocations in bcc metals. The units are ergs/cm2
.

The first column refers to the equation in the text.

Equation Dislocation a-Fe Ta W V Cr Mo Nb

57

Edge 600 656 1390 455 867 1137 431

Screw 419 434 1010 291 696 796 263

59 Edge 288 289 570 181 388 445 165

60 Edge 960 1050 2224 728 1388 1818 691

61 Screw 314 326 707 219 522 597 199

62 Edge 446 448 904 287 535 704 262

63 Edge 1360 1360 2510 816 1403 2015 739

66 Edge 1920 2100 4448 1456 2776 3636 1383

369-713 OL - 71 - Vol I - 35



520 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

ym /y is greater than unity for both eqs (56) and (57), which may play a

role in Martensitic transformations.

Non-planar dissociations of screw dislocations have been studied by

various authors [91-96] and can account for orientation and stress-sense

effects [99-103] and thermally activated flow behavior [104-107]. A
tensile stress parallel to (110) or compressive stress parallel to (001)

tends to retard the sessile-glissile transformation for screw dislocations

which are partialized on symmetric {112} planes, while the reverse

stresses enhance this transformation. This is consistent with stress-sense

studies [99-103]; no asymmetry exists for screw dislocations when they

are partialized on symmetric {110} planes.

AO edge dislocations can also dissociate into partials which are glissile

on oblique planes. The Cottrell-Bilby dissociation for edge dislocations

on a {112} plane is given by [108]

A0 (I1 2)-> l/30C(,, 2 ) + 2/3[A0+ jx0]. (58)

This is not favorable at isolated dislocations since the fault energy is high

and, to a first approximation, the force between partials is zero. Motion of

the 1/3 0C partial to form intrinsic stacking fault requires an energy of

y, whereas motion in the opposite direction forms a double-layer stacking

fault in the tensive region of the sessile dislocation, which can relax the

distortions to lower the stacking fault energy and reduce the Burgers

vector of the sessile partial to

(1 - 5) 1/3 [112] ; s= 2 (0.0573 0.01523 ) 0.08414

is the relaxiation of the two sides of the fault. The dissociation is

l/2[lll]-» (1-5)1/3[112] + (1 + 25 )1/6[11m;] (59)

where

w= (4s-l)/(l + 2s)

The ym are listed in table 7. In each metal ymlyR>l and ym/y > 1,

suggesting that edge dislocations on {112} planes should tend to lock at

low temperatures.

Vitek [109] recently applied a central force interaction between atoms
at stacking faults in bcc metals, and finds an energy increase (with no

minima or plateau) for 5(111) {112} faults as s increases. Several different

potentials were used giving different numerical values, but the same y
surface contour. In the present study the strain at the bond which is

normal to the fault increases to 5.73 percent as s increases from zero to
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the 1/3 value. If s is taken as 1/6 the distortion at this bond is smaller but

other atomic bonds increase in length and the distortion is found to be

approximately twice that for s= 1/3.

In the Vitek approximation it would be less, suggesting the possibility

for dissociations into glissile partials of smaller Burgers vector. In this

case AO might dissociate into six 1/6A0 partials which separate on sym-

metric {112} and {110} planes. The smaller y values for these faults

permit partialization with ym approximately 1/2 as large as it is for 1/3A0

partials. It might further dissociate into nine 1/9A0 partials or twelve

1/12A0 partials (if extrinsic stacking faults are allowed) which separate

on symmetric {112} and {110} planes. This dilated core structure would

be more mobile than the three-partial morphologies. Nonscrew A0 dis-

locations on {110} can dissociate into 1/3A0 type partials on oblique

{111} planes [110]. In this case y„,ly — 1/2 is too small to be effective at

isolated dislocations, but may play a role at tangles.

Perfect dislocations having other Burgers vectors can form by inter-

actions of slip dislocations on different planes [111]. Favorable reaction

products are (100) {001} and (100) {011} dislocations; this Burgers vector

is found in a — Fe [112, 101]. (100) {001} edge dislocations can dissociate

into 5(310) twinning partials on {130} planes. In this case 5' = 2/5 with

5 = —1/5 when n= 2, and 5=1/5 when n= S. In the former the elements

of the second undistorted plane are ^={110} and ry2 = (110) and in

the latter they are k2 = {100} and 172= (010). The shear-strain for twinning

is S= 1 when n.= 2 and S — — 2/3 when n = 3. The mode corresponding to

n = 2 is listed for iron alloy martensites by Bevis et al. [116]. The (310)

Burgers vector in bi-pyramid notation has the form [3AB + AD] or

[2AD + AC]. The former is used in dissociation of AB and the latter in

dissociations ofAC.
For single (130) twin lamellae the dissociation of AB is given by

AB(ooi)^ 1/5 [3AB + AD] (130) +1/5 [2AB+ DA] . (60)

The y„, values are listed in table 7. The {103} twin lamella energies,

evaluated from changes in the closest atomic approach with eq (37), are

listed in table 6. Comparing these with y,„ for eq (60) show that ym/y goes

from 0.94 in a-Fe to 0.74 in the other metals, except Cr which has a value

of 0.55. {103} stacking faults with the (301) shear direction are found in

niobium crystals [113], and {103} twins form in iron alloys [114]. The shear

direction for the twins was not established, but suggested to be (531).

Hartley [115] has shown that {103} twinning could be produced by

1/10(531) partial dislocations which form when (100) screw dislocations

dissociate. In this case the twinning shear-strain is S= 1.9. If the minimum
shear-strain criterion applies, the 5(310) shear mode would be more
favorable.
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If the AB edge dislocation dissociates into twinning partials on

symmetric {103} planes ym is 20 percent of those for eq (60). The AB 45°

dislocation can dissociate into 1/8 [110] screw dislocations on {110}.

For single twin lamellae the dissociation of AB is

AB
(ooi)-> l/8AC(llT]l+l/8[7AB + DA]. (61)

The y,„ values are listed in table 7. For dissociation into two 1/8AC
screw dislocations ym is 80 percent of those for eq (61). In each case

jmly > 1. _
(001) {110} dislocations can develop by cross-slip of (001) {100}

screws or by interactions of slip dislocations. If the edge component of

<t>0 dissociates into single 1/3A0 twinning partials the reaction is

00, , ro)
-» 1/3A0< ,,5) + 1/6 [CA + 5A0] . (62)

The y,„ values are listed in table 7. (f)0 screws have a pole-strength equiv-

alent to double-layer fault on {112} and permit continuous twin multi-

plication by the pole mechanism for tension parallel to (110) or compres-

sion parallel to (001). If cf)0 dissociates into symmetric 1/3A0 type

partials ym are 20 percent greater than those for eq (62).

(110) Burgers vectors have been found in a-Fe [116, 117]; they can-

not form by spontaneous interactions of 1/2(111) dislocations, but might

develop at intersecting pile ups. (110) {001} edge dislocations can dis-

sociate into 1/6(111) twinning partials on {112} planes. For symmetric

partials the dissociation is

AC
(o(„)-> l/3A0(112-)+l/30G(]12 )+ 2/3AC. (63)

The ym values are listed in table 7. For single twinning partials

AC
(ooi)-> 1/3A0(11 2)+- 1/6[5AC+ <?>0] (64)

AQooi )
-» 2/3A0(11 2) + 1/3 [2AC + 00] . (65)

ym is 106 percent and 141 percent of that for eq (62) for the 1/3 A0 and

2/3A0 partials respectively. AC screws have a pole-strength equivalent

to double-layer fault. In this case continuous twin multiplication occurs

with eq (64) for tension parallel to (110) and compression parallel to

(001), and with eq (65) for opposite stresses. If the pole mechanism does

not operate, twin growth could occur by successive dissociations of

dislocations which meet the twin. For dissociation of AC into 1/3A0

twinning partials ym > 0 for N=S successive dissociations. A fourth

dissociation has ym — 0.
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AC dislocations on the {110} plane could dissociate into various glissile

and sessile morphologies [118]. It could dissociate into as many as eight

1/8AC glissile partials for a role in Martensitic transformations. The edge
dislocation line is parallel to the zone axis of {130} and {110} fault planes

and can dissociate into glissile partials on these planes. For three twinning

partials on {130} planes

AC (lTo)-* l/5[AC + 2AD]
(,To,+ l/5[DB + 2AB] (1 , ())

+ l/5[AC + 2AD](,To). (66)

The most favorable morphology corresponds to the third partial at the

stair-rod position, with the ym values listed in table 7. For dissociation

into single 1/5 [130] twinning partials the ym values are twice as large as

those for eq (66). The AC screw has a pole strength equivalent to two {310}
planes, permitting continuous twin multiplication with a shear-strain of

S=l.

VIII. Tetragonal Structure

In j3-tin slip occurs on [001] (100) and 1/2J/L11] (110) systems while

twinning occurs on [103] (301) and [101] (TOl) systems [119-121];

the former twin mode is most frequently found. When crystal plates have

the c-axis perpendicular to the tensil axis the slip system is 1/2 [111] ( 110)

and no twinning is found [120], consistent with the view that twinning is

related to [001] (100) slip [3]. The edge dislocation line for this system

is parallel to the [010] zone axis of {301} and {101} twin planes and can

dissociate into s(103) and s(101) twinning partials on these planes. The

bi-pyramid notation of the preceding section is also applicable to tetra-

gonal and orthorhombic crystal structures.

For {301} twins the thinnest favorable twin mode corresponds to n = 2

with

s' = 6(c/a) 2/[l + 9(c/a)'] (67)

giving [3]

5 =[3(c/a)--l]/[l + 9(c/a)y (68)

For single {301} twin lamellae the dissociation is given by

e£0(1 ()<»-> [sBA + ( 1 - 3s) <J>0] + s [AB + 3<£0](3oi). (69)

Substituting 5-0.02935 and £= 3.207 X 10" dynes/cm-. y,„ = 68.3

ergs/cm 2
. For symmetric {301} twin lamellae the equation is given by
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00(! oo) -> (l-6s)00+ s [AB + 300] (soi > + 5 [BA 4- 300] (:m > (70)

with y«, = 79 ergs/cm 2
. The separation of {301} twin planes is d=ca/bu

and the twinning shear-strain for n = 2 is

S= (3/2) (c/a)- (1/2) (ale). (71)

This is the same equation reported by Ishii and Kiho [122], giving S = 0.1.

The elements of the second undistorted plane are /<2 = (101) and i)2=[101].

For {101} twins the thinnest favorable twin mode corresponds to n = 2

with

s' = 2(c/a) 2/[l+(c/a) 2
] (72)

giving [3]

s=[3(c/a) 2 -l]/[l+(c/a) 2
] (73)

For single {101} twin lamellae the dissociation is given by

00<1Oo) -* [sBA + (1-5)00] + s[AB 4-00] (10T) . (74)

Substituting 5 = 0.083 and £= 3.25xlO n dynes/cm2
, y™ = 48 ergs/cm 2

.

In this case k>z= (301) and 172= [103], and {101} and {301} twin modes

are reciprocal [28].

IX. Orthorhombic Structure

In ct — U the principal slip and twin systems are [100] (010) and

[310] (130) respectively [123]. The edge dislocation line is parallel to

the [001] zone axis of {130} twin planes and can dissociate into single

5(310) twinning partials.

AB(oio) ->
[ ( 1 - 3s)AB + 5DA] + 5 [3AB + AD] (1 3 0) (75)

where [3]

5'= [l-3(a/6) 2 ]/2[l + 9(a/6) 2
]. (76)

The favorable twin mode corresponds to n= 1. Substituting 5 = 5' = 0.0471

and 7^=9.655 XlO 11 dynes/cm 2
, y w = 491 ergs/cm 2

. The shear-strain

for twinning is [3]

S= (1/2) (tya)-(3/2) (a/b). (77)

S = 0.3, K>=(ll0) and r) 2 =[110], as found by Cahn [123]. For sym-

metric { 130} twin lamellae the dissociation is given by

AB
( 010

» -> ( 1 - 65 )AB + 5 [3AB + AD] (im + s [3AB + DA]
< 130) . (78)
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y,„ = 719 ergs/cm. Other twin modes are accounted for by dissociations

of various dislocations on primary and secondary systems.

X. Discussion

When y,nly> 1 for all glissile partials the dissociation is defined and

will tend to lock at low temperatures. When ym/y<l the partialized

dislocation model reduces to the modified pseudo Peierles-Nabarro

model [124] for dislocation resistance. In this model the edge dislocation

can be represented as an oblated core and the screw as a dilated core in

which multiple partials tend to separate under hydrostatic forces onto

planes of least distortion. The degree of separation, the stress-sense

characteristics, the tendency to twin, and consequently the dislocation

resistance would depend on the number and relative strength of the fault

planes. The possibilities are (i) few planes with relatively low distortion

energy, (ii) many planes with low distortion energy and (hi) one or zero

planes with low distortion energy. Greatest resistance is expected for

(i) and least resistance for (iii), with (ii) having intermediate effects.

When (i) applies, dislocation resistance will be strongly orientation

and stress-sense dependent and controlled by thermally activated proc-

esses. For (ii) orientation and stress-sense effects will be less, while for

(iii) they will have no effect. Screw dislocations in bcc metals may be

described by (i) or (ii).

Among the various properties which can be affected by, or attributed

to, partialized dislocations are (i) the lattice frictional resistance along

the slip plane, (ii) the locking of an otherwise favorable slip system,

(iii) orientation and stress-sense effects, (iv) internal friction and thermally

activated flow behavior, (v) stabilization of dislocation dipoles and braids

during workhardening, (vi) delay times and avalanche behavior in glide

band formation, (vii) twinning at low temperatures or high strain-rates,

(viii) embrittlement (or strengthening) of a crystal, and (ix) it can serve

as a vehicle for Martensitic transformations.

Avalanche behavior in glide band formation is found in many crystal

structures and is characteristic of low strain-rates when a single slip

system operates. First reported by Joffe [125] in NaCl and zinc crystals,

it has since been established for insulators [125-127, 68, 69], metals

[128-136]. and semiconductors [81], by independent and combinations

of studies of (i) slip lines [128-133]. (ii) jerky stress-strain behavior

[133]. (iii) electrical resistivity changes [134, 135], (iv) refined acoustic

measurements [136], and (v) birefringence effects in transparent crystals

[125-127, 68, 69]. In the latter, a refined birefringence technique [137],

supplemented by etch pit studies, was used in the most direct con-

firmation of avalanche behavior in alkali halide crystals [68, 69]. In these

studies at low strain-rates on soft crystals, glide bands form in pro-
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gressive avalanches, which last about 1/10 s, and increase in rate until

the entire gage length is consumed. The behavior is consistent with the

double cross-slip model of Koehler [138], originally proposed to account

for the dependence of strain-rate on the number of lamellae in glide bands

of aluminum [130]. The above behavior cannot, in general, be attributed

to impurity locking effects.
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PROPAGATION OF GLIDE THROUGH INTERNAL
BOUNDARIES
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It has been shown that when an internal boundary such as a grain

boundary is cut by a crystal glide dislocation, a disturbance is left at the

boundary. This disturbance closely resembles that about a crystal dislo-

cation with the exception that (a) there is no extra half plane associated

with the dislocation and (b) the Burgers vector associated with this dis-

turbance is a variable which depends on the nature of the internal bound-

ary. These boundary dislocations have been termed virtual dislocations.

The nature of the virtual boundary dislocations has been treated in

detail for the symmetrical tilt boundary. Both homogeneous and

heterogeneous type glide across these boundaries have in turn been ap-

plied to grain boundary crack formation and propagation, grain boundary

rotation, preferred orientation, etc.

Key words: Boundary dislocations; glide propagation; grain boundaries; virtual

dislocations.

I. Introduction

Perhaps no deformation mechanism remains so obscure as that which
occurs in polycrystals. At the heart of this dilemma is the lack of knowl-

edge concerning what happens to the grain boundary itself, i.e.. its

structure, during the deformation process. In the following paragraphs

consideration will he given to the simplest of all boundaries, the sym-

metrical tilt boundary, as a first step in trying to understand the deforma-

tion of behavior/of grain boundaries in general.

Kunduinontal \s|i<'<ts of Dislocation Theory, .1. \. Simmons, H. de \\ il. am) K. Bullough,
Kris. (Nat. Hur. Stand. (U.S.). Spec. I'ubl. 31 7. I 1970).
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II. Simple Type of Internal Boundary

One of the simplest of internal boundaries is that formed when two

substances of the same crystal structure but differing lattice constant,

i.e., A and a in figure la, are joined together. For simplicity A was taken

equal to 2a. One method of joining the two crystals together would be as

shown in figure lb, where the strain is taken up equally in both crystals, in

turn altering the lattice constant to the common value of B = (a-\-A)/2.

However, long-range stresses of high constant value are introduced

throughout the entire volume of both crystals. By allowing the crystals to

relax to their characteristic lattice constant as the distance from the

boundary increases, as shown in figure lc, the strains can be reduced

considerably. Furthermore, the stress field associated with the boundary

(shown dashed) in figure lc can be imagined as equivalent to an array of

edge dislocation of Burgers vector b =A~a inserted between each plane

of the original crystal. These dislocations are shown dotted in figure lc.

(c)

FIGURE 1. Sequence of steps (hypothetical) in the formation of an incoherent boundary:

a) before joining, b) after joining rigidly, c) after introduction of virtual dislocations (shown

dotted), d) after introduction of crystal dislocations (shown solid).
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Since they are not real dislocations, in the sense of having associated with

them an extra half plane, they will be referred to as virtual dislocations.

Although the virtual dislocations in figure lc are shown as discrete

dislocations with Burger vector b =A—a, they may be more correctly

visualized as a continuous distribution of edge dislocations of strength

dy such that the following relation as shown by Weertman [1] is satisfied

where +L and — L refer to the upper and lower surfaces of the crystal,

D(y) is a distribution function and n the total number of dislocations in

the boundary. From inspection of figure lc, it is apparent that D{y) was

taken to be 8 {A — a)/2L. It also follows that by increasing n from 8 to ^

and decreasing b correspondingly from (A — a), the boundary would be

more accurately throught of as a continuous distribution of dislocations

infinite in number and of infinitesimally small Burgers vector. Thus it

will also be convenient to refer to the virtual dislocations as continuum

dislocations.

Finally, the long-range stresses associated with the virtual dislocations

in figure lc can be entirely eliminated by the introduction into the boundary

of the real crystal dislocations or interface dislocations such as shown in

figure Id. The crystal dislocations have Burgers vectors equal to a when
referred to the smaller crystal structure and A/2 when referred to the

larger. In general the number of interface dislocations required to com-

pletely cancel the long-range stress field of the virtual dislocations is given

by nb/A or 4 in the specific case of figure Id.

As shown by Friedel [2], the discrete stress fields of the crystal dis-

locations in figure Id will only cancel the continuous stress field of the

virtual dislocations at a distance on the order of the separation of the

crystal dislocations. If the shear stress field crXy from the virtual disloca-

tions in figure lc is high enough, i.e., on the order of pt/10, Marcinkowski

and Leamy [3] have shown that glide dislocations will be nucleated

spontaneously parallel to the boundary. A portion of the loop will remain

stuck in the crystal as the interface dislocation, while the remaining

portion of opposite sign will glide out of the crystal so as to produce the

offset such as shown in figure Id. If on the other hand, as Marcinkowski

and Fisher [4] have demonstrated, the temperature is sufficiently high,

prismatic dislocation loops can be nucleated normal to the boundary under

the influence of the compressive component of stress (Tyy of the vertical

dislocation array shown in figure Id. Specifically, there will be a stress

induced diffusion of atoms from the large crystal to the small crystal

in figure lc. Diffusion-induced interface dislocation generation gives



534 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

rise to no offset at the crystal surface. Li [5] has given explicit expres-

sions for the stress fields about various linear dislocation arrays and finds

that only for the case where b is normal to the infinite linear array do

the long-range stresses vanish.

III. Glide Across a Symmetrical Tilt Boundary (Disordered Alloy)

A second important type of internal boundary within a crystal is the

symmetrical tilt boundary such as is shown in figure 2. In the case where

0 is small, i.e., less than 10°, Cottrell [6] shows that the boundary can

be visualized in terms of well-defined edge dislocations such as in figure

2a. On the other hand, when 6 is large, as in figure 2b, the dislocations

comprising the boundary are so close together that their cores overlap.

At this point, it becomes less meaningful to describe the boundary in

terms of individual dislocations, and to emphasize this point it is shown

dashed in figure 2b.

For convenience, the grain to the left of the boundary in figure 2 will

I #2

(c)

FIGURE 2. a) Low angle symmetrical tilt boundary, b) high angle symmetrical tilt boundary

before passage of dislocation through it, c) same as b) but after passage of dislocation

through grain boundary.
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be referred to as grain #1 while that given to the right of tlx- boundary

will be designated as grain #2. Now consider the passage of a single glide

dislocation through the symmetrical tilt boundary as shown in figures 2\>

and 2c. In order that a glide dislocation b, in grain #1 shown in figure 2\>

pass through the boundary and into grain #2 to become the glide dis-

location b
2
shown in figure 2c, it is necessary that a dislocation b

(

be intro-

luced into the boundary. According to Friedel [2]

In the above |bj
|

= |b 2 |

= |b|. The dislocation bj is a virtual disloca-

tion since there is no extra half plane associated with it.

A very simple pictorial representation showing the meaning of bj in

eq 3 can be seen by referring to figure 3. Specifically b, is nothing more

than the change in interplanar spacing between the slip planes in grain #2
from their equilibrium values prior to slip from grain #1 to grain #2 in

order that continuity across the slip planes be preserved. A deeper insight

into these virtual grain boundary dislocations (VGBD) will be given shortly.

The coordinates of b 2 in eq 2 must be referred to the same axes as that

of b, and will be designated as b 2. In particular using the coordinate sys-

tem referred to grain #1,

b, = b 2 + b,. (2)

b 2=Rb 2=Rb! (3)

-b.

# I # 2

Figure 3. Displacement l»| occasioned by slip from grain #1 to grain #2.

369-713 OL - 71 - Vol I - 36
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where R is the rotation matrix given by

cos 0 — sin 0 0

sin 0 cos 0 0

0 0 1

(4)

Combining eqs 4, 3, and 2 we obtain

b,
bi. x bi.x

bi, y 0

bi, z 0

cos 0-

sin 0

0

sin 0 0
cos (9 0

0 1

bu
0

0
(5)

bi, x 1 — cos e

bi, y
= bi, x sin e

0

n x sin (tt/2-0/2) cos {812)
n = n y -cos (tt/2-0/2) sin (012)

n z 0 0

where the matrix to the left of the minus sign above refers to b, while the

product to the right of the minus sign refers to b 2 .

Expanding eq 5 and realizing that 6 is negative in figure 2 gives

(6)

Next define a unit vector n which lies in the x — y plane and normal to the

grain boundary. If n points away from grain #1 then

0/2)1

(7)

n z \ 0 0

Also, since

b, • n= b U x [cos (0/2)- cos (0/2) cos (0) -sin(0)sin (0/2)] =0, (8)

if follows that b! must lie in the plane x — y and be parallel to it, i.e., lie in

the grain boundary. As will become apparent shortly, for a non-symmetrical

grain boundary, b, is perhaps better described as lying in the mean direc-

tion defined by y and y\

Two rather interesting limiting cases exist for b, . In particular, when
0^0 eq 6 shows that the VGBD has a Burgers vector 6b\, x - On the

other hand, for 0-^tt/2 the same equation gives bi, x for the Burgers

vector of the VGBD. It is therefore apparent that the magnitude of the

VGBD is a strong function of grain misorientation.

Two very interesting VGBD configurations arise as a result of two

distinct types of plastic deformation in the bicrystals shown in figure 2.

These two particular types of plastic deformation will be referred to as

homogeneous and heterogeneous shear. The case of homogeneous shear
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is shown in figure 4 where figure 4a is the bicrystal before deformation.

Now if grain #1 is given a simple shear on the plane whose normal is y
and in the x direction, while grain #2 is given the same shear but in the

plane whose normal is y' and whose direction is x\ figure 4b obtains.

The shear can be thought of as being accomplished by the motion of a

glide dislocation on each successive plane. In order to maintain continuity

across the slip planes in both grains # 1 and #2, as well as to accommodate

the strain equally between both grains, the interplanar spacings in grains

#2 and #1 must be increased and decreased respectively with respect to

their equilibrium values shown in figure 4a. If, on the other hand, the

(0)

(b)

(c)

(d)

Figure 4. Sequence of steps (hypothetical) in the homogeneous shear of a symmetrical

tilt boundary: a) before shear, b) after rigid shear, c) after introduction of virtual disloca-

tions (shown dotted), d) after introduction of crystal dislocations (shown solid).
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crystal is allowed to relax to its equilibrium configuration at large distances

from the boundary, the condition in figure 4c obtains, i.e., the boundary

can be thought of as being composed of an array of virtual dislocations

each with a Burgers vector given by eq 6. On the other hand, figure 4d

shows that the long-range stresses at the boundary in figure 4c can be

eliminated in large part by the introduction of crystal or misfit dislocations

at the boundary. The correspondence between the sequences in figures 1

and 4 are in principle identical although at first glance they appear quite

different.

Note that the crystal dislocations in figure 4d are shown to be generated

in grain #2 only, presumably by the generation of dislocation loops near

the boundary due to the high stress fields of the VGBD of figure 4c. This

is shown again more schematically in figure 5a. Alternately the crystal

dislocations could have all been generated in grain #1 as shown in figure

5b. However in both these cases, although the component b cos (6/2) of

ibi

FIGURE 5. Relief of long range stresses at grain boundary due to virtual grain boundary

dislocations by the generation of crystal dislocations in: a) grain #2 only, b) grain #1 only,

c) both grains #1 and #2.
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the glide dislocation can essentially eliminate the long-range stress fields

due to the b, type virtual dislocations, they introduce a component of

magnitude ±b sin (6/2) which generates a new long-range stress field.

Also, because this component of the crystal dislocation lies either parallel

or antiparallel to those that comprise the original undistorted symmetric

tilt boundary, the degree of tilt may be either further increased as in figure

5b or decreased as in figure 5a. These particular two cases are special

types of preferred orientation generated by the deformation of a poly-

crystal and may in fact provide the basis for a general theory of preferred

orientation. When the crystal dislocations are generated at the grain

boundaries in equal numbers in both grains #1 and #2, figure 5c obtains

and the long-range stresses can be entirely cancelled so that no preferred

orientation is induced in the grains.

It is instructive at this point to obtain a relationship between the density

of misfit dislocations at the grain boundary and the degree of asymmetry

imparted to it by glide. The interface dislocation is a glide dislocation

with Burgers vector of magnitude |b|. It will accommodate the misfit

b! at the grain boundary occasioned by glide across it when the following

relation is met

iV^=|b|/|b,
|
cos (0/2) (9)

where Na± refers to the number of glide dislocations passing through the

grain boundary. Using eq 6, Na ± is readily found to be given as

Noa =1/(2-2 cos eyi* cos (0/2)=l/2 sin (6/2) cos (612). (10)

Nc± of course must be the nearest integer value. None of the previous

arguments depend on the magnitude of 0.

Figure 4 approximates the case where large numbers of dislocations,

which are more or less distributed randomaly throughout the crystal, pass

through a grain boundary under an applied stress r, i.e., homogenous glide.

In the first place, it will be noted that the grain boundary is rotated so as

to lie more nearly parallel to the direction of glide. This feature of the

present analysis is in agreement with the parallel alinement of grain

boundaries along the rolling direction in plastically worked materials

illustrated by Williams and Homerberg [7].

Now assume that the density of b x
type glide dislocations in grain #1

is p. If grain #1 is one unit wide and t units thick, and all of the glide

dislocations contained therein cross the grain boundary; the angle {(f)
— 6/2)

between the grain boundary and the x axis of grain # 1 will be given by the
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following relationship:

tan ((f)
- 0/2) =t/ [ptb+ t tan (.0/2)]. (11)

Note that c/> is the angle that the grain boundary makes with the mean x

direction. With the aid of eqs 9 and 10, the number of interface dislocations

generated at the boundary will be given by

ptlNa±= [t/b tan (0-0/2)-* tan (0/2)/6] 2 sin (0/2) cos (0/2). (12)

Since the length of the grain boundary / after deformation is readily found

from figure 4b to be given by

sin (*-0/2) = */"/, (13)

the spacing of interface dislocations along the boundary can be found

from eqs 12 and 13 to be

ZV =lNa±lp

= 6/2 sin (0/2) cos (0/2) sin ((/>
- 0/2) [1/tan (<j>

- 0/2) - tan (0/2)] ( 14)

and which upon simplifying leads to

=6/2 cos 0 sin (0/2). (15)

Equation 15 is precisely the same relationship derived by Read [8] for

an asymmetrical tilt boundary where no deformation of any type was in-

voked and where no restriction was placed on the magnitudes of 4> or 0-

Thus the asymmetrical tilt boundaries generated either by deformation or

by annealing, etc., are identical with respect to dislocation content and

configuration. It is also important to note that eq 15 only applies strictly

to a boundary such as is shown in figure 5c where the stresses are fully

compensated. Also, in the case of figure 5c, if the value of 0 is sufficiently

small so that the dislocations in the original symmetrical tilt boundary

can be resolved as individual dislocations, their spacing measured along

the boundary after deformation is readily found to be given by

D± = b/2 sin (0/2) sin 0, (16)

which again is identical to that given by Read [8].

The second important type of glide through a grain boundary occurs

when the dislocations all move on a single slip plane. This is the hetero-

geneous type of deformation mentioned earlier. An example of this is
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shown in figure 6a where slip has occurred between the planes shown

divided by the dashed line.

In figure 6a the misfit strain has been distributed equally and rigidly

in both grains, while in figure 6b the strain at large distances from the

boundary has been relaxed, in turn allowing the crystal to revert to its

strain-free dimensions. Figures 6a and 6b have their analogs in figures 4b

and 4c respectively for the case of homogeneous shear. Thus the displaced

grain boundaries in figure 6b can be visualized as being connected by a

series of VGBD's shown dotted. Their magnitude as usual is given by eq

6 while their horizontal spacing is cos (0/2). In the strictest sense however

the VGBD's in figure 6b should, as in the case of figure lc, be treated as

a continuous distribution of dislocations of infinitesimal strength, which,

along the lines used to obtain eq 1, gives the following relation:

Figure 6. Sequence of steps (hypothetical) in the heterogeneous shear of a symmetrical

tilt boundary: a) after rigid shear, b) after introduction of virtual dislocations (shown dotted),

c) after introduction of crystal dislocations (shown solid), d) after fracture.
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The strain due to the VGBD can be almost fully relaxed by the introduc-

tion of crystal misfit dislocations such as shown in figure 6c. Again the

misfit dislocations are presumed to be nucleated as loops in the vicinity

of the grain boundary due to the stress field of the VGBD's. Note that in

the particular case of figure 6c the introduction of three misfit dislocations

overcompensates for the distortion associated with the VGBD's. This in

turn causes some matching difficulties along the lower portion of the grain

boundary, which in effect is the same as saying that some long-range stress

fields still remain.

As in the case of homogeneous glide in figure 5, the various ways in

which the stress can be relieved along the grain boundary by hetero-

geneous glide are shown in figure 7. Again, it is only for the case shown

in figure 7c that the long-range stresses due to the VGBD's can be

completely relieved, i.e., the case where the misfit dislocations are

generated in equal numbers in both grains #1 and #2. It is a simple matter

to calculate the spacing of the misfit dislocations required to compensate

FIGURE 7. Relief of long range stresses at grain boundary due to virtual grain boundary

dislocations by the generation of crystal dislocations in: a) grain #2 only, b) grain #1 only,

c) both grains #1 and #2.
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fully for the VGBD strain. In particular it is given by

Dl=N< ;±2 b sin (0/2) = 6/cos (612). (18)

where N(;± is the number of glide dislocations giving a misfit that can be

compensated for by one crystal dislocation, while the second term is the

spacing between the VGBD's.

A second way in which the VGBD strain can be relieved is by complete

rupture or fracture across the glide plane and this is shown in figure 6d.

This will occure when the energy of the new surfaces created is less than

the strain energy associated with the VGBD array in figure 6b.

It is important to realize that the VGBD's behave exactly as crystal

dislocations with respect to their interaction with one another. In par-

ticular, the horizontal array in figure 6b is stable. On the other hand, a

pair of VGBD's of like sign would repel if the angle between their Burgers

vector and radius vector where greater than 45° and would attract if this

angle were less than 45°. Note also that the VGBD can glide along the

grain boundary but only in the mean y direction of both grains.

The VGBD's have actually been observed by Gleiter, Hornbogen, and

Baro [9] using transmission electron microscopy techniques and do in

fact confirm many of the postulates discussed up to now.

IV. Glide Across A Symmetrical Tilt Boundary (Ordered Case)

Figure 8a shows the dislocation configuration is a low angle symmetrical

tilt boundary in an ordered alloy, i.e., say of the B2 type. Specifically,

FIGURE 8. Symmetrical tilt boundary in an ordered alloy, a) before glide through the

boundary, b) after glide through the boundary.
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Marcinkowski [10] has shown that the dislocations are vertically alined

coupled pairs, each pair being connected by an antiphase boundary

(APB). As the angle of tilt 0 increases, the length of each APB strip

becomes more nearly equal to the length of the ordered strip between

adjacent coupled dislocation pairs. This situation presumably also pre-

vails at large values of i.e., large angle boundaries.

Figure 8b shows what happens when the superlattice glide dislocation,

originally in grain #1 of figure 8a, passes through the boundary. In par-

ticular it is shown to pass through the APB of a vertically alined pair.

It is apparent that this process requires an expenditure of a great deal of

energy. In the first place, a VGBD of magnitude 2b, must be created in

the boundary, i.e., twice that for the disordered alloy. Secondly, an APB
energy ledge of energy 2b-2 must also be created, requiring an additional

expenditure of energy 2bi y where y is the APB energy per unit area.

On the average, an APB ledge will be created in only about half the cases

for homogeneous glide in an ordered alloy, since in the remaining cases

the superlattice dislocations will pass in between adjacent vertically

coupled dislocation pairs. Thus, grain boundary resistance to shear is very

high in the case of ordered alloys, leading to blocking of large numbers of

superlattice dislocations. Relief of stresses by dislocation loop nucleation

in the vicinity of the grain boundaries is made difficult by ordering. Marcin-

kowski and Leamy [3] and Marcinkowski and Fisher [11] have shown that

the reason for this is that an antiphase boundary must first be created

during the formation of the first loop. Thus, it is conceivable that the

normal components of stresses resulting from these blocked dislocations,

coupled with the disorder of the APB, are responsible for the intergranular

brittleness which Marcinkowski and Miller [12], Marcinkowski and

Chessin [13], and Marcinkowski and Campbell [14] have shown is so

common to ordered alloys in general. Finally it is important to note that

VGBD's are not coupled by APB's.

V. Summary and Conclusions

It is found that when dislocation glide occurs across an internal boundary

a disturbance is produced in the boundary. The stress fields associated

with this disturbance resemble an actual crystal dislocation in many ways.

On the other hand, there is no extra half plane associated with these non-

crystal dislocations and furthermore they may have a Burgers vector of

variable magnitude, depending on the nature of the boundary. These

boundary dislocations have been termed virtual dislocations. The stress

fields associated with a virtual dislocation may be largely compensated by

the stress-induced nucleation of a crystal dislocation loop in the vicinity

of the virtual dislocation.

Two specific cases of glide across a grain boundary have been treated.
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The first involves homogeneous glide across a symmetrical tilt boundary.

This particular case leads to grain boundary rotation and possibly pre-

ferred orientation of the grains. In the second case, where glide occurs

on only a single slip plane across the boundary (heterogeneous deforma-

tion), a jog is produced in the boundary, which in turn may lead to crack

nucleation.

The above analysis has been extended to ordered alloys, where it is

found that glide across grain boundaries in such alloys is extremely dif-

ficult. This difficulty arises because (1) an antiphase boundary ledge may
have to be produced in the grain boundary, and (2) the magnitude of the

virtual dislocation left in the grain boundary after it is intersected by a

superlattice dislocation has twice the magnitude of its counterpart in

the disordered alloy. The above process is believed to result in the inter-

granular fracture which is so characteristic of ordered alloys.
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Discussion on Papers by W. Bollmann, M. H. Yoo and
B. T. M. Loh, and S. Mendelson, Including a Written

Contribution by J. P. Hirth.

HIRTH: [This written contribution: "A Dislocation Mechanism for Phase

Transformation" replaces Professor Hirth's oral presentation.]

The present idea on transformation dislocations was stimulated by some

hot-stage transmission electron microscope observations of the f. ce-
ll. c. p. transformation in cobalt and its dilute alloys. 1 Occasionally, the

transformation was incubated when moving dislocations, activated by

thermal stresses induced by the electron beam, intersected either other

dislocations or stacking fault ribbons.

The case of dislocation intersection in principle could be explained by a

variant of the dislocation pole-mechanisms proposed as superjog sources

for dislocation twinning in f.c.c. metals. 2,3 Let us briefly consider these

two mechanisms at the outset. In the first,3 a dislocation BA(d), in

Thompson's notation,4 dissociates into a sessile partial BC/Aa and a

glissile partial aC, bounding an intrinsic stacking fault (see fig. 23-9a in

footnote 5). Under an appropriate resolved stress, the partial aC could

glide around the BA "pole" dislocation and produce a transformation to

h.c.p. by the mechanism proposed by Seeger. 6 The difficulty in this

mechanism, however, is that for each sweep around the pole, the partial

must intersect one other (or a group of other) forest dislocation with a

net Burgers vector component normal to the glide plane and equal in

magnitude to one interplanar distance; otherwise an f.c.c. twin or a

faulted f.c.c. region would be formed instead of an h.c.p. region. On a

statistical basis, the above requirement is unlikely to be fulfilled. Also,

the BC/Aa partial is a high-energy one, so the initial dissociation is

energetically unfavorable.

In the second case,2 a dislocation AC(d) dissociates into a sessile partial

aA and a glissile partial Ca bounding an intrinsic stacking fault (see fig.

23-9c in footnote 5). Under an appropriate resolved stress the partial Ca
could glide around the pole dislocation AC and would then recombine

with oA on the same glide plane. The recombined dislocation AC then

1 Kennedy, E. M., Ph.D. Thesis (Ohio State University, Columbus, Ohio, 1968).

2 Venables, J. A.. Phil. Mag., 6, 379 (1961).

:i Hirth, J. P., in Deformation Twinning, R. E. Reed-Hill, J. P. Hirth, and H. C. Rogers, Eds.,

(Gordon and Breach, New York. 1964) p. 112.

4 Thompson. N.. Proc. Phys. Soc. (London). 66B.481 (1953).

5 Hirth. J. P.. and Lothe. J.. Theory of Dislocations (McGraw-Hill Book Co.. New York.

1968).

fi Seeger, A., Z. Metallk. 44, 247 (1956).

Fundamental \speots of Dislocation Theory, J. \. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I, 1970).
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c ross-slips on (d) by an amount equivalent to two interplanar spacings

normal to (a), then redissociates into aA and Ca, and the process re-

peats. The h.e.p. phase is thus propagated in a "ratchet-pole" variant of

\ enabled twinning mechanism. 2

The difficulties in this mechanism are that the partial Co: must complete

an entire revolution and recombine over an appreciable length before

cross-slip can occur, so that the transformation velocity is limited, and

there must be an appropriate resolved shear stress on the cross-slip

plane. Also, it is conceivable that some constriction of a sessile configu-

ration would be required before cross-slip could occur.

Hence, there is some question about the applicability of the pole

mechanisms to the transformation for the dislocation-intersection case

and neither would apply to the stacking fault-intersection case. An alter-

native model which could rationalize both cases and which avoids some

of the difficulties discussed above is presented in figure 1. Linear, con-

tinuum-elastic calculations indicate that the model is energetically

favorable. However, such calculations are highly unrealistic for the criti-

cal-sized nucleus, whose dimensions are of the order of the dislocation

core radius for such a configuration. Hence, rather than give such calcu-

lations quantitatively, we present the model qualitatively; hopefully,

atomic calculations will demonstrate its feasibility.

Intersection of a stacking fault, whether a wide ribbon or the portion at

the center of an extended dislocation, by a moving dislocation DA(c)

creates the configuration in figure la. Along the line of intersection, a

dislocation dipole A5-5A is formed. 7 This could further react to form the

stair-rod dipole y8-8y, or equivalently, to form a jog line; 8 the con-

sequences of all three possibilities would be the same.

Consider now the nucleation of a partial loop AS as indicated in figure

lb. Elastic interaction with the adjacent 5A partial reduces the elastic

energy of formation of the loop. 9,10 More importantly, the "stacking

fault" energy of the incipient loop is negative, since growth of the loop

propagates the thermodynamically stable h.c.p. phase. Together, these

factors make the nucleation process favorable in the elastic approxima-

tion.

Continued loop nucleation, as in figure lc, continues the transformation.

The line of A8-5A dipoles, or yS-5y dipoles, or jog lines, left in the h.c.p.

7 Jouffrey, B., Daniel, A., and Escaig, B., J. de Phys., Suppl. C-3, 27, 114(1966).

* Thompson, N., in Defects in Crystalline Solids (Physical Society, London, 1955), p. 153.

11 Frank, F. C, in Symposium on Plastic Deformation of Crystalline Solids (Office of Naval

Research, Washington . D. C, 1950), p. 89.

10 Hirth. J. P., in Relation Between Structure and Strength in Metals and Alloys (H. M. Sta-

tionery Office, London, 1963). p. 218.
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phase is exactly equivalent to the {1122} stacking fault in hep crystals

associated with the motion of a (1123) type zonal dislocation on a { 1 1 22

}

glide plane. 11 Thus, the net free energy change as the f.c.c.-h.c.p. inter-

face advances is the chemical driving-force term minus the energy of the

above stacking fault. This net change is large and negative for super-

coolings greater than ~2 °C.

Another factor which could favor the proposed process is the local

adiabatic temperature rise in the wake of the dislocation DA associated

with the energy absorbed from the moving dislocation by phonons via

their damping constraint to the motion. This would be particularly effec-

tive if shear modes were excited in plane (d).

DA (c)

o)

8A

A8

b)

8A

8A

A8

c)

8A

A8
A8

8A

A8

d)

\

\

\ hep
stacking

fault-/ \
\

X
Figure 1.

11 Rosenbaum, H. S., in Deformation Twinning. R. E. Reed-Hill. J. P. Hirth. and H. C.

Rogers, Eds., (Gordon and Breach, New York, 1964) p. 43.
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Generically, the mechanism in figure 1 somewhat resembles one

proposed some time ago by Bollmann. 12 He considered a mechanism

wherein a partial dislocation gliding in the fee phase encountered a

stacking fault and reflected back two interplanar distances removed.

The internal stress concentration at the point of intersection provided

the driving force for dislocation nucleation analogous to the present ex-

ample. However, his model differs in the detailed description of the con-

figuration at the site of intersection and would have obvious differences

with regard to both the habit plane of the transformation and the final

microstructure. 13

MENDELSON: [Written comment on Professor Hirth's contribution.]

Zonal dislocations having a Burgers vector bs = sb0 can also apply to

phase transformations when the definition of s is rewritten as

s = {njn')s' — p

where s' is the shear for a unit-lamella of martensite formed by n'

atomic layers and n is the number of layers which are converted to mar-

tensite by the zonal dislocation, {njn') is an integer equal to the number

of unit-lamellae of martensite and p is again an integer chosen to give the

smallest absolute value of 5.

The f.c.c. -> h.c.p. phase transformation discussed by Professor Hirth is

a simple one because both structures are close-packed, having the same

atomic density. Stacking faults which form when perfect AB
dislocations dissociate into Shockley partials on the close-packed plane

transform each structure into the other. 14 In this case s' = 1/3 for n = 2

with b0 = l/2[112], giving b f =l/6[112]_andS= 56 0/»d=l/V8. The ele-

ments of the transformation are Ki = (111) , rji = [112] , k-> = (557) and rjo

= [7,7,10]. An atomic model illustrates this in figure 2. The plane of soft

shear is Sm = (110) and the hatched circles lie at a level a/-/V8 = a/i/2

below the plane of the paper. For the reverse transformation, Sm = (1210)

and b,= l/3[T010] with k, = (0001), ij,= [1010], k2= (303T) and rj2 =
[1016]. This transformation can also occur for n= 4 with 5 = 2(1/3) — 1

=— 1/3, 172— [556] and k>= (335) ; the shear-strain is reduced by 1/2, but

the greater atomic shuffling makes it less likely.

The more general phase transformation involves a change in density,

requiring lattice deformation as well as rotation. Zonal dislocations can

also apply to these cases if the volume change direction is in the plane of

shear. If it is also normal to K\ the transformation can be represented by

12 Bollman, W, Acta Met. 9. p. 972 (1961).

13 This research was supported by the U. S. Office of Naval Research.
14 Christian. J. W.. The Theory of Transformations in Metals and Alloys (Pergamon Press.

New York. 1965).
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Figure 2.

a shear parallel to rji together with a collapse (or expansion) normal to K\.

The former is accomplished by the zonal dislocation b.s and the latter by

the displacement vector h„ = £b„ H where b„„ is the lattice translation

normal to K\ and £ is the fraction of b0 « which produces the volume

change. For a particular orientation relationship the volume change

direction is normal to the plane in which two mutually perpendicular

vectors are lattice translation vectors in both phases.

The transformations can have relatively simple habits when the closest

atomic approach of close packed planes in the two phases are parallel.

This corresponds to the Burgers 13 orientation relationship in the b.c.c.—

*

h.c.p. transformation and to the Kurdjumow-Sachs 16 orientation relation-

ship in the f.c.c. —» b.c.c. transformation. When the volume change is

15 Burgers. W. G.. Physica 1.561 (1934).

>« Kurdjumow, G.. and Sachs. G.. Z. Physik 64. 325 1 1930): Naturwiss 18. 534 1 1930).

369-713 OL - 71 - Vol 1-37
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normal to K\ the b.c.c. —» h.c.p. transformation can result for/C] = (112)/,,

^,= [111],,, b„=l/2[llT]„ and b OH = '[ll2] 6 , with s' = 1/6 and

f
=

( 1/3 — a/,/( dh Vo)) for n' = 2. The transformation can be assumed to

occur by shear of l/12[lll]/> on (112)/, followed by collapse of

(l/3-a„/(a h V8)) [TT2],,. with the resulting habit being (112)/,. This

habit is found in certain alloys. If b» combines with b.s , the total disloca-

tion b, would glide on an oblique plane of the same zone. Substituting

values for the lattice parameters in titanium alloys h t
— b.s + b„ = 0.0355

[2,2,3T]/,: this is close to the [223]/, direction in the (334)/, habit plane

reported 17,18 in titanium and some of its alloys. A pole mechanism can

apply with A0= 1/2 [111]/, type screw poles.

Similarly for the f.c.c. —* b.c.c. transformation the volume change direc-

tion is normal to k x
= (112)/ with rj, = [HO]/, S„,= (lll)/, b„= 1/2 [HO]/,

s' = l/6, b„„ = l/2[112]/ and £= [(2/3)aJa/- 1/2]/ for n' = 3. The

{112}/ habit is found for martensite in Fe-Ni alloys. 19 A pole mechanism

can apply with BC = 1/2 [101 ]j type screw poles. Zonal dislocations can

also apply 20 to various higher order habits found with the Nishiyama- 1

and Greninger and Troiano.— etc., orientation relationships.

BESHERS: [To Professor Hirth] Do you have any idea of the time the

process you suggest would take?

HIRTH: I envision that it would happen more or less instantaneously in the

wake of the moving dislocation.

BULLOUGH: I wonder if Dr. Bollmann would speculate whether his

sophisticated geometrical methods could possibly predict martensitic

habit planes or twin planes in complex crystalline systems.

BOLLMANN: I am sorry, but I am no prophet.

BULLOUGH: There is nothing in principle to tell you that it would not

work?

BOLLMANN: No.

MENDELSON: Concerning twinning, one notes that in order to predict

the active twin mode of various possible twin systems in terms of an

anisotropic parameter, the differences in the parameter should be

significantly greater than any other differences. By examining reciprocal

or conjugate twin modes, as in the study of Drs. Yoo and Loh, one

17 Gaunt, P., and Christian. J. W.. Acta Met. 7, 534 (1959).
18 Hammond, C. and Kelly, P. M., Acta Met. 17, 969 (1969).
19 Patterson. R. L.. and Wayman. C. M.. Acta Met. 14. 347 ( 1966).

20 Mendelson. S.. to be published.
21 Nishiyama, Z., Sci. Rep. Tohoku Imp. Univ. 23, 637 (1934).
22 Greninger. A. B.. and Troiano. A. R.. Trans. AIME 140.307 (1940).
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can eliminate most of the differences in atomic shuffling, generally

present for non-conjugate twin modes: there is still a difference,

hut not a great one. due to the fact that the spacing between twin

planes d and their Burgers vectors sb„ are different. The assumption

of equal atomic shuffling is approximately valid because n and sb0/d are

the same for the conjugate twin modes, giving the same shear-strain.

However there is still another factor which is probably more important

than these when comparing the properties of twinning dislocations on

different twin planes, that is the difference in twin boundary energy. As

an example, the distortional energy for the {2114} twin boundary is five

times greater than that for the conjugate {2112} twin. Thus if one is con-

cerned with differences in atomic mobility for twinning dislocations on

the two conjugate twin planes, these distortions would certainly play a

very significant role, at least in the case when the first twinning partial

passes. They will play a lesser role for twin growth, but I wouldn't rule

them out even for twin growth since the difference between the disloca-

tion width parameters found by Drs. Yoo and Loh is only less than 10%,

whereas the distortions for this case differ by 500%.

If I can make one other comment on the definition of the twinning dislo

cation . . .[At this point Dr. Mendelson went to the blackboard.] As in

my definition of the twinning dislocation, the Burgers vector is given as

sb 0 whereas Drs. Yoo and Loh give {e/2)r)\: these are essentially

equivalent. b 0 is a unit lattice vector, defined as a perfect Burgers vector

on the twin plane in the rji direction and s (or e/2) is the fraction of b 0 that

produces the twinning shear. The substitution of 171 for b 0 confuses the

definition, since a fudging factor is required for the cases where

|rji|^|b 0 |. sha defines a twinning dislocation; whether it is a zonal dislo-

cation depends on how one chooses s. We cannot really define this quan-

tity, as Dr. Yoo lias, witli the relation ( 1 /n , ){ iq-r — (qd)~ }
'

2 (this is the

reverse of my eq 4) primarily because we do not know rjo- What Dr. Yoo
has done was to go into the literature and take the values of 1)2 that peo-

ple have listed and used them to define (e/2). The 7)2 values themselves

were originally computed from 5 which was either measured experimen-

tally or assumed by applying minimum shear-strain and simple atomic

shuffling criteria, as in my definition. What of the cases where more than

one value of rj 2 is proposed, and how does the definition by Drs. Yoo and

Loh apply if the 7)2 value is wrong?

There are only a small number of cases in the many metals where the

shear-strain has actually been measured. Twinning by homogeneous
shear requires a large Burgers vector and is not consistent with experi-

mental studies in non-cubic metals. Rather, it has been suggested that

minimum shear-strain should be a principal criterion for twinning, and

this has been developed by several authors. It is discussed in some detail
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by Bilby and Crocker. 23 Another criterion is that the reduction in shear-

strain be accomplished without introducing enormous amounts of atomic

shuffling. In the definition I give, s = ns'—p, this is accomplished

providing that n is not too large. If n = 1, p = 0 and 5 = 5' corresponding

to homogeneous shear and a large shear-strain. In selecting a likely twin

mode corresponding to a particular Ki and rji we choose n to give a small

Burgers vector with reasonable atomic shuffling. This is essentially what

others have done in evaluating 172, the element that Drs. Yoo and Loh
now use in reverse to define the zonal twinning dislocation. A quantity

which is defined in terms of another assumed quantity (equivalent to the

defined quantity itself) is not a definition. The correct way to define the

zonal twinning dislocation is from first principles and in terms of

minimum shear-strain and small atomic shuffling criteria; one cannot

eliminate p from my definition, as Drs. Yoo and Loh apparently have,

and cannot define the twinning dislocation in terms of r)>. Similarly, the

zonal twinning dislocation cannot be defined by nh t . h, defined as a "unit

twinning dislocation," has no physical significance; it is not a twinning

dislocation, nor is it glissile — it is only related to the particular zonal

dislocation from which it was evaluated.

YOO; I admit that there are oftentimes some ambiguities in the literature

as to how closely the experimental data points for twinning elements on

stereographic projection converge onto rational crystallographic in-

dices. Those who are familiar with the crystallography of martensitic

transformation will be well aware of this problem, namely the determina-

tion of habit planes, etc. It is not our problem here, however, to verify the

twinning elements reported in the literature.

We are concerned with the properties of zonal twin dislocations in

compound twin systems with the well defined rational crystallographic

twinning elements, Ku K2 , rji . and r)2 - Therefore, once the four elements

are known, the Burgers vector of a zonal twin dislocation is defined ex-

plicitly by our eq (2). The atomic shuffling takes place in the core region

of a twin dislocation as it glides along the twin interface. The reason for

introducing the concept of zonal dislocations is to satisfy the necessary

condition that the new twin interface created by the movement of a twin

dislocation must be both crystallographically and atomistically

equivalent to the original twin interface. Hence, it is this requirement

together with the four crystallographic elements that completely deter-

mines the Burgers vector of a zonal twin dislocation.

We have taken fifteen compound twin systems in structures ranging

from cubic to orthorhombic crystal systems that are reported in the

Bilby, B. A., and Crocker. A. G.. Pror. Roy. Sue. (London) A288, 240 (1965).



DISCI SSION: BOLLMANN ET AL. 555

roeenth published books and review papers. The simple expressions for

the numerical factors, c*s. for these twin systems are given in the first

two tallies in the text. So, once the twinning elements are taken, the

Burgers vector is determined as a direct consequence of the lattice

geometry involved, not the energetic feasibilities of dislocation dis-

sociations discussed by Dr. Mendelson. You do not have any room to

choose w hat the parameter, p. should be.

MENDELSON: Yes. that's true. If you take r)>, as a basic quantity then

you don't have any choice. But my point here is that 1)2 is a variable; it is

not known, in general. For a K\ and 17 1 there is no unique r)> and k>. There

are. at least in h.c.p. metals, an infinite number of possibilities, but most

of these are not reasonable and can be eliminated when minimum shear-

strain and small atomic shuffling criteria are applied. When n is large the

atomic shuffling is large and dislocation motion becomes prohibitive. In

defining the zonal twinning dislocation one chooses the most reasonable

5 value (from which 172 and k> are calculated) consistent with minimum
shear-strain and small atomic shuffling criteria. Drs. Yoo and Loh arrive

at the correct answers because they are using r)2 values which were

determined by various authors from 5 values which were either mea-

sured experimentally or evaluated by applying minimum shear-strain

and small atomic shuffling criteria. To repeat the point a definition

should be based on first principles. Yours is not a definition because you

are defining the zonal twinning dislocation in terms of another quantity

which was originally evaluated from the quantity you wish to define.

NABARRO: Dr. Yoo, you have 60 seconds.

YOO: Since sixty seconds are hardly enough for what I have in mind, let

me ask a simple question instead. In body-centered-cubic structures, K\

and K 2 planes are {112} variant, and 17, and r)> directions are (111)

variant. Along the [111] direction, the translation vector is 1/2 [111].

Now, do you accept that r) 2 = 1/2 [111]

?

MENDELSON: Well, in this case 172 corresponds to homogeneous shear

and the twinning dislocation is not a zonal dislocation. It turns out that

twinning on this plane in b.c.c. is favored by homogeneous shear (n=l),

but in hexagonal metals homogeneous shear is not the best mode for

most twin planes. For the common twin planes in cubic metals you can-

not do much better than twin by homogeneous shear. For example, for n

= 1,5=5'= 1/3 and the Burgers vector on (112) in bcc is h, = l/6[ 11 1]

.

If n=2 (corresponding to an extrinsic stacking fault), 5=2(1/3) — 1 =
— 1/3 and the Burgers vector has the same absolute magnitude. The shear-

strain is reduced from S=V2/2 to V2/4. but atomic shuffling is
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required. This mode is still possible, having opposite stress-sense charac-

teristics and different 172 and k>. The two modes are illustrated in figure

3. [This figure was added at a later date.] The projection plane is Sm
~

(110) and the hatched circles are a/ V2 below those in the plane of the

paper, (a) is for /? = 1 and (b) for n = 2. h t
= 1/6[111], with 17^ = [1 1 1 1 and

k > — (112) for 71= 1, and 172= [113] and k 2 = (331) for n= 2. These modes

are listed by Crocker24 for twinning in b.c.c. martensite. The same effects

(a) (b)

Figure 3.

apply to intrinsic and extrinsic stacking faults in fee metals. Similar

atomic models illustrate this for twin modes in hep metals,25 where the

choice is wider and atomic shuffling for larger n is often accompanied by

a decrease in ht as well asS. In these cases there are various values of 172

and Kz for any particular K\ and iji , and reasonable assumptions are

necessary to choose the most likely one, unless you have experimentally

determined the shear-strain. There are only a small number of twin

modes for which the shear-strain was experimentally determined. Exam-
ples of this are {1012} {n = 2) twinning in cadmium and zinc and {2112}

(n = 3) twinning by Rapperport and Hartley in zirconium,26 others have

been reported for certain metals and some are in dispute. What is per-

tinent and repeated here is that it is meaningless to define the zonal

24 Crocker, A. (;., in Deformation Twinning, R. E. Reed-HillJ. P. Hirth, and H. C. Rogers.

Eds., (Cordon and Breach, New York, 1964), p. 272.

25 Mendelson, S., Mat. Sci. Eng. 4, 231 (1969).

2« Rapperport, E. J., and Hartley, C. S., Trans. AIME 2 1 8. 869 (1960).
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twinning dislocation in terms of a quantity which is not unique or basic

and which itself was evaluated from the quantity to he defined. The

definitions you give are incorrect imitations of correct ones w hi eh were

published 27 and reported earlier. [This is discussed f urther elsewhere.-*
|

DUNCAN: I don't know how many people noticed the anisotropy of the

shear stress of {211} (111) dislocations in Dr. Yoo's paper. I have calcu-

lated the same thing and I got the same anisotropy. I had high hopes that

the anisotropy in the shear stress would correlate with the anisotropy in

the flow stress of b.c.c. crystals, but unfortunately it does not. As far as

I can see you cannot explain or even relate the anisotropy of the flow

stress in b.c.c. metals in compression and tension with the anisotropy of

the shear stress of the glide dislocations in the {211}(111> system.

BOLLMANN: May I comment on Professor Marcinkowskfs paper. [The

following is a written contribution.] It shall be shown how by means of

the O-lattice method that the equilibrium dislocation arrangement of the

symmetrical tilt boundary and the unsymmetrical tilt boundary can be

derived. In addition the concept of Marcinkowski's virtual dislocation

can be understood on the basis of the O-lattice theory. In the standard

procedure of the O-lattice method, first the relation between the two

crystal lattices is given. We assume cubic lattices where lattice No. 2 is

rotated by the angle 0 around the z-axis with respect to lattice No. 1. We
formulate the problem two-dimensionally

x(2)= Ax(1)

with
A = R = (

cos
"
- Sin

^) (2)
\sin 6 cos 6

'

From the basic equation of the O-lattice follows

x(0) =(I _A -l)-lj )(
l.)

.e. /x1(0)W i (i)cotan(0/2)\/b

U2(0)
/ \-(i)cotan(0/2) *

The h (l ^-vectors are the lattice vectors of the b-lattice and as such are

identical with the translation vectors of the lattice. The two basal vectors

of the b-lattice in the chosen coordinate system are of the form (1.0).

27 Mendelson. S., Proc. Int. Conf. on Strength (if Metals and \lloys. Tokyo. Japan. I%7
Suppl. J. Japan Inst. Met. 9, 812 and 819 (1968).

28 Mendelson, S., Scripta Met. 4, 5, (1970); Yoo, M. H., Seripta Met. 4, 9 (1970).
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Hence, the basal vectors of the 0-lattice are

xf»=[i, (i) cotan ((9/2)],

xf»=[(i) cotan (0/2), i].

In the z-direction the O-elements are lines parallel to the axis of rotation.

Figure 4 shows the situation for #= — 10°. The chosen boundary A is a

symmetrical tilt boundary, B is unsymmetrical.

The virtual grain boundary dislocation (VGBD) can be treated as a non-

linear problem by superposing two lattices rotated with respect to one

another, where each contains an edge dislocation of the same type. A
calculation of this kind was published elsewhere. 29 The difference of the

two Burgers vectors (translation vectors) in the two crystals is the Bur-

gers vector of the VGBD and as such is not a translation vector in either

lattice.

I should like to propose to define the Burgers vector of the VGBD for the

low angle boundary by hi = h> — bi instead of the inverse sign of Mar-

cinkowski's definition (his eq 3) in order to keep crystal 1 as the invaria-

ble basis and to do all the operations on crystal 2.

It should be mentioned that Sleeswyk'50 worked on similar problems.

KRONER: I have one question for Dr. Bollmann. You developed your whole

theory considering two equivalent lattices which were rotated with

respect to each other. It is very easy to see that this works well, but it

does not seem so obvious to me that it would also work well if they are

different lattices, like monoclinic and triclinic. Are there extra difficul-

ties?

BOLLMANN: Not at all. The problem is how to formulate the linear trans-

formation which "generates" lattice 2 out of lattice 1

x(2) = Ax<".

We may start from an orthogonal lattice with unit length 1 A and produce

lattice No. 1 out of it

x(l)=§(l)x(o/-(/i)
>

Lattice 2 may be produced in the same manner and by an additional rota-

tion R the orientation of lattice 2 may be varied

x<2)= RS<2)x<o,-^

29 Bollmann, W., in Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bement, Jr.,

and R. I. Jaffee, Eds., (McGraw-Hill Book Co., New York. 1968) p. 275.

30 Sleeswyk, A. W., Physique des Dislocations (Presses Universitaires de France, Paris,

1967) pp. 63-78.
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On eliminating ^ ort,,) we obtain:

x(2, = (RS(2,S (1,- 1 )xm :
= Ax'".

In order to relate the closest neighbors, sometimes additional uni-

modular transformations are needed (c.f. ref. [10] of my paper). In this

way any arbitrary transformation A can be constructed.

Figure 4. (a) 0-lattice tor 0= — 10°. (b) b-lattice enlarged 2X (i.e. the crystal units are half

the size of the drawn b-lattice). (c) Symmetrical tilt boundary (boundary A in fig. 4(a)). (d)

Unsymmetrieal tilt boundary (boundary B in fig. 4(a)).
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SIMMONS: You did not mention that your formulation was invariant

under the point group in that you can put in any other unimodular point

group matrix connecting a base for the lattice with another base. But

your formulation is invariant under such unimodular transformations?

BOLLMANN: No! Two given lattices can be related by many different

transformations A (x(2) = Ax(1)
). For example a square lattice may be

rotated by 10° or by 90° + 10°, etc. The point configuration of the two lat-

tices is always the same and hence is invariant under these unimodular

transformations. However, the 0-lattice as solution of the equation

(I —

A

-1
)x(0) = b(/J is different in every case. The physically significant 0-

lattice is the one which is produced by that A which relates the closest

neighbors, i.e. in our case the rotation by 10°. At the same time it is that

0-lattice with the largest unit cell, i.e. that for which the determinant

|I—A-1
1

has the smallest value.

Figure 5 shows an exampleina {110}-plane in the b.c.c. -structure. Both

point configurations formed by the two lattices are the same, but the cor-

relations between the points and hence the 0-lattices are different. In the

three-dimensional arrangement the 0-elements in figure 5a are vertical

lines, in figure 5b vertical planes.

a) A.= Rotation of 50*28.6' b)_A = Simple Shear

o : Points of lattice 1 ® : Coincidence sites

• •• •• lattice 2 + : 0 - points

Figure 5
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BULLOUGH: I just wanted to make one quick remark back to you. The

whole problem in martensitic transformation theory is the choice of cor-

respondence from which you start the game. Now in your case, you

choose this correspondence in the knowledge that you know where the

interface is, because you are able to locate the relative positions in the

interface and make a decision on those grounds. If you do not know

where the interface is, just how do you get going?

BOLLMANN: In the moonstone case (c.f. ref. [11] of my paper) I knew

about where the boundary was, but the calculation made no use at all of

this knowledge. Only at the end the calculated results were compared

with the measured ones.

BULLOUGH: That is why I asked the question. It seems so incredible and

I have not got it quite clear. Maybe everyone else has.

BOLLMANN: The point is that I could not show all the pictures, because

it would have taken too much time. In order to determine the relative

orientation of the crystals and the orientation of the boundary for which

the boundary energy is a minimum, we do not need to know the energy

itself. The energy function can be replaced by some function which we

know behaves monotonically with the energy. For a phase boundary of

the type of a low angle boundary, a geometrical parameter which cor-

responds to the square of the dislocation strain was chosen. Then the

relative orientation of the crystals for which the smallest of these

parameters showed a minimum was determined. The details are given in

ref. [11] of my paper.

CHANG: Have you tried to superimpose a four-fold pattern onto a three-

fold pattern of a cubic lattice? What kind of Moire pattern would you

get?

BOLLMANN: I haven't tried, but one could do it.

VOICES FROM AUDIENCE TO BOLLMAN: Do you mean it's trivial?

BOLLMANN: Yes, in principle.

AUDIENCE: Laughter.

NABARRO: In principle this discussion is concluded.





KINKS, VACANCIES, AND SCREW DISLOCATIONS
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A vacancy on a nonsplit pure screw dislocation can dissociate into a set

of kinks. This dissociation is demonstrated geometrically for the NaCl lat-

tice, showing that no geometrical constraints are violated by the dissocia-

tion. The kinks thus generated also splinter and spread the charge of the

vacancy along the line. The effective vacancy association energy on the

line is thus much higher than has been supposed hitherto, and is partly due

to the derealization of the charge singularity of the point defect and

partly due to the derealization of elastic singularity. When the Peierls

energy is low, the vacancy will always dissociate, while if it is high, the

dissociation will occur only when the total kink energy is less than the

vacancy energy. Vacancy contributions to both climb and pipe diffusion

are discussed in terms of the kink dissociation process. Results are that

interstitial pipe diffusion is entirely symmetric to vacancy pipe diffusion,

no motion energy is needed, and the formation energy for diffusion is re-

lated to the Peierls energy.

Key words: Dislocation geometry; dislocations; kinks; pipe diffusion; vacancies

in dislocations.

I. Introduction

From the very beginning of dislocation theory, the problem of point

defect interactions with dislocations has been one of the central problems.

It is our purpose in the present paper to discuss the qualitative aspects

of the core of a screw dislocation containing vacancies or interstitials. We
shall take up a suggestion originally made by F. C. Frank [1] that it is

possible to dissociate the vacancy in the core, and shall show that in the

case of the NaCl lattice, such a dissociation is probable. Since it may be
difficult to persuade oneself that no stacking-fault-like defects are gener-

ated in the process, the kinks thus generated will be considered in detail.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough.
Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ, 317, I, 1970).

563
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Our discussion is restricted to the case of whole, or non-dissociated

dislocations. Since the dislocations in metals are so commonly dissociated,

our discussion would appear to have its most interesting application to

ionic crystals.

II. Effective Charge of Kinks

In ionic crystals, it is important to consider the charge on a screw dis-

location kink. Hirth and Lothe [2] have shown that the charge is q = ±e/4,

and in the appendix we demonstrate the same theorem by a different route.

III. Point Defect Dissociation

When a negative ion vacancy is added to a screw dislocation, the va-

cancy is equivalent to the four kinks shown in figure 1. Each of these kinks

corresponds to a charge -he/4, and the sum is of course the same as the

whole effective charge of the negative ion vacancy. The self energy of a

vacancy in the lattice is composed partially of polarization energy, partly

of Madelung energy, and partly of repulsive energy. The first two of these

FIGURE 1. Dissociation of point defect on screw dislocation, (a) Initial prismatic configura-

tion in cubic crystal, (b) Dissociated vacancy as series of kinks.



THOMSON 565

are decreased by breaking up the vacancy into a system of kinks. From

the point of view of dislocation theory, the vacancy is a highly localized

kink system, but if the Peierls energy is low, this kink system by de-

localizing itself over many atomic distances along the line, will lower the

energy of the vacancy. Likewise, once separated, the kinks will repel one

another with a Coulomb repulsion.

An interstitial on the dislocation is just the reverse of the vacancy case.

In figure 1, if the Burgers vector is reversed, or the sense of the rotation

around the rectangle in (la) is reversed, then the dislocation platelet rep-

resents an extra atom. The sign of the charges must also be changed, of

course, for the extra atom case.

Visualization of the atomic placement in the vicinity of a kink is dif-

ficult. It is helpful, however, to consider the following sequence of opera-

tions: (1) Create a screw dislocation in a perfect crystal. (2) Slice the crystal

on a plane normal to the screw and separate. Since the "plane" is in reality

a spiral ramp, one must first cut the ramp on a line terminating at the dis-

location and extending out to the external surface. When the two half

crystals are separated, the ramp on each half crystal terminates at the

familiar ledge along the cut line, the ledge emanating out from the dis-

locations. (3) Rigidly translate the two half crystals parallel to their sur-

faces of separation in direction of the desired kink, and by the amount

of the desired kink length; and (4) weld the surfaces back together.

The surfaces weld uniformly except along the cut ledges. The result is

depicted in figure 2, where there is a thin wedge of missing material

Figure 2. The figure shows how a kink is created by cutting a screw dislocated crystal

perpendicular to the line of the screw, and displacing the two halves of the crystal in the

plane of the cut. The extra "half plane" of atoms for the kink which results is manifested

as the empty slot into which new material must be inserted.
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where the ledges have moved apart by the amount of the translation of

step 3. (The dislocation is represented by the vertical dashed lines joined

in the center by the kink shown as the short horizontal dashed line.)

The wedge of course simply represents the "extra half plane" of the edge

dislocation corresponding to the kink and must be filled with added

material. For a kink of minimum length, the wedge is a single line of atoms

terminating at the kink. (For a displacement with opposite direction in

step 3, of course, material would have to be subtracted in a manner analo-

gous to all dislocation constructions.)

Figures 3 and 4 show detailed drawings of the atom placement in the

core region of [110] and [100] kinks, respectively. The dislocation is repre-

sented in the figures by the heavy vertical lines. The circled ions at the

kink sites are the ends of the extra line of ions described in the above

paragraph. The light dashed and solid lines show the rows of ions in their

deformed positions on the dislocation ramp. Only one plane of ions is

shown, that just above the dislocation line. The heavy dashed lines repre-

sent the cross section of the surface first opened and then welded together

in the construction of the previous paragraph.

Figure 3. Kinked dislocation with kink in the [110] direction. All circles shown are on a

single [100] plane. Large circles, for example, are negative ions, small circles positive

ions.
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FIGURE 4. Kinked dislocation with kink running in [100] direction. (Ibid. fig. 3.)

III. 1 . Association energy of point defects

It has long been assumed that the large affinities which vacancies appear

to have for dislocations is due to the stress relaxation in the core of the

dislocation caused by the vacancy. However, uniquely for the case of

the screw dislocation, the breakup of the vacancy into a kink system,

when the kinks are relaxed, very nearly amounts to the total disappearance

of the vacancy, and the association energy of the vacancy to the disloca-

tion approaches the vacancy formation energy, itself. The criterion for

breakup of the vacancy is obviously

4£ A < EV9 (1)

where Ek is the kink energy, and E\ is the vacancy energy. The Schottky

energy of NaCl is 2.02 eV per vacancy pair so that, provided the kink

energy is less than about 0.25 eV per kink, the vacancy will dissociate.

369-713 OL - 71 - Vol I - 38
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(We neglect the difference in formation energies of positive and negative

vacancies for simplicity.) Although various speculations have been made
regarding the Peierls energy in the ionic crystals, the author is of the

opinion that no evidence exists that it is strong enough to prevent the

kink break up, even for the [100] kink.

One interesting possibility remains, namely that the vacancy has an

activation energy barrier for breakup, with a local minimum for the

localized vacancy. In such a case, measurements analogous to those of

D. Thompson, et al. [3] would probably show an anomalous effect. The

question then becomes what is the lifetime of a localized whole vacancy

on the dislocation before dissociation occurs?

IV. Kink Kinetics

In the earlier paper by Thomson and Balluffi [1] it was suggested that a

convenient notation in a four-fold lattice would be "a" to represent a

positive kink, say in the [110] direction, and "a -1 " to represent a negative

one. Then aa ] = l corresponds to annihilation. A "6" kink would be a

[100] kink, etc. a and b kinks cannot pass easily through one another,

since climb would result. (We term this process commutation in the

following.) Thus ab ba.

There is a serious problem associated with vacancy production by a

screw dislocation line once the vacancies become completely dissociated.

Production of a vacancy on the line requires bringing the appropriate four

kinks together against their Coulomb repulsion, and then making the

diffuse kink system "materialize" a localized vacancy once more. This

process not only requires energy, but involves a very complicated re-

action path. It is a very unlikely process involving a four-body collision,

and equilibrium between vacancies in the lattice and the dislocation line

will require a very highly kinked line.

Another mechanism for vacancy production on the line will undoubtedly

predominate. If a kink pair breaks the forbidden commutation rule, climb

occurs. The pair ab represents in our notation a "half vacancy because

it is half of the clockwise turn aba~ ] b~ ]

. ba, on the other hand, represents

a "half" interstitial because it is half of the sequence bab' l a~\ Thus a

vacancy is produced in the lattice by the commutation ab~^ ba. Further-

more, this is a simple bi-molecular collision process, and no collective

localization is necessary. We note also that in a kink sequence aba~ x b \

once the commutation occurs, then aba~ x b»

1 —» baa~ x b x —> 1, and the

original dissociated vacancy, aba~ ] b~\ completely disappears. Thus

vacancy production on a screw dislocation should be a very efficient
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process, but it will be physically completely different from what occurs

on an edge.

One final point must be made regarding the commutation process in an

ionic lattice. Clearly, if aba ] b~ l represents a positive ion vacancy, and

bab~ x a~ x represents an extra positive ion, then ab—* ba changes the signs

of the two kinks. The annihilation bb -1 mentioned in the previous para-

graph is thus facilitated by the opposite signs of the b and b x kinks. For

kinks in ionic lattices, one probably should devise a notation which im-

mediately distinguishes the charge. Hence, if "a" is a positive kink, "a*"

will denote a negative kink, etc. Hence commutation must be written

ab-^ + [vac]-. (2)

The conditions for equilibrium between kinks and vacancies on the

dislocation can now be written. The flux onto the dislocation will be

written cf>. The vacancy production rate by commutation of the kinks ab

will be given by vap exp (EnblkT), where v n b is a relatively complicated

frequency factor for the collision rates. In equilibrium, then

4>=Vabe~E (ib^'T
.

(3)

The frequency factor, vnb , which must be calculated from the excitation

spectrum of the kink system is of course a very complicated object. How-

ever, we note that any two adjacent kinks, a and b, of different kind must

have the same sign of the charge, and thus repel one another. This theorem

follows from the geometrical constraints placed upon how the ordering

of the various types of kinks must proceed. Although the long-range

character of the Coulomb repulsion between kinks will be important in

generating plasma-like excitations, one can to a degree approximate the

force law as a truncated two-body Coulomb potential, where the cutoff

distance is the length, r*•, of the kink itself.

^hk
16kt

(4)

r > n.

The factor 16 is due to the effective charge of the kinks. Within rA , the

energy is a constant. rA is several lattice spacings in length for a smooth
kink in a crystal with low Peierls energy, k is the dielectric constant. If

a particular a-kink is caught between two 6-kinks. and the 6-kinks are

held stationary, then the a-kink will oscillate in the Coulomb well with a
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frequency characteristic of this nonlinear oscillator. The frequency, valid

for small oscillations will be

In this equation, m is the inertial mass of the kink, and of course should

be some type of reduced mass, since normally the 6-kinks will not

be pinned, as in this exercise. Rh is the average kink separation distance

on the line. Substitution of (4) into (5) yields

For kinks separated about 20 lattice spacings apart and kink energy

— 10
_1 eV, this frequency becomes approximately 10 -11 sec _l

. Our esti-

mate, (6), is of course very crude, but does show that v,lb will depend upon

the kink density to the 3/2 power. If the kinks were freely colliding

particles (high-temperature approximation), then v (lb would depend upon

the first power of the kink density.

The problem remains of how a dislocation starting from a tight cork-

screw unwinds itself into an open spiral. For example, if aba~ x b~ x repre-

sents the vacancy of figure 1, aba~ l b~ ] aba~ l b~ l will be two vacancies of

the same sign stacked on top of one another along the dislocation.

aba~ ] b~ ] b*
~

] a*b*a*
~

] represents a neutral pair, b*
'

~

xa*b*ba~ x b~ x

, how-

ever, also represents a neutral pair with two of its original kinks

annihilated. Thus there are two nonequivalent ways of putting a neutral

vacancy pair on the line. One sequence begins to form a larger spiral while

the other simply coils up the line.

The crucial step in uncoiling the spiral is the one in which a divacancy

kink system of the first type in the previous paragraph becomes one of

the second type. The first kink system represents a small spiral of two

turns, the second type only one.

There are several ways to nucleate the process. One is to nucleate the

equivalent of two positive and two negative complete turns in the middle

(5)

(6)

IV. 1. Dekinking
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of the kink system, and let the activated state die by kink collisions:

(a) aba- x b-'b*- x a*b*a*
~

l initial

(b) aba-'b-'b^a'b^-'a^-'b^^a'b^ba'b 1 activated

ab^a-ibb^aWa*-* (7)

(c) b*-'a*b*ba- l b-' final

A total of 8 new kink pairs (of the classic glide type usually discussed in

kink theory) must be formed in this process.

Another process is the following:

(a) aba- l b~ l b*- i a*b*a*- 1 initial

(b) a6a" , /)" 1 a6~ 1 6*a* _1 + [vacancy] 4 activated (8)

(c) b*- la*b*ba-'b- 1 final

The vacancy formed in the activated state moves up the dislocation line

and forms a new kink system to the left of (8a) by diffusion of a localized

vacancy. If the localized vacancy has a significant lifetime on the dis-

location, the diffusion will be by pipe diffusion, otherwise the vacancy

must leave the dislocation, diffuse through the lattice and return to it.

The rate of dekinking by this process will be much facilitated by the

presence of a metastable localized vacancy on the dislocation because

of the relatively much faster pipe diffusion.

The two processes, (7) and (8), show that in general the dekinking

process can take place by two types of process. One occurs by winding

up the dislocation in the midst of the kink system, and then allowing

kink annihilation to effect the final configuration. In the second, the

dislocation produces a localized vacancy (or extra atom) which must

move to a different point on the line, and then break apart again. Obviously

which of these processes predominates will depend upon the activation

energies involved and the length of reaction paths to be covered. However,

when the kink is a low energy configuration, the line fluctuations will

be easy and fast, and the first method will predominate. As kink energy

becomes significant, then the vacancy production in the intermediate

state will have to be considered.

V. Diffusion

Another interesting phenomenon relates to the pipe diffusion possibili-

ties for dissociated kinks on a screw. The first point to be made is that on an

edge dislocation, a vacancy or extra atom retains its individuality as it

diffuses down the line. On the screw dislocation, the same is true only if the



572 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

defect is localized. If the defect dissociates into a kink system, the motion

of the kink is slip-like rather than diffusion-like. To be concrete, if an extra

atom enters onto an edge dislocation pipe on one surface, it can itself be

transported to the opposite surface by diffusion. If an extra atom enters a

screw dislocation on one surface, and a kink system moves to the opposite

surface, then the original atom is incorporated into the lattice just under the

first surface, and an atom originally belonging to the lattice just under the

second surface is punched out on that surface. The passage of the kink

system is analogous to the interstitialcy mechanism, while the passage of a

localized extra atom is analogous to interstitial diffusion. Hence, one cannot

obtain fast transport of marked atoms along a screw by kinks.

These remarks do not mean, however, that matter transport cannot take

place quickly along screw dislocation. In fact, in the limit of zero Peierls

energy, it will occur with activiation energy for motion approaching zero, as

we shall demonstrate. To be specific, we take the case where matter is

being removed from the point where the dislocation breaks the surface, as

in an etching experiment. Matter transport can occur by pair production:

(a) aa*~ l

(b) abb*-^*- 1

(c) aba-^ib**-^*- 1

(d) aba- 1 b- 1 b*a*b*- la*- 1
(9)

The first step is just the standard kink pair nucleation familiar in classic

glide theory. The final step, however, is a vacancy-extra atom pair. If extra

atoms are being removed from the surface region, the extra atom kink

system diffuses toward the surface, leaving the vacancy kinks in the in-

terior. Since the kinks are free particles on the line, the only activation

energy appearing in the process is that associated with the various steps,

(9). Entropy is not negligible, however, and will contribute a temperature

dependence of its own. Also, depending upon exactly how matter is ex-

tracted at the surface, localization energy for the extra atoms may be

necessary there.

There is some evidence the [100] glide kinks in the NaCl type lattice

may have a significant Peierls energy, in which case the glide activation

energy in that glide plane would be equal to the pipe diffusion energy

along the screws. In more conventional terms, the pipe diffusion has all

its activation energy contained in formation energy, and this formation

energy is just the formation energy of a double kink pair on the [100] glide

plane. We would like to emphasize here, as we did in reference [1], that
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extra atom diffusion on both screws and edges is a very likely process in

contrast to the case of interstitial diffusion in a close packed perfect

lattice. On a screw, there is complete symmetry between the two, pro-

vided dissociation takes place. On the edge, symmetry is not complete.

VI. Conclusions

A. In low Peierls energy crystals, we can expect vacancies and extra

atoms to dissociate on the dislocation into a low energy kink system.

B. The charge of the kinks on [110] dislocations in the NaCl lattice is

e/4.

C. Vacancy production from a screw dislocation is by commuting kinks

past one another.

D. Dekinking of a dislocation can occur either by commuting kinks and

diffusing the vacancy, or by multiple pair production in the middle of the

kink system. If the Peierls energy is very low, the second will be preferred,

and will not be an activated process.

E. Pipe diffusion is extremely fast with no motion energy. The forma-

tion energy in the diffusion process is the same as the kink pair formation

energy. Pipe diffusion is completely symmetric to vacancy or extra atom

diffusion.

VII. Appendix

The importance of the charge on the screw is obvious from the pre-

ceding. Hirth and Lothe have already given a rule for obtaining the charge

associated with various configurations of screws in the NaCl lattice, and

we present here a technique capable of generalizing the procedure. If

we start from a neutral configuration (perfect crystal) and add various

arrays of semi-infinite ions, the long range potential from which the

effective charge (or more complicated higher pole) may be inferred is

obtained by the sum

V{x
-
y - z) =

2{U-*„)*+(y±>^+(;-^}"2
(A_1)

For example, this sum is often a simple sum over a line of ions. If the line

is along the x axis, the potential as a function of the distance, y, from the

axis is

N ( — l\n
(A-2)



574 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

The sum may be represented as the integration over a series of S-fune-

tions; however, more generally a continuous charge distribution would

be represented by a Fourier series. If we use only the first term in the

Fourier series (higher terms do not contribute to first order), the result is

Integration by parts yields

V(y) = l/2

Sin 7TX

(j2+ y2)l/2
dx.

+ e.v + o(i//? 3
;

(A-3)

(A-4)

The potential is simply that of half charges at the two ends of the line.

This result was obtained by Seitz [4] in calculating the charge at a jog

on an edge.

The same reasoning can be applied to a calculation of the corner charge

of a ledge on the surface of an ionic crystal. A square array of alternating

charge gives the result

V{xp xyp ) = ^p-
1 J

sin Try dy

(sin77x)[ (x-xPV+(y-yPVY^dx

4 U/, y-p .

(A-5)

If the array is not square, of course, the integration yields a more complex

result.

One further case is important, namely the warped array. For example,

a line of ions along the [110] direction in NaCl is a corrugated series of

alternating charges. The potential is then

V(y)=e^
(-1)"

£ {*i+(r +(-l)»ro )
2
}
1/2

err Sin 7TX

[x 2 + (y-y0 sin nx) 2
]

1 ' 2

eo e.v

dx
(A-6)

1/2
(*8+y2

)
1/2

"+
(*&+o'

a
)
iy2

0(l/R)
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and corrugation is seen not to have an effect to first order.

One could use the previous method to calculate the charge on the kink

directly but the integrations are difficult, and an approximate result is

obtained in the following way by first calculating the charge on the sur-

face where the screw emerges. Figure 5 shows the
1
1 10] plane in NaCl.

and the screw emergent point is labelled S. If the ledge on the surface

caused by the screw lies in the [001] direction, then by adding a quarter

plane of ions (the corner lying at S), the ledge is turned to the [1 10] ledge.

t
a

I _

+ +

s

+

Figure 5. Schematic drawing of the ion positions on the [110] plane of NaCl with lattice

parameters a and b. The screw emerges at S. The ledge caused by the screw can run in

either the [001] direction (vertical) or in the [110] direction (horizontal). The heavy ions are

the surface ions; the light ones are those lying a distance 6/2 below the surface. When a

quarter plane is added to turn a vertical ledge into a horizontal one, ± e/4 is added to the

screw emergent point.

Since a quarter plane of ions by (A—5) has an effective charge of ±e/4,

and if the charge on the screw as quarter planes are added (thus winding

up the spiral ramp of the screw dislocation) is symmetric about zero,

then the charge on the screw at the surface is ±e/8. The plus sign corre-

sponds to the ledge at the screw ending at a positive ion, and vice versa

for the negative charge. The complexity of the integrals appearing in

(A-l) for a spiral ramp suggests that the screw is not exactly symmetric

about zero, as we suggest, but e/4 is seen as an upper limit for the charge,

and e/8 appears as a fair approximation.

The charge on the kink is then obtained by taking two half crystals with

screws emerging from their surfaces, placing them into contact again
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with the screws one atom distance out of registry, as shown again by

figure 2. The charge on the kink is then obtained by adding (1) the charge

on the screws at their surface emergent points and (2) the charge at the

end of the extra line of atoms which must be added to fill in the vacant

wedge showing in figure 2. If the kink is in the [110] direction, the screws

will each have (say) a charge of — e/8; the extra line of ions has a charge

at its end of + e/2; and the final sum of the charges at the kink is then + e/4.

Similar arguments show that the shortest kink in the [100] direction has

charge also ±e/4.
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Discussion on Paper by R. M. Thomson

BULLOUGH: From the symmetry you emphasized between the vacancy

and the interstitial here, I have the impression that you are implying

their formation energies will be equal.

THOMSON: That's right. That is, the formation energies on the line — not

in the lattice, but on the line.

BULLOUGH: But they don't exist in halides?

THOMSON: That's right. The difference between the formation energy of

vacancies and interstitials in the lattice will show up as a difference in

association energy to the dislocation. Symmetry, however, requires

equivalence for the dissociated kink configuration.

BESHERS: Isn't that equivalent to the generation of a spiral prismatic

dislocation?

THOMSON: It certainly is an atomic version of the spiral prismatic dislo-

cation. The question was how does one get an open spiral prismatic one

from a highly kinked line? I am suggesting that you can get it by either of

two mechanisms. If the Peierls energy is really high, then you have to

deal with old fashioned vacancy motion. When the Peierls energy is low,

you can simply curl the line up by a series of pair formations, and the

kink system collapses into an open spiral.

ELBAUM: I would like to point out that several years ago some experi-

ments were done on the charge of edge and screw dislocations in alkali-

halides. At that time it was shown fairly convincingly that no charge was

associated with the screw dislocation, which would make one think that

screw dislocations are not actually very effective sources or sinks for

vacancies.

THOMSON: That's an interesting point. However, it certainly also has

been demonstrated with various pictures which I can remember but can-

not quote that one does get spirals in ionic crystals and ionic lattices. I

wonder if it has to do with the complete symmetry of the positive and

negative ion vacancy on the screw. I'm not sure what that boundary con-

dition does to you.

ELBAUM: I don't know either except that as far as charge conservation is

concerned it would seem that two kinks would cancel, so that would still

leave a spiral without showing a charge.

THOMSON: A second point is that a spiral prismatic dislocation does not

move under stress, and the effective charge would not show as a

Kundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloufih,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I, 1970).
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polarization under stress. If I know what you are talking about in the ex-

periments you allude to, you move the screw back and forth and watch

for induced polarization.

MITCHELL: There is one question that bothers me a little about this, and

that is: It appears to me that in the beginning of the mechanism, if one is

going to transform a screw into a helical or spiral dislocation, there is one

essential ingredient that definitely one needs with one defect, namely su-

persaturation. It requires supersaturation or undersaturation, before you

can go from the straight screw to a helical dislocation.

THOMSON: A supersaturation, or undersaturation, certainly will kink up

the line. However, in addition, there will be an equilibrium kink (or

vacancy) density on the line which, though normally small, is neverthe-

less present. The effects I discuss relate first to the configuration of the

point defects on the line from whatever cause, and second to the possible

kinetic transformations the kinked line can undergo.
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Many thin biological structures such as some plasma membranes and

virus capsids appear to be made up of units packed in two-dimensional

lattices. Such structures are termed surface crystals. Dislocations and

disclinations are observable in some of these crystals. The perfect surface

crystal is described by a pair of basis vectors and the conventional

crystal by a triplet of basis vectors; both are regarded as embedded in

three-dimensional space. This difference allows the existence of defects

which have no counterpart in conventional crystals. The various defects

are classified as local or global, intrinsic or extrinsic. Surface crystals that

form closed surfaces are considered and it is shown that the sum of the

rotations of intrinsic (screw) disclinations in them must equal 2tt\ where x
is the Euler-Poincare characteristic of the surface. The biophysical con-

sequences are discussed briefly.

Key words: Dislocations in biophysics; protein structure: surface crystals; surface

dislocations.

I. Introduction

In the biological literature, particularly of recent years, there are many
examples of thin structures that exhibit periodicity in two dimensions.

Such structures include bacterial cell walls [241, bacterial flagella [17],

cell membranes [4, 22, 23] and protein coats of viruses [3, 5, 8, 9]. After

disruption many of them are able to reassemble or crystallize spontane-

ously under suitable conditions [2, 12, 17, 21]. It is possible to identify

dislocations in one of Watson and Remsen's [24] micrographs of a cell

wall and disclinations in models (Caspar and Klug [7]: Hull, Hills, and
Markham [14]; Kellenberger [15, 16]), if not in actual micrographs, of

some viruses.

Fundamental Aspects of Dislocation Theory. J. A. Simmons. R. de Wit. and R. Bulloudi.
Eds. (Nat. Bur. Stand. (U.S.). Spec. Fubl. 317, I, 1970).
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In the simpler viruses the protein coat is usually either a spherical or

cylindrical shell around a nucleic acid or nucleoprotein core but toroidal

shells have been observed (Dmochowski et al. [10]). Membranes of cyto-

plasmic organelles can be highly convoluted and many appear to be shells

of high connectivity.

Caspar et al. [6] refer to viral protein coats as surface crystals. It is

useful to generalize this term to include all structures exhibiting periodicity

in two dimensions. Harris and Scriven [13] have discussed the passage of

dislocations through cylindrical surface crystals and have suggested that

dislocations may be involved in the contraction of certain viruses and in

other biophysical processes. In this paper the importance of disclinat ions

in biology is brought out.

II. The Perfect Surface Crystal

A perfect surface lattice is an infinite set of points invariant under

translation by all vectors of the form

T= naa a (1)

and only those vectors; any two points can be connected by a vector

of the same form. Summation is understood over repeated indices,

the basis vectors of the lattice. T is a lattice translation vector or transla-

tional symmetry operation. A perfect surface crystal is obtained by adding

a unit cell to each lattice point in such a way that T is still a symmetry

operation.

In this paper only perfect dislocations and disclinations are considered.

Dislocations, therefore, must have Burgers vectors b of the form given

by eq (1) and disclinations must have rotation vectors o> which are rota-

tional symmetry operations of the perfect surface crystal (Nabarro [19,

p. 123]).

The perfect surface lattice is contained, of course, in a planar surface.

This surface is regarded as being embedded in the surface crystal and

as deforming with the latter, when defects are introduced. It can be termed

conveniently the surface of the surface crystal. It is the geometry of this

surface that is referred to when the surface crystal is said to have some

particular shape.

The surface crystal is defined with reference to a pair of basis vectors

whereas the conventional crystal is referred to a triplet of basis vectors.

Both are regarded as being embedded in three-dimensional space (3-space).

This difference between the two types of crystal allows defects in surface

crystals which have no counterpart in conventional crystals.

The symmetry operations T and &>, where cj is normal to the surface

of the perfect surface crystal, imply displacements in the plane of the
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surface. Such displacements would be readily understood by the inhabi-

tants of Abbott's Flatland [1]; they result in intrinsic defects. All other

displacements carry material out of the 2-space (the surface); they lead to

extrinsic defects. Since no displacement carries material out of 3-space

all defects in conventional crystals must be intrinsic defects. Extrinsic

defects in 3-space paralleling those in surface crystals may arise from

general relativity (Marder [18]; Nabarro [19, p. 590]).

Below the term defect is restricted to the class of defects of the

Weingarten-Volterra type, i.e., defects resulting from rigid-body-type

relative displacement of cut faces (Nabarro [19, p. 16]).

! R
>-Hzr—r-

y i

9 Pi 7

-

(b)

(c)

Figure 1. The surface crystal S embedded in a doubly-connected body B. In (a) the hole

penetrates S, in (b) it does not. The ri<:ht-hand end view of (b) is shown in (c) to illustrate

the introduction of a global defect by rotation through 2tt and translation through b:

the defect results in a cylindrical surface crystal.
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III. The Imperfect Surface Crystal

The various types of defects in surface crystals can be enumerated

by considering a surface crystal embedded in an imaginary doubly-

connected body B. The embedding (see fig. 1) can be such that the hole

(a) intersects the surface crystal S or (b) does not intersect S. A defect

can be introduced by the usual method of making a cut to render B simply

connected and displacing one surface relative to the other by a rigid-

body-type displacement. The cut must intersect S and the relative dis-

placement must be a symmetry operation of S.

The defect line threads the hole. Where the latter penetrates S is a

point or local defect in the surface crystal. If the latter does not penetrate

S then the surface crystal contains a global defect. Local defects may
be intrinsic or extrinsic. Intrinsic displacements in figure lb are certainly

possible but they leave the surface crystal unstrained. Insisting that

strains in a defective surface crystal must not be zero everywhere one

concludes that global defects are always extrinsic. The hierarchy of

defects is shown in table 1.

Table 1. Classification of defects in surface crystals.

-INTRINSIC'

-DISLOCATION ^Edge

-0I5CLINATI0N Screw

.LOCAL.

EXTRINSIC- •DISCLINATION- Edge

iENERAL

GLOBAL •EXTRINSIC'

•DISLOCATION
*~ Edge

^^^j^Edge

'OISCLINATION^

Screw

IV. Global Defects

The only symmetry properties that imply rigid-body-type displacements

out of the plane of 5 are axes of rotation not normal to S. Perfect surface

crystals may have 2-fold axes in their midplanes and all, of course, have

an infinity of 1-fold axes everywhere. Rotation by 77 about 2-fold axes

leads to folded or twisted sheets which spring flat when applied stresses

are released; i.e., no defect results. Rotation by 277 about any 1-fold axis

similarly results in no defect. Therefore none of these operations alone

leads to a defect.

If the rotation by 277 is made about the axis of the hole in figure lb and

it is accompanied by translation in accordance with the translational
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symmetry eq (1) (see fig. 1c) then a cylindrical surface crystal results.

If S is inextensible then the circumference of the cylinder, measured in

S, is the magnitude of the translation. The global defect thus produced

may be thought of as having two components, disclination with oj = 2tt

and dislocation with b equal to the circumference of the cylinder formed by

S if S is inextensible. The disclination has screw character and the

dislocation edge character. This global defect can also be regarded as

a pair of screw disclinations whose combined angle of rotation is 2ir and

whose axes of rotation are parallel but not coincident. However, since the

Burgers vector of the dislocation is related directly to the circumference

of the cylinder the first description would appear preferable. A cylindrical

crystal is shown in figure 2.

Harris and Scriven [13] discuss cylindrical crystals in detail. The

Burgers vector of the dislocation component corresponds to the character-

istic vector C in their paper and the rotation vector of the disclination

component is parallel to their vector z.

A cylindrical crystal can, of course, be obtained simply by identifying

opposite sides x of a rectangular portion of a perfect surface crystal where

FIGURE 2. A cylindrical surface crystal; global defect with (screw) disclination and (edge)

dislocation components.

369-713 OL - 71 - Vol I - 39
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the other two sides can be represented by b (fig. 3a). (A rectangle is chosen

only for convenience.) If, in addition, the sides y are identified as in figure

3b then the result is a toroidal crystal. This corresponds to the introduc-

tion of a second global defect, of screw-disclination and edge-dislocation

character, at right angles to the first. In figure 3c the one side is rotated

through an angle n about a 2-fold axis at right angles to the imaginary de-

fect line and then rotated through 277 and translated by b as before. This

is in fact the introduction of an edge-disclination component a> e into the

global defect. S assumes the shape of a Mobius strip and is nonorientable

or one-sided (in 3-space). An example is shown in figure 4. If interpenetra-

tion is allowed then the addition of a second global defect, with screw-

disclination (o>2,s) and edge-dislocation (h->) components, to the Mobius

crystal results in a crystal of the shape of a Klein bottle (fig. 3d).

(bj

X X

J

(dj

FIGURE 3. Identification of sides as shown leads to global defects with Burgers and rotation

vectors as shown: (a) cylinder, (b) torus, (c) Miibius strip, (d) Klein bottle.
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Figure 5. Extrinsic local defect (Mobius strip). It is purely edge disclination with oj—tt.
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V. Local Defects

Local defects result from Weingarten-Volterra dislocations introduced

into figure la. Rotation about axes normal to S leads to intrinsic defects

and rotation about other axes (1-fold and possibly 2-fold in the midplane

of the perfect surface crystal) to extrinsic defects. Dislocations are intrinsic

defects and are clearly edge in character.

Figure 5 shows an extrinsic local defect made by rotation through it

about a 2-fold axis in the midplane of the perfect crystal: the surface is

a Mobius strip. The difference between figures 4 and 5 should be noted.

Rotation by 27T about the same axis leads to a Mobius strip of two half-

twists. This last axis could, of course, be a one-fold axis. Rotation by 2n

about other one-fold axes leads to Mobius strips of two half-twists or

interpenetrating surfaces if they are allowed. Extrinsic local defects may

be regarded as edge in character.

Intrinsic defects are of two basic types: (edge) dislocation and (screw)

disclination. Two of the latter are shown in figures 6 and 7. The axes of

rotation for intrinsic disclinations are normal to S and may be 5-fold where

5 = 1, 2, 3, 4, or 6. The rotation angle is of the form (Nabarro [19, p. 124])

oj = 2rrnls (2)

where n is any integer.

The vector b and the angle a> describing any defect depend only on

the translational and rotational symmetry of the perfect surface crystal.

A network of regular hexagons has the same appropriate symmetry prop-

erties as any perfect hexagonal surface crystal and therefore can be

used to represent the latter. Similarly a network of squares can represent

a surface crystal with 4-fold rotation axes. By introducing defects into

such networks and using the simple yet powerful Euler's formula it is

shown below that the number and strength of intrinsic disclinations pos-

sible in surface crystals depends on the Euler-Poincare characteristic

X of the surface. Results for crystals of lower symmetry can be obtained

by simple argument as special cases of the above. No similar restrictions

are found for intrinsic dislocations.

The nomenclature used in the graph theory below is that of Ore [20].

The number of end points of edges coinciding at a vertex is the valence

p of that vertex. The number of boundary edges of a face in the graph is

the dual valence p* of that face: an edge which is on the boundary of

one face, only, is counted twice. A graph is regular if every vertex has

the same valence. It is dually regular if every face has the same dual

valence. It is completely regular if it is both regular and dually regular.

The hexagonal lattice of figure 8a has 6-fold rotation axes at face centers

(A) and 3-fold axes at vertices (B). A disclination with to = 77/3 produces a
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FIGURE 8. (a) Perfect hexagonal lattice, (b) Screw disclination (go = 77-/3) at a face center,

(c) Screw disclination (co = 27r/3) at a vertex, (d) Edge dislocation appearing as a pair

of disclinations of opposite sign.

pentagon surrounded by hexagons (fig. 8b). The graph is regular with

p = 3. In general a disclination with co = 27rn/6 results in a regular graph

(p = 3) with a (6-rc)-gon surrounded by 6-gons. The integer n is restricted

to values less than 6. A disclination with rotation ct) — 27r/3 about B results

in a dually regular graph (p* = 6) with one vertex valence 2 and the rest

valence 3 (fig. 8c). In general a disclination at B with ci> = 27rra*/3 leads to

a dually regular graph (p* = 6) with one vertex valence (3 — rc*) and the

rest valence 3; n* is restricted to less than 3.

In a similar manner disclinations can be introduced into a square lattice

(fig. 9). The two lattices can be dealt with together. A disclination with

angle (t) n = 2iTn/s (n < s) about a point in a face of an s-gonal lattice

(s = 4,6) appears as a regular graph (p = 4 for s = 4; p = 3 for 5 = 6) with an

(s — n)-gon surrounded by s-gons. A disclination of angle o>n * = 27T7i*/p

(n* < p) at a vertex appears as a dually regular graph (p* = 5) with one

vertex valence (p=/?*) and the rest valence p.

Consider a graph containing v„ disclinations of angle (o,, and vn * of

angle to,, * on a closed surface of Euler-Poincare characteristic \- For

such a graph (Eves [11])

v-e+f=x (3)
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(c)

Figure 9. (a) Perfect square lattice, (b) Screw disclihation (a>=7r/2) at a vertex, (c) Edge

dislocation.

where v, e, and f are the number of discreet vertices, edges and faces

respectively. Then

where summation is from (
— °°) to (5 — 1) and Vq is the number of s-gons.

(The .v-gons are, of course, disclinations of zero rotation.) Also

e =\^{s-n)v u . (5)
Z

n

If f„* = 0 for all n* then each vertex is shared by p faces and the number
of vertices is

i'o = -V (s — n)v„ (6)
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If r„* = 1 for n* — n? and v n * = 0 for n* n* then one vertex has valence

{p — nf) and {p — nf) polygons share that vertex. Equation (6) must be

corrected by adding {1— (p — nf)/p} or nf/p. Generally

v =~^ (s-n)f H+-]£ (7)
P // Pn*

Substitution of eqs (4), (5), and (7) in (3) gives

2

For both 5 = 4 and 6

PX-

and

From eq (8)

s

This can be written simply

2> = 27TX , (9)

where co, is the rotation of disclination i.

The dislocations of figures 8d and 9c can be regarded as pairs of discli-

nations the sum of whose rotations is zero. Similarly dislocations with

larger Burgers vectors may be regarded as groups of disclinations of zero

total rotation. Clearly, therefore, the above argument leads to no restric-

tion on the number or Burgers vectors of dislocations in surface crystals.

By restricting rotations in a hexagonal lattice to 277/?/3 one sees that a

crystal with 3-fold axes is a special case of the hexagonal lattice and eq

(9) must hold for the crystal. Similarly crystals with 2 and 1-fold axes

normal to the surface are special cases of the square lattice. Equation (9),

therefore, holds for all surface crystals on closed surfaces at least for

intrinsic disclinations of rotation less than 2u.
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VI. Conclusion

The smallest possible intrinsic disclination has rotation tt/3: it can occur

only in a surface crystal with 6-fold symmetry. For a sphere X~2. There-

fore, from eq (9), 12 such disclinations are necessary in a sphere. A spheri-

cal surface crystal containing 12 disclinations is shown in figure 10: it is

in fact a model of a small spherical virus (Caspar and Klug [7): Kellenberger

[15, 161).

The only closed surfaces that need not contain intrinsic disclinations

are those with x~0^ i- e -' tne torus and the Klein bottle (Eves [1 1 J ). These

surfaces, of course, contain global defects with disclination components

as discussed in section IV. Any closed, noninterpenetrating surface is

topologically equivalent to a sphere with p handles. The Euler-Poincare

characteristic for such a surface is (Eves [11])

X= 2-2p. (10)

From eqs (9) and (10) one sees that, except for spherical and toroidal

surface crystals (0 and 1-handled spheres), any closed, noninterpenetrating

surface crystal must contain at least one negative intrinsic disclination.

FIGURE 10. Spherical surface crystal containing 12 intrinsic disclinations of rotation 77-/3.

It is model of a spherical virus.
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Without change in the topology of its surface the shape of a surface

crystal may be altered by rearranging its local defects or, perhaps, even

by changing their number. Change in the topology of the surface generally

involves change in both local and global defects. The writer is at present

studying the details of these processes. The ability to undergo these types

of changes is nothing less than a very characteristic of living systems.
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DISCLINATIONS IN SURFACES

F. R. N. Nabarro

Department ofPhysics

University of the Witwatersrand

Johannesburg, South Africa

The screw disclination is essentially a 2-dimensiona! object. Screw dis-

clinations provide a convenient classification of star polygons. By con-

sidering the disclinations in vector fields lying on surfaces, it is possible to

relate Euler's theorem for polyhedra inscribed on a sphere (faces — edges

+ corners = 2) to the fixed-point theorem for continuously-varying small

displacements of points on a sphere. The changes in the Euler charac-

teristic produced by the addition of holes, handles and cross caps are re-

lated to the disclinations which these singularities introduce into vector

fields lying on the surface. These disclinations may be localized into the

neighbourhood of their corresponding singularities.

Key words: Crystal surface imperfections; disclinations; screw disclinations.

The idea of a disclination has been developed in three dimensions

(cf. Nabarro [1], sec. 3.1). The special case of a screw disclination is

essentially two-dimensional. We consider a surface which has at every

point a pattern which defines a direction or a set of equivalent directions

lying in the surface. We take a closed circuit T in the surface, and record

the total change in the orientation of the pattern when the circuit is tra-

versed once. If this change is not zero, we say that the circuit encloses

a disclination. The strength of the disclination is the number of complete

rotations of the pattern in the sense in which the circuit is described.

If the pattern is a continuous vector field V defining a unique direction

at almost all points of the surface, the strength S of the disclination may
be defined as

where 6 is the angle between some constant direction V () and the vector

field V (fig. 1). An alternative definition is based on the angle
(f)
between

I. Introduction

Fundamental Aspec ts of Dislocation Theorv, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. I'uhl. 317, I, 1970).
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4. V

FlCl.'RE 1. The strength of a disclination in a surface is defined by the integral round a

circuit T of the change in the angle 6 or the angle 4>.

an element of the circuit T and the local vector field (fig. 1). The strength

is then given by

S = T-<£ </0+l.

The definitions are equivalent if the surface (but not necessarily the

pattern on the surface) is regular on and within F. If the surface is singular

on or within F, there may be difficulty in defining the parallel transport of

the vector Vo, and the second definition must be used.

In such a continuous vector field, isolated disclinations must have

integral strengths. Figures 2 (a), (b), and (c) illustrate disclinations of

strength + 1, figure 3 a disclination of strength + 2, and figure 4 a disclina-

tion of strength — 1. If the elements of the pattern have rc-fold rotational

symmetry, disclinations of strength pin, with /; any integer, are possible.

For example, the pattern of figure 5(a), which has three-fold symmetry,

admits the disclination + 1/3 of figure 5(b). Figure 6 illustrates by the

special case (+ 2) + (— 1) =+ 1 the important result that the disclination

associated with a circuit is the sum of the elementary disclinations en-

closed by the circuit. Disclinations of fractional strength are joined by

lines of constant misorientation (fig. 7 (a) and (b)), and the relations

1/2 +1/2=1 and 1/3 + 1/3 + 1/3 = 1 are illustrated. It is necessary to adopt

the convention that sudden changes in direction on crossing a line of

constant misorientation are neglected.
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Figure 4. The disclination - 1.
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FIGURE 5(a). A pattern with three-fold symmetry, (b) A disclination + 1/3 in this pattern.

To justify this neglect, we map the figure on a surface carrying a pattern

of higher symmetry for which the constant misorientation represents a

symmetry element of the pattern. In the latter map the line of constant

misorientation is no longer a singularity in the pattern. For example, the

pattern in the neighbourhood of T| in figure 7(a) may be mapped on to a

surface carrying a pattern with two-fold symmetry, as in figure 3.5 of

Nabarro [1]. The disclination of strength + 1/2 remains, but the line

singularity has disappeared. Similarly, the neighbourhood of either end

of the singular line in figure 7(b) may be mapped on a surface carrying

a pattern with three-fold symmetry. The resulting map is figure 5(b).

II. Regular and Star Polygons in the Plane

If a tangent rolls once around any polygon in a plane, it turns through

2tt radians. In a regular rc-gon, the angle at each corner is 27r/n, and the
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Figure 7(a). The addition theorem + 1/2 + 1/2 =+ 1. (b) The addition theorem 4- 1/3 + 1/3

+ 1/3 =+ 1. In both figures it is necessary to neglect the discontinuity across the heavy

line, which is a line of constant misorientation.
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Figure 12. A star nonagon. Figure 13. A triple star nonagon.
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Table 1

n P figure

3 0 triangle

4 0 square

5 0 pentagon

5 1 star pentagon (fig. 8)

6 0 hexagon

6 1 triangle described twice

7 0 heptagon

7 1 star heptagon (fig. 9)

7 2 double star heptagon (fig. 10)

8 0 octagon

8 1 square described twice

8 2 double star octagon (fig. 11)

9 0 nonagon

9 1 star nonagon (fig. 12)

9 2 triangle described thrice

9 3 triple star nonagon (fig. 13)

10 3 star pentagon described twice.

369-713 OL - 71 - Vol I - 40
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interior angle is therefore 2tt[\/2 — \/n] . Now suppose that the n-gon is

a circuit surrounding a disclination of strength p. Then the tangent turns

through an additional angle 2/)tt. If the resulting figure is still a closed

rc-gon, p must be an integer. The interior angle at each corner is now
27r[l/2 — (p+ \)ln\. A new figure is produced for each value of/; for

which this expression remains positive. (See figures 8-14b.) The possible

values ofp for small n are indicated in table 1.

When /;+ 1 and n have a common factor q. the figure degenerates into

a simpler figure described q times. While (6, 1) and (8, 1) may be sym-

bolically represented as in figure 14 (a) and (b), these representations (con-

trary to the statement of Lyusternik [2]) are not regular polygons in

our sense.

III. Polyhedra on the Topological Sphere

The idea of disclinations, together with the addition theorem for the

strength of disclinations, gives added precision to the fixed-point theorem

for vector fields on the surface of a sphere, and relates this theorem to

Euler's theorem that if a polyhedron on a topological sphere has / faces,

e edges, and c corners, then the Euler characteristic C= f— e + c = 2.

The method can be extended to surfaces with other Euler characteristics.

We can show that if a sphere is covered by a vector field which is

continuous everywhere except for a finite number of isolated points, then

the sum of the strengths of the disclinations at these points is +2. We
describe a small circuit T in a regular part of the pattern. The sum of

the disclinations within this circuit is (l/27r) Jdd + 1 =— 1 + 1 = 0.

We now regard the same curve as a circuit enclosing the remainder of

the surface of the sphere. The positive sense of describing the circuit

is now reversed, and we now find (l/27r)J"d
F

0 =+ 1. The sum of all the

disclinations on the sphere is thus +1 + 1 = 2.

Now consider a polygon lying on the sphere. Introduce a vector field

in the following way. On each face, and just inside the boundary, draw

a field line which describes the boundary anticlockwise as viewed from

outside the sphere. Continue this pattern inside the face as shown in

figure 15. Then in the middle of each face there is a disclination of strength

+ 1, giving a total strength of +/.

There are also disclinations at the corners. We remember the conven-

tion that sudden changes of direction on crossing a boundary are neglected.

At a corner where s edges meet, the strength of the disclination is 1— ( 1/2)5.

The sum of all disclinations at corners is ^ [1
— (1/2)5] = c — 1/2 ^ s -

c c

Now each edge joins 2 corners, so that 1/2 ^ s = e. There are no other
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Figure 15. The vector field associated with a polyhedron.

disclinations. so the sum of the strengths of all disclinations is

D=f~c — e. Since the polyhedron lies on a sphere, this sum is D = 2.

and so C= :f— e — c = 2.

IV. Holes. Loops, and Channels

By a hole in a surface we mean a region of the surface which has been

removed, leaving a boundary which is not connected to any other part of

the surface. We may take the shaded region in figure 16 to be such a hole,

and we see that the introduction of a hole requires the introduction of a

disclination of strength — 1. Thus, for a polyhedron having h holes in its

faces, the total strength of all disclinations is D=f—e~c — h.

Similarly, figure 17 shows the vector field in the neighbourhood of two

boundaries. These boundaries may be connected by a loop outside the

surface or by a channel inside the surface, and the vector lies on the

surface of the loop or channel without discontinuities. The disclination

associated with a loop or channel is of strength — 2. Thus, if in addition

to h holes there are / loops or channels, the total number of disclinations

is D=^f—e-\-c— h+ 2l= 2-\-h— 2l. For example, a torus has h = 0 and

/ = 1. so that D = 0. in agreement with the fact that one can cover a torus

with a vector field which is free from singularities.
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Figure 16. A disclination dipole (4- + ( — l)does not disturb the vector field at distant

points. The shaded area may be removed to leave a hole in the surface.

Figure 17. The vector field near a smoothly fitting handle on a surface has a disclination —2.

V. One-Sided Surfaces 1

As a typical one-sided surface we consider the model of the projective

plane which is made by placing a cross cap on a hemisphere (fig. 18). Its

characteristic C=f— e + c is well known (e.g., Lietzmann [3]) to be C= 1.

1 Note added in proof: The arrangement of Section V is faulty. The contribution of a cross

cap both to the Euler characteristic and to the total disclination strength is — 2.
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FIGURE 18. The projective plane represented by a sphere fitted with a cross cap.

We now prove and generalize this result by the use of disclinations.

The model of a cross cap in figure 18 involves an unpleasant singularity

at P. A more easily analyzed model is formed by half of a heptahedron

(fig. 19 (a) and (b)). On a regular portion ABCD of the outer surface of a

two-sided figure are placed two faces R\QRy and R3QR4 of a pyramid, the

vertex Q of the pyramid lying outside the surface. If P is the centre of the

square R1R2R3R4, the triangles R\PRz and R3PR4 are removed from the

surface, thus exposing its inside. The intersecting triangles R1QR3 and

R2QR4 complete the cap.

Suppose the vector field in the neighbourhood of ABCD was regular.

There is no loss of generality in assuming that on the outside of the orig-

inal surface it ran parallel to R\R> and to RaRa. Then it is clear from figure

19 that the vector field is continuous everywhere (except perhaps at the

singular points /?/, P, and Q), if the pattern on the "outer" surface, viewed

along QP, is unchanged when the cross cap is added, while the pattern on

the "inner" surface runs everywhere in the opposite direction to that on

the "outer" surface. On the side of the triangle R1QR3 nearer to R A

the vectors are parallel to PQ, and on the side nearer to R> the vectors

are parallel to QP. The vector field is continuous where the triangle

R\QR,\ is intersected by the triangle R2QR4.

Although the vector field is continuous, it is not free from disclinations,

because the surface on which it lies is singular. It is easily seen that

circuits round the points R, or their "images" R[ do not contain disclina-

tions. It may also be seen that the circuit round Q sketched in figure 19.

which runs "outside" the tetrahedron R\R±PQ and "inside" the tetra-

hedron RjRjPQ, does not contain a disclination. Its "image" circuit

"inside" RiR+PQ and "outside" R>,RaPQ is also of strength zero. How-
ever, the circuit around P which is illustrated, and which runs "out-
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side" the triangle R\PQ, "outside" the original surface from R\P to

R4P, "outside" the triangle R\PQ, "inside" the triangle R'^P'Q' , "inside"

the original surface from R.',P' to R^P\ "inside" the triangle R.[P'Q\ and

so back to the "outside" of the triangle R\PQ, contains a disclination of

strength —1. Its "image" circuit also contains a disclination of strength

-1.

The cross cap, treated as an isolated entity, thus contributes —2
to the disclination strength, or to the Euler characteristic. But the cross

cap is itself a polyhedron, and Euler's formula and its generalizations

do not apply to surfaces containing isolated polyhedra. The isolated poly-

hedron must be linked to the main polyhedron by an edge joining one of

its corners to a corner of the main polyhedron. This edge, which joins

two existing corners and delimits no new faces, contributes — 1 to the

Euler characteristic. 2 The contribution of a cross cap to the Euler charac-

teristic is thus — 2 — 1 = — 3.

Now suppose we have a two-sided surface with characteristic 2 + h — 2/,

and we attach to it x cross caps. The first cross cap exposes the inside of

the surface, and so doubles the characteristic. If H{z) is defined to be

zero when z is negative and unity when z is positive, the contribution to

the characteristic of all regions remote from the cross caps is

[\ + H(x— 1/2)]\2-\-h— 21). In addition, the neighbourhood of each

cross cap contributes — 3, so that the final formula for the characteristic is

C= [l+H(x-y2)]{2-hh-2l)-3x.

For example, the projective plane is a sphere with h = I = 0, fitted with

one cross cap. It has C= [l+//(l/2)] • 2 — 3 = 4 — 3= 1. For a sphere

with two cross caps, C— [l + //(3/2) ] -2 — 6 = — 2. For a torus with a

cross cap, C= [l + #(l/2)] -0-3 = -3.

2 Consider, for example, a polyhedron on a sphere, for which C= /— e+ c= 2. Inscribe

an isolated triangle on a face of the polyhedron. This triangle contributes 8f=+ 1. 6e = + 3.

and 5c = + 3. Thus 8C = + 1 , and the Euler rule is not valid. If we join a corner of the triangle

to a corner of the original polyhedron, we add S'/=0, 5'e = + 1 and 8'c = 0, giving d'C — — 1.

and restoring the validity of the Euler rule. A smoothly fitting handle is not a polyhedron,

for it has f—e = c = 0. It is not necessary to join its neighbourhood to the main polyhedron.

If we choose to join a point on it to a corner of the main polyhedron, we have 8f—0, 8e = + 1.

8c =+ 1, and 8C = 0, so that Euler's rule remains valid. Alternatively, if the handle is a poly-

hedral arch placed on a face of the original polyhedron, it has C = 0. It is then necessary

to link one corner of each foot of the arch to a corner of the original polyhedron, contributing

8C = -5e = -2.
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After an introduction which recalls some of the properties of liquid

crystals, a general theory of dislocations in a mesomorphic medium is out-

lined. On the basis of their symmetry properties, and of viscosity relaxa-

tion, it is first shown that perfect disclinations in nematic crystals may

take any shape, are restricted to straight lines in smectic crystals, and that

both types exist in cholesteric crystals, where there are two possible axes

of rotation. The second part is specialized to the case of cholesteric

crystals for which a mechanism of pairing of dislocations is proposed

which allows a multiple disclination to take any shape, at the expense of

a small increase of energy in the faulted ribbon.

Key words: Cholesteric crystals; faulted ribbon; liquid crystals; nematic crystals;

smectic crystals.

I. Introduction

The so-called "liquid crystals" form an independent thermodynamic

state of matter, discovered at the end of the 19th century by Reinitzer,

an Austrian botanist, who at that time synthesized cholesteryl benzoate.

This substance melts at 145 °C to a liquid of turbid appearance, which

turns to an ordinary transparent liquid after further heating, at 179 °C.

Lehmann [1] determined that the turbid phase is strongly optically aniso-

tropic. Later, Lehmann discovered other liquid substances, such as p.

azoxyanisole, p. azoxyphenetole, etc . . ., which were shown to display,

like cholesteryl benzoate, very strong optical anisotropics. For a detailed

review of chemical and physical properties of liquid crystals, the reader

is referred to G. W. Gray's book [2], and Chistyakov's and Chatelain's

papers [3, 4]. We shall here first briefly recall some of these properties

and then proceed to our main topic, i.e., the description of the topological

singularities, observed by the optical microscope, in natural or polarized

light, which constitute, for the present-day physicist, a very fascinating

example of application of the notions of translation and rotation dislocations.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bulloujih,
Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317, I 1970).
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II. General Properties of Liquid Crystals

II. 1. Physical and crystallographic properties

Chemically, liquid crystals are made of rod-like organic molecules,

which display long-range order. A typical length of the molecule is 20 A
for p. azoxyanisole. Aqueous solutions of some soaps, of some viruses,

of synthetic polypeptides, with much longer molecules, give formations

resembling ordinary liquid crystals and can be included in the description

of their topological properties.

G. Friedel [5], on the basis of a study of their optical properties and of

their structure singularities, gave a classification of the liquid crystals,

which he called "mesomorphic states", as follows (fig. 1):

(i) — The nematic state. The molecules are oriented in the same direc-

tion, their centers of gravity being at random. It is assumed, as for the

other mesomorphic states, that the molecule oriented n is equivalent to

the molecule — n.

The crystal symmetry elements are

— any translation

— any rotation about the direction of the molecules

— a rotation of 77 about any axis perpendicular to the molecules.

2tt
(ii)— The cholesteric state. The molecules spiral with a pitch p =—

(Q)

/f
r"

1IIIfflH
FIGURE 1. Mesomorphic phases— schematic arrangement of the molecules: (a) nematic,

(b) cholesteric, (c) smectic.
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about a constant direction, the so-called cholesteric axis. In any plane

perpendicular to this axis (the cholesteric plane), the molecules are

parallel, as in the nematic state. A cholesteric medium is either left-

handed or right-handed.

The crystal symmetry elements are

— any translation in the cholesteric plane

— any rotation-translation along the cholesteric axis (a rotation 2ttol

and a translation — 27ra/qo for a left-hand cholesteric, defined by 0— — qoz).

— a rotation 11 = 77 perpendicular to the cholesteric axis, about

a molecule or perpendicular to a molecule.

— a rotation 0 = 77 about the cholesteric axis.

— a translation ir/qo along the cholesteric axis.

(iii) — The smectic state. The molecules are assembled in plane layers

of equal thicknesses d, perpendicularly to the layers. The crystal symmetry

elements are:

— any translation in the plane of the layers

— any rotation about an axis perpendicular to the layers

— a translation of magnitude d along the molecules

— a rotation 77 about any axis perpendicular to the molecules and lo-

cated in the plane between two layers or midway between two

planes.

A glass plate, rubbed along a preferred direction, and in contact with

a liquid crystal, aligns the molecules along this direction (Chatelain [6]).

This is the ordinary way of crystallising a nematic droplet, between two

glass plates rubbed along parallel directions. Cholesteric crystals are

prepared in the same way. Use is also made of rubbed wedges or a fresh

clivage wedges of mica. On the other hand, carefully cleaned glass

plates give the so-called homeotropic phases, where the molecules have

the least possible contact with the plate, and stand perpendicular to it.

The cholesteric and the nematic states are, according to G. Friedel [5],

the same thermodynamic state. A liquid crystal may undergo a transition

from the smectic to the nematic or the cholesteric state, but never under-

goes a nematic ^ cholesteric transition under a change of temperature.

The smectic state always appear at a lower temperature than the nematic

state. This result agrees with the fact there is more "solid-type" crystal-

linity in the smectic phase, which is generally more viscous than the other

phases.

Liquid crystals are anisotropic in their magnetic properties. The nematic

phase p. azoxyanisole is diamagnetic and the molecules orient them-

selves parallel to the field. This is a way of crystallising the phase. A dia-

magnetic cholesteric crystal turns to a nematic crystal under a field

applied perpendicularly to the cholesteric axis. This transition has
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_12L

He H

Figure 2. Variation of the pitch with a magnetic field perpendicular to the spiral axis.

been predicted by de Gennes [7] (fig. 2) and experimentally verified by

G. Durand and co-workers [8].

Nematic and smectic crystals are uniaxial positive, the axis being along

the molecule. The birefringence is generally high and varies with tempera-

ture. They show also very marked dichroism. These optical properties

have been thoroughfully studied by Mauguin [9], who related the observa-

tions to the structural defects in the nematic crystals. Moreover, nematic

crystals scatter and depolarize light very strongly. This phenomenon,

first attributed to the existence of "swarms" of molecules all identically

oriented, taking part in the brownian movement of the liquid, with a size

of typically 10

~

5 cm [10], has recently been explained by de Gennes [11]

on the basis of long wavelength elastic fluctuations of the orientation.

Cholesteric crystals are apparently uniaxial negative, the axis being

along the cholesteric axis, but are uniaxial positive along the spiraling

molecules. They show a strong rotatory power, which may reach values as

high as 60,000°/mm in some substances. The rotatory power changes

sign for a certain wavelength A.<» depending on temperature [12], for which

there is an intense scattering of the right-hand circularly polarized com-

ponent of the incident light for a right-hand cholesteric, the left-hand

component being transmitted without attentuation. For k < \ () , the rota-

tory power is to the left. The converse results are true for a left-hand

cholesteric.

II. 2. The Oseen-Zocher-Frank elasticity equations

Most of the preceding results, like the action of a magnetic field or the

scattering of light, and also the molecules distributions around singulari-

ties and their energies, may be described quantitatively in the frame of the

macroscopic elasticity equations derived first by Oseen [13] and Zocher

[14], and later established on a firmer basis by Frank [15].

Let n be a unit vector representing the direction of the molecule at

the point r. n and — n are equivalent. The most general distortion of the

molecular assembly is represented locally by the six local components of
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curvature. Consider a local axis z along the molecule and the small varia-

tion of n with respect to that direction in the neighborhood of r. We
distinguish three basic modes of distortion, as follows

, dn, dn,,
splay s, =— s2

=—
dx dy

dn u d Tlx
twist U = U =—

—

dx ay

bend 6,=^ 6,=^.
dz dz

On figure 3 we have represented such distortions assuming Si, t\ , and

By expanding the free energy to second-order terms in curvature, and

\ \ I

w i

\ N

/ / /

+++
I / / /

al

\ \ \ \ \

\ \ \ \ \

!iy/

\ \ \ \

W \ \

Fk,i;re 3. The three types of distortion in the neighborhood of a molecule n: la) splay.

(b) twist, (c) bend.
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using straightforward symmetry considerations, the free energy density

appears to be of the form

Fo=V2{Ku (div n) 2 +X22 (n -rot n- <&)*'+&a(n A rotn) 2
} (1)

where Ku , K> 2 , and K$3 correspond respectively to splay, bend, and

twist, go, the inverse of the pitch (p — 27r/<7<>) , is zero for nematic and

smectic crystals. Frank adds to (1) a term in K>4 which was shown by

de Gennes [11] to introduce a volume term of the same form as Ku .

If we take into account the influence of a magnetic field H, we must

add a term

Fmag=-l/2x«(n-H) 2
(2)

where x« is the difference XII
-
X± between the susceptibilities for H

parallel to n and normal to n.

The reader is referred to de Gennes' papers [7, 11, 16] for the applica-

tions of these equations to the influence of a magnetic field and the

scattering and depolarization of light.

Frank has pointed the relationship between splay and polarization : a

polar medium should be splayed in its ground state but liquid crystals are

not polar. More recently Meyer [17] has shown that there is a coupling

between the induced polarization and the splay through the shape of the

molecules, which should explain some of the properties of liquid crystals

under applied electric fields.

III. Topological Properties of Perfect Dislocations

III. 1. General dislocation

A general dislocation in a liquid crystal is defined, as in a solid crystal,

by the position of the fine L and the total displacement imposed to the

cut surface S bounded by the line L.

Let r be the position of a point on S with respect to the axis of rotation

v, the relative displacement d of the lip Si on the cut surface with respect

to the lip S2 contains two terms, one of pure translation (that of the ordinary

translation dislocation), the other of pure rotation, and may be written

d = b + 2 sin~ (v A r). (3)

b is a translation symmetry element of the lattice, and (O, v) a rotation

symmetry element. The displaced part d is either removed or filled in

with extra matter of perfect crystal, and the medium allowed to relax.
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Figure 4. Variation of the position of the axis of rotation along a disclination line.

We shall restrict the use of the word disclination to the case where the

displacement d contains a rotation.

In a liquid crystal, for some kinds of the allowed dislocations, the

relaxation of the preceding process of cut and removal (or introduction)

of matter is not only elastic, but can be viscous. This process of relaxation

leads to a uniform density of molecules and tends to suppress any disloca-

tion with displacement d which can be varied continuously to zero, without

breaking the symmetry properties of the medium. This viscous relaxation

may be considered as the dispersion of an initial dislocation (b, fl) in a

continuous distribution of dislocations (dh, dfl). So that non-quantized

symmetry elements do not lead to stable dislocations in a medium at rest.

For example: translation dislocations in a nematic phase.

This property can lead to an indeterminacy in the position of a dis-

clination line with respect to the axis of rotation. In a solid crystal, it is

quite clear that the axis of rotation v and the line L must be confounded,

otherwise the core of the disclination would suffer a large displacement,

i.e., would have a large energy : disclinations in consequence must be

straight. Consider on the other hand a disclination line L in a liquid

crystal, two points A and A' (fig. 4) on that line, and assume that the

displacement of the cut surface may be described with the axis of rotation

either in A or in A'. These two descriptions of the disclination are equiva-

lent if the difference 5 between the displacements d and d' can be relaxed

by a viscous process, i.e., if

5=2 sin^ (f AAA')

is a non-quantized translation of the medium. Applications of this property

will be found in the following paragraphs.
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III. 2. Perfect disclinations in a nematic crystal

The only quantized symmetry element in a nematic crystal is the two-

fold symmetry axes perpendicular to the molecules.

(1) Screw disclinations. Following the nomenclature adopted by

Nabarro [18], screw disclinations have their axis (fl, v) along the line.

Owing to the energy considerations stated above, this should be the com-

mon case for most of the disclinations in different media, although it is

not the only possible case for a nematic phase.

For a medium with an rc-fold axis, the possible screw disclinations

correspond to rotations of the form Cl = 27rsln (s and n integers). S = s/n

will be referred as the strength of the screw disclination. In a nematic

phase n = 2. Figure 5 shows the cases S= ±l/2, ±1, 3/2, 2, following

Frank [15]. It is to be noted that the minus signs correspond to a Volterra

process in which matter is added, and conversely, the plus signs corres-

pond to the removal of matter. The same sign convention agrees with

Harris theorem [19], stating that for screw disclinations perpendicular to

a given surface, the algebraic sum of the strengths is equal to the Euler's

characteristic of the surface.

The nematic state is named from the apparent threads seen within the

fluid under the microscope. Typical screw disclinations were first reported

by Lehmann [1], then by G. Friedel and Grandjean [20], and later by

Mauguin [9], who explained their nature from their observation in polarized

light. Plate I is from G. Friedel's report [5]: disclinations in azoxyphenetol

are seen end on, between crossed polars; disclinations of strength unity

have four branches, and disclinations of strength 1/2 have two branches.

The actual configurations around screw disclinations were first calcu-

Figure 5. Simple screw disclinations in a nematic crystal (after Frank).
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Plate I. Nematic phase of azoxyphenetol; disclinations of strength 1 (four branches)

and 1/2 (two branches) are seen end on, between crossed polars. (After G. Friedel.)

lated by Oseen [13], assuming Ku =K2 2
= Kxi. The Oseen-Zocher-

Frank equations thus reduce to

V-(/> - 0, (4)

ft

cf) being the azimuthal angle of r in a plane perpendicular to the line,

and n being restricted to that plane. The most general solution of (4) is

0= Sty +00, (5)

ifj being the azimuthal angle of r. It is worth noticing (cf. fig. 5) that the

constant (/>0 is not a meaningless parameter: it may be defined as the

azimuthal angle of the cut surface. If the cut surface rotates along the

line, i//o may depend on the coordinate z on the line. For a disclination

of strength S = ±1/2, the configuration of the molecules rotates as a

whole with the cut surface, but for, say, S = 1 (cf. fig. 5), the configuration

depends on (/><>, and changes therefore along the line if the cut surface

rotates.

(2). Edge disclination. In a nematic phase, owing to the viscous relax-

ation of translation dislocations, any line shape is allowed, and the axis

of rotation subsequently may be located anywhere. In particular the

369-713 OL - 71 - Vol I - 41
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Volterra process may consist in rotating each molecule about a rotation

axis passing through its center of gravity.

Consider a line perpendicular to the axis of rotation (a straight-edge

disclination, or a "prismatic" loop), and S the cut surface. The introduc-

tion of the disclination consists in the creation of a spiral structure in a

cylinder parallel to the axis of rotation and bounded by the line L (fig. 6).

For Cl = ±7T, this spiral goes through half a pitch between the ends of the

cylinder, which are at infinity or on the boundaries of the medium. The

sign plus or minus corresponds to a left or a right hand spiral. It is notice-

able that the distorted cylinder depends on the position of the cut surface

(compare the situations in which the cut surface is inside or outside L),

and that the distortion extends to a long distance. In actual cases, where

inhomogeneities in the rubbing conditions exist, this type of disclination

may be formed in order to compensate for a twist on the molecules at

the surface of the glass plates.

(3). General disclinations. General disclinations are a combination of

the two former types. Their existence was first appreciated by Friedel and

de Gennes [21], who showed that, assuming an isotropic nematic crystal

(Kn = K>2 — Kr.i = K), and n parallel to a constant plane, the actual con-

figuration is given by

where H.s is the solid angle under which the line is seen from r.

</>(r) =
4

(6)

Figure 6. Edge disclination in a nematic crystal.
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III. 3. Perfect Disclinations in a Smectic Crystal

The quantized symmetry elements lead to the possible dislocations,

as follows:

— translation dislocations with b Burger's vector equal to the lattice

parameter and parallel to the molecules.

— disclinations Cl = ri7T {n integer) about twofold axes v perpendicular

to the molecules and passing either through the extremities

of the molecules or through the middle.

The translation dislocation does not need a long commentary here:

as any translation dislocation in a crystal, it involves only one (or possibly

two) b vectors, and may take any shape. The disclinations fl = rnr are

necessarily rectilinear; because of the viscosity of the smectic phase,

which relaxes any translation in the smectic plane, the disclination has

to be located in the plane of the molecular axis and the rotation axis;

but in that plane the disclination must be passing through the extremely

of the middle of a molecule, i.e., must be straight.

Figure 7 describes the creation of such a disclination fl„ = tt, following

the general definition of a dislocation and assuming v between two molecu-

FlGURE 7. Creation of a H„ = tt in a smectic crystal.
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Figure 8. Cl/,= 77 in a smectic crystal.

(b)

Figure 9. Cl a = — 77 and (1,, = — 77 (smectic crystal).

lar layers. The line is perpendicular to the plane of the figure. Figure 8

shows the analogous situation for the second type fl& = 7r, and figure 9

the corresponding Q,a ,b =— 77 disclinations. The disclinations fl„( + 77-)

and + tt) are not equivalent. The cores energies are certainly differ-

ent. But the long-range configurations are also different. This may be

seen in the following way. Draw a circuit ABCDEFGA which encloses

the core of Cin (fig. 10). Due to the importance of the actual cut surface

in the final result, an origin A on the circuit has to be chosen. Consider an

equivalent circuit around the core of starting from a point equivalent

to A. The circuit around fl& does not close, the closure failure being
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Figure 10. Equivalent Burger's circuits for an fl&(7r) compared to an 0«(ir) in a smectic

crystal.

equal to a unit translation along the molecules. A similar situation exists

for the cholesteric phase and will be discussed in more details.

It has been pointed by Frank [22] that the Burger's circuit used above

is not of the usual type. It is a way of comparing the topologies of different

disclinations at infinity, which could be done also by enumerating the lay-

ers and trying to fit the different enumerations.

It is likely that the elastic energy of the disclinations in smectic crystals

is very large, and they do not seem to have been observed. The singu-

larities in smectic crystals are cofocal domains, which we shall now
briefly describe.

III.4. Cofocal domains

The geometry of cofocal domains has been studied in great detail by

G. Friedel [5]. A cofocal domain (fig. 11) consists of two cofocal conies,
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b)

Figure 11. Scheme of a cofocal domain in smectic crystals (after G. Friedel).

an ellipse and a branch of hyperbola. The molecules are along the lines

drawn between a point A on the ellipse (E) and a point B on the hyperbola

(H). All the lines starting from A and describing (H) form a cone of

revolution and similarly for the lines starting from any point on (H) and

describing (E). The smectic layers are perpendicular to these lines and

form a family of Dupin cyclides. The cofocal domains are limited by the

cones tapering to the limiting points on (E) and (H) (fig. 11. b) and are

tangent to the adjacent cofocal domains along these cones. A correlated

interesting point is that the layers surfaces are then limited to hyperbolic

parts of the Dupin cyclides. This configuration leads to beautiful arrange-

ments, described by Friedel [5] as feathers, fan-tailed fields, etc. . . .

Plate II shows a typically terraced smectic droplet, in which the layers

are plane, and bounded by families of tiny cofocal domains. Plate III shows

a droplet in which large cofocal domains are present.

The occurrence of cofocal domains may be easily understood on the

basis of a layered structure, if not easily described in terms of singularity

lines. The layers can easily glide upon each other, but less easily deform

along the smectic axis. This has to be understood as a competition between

viscous relaxation along the layers and elastic relaxation throughout the

layers. Any distorted structure should then preserve layers of equal thick-



Plate III. Cofocal domains in ethyl azoxybenzoate. Most of the ellipses are in the plane

of the glass plate. Crossed polars.
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ness, which means that the layers surfaces have common normals and the

same centers of curvature along the same normal. These centers of

curvature describe the so-called focal surfaces, which are singularities

of the structure on which the smectic phase must stop (cf. a similar discus-

sion in Nye [23]). But, the smectic phase being a liquid with no empty
space, the surface singularities must be reduced to line singularities.

This means that the radii of curvature of the smectic layers are constant

along curvature lines, i.e. that curvature lines are circles. Therefore the

smectic layers are Dupin cyclides, and the line singularities cofocal conies.

Sackmann and Demus [24] claim to have observed other types of

structural defects in smectic crystals, which they relate to different

smectic modifications of the same crystal, but no more is known at the

present time on these structural defects.

III. 5. Perfect disclinations in a cholesteric crystal

Perfect dislocations in a cholesteric crystal correspond to the two

kinds of quantized rotations, along the cholesteric axis and in the choles-

teric plane, and to the translation n/qo along the cholesteric axis. It will

be shown that the translation dislocation and the disclination with y along

the cholesteric axis are equivalent descriptions of the same singularity.

(1) Axis ofRotation Perpendicular to the Spiral Axis. Such disclinations,

for reasons similar to those stated for the smectic crystal, are necessarily

straight. We shall denominate r" + (z), tn~(z) the disclinations trans-

verse to the molecules, z is the coordinate of the line measured along

the spiral axis, and varies discontinuously, by quantities equal to the

half-pitch. The signs plus and minus are chosen with the same conven-

tion as for the similar nematic screw disclinations. n is the number

of it rotations involved in the Volterra process. Similarly, we introduce

the symbols A" + (z), kn ~ (z) for the disclinations running lengthwise

the molecules. Figures 12 and 13 show perpendicular sections of these

four types for n=\. The points represent the molecules viewed end-on,

the continuous line or the dashed-line the molecules in the plane of

the figure; an intermediary position is represented by a nail with its

pointed spike directed towards the observer. The figures are drawn for

left-hand spirals.

It is to be noted that a k and a r are not equivalent. It is likely that the

core energy of a k is smaller than the core energy of a r. Moreover, as

stated for the smectic screw disclinations, the topological properties at

infinity are not the same : one transforms a k into a r, and vice-versa,

by emission or absorption of a x dislocation, which will now be described.
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FIGURE 12. \ and r in a cholesteric crystal; section perpendicular to the axis of rotation.
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FlGURE 13. k~ and r+ in a cholesteric crystal; section perpendicular to the axis of rotation.

(2) Axis of Rotation Parallel to the Spiral Axis. Such disclinations,

which we shall denominate x disclinations, because of the location of

the rotation axis along the axis of chirality, may take any shape, owing to

the viscosity in the cholesteric plane. There is on the other hand a viscosity

of rotation-translation along the spiral axis : any rotation ft — a. followed

by a translation T= — a/q
{ ) (minus sign for a left hand cholesteric 1

) is

relaxed. We can write symbolically

(H.r)= (a,-aW^0. (7)

'By definition, a right-hand spiral is analytically represented by the expression 6= + q^z

in a right-hand system of reference.
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Conversely, we have

(a, a/go) s (2a, 0) = (0,- 2a/g0 ). (8)

This equation states the equivalence, for a= 7r/2, between the rotation

fl — 7T, the translation T=—irlq{) (the half-pitch), and the right-handed

translation-rotation (77/2, 7r/2go) for the left-hand helix.

X disclinations are very similar to disclinations in nematic crystals.

Screw x disclinations have the same cross-section configurations than the

nematic disclinations. Let (/> be the azimuthal angle of n(r); in the perfect

state, we have, for a left-handed spiral

(j)==-qoZ. (9)

Introduce a x^ i-e., a screw dislocation b =±— . Equation (9) becomes,

1 ib
with z —> z±— -,

qo I

4> = — qoz± 1/2 1//+ relaxation terms (10)

where 1// is the aximuthal angle of r. Therefore the configuration of the

molecules is the same as for a nematic screw with a cut surface rotating

like the cholesteric spiral.

X edge disclinations have been first proposed by de Gennes [25] in order

to explain the occurrence of the so-called Grandjean-Cano "walls" [26, 27],

which appear in a wedge single crystal of a cholesteric phase (fig. 14),

when the boundary conditions impose to the molecules to keep parallel

to the surfaces. If in A (see fig. 14) the thickness of the wedge is equal to

say, one pitch, and in B to three half-pitches, the domain in between must

display a singularity where the number of half spirals change abruptly

FIGURE 14. Grandjean-Cano walls in a small-angle wedged single cholesteric crystal.
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Plate IV. High pitch cholesteric phase (dilute solution of a cholesterol ester in p. azoxy-

anisol): observation of Grandjean-Cano walls. (Courtesy Orsay Liquid Crystal Group.)

from 2 to 3. The photograph of plate IV obtained by the Orsay Liquid

Crystal Group [28], from a high pitch cholesteric phase (—- ~ lOOpi)
\<7o /

shows parallel Grandjean-Cano walls with a regular spacing. They have

shown that the spacing of the first lines (at the bottom of the picture)

agrees with a x of Burgers vector equal to half-pitch, but that the following

should be double x's.
2 In fact another model has been proposed for these

"double" lines [29], which explains also their behaviour in a magnetic

field. This model, which assumes the pairing of disclinations of opposite

sign, will be explained further.

The energy and the configuration of a x edge disclination have been

calculated by de Gennes for the isotropic case [25]. A perturbation cal-

culation of the influence of the anisotropy on the energy has also been

performed and shows that the energy varies with the position of the edge

disclination along the spiral axis [30].

2 The simple lines look faintly contrasted on the plates, and the double lines strongly

contrasted.
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* /

m

Plate V. Same situation after application of a magnetic field perpendicular to the spiral

axis (Courtesy Orsay Liquid Crystal Group).

(3) Other Kinds of Singularities in Cholesteric Crystals. For some

singularities which have been observed, the thickness of the cholesteric

layers (the pitch) is kept constant. Such is the case for the cofocal domains

observed by G. Friedel [5] (plate VI) and the spherulites observed by

C. Robinson [31]. It seems, following G. Friedel, that a cholesteric phase

displays, either the typical Grandjean-Cano "walls," or the cofocal

domains, which constitute a metastable distortion. More work is certainly

needed to compare and explain these fundamentally different kinds of

singularities.

IV. Pairing of Disclinations in Cholesteric Crystals

IV. 1. Impossibility of a curved X or t

Let us suppose that a k or a r is curved. This would mean that, in each

point A i of the line L u the distortion may be defined by a local axis of

rotation V\ parallel (on perpendicular) to the molecule in^i. Consider two

position Ai, A[ = A] + ds, on the line, Vi and v\ the corresponding axes of
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Plate VI. Cholesterol butyrate. Cofocal domains seen between crossed polars (after

G. Friedel).

rotation, i*i and r[ the distance of Ai and A[ to a pointM on the cut surface

S. The difference 5= di — d \ of the displacements of M is given by (fig. 16)

8=2am~{dri A n-v'i A cfei}, (11)

where dv x
= v[ — V\.

8 corresponds to a continuous distribution of infinitesimal dislocations

of two types

— a density of disinclinations dv
x

— a density of translation dislocations —V\ A ds\.

These infinitesimal dislocations cannot be viscously relaxed, and are

therefore impossible if we assume a relative displacement of the cut

surface lips of the form stated eq (3).

IV. 2. Pairing of straight X or t

It is possible to reduce to zero at long distance these continuous dis-

tributions by pairing two disclinations of opposite sign at short distance

one from the other.

The simplest case consists in pairing two straight disclinations. For
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FIGURE 15. Pairing of two A or r disclinations of opposite signs.

this situation there are no continuous dislocations in the ribbon separating

them. Figure 15 illustrates this possibility. Let d be the distance between the

two disinclinations. The total effect of the pair on the cut surface is given by

2sin^1 (i>i Ari+ i>2 Ar2 ) = 2 sin Ad)=2(f, Ad). (12)

This is equivalent to a translation dislocation, possible if 2d is equal to a

lattice parameter. This condition leads to the relation

d=ir- (13)
2<?o

the cases n = 1, 2, 3 are represented figure 15 and correspond to pairs of

increasing energy.

The possibility of such a pairing of disclinations has already been

assumed in solids by Friedel [32].

The preceding discussion shows that such pairs are equivalent at long

distances to x disclinations. But the core is very different, and involves

a 77/2 rotation of the cholesteric axes. This point has been very important
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in the understanding of the zigzag instability of "double" lines [29] under

a magnetic field. Plate V corresponds to plate IV after application of a

magnetic field. The lines have moved towards the top, in the region where

the wedge is thicker, in order to accommodate the increase of the pitch

277—7777. At the same time, for a field H z
~ H c /2, the "double" lines become

qo{n)

zigzagging, and the "simple" lines stay stable. Bearing in mind that the

cholesteric phase is diamagnetic, so that the molecules tend to align

parallel to the applied field, i.e., the cholesteric axis perpendicular to H,
a pair tends to rotate by an angle of tt/2 about the cholesteric axis. This

effect is larger when the core is larger, and a crude calculation [29] leads

to the conclusion that the instability field H z is of the order of H c /n,

where n is the number of half-pitches of the pair. Therefore a "simple"

line could as well be a pair or a as it would not display any instability

before the critical field Hc .

IV. 3. Lines of pairs

Consider a line Li, and be V\, on each point Ai of the line, a rotation

axis either parallel or perpendicular to the local molecule. It is possible,

by a generalization of the preceding paragraph, to pair this line with a line

L 2 (fig. 16) such that:

— the rotation axis v> at the point A2 , coupled with Ai, is opposite to V\.

— AiA 2
=: d is in the cholesteric plane

j TITT .—a= -— is a constant.
2q 0

Such a pair is equivalent at long distances to a translation dislocation of

TITT
Burgers vector . The faulted ribbon between L x and L> is covered by

<7<>

Figure 16. Line of pairs : general case.



630 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Figure 17. Translated plane loops parted in order to give a translation dislocation line.

a continuous distribution of infinitesimal dislocations, directed along

AiA 2 , and of density dv x in rotation and Vi Adsi in translation.

Among the possible configurations which achieve the preceding result,

there are two simple cases:

(i) — Translated plane loops. L x andL 2 are two loops in the same choles-

teric plane v= V\ v± is a constant vector. The faulted ribbon is com-

posed uniquely of translation dislocations (fig. 17).

(ii)—Helicoldal concentric loops. Such loops have the same pitch as the

cholesteric crystal. The faulted ribbon is composed uniquely of rotation

dislocations radially spread, with a density equal to the curvature of the

projection of the helix on the cholesteric plane.

F. C. Frank [22] has pointed out that the inner region of the cylinder

has not the same pitch as the outer region. We consider three possible

cases:

— The effect of the helicoidal pair is to introduce n half-pitches

inside the cylinder for each pitch of the pair. The inner pitch is

. 277 277 / 2 \ r no J-given by—= —
I , figure loa represents a median section

qo qo \2+ n/
of the configuration for n=l.

— The effect of the pair is to introduce one half-pitch outside the

cylinder. The inner pitch is therefore twice the outer pitch (fig. 18b).

— The effect of the pair is to introduce two half-pitches outside the

cylinder for each pitch of the pair. The inner part is then nematic

(fig. 18c).
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FIGURE 18. HelicoTdal pair : the pitch inside the cylinder is different from the pitch of the

matrix crystal (see text).
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V. Glide of Disclinations in a Cholesteric Crystal

V.l. Screw disclinations

Let us consider the possibility for a screw disclination r~, for example,

to glide parallel to itself (fig. 19) along the cholesteric axis by a distance

77"

x, and let us assume x < -—
. In the intermediary state of figure 19b, the

molecules at the boundary on the upper part of the cut surface are not

parallel to the molecules at the boundary on the lower part. It is therefore

necessary to deform the left part of the crystal by a rotation 2xqo of the

molecules of the half-plane, or by oppoiste rotations ±2xqo of the

molecules of the two half-planes, in order that the deformed crystal

matches the perfect crystal introduced on the right. The result is de-

scribed figure 19c; the axis S is an axis of symmetry. It is clear that this

process leads to an excited state of t~, because a simple redistribution

of the molecules in the core gives r" back.

Figure 19. Creation of an imperfect r .

It should have been as well possible to rotate the molecules of the

half-plane on the left part by an amount — ir-\-2xqo, which is equivalent

to adding a x to r~. The result is then an excited state of k~.

A similar analysis can be made for k + and r +
. A displacement of the

disclination by a distance x upwards is equivalent to a rotation xqo of each

molecule about the local spiral axis, which leads finally to a higher energy

distribution in the core. Figure 20a shows this rotation, and figure 20b

shows the isoclinal lines of the same disclination.



FRIEDEL AND KLEMAN 633

Figure 20. Configuration of an imperfect t +
.

V.2. Absorption and emission of \'s by a A or a t (Frank)

The preceding analysis shows clearly that a A. (or a r) is transformed in a

r(or a A.) by the absorption or emission of a x parallel to the screw disclina-

tion line, and that the process is attended by the glide of the k (or the r)

along the cholesteric axis. More precisely, we can write the following

reactions (eg. F. C. Frank, Montpellier Juin 69, Colloque sur les cristaux

liquides).

r-(0)+x+ ^X-(a); r+(0)+x-^X-(a)

r- (0) + x" ^ X- (~ a) ; t+ (0) + x
+^ + (~ «) (13)

X-(0)+x^r-(a);\ +(0)+x-^T +
(«)

X- (0) + x" ^ r~ (- a) ; \+ (0) + X
+ ^ r+ (- a)

The two first reactions are illustrated in figure 21. It is interesting to note

the similarity between these reactions introduced here through the concept

of glide and the Burger's circuit description, used above in the case of

disclinations in a smectic crystal, and which apply evidently to the present

cases.

Frank has also made the following remark:

Let us now imagine a x
+

( n £- 22) rotating counterclockwise about

a t~<0) by an angle of 277. The x
+

is transformed in a x~ in this process,

which can be as well described as the absorption of the x
+ by the r~ on

one axis of symmetry and the emission of the x~ on an other axis of

symmetry. By the preceding results the t~ has moved during this process

by a distance —2a. So that it is possible to move a r or k by letting a

X rotate about it.

V.3. Glide of pairs

The glide of a pair, say. from a k + r~ configuration to a k~T~ configuration

is, owing to the preceding analysis, descriptable as the exchange of a x
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Figure 22. Rotation of a x about a r and displacement of the r from LtoL' : (a) rotation of

a x; (b)(c)(d) steps of an equivalent circuit.
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( b)

Figure 23. Glide of a pair (excited state).

between the two cores. The intermediate situation, at the beginning of

the glide is shown in figure 23.

VI. Conclusion

The liquid crystals offer a very remarkable medium for the applica-

tion of the notion of disclination. Although the analysis here presented is

far from being complete and from explaining all the experimental facts,

we have the feeling that it gives a very secure basis for further progress.

An important step would be also to solve the elasticity equations in order

to compute the real configurations in these media where the anisotropy

effects are certainly important.
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NONMETRIC CONNEXIONS, QUASIDISLOCATIONS AND
QUASIDISCLINATIONS. A CONTRIBUTION TO THE
THEORY OF NONMECHANICAL STRESSES IN CRYSTALS

K. H. Anthony

Institutfiir Theoretische and Angewandte Physik der Universitai

Stuttgart Germany

Nonmechanical stresses produced, for instance, by a temperature

gradient or by an internal magnetic field are related to an affine lattice

connexion, which is nonmetric with respect to the elastic metric. The
covariant derivative of the elastic metric with respect to the lattice con-

nexion is regarded as source-function for this kind of internal stresses. It

may easily be determined from experimental data. The calculation of

mechanical stresses is based on this quantity.

Instead of describing nonmechanical stresses by a nonmetric lattice

connexion we alternatively may use an elastic connexion which is metric

with respect to the elastic metric. In the elastic connexion are in-

volved the tensors of quasiplastic torsion and of quasidisclination-density,

which are regarded as source functions of nonmechanical stresses. Both

tensors are intimately connected. They are a natural generalization of the

quasidislocation tensor of the linear theory of nonmechanical stresses.

From the theory of quasidisclinations we obtain the following state-

ment: In general, nonmechanical stresses cannot be eliminated solely by

a dislocation movement. An additional distribution of crystal disclinations

is necessary.

Key words: Affine connexions: continuum mechanics: curvature tensor: disclination:

interna! stresses: quasidisclination.

I. States and Quantities

In order to describe nonmechanical stresses in a crystal which, for

instance, is endowed with a temperature gradient or with an internal

Fundamental Aspects of Dislocation Theory, J. A. Simmons. R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ. 317. I, 1970).
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(a) (b) (c)

Figure 1. (a) Ideal state, (b) natural state, (c) final state.

magnetic field one considers three states of the crystal (see fig. 1) [1].

In the stress-free ideal state (f) one observes the regular undisturbed

crystal lattice. If we confine ourselves to the case where real crystal

dislocations and crystal disclinations are absent, we go by a compatible

deformation from the ideal state to the final state (k), which presents

elastic internal stresses. This deformation may, e.g., be due to the building-

up of a temperature gradient. Both states are realized as a compact body

in Euclidean space. The final state is referred to coordinates xk with

basis vectors f, k = 1,2,3.
k

The natural state (k) may be produced from the final state by a tearing

process which relaxes all elastic strains. In this state the volume ele-

ments of the crystal in general cannot be fitted together as a compact

body. The crystal structure in the elements is not the regular one. In

the case of thermal stresses the lattice shows different dilatations on

different volume elements according to their local temperature. In addi-

tion the lattice will be sheared inhomogeneously in the case of magneto-

strictive internal stresses.

Nonlinear theory starts by defining in the final state the following

quantities [1-51:

(1) The elastic metric tensor a — {a,j) defines distances of material

points x k and x k + dx k which they assume in the natural state: 1

da'1 = a ijdx 'dxj
. ( 1

)

(2) The lattice-metric tensor b= (6,j) measures distances of material

points which they assume in the ideal state:

d$>- = b ijdx' dxj
. (2)

Summation convention implied.
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(3) The affine lattice-connexion r= (!',/' ) describes the crystal

lattice in the final state. The lattice defines the T-parallelism cor-

responding to r, i.e.. if \{x) is any field of equivalent lattice vectors

in the final state, this vectorfield varies according to

tftf*=-r,/V<fc'. (3)

By using the Euclidean metric tensor g= (g-,j) and the connexion

{ fj}
of Euclidean parallelism we derive in the final state from the quantities

a. b, r the following tensors:

(1) The elastic strain tensor e= (eij) measures the elastic change

of distances, when deforming the crystal from the natural to the

final state:

ds- — dcr'
I = 2eijdx idxj

, (4)

e 0-=l/2 (gij-dij). (5)

The Euclidean distance of material points in the final state is given by

ds 2 = gijdx id%K (6)

(2) When we deform the crystal from the ideal state into the final

state distances between material points change according to

ds 2 — dQ 2 = 2t ijdx idxK (7)

where t= (ty) is the total strain tensor:

iij=V2 {gij-bij). (8)

(3) The quasiplastic strain tensor q= (qij) and the elastic strain

tensor add to the total strain tensor:

tij= qij+ eih (9)

i.e.,

qif= 1/2 {dij-bij). (10)

The tensor q belongs to the quasiplastic deformation which produces

the natural state from the ideal state:

do- 2 -d* 2 = 2q ijdx
idxj

. (11)



640 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

To illustrate the meaning of q we cut the ideal state in small pieces

and impose on each volume element, e.g., its final local temperature.

(4) The deviation of the final state crystal lattice from an undis-

turbed lattice structure is measured by the hyperdeformation tensor

H

The tensor H compares the T-parallelism with the Euclidean paral-

lelism [2]. It contains the hyperstrain tensor E = (E\mn ) ,

Eimn = Hi m k a ktl /{m>lh (13)

and the structure curvature tensor K= (Kimn ),

Kimn— Himk
afcn/[m«]. (14)

(5) The covariant derivative of the elastic metric with respect to

the lattice connexion

(?*«=- V*ay (15)

= - (d kau - Yk?apj
- rkfaip ) (16)

is the fundamental quantity in this paper.

II. Naturalization

Each of the three quantities a, b, I defined in the final state belong to

a certain tearing process: Distances with respect to the elastic metric a

become Euclidean if we drag along this metric with the deformation

which carries the final state into the natural state. An analogous con-

sideration may be associated with the lattice metric b if we take the

deformation from the final to the ideal state. The same deformation

transforms the T-parallelism of the final state into a Euclidean parallelism

in the ideal state, if we drag along the T-parallelism with this deformation.

By means of the following statements these physical features are

involved into a differential geometrical description, based on the quantities

a, b, T [3].

The elastic metric tensor a= (a,j) defined in the final state is said to

be naturalizable, if there exists a new basis system in the same state.

n=^f, k=1,2, 3,
(17)
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relative to which the metric has the components

aa = §«A, (18)

where
a Kx=A h

KA'k a k i. (19)

Similarly the lattice connexion 1 = (T,/) is said to be naturalizable

if we can find in the final state a new basis system

i=£ff, f= 1,2,3,
f k (20)'

in which the connexion has the components

iy=o. (2d

We obtain these components by means of the transformation formula -

r
ij

l'= B\BiBf.T;f— B{Bjd /Bf (22)

In view of (17) to (22) the naturalizations of the metric a or the con-

nexion T mean therefore the construction of certain basis systems relative

to which the metric or the connexion show Euclidean features. These

processes take place in the compact final state and have a priori nothing

to do with the tearing of the body. The variations of the naturalizing basis

systems n and i in the final body manifold visualize incompatibilities
« f

involved in the final state.

Especially a basis system i , f= 1,2,3 naturalizes the connexion V if and

only if it is displaced parallel with respect to I\ i.e., the lattice connexion

always naturalizes, for example, in a basis system which is defined from

the lattice vectors in the final state.

On the other hand, the naturalizing basis system n, k= 1,2,3, of the

metric a is only determined up to an arbitrary orthonormal basis

transformation.

n =D£ n,/<' = 1,2,3, (23)
K K

Dx\ 3«x= 8k'v, (24)

2
di = ^-, B[ inverse of B$.

dxj A r
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i.e., n,is determined up to an arbitrary rotation relative to the metric a.
K

A positive definite metric and a connexion with vanishing Riemannian

curvature can always be naturalized in certain basis systems which at

least are anholonomic relative to the coordinate system x k
[3]. In the case

of nonvanishing Riemannian curvature we generalize the definition of the

naturalization in such a way that it is valid on arbitrary lines in the final

state [3].

Of fundamental importance in this paper is the simultaneous naturali-

zation of a metric and a connexion. If both quantities are assumed to be

naturalizable, in general they do not naturalize simultaneously, i.e., there

is no common basis system, in which both quantities naturalize. The

following lemma is not hard to prove [3]:

The connexion Y and the metric a naturalize simultaneously

{naturalizability of each quantity presumed) if and only if Y is a

metric connexion with respect to a, i.e.,

Q kij= 0. (25)

(See (15, 16)).

In the case where Y has nonvanishing torsion (dislocation density)

and Riemannian curvature (disclination density) this lemma is valid too.

Naturalization of a quantity is intimately connected with a certain

tearing process. To illustrate this we assume, e.g., the coordinates x k of

the final state to be orthonormal Cartesian coordinates in Euclidean space.

Then we consider for instance the inverse of eq (17) not as a basis trans-

formation that leaves the body undeformed in the final state but as a

material mapping of the body into the Euclidean space such that in each

material point the material vectors n are mapped into the vectors f . This
k k

means a deformation of the final state such that distances according to

the metric a appear as Euclidean distances.

Therefore this mapping leads to the natural state (k) mentioned above.

The naturalization process of the elastic metric a is a mathematical

image in the final state for the physical tearing process which leads from

the final state to the natural state.

Arbitrary rotations of the volume elements in the natural state have

no physical meaning. This corresponds to the uncertainty (23) of the

naturalizing basis.

An analogous consideration is valid for the naturalization of the lattice

connexion Y. After the material mapping, which by eq (20) carries the

material basis vectors i into the vectors f, the F-parallelism of the final
k k

state becomes Euclidean. The mapping leads to the ideal state.



ANTHONY 643

One should keep in mind that this mapping is only a geometrical process,

which leaves, e.g., a temperature gradient invariant. By the mapping which

corresponds to eq (20) we get the structure of the ideal state though the

lattice is not free of elastic strains.

Tearing processes are in a one-to-one correspondence to naturalization

processes. Therefore as a consequence of the difference of the natural

and the ideal state the lattice-connexion V and the elastic metric a do not

naturalize simultaneously in the case of nonmechanical stresses. From
this follows [3, 5]:

The lattice-connexion is non-metric relative to the elastic metric 3
, i.e.,

Qktj * 0. (26)

The tensor Q may be regarded as source-function for nonmechanical

internal stresses. It is invariant with respect to physically unessential

rotations of the natural state.

Because of the fact that the lattice metric b and the lattice-connexion T

are both referred to the ideal state, they naturalize simultaneously, which

means that F is metric with respect to b:

r

Vkbij= 0. (27)

From (10), (15), (27) we obtain

r

QkU =-2Vkqij . (28)

The tensor Q may be determined from experimental data.

III. Examples

(a) In the case of thermal stresses we have a quasiplastic, isotropic

change of length

d$-^dcr= (\+f(T))d%\ (29)

where f{T) is the isotropic thermal dilatation coefficient (T= tempera-

ture). From (29) we obtain

dcr2-d$ 2 = ((l+/) 2 -l)d3 2
, (30)

3 Bilby et al. came to the same result by other considerations [6].
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and together with (11), (2), (28) we finally get

Quj =-2^j(V,T)'a ij (31)

(Va = Euclidean derivative in the final state). This result is exact. It

should be remarked that the elastic strain e is included in the elastic

metric a.

(b) We consider a spontaneously magnetized cubic crystal. Magneto-

strictive strains are assumed to be very small so that to a good approxima-

tion the crystal remains cubic in the final state. If the coordinate system

x k of the final state is Cartesian, the lattice-connexion 1 differs not very

much from zero. If in addition the coordinate system coincides with the

cubic axis we obtain in good approximation for the quasi-plastic strain

tensor [7]

/\0 (oif
—

1/3) symm. \

q=Ui«ia2 X0 (o£-l/3) (32)

\A.iaia3 A,

X

0 (o|— 1/3)/

Xo, A-i are material constants and a, the direction cosines of the magnetiza-

tion vector relative to the cubic axes.

In linear approximation we get

Qkij =- 2 ( (X0 - X, ) 8ij+ X, )dk (aiaj\ (33)

— no summation —

From (31) and (33) we see that thermal or magnetostrictive stresses

vanish if we have a constant temperature or a homogeneous magnetization

in the crystal.

(c) Stresses caused by extramatter are another example for the theory

of nonmetric lattice-connexions [1, 5, 6]. Especially, point defects con-

stitute extramatter.

IV. Elasticity Theory of Nonmechanical Stresses in Crystals

Using Nonmetric Lattice-Connexions

If we confine ourselves to pure nonmechanical stresses the crystal

lattice in the final state is topologically undisturbed. Therefore the lattice-

connexion T is free of torsion,.

Si/^IW^O, (34)

and free of Riemann-Christoffel curvature:

IV = 2(d irjkl+rimrjk»>) [ij] =o. (35)
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Equations (34) and (35) are the compatibility conditions of the problem.

Equation (35) may be brought into the form

ry*i = r^mo*i=9. (36)

By means of the identities for the Riemann-Christoffel curvature tensor 4

only six equations are left. Using the formula 5

Iy*= 1/2 a '"(diajm +djaim -dmaij ) + 1/2 akm (Qm +Qjim-Qmij) (37)

and eq (5) we get these equations in terms of the elastic strain tensor: 6

(-e""nc^VnVfemA-+l/2€»l'V/AV Me/A-m)(y)

= l/2e»»"€^MH^/(0) . (38)

Of these equations only three equations are independent because of the

Bianchi-identity for the Riemann-Christoffel curvature tensor.4

The left-hand side of (38) consists only of linear terms. The vanishing

of this expression generalizes deSaint Venant's compatibility conditions

to the present problem.

The term qnmik in (38) includes all nonlinear effects:

qnmlk= Hnkp(Hm iq+Qmlg
)aP<*, (39)

where Hyk is the total covariant hyperdeformation tensor:

H iJk = Hifamk (40)

(see eq (12)).

Equations (37) and (14) lead to the following expression for the structure

curvature:

Kjmn = 2 \/[ m€n]i — Q[m),}i. (41)

The general decomposition of a connexion T with regard to a metric a 5

IV"= ! a km (diajm + d jd im — d maij) — akm (S imj — S mJi+ Sjim )

+ la k >»(Q ij >n + Qji»>-Q»»j), (42)

4
[8] p. 144 ff.

"
5

[8] p. 132.

K V = Euclidean derivative, e'
jk permutation symbol.
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S ijk= Sifamk ,
(43)

allows one to show that eqs (41) are equivalent to the torsion part (34) of the

compatibility conditions. Therefore we use (41) as the nine compatibility

conditions concerning torsion.

Equations (38) and (41) together with the equations of equilibrium and

the material constitutive equations constitute the basic equations for the

elastic problem.

If we include couple stresses into the consideration the energy-density-

function depends on the elastic strain e = (e'ij) and on the structure

curvature K= (Kimn ).

From (38) and (41) we obtain Q ^ 0 as a necessary condition for the

existence of nonmechanical internal stresses. For Q = 0 eqs (38) and (41)

become compatibility conditions of a compatible deformed medium.

V. Quasidislocation and Quasidisclination Theory

Nonmechanical internal stresses may be included in a linear disloca-

0
tion theory if one defines from the quasi-plastic distorsion ft the tensor of

quasidislocation density 7

0 Q
a = tot P . (44)

° °

P contains the quasi-plastic strain tensor e as well as a quasi-plastic

rotation w. However, the tensor co is physically undertermined. In general

one avoids this difficulty by omitting the quasi-plastic rotation and defining

the quasi-dislocation density by

Q Q
a=rot €. (45)

In this paper we generalize the idea of quasidislocations. To this aim

we take the nonlinear theory of crystal dislocations as a guide [5].

For real dislocations the lattice-connexion naturalizes simultaneously

with the elastic metric [1, 3]. In comparison with the elastic metric the

7
[9] eq 1.48.
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lattice-connexion contains only the structure curvature K as denned in

(14) as an additional information. 8 The hyperstrain E, denned on (13),

brings no additional information compared with a.

In order to join the theory of nonmechanical stresses to the dislocation

theory we define in the final state for the case of nonmechanical stresses

an afnne elastic connexion y= (y,/ ) such that

(1) y naturalizes simultaneously with the elastic metric a,

(2) gives via its connected hyperdeformation tensor

(46)

a curvature tensor

kimn — himkaknl[mn] (47)

which equals the structure curvature K of the lattice-connexion:

kimn Kimn- (48)

The connexion y exists uniquely. Because of condition 1 it is a metric

connexion with respect to a, i.e.,

yij
k = -^akm {d id j m + d jd i m — d ma ij)—akm (si m )

— s m ji + s j m i ) (49)

(see (42)). We call its torsion tensor

Sijk= y[ijfaPk (50)

0 Q
the quasiplastic torsion tensor a= (oiijk). From (48), (49) and (37) we obtain

Equation (28) leads to

_ 1 n (51)

otijk= V[/qfj]A. (52)

which is the nonlinear generalization of (45).

Lowering of the index with the elastic metric is important.

369-713 OL - 71 - Vol I - 43
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In general, the Riemann-Christoffel curvature tensor of the elastic

connexion does not vanish. Together with (36) and

yijk= yij
mamk , (53)

we obtain

yijk
mam i

= yijk i
= 2(diyjki-ynpyjk Qa^)[ U]

=
Q

Oijki (54)

(55)

is the tensor of the quasi-disclination density.

Equations (54) are completely equivalent to the compatibility conditions

(36), whereas the compatibility conditions (41) read in terms of the quasi-

plastic torsion

Q Q Q
K-imn= kimn = 2X7

[

me n ]i {otimn OLmni OLnim) (56)

Both the tensors of quasi-disclination density and of quasi-plastic

torsion are invariant with respect to physically unessential rotations of

the natural state. Because of the identities for the Riemann-Christoffel

curvature tensor they are intimately connected. Therefore the pair of
0 Q

tensors a, 0 as a whole is the nonlinear generalization of the quasi-

dislocation density in linear theory.

Q 0
The tensors a and 0 are in close analogy to crystal dislocations

and crystal disclinations [10, 11, 4]. Especially a is analogous to the total

torsion of dislocation-disclination-theory, where total torsion may be de-
0

composed into dislocation-torsion and disclination-torsion. 0 corresponds

to real disclination density.

For this reason we reserve the terminology quasi-dislocation density

0 0
for the tensor a to those special cases, where Q vanishes.

The quasi-disclination density describes exclusively nonlinear effects.

It disappears in the special case of thermal stresses as can easily be shown

from (55) and (31). For magnetostrictive stresses it does not vanish. In

linear approximation only the quasi-dislocation density is left over.

Generalizing the theory by adding real dislocations and disclinations we
easily obtain the following statements: In general nonmechanical internal
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stresses cannot be eliminated solely by a dislocation movement. An addi-

tional distribution of crystal disclinations is necessary [5].

In linear approximation dislocation movements suffice to eliminate non-

mechanical stresses. The same is true within the nonlinear theory in the

special case of thermal stresses.

These facts concerning the relation between real dislocation-disclina-

tion arrangements and nonmechanical stresses arise from the additive

superposition of real and quasi-disclination density and of real total and

quasiplastic torsion. The elastic connexion y is constructed quite in the

same way as in the case where real dislocations and disclinations are

absent.
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A brief review of compatible and incompatible elasticity theory is

given. It is shown how dislocation theory was developed from classical

compatible elasticity. Then disclination theory is developed from disloca-

tion theory in an analogous way. The disclination and dislocation density

tensors are defined from the plastic deformation. The total deformation

satisfies the classical condition of compatibility. By combining these two

concepts the geometric basic laws or field equations are found, which re-

late the elastic deformation to the defect content. The contortion or Nye
curvature tensor is found to be a useful equivalent for the dislocation den-

sity. Weingarten's theorem motivates the generalization of the Burgers

vector and the definition of the analogous rotation vector of disclinations.

Finally the dualism between the geometry of disclination theory and the

statics of couple-stress theory, as well as the relation of disclination

theory to "motor calculus" are pointed out.

Key words: Burgers vector; compatibility; continuum; contortion; Cosserat; couple-

stress; defect; deformation; disclination; dislocation; dualism; elasticity; incompatibility:

motor calculus; plasticity.

I. Introduction

This work was motivated by recent interest in disclinations — for

example, Nabarro [1] who has discussed some of their crystallographic

aspects and Anthony et al. [2] who have observed such defects. Usually

this type of defect has been ignored in the literature and no theory was

available for it until Schaefer's recent papers [3]. However, Schaefer

presents his results in the framework of the exterior calculus, into which

he has incorporated his motor analysis [4]. Furthermore, he applies

this to the Cosserat continuum and disclinations are then discussed as

a special example of this general theory. This approach has not been

helpful for the dislocation theorists as Schaefer [5] himself recognizes:

"On the question of whether or when [the disclination density] vanishes

Kiindam<-ntal \s,., < ts of Dislocation Theory, .1. A. Simmons, R. de Wit, and H. Bullough,

K.ls. (Nat. hur. Stand. (U.S.), Spec. I'ubl. 317. 1, 1970).
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no clarity seems to exist in dislocation theory." This paper treats the theory

from a more elementary and direct point of view.

Disclination theory is developed from dislocation theory in a way

quite analogous to the way dislocation theory is developed from com-

patible classical elasticity theory by Kroner [6]. Actually it is a combined

disclination and dislocation theory. In the same sense Kroner's theory

is a combined compatible and incompatible theory, i.e., it is integrable

in the rotation but not integrable in the displacement. The transition to

disclination theory consists simply in the extension to non-integrable

rotations. In this transition we find that many equations from dislocation

theory generalize into pairs of equations in disclination theory.

The general approach is the same as that of Kroner. The plastic deforma-

tion is arbitrary and defines the defect content of the body. The total

deformation satisfies the classical compatibility conditions for a body that

undergoes an elasto-plastic deformation without breaking. By combining

these two concepts we find the geometric basic laws or field equations

that relate the elastic deformation to the defect content.

Section II reviews the classical compatibility conditions and section III

Weingarten's theorem for multiply-connected bodies. Section IV reviews

incompatible theory without specifying the nature of the defects. Section V
reviews classical dislocation theory. Section VI develops disclination

theory and section VII shows how Weingarten's theorem motivates the

definition of the Burgers vector and the analogous rotation vector for

disclinations. Section VIII shows the dualism between geometry and

statics in defect theory, and in particular between disclination and couple-

stress theory. Section IX shows the relation to Schaefer's new motor

analysis.

II. Review of Compatible Theory

If a continuous simply-connected body undergoes an elastic deformation,

then this deformation satisfies the classical conditions of compatibility.

These conditions are a consequence of the fact that a displacement vector

function u can be defined for every point of the continuous body; hence,

they are integrability conditions. In this section we find the compatibility

conditions for the important field variables, namely the distortion /J, the

strain €, the rotation co, and the bend-twist #c
1 We also discuss what these

compatibility conditions, in turn, imply about the displacement.

(1) The distortion is defined:

j3=gradu^Vu (2.1)

1 The dyadic or symbolic notation is used for the sake of compactness. See, for example,
Nadeau [7], Chapter One. The whole paper could equally well have been written in the index

notation.
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Assuming the existence of u, then this definition implies that /3 satisfies

the necessary condition:

curl ^VXj8-0, (2.2)

which is the compatibility condition for /3. Conversely, by potential theory

(Nadeau [7], p. 20), condition (2.2) is sufficient to assure the existence of

a single-valued continuous solution of (2.1) for u, up to a constant transla-

tion u0 .

(b) The strain is defined as the symmetric part of ft:

€=def u= 1/2 (Vu + uV), (2.3)

and the rotation tensor as the antisymmetric part of /S:

co = 1/2 (Vu-uV), (2.4)

so that

P=e+<o. (2.5)

For the antisymmetric tensor a>, we can equivalently use the rotation vector

defined by (see appendix):

w = l/2(co>. (2.6)

Then the definition equivalent to (2.4) is

co=l/2VXu, (2.7)

which can be verified by substituting (2.4) into (2.6). Now, the definitions

(2.3) and (2.7) imply that € and o> satisfy the necessary conditions:

inc € = Vx € xV = 0, (2.8)

V •*>= <), (2.9)

which are compatibility conditions for € and co.

These conditions are also implied by (2.2). To show this, write (2.2)

V x e + 5V-aT- wV = 0 (2.10)
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by (2.5), (2.6), and (A. 6), where 8 is the idemfactor or unit dyadic. The
trace of this expression gives (2.9). Substituting (2.9) into (2.10) we have:

Vx €-wV = 0. (2.11a)

For convenience, we also note that the transpose of this equation is

-€XV-Vw = 0. (2.11b)

Conditions (2.8) and (2.9) now follow directly from these equations by
taking the curl and the trace. From the above derivation we also see that

(2.11) is completely equivalent with (2.10) and hence with (2.2).

We now want to consider the converse problem and ask what is implied

by the compatibility conditions (2.8) and (2.9). We have seen that they

are necessary for the existence of the displacement, but are they also

sufficient? It will be shown that the answer to this is no (even though we
are only considering a simply-connected body here).

Consider first condition (2.8). By potential theory (Fung [8], p. 99), this

condition is sufficient to assure the existence of a single-valued continuous

solution of (2.3) for u, up to a rigid motion (u 0 + ft>o X r). However, since

we are not assuming that (2.2) is satisfied, this solution u of (2.3) may not

represent the displacement (whether or not (2.9) holds). Its existence

only implies that

/3=l/2(Vu + uV)+o>
(2.12)

by (2.5), which is not equivalent to (2.1), unless (2.4) or (2.7) is also satis-

fied by the same solution u. So (2.8) is a less restrictive condition than

(2.2), for it puts no limitations on o>. But if now the condition (2.2) in the

form (2.11a) is also imposed, we have

l/2VXu-w V = 0 (2.13)

from (2.3). This condition implies that for this u (2.7) is also satisfied

by To. up to a constant rotation o>o, which can be determined fromu and co.

Hence, u now does represent the displacement, up to the rigid motion, and

for this u (2.1) is satisfied by /J, up to the constant rotation o>o. So by

redefining the total displacement to be (u + u0 + too X r) we obtain (2.1)

and thus an alternate method of solution to that of subsection (a) above.

On the other hand, by potential theory (Phillips [9] , p. 104), condition

(2.9) is sufficient to assure the existence of a single-valued continuous
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solution of (2.7) for u, up to a potential deformation, which is defined by

a displacement V<f>. Again, this solution may not be the displacement (this

time whether or not (2.8) holds). We can only write

0 = €+l/2(Vu-uV), (2.14)

which is not equivalent to (2.1), unless (2.3) is also satisfied. But once more,

if condition (2.11a) is also imposed, we have

Vx ( € -l/2uV)=0 (2 .i5)

from (2.7). This condition implies that for this u (2.3) is satisfied by e, up

to a potential deformation VV0, which can be determined from u and €.

Hence, u now does represent the displacement, up to the potential

deformation, and for this u (2.1) is satisfied by j8, except for the potential

deformation VVc/>. By now redefining the displacement (u + Vc/>) we
again arrive at the solution of subsection (a).

We may therefore remark that conditions (2.8) and (2.9) by themselves

are not sufficient to assure the existence of a displacement function u. 2

This point is usually not made by classical elasticity texts in the discussion

of the compatibility conditions, because of the assumption that a displace-

ment function exists.

(c) The bend-twist 3 is defined:

k=Vco. (2.16)

This definition leads to the first compatibility condition for k:

VXk = 0. (2.17)

The second compatibility condition for k is found from (2.16) and (2.11b):

k= -€XV. (2.18)

2 This is illustrated by an example from incompatible theory: For a constant distribution

of edge dislocations, the displacement u does not exist, since (2.2) is violated (c.f. 5.6). but

(2.8) and (2.9) are satisfied by the strain €(=0) and the rotation a>(=r K. with K= const,

and K= 0).

3 The term "bend-twist" is newly coined in this paper. The diagonal components described

a twisting and the off-diagonal ones a bending. Mindlin and Tiersten [10] call it the curvature-

twist and Koiter [11] the torsion-flexure. The elastic bend-twist is also frequently called the

lattice curvature. The new term avoids possible confusion with the Riemann-Christoffel

curvature and the Cartan torsion, which occur in the non-Riemannian formulation of the

theory.



656 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

Note that (2.18) with (2.17) implies (2.8). Again, condition (2.17) is sufficient

to assure the existence of a single-valued continuous solution of (2.16)

for the rotation to, up to a constant too. If in addition condition (2.18) is

also imposed, then (2.11b) follows. This implies that for this to there

exists a single-valued continuous solution of (2.3) and (2.7) for u, up to a

constant translation uo. For this u (2.1) is satisfied by j8, up to the constant

rotation to () . By redefining the rotation (co + oio) and the displacement

(u+ Uo+ fi)oXr) we arrive at the solution of subsection (a) once more.

The third compatibility condition for k is the vanishing of its trace

which follows from (2.18). Note that (2.19) with (2.17) implies (2.9).

So far we have only shown the existence of to and u for compatible

deformation of a simply-connected body. Actually, it is possible to give

explicit expressions for these quantities. Suppose the fields k and € are

known and satisfy the conditions (2.17), (2.18), and (2.19). Then it is only

necessary to know to and u at some particular point r0 to find their spatial

dependence. The expressions can be derived as follows:

K = \ V K=0. (2.19)

or

(2.20)

Uo+ [dr'-c'-diHS'X (r-r')}+t£o'X (r-r')]

or

u(r) Uo+ 0>o X
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These results are single-valued if the line integrals are independent of

path, or if they vanish for every closed C curve in the body. That this is

so follows from Stokes' theorem with (2.17), (2.18), and (2.19):

= 0 (2.22)

j>
dr'-le' + K' x (r- r')]=j dS'-V' X [c' + k X (r-r')]

=j dS'-[V'Xc'-<V'XK') X (r-r')-f 8k'-'k]

= 0. (2.23)

It is now easily verified that (2.20) and (2.21) satisfy (2.1), (2.3), (2.4)

or (2.7). (2.9). (2.11), and (2.16).

In classical or compatible elasticity the elastic deformation of a simply-

connected body satisfies all the equations of this section. The next section

shows how these results may be modified for a multiply-connected body.

The subsequent sections will then show that for defect or incompatible

elasticity the elastic compatibility conditions are usually violated. How-

ever, for a simply-connected body that undergoes an elasto-plastic defor-

mation without breaking, the total deformation will still be compatible

and satisfy all the results of this section.

III. Multiply-Connected Bodies and Weingarten's Theorem

Consider a multiply-connected body for the purposes of this section

only. We shall then define it as a compatible body if the compatibility

conditions are satisfied.

What do these conditions now imply about the rotation and displacement

functions, such as given by (2.20) and (2.21)? It is no longer possible to

prove that they are single-valued by using Stokes' theorem as in (2.22) and

(2.23) if C is irreducible (that is, it cannot be deformed continuously

into a point without leaving the body). We shall now investigate

the meaning of Oi and u under these conditions. Let Co be a closed curve

inside the body, which starts and ends at the point r0 , see figure 1. Then,

if Co is irreducible. a> and u may not return to their original values on

following this circuit around. The changes are given by setting r= r0 in

(2.20) and (2.21):

[o>] =Cp dr' • #c\
J C0

(3.1)



658 FUNDAMENTAL ASPECTS OF DISLOCATION THEORY

These expressions can be rewritten as follows

[*] = n, (3-3)

[u]=b + nxro, (3.4)

where we have defined the constants

dv' -k\ (3.5)

b=<j> dr' - [e'-K'Xr'], (3.6)

and where C is any curve reconcilable to Co (that is, it can be deformed

continuously into Co without leaving the body). Proof: ForC= Co the result

is obvious. Otherwise there exists a surface S inside the body bounded by

both C and Co (fig. 1), to which we can apply Stokes' theorem. Then by

(2.17), (2.18), and (2.19) it easily follows that

ll(C) = Il(Co) andb(C)=b(C0 ).
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For a simply-connected body every circuit is reducible, so that C can

be deformed into a point and ft=b = 0 or [o>J = [u]=0, as shown in

section II for well-defined single-valued functions ofand u. For a multiply-

connected body where C encircles a hole it is irreducible so that 11 and b
do not necessarily vanish, but are constant for all reconcilable curves.

In this case we can still regard co and u as functions, but they could

possibly be multiple-valued.

The relations (3.3) and (3.4) embody Weingartens Theorem: On following

around an irreducible circuit in a multiply-connected body satisfying the

classical compatibility conditions, the rotation and displacement change

by an amount that would be possible for a rigid body.

Further discussions of Weingarten's theorem are given by Nabarro [1]

and Kessel [12]. It may be taken as the point of departure for a theory

of discrete defects, where the defect region, which does not satisfy the

compatibility conditions, is cut out of the body and we are left with a

multiply-connected but compatible body. This approach is not pursued

further in this paper. The next sections treat an alternate approach, where

the defects are distributed continuously in a simply-connected but

incompatible body.

If a simply connected body undergoes an arbitrary plastic deformation,

then this deformation does not necessarily satisfy the compatibility

conditions. If the plastic strain is prescribed, then this allows us to

define the incompatibility tensor:

For a compatible plastic deformation rj^O, so that r) measures the

deviation from compatibility. The fundamental meaning of this equation

is that an arbitrary plastic strain leads to incompatibility, which is just

another word for defects. The continuity condition

follows directly from (4.1).

Equation (4.1) is not useful for solving problems because e p is not a

state quantity, i.e., it cannot be determined from the state of the body.

But the elastic strain 4

IV. Review of Incompatible Theory

i|3=-v x e
/J x V. (4.1)

V • T}= 0 (4.2)

T €P (4.3)

4 The superscript E is dropped from the elastic quantities, such as strain eE , distortion

(3
E

, rotations co
h and o>'\ and bend-twist KE.
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is a state quantity. Here € 7
is the total strain. We now obtain the geometric

basic law or field equation for it):

VXeXV = T) (4.4)

from (4.3), (2.8) applied to € T , and (4.1). The geometric meaning of this

equation is that if defects are present with a distribution given by rj, then

elastic strain e is produced according to this law in order to insure the

continuity of matter. Consequently this equation is the mathematical

formulation of the statement that incompatibility is the source of elastic

strain.

The basic problem of the linear static continuum theory of defects is

defined by eq (4.4), together with the equilibrium equation for the stress,

and the constitutive law between stress and strain. This problem has

been treated by Kroner [6]. However, that treatment does not indicate

the nature of the defects that contribute to 17.

V. Review of Dislocation Theory

If, in addition to the plastic strain e'\ the plastic rotation o)
p

is also

prescribed, then the defects may be identified as dislocations. In this case

we can say, alternatively, that the plastic distortion

Pp=€p +a>p
(5.1)

is prescribed arbitrarily, where e r and a*
1 ' are the symmetric and anti-

symmetric parts of p r
.

There are two ways of formulating dislocation theory, namely in terms

of the dislocation density tensor, a, or the contortion tensor, K.

(a) The dislocation density is defined:

a = -VX/3'\ (5.2)

This definition is motivated by (2.1) and (2.2). For a compatible plastic

deformation a=0, so that a gives a measure of the plastic incompati-

bility, i.e., a contributes to ij. In fact, we see that

K|=(aXV) s
(5.3)

from (4.1) and (5.2), where the superscript S stands for the symmetric

part of the quantity in parentheses. The fundamental meaning of (5.2) is

that an arbitrary plastic distortion leads to dislocations. The continuity

condition

V-a = 0 (5.4)
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follows directly from (5.2). It implies that dislocations do not end inside

the body. Now the elastic distortion is given by

P= P'-p' (5.5)

and the geometric basic law or field equation for a:

Vx/3=« (5.6)

is obtained from (5.5), (2.2) applied to ft
T

, and (5.2). The geometric mean-

ing of this equation is that for a dislocation distribution, a, the elastic dis-

tortion, /}, is produced according to this law in order to insure the conti-

nuity of matter. Consequently this equation shows that dislocations are

the source of elastic distortion,

(b) The contortion 5
is defined:

K^-6''xV-Vw''. (5.7)

This definition is motivated by (2.11b). For a compatible plastic deforma-

tion K=0, so that K gives a measure of incompatibility. In fact

7j = VxK (5.8)

from (4.1) and (5.7). The fundamental meaning of (5.7) is that an arbitrary

plastic strain and rotation leads to contortion. But the strain and rotation

define the distortion, eq (5.1). Therefore K must be related to a. To show

this, first note that the transpose and trace of K are

K=VXe /'-w /V, (5.9a)

K=-V-w'' (5.9b)

from (5.7). Now (5.2) can be written

a= -VXe''-5V-w /'+w /,V (5.10a)

by (5.1) and (A.6). The trace is

«=-2V-w /\ (5.10b)

5 The use of the term "contortion" has been recommended by Kroner [13]. It is usually

known as the Nye curvature. Note that the contortion, which is a source quantity, must

be distinguished from the bend-twist, which is a field quantity.
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Comparing (5.9) and (5.10) we see that

a=dK-lL, (5.11a)

K=l/2 8a- a. (5> Hb)

Now the elastic rotation is given by

w = ~a>
T -~co'' (5.12)

and the geometric basic law or field equation for K

exV + Vco^K (5.13)

is obtained from (4.3), (5.12), (2.11b) applied to the total deformation,

and (5.7). The geometric meaning and interpretation of this equation is

similar to that for (5.6). Of course, (5.13) is equivalent to (5.6). This can

be shown by noting first that

0= € + w (5.14)

by (5.5), (2.5) applied to /F, (5.1), (4.3), and (5.12). Then (5.6) can also be

written

VX€ + SV &>-"toV = a (5.15)

by (A.6). We see that this is equivalent to (5.13) by (5.11).

In this section we can also define the plastic bend-twist

k'^Vw''. (5.16)

Defining the elastic bend-twist by

K=K T-K l
(5.17)

we also have

k = V<o (5.18)

from (2.16) applied to~(o r, (5.16), and (5.12). Then (5.7), (5.9), (5.10), (5.13),

and (5.15) could equally well have been written in terms of these bend-

twists. Note that (5.6) implies that the elastic displacement is undefined

in this section, i.e., dr • /} need not be integrable, though cj is well-defined.
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VI. Disclination Theory

Since the elastic rotation of section V is a rigid body motion, it is not

a true state quantity, but rather its variation is related to the state of the

body. This suggests that the elastic bend-twist k is the proper state quan-

tity, together with the elastic strain €. Then the elastic rotation is left

undefined, a situation analogous to that for the elastic displacement in

section V.

Similarly, to describe the defect content of the body, we leave the

plastic rotation undefined, but prescribe arbitrarily the plastic bend-twist

k p
', together with the plastic strain € p

. Then the results of section II for

the total deformation and section IV remain valid, but those of section V
are modified as we shall see below.

In the transition from classical elasticity to dislocation theory, (2.2)

motivated the definition (5.2). Similarly, in the transition from dislocation

to disclination theory, (2.17) motivates the following definition of the

disclination density:

N-Vx K p
. (6.1)

When only dislocations are present, then 0= 0 from (5.16), so that 0

measures the deviation of the defects from pure dislocations. The funda-

mental meaning of this equation is that an arbitrary plastic bend-twist

leads to disclinations. The continuity condition for 0:

V-0 = O (6.2)

follows directly from (6.1). It implies that disclinations do not end inside

the body.

Now with arbitrarily prescribed e p and k p there may also be dislocations

present. As in section V they can be described either by the dislocation

density tensor ot or the contortion tensor K. However, the definitions of

these quantities in section V are no longer applicable. But the substitution

of (5.16) into (5.10a) and (5.7) suggests the following definitions:

a = -V X €p -3kp+kp
, (6.3)

K = -ep x V-k 7 '. (6.4)

These definitions imply that, when the disclination density vanishes, the

results of this section will reduce to those of section V; for when 0=0
(6.1) is essentially equivalent to (5.16) as we saw in section lie. We see

that a and K are still related by (5.11):

a=8K-K, (6.5a)

369-713 OL - 71 - Vol I - 44
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K= 1125a -a. (6.5b)

For a compatible plastic deformation we know that a=K= 0, so that

a and K still give a measure of incompatibility. In fact we can now see

how the dislocations and disclinations each contribute to the incompati-

bility:

rj= (ax V-0)-s'

(6.6)

=VxK-0 (6.7)

from (6.3), (6.4), (6.1), and (4.1). The fundamental meaning of (6.3) and

(6.4) now is that an arbitrary plastic strain and bend-twist leads to dis-

locations or contortion. The continuity condition for ol:

V-e*+20=O (6.8)

follows from (6.3), (6.1), and (A.7). We suggest that this equation im-

plies that dislocations can only end on disclinations, in which case the

disclination density 0 is asymmetric. However, K. H. Anthony has a

different interpretation for (6.8). (See the Discussion at the end of this

Conference Session and Panel on Intrinsic Properties of Dislocations.)

In terms of K the continuity condition reads

V£-K-V + 20=O (6.9)

by (6.5a). We now investigate the consistency of (6.6) and (6.7) with the

requirements on r) of symmetry, (4.1), and continuity, (4.2). The symmetry

of (6.6) is obvious and the continuity follows from (6.2), (A.8), and (6.8):

2V - rj= V •aXV-V-0-O-V
= V • «x V-2V x~0

= (V • a+20) XV

= 0.

The continuity of (6.7) follows immediately from (6.2) and the symmetry

from (A.7) and (6.9):

2^=<VxK>-2~0

=K • V —VK— 20

= 0.
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The geometric basic law or field equation for 0:

VXk=0 (6.10)

is found from (5.17), (6.1), and (2.17) applied to k 7
, and those for a and K:

V X €+8k-k=<x, (6.11)

€XV + k=K (6.12)

from (4.3), (5.17), (2.18) and (2.19) applied to the total deformation, (6.3),

and (6.4). When (5.18) holds we see that (6.10) vanishes, (6.11) reduces

to (5.15), and (6.12) reduces to (5.13). The geometric meaning of (6.10).

(6.11), and (6.12) is that for disclination and dislocation distributions given

by 0 and a or K elastic strain and bend-twist are produced according to

these laws to insure the continuity of matter. Consequently these equations

show that disclinations and dislocations are the sources of elastic strain

and bend-twist. Note that when disclinations are present the dislocations

are no longer the source of elastic distortion, which does not then exist.

VII. Rotation and Burgers Vectors

Weingarten's theorem, discussed in section III, is used to motivate the

definitions of the following quantities in an incompatible simply-connected

body: _^
ll^d) dr-K, (7.1

b =
<|>

dr-[e-KXr], (7.2)

where C is a closed curve called the Burgers circuit. These quantities can

be related to 6 and a by applying Stokes' theorem to any surface S inside

the body bounded by C:

-I

H
-L

dS-V x K
5

(7.3)

g?S-[V X €- (V X K ) X r+ 8k- k]

dS'[a-0Xr] (7.4)

by (6.10) and (6.11). We therefore have the following interpretation:

7t is the rotation vector of the disclinations crossing S and b is the general
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Burgers vector of the dislocations and disclinations crossing S. We know
that the diagonal and off-diagonal components of a correspond to the

screw and edge components of the dislocations. Equation (7.3) shows that

the diagonal components of 0 correspond to the wedge components of

the disclinations. It was suggested at this Conference to call the off-

diagonal components of 0 the twist components of the disclinations. 6

(See Panel on Intrinsic Properties of Dislocations.)

Now let S be a closed surface bounding the volume V. Then, applying

the divergence theorem:

= o,

b= | dW-(a-OXr)

=
j dV[V-a- (V-0) X r + 20]

= 0

by (6.2) and (6.8). So the continuity equations for 6 and a correspond to

conservation theorems fori! ana ».

VIII. Relation to Couple-Stress Theory

The dualism between the geometry and statics of defect theory has

been pointed out by Kondo [14]. The equilibrium equation for the stress

tensor o" is

V-cr=0, (8.1)

when no body forces are present. By potential theory we can therefore

find a tensor <}> such that

o-=Vx<£xV, (8.2)

for a symmetric stress, where </> is called the Beltrami stress function

tensor. It is seen that (8.1) and (8.2) are dual to (4.2) and (4.4). The con-

nection between geometry and statics is provided by Hookes' law

(T= c ; e (8.3)

in classical elasticity. These results are summarized in table 1.

8 Nabarro [1] calls them screw and edge disclinations. respectively.
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Table 1. Dualism between geometry and statics of defect theory
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Geometry Statics

(T

e

V • TJ= 0 V • €T=0
V x ex V = rj cr=V x (f>x V

Relation between geometry and statics

cr—c: e

An alternative and more detailed dualism exists between the geom-

etry of disclination theory and the statics of couple-stress theory. 7 In

addition to (8.1) there is then an equilibrium equation for the couple-

stress tensor fJL

V-/* + 2cr= 0, (8.4)

when no body-couples are present. Now cr is no longer necessarily sym-

metric. By potential theory the pair (8.1) and (8.4) again assures the

existence of two tensors F and G, such that

a=V XF,

fji
= V XG + 8F-F,

(8.5)

(8.6)

where F and G are called the Giinther stress functions tensors [15]. Equa-

tions (8.1), (8.4), (8.5), and (8.6) are now dual to (6.2), (6.8), (6.10), and (6.11).

This dualism suggests the following connection between the geometry of

disclination theory and the statics of couple-stress theory:

cr=d:K+c:e. (8.7)

fjL=a:K+b:e. (8.8)

These results are summarized in table 2.

7A simple derivation of couple-stress theory is given by Mindlin and Tiersten [10].
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Table 2. Dualism between geometry of

disclination theory and statics of couple-

stress theory.

Geometry Statics

e <j

a M
K F
€ G

V • 0 = 0 V • er= 0

V-a + 20 = O V -/m + 2o-= 0

Vxk= 0 o-=VxF
„

V Xe + 8K-K=a M = VxG + SF-F

Relation between geometry and statics

<T= d : k + c : €

fi — a : k + b : €

The constitutive equations (8.7) and (8.8) are more general than those

for compatible couple-stress theory as given by Mindlin and Tiersten [10].

This is because incompatible couple-stress theory no longer has the

restriction that k vanishes, as can be seen from (6.11) or (6.12). However,

they are a special case of those for the Cosserat-continuum as given by

Kessel [16], because € is symmetric. Disclination theory is an incompatible

constrained Cosserat theory in Kessel's terminology, or a theory of the

incompatible pseudo-Cosserat-continuum in Schaefer's words [5], or an

incompatible "indeterminate" couple stress theory according to Eringen

[17]. This suggests that the present theory could easily be extended into

an incompatible Cosserat theory by generalizing /cand einto the Cosserat

deformation tensors.

Kroner [18] has considered the dualism from a somewhat different point

of view. Instead of the Gunther stress function tensors he uses the stress

functions

iff =1/25/1,-/*, (8.9)

X=GS
, (8.10)

dual to K and €. Then by eliminating F (8.5) and (8.6) can also be written

cr=- V x x xV + Vxi)» (8.11)

^ = Si// - \fj. (8.12)



DE WIT 669

which are dual to (6.7) with (4.4) and (6.5a). However this dualism suggests

different constitutive equations:

<r = </:K + c:€, (8.13)

H = a:K+ b:e, (8.14)

which Kroner prefers. These results are summarized in table 3.

TABLE 3. Dualism between geometry of

disclination theory and statics of couple-

stress theory, according to Kroner

Geometry Statics

e (T

a
K
e X

0 =-Vx €xV+Vxk cr=-VxxxV+Vxi/f

a=8K-k
fj.
= 84j — i)j

Relation between geometry and statics

<r = d: K + c : e

H= a:K+b:e

These dualisms show how an understanding of the geometry of defects

may provide an insight into the statics of continuum mechanics. For

example, Kondo [14] has reduced the study of many physical phenomena,

such as yielding, to a study of geometry in Schaefer-space. The dualisms

also explain the new terminology, such as dual dislocations for couple-

stresses.

IX. Relation to Motor Calculus

Note that b is not invariant under a coordinate translation. If a new

origin of coordinates, 0', is chosen whose position is, rc , with respect to

the old system, 0, then the new radius vector, r', is related to the old, r, by

r = r rr . (9.1)
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We now find

iv =n (9.2)

b' = b+axiv (9.3)

either from (7.1) and (7.2) or from (7.3) and (7.4). A pair of finite vectors

that behaves this way is called a motor, and the motor algebra was de-

veloped by von Mises [19] more than forty years ago to describe the

motion of rigid bodies.

Schaefer [4,3] recently made this into a motor analysis by extending

the meaning of the V-operator when it acts on an infinitesimal motor

(V,W) as follows

V(wH?W + Vx 8^ (9 '4 >

which is suggested by (9.2) and (9.3). This relation gives the gradient

of a motor. By inserting a dot or a cross it also defines the divergence

and curl,

v '(wH?:w + vx 8)-

These relations were also assumed to hold for a higher rank tensor motor.

Kessel [20] has used this approach to obtain special results for the Cosserat

continuum. In the present paper we see that this formulation simplifies

many pairs of equations as follows

V-(^=0, (6.2,8)
a

Vx[ K
=(

v
|

(6.10,11)
€/ \at

V-(°")=0, (8.1,4)
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(8.7.8)

(8.5,6)

It is next interesting to note that these equations, except for (8.5,6),

are identical in form to those for Kroner's [6] classical dislocation theory,

i.e., (5.2), (5.4). (5.6), (8.1), and (8.3). Schaefer has noted this result in

the non-Riemannian formulation of the theory. In this formulation of

classical dislocation theory a becomes equivalent to the Cartan torsion

in a three-dimensional space with distant parallelism. Schaefer [3]

generalizes this concept to disclination theory by making ( 0, a) equivalent

to the Cartan torsion motor in a six-dimensional motor space with distant

parallelism. 8

We've given a short review of compatible, incompatible, and disloca-

tion theory. Then we showed that disclination theory is a logical step

in the extension of the continuum theory of defects. In this transition we
found that many equations from dislocation theory generalize into pairs

of equations in disclination theory. We found that the contortion K
can be used as an alternative description for the dislocation density

a when disclinations are present. Weingarten's theorem motivates the

generalization of the Burgers vector b and the definition of the analogous

rotation vector CI for disclinations. We have pointed out the dualism

between the geometry of disclinations and the statics of couple-stress

theory, which could be a useful guideline for further research. We have

also pointed out the relation to motor calculus, which may be another

direction for future research.

A further step in the extension of the theory of defects might be the

introduction of the continuum analog of point defects. These could be

represented either by Eshelby's [21] "stress-free strain" e T or Kroupa's

[22] dislocation loop density y. It would be interesting to see how this

would generalize the results of dislocation theory. For example, it is

expected at first sight that (6.6) and (6.7) would become

in the linear formulation of the theory.

8 Another non-Riemannian formulation of disclination theory is to make a and 6 equivalent

to the Cartan torsion and Riemann-Christoffel curvature in a three-dimensional space. For

non-vanishing 0 there is. then, no distant parallelism.

X. Summary and Discussion

—

>

Tj=(VXyXV + aXV-0) 5

=-VXe r X V + VXk-0
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XI. Appendix

We derive the three identities for dyadics that are used in this paper

by specializing to Cartesian components. See Nadeau [7] for details.

The rotation and curl of a tensor t are defined by:

(r)^eijkTijSLk , (A.l)

V X T= SLi€ijkdjTki3ii, (A.2)

where eijk is the permutation symbol, a; the Cartesian base vector, and

the Einstein summation convention is used. Furthermore, the associated

rotation vector is defined:

?=1/2(t), (A.3)

or in index notation:

Tk =H2eijkTij. (A.4)

It follows that the antisymmetric part of T\j is

T
1j
= djkTk. (A. 5)

We now derive the first identity:

V X ta = ai€ijkdj€k imTm ai

—
( 8ndjm — 8im$jl ) jTmai

= SlidJT/aj— SkidfTiSij

5V-t-tV, (A.6)

where

5 = a,a,

is the idemfactor or unit dyadic.

The second identity is:

(V X t> =eum ejjkdfTk iam

— (8ij8„i k ~~ S/a-S/hj) djTk i a„i

= 6 jTkjak —djTkk3Lj

= t-V-Vt. (A.7)
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The third identity is:

2yx~r=2aieijkdjTk

= Saeijiid jCklmThn

— (8n8j„, — 8im8ji)siidjTim

= aid j-jj — SkjdjTji

= t-V-V-t. (A.8)
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Discussion on Papers by F. R. N. Nabarro, K. H.
Anthony, and R. de Wit.

MURA: Professor Nabarro, in your definition of disclinations you have to

introduce a vector field, otherwise you cannot define the disclinations.

The original definition of Volterra's rotational dislocation is given

without introducing the vector field. It appears to me that there are

several ways to define disclinations, and yours might be one of them, and

there could be others. This is a matter of definition of rotation. Do you

agree?

NABARRO: I agree entirely, and you have hit upon the weakness of what

I have done. It seems to me that I would have done better not to deal

with the vector field but to deal with the field of undirected lines,

because I have to use in this discussion the convention that I can cross

a line of constant misorientation and take no notice of it. The difficulty

with the Volterra definition is that it deals with the elastic distortion of a

body. It refers to an initial state of the body. Here we have not got an ini-

tial state, we have got a body as it is. I would add one further complica-

tion. One needs to distinguish, in the case of a surface carrying a pattern,

between the disclination of the pattern and the disclination of the sur-

face. In the case of the cross cap there is no disclination in the pattern

but there is in the surface underlying it.

MURA: I have another question for Dr. de Wit. In your theory can you ex-

press your total distortion at the sum of plastic distortion and elastic

distortion?

DE WIT: The distortion does not exist when there are disclinations.

MURA: Consider a twisted circular surface, as Professor Bollmann

discussed, which then has an edge type disclination around its boundary.

Now I can define the plastic distortion 1

(3 ze* = o> r 8 (z)H (R = r) and

define nicely the disclination line. So I don't understand why you can not

define the plastic distortion.

DE WIT: For a discrete disclination you can define the distortion away

from the disclination, but it would be multiple-valued in the same way

that for a discrete dislocation the displacement is multiple-valued.

1
co = constant rotation angle.

r = radius from the center of rotation

8 = Dirac delta function

H= Heavyside function

R = radius of the disclination loop

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317. I, 1970).
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MURA: I see. Thank you.

DE WIT: I have a question for Professor Nabarro. The reason I have a

whorl, here, on the top of my head is due to the furry ball theorem, but I

don't have two of them because my whole face is not covered with hair;

is that right?

NABARRO: May I quote from that great man, Dirac: "That is not a

question; it is a statement."

ANTHONY: Dr. de Wit, you mention in your paper that in certain cases

there is a possibility that disclinations become sources of dislocation

lines. This would be a very important physical feature. Can you give any

idea for visualizing this fact in terms of crystal lattice structures.

DE WIT: I have not worked this out. So I don't know yet what the sig-

nificance of this equation is. One should work out an example.

ANTHONY: May I give a short discussion of this effect: As I have pointed

out at the lUTAM-Symposium in 1967,2
I also believed in a possibility

that certain arrangements of disclination lines become sources of dislo-

cations. This opinion was based on the mathematical structure of con-

tinuum theory. But now I am convinced that this standpoint is wrong

because of the following facts: A disclination is characterized by a non-

absolute lattice parallelism, whereas dislocations always belong to an ab-

solute lattice parallelism. Now, if a certain disclination arrangement

defines the source distribution of a certain dislocation arrangement, the

disclination arrangement may be produced by adding the dislocations

successively, i.e. a non-absolute lattice parallelism is produced by a su-

perposition of absolute parallelisms. Obviously this is impossible. There-

fore disclinations can never be sources of dislocation lines.

BEN-ABRAHAM: I would like to cut into this discussion between Dr. de

Wit and Dr. Anthony. Dr. de Wit states a theorem that disclinations do

not end inside the crystal. The general formulation of this theorem is the

well-known Bianchi identity3 and the disclinations are the curvature in

mathematical language. Now on the right-hand side of this equation we
have a term which is essentially the product of curvature and torsion (i.e.

dislocations), so that this theorem just holds under a certain assumption.

On the other hand, I would like to answer Dr. Anthony: I believe that as

long as we have a crystal and the crystal is defined in terms of continuum

theory by vanishing curvature, it is right that there can be no disclina-

2 Anthony, K., et al., in Mechanics of Generalized Continua, (Proc. IUTAM Symposium,
Freudenstadt-Stuttgart, 1967), E, Kroner, Ed. (Springer-Verlag, Berlin, 1968) p. 355.

3 See eq (III.5.19) in Schouten, J. A., Ricci-Calculus (Springer-Verlag, Berlin, 1954).
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tions because the curvature has to be zero and that defines distant paral-

lelism. But the things we have to think about are liquids, or— as we al-

ready heard today — liquid crystals or glass-like structures. Well, then,

neither the theorem that dislocations don't end in the body, nor the

theorem that disclinations don't end in the body is valid, but rather both

kinds of defects are present. That is where disclinations are really rele-

vant, or. as we have seen, in two dimensions.

ANTHONY: From the point of view of continuum theory I agree with your

arguments concerning sources of dislocations and disclinations. For in-

stance in non-linear continuum theory the Bianchi identity in general

seems to establish sources of disclination lines. But in my opinion this

fact is only due to the continuum theory and it has no correspondence to

the properties of real discrete disclinations in crystals, i.e. I think con-

tinuum theory fails to be a good tool with respect to the source properties

of dislocation and disclination lines. To improve this wreak point we have

to develop a theory which deals with arbitrary distributions of discrete

line defects. The fact that linear continuum theory describes source pro-

perties in the right way seems to be only a lucky chance without an es-

sential background. Furthermore continuum theory, even in its non-

linear form, gives always only a very rough approximation to describe

disclinations. In the case of crystal disclinations. continuum theory is in

contradiction to the discrete structure of the crystal point group. In con-

trast, continuum theory is the right way to describe dislocations, for the

translation group of the crystal is continuous from the macroscopic point

of view.

SIMMONS: Your quasi-disclinations, on the other hand, would be properly

described in a continuum theory, however?

ANTHONY: Yes. that's right.

BEN-ABRAHAM: I just want to say that the Bianchi identity has some

equivalent in the theory of discrete disclinations, exactly like the diver-

gence theorem on torsion has an equivalent in the theory of discrete

dislocations.

DE WIT: [Written contribution] In answer to Dr. Anthony's earlier

question. I shall give an example of a dislocation line ending on a dis-

clination line in a crystal.

Consider a positive wedge disclination of strength tt/3 in a hexagonal

crystal. (The crystal type is not important, similar arguments hold for

other structures. ) It is normal to the basal plane shown in figure 1 and lo-

calized at atom A. It is easily seen that the disclination can be moved to

a new location by removing the. plane of atoms AB. For the indicated
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Burgers vector b, atom C will move to position D and become the new lo-

cation of the disclination. The same result will be obtained if an edge

dislocation glides into the disclination along the slip plane EA. The dis-

clination moves one interatomic distance.

Next, consider figure 2(a), where such a wedge disclination ABC runs

from the front face of a crystal to the back face. An L-shaped edge dislo-

cation A'B'D glides into the crystal from the left face. The disclination

lies in the glide plane of the leg A'B\ and the other leg B'D emerges

through the top face. When the dislocation reaches the disclination, the

leg A'B' will cause part AB to move up by one interatomic distance. This

will leave the disclination with a jog at B, from which a dislocation

emerges, figure 2(b).

Though the relation of this example to eq (6.8) of my paper may seem

somewhat remote, both results are consistent. For example, eq (6.8) im-

plies that dislocations can end on twist disclinations for which 0 may be

asymmetric, but not on wedge disclinations for which 6 is symmetric.

The example shows the dislocation emerging from the jog, which is just

a small segment of twist disclination.

I would also like to comment on Dr. Ben-Abraham's remarks about the

Bianchi identity, eq (III.5.19) in Schouten, which is the non-linear con-

tinuity equation for disclinations. It is true that the right hand side in this

equation is non-zero, but this represents the non-linear effect and arises
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because of the "local" formulation of this equation. If the equation is put

in its "true" formulation the right hand side vanishes, eq (IIL5.42) in

Schouten, and it is then a straightforward generalization of my eq (6.2).

Hence the theorem that disclinations do not end inside the crystal is also

rigorous non-linearly.

A similar argument holds for what is sometimes called the first Bianchi

identity, eq (III. 5.2) in Schouten, which is the non-linear continuity equa-

tion for dislocations. Again due to the "local" formulation this equation

contains on the righthand side a dislocation square term. Again this term

is missing in the "true" formulation, eq (III.5.41) in Schouten, which is

now a straightforward generalization of my eq (6.8). So even non-linearly

we have the theorem that dislocations can end on disclinations.

For disclination-free dislocation theory the difference between the "lo-

cal" and "true" formulation of the non-linear continuity equation for

dislocations has already been pointed out by Kroner and Seeger. 4

4 Kriiner, E., and Seeger, A. , Arch. Rat. Mech. Anal. , 3 , 97 (1957), eqs (29) and (36).
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Since the future directions of dislocation theory were to be discussed in

another panel, the purpose of the panel discussion reproduced in the fol-

lowing section was to assess the current status of the theory of dislocations,

with emphasis on the intrinsic properties of the dislocations as opposed to

those of other physical entities influenced by dislocations. (For example:

the theory of crystal growth by a spiral ledge mechanism involving a screw

dislocation.) In order to set the stage for the discussion to follow, some

comment on the historical development of the theory is in order.

As is now well known, dislocation theory originated with the work in the

early part of the century by elasticians, notably Volterra, Somigliana and

Weingarten, on macroscopic dislocations in isotropic continua. 1 Modern

dislocation theory began, however, with the invention of microscopic,

crystalline dislocations; the edge by Orowan, Taylor and Polanyi in 1934

and the screw by Burgers in 1939. 2 Following this discovery, there have

been several bursts of theoretical developments.

The first of these involved essentially the mathematical treatment of

straight dislocations in infinite media using isotropic, continuum elasticity.

These developments were nominally complete by the early 1950's, as ex-

emplified in the books of Read [3] and of Cottrell [4] . Also, in this period,

a number of quasi-phenomenological, model theories — based on the

straight dislocation results — were generated to explain such macroscopic

deformation phenomena as work hardening, creep, fatigue and fracture.

Again, a number of these are treated in Cottrell's book.

The second period, continuing to the present time, encompassed a

number of embellishments of the theory, including treatments of elastic

anisotropy, simple free surface effects, curved dislocations, non-linear

elasticity, and atomic calculations of core configurations. On the basis of

these extensions, more elaborate theories were generated for many disloca-

tion processes and for many dislocation configurations. The impetus for

the new theoretical work was largely the most important development of

1 For a review of these developments see pp. 8-21 of ref. [1].

2 An interesting historical account of these is given by two papers in ref. [2]: those by

G. Taylor, p. 355, and by E. Orowan, p. 359.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.). Spec. Publ, 317, I, 1970).
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the technique of direct observation of dislocations by electron transmission

microscopy by Hirsch, Home, Whelan, and Bollmann [5] in 1956. Also, of

course, the progress in computer technology during this period enabled

both the atomic calculations and the more complicated elasticity calcula-

tions to be performed. The transmission results showed that, rather than

the simple configurations envisioned earlier, most complicated arrays were

present: For example the dislocation tangles observed in work-hardened

metals. Many of the results from this period of burgeoning of dislocation

theory are considered in the recent books of Nabarro [1] and of Hirth and

Lothe [6] . What, then, is the status of dislocation theory today? A number
of problems, usually involving fairly simple configurations, have been

solved satisfactorily. One example is the theory of small angle grain boun-

daries which is in excellent agreement with experimental observations [7]

.

Another is the theory of pileups, where excellent agreement with experi-

ment is also obtained. In the latter case, the theories include treatments of

elastic anisotropy [8] and of interphase interface image effects [9]. Also,

the treatment of a pileup as a continuous distribution of infinitesimal dislo-

cations [10] provides a bridge between the discrete dislocation approach

(related to atom displacements) of materials science and physics and the

elastic-plastic continuum approach of mechanics.

At the other extreme, there are topics which remain highly controversial.

These include most macroscopic mechanical properties. An example is the

theory of work hardening, in which there are a number of rather different

viewpoints3 all of which plausibly rationalize most experimental results in

a self-consistent way, but which are not consistent with one another. Many
of these problems involve the treatment of about 1018 dislocation segments,

arbitrarily shaped, and each of which is in a differing state of effective

stress. There is some progress in developing statistical treatments of such

problems. Also, there is a beginning effort to develop a continuum-statisti-

cal theory, the three-dimensional extension of the two-dimensional case ex-

emplified by the pileup calculations discussed above, to bridge the gap

between continuum mechanics and discrete dislocation theories. The

latter developments have been extensively discussed in the conference

transcribed in the present volume and in one whose proceedings have been

edited by Mura [14].

Between these extremes are problems whose solutions are agreed upon

qualitatively, but upon which there remains quantitative disagreement.

This category was selected as the basis for the following panel discussion

with the hope that some guidelines could be generated toward a more

complete answer. The agenda was comprised of five topics: (1) Core struc-

tures in metals: e.g. Peierls energy barriers, atomic calculations, non-linear

3 For example see the differing viewpoints ihrefs. [11,12,13]

.
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elasticity, adsorption, b.c.c. faults and anisotropic elasticity: (2) Dislocation

drag mechanisms: e.g. damping, inertial effects, electron interactions,

thermoelastic effects and magnetic effects; (3) Core structure in covalent

and polar materials: e.g. jogs, kinks, diffusion, interaction with conduction

electrons and holes, and interaction with ionic defects: (4) Equilibrium con-

figurations: e.g. disclinations. dipoles, junctions, superjogs, grain bounda-

ries, nodes, and fault tetrahedra: and (5) Critical configurations: e.g. cross-

slip, intersection, bow-out. and Peierls and quasi-Peierls barriers in b.c.c.

crystals.

The first four topics are discussed fairly fully. However, the discussion

on disclinations earlier in the conference was limited, so it was given addi-

tional time in the panel with the consequence that the last topic was not

discussed, a circumstance that perhaps can be remedied at the next con-

ference.

The panel members were R. Bullough. R. de^ it. C. Elbaum. J. D. Eshel-

by, P. Haasen, P. B. Hirsch, and J. P. Hirth (Chairman). The proceedings

follow.
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Proceedings of the Panel on
Intrinsic Properties of Dislocations 1

HIRTH: The title of the panel is "Intrinsic Properties" as a counter-

balance to the final panel on "Future Directions," and we can also think

of this as "Where do we stand today in dislocation theory?
"

Although this is a theoretical meeting, I discovered on talking to several

members of the panel that they and myself, a priori, do not know what a

panel discussion really is, so we will be conducting somewhat of an ex-

periment here this morning.

We will begin with the consideration of core structures in metals. We
have the questions of the Peierls energy, of dislocation extension, of

atomic calculations of core structure and of atomic force laws. I wonder

if, to begin, Dr. Bullough might give us his thoughts on these

matters.

BULLOUGH: Thank you. I would like to make the following points regard-

ing these kinds of calculations. One is the purely practical point that if

we are going to try to determine the configuration and energy of the core

of a dislocation, then at the moment we are forced to use a two-body ap-

proach, with, of course, the appropriate volume dependent terms. In my
opinion, the important justification for such calculations, again at the

moment, is that they must be shown to be superior to a harmonic calcula-

tion. We heard yesterday from Professor Ashcroft on the practical im-

possibility of getting the band structure energy term. This band struc-

ture term, of course, depends on the ion configuration, which is the very

thing we are trying to get. That immediately provides a fundamental dif-

ficulty.

So, I would say that we must insure that whatever model for cohesion we
take, it should at least be consistent with the phonon dispersion proper-

ties of the crystal, since we wish to discuss movements of ions. This dif-

ficulty of getting agreement with the phonon dispersion data is a prime

problem facing the quantum mechanists. You heard from Professor Ash-

croft about the difficulty of selecting the appropriate dielectric function.

Thus, I think we have to compromise immediately if we wish to attempt

this kind of calculation.

There is another very important point about dislocations; namely, that

the core structure is incredibly sensitive to the stacking fault energy. In

view of this it is quite pointless to attempt a core calculation, in my
opinion, if we do not insure that the potential we adopt gives stacking

1
_ dited by J. P. Hirth.

Fundamental Aspects of Dislocation Theory, J. A. Simmons, R. de Wit, and R. Bullough,

Eds. (Nat. Bur. Stand. (U.S.), Spec. Publ. 317, I, 1970).
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fault energies consistent with those observed by the experimentalists or

at least values with the right sign. Again, it is frightfully difficult to con-

struct a potential from basic principles that is consistent with stacking

fault energies. Maybe we will have some comments from the audience on

this point.

There is a particular problem in the b.c.c. materials, because in those

materials we have many possible stacking faults. Again, it is essential, if

we are going to study dislocations in such materials, that the potential be

such that all the stacking fault energies are positive. It is quite ludicrous

to use a potential that gives a negative fault energy and then pretend that

the results have some physical meaning when applied to a configuration

where such a fault can appear geometrically. Also, of course, the calcu-

lated fault energies must be pretty large to agree with experiment; on the

order of 700 or so ergs per square centimeter.

I would sum up my attitude to the b.c.c. case as follows: We must satisfy

the phonon dispersion data as accurately as possible. We must insure

that all the stacking fault energies that can appear in the lattice as-

sociated with the core are positive and reasonably large. The potential,

in addition, should be consistent with the surface energy of the material.

This is particularly important if we are expecting any kind of loss of

cohesion in the core region. This last feature is, to my knowledge, almost

completely ignored.

We have recently been concentrating our attention on constructing what

we think is a decent potential covering all these aspects. When I refer to

"phonon dispersion," I also mean, of course, that particular care be

taken to fit the long wavelength limit. This is a potential constructed

by Roy Perrin.2 [See here fig. 1.] It is a set of quintic polynomials. The

point here is that we have dropped the spline procedure in this case,

because we want to have the flexibility to fit this potential to the anhar-

monic properties. We have not done such fitting yet, but we have enough

degrees of freedom to do it.

This potential has the great advantage that the lattice is stable. This re-

mark is not so funny as it appears at first sight, because there are many
potentials around in which the lattice is unstable against inhomogenous

deformation. Whilst the eigenvalues of the dynamic matrix may all be

positive, and may give a decent phonon dispersion, it is perfectly possi-

ble for the lattice to be unstable against an inhomogeneous deformation,

which is precisely what a fault-shift is. Well, our potential does not give

2 Bullough, R. , and Perrin, R. C. , in Radiation Damage in Reactor Materials (I. A.E.A., Vien-

na, 1968).
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Figure 1. The third neighbour pair potential for body centered cubic iron. rj = 2.48 A,

r 2 = 2.86 A and r;)
= 4.04 A are the first, second and third neighbour separations respec-

tively. The absolute value of the potential is set equal to —0.04 eV at each equilibrium

separation to ensure an effective surface energy of I03ergs/cm 2 and the physically reason-

able stacking fault energies: 730 ergs/cm 2 for a/6 (111) on (110); 737 ergs/cm 2 for a/8 (110)

on (110) and 844 ergs/cm 2 for a/6 (111) on (112). Courtesy of R. Bullough.

an unstable lattice. It has positive stacking faults, and they are all

healthily large as required for correlation with all the systems with ex-

perimentally known fault energies.

In the face-centered cubic case, we are, in my opinion, in some ways in

a lot healthier position— but in some ways a lot more difficult one. It is

well known that the geometrical fault energy depends on deviations from

the third neighbor positions in the face-centered lattice. This means that

it depends on the long-range part of the potential. For real-space relaxa-

tion calculations long-range potentials are a nuisance. They may not be

a nuisance in a Fourier transformation procedure for the dislocation con-

figuration, and on this topic I would like to hear the views of Professor

Hardy.

On the other hand there is the distinct advantage that we know what the

long-range potential is in the case of some of the face-centered cubic

materials. We have some confidence, I think, in the Friedel oscillations,

and we are interested in the asymptotic regime, where the form is, of
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course, cos pkjp^/r3
: I think Professor Saada would probably concur

with that. 3 We know we can be fairly confident about fitting the stacking

fault energy with the asymptotic form. However, there are the practical

difficulties mentioned before.

HIRTH: Would anybody on the panel care to comment on Dr. Bullough's

remarks? I might just say that another experimental test that would

seem to be desirable for a potential would be whether it would reproduce

a Peierls energy of something like 10-4 to 10-2 times the modulus.

BULLOUGH: Yes, I agree. The real problem is calculating the Peierls

energy. As a matter of fact, I have to plead ignorance here; I was not

aware of that beautiful method Professor Suzuki mentioned, Kurosawa's

method,4 involving a homogeneous shear procedure.

We have tried many times to calculate the Peierls energy; the real dif-

ficulty is, of course, that you can get to the inflection point on the energy-

distance curve at absolute zero but you cannot go past it because the

dislocation then moves. I have great difficulty in understanding how peo-

ple creep past the inflection point, in any, shall I say, mechanical experi-

ment. How can they hold the configuration in an unstable state?

HIRTH: That is without going to finite temperatures where thermal activa-

tion can help.

BULLOUGH: Yes; well, we have to wait about a hundred years for a com-

puter to do that, I think.

HIRTH: Professor Hirsch, you've recently looked at faults and core con-

figurations in b.c.c. materials. Do you want to comment on that topic?

HIRSCH: Yes, 1 will say a few words about this matter. The first question

I think one might ask oneself is: Why, apparently, is the Peierls energy

high in body-centered cubic metals, and not in f.c.c. ones? Now, that is

a very simple question; some people might even dispute it. I think it is

true. Further, I think the answer to it, and a very obvious one, I suppose,

is that it arises from the difference in the crystallography of the lattices.

AUDIENCE: General laughter.

HIRSCH: Now, let me make this perfectly obvious statement slightly more

specific. Two models have been postulated for giving us a picture of why

the Peierls stress in b.c.c. metals, in particular for screw dislocations, is

high. One of these is Professor Suzuki's very beautiful model, which he

3 kF is the Fermi wave number, 2tt over the energy of the highest filled states, and r is the

radial distance from a given ion core.

4 Kurosawa, T., J. Phys. Soc. Japan 19, 2096 (1964).
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discussed yesterday;5 let me just remind you of it. If we look down a

(111) direction we realize that the structure consists of rods of atoms

which are at positions 1, 1/3 and 2/3. These appear in the projection as

two types of triangles. Depending on the sign of the dislocation, either it

will have low energy in triangle A or it will have low energy in triangle B;

the other position in either case being the one of high energy. Well, that

is a very simple idea, which shows that there is a good reason why the

Peierls energy might be high in this lattice for screw dislocations

because of the geometry.

The other reason that has been put forward is that because the screw

dislocation has threefold symmetry, it is possible for the dislocation to

dissociate on more than one plane. This dissociation again is a charac-

teristic of this particular lattice. When the dislocation is dissociated in

this way, then it is difficult for it to move.

Now, I would like to remark further about this possibility. The models

which have been used in the past are, of course, very hypothetical

models, with the dislocation dissociated into stacking faults which are

postulated to be on particular planes. Of course, the dislocations turn out

to be very narrow in these calculations and then, of course, the meaning

of the stacking fault energy effectively disappears.

But the point about this sort of model is that it does not really matter

whether these are stacking faults in the true sense; in the b.c.c. struc-

ture, the dislocation is a sort of animal which is split, that is where the

misfit is distributed not on one plane, as it is in the f.c.c. structure, but in

fact is spread out on several planes. The consequence of this splitting is

that the dislocation is difficult to move.

It seems to me that both of these ideas are based on the configuration of

the atoms in the b.c.c. lattice, and that one must do core calculations

now to find out the exact details of the core structure. One must make
quite sure, as Dr. Bullough said, that the potentials are at least such that

the lattice is stable— that is a rather important criterion.

Well, if I may just summarize the way I see the results so far, a number

of people have in fact calculated core structure using inter-atomic poten-

tials of various types, including Suzuki; Bullough and Perrin; Gehlen,

Hahn and Rosenfield; Chang; and Vitek. 6 While all give configurations

which appear to be split, most of these authors appear to obtain slightly

different splittings. Thus, at the present time the situation is not very

satisfactory because these results appear not to agree. Presumably this

5 See the paper by H. Suzuki in these Proceedings.

6 Suzuki, H., in Dislocation Dynamics, A. R. Rosenfield, G. T. Hahn, A. L. Bement, and

R. I. Jaffee, Eds., (McGraw-Hill, N.Y., 1968) p. 679; Bullough, R., and Perrin, R. C..

ibid., p. 175; Gehlen, P. C., Hahn, G. T., and Rosenfield, A. R., J. Appl. Phys. 39, 5246

(1968); Chang, R., Phil. Mag., 16, 1021 (1967); Vitek, V., Phil. Mag. 18, 773 (1968).
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requires looking into the questions of the way the calculations are done,

the potentials, the boundary conditions that are used, and so on.

Another very trivial point, which perhaps might be overlooked, is that it

is not so easy, actually, to characterize a core-structure once one sees it.

I am not yet entirely convinced that all these structures which are being

observed by these various people are actually all that different. I think

that they may turn out to be alternative ways of describing the same

structure.

Another thing, which I think the theoreticians ought to bear in mind, is

that there are certain experimental results which have to be explained.

For examples, the asymmetry effect, in which the slip on {112} planes is

easier in one direction than in the other, and, also, the fact that for cer-

tain b.c.c. metals, slip occurs on {110} planes for certain crystal orienta-

tions and {112} planes for other orientations. Thus, whatever potentials

are used for core calculations, I think that the above experimental

results have to be borne in mind; they have to be explained.

Finally, in my opinion, the effect of stress on the core configuration must

be looked at. Calculations ought to be carried out in which, in effect, a

stress is put on the crystal and the change in the structure is observed.

BULLOUGH: I would like to make one remark on what Professor Hirsch

has said; namely, that I do recommend that people use that potential I

put up on the board [fig. 1].

HIRTH: At this time we open the floor for general questions.

SAADA: Regarding these lattice calculations, I would like to make a very

simple remark, namely, that underlying this calculation is the very im-

portant postulate that you can, in fact, describe a metal by a pairwise

atomic interaction. However, even in the simplest metals, the only thing

which has been shown from first principles by treating the whole

problem is that this is true only to the second order of perturbation. For

very simple metals like lithium, sodium and some close-packed metals

like magnesium or aluminum, one can indeed express the total energy

with a formula using some pairwise interaction, but the result is valid

only to the second perturbation order.

Therefore, the main postulate on which all these calculations rely is not

very certain. For example, one knows that in some pathological

metals— like copper, which is pathological for other reasons— the fact

that the surface does not cut the Brillouin zone but just pushes it, makes

the convergence process at least very poor, or, probably, inapplicable.

Thus, my feeling is that whatever experimental potential is taken for

such lattice calculations, it will be a phenomenological potential, most of

the time.
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GILMAN: Well, it seems to me that Dr. Saada's points are well-taken, but

that one can also criticize the attention paid solely to the crystallography.

If one takes the simple case of the sodium-chloride structure, there is a

vast variety of behavior. For an ordinary salt such as rock salt the Peierls

force is very small for the highly pure crystal. On the other hand, a

semiconductor like lead telluride is still fairly soft but the behavior is

completely different because the glide plane switches from {110} to

{100}. Finally, another type of compound with the rock salt structure is

a carbide, such as titanium carbide, which has a very high Peierls force.

Clearly, then, simple crystallography is a relatively minor part of the pic-

ture, and I do not see how one can avoid worrying about the electronic

structure. For example, I have done experimental work on the inter-

metallic compound gold aluminide. In the presence of a large concentra-

tion of dislocations, the color of this compound changes from bright pur-

ple to grayish purple, which shows that its electronic structure has been

significantly changed. One also knows from studies of the pressure de-

pendences of the band structures of semiconductors that when the

specific volume is changed the electronic properties change signifi-

cantly. In some metals, where there is a large dilatation at the dislocation

core, local bound states might form.

MENDELSON: [Written contribution] Dr. Gilman's suggestion that elec-

tronic effects are more important than crystal structure can be con-

trasted with studies of dislocation dissociations which suggest the op-

posite. In pure metals the electronic characteristics determine the sta-

bility of the existing phase and its elastic properties, but the differences

of metals with the same structure are generally of magnitude rather than

character. The flow behavior of b.c.c, f.c.c. and h.c.p. crystal structures

differ because they have different slip systems and possible dislocation

dissociations. The strong covalent forces in Si and Ge are responsible for

tetrahedral bonding and the resulting diamond lattice, but the properties

of these crystals can also be explained in terms of the crystal structure

and the manner in which dislocations dissociate.

In compound crystals the electronic effects can be more varied and Dr.

Gilman's suggestion becomes more tenable, but I find it more realistic to

consider that the electronic effects alter the role played by crystallog-

raphy rather than that they play the primary role themselves. The exam-

ple of the differences in the behavior of ionic NaCl and covalent PbS,

both of which have the same rock-salt crystal structure, illustrates the

point. PbS shows different slip systems and twins on various planes

which are unlikely in NaCl. The lack of strong ionic forces in PbS allows

for various possible dissociation modes for dislocations to lock or twin

on, and hence alters the role played by the crystal structure. Similarly
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the Burgers vector and the dislocation dissociations possible in b.c.c.

metals are not favorable in ionic CsCl-type compound crystals (the same

Bravais lattice) and here again the electronic effects can be considered

as altering the role played by the crystal structure.

CHANG: I would like to comment on Dr. Bullough's talk. I think that his

points are well taken. In addition, I believe that anybody who works in

this field would like to construct a potential following first principles as

much as possible. Say, that for a given potential the computation shows

that the stacking fault energy is negative; then the researcher would be

upset— I would not like it myself.

Also, I think that fitting the phonon dispersion is not too difficult. How-

ever, according to some of the theorists in our lab such fitting is not suffi-

cient to yield a valid potential. I would like to appeal to anybody working

in this field to proceed to construct a potential in such a way as to cover

first principles as much as possible, if he can.

A second comment— to Professor Hirsch's discussion of the five parties

working on the screw dislocation: 6 At least three of us agree on the core

configuration. It is gratifying to know that there is some agreement. Also,

those in agreement used different potentials.

THOMSON: This is a question to Dr. Bullough— it is really along the same

line as Dr. Chang's: What is your feeling about using the theoretically

suggested force laws for aluminum, where there is a stronger effect from

the oscillations than, for example, in the case of copper that you showed

earlier? Along this line, are those wiggles in the iron curve supposed to

be screening oscillations, or are they purely phenomenological in origin?

I guess the thrust of my question is: What is your feeling about using a

light touch with what one can get from theoretical suggestions about the

force law? Of course, I agree with your comments that one does have to

insist that these lattices be stable, and so forth; but this, I suspect, is

something that could be done after one takes his first cue from the

theoretical suggestions.

A second point is that I am puzzled by your comment about not being

able to calculate the Peierls energy. Why can you not simply do as

Professor Hirsch suggested? That is, put a stress on the crystal with your

potential, and then look for the energy— or the situation — where the

thing goes to pot; or, in other words, where the dislocation goes over the

top of the Peierls barrier? This really would be, I think, the thing that

you are looking for.

BULLOUGH: Well, let me answer first what is in my mind, the question of

Peierls energy. It is just that the critical force is achieved when you

reach the inflection point in the energy curve, that is all.
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HIRTH: One really determines the Peierls stress, but not the energy.

BULLOUGH: That is right. And I did not mean anything else.

HIRSCH: That is worth doing.

BULLOUGH: Yes. We do try.

AUDIENCE: General laughter.

BULLOUGH: As a matter of fact, we do take a cue from the theorists — the

quantum theorists, I mean. The cue is that one can divide the cohesion

into a pair-wise interaction potential and a volume term. Then, taking in

Dr. Saada's point at the same time, we do not enforce equilibrium under

a pair potential alone; this is very important. Equilibrium is achieved

with this potential plus a volume term. If we did force equilibrium based

on the pair potential alone, I would be the first to condemn it. It would be

wrong harmonically, for one thing, since the Cauchy relations would be

forced.

With regard to the aluminum question, I could not agree more. We have

the greatest intentions now in this direction. In particular, because of

Parsons' beautiful work at Chalk River, 7 we really have something to

compare with. I am sure you all know Parsons' work; he is actually

getting resolution now of two Angstroms in the electron

microscope — seeing the atoms around the dislocation. I have the slides

of this if anyone wishes to see them. There you can actually observe the

lattice configuration for the first time, I think, around the dislocation. So,

if the theoretical configuration does not agree there, you have had it, so

to speak.

In answer to Dr. Chang: It is all very well saying you should work from

basic principles, but one gets absolutely nowhere. I am the first to try

this; I have tried very hard. In general, one cannot even get a positive

stacking fault energy. So, one has to decide whether this kind of calcula-

tion is worth doing. That is the question, I think; not that you should

waste your time with the present state of the theory . . . Well, that was a

bit of an overstatement: One can get a positive stacking fault energy

sometimes, but only in the case of aluminum has there also been a really

successful correlation with the phonons. This is a very important point.

Another interesting point concerns the kind of calculation that Professor

Hardy and I did on a harmonic lattice. In a sense everyone finds this ter-

ribly respectable, because we used Fourier transformation procedures,

worked from a dynamical matrix, and did not dirty our hands with com-

puting. Yet there is no more physics going into that calculation than into

the one I discussed earlier and it is very important, I think, to remember
that.

7 Parsons, J. R., and Hoelke, C. W., J. Appl. Phys. 40, 866 (1969).
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Also, using our potential we got an interaction between vacancies in

copper and aluminum which is very close to the observed binding ener-

gies of the di-vacancies. Further, the calculation was based purely on

a relaxation interaction. Now, March does his electron, rigid-ion calcula-

tions and gets almost the same results. 8 Is this purely coincidence or is

there an underlying explanation?

HEAD: Could I ask Dr. Bullough: In his opinion, at the moment, for how
many metals is a decent atomic potential calculation plus everything

possible? That is, in which we have a good potential expression and so

on; not just counting the ones you know, but in your opinion, how many
metals are handleable with present knowledge?

BULLOUGH: However I answer that, it will be misunderstood! It depends

upon which coat I put on. If I speak as a rigorous solid-state theorist, who

really wants to believe in his description of the cohesion, then I have to

stay with aluminum. 9
I think that is fair. But, if I am satisfied with a

potential which is better— far better— than a harmonic approximation,

then I would say that the calculations for copper using the potential that

Dr. Englert constructed are not far from the truth as far as small devia-

tions from the equilibrium positions are concerned. 10 At least the restor-

ing forces are correct from a harmonic point of view. Of course, we are

staying with metals ... or ionic crystals?

HEAD: I meant metals, only.

BULLOUGH: In the case of iron, I would say either the potential that I put

on the board [fig. 1] or Dr. Chang's — there is very little to choose

between them. Dr. Chang's has the advantage that he has fitted it

deliberately to the anharmonic properties, but I believe the consistency

with fault energies is much safer with our potential.

HIRTH: I think we can move on now to the second topic, "Dislocation

Drag Mechanisms." Dr. Eshelby?

ESHELBY: What I am thinking of, when I speak of drag, is the frictional

force acting on a moving dislocation. I am not thinking of drag caused by

jogs, or what one might call geometrical things like that. Also, for a sort

of simple-minded theorist who has done mostly elasticity and that kind

of thing, the force is exciting and awesome, because it depends on the in-

teraction of dislocations with practically every other property of the

material.

8 Alfred, L. C. R., and March, N. H., Phil. Mag. 2, 985 (1957); Corless, G. K., and March, N.

H., Phil. Mag. 6, 1285(1961).

9 The original transcription replaced "with aluminium" by "without a menu," which, while

incorrect, perhaps aptly describes the situation.

10 See the paper by A. Englert, H. Tompa, and R. Bullough in these Proceedings.
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There was a very nice paper by Professor Lothe some years ago 11 where

he discusses a number of these mechanisms— it seems to me about a

dozen. He comes out— perhaps I exaggerate a little— with the conclusion

that each of them gives about (0.1)b 2 times the thermal energy density, e,

which is the old Leibfried value. Now, one wonders if some of them are

not the same mechanism under assumed names. One then wonders

whether of these dozen, perhaps several are not as big as you thought,

and therefore the answer of only one of them, perhaps, is right, and

therefore, it has the value (0.l)b2
e; or whether you ought to multiply by

10, and so forth.

The kind of thing I have in mind is, for example, the interaction with

electrons. There is Professor Mason's electron viscosity. Then there is

a thing in Professor Nabarro's book, 12 which incidentally contains a nice

summary of all these matters, in which you say: Well, if we have already

calculated the electrical resistance of a dislocation, then, instead of con-

sidering the dislocation to be moving through the crystal, we can stop it,

let the electrons drift past, and find the mechanical resistance by com-

paring the electrical and mechanical dissipations. Also, I think there is

some work done by Dr. Louat and his colleagues on the interaction of

electrons with dislocations. 13 I am not quite clear about the connection

or lack of connection between these calculations. In addition, one has to

consider possibly whether in doing these calculations one can treat the

dislocation as a straight thing moving forward or whether it is advancing

by kinks sliding along it. In certain cases, if it is going by kinks sliding

along, some of the properties will be nearly identical with what they

would be if it were moving rigidly.

Another question involves the effects of dispersion, or, if you like, that

the velocity of phonons gets less near the top of the first Brillouin zone.

This, I think, is a very small effect, but I was shocked to see some pic-

tures got by the neutron diffraction people of body-centered things

where the frequency versus wave number curve hangs down in a horri-

ble sag at quite low wave numbers. What effect does that have?

I do not know that one can say anything general here except that there is

an interaction of the dislocation with a large number of, what one might

call, non-dislocation properties of the material; and that only experts in

each of these, having got hold of an expert in dislocation theory, might do

something definitive about the interaction by working together.

I see on the topic outline it says "thermo-elastic." Well, I think one can

skip that; I do not think it is important. Furthermore, various physicists

having done this some time ago, applied mathematicians have suddenly

II Lothe. J.. J. Appl. Phys. 33 . 2116 ( 1962).

12 Nabarro, F. R. N., Theory of Crystal Dislocations (Clarendon Press, Oxford. 1968).

13 See the paper by G. Huffman and N. Louat in these Proceedings.
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woken up to thermoelasticity and are madly doing it. When they finish

doing waves, perhaps we can persuade them to get around to doing

elaborate problems for dislocations; but I think that for honest physicists

the topic has become part of applied mathematics.

HIRTH: Dr. Elbaum, would you like to comment on this topic?

ELBAUM: Yes. There is one specific aspect to which, I believe, there is

something to be added: I will also talk about this matter Friday after-

noon, 14 and that is the question of the drag of dislocations caused by

conduction electrons in metals. There are, I believe, right now, two

major tendencies that are rather in conflict for reasons that I shall

try to explain.

Dr. Eshelby just mentioned the work of Professor Mason,15 who has pre-

dicted a drag that we call B for convenience, proportional to the inverse

of the electrical resistivity of a metal. The point of departure for this

treatment was the assumption that one could consider the dislocation (or

its strain field) to be moving within a viscous gas (the electron gas) and

that one could, therefore, use a semi-classical approach, and solve the

problem essentially, though not explicitly, in the spirit of ql < 1; that is

where q represents some appropriate wave number of a component of

the moving strain field and / the mean free path of electrons in the

metal.

Work of a similar character, but using different algebraic techniques,

was carried out by Huffman and Louat. 16 To be specific; these gen-

tlemen used the Boltzmann transport equation, applied it to the situation

which is really ql > 1 in the case of a crystal— for reasons that, again, I

shall come back to in a moment— and came up, as you might expect,

once more with a drag coefficient proportional to the reciprocal of the

electrical resistivity. Now, there is a very basic problem here. In the drag

on a dislocation caused by conduction electrons, we are faced really with

two aspects: One is the magnitude of the drag and the second one its

possible temperature dependence, if any. As for the magnitude of the

drag, this is perhaps a particularly tall order in terms of calculations

from first principles. However, the problem of the temperature depen-

dence can be handled in a somewhat simpler, more straightforward and

more physical way. Since, in the approximations used first by Professor

Mason and subsequently by Drs. Huffman and Louat, a proportionality

of the drag to the reciprocal resistivity was found, there is also a tem-

perature dependence in the drag coefficient following the temperature

14 See the paper by C. Elbaum in these Proceedings.
15 Mason, W. P., J. Acoust. Soc. Am. 32. 458 (1960).

16 See their paper in these Proceedings.



PANEL: INTRINSIC PROPERTIES OF DISLOCATIONS 699

dependence of the resistivity. The ingredients that go into this approach

are, however, somewhat questionable in my opinion. As you will see, I

line up rather squarely behind the temperature independent drag for

reasons that I shall try to explain.

First of all, consider a physical argument: If one considers that the dis-

placement field of a dislocation is decomposed thus:

u = 1 q uq exp (iq • r),

an approach that was first pointed out by Holstein, 17 then each one of

the components of this Fourier series can be thought of as a wave in its

own right — a wave with wave vector q and amplitude uQ . The important

components of this Fourier decomposition are the ones corresponding to

short wavelengths or large q. This is so because the strain field of a dislo-

cation falls off with the negative square power of the distance rfrom the

dislocation, so that most of the strain field is concentrated near the core;

and this is where the most important contribution is going to arise.

Since we are talking about components with large q of the order of 106 to

10" cm -1 — but probably not any smaller— it would take a remarkably

small mean-free path for the electrons to give ql < 1. In fact, an un-

realistically small mean-free path of the order of 10-7 cm or less would be

required to achieve the condition ql < 1 for which the smeared-out ap-

proach—the viscosity approach— or the Boltzmann transport equation

can be used in good faith. However, if one takes a realistic mean-free

path, which is commonly of the order of hundreds or thousands of inter-

atomic distances, especially at low temperatures, it is the condition ql >
1 that is achieved.

The question also arises as to the appropriate method to use in calculat-

ing the interaction. Now, in the ql > 1 case, if we agree for a moment that

this is indeed the proper view to adopt, simple first-order perturbation

theory, such as is normally used for calculating electrical resistivity,

yields a drag coefficient B that is temperature independent.

Furthermore, one can rationalize this result on very simple-minded

physical grounds as follows. If, indeed, this kind of a representation is

acceptable, the strain field of a dislocation is a frozen-in configuration

which is temperature-independent save 'for such small high-order cor-

rections as can arise from thermal expansion. The conduction electrons,

being Fermions, have a temperature dependence which is certainly not

of any importance in first order calculations. Therefore, if one combines

these two properties, one would expect a temperature-independent

behavior. Where, then, does the temperature independence come from

17 See the paper by C. Elbaum and A. Hikata in these Proceedings. Also. Holstein. T.

summarized by Tittmann, B. R.. and Bommel. H. E.. Phys. Rev. 151, 178 (1966).
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in the case of electrical resistivity caused by scattering by phonons? Ob-

viously, it comes from the temperature dependence of the phonon dis-

tribution; i.e. the fact that phonons obey Bose-Einstein statistics.

But here we do not have Bose-Einstein statistics; we are considering a

frozen-in configuration of pseudo-phonons, i.e. the Fourier components

mentioned earlier. I suggest, therefore, that the drag coefficient, or

specifically the electronic contribution to it, is temperature-independent.

It so happens that at least one kind of experiment shows this to be, in-

deed, the case. On the contrary, Dr. Huffman and Dr. Louat have in-

terpreted the temperature-dependence of yield stress in b.c.c. metals as

arising from their calculated value of the temperature-dependence of the

electronic drag coefficient. Well, since these gentlemen are here, I sup-

pose that they will have an opportunity to remark on this matter.

BULLOUGH: There are two points that I would like to mention. The first

point is in regard to the distinction between f.c.c. and b.c.c. crystals. It

should be interesting to see if Professor Hirsch agrees, but I get the im-

pression that the difference in flow stress is often rationalized by assert-

ing that the dislocations are much narrower in b.c.c. materials— I think

this is Dr. Louat's thesis — whereas the spreading in the f.c.c. destroys

the temperature dependence of the flow stress. It seems to me that this

postulate is a little dangerous. Just because the Peierls energy is high

does not mean that the degree of dissocation is small. 18 High elastic mod-

uli can offset the other factors and still give large dissocations. This is par-

ticularly likely in the b.c.c. materials where the elastic moduli tend to be

rather large. For instance, the edge dislocation on a {110} plane, the one

which splits up into three (111) partials, is spread out over about six

Burgers vectors; which is hardly narrow. 19

The second point is really a theoretical point which I do not understand,

but which I think Professor Elbaum covered. It seems to me that in Dr.

Louat's calculation the electron relaxation time is extremely small. So

why do the electrons not just flow instantaneously around the moving de-

fect? Why is it not like incompressible flow, and so where does the drag

come from? Quite a dilemma!

LOTHE; I just want to state that I agree with Professor Elbaum, and that

an alternative method of calculating the drag would be to use the imagi-

nary part of the self-consistent dielectric constant which does give a dis-

sipation of exactly the nature that Professor Elbaum indicates.

18 Or the stacking fault energy.

19 Presumably this refers to the atomic calculations for iron by Bullough, R., and Perrin, R.

C, in Dislocation Dynamics, op., cit, p. 175.
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Secondly, I think that the problem that is being discussed here is also

similar to the problem with Professor Mason's phonon viscosity and is

related to the appropriate inner cut-off at a dislocation core. I always

have had the feeling that one could not apply Professor Mason's concept

to a region closer to the core than the phonon mean-free path. I stated

this in 1962. 20 The problem raised by Professor Elbaum is similar. For,

outside the dislocation core at long distances away from the dislocation,

one can probably do a calculation — such as Dr. Huffman and Dr. Louat

have done in spirit— but the excluded inner region will then be so big

that the damping contribution will be fairly small. I think it is important

to discuss this, because in both of the cases mentioned above better

agreement with experiment is claimed when these difficulties are

ignored.

LOUAT: I think at this stage it would only be profitable merely to comment
on Dr. Bullough's point with reference to dislocation width. One is refer-

ring to dislocation width in the Peierls' sense, not in the dissociation

sense.

For the other points, I think perhaps they would be better treated on

Friday. 21

HUFFMAN: I would like to make one comment. It is that the impression

has been given that our calculation is equivalent to Professor Mason's

calculation; whereas this, in fact, is not the case. Objections have been

raised to Professor Mason's calculation because he uses the viscosity

concept and uses a short-wave-length cut-off; basically, because he

takes a cut-off at r= 6, or something like that.

Our calculation is done in the spirit of ql large compared to unity. We
will be talking about this on Friday, so I do not want to go into it too

much. But, basically, the situation is the following: We realize that one

is on a little bit dangerous ground using concepts of quantum mechanical

screening in a semi-classical approach like that of the Boltzmann equa-

tion. But the physical picture that we get is appealing. When one is deal-

ing with very short wavelengths, the screening becomes imperfect. This

means that in the acoustic attenuation theory one is going from what is

essentially a constant current system to what is a constant voltage

system, and this is what produces the conductivity-type dependence. I

would like to remark, also, that the calculation does reduce to exactly the

same results as Holstein's calculation22 — with the temperature indepen-

dent result— when one neglects the effect of this imperfect screening. As

20 Lothe, J., op. cit.

21 See the paper by G. Huffman and N. Louat in these Proceedings.
22 Holstein, T., op. cit.
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Dr. Louat indicated, we feel that the temperature independent case oc-

curs for f.c.c. metals. There the width of the dislocation — i.e. of the core

distortion — is much more spread out, and one would expect the elec-

trons to be able to screen the positive charge shift associated with the

dislocation much better.

HIRTH: Our next topic is: "Core Structure in Covalent and Polar Materi-

als." Professor Haasen, would you lead off on this one?

HAASEN: I would like to limit myself to some covalent crystals like silicon

and germanium. As you all know, these crystals are intrinsically brittle

at normal temperatures, without thermal activation. So there is no doubt

in my mind that they are typical of crystals with high Peierls forces and

rather limited widths of the dislocations.

The experimental situation is quite clear. 23 We know how dislocations

move in these materials, their velocity, activation energy and so on.

Theoretically, several calculations of the Peierls force have been done

using various potentials: Some fitted to elastic constants and the phonon

spectrum, some using a pseudo-potential approach, and maybe some

tight-binding calculations. The results are surprisingly similar, but I do

not think that we really have a good solution for the Peierls force yet. In

particular, we have no calculation for the 60° dislocation as yet; all these

calculations are for the screw dislocation only.

Concerning electronic effects on the Peierls force, I will talk about this

a bit on Friday. 24
It looks like the dislocation carries a charge in these

materials. While the effect of this charge on the Peierls potential is not

known theoretically, experimentally we know something about it. So in

order to find the dislocation structure in such a case, we must know what

the charge state is at its core and then consider its influence on the

Peierls potential.

Now, let us turn to the stacking fault extending between partial disloca-

tions. I think that there is a clear indication that dislocations in the

diamond structure are not extended; mobile dislocations at least are not

extended and dislocations climb rapidly. However, the stacking fault

energy certainly is rather low. A careful look at the diamond structure

shows that the shear causing plastic slip by complete dislocations occurs

between one set of planes, while the shear to create a stacking fault oc-

curs on another}^ So those two phenomena are really independent of

each other.

23 See Alexander, H., and Haasen, P., Solid State Physics 22, 28 (1948).

24 See the paper by P. Haasen and W. Schroter in these Proceedings.

25 The slip process referred to involves shear between {111} planes locally separated by a

distance 1/4(111). The fault process occurs between {111} planes locally separated by 1/12

(111). The discussion returns to this point below.
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Another interesting question which is unsolved, so far, involves the

movement of kinks. We know we have to create kinks in order to move

a dislocation over the Peierls potential barrier. On the other hand, we do

not know what energy it takes to move kinks. It would be very valuable

to have some information about kink mobilities from internal friction stu-

dies. The kink potential is a bit out of reach of the calculations so far. We
still use the elastic "arc tangent" type of displacement, and certainly

this is not sufficient for such an atomic scale configuration.

HIRTH: I would like to pose one question. Just looking at a strong covalent

bonding picture, one would anticipate an extremely low stacking fault

energy in the diamond cubic structure. Yet one seems to find experimen-

tally that it is not all that low. Why?

HAASEN: I must admit that I was surprised about this too. I wonder

whether we really have a valid experimental indication of the stacking

fault energy. Theoretically, only the third nearest neighbors are

disturbed across a stacking fault, so its energy should be extremely low.

Let me ask you what experiment you are referring to, in particular.

HIRTH: I was thinking of the node measurements.

HAASEN: The old node results, I think are out. L. M. Brown,26 at Cam-

bridge, England, showed that previous node measurements were not

done properly from the point of view of electron microscopy. If one did

them properly, then one saw no extended dislocations.

HIRTH: Perhaps Professor Siems would rather answer that. But, I can

state that Amelinckx disagrees with that view and still thinks that his

microscopy was correct in indicating a small extension. In any case the

puzzlement about the fault energy not being much smaller remains.

BULLOUGH: I have two short points, both concerned with ionic solids.

The first is that it is frequently said that these are the crystals that we

should do calculations on, because we know the potential. But, as a

matter of fact, we do not know the repulsive part of the potential. Do we

take a Born-Mayer potential, or what? Most people know how sensitive

the simple point-defect-center formation energies are to the assumed

form of the repulsive potential, so that things are not plain sailing in the

sense of a well defined potential.

The second point is that, of course, these potentials have at least the fea-

ture that they are long-range, as is the polarization. I would like to ad-

dress a remark on this, I think, to Professor Hardy. They gave the im-

pression in their talk that the Kanzaki approach was ideal for such

situations. 27

26 Booker, G. R., and Brown, L. M., Phil. Mag. 11, 1315 (1965).

27 Kanzaki, H., J. Phys. Chem. Solids 2, 24 (1959).
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Clearly, given a long-range potential, its reciprocal space form will be

short-ranged. However, one has the problem that the pertinent real

space super-cells will have to be enormous, and therefore the density of

points in the corresponding reciprocal space reduced zone will have to

be equally enormous. So one has, as far as I can see, transferred the

problem of the real space extent of the potential, which is a numerical

problem, into another numerical problem involved in the final quadra-

ture of unfolding the Fourier transform.

HAASEN: One point on ionic crystals: I think one should consider

stacking faults in these materials on various planes. We have gotten

used to the idea that dislocations are not extended in ionic crystals. How-
ever, Fontaine has recently done some calculations which show that ex-

tended dislocations actually exist on various planes,28 especially on the

{110} and on the {111} planes. I think effects of this sort could be seen

experimentally, and calculations of the dislocation core structure in the

sodium-chloride lattice should include the consideration of stacking

faults.

ELBAUM: I would like to comment very briefly on one of the items men-

tioned in the agenda, namely the interaction of dislocations with conduc-

tion electrons and holes. I would like to point out that the calculation of

the interaction with conduction electrons and holes, particularly the cal-

culation of electronic energy states associated with a dislocation, is quite

different depending on whether we deal with a covalent-ionic or a purely

covalent crystal. The essential point physically is that in a covalent

crystal such as germanium or silicon an extra half-plane associated with

a dislocation— where electrons can, shall we say, become attached— is

a plane where all the ions have the same charge. Therefore, the total

Coulomb term in the energy, associated with the change of the charge-

carrier population by unity, is substantial.

On the other hand if one deals with a crystal that is partly covalent and

partly ionic, one can select dislocations which are known experimentally

to be mobile and in which the extra half-plane is an alternation of ions of

opposite sign. Thus, the inherent Coulomb term associated with such a

half-plane is large to begin with, and the change of the Coulomb term

when a charge carrier is added or taken away from this extra half-plane

becomes, I believe, in most cases negligible. This renders calculation of

the electronic energy states rather feasible.

HIRTH: An afterthought on the nodes. 29 Professor Haasen mentioned that

in these materials there are charges carried by the dislocations. Perhaps

Fontaine, G., J. Phys. Chem. Solids 29, 209 (1968).

See the previous exchange between P. Haasen and J. P. Hirth.
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the charges profoundly affect the node configuration and influence

stacking fault energy.

HAASEN: I think you are right. If the node extension is really small then

the core structure would become quite important and this would depend

on the charge.

BULLOUGH: Could I raise one further point? It occurs to me that it would

be interesting to hear from Professor Maradudin about how he thinks the

dislocation could be dealt with by lattice statics. A calculation he did

many years ago at Bristol, I think, is the only one which has been perfor-

med. 30 He treated a screw dislocation and defined the dislocation by

forcing the displacement field to be multi-valued. This is a kind of dis-

placement dipole approximation in the Simmons-Bullough jargon. 31

Considering how one would do an edge dislocation, one could conceiva-

bly do this by a semi-infinite sheet of forces defining the extra plane.

This procedure is the analog of what Professor Hardy and I did for the

vacancy, and this is a kind of force dipole situation. 32
It just intrigues me

to know whether you could do a force dipole for a screw; that is really

what I am getting at. Is there some kind of "force" way of thinking of a

screw dislocation?

MARADUDIN: The reason that I did the screw dislocation the way that I

did it was simply because I found it very difficult to do a force model. It

was much easier to slice the crystal along the dislocation line and simply

hook the atoms on one side of the cut back again — not to the neighbors

that they had before the cut was made, but to the neighbors below, for

example. Then at the expense of adding a few Kronecker deltas here and

there, the solution went through very nicely.

I think one can, in fact, do the edge dislocation by the half-sheet of forces

in a manner mathematically similar to the way that Max Wagner33

suggested a few years ago for treating an analogous lattice dynamical

problem. The problem was that of calculating the dynamical properties

associated with impurities which have internal degrees of freedom.

I do not want to go into the formal aspects of how one does this

extension-matrix-partitioning technique. I think the upshot is that you do

represent the edge dislocation by a set of additional forces acting on the

atoms of the undislocated crystal. The problem then reduces to ex-

pressing the displacement field as a double-Fourier integral and solving

the corresponding difference equations that way. It has not been done,

but I think it can be.

30 Maradudin, A., J. Phys. Chem. Solids 9 , 1 (1959).

31 See their paper in these Proceedings.
32 Simmons, J., and Bullough, R., op. cit.

33 Wagner, M., Phys. Rev. 131,2520(1963); 133. A750 (1964).
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HARDY: I just wanted to make one or two comments on Dr. Bullough's

question in regard to the use of long-range forces in lattice statics. In

fact we have applied this technique to charged point defects in ionic

crystals, and we find that everything goes through very nicely. One gets

the formation energies, the displacements in the vicinity of the defect,

and so on without any particular problem. The only problem is that when
one calculates the relaxation energy, one has a summation over recipro-

cal'space. As Dr. Bullough suggested, one requires a fairly dense sample

of wave vectors in reciprocal space to get that sum to settle down; but it

is possible to do this. In fact, in our papers in the proceedings of this

meeting, we describe the results we have obtained in this way.

But, as regards the actual displacements themselves, there is no particu-

lar problem. In the case of the dislocation I think the problem is more ap-

parent than real. In fact, Professor Maradudin and I were discussing

over coffee the point that the long-range part of the Coulomb field does

not directly affect the dislocation configuration. The long-range part of

the Coulomb field is something that remains actually uniform as you dis-

place, say the ion rows of the dislocation. It is the periodic part that

varies, and the periodic part is relatively short-range.

THOMSON: I just want to pick up the comment that Professor Haasen
made having to do with the mobility of the kinks on dislocations in the

diamond lattice. There have, of course, been two approaches to this;

one, the abrupt kink originally suggested by Dr. Brailsford34 and taken

seriously more lately by Dr. Gilman, and the other view that the kinks on

dislocations in these lattices are freely moving.

Now what is the experimental situation here? I believe there were some

attempts, or at least some good intentions, of measuring the kink mobili-

ty. I wonder if people in the room have anything to say about this?

HAASEN: Are you referring to Russian work35 on some internal friction

maximum at low temperatures — about 110°Kin germanium and silicon?

THOMSON: I believe there were several people who attempted to do this.

HAASEN: I'm afraid the work did not suffice to identify the process. The

authors of the most recent work36 found a peak; and related it to kink

movement; but there really is no proof that this is the true explanation of

the peak.

THOMSON: I dimly remember some work by people at Shockley's place

some years back about the motion of [small angle dislocation] boundaries

34 Brailsford, A. D.,Phys.Rev. 122,778(1961).
35 Kromer, P. F., and Khiznichenko, L. P., Phys. Stat. Solidi 21, 81 (1967).

36 Ibid.
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in these crystals, which apparently was relatively easy, but I do not re-

member the details.

GILMAN: First, I shall answer Professor Thomson, and then I shall ask my
question. It seems to me that the most direct evidence about kink mobili-

ties is given simply in Dr. Dash's pictures37 of dislocation loops in silicon,

where the loops have discrete hexagonal shapes for certain rates of

deformation and temperatures. It is very hard to account for the shape

unless the kinks have difficulty in moving. If they are freely moving, one

would expect ellipsoidal loops. The situation is similar to that encoun-

tered in etch pit formation where the ratio of the kink formation rate to

the movement rate determines the shape of a mono-surface step.

Polygonal shapes are found only if the ratio is near unity. If it deviates

from unity in either direction, circular or ellipsoidal shapes result.

THOMSON: It is not that there is a Peierls energy. I think everyone agrees

to that. It is a question of whether the kinks, themselves, can move

freely.

GILMAN: But if they could move freely along the line, then the loop could

not possibly have a hexagonal shape.

HAASEN: You know, those pictures of hexagonal shaped loops are very

nice. However, if one looks at dislocations in silicon under the electron

microscope in transmission, then they are not hexagonal or kinked. They

are like dislocations in any other material. Hence, I wonder whether the

situation has not changed a bit since those pictures were taken?

GILMAN: I would like to ask my question now. This is directed to Profes-

sor Haasen, primarly. As we all know, there is much evidence that the

stacking fault energies are in fact relatively low in some of these

crystals: this is indicated by the poly-typism of silicon-carbide and zinc

sulfide; and the fact that it is hard to grow silicon crystals epitaxially

without getting stacking faults, and so forth.

This raises the question of whether or not the issue is associated with a

nucleation barrier to the extension of a dislocation. Such a barrier might

be expected because there is a high Peierls force. Then one would not

get spontaneous extension. My question is: Have people worried about

this, and if so what do they conclude about the height of the activation

barrier for decomposition?

HAASEN: I think basically that my view, too, is that a nucleation barrier

is involved. In diamond cubic structure a view parallel to a {111} plane

is like this [fig. 2]. Here the atoms are bound tetravalently. The slip by

37 Dash, W. C, J. Appl. Phys. 27, 1193 (1956).
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Assoc. II

FIGURE 2. Possible associations of a complete (perfect) dislocation V and two partials of

opposite sign, P x
— P 2 , extending a stacking fault in the diamond structure. The stacking

order of the perfect lattice is A a B /3 C y . . . in this picture. The lattice is projected

normal to (110). Courtesy of P. Haasen.

1/2 (110) dislocations shears the widely spaced plane, [between (3 and B,

for example, in fig. 2] while in order to make a stacking fault, one must

shear in between here [between a and B in fig. 2] or rotate the tetra-

hedron, which is equally difficult.

If one has a dislocation between the widely spaced planes [between (3

and B] one might associate this dislocation with two partial dislocations

of opposite signs between the narrow planes [a and B\ If the stacking

fault energy is low, the configuration will extend quite a bit and elasti-

cally act like a split dislocation. The array is, however, on two planes one

interatomic distance apart, so only from the elasticity point of view does

one have a single extended dislocation. As Dr. Gilman was remarking,

there is the problem of nucleating at the core of the dislocation two par-

tials of opposite sign which move apart to extend a stacking fault. One
might, then, have a situation where upon applying a stress the complete

dislocation runs away and the stacking fault shrinks to nothing, the two

equal and opposite partials annihilating.

HIRTH: The next topic includes "Disclinations and Equilibrium Configu-

rations."

DE WIT: Well, I shall confine myself to disclinations for obvious reasons.

Yesterday, we saw many different ways we can look at disclinations, and
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I shall assume you all know what they are by now. There are several

small problems, though, that may still have to be settled, such as the one
that Dr. Anthony brought up about a statement I made that dislocations

can only end on disclinations. He has the same formula in his paper, in-

cidentally, on which I based the statement.38 Also of interest, is that I

have a letter from Professor Schaefer, who has the same formulas in his

paper. He also asked the question: "How can you visualize geometrically

what this means?" That is an interesting question to follow-up to see

what the answer is.

What I want to try to do here is assess the position of disclinations with

respect to the theme of the conference:

First, I think that disclination theory is a logical extension of dislocation

theory as it was developed by Professor Kroner. Hence, it motivates a

search for a more complete theory of defects, from just a continuum

point of view, for instance. One can confine oneself to linear theory, as

I have done, or one could go to non-linear theory. In the non-linear theory

we use non-Riemannian geometry where the Riemann-Christoffel curva-

ture tensor would describe disclinations and where the torsion tensor

would describe dislocations. What disclinations then do is to spoil

distant parallelism and to introduce difficulties on that account — which

one would have to look into.

A second point that I can mention is that there is a dualism— pointed

out, I think, by Kondo first39— which shows how the geometry of disclina-

tions and defects in general meshes into couple-stress theories. Hence,

it motivates generalizations in that connection: for instance, to Cosserat

and more generalized continua.

A third point is that the theory fits into Schaefer's theory,40 called "mo-

tor analysis." "Motors" as algebraic objects were introduced by Clifford,

who is also responsible for Clifford Algebra, and were used by Von Mises

in an application to mechanics. For this purpose Von Mises employed

the term "motor algebra." Clifford described motors by using double

numbers. An alternative description is via dual numbers, introduced by

Study— the word "dual" is used here in a different sense from that in my
second point. Von Mises suppressed dual numbers, feeling that the

usage was confusing in mechanics, but Schaefer has reintroduced

38 The equation in Anthony's reply below.
39 Kondo. K.. RAAG Memoirs of the Unifying Study of Basic Problems in Engineering and

Physical Sciences by Means of Geometry, I — III (Gakujutsu Bunken Fukyu-Kai. Tokyo. 1955.

1958. 1962); see also Kondo. K., in Mechanics of Generalized Continua (Prop. IUTAM Sym-

posium, Freudenstadt-Stuttgart. 1967) E. Kroner, Ed. (Springer-Verlag. Berlin, 196) p. 200.

40 Schaefer. H., in IUTAM Symposium, op. cit.. p. 57. and ZAMM 47, 319 (1967).
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them. 41 Schaefer's theory very nicely generalizes the idea of a Burgers

vector. The combination of the Burgers vector and the rotation vector of

a disclination forms a motor from his point of view.

I thought that these three points showed a relation between the general

theme of the conference — defects— and how disclination theory might

provide a path by which other theories can be brought in or new theories

can be evolved. These ideas I had before. I now realize from the discus-

sion yesterday that there are even practical applications for disclina-

tions.

One other historical point may be of interest. I notice on the agenda the

word "disclinations" as well as the word "disinclinations." The original

term, "disinclinations," is due to F. C. Frank,42 who used it in 1958 at a

Faraday Society meeting. The word in Professor Nabarro's book is "dis-

clinations." 43
I think it would be best if I leave it to Professor Nabarro

to explain this later, if he does not mind, because I think it would be in-

teresting to know how this word developed.

BULLOUGH: I do not want to spoil the subject of disinclinations, but there

are other items also in this topic. I was going to ask if anyone thinks it is

worthwhile to use anisotropic elasticity to calculate the equilibrium ener-

gies of tetrahedra and collapsing tetrahedra? Is this really the best way

to get stacking fault energy from the giant-jog spectra? Maybe it is being

done. I would be very interested to know.

HIRTH: In turning to the general discussion, first we will revert to the

question of disinclinations or disclinations. Professor Nabarro?

NABARRO: Well, I think this is just a typical piece of bogus history. As I

remember, Frank's account of it is that he used the word "disinclina-

tion." He then wondered if this was the wisest word and consulted the

Professor of English at the University of Bristol, whose name is forgot-

ten, and he said he was disinclined to use that word.

AUDIENCE: General laughter.

NABARRO: May I take the opportunity of being on my feet to show two

slides? Now, this [fig. 3] is clearly a screw disclination. It is made, as I

understand it, of a flexible magnetic material and one can see that it does

all the things that it ought to do. Incidentally, there was a very recent

41 These and further historical remarks were given by H. Schaefer in a lecture "Die Motor-

felder des dreidimensionalen Cosserat-Kontinuums in Kalkiil der Differentialformen" at

Padua (March 28-29, 1968), which will appear in Italian translation in Universita di Tri-

este— Instituto di Meccanica, Lezionie Conferenze.

42 Frank, F. C, Disc. Faraday Soc. 25,19 (1958).

43 Op. cit.
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FIGURE 3. A screw (wedge) disclination of strength — 1 . Courtesy of F. R. N. Nabarro.

FIGURE 4. Three screw (wedge) disclinations of strength — 1. Courtesy of F. R. N. Nabarro.
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paper of, I think, deGennes and Pincus44 on the singularities of an

isotropic magnetic fluid in which they show a screw disclination of

strength + 1. This [fig. 3] is a screw disclination of strength — 1 and I am
sure it is a lot older. One of the questions I want to ask is whether there

is anybody who can tell me where I got these pictures? Because, I think

they have now because of historical interest. The next slide [fig. 4] I have

been analyzing during the course of this morning. It seems to me that

what this represents is the intersection of three orthogonal screw dis-

clinations, each of strength — 1. That is to say, you draw the cubic axes

through these, and that is all there is to it. But, I do think it is a figure of

great beauty. I think it probably comes from one of the books of Leh-

mann some fifty or sixty years ago, but I should be very grateful to be re-

minded where it does come from.

KRONER: With respect to disclinations, I would like to say that certainly

they are not important in normal, three-dimensional crystals; maybe

they are important in surface crystals. They have been observed in the

lattice of flux lines in superconductors and I think that is a reason why

we should be interested in them, but not in using them to construct a

theory of internal stress or dislocations or plasticity and so on. I cannot

really see how we can construct even something like a continuous dis-

tribution of these disclinations. The reason, of course, is that a disclina-

tion would be a configuration that has so much energy that the crystal

just cannot bear it. Just because of this the disclination does not appear

in ordinary crystal lattices.

Now, we can think of quasi-disclinations. But this word does not seem to

be appropriate, because we are thinking of special point configurations

when we speak of disclinations. Instead of using the word "quasi-dis-

clinations" we could also use the word "incompatibility," because this

is just the same thing.

KLEMAN: Since Professor Kroner advocated the possibility of application

of the notion of disclinations to flux-lines in magnetic materials, I would

like to comment on the application of this notion to heli-magnetics. In

heli-magnetics, nobody has ever guessed what are the modes by which

the flux is conducted, and nobody has ever seen something which is rou-

tine, like walls or flux-lines. [Dr. Kleman proceeded to give a nice

presentation of a logical mechanism for conducting flux inside a heli-

magnet by means of a combination of a +5 disclination and a —5 dis-

clination. The explanation was heavily based on blackboard drawings

which were not retained, and hence it is not repeated in detail here.]

44 Orsay Liquid Crystal Group, Phys. Lett. 28A, 687 (1969).
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FIGURE 5. A wedge-disclination in the two-dimensional lattice formed by magnetic flux

lines in the mixed state of type II superconductors. From Anthony, K. H., Essmann, U.,

Seeger, A., and Trauble, H., in Mechanics of Generalized Continua, (IUTAM-Symposium,

Freudenstadt/Stuttgart, 1967) E. Kroner, Ed. (Springer-Verlag, Berlin/Heidelberg/New

York, 1968). Courtesy of K. H. Anthony.

ANTHONY: May I have the slide, [fig. 5] please? Here, you see a disclina-

tion which is observed in the lattice formed by magnetic flux lines in the

mixed state of type II superconductors. In this state the magnetic flux

enters into the body from the boundary of the superconducting probe.

The physical background is as follows: If a magnetic field acts on a

superconducting specimen and if the magnitude of the field and the

temperature are below certain critical values, the superconductor is in

the so-called Meissner-state in which there is no flux inside the

specimen. By increasing the magnetic field we go to the mixed state

where the flux enters through the boundary. This magnetic flux is quan-

tized in form of the flux lines which arrange themselves in the so-called

Abrikosov lattice. In this lattice one can find, for instance, such defects

as the disclination in the slide, which is called a screw disclination by

Professor Nabarro. I agree with Professor Kroner that such a defect is

quite insignificant in a solid crystal. The lattice curvature is very large,

too large to exist in a solid crystal. But if one has a very soft crystal, for
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instance this two-dimensional lattice formed by magnetic flux lines, one

can find such defects.

The equation

di OLij €jmn Iran ~ 0,

which is basic in the linear theory of disclinations, seems to establish

a geometrical correlation between dislocations and disclinations. / is the

tensor of the disclination density, a the contracted torsion tensor of the

lattice parallelism, and €jmn is the Einstein permutation operator. I am
convinced that a cannot be interpreted as a dislocation density, i.e. there

is no connection between dislocations and disclinations because of the

following facts:

We have two sorts of disclinations: The one sort, the screw- or wedge-

disclination, is characterized by a rotation failure for a closed circuit

round the disclination line, the vector of which is parallel to the disclina-

tion line. For this reason we have a Burgers vector which decreases to

zero if the radius of the Burgers-circuit round the disclination line

decreases to zero. In order to explain this behaviour, it is sufficient to as-

sume a non-vanishing disclination density /. The other case is a disclina-

tion which shows a rotation failure perpendicular to the disclination line.

Such a disclination cannot be produced in a singly connected crystal; the

lattice would be destroyed. But it is possible if one has a crystal which is

doubly connected, i.e. which contains a cylindrical hole. Now in this

case, the Burgers vector doesn't decrease to zero if we contract the cir-

cuit to the disclination line. For this reason, the disclination density / is

not sufficient to characterize such a disclination. We need a non-vanish-

ing torsion tensor a, too, which is called disclination-torsion and which

in the linear approximation is related to the disclination density by equa-

tion (1). The tensor a is an intrinsic property of the disclination and can-

not be interpreted as a dislocation density as can easily be shown by

means of the lattice parallelisms which belong to disclinations and dislo-

cations, respectively.

DE WIT: Maybe, as you say, a is part of the disclination density; that is

something that I would like to look at. At the moment it seems to me per-

haps an opinion. But I think your equation (1) is the one that needs in-

terpretation, and I will look at it when I have some time.

Another comment I would like to make is about energy. Professor

Kroner says that there is a lot of energy associated with a disclination,

but the disclination picture that Dr. Anthony showed [fig. 5] also has a lot

of dislocations in its neighborhood. This is one way that the stresses are

relieved. Maybe this is a way that would enable disclinations to occur

more easily. Here, we would have a cloud of dislocations around the dis-
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clination analogous to the situation of a Cottrell atmosphere of point de-

fects around the ordinary dislocation.

The next point is that I do not like very much the words "screw" and

"edge" disclinations which Professor Nabarro uses. The Stuttgart

school prefers "wedge" instead of "screw" disclination. This is much
more descriptive, I think, and less likely to lead to error. There does not

seem to be a screw associated with such a disclination, but there is a

wedge associated with it. You only call it a screw disclination by analogy,

because the rotation vector points in the same direction as the disclina-

tion line. But it is not even the same kind of a vector as the Burgers vec-

tor. It is an axial vector, whereas the Burgers vector is a polar vector.

NABARRO: What is the fourth word, then, screw, edge, wedge and . . .?

DE WIT: That is what I want a word for.

NABARRO: Well, that is up to you.

DE WIT: But there is no obvious reason to call disclinations screw and edge.

Perhaps someone has some ideas on this. [At this juncture, Dr. Eshelby

suggested the word "wrench" to replace "edge" disclination. Then, dur-

ing some of the succeeding discussion, Eshelby, Hirth and deWit cau-

cused, sotto voce, and endorsed "twist" disclination as a physically

descriptive replacement for "edge." Hirth announced this at a later

point in the proceedings, but it seemed appropriate to insert it after the

above colloquy.]

ESHELBY: I wanted to note that if anybody wants to hunt for a disclina-

tion, another thing to look at is a collection of screw dislocations going

through a thin film. I know of one nice picture which has got an edge

super-dislocation in an array of screw dislocations going through a thin

film. I tried to interest Professor Hirsch in it— it was taken by his

school— but all they were keen on was verifying that elasticity theory

was O.K. and that diffraction theory was O.K. I could not enthuse them

about the fact that these things formed a nice lattice with an edge dislo-

cation in it. But I think if one examined some of these pictures, he might

well find the odd disclination. The point is that they interact with a very

short range repulsion. Anything that pushes them together forms them

into a lattice. It is a fairly sloppy one, so I think one might well find a dis-

clination— or even make one, somehow.

BULLOUGH: I would like to take up the point that, of course, there are re-

gions in crystals where we could legitimately say the Riemann-Christof-

fel curvature tensor does not vanish. Right in the grain boundaries where

the lattice correspondence is lost, for example. What about the sug-

gestion that when dislocations slip into grain boundaries we call them in-

finitesimal disclinations? In other words, they go back into curvature.
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Then when they are generated from grain boundaries, they come out of

curvature, pop back into torsion, and become dislocations.

DE WIT: May I just make a short comment? Dr. Eshelby 45 showed some
time ago that one gets the elastic results for edge dislocations by

differentiating that for a wedge disclination, so they seem very closely

related.

GILMAN: I have a partial question and a partial comment. Is it not true

that there is a whole class of applications of disclinations when they

come in pairs; that is, dipoles? For example, do I not have one in my
watch, which consists of the spring wound up and held by the ratchet,

which, in time, gradually releases the disclination dipole as the watch

operates? Or, another case is the little paddle at the back end of a type

of child's boat. You know; you wind it up against the torque extended by

attached rubber bands, fix it in place, and put the boat into the water.

When you release it the disclination dipole gradually disappears and the

boat goes forward through the water.

AUDIENCE: General laughter; applause.

HIRTH: We might put that into the category of a Dirac comment in light of

Professor Nabarro's remark of yesterday. 46

BESHERS: Is it known that there is a conservation theorem for this so that

one disclinates the water?

AUDIENCE: General levity, light remarks and laughter.

ERINGEN: I would like to remind the audience that dislocation theory

came from the theory of incompatible elasticity. Now it seems that there

is a general tendency here against accepting disclinations. They can be

very easily understood if we extend the boundaries of classical elasticity

into the so-called deformable Cosserat continua. Now, without taking

some of the points from our paper tomorrow, I would like to indicate that

disclinations and, in fact, continuous distributions of disclinations, can

be brought into the framework of mechanics through the incompatibility

of the stretchable directors. In this sense, then, we must sort of abandon

the non-Riemannian geometry of three-dimensional space. It turns out,

however, that if one works with six-dimensional space and looks at the

curvature tensor in it, then it will be quite natural that disclinations as

well as dislocations come in. I think if one examined this, the disagree-

ment between Dr. Anthony and Dr. deWit would be resolved.

45 Eshelby, J. D., Brit. J. Appl. Phys. 17,1131(1966).
46 See p. 676.
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BEN-ABRAHAM: I would like to comment on the last remark. I do not be-

lieve that disclinations can be found in good crystals, except as Dr. Bul-

lough pointed out, in grain boundaries, especially large angle grain boun-

daries. However, in hunting for disclinations the place where we always

find them is in liquids. In the continuum theory, we define solids by say-

ing that the lattice directions are everywhere well defined, which mathe-

matically means that we have a distant parallelism. Now, this is

destroyed in a liquid. While, in physical terms, short-range order per-

sists, long-range order does not. In mathematical terms we have defined

connection, but we do not have distant parallelism.

Physically, that means one starts out at an atom, looks at the configura-

tion of its nearest neighbors, and finds something very similar to a

crystal. However, if one wanders around the crystal with some vector on

a path and comes back to the origin, one winds up with curvature instead

of with the original vector, and curvature in our terminology means dis-

clination. So that in the case of the liquid, we have just a body which is

continuously disclinated in a "macroscopic" sense — notice here the im-

plicit question: what is macroscopic?

Thus, a liquid, as opposed to a solid, would be characterized by a non-

zero Riemannian curvature. Why? We shall be looking into this a little

bit more carefully; it turns out that there are still very severe restric-

tions.

For one thing, on a macroscopic scale a liquid has to be isotropic. This

restricts one to a scale of curvature different from zero and also

reasonably small as compared to unity. Otherwise, the liquid will not be

derivable from the crystal.

KRONER: I think in the sense that you use fluids here, you could say the

same for polycrystalline aggregates. I do not see how the change in ener-

gy comes in, however.

Also, I do not share the view of Dr. Bullough that grain boundaries have

anything to do with disclinations. Instead, in my opinion one should

describe the entire assembly of atomic points by a general affine connec-

tion, which also has a metric part. To the metric part belong both the

dislocations and the disclinations, because they preserve the lattice. In

fact, in dislocated and disclinated lattices one can compare distances by

counting atomic steps. However, if one goes through a grain boundary,

one does not know how to go from one point to the next because there is

quite a choice of going in different directions. So, I would say that the

grain boundaries are regions of the crystal which are non-metric. One
cannot compare lengths by counting lattice points on a path which goes

through a grain boundary.

In summary I think grain boundaries and lattices would fit quite well into

the general scheme of differential geometry. But, as I said before. I think
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the disclination is completely different from the grain boundary; the

former leaves the lattice intact.

BULLOUGH: You object to infinitesimal disclinations, do you?

KRONER: You could say quasi-disclinations, but there is nothing in-

finitesimal in the lattice.

HIRTH: Well, I think we might give some time to the other topics that

were on the agenda at this point. Dealing with the question of whether

one might calculate tetrahedra energies using anisotropic elasticity, I

think Dr. Head has something to say.

HEAD: Yes. Well, you are not referring to complete tetrahedra, because

the Stuttgart school years ago produced energies for them.

BULLOUGH: No; the unwrapping tetrahedra.

HEAD: Oh! The trouble here is that for a given configuration of dislocation

one can think of ways of getting its energy in anisotropic theory, but in

the cases one is interested in here there are mobile elements whose posi-

tion is not known in advance. These have to take up their equilibrium

position.

Just thinking of the dissociation of a triangular Frank loop, for instance,

where are the Shockley partials running up the planes that are going to

be the faces of the tetrahedron? They will be curved dislocations whose

position will be determined by equilibrium conditions, but how to handle

this sort of mobile dislocation problem in anisotropy I have no idea at all.

We would like to know how to do it, but it is a very difficult

problem— even computerwise. I mean, one could write something and

put it in a computer, but it might take months of computing time. It is im-

possible to get that much time.

BULLOUGH: I was really thinking, with your experience at anisotropy and

so on, whether you think it is worthwhile. Whether it would improve the

accuracy of stacking fault estimates. You mentioned absurd errors in

stacking fault energies in your talk, and I wondered whether this would

be one way to logically reduce the error?

HEAD: Well, you are going to a more complicated configuration than the

usual nodes, and it is rather hard to handle in anisotropic theory.

BULLOUGH: Is not the super-jog the best way to do it?

HEAD: Well, it is not clear to me that it is in fact do- able— in practice, any-

way. As a practical computational method, I do not know of any com-

puter that could handle it.
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HIRTH: Could I say something here? What about Gallagher's configura-

tion of three parallel partials? 47 That should be amenable directly to

anisotropic elastic calculations.

HEAD: Sure; I mean, you have got a two-dimensional situation there. That

should be straightforward. Ordinary elasticity is bad enough in three

dimensions, but anisotropic cases are more difficult.

HIRSCH: I am not quite clear whether it would be possible to do the ses-

sile jog. Perhaps this is what Dr. Bullough was getting at. It would be

very nice to test whether all these proposed configurations for dis-

sociated jogs really exist using anisotropy.

BULLOUGH: I was really referring to the super-jog mechanism for getting

the maximum-size tetrahedron.

HIRSCH: Right! But at least in that case you are not worried about bowed-

out dislocations, are you?

BULLOUGH: Well, what is wrong with J0ssang and Hirth's piecewise con-

tinuous dislocation model? 48 Do you have to put a bow-out on? It seems

an incredible complication unless it's really necessary.

HIRSCH: Well, I think it would be a very interesting thing to do, if it can

be done. It also has relevance to another topic on the agenda: that is dis-

sociated dipoles. Are they in fact formed from dissociated jogs?

LOTHE: I have one comment. In the planar cases, I think the anisotropy

problem is manageable. An example is the extended node which can be

handled using energy factors for straight dislocations, such as are

becoming more and more available, combined with Brown's formula,49

say, or with piecewise straight dislocation formulas.50 The planar curved

dislocations can be handled in the anisotropic case using Brown's formu-

la in the same way he did for the isotropic case, requiring only infinite

straight dislocation parameters.

DE WIT: In most of the treatments of equilibrium configurations, except for

the straight dislocation, there occurs in the formulas a logarithmic term

with a core cut-off parameter. It sometimes makes as much as an 8% dif-

ference to the experimentalist, depending on what one chooses for this

core cut-off parameter51 — for instance, when using the formula of Brown

for dislocation nodes.52 So, my question is: Do those people that have

47 Gallagher, P. C. J., J. Appl. Phys. 37, 1710 (1966).

48 J0ssang, T. , and Hirth, J. P., Phil. Mag. 13 , 657 (1966).

49 Brown, L. M., Can. J. Phys. 45 , 893 (1967).

50 See paper by J. Lothe in these Proceedings.

51 Ruff, A. W., Jr., Metall. Trans. 1, 2391 (1970).

52 Brown, L. M., Phil. Mag. 10, 441 (1964).
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worked on the core-structure statics have a way of using their results to

come up with a better cut-off parameter for use in such continuum

theory? The experimentalists, I think, would very much like to know
this.

BULLOUGH: Perhaps I could comment? It is a terribly difficult question!

But my own opinion is that in these calculations involving elastic ener-

gies of stable configurations, I at least find it esthetically pleasant to

completely separate the two: the unknown hole (the dislocation core)

down the middle and the harmonic energy around it. So I make a little

plea for putting in the correct core-surface traction term. This traction

term is the quantity you have to add on to the surface-integral expression

for the energies so that it actually equals the volume integral of the strain

energy density. I know that will start something!

KRONER: Just a short comment. In my old book on continuum theory of

dislocations and internal stress,53 I have done something on this core

problem. One can calculate the total dislocation energy, for instance, by

using Peierls' method, fit this to the ordinary elasticity solution, and

choose the cut-off radius so that the Peierls solution is matched. I think

that what the Peierls solution gives in excess of the elasticity solution is

just the core energy. This is a way to do it, I think.

BULLOUGH: My difficulty with your continuous distribution approach in

the core is the following. I have always been puzzled by the fact that you

are describing an atomic region by a continuous distribution of disloca-

tions and getting the energy from that via the interaction between the in-

finitesimal elements. In a way this is just the region where one does not

want infinitesimal elements. You criticized my previous remark on the

grain boundaries because you said there are atoms. [General laughter.]

But that is not how the Peierls energy is found. As I understand the

Peierls model in your general theory, you have an arbitrary distribution

of infinitesimal dislocations which goes into the general energy expres-

sion. The Peierls energy, however, is a fully atomistic energy that is han-

dled separately.

TEUTONICO: I want to get back to Professor Hirth's comment about Gal-

lagher's three-fold ribbon. One cannot calculate its energy analytically,

in general anisotropic theory, for the {111} plane. One can get it for a

(112) direction or a (110) direction. Thus, there is an analytic solution

every thirty degrees, in the {111} plane, but that is all; it cannot be done

in general for that plane. However, I have performed the calculation nu-

merically.

Kroner, E.,Ergeb. angew. Math. 5 , (1958).
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HIRTH: But. if Dr. Head gets his solution to the general sextic equation, an

analytic solution would be available.

HEAD: If es. Hyperelliptic functions are analytic functions, so one ran do

the problem analytically. 54

HARTLEY: I would like to make a comment on the calculation of the

criterion for dissociation of dislocations, apropos of what Dr. Bullough

said. We have done a bit of an extension in pushing linear elasticity to

calculate the energetics of the dissociation of perfect dislocations in

f.c.c. crystals into two Shockley partials. The aim was to see just what

additional corrections to the more-or-less classical, linear result one gets

by including the correct core-surface traction terms; by including the

fact that the continuum elastic core radii will probably change in the

ratio of the moduli of the Burgers vectors; and by including the geometri-

cal fact that the only region that has a constant— or anything like a con-

stant—stacking fault energy is the region between the boundaries of the

cores.

^ ith these three corrections, and not taking into account any considera-

tion of the anisotropy of the core energy itself it turns out that the energy

change accompanying dissociation of a perfect screw dislocation does

not become less than zero until separations are reached of about ten

times the core radius. This value replaces that of 2.7 (more exactly the

number e) times the core radius which is obtained without considering

the core tractions and without considering these other geometrical

things. 55

-Also, for the edge, instead of 2.7 the factor is 4.1 times the core radius.

Thus, the point is that including these corrections makes it even less

likely that a dislocation will dissociate with a given fault energy.

HIRTH: \es. I might make a brief comment on that. I think what Dr. Bul-

lough had in mind was that there are. as far as I can count back, three

schemes for taking the core into account in the elastic solution: 56 One is

the core traction method that Bullough mentioned: one that of Professor

Kroner of more-or-less averaging a core screw-edge energy and including

54 See. for example, for the general quintic: Klein, F.. Lectures on the Icosahedron and the

Solution of Equations of the Fifth Degree (Dover Publications. X.Y.. 1956): for the analogs-

between the general quintic and the general sextic: Klein. F.. Math. Ann. 61. 50 (1905): and

for the general sextic: Gordon. P.. Math. Ann. 61. 453 1 1905). 68. 1 (1910). Coble. A. B.. Math.

Ann. 70. 33711911.

55 Hartley. C. S.. Phil. Mag. 14 . 7 1 1966) or Friedel. J.. Dislocations iPergamon Press. 1964).

p. 159.

56 Bullough. R.. and Foreman. A. J. E.. Phil. Mag. 9. 316 (1964): Kroner. E.. Erg. angew.

Math. 5. (1958); Jossang. T.. Lothe. J., and Skylstad. K.. Acta Met. 13 . 271 (1965): Jossang.

T.. Phys. Stat. Solidi 27. 579 1
1968..
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it; and one that j0ssang suggested of just using the interaction energy

between two screw dislocations to establish a core parameter. All of

these are self-consistent and as long as one restricts interactions to a

given glide plane, they lead to no problems. But, all lead to some problem

in determining the interaction energy if there are displacements of the

dislocations in other than radial directions. So it is a question of self-con-

sistency and of realizing that there are these problems with what one

might call the torque terms.

HEAD: Could I just dispute the fact that there are three methods you have

just named taking the core into account? You can only take the core into

account when you know it— on the atomic scale.

HIRTH: I mean artificially taking it into account.

HEAD: Artificially, yes. As one example, consider the sort of variation you

can get if you consider the question: Does a triangular Frank loop have

a higher or lower energy than the corresponding stacking fault

tetrahedra when the sizes are of the order of 50 A?
The whole business essentially hinges on the core. It is the core energy

that determines the difference here. All of these conventions can give

you any answer; you just have to know the real core energy. Perhaps

such comparisons with experiment provide a way of determining core

energies, or of determining which convention is better for a particular

case. But it does not mean that when you change the Burgers vector or

something else that the convention stays good.

HIRTH: My point was that none of the conventions is, a priori, better than

the others, but that one can choose one and then use it self consistently

as an artificial way of describing the core in the absence of actual

knowledge of it.

HEAD: If you had some way of calibrating it absolutely to start with, yes.

BULLOUGH: Your comment is rather negative because we do not know

the core energy. I would dispute strongly that we took into account

something that we did not know. Ours was an elastic calculation and all

we tried to do was make sure we got the unique elastic energy; and if this

satisfactorily explained the results — which it did— this was our defini-

tion of contentment.

HEAD: Sure. Well, what you did was very good in that it separated clearly

what you knew about the linear elastic energy into which— if you ever

knew the core value — you could plug that result. It gave you a clear

description of the linear elastic energy, but not of the total energy.

BULLOUGH: I never said it did.
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HEAD: No, but people are using it as being a better description of the total

energy than some of the other cut-off parameters.

BULLOUGH: Well, they should not be.

HEAD: O.K. But they are! I mean, it is represented as being a better

description of the total energy. Not by you, but by other people. I say that

none of these cut-offs is anything more than a conventional description

of the total energy.

BULLOUGH: I must say we get misquoted many times regarding this

paper, the one with Foreman on the energies of rhombus-shaped loops. 57

We actually did a Peierls calculation in that paper. We discussed clearly

what we were missing out, and we put it in, to the Peierls approximation.

So I mean, I do not understand why people misquote us.

HEAD: Well, this is always a problem. I think we all have this cross to bear

some way or other. We all have a paper that everyone misquotes, and we

can never understand why.

DE WIT: This brings me back to the original question.

AUDIENCE: Applause.

DE WIT: Do the people who do lattice statics have anything to contribute

that would be helpful? Because they presumably are calculating the core

structure.

HIRTH: This might be a question that we could continue in the "Future

Directions" panel; it seems to be a future question.

BULLOUGH: It is very much in the future.

HIRTH: As a final remark, somebody passed up a paper and suggested a

name replacing the edge disclination as a "lock-washer" disclination.

On that note, I suggest we adjourn. [Whereupon the session was

adjourned.] 58

57 Op. cit.

58 Although the panel did not have time to discuss topic (5), "Critical Configurations." in a

conversation after the panel P. B. Hirsch said that there was one point relative to this topic

that he felt should be noted. To wit: that someone should theoretically treat Fleischer's

mechanism for cross slip of an extended dislocation at a particle. See Fleischer. R. L.. Ac ta

Met. 7, 134(1959).
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