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Abstract

The proceedings of the Symposium on Mechanical and Thermal Properties of Ceramics,
held at the National Bureau of Standards in Gaithersburg, Maryland, on April 1-2, 1968,
are presented. The symposium was cosponsored by the American Ceramic Society, the
American Society for Testing and Materials, and the National Bureau of Standards. Atten-
tion was concentrated upon properties primarily of structural and/or high temperature use
including melting points, thermal expansion, thermal conductivity, thermal radiation
properties, elasticity, viscoelasticity, inelastic deformation, and fracture. The dependence
of these properties upon composition and microstructure was surveyed and the importance
of controlling these features of character to insure reliability of ceramics was emphasized.
The procedures by which American ceramists formulate standards and specifications to
assist in insuring reliability were summarized.

Key Words: Ceramics; elasticity; fracture; inelastic deformation; melting point;
standards; thermal conductivity; thermal expansion; thermal radiation;
viscoelasticity.
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Foreword

A major responsibility of the NBS Institute for Materials Research is to insure the

availability of those basic data on the properties of materials which are urgently needed to

meet the requirements of the Nation's scientists and engineers. To obtain reliable data of

this kind not only must the experimental procedures be tailored to permit the required meas-
urement accuracies, and the results correctly analyzed, but also the sample materials must be
sufficiently uniform and well characterized to permit measurements amenable to meaningful
interpretation and practical use.

The reliability of data needed for structural or high-temperature use of ceramics is an
important example. Sensitivity of strength data to test conditions and complications introduced

by high measurement temperatures plague the measurements and make experimental procedures

a prime concern. Also, several important properties, including thermal conductivity, inelastic

deformation, and strength, are sensitive to small variations in microstructure and composition.

To provide a basis for understanding the dependence of ceramic properties on various charac-

terizing features, a Symposium on Mechanical and Thermal Properties of Ceramics was held

at the National Bureau of Standards laboratories in Gaithersburg, Md., in April 1968. The
meeting was jointly sponsored by the American Ceramic Society, the American Society for

Testing and Materials, and NBS.
The National Bureau of Standards is pleased to have the opportunity of making the

papers presented at the Symposuim available in this publication. In this way we hope to assist

those attending the conference in optimizing the use of ceramics, to make the conference

results available to a wider audience, and to show appreciation for the essential contributions

of the participants and the cosponsor organizations.

A. V. Astin, Director
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Introduction

This is a collection of the proceedings of the symposium, Mechanical and Thermal
Properties of Ceramics, held at the National Bureau of Standards laboratories at Gaithersburg,

Maryland, on April 1-2, 1968. Approximately 210 scientists and engineers participated.

The proper selection and effective use of materials is one of the fundamental factors upon
which advances in technology depend. Ceramic materials have a long history of effective use in

many applications for which their hardness, stiffness, strength, resistance to corrosion, thermal

and electrical insulating qualities, high melting points, optical properties, semiconducting

properties, dielectric properties, magnetic properties, piezoelectric properties, nuclear prop-

erties, or other special qualities are appropriate. The ceramic industry in the United States

continues to grow and is approaching the ten billion dollar a year level. Every type of material,

including ceramics, is challenged, however, both by competition from other materials in its

traditional areas of use and by the requirements for improved properties needed in new
applications.

The development of new materials and the improvement of properties depend partly

upon an empirical approach in which the composition and manufacturing procedure are sys-

tematically varied and correlation with resulting properties is attempted. This empirical

method will probably continue indefinitely to be an important part of materials development

and need not conflict with the use of materials science. The latter is helpful in predicting areas

where improvement appears possible, choosing the parameters to be varied, designing an

efficient processing—property study, and interpreting the results.

Ceramics are frequently manufactured by a heating process which appears deceptively

simple but which usually involves a number of competing reactions and transport processes

occurring at different rates. Optimizing a particular property requires a starting composition

and heat treatment which produces the final composition and microstructure (usually denoted

by the word "character") needed for that property. In principle one should begin with the

properties needed, determine the character required from an understanding of the property-

character relationship, and design the processing from an understanding of the chemistry and

mass transport which are involved. In practice the understanding of both areas is limited so

that empirical procedures, guided by some degree of fundamental understanding, are generally

used.

The current status of ceramic processing was surveyed by the Materials Advisory Board

ad hoc Committee on Ceramics Processing, chaired by Professor J. A. Pask, and their conclu-

sions are available in Ceramic Processing, National Academy of Sciences Publication 1576

(1968). The importance of an improved understanding and use of the property-character

relationship by users of ceramics as well as producers is emphasized. In particular, the user

should understand that many properties depend on other aspects of character in addition to

gross chemical composition. The engineer who specifies that a part be made of "alumina" is

leaving the strength very poorly specified; commercial alumina ceramics range in strength

from values below 2000 psi for certain refractories to values approaching 100,000 psi for certain

tool bits and other special purpose ceramics. The present symposium is aimed primarily at

the users of ceramics but it is hoped that producers will also find a systematic review of prop-

erty-character relationships useful.

Properties of ceramics in general form too broad and diverse a subject to be effectively

treated in this symposium; the properties selected for treatment are those related to mechan-

ical and thermal behavior. Ceramics are frequently used to exploit their thermal properties

and also as structural members in which case their deformation and ultimate fracture under

load are of obvious importance. In many applications ceramics are used to exploit other prop-

erties, but mechanical and thermal properties are usually still important in determining the

size, weight, and cost of the parts involved. Ceramics are, of course, particularly well suited

to high temperature applications but the conditions of high temperature use frequently create

thermal gradients with accompanying thermal stress. The symposium accordingly includes
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thermal factors not only because of their direct engineering importance, but also because of

their role in limiting load-bearing capacity at high temperatures; i.e., the melting points,

thermal expansion, thermal conductivity, and thermal radiation properties are surveyed.

The practical utilization of high-performance ceramics requires more than their successful

production on a laboratory scale and favorable economic factors. Such ceramics must be reliable

in production, that is, their properties must be uniform within each piece and reproducible
from piece to piece. Small lots of special ceramics frequently show significant variation in

structure-sensitive properties including strength. This variation has raised questions con-

cerning the permissible stress levels in structural applications and is currently inspiring research

aimed at determining to what extent this variability in strength results from variability in

processing, variability in testing, or from the intrinsic nature of brittle materials. This research

aims at the ultimate establishment of a degree of processing control, testing accuracy, and
design understanding to permit ceramics to be used routinely and reliably at high stress levels.

Such use depends on acceptance of testing standards by the producers and users of ceramics.

This symposium accordingly opens with a survey of the activities of the American Ceramic
Society and the American Society for Testing and Materials, two of the principal institutions

through which American ceramists communicate and formulate standards. The needs for

high-performance ceramics are next discussed and the importance of reliability is stressed.

The thermal properties are then treated, being taken first because of their role in determining
stresses resulting from heat flow. Finally, the mechanical properties which determine response

to stress, whether of thermal or mechanical origin, are discussed. Throughout the discussion

of properties the emphasis is placed on the property-character relationship; i.e., on the features

of composition and microstructure upon which the properties depend. Some property tabula-

tions are given to illustrate property ranges, but exhaustive tabulation of numerical values

has not been attempted. References are given to many existing tabulations which, excellent as

some are, need to be used carefully with an understanding of how variation in character of

the ceramic under consideration can cause properties to vary from the handbook values.

Each of the following papers was written as a separate entity and can be read without

reference to the others. A few comments on some of the highlights of the papers and on the

interrelation of the various properties should, however, give a helpful perspective on the gen-

eral subject of the symposium. An important point concerning high-performance ceramics is

made in the paper on the American Ceramic Society and Ceramic Materials Technology.

The example of ceramic insulators for spark plugs is quoted to make the point that when large

volume requirements exist ceramics can be and are routinely produced at modest cost to

reliably meet high-performance specifications. This example raises the question of how well

expertise developed in producing a specialized ceramic can be transferred to the production

of other ceramics to meet somewhat different high-performance requirements. A purely em-
pirical production process developed around a specific raw material and product may not be a

good guide in developing a new product; understanding of the property-character relationship

and of the process of character development during processing are needed. Standard test

methods for both character determination and property measurement are therefore important

to aid in developing this understanding in relation to commercial manufacturing of ceramics.

The process by which United States Standards are developed and the role of the American
Ceramic Society and the American Society for Testing and Materials in the development of

standards for ceramics is accordingly described.

Commercial development of new ceramics will occur only if justified by the demand; the

paper on "Properties of Ceramics for Structural and/or High Temperature Use; Need for

Control, Measurement and Compilation" discusses new markets open to ceramics and empha-
sizes the requirement of reliability and the consequent need for understanding the character-

property relationship and for good testing procedures.

The discussion of thermal properties begins with a paper on melting points. This might

incorrectly be thought to be a simple subject but the engineer unfamiliar with phase equilibria

who attempts to use ceramics at high temperatures may be in for a surprise. Thus, for example,

Ti0 2 ,
melting at about 1840 °C, and CaO, melting at about 2570 °C, might appear to be safe

for use at 1500 °C. Anyone who has tried using CaO and Ti02 in contact with each other at

1500 °C or many similar combinations of ceramics above their eutectic temperature is referred

to the paper on melting points for an explanation of what happened to his ceramic parts.
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One of the factors limiting use of ceramics at high temperature, as mentioned previously,

is the development of stress accompanying thermal gradients. Thermal shock parameters

involving elastic moduli and thermal expansion have been used as a rough guide to the "thermal

shock resistance" of materials, but it has long been recognized that a complete analysis of

the heat flow and temperature distribution for each particular device is needed. High-speed
computers make this feasible so that modern designs are increasing based on an analysis which
requires the thermal radiation properties (emissivity, etc.) and thermal conductivity to cal-

culate the temperature distribution and then requires the thermal expansion and elastic moduli
(plus equations giving plastic response if it is involved) in order to calculate the stress distribu-

tion.

Fracture of polycrystalline ceramics as a result of stress of thermal or mechanical origin

usually occurs suddenly and completely, at least at temperatures below the range of appreciable

plastic deformation. The need to understand the characteristics of brittle fracture and to

design for the use of ceramics with this in mind is apparent. The fracture paper in this sym-
posium deals with this subject from the point of view of fracture mechanics as a branch of

continuum mechanics as well as from the point of view of the effects of defects and environ-

ment. Finally, the subject of mechanical testing is treated in a separate paper because of its

difficulty and importance.

J. B. Wachtman, Jr.
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The American Ceramic Society and Ceramic Materials Technology

James S. Owens
President, The American Ceramic Society

Champion Spark Plug Company, Ceramic Division, Detroit, Michigan 48211

The ceramic industry in the United States, through the continued growth of the use of

traditional ceramics and the development of many new products and applications, has a

sales volume approaching ten billion dollars a year. The American Ceramic Society, which
was founded 69 years ago and represents all segments of the industry, has grown into the

world's largest ceramic technical organization and is still growing at the rate of 50 percent

per decade. It has diversified into ten Divisions to serve the economic, technological and
scientific interests associated with ceramics. High performance ceramic materials with

unique properties inherently dependent upon microstructure have been developed for

specific applications that require either limited quantities or high volume mass production.

Careful production control to insure a high level of performance is receiving close attention.

Key Words: Ceramics; ceramic industry; American Ceramic Society; microstructure;

properties; special ceramics.

It is an honor to be invited to take part with
you in this significant Symposium on Mechanical
and Thermal Properties of Ceramics, and it is a
pleasure to do so. Since its founding, The Ameri-
can Ceramic Society has been extremely inter-

ested in encouraging and supporting the continua-

tion of the technical education of the members of

the ceramic industry and of those associated with
it. This meeting is an excellent example of such
continuing education. Our Society is happy and
proud to sponsor this Symposium through its

Baltimore-Washington Section in cooperation with
the Middle Atlantic District of the American
Society for Testing and Materials and the

National Bureau of Standards.
It is particularly fitting that this program

should be held here at the National Bureau of

Standards since the Bureau has done outstanding
research in ceramics and this Symposium was
organized by J. B. Wachtman, Jr., who is Chief
of the Physical Properties Section of the Bureau
and is an officer of the Baltimore-Washington
Section of The American Ceramic Society.

The ceramic industry is a large one with
estimated sales this year of about ten billion

dollars. Ceramics include the inorganic nonmetal-
lic solid materials. They have great importance
for a wide variety of industrial, commercial and
consumer uses, and to our Government for both
national defense and civilian purposes. Their
broad range of uses includes, for example, refrac-

tory ceramics for application at very high temper-
atures, in nuclear and aerospace technology, and
in industrial furnaces and kilns; electronic ceram-
ics in miniaturized microelectronic circuitry that

helps to make possible new generations of com-
puters and other complex, yet compact, electronic

equipment; spark plug and jet igniter insulators;

ceramic protective coatings for metals; brick,

glass, and tile structural and decorative ceramics;
glass containers; and dinnerware.

Since the success of many applications of

ceramic materials depends on their mechanical
and thermal properties, this Symposium is an
important and timely one.

The American Ceramic Society had its inception

seventy years ago in February 1898 at the 12th
Annual Convention of the National Brick Manu-
facturers' Association in Pittsburgh where the

first scientific paper of its kind was presented

before that Association. As a result, there de-

veloped in the next two days the idea for a sepa-

rate society for the presentation of technical

papers on ceramics that culminated a year later on
February 6, 1899 in the official chartering of The
American Ceramic Society in Columbus, Ohio,

with 15 charter members. These included General
Edward Orton, Jr., who was Secretary of the

Society until 1917, and A. V. Bleininger who was
associated with the National Bureau of Standards

for several years.

Our Society has grown from those very small

beginnings into the largest ceramic technical

organization in the world with just under 10,000

members and subscribers. It is dynamic and pro-

gressive and has developed to its present signifi-

cant position because it was needed to aid in the

development and the improvement of the ceramic

profession and industry, and it has made a con-

tinuing, conscientious, successful effort to fill this
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need. As a result, the Society has grown tremen-
dously and is still growing in membership at the
rate of over 50 percent per decade. However,
many of the activities of our members are in-

creasing twice that rapidly. Thus, the number of
technical papers published annually, the number
of papers presented at the Annual Meeting and
the fall Divisional Meetings, the attendance at
the fall meetings, and the number of abstracts
published yearly has doubled in the past decade.
The primary services of the Society are the

holding of meetings for the sharing of technical
ceramic information by the presentation and
discussion of papers and the publication of these
papers for the wider dissemination of the infor-

mation. These are extremely important services,

but, in addition, the Society provides other
significant services for its members and for the
whole ceramic industry and the public generally.
These include authoritative, specialized publica-
tions on selected, important subjects such as
Phase Diagrams for Ceramists, Engineering Prop-
erties of Selected Ceramic Materials, Large Scale
Phase Diagrams of Oxide Systems, and Symposium
on Nucleation and Crystallization in Glasses and
Melts; the encouragement and sponsorship of
continuing education programs such as this

Symposium and the programs carried out under
the auspices of other Sections of the Society;
investigation of the needs of the ceramic industry
for technical information services and its possible
sequel for the determination of optimum methods
to provide the services found to be needed; liaison

through the National Institute of Ceramic Engi-
neers with other engineering disciplines; coopera-
tion with related scientific and technical societies

in this country and with ceramic organizations
abroad on matters of common interest; and
cooperation with governmental agencies and
public organizations such as the National Re-
search Council through members of the Society
serving on advisory panels, boards and committees
of these organizations in the public interest. I
might also mention that many members of our
Society serve on appropriate committees of
ASTM to help advance the work of that distin-

guished organization for the public welfare.
The American Ceramic Society is international

in scope with the staff housed in a functional
headquarters building in Columbus, Ohio. The
Society holds an annual meeting each spring at
which technical programs are presented in the
fields of interest of all of its Divisions and pro-
grams are also presented by its Classes. The
Society is organized functionally into two Classes
and ten Divisions. The Classes are the National
Institute of Ceramic Engineers which provides
coordination between our Society and other engi-
neering fields and the Ceramic Educational
Council which is concerned primarily with educa-
tional policies, college curricula, and other similar

educational aspects of ceramics. The Divisions
represent ten different categories of interest in

ceramics of the members of the Society namely
Basic Science, Ceramic-Metal Systems, Design,
Electronics, Glass, Materials and Equipment,
Nuclear, Refractories, Structural Clay Products,
and White Wares. Each Division, with one ex-

ception, holds a fall meeting for the presentation
of technical papers of interest to its members.
The Society is also organized regionally by means
of thirty Sections located throughout the United
States which carry out its activities on a local or
regional basis. The Sections hold evening meet-
ings at regular intervals; some also hold meetings
of one to three days duration, from once to three
times a year, at which papers are presented on
different technical ceramic subjects. Some Sections
carry on continuing education programs, of

which this Symposium is a good example.
We in The American Ceramic Society are proud

to be able to contribute in a measurable way to the
technical advancement of our country. We invite

you who may be concerned with ceramic materials,

but who are not members of the Society, to join

with us in this progress.

I should like now to discuss briefly some general
aspects of the microstrueture of ceramic materials

in view of its influence on their properties. Poly-
crystalline ceramic systems are quite complex,
usually consisting of two or more phases, pores of

varying size and size distribution and of varying
shape and shape distribution, grain boundaries,
grains of varying size and size distribution that

may range from quite broad to very narrow,
distribution of impurities within grains and in

grain boundaries, partitioning of impurities be-

tween phases, and a crystallographic orientation

that may range from a random one to an ex-

tremely well defined one. The arrangement of

such internal features on a microscopic scale

constitutes the microstructure. Sub-grain features,

such as dislocations, complicate the microstructure
even further. While shape, size, surface condition,

and other physical factors of a polycrystalline

ceramic article of a given composition may have
definite effects, the microstructure will, to a

considerable extent, influence its physical, mechan-
ical, thermal, and electrical properties.

An understanding of the effect of specific

microstructural characteristics on a property or

properties of a ceramic is often an inducement to

endeavor to change these characteristics. Thus
Coble [1] achieved translucency and enhanced
strength in a high alumina ceramic, later called

Lucalox, by the elimination of porosity and the

control of grain growth by a special sintering

process. Spriggs [2] has reported that a transverse

bend strength of up to 130,000 psi has been
obtained for dense, submicron grain size alumina
prepared by vacuum pressure sintering to maintain
minimum grain size and porosity. These develop-

ments were made possible by the application of

the knowledge that porosity and large grain size

weaken brittle materials and that porosity in-

creases the reflection and refraction of light. These



microstructural characteristics could readily be
observed, but there are other characteristics that
are not so easily measurable. Insley and Barczak
[3] demonstrated that polycrystalline alumina
ceramics could be strengthened by heat treatment
that causes a re-solution of phases present at
grain boundaries that have precipitated from
solution in the grains. This thermal conditioning
illustrates the dependence of the strength of a
ceramic on a rather subtle change of its micro-
structure caused by heat treatment. Jorgensen and
Westbrook [4] believe that solute segregation at
grain boundaries is a significant mechanism for

control of grain growth and porosity; they have
used the results of such refined techniques as
autoradiography and microhardness testing in

support of their hypothesis.
The announcement of this Symposium pointed

out that the control and reproducibility of many
desirable physical properties of a given ceramic
material depend upon the characterization and
control of its microstructure and composition. It

has been demonstrated, for example, that the
mechanical strength of a particular type of ceramic
will depend markedly on both grain size and
porosity and that the thermal conductivity can
be strongly affected by composition and also by
compound formation. Riddle [5] reported experi-

mental results which show that an intermediate
compound in a binary system will have a lower
conductivity than either end member.
Any type of ceramic with specifically required

properties will require careful control of its pro-
duction to assure its optimum behavior in the
environment to which it is to be subjected. The
specifications for a ceramic do not usually include
a specification of the microstructure although such
properties as nominal chemical composition, spe-
cific gravity, flexural strength, dielectric constant,
and thermal conductivity, for example, may be
specified. However, almost all of such properties
are dependent to some extent on the micro-
structure, and the specification of microstructure
might be helpful for the improvement of the
quality and uniformity of ceramic materials. In
this regard, some more effort might be directed
toward more rapid and efficient methods of pre-
paring sections for microstructural examination
and determination. We are able to determine the
composition of materials by instrumental tech-
niques in a matter of minutes. However, the
composition alone will not adequately characterize
a material for all purposes and a rapid method of

microstructural analysis would undoubtedly be
of great value for process control.

Some of you may be concerned with ceramic
materials that have rather unique properties for
highly specialized applications and which may be

required in only relatively small quantities. The
development of such materials may be very time
consuming and costly, and their subsequent
small scale production may likewise be expensive.

It should, however, be realized that there are

other ceramic materials that have the excellent

properties needed to meet equally stringent re-

quirements but which are used in much larger

volume and have much lower production costs.

One example would be the ceramic insulators for

spark plugs. These are necessarily made of highly
refined, carefully developed and manufactured
ceramics that must withstand extremely strin-

gent conditions in use. These ceramic insulators

must have excellent electrical resistance over a
broad temperature range, high dielectric strength,

excellent resistance to thermal shock, high me-
chanical strength, good thermal conductivity, great
hardness and resistance to abrasion, and excellent

resistance to chemical attack by combustion
products. The development of a ceramic with a

suitable balance of these electrical, thermal,
mechanical, and chemical properties and the
development of well controlled processes to manu-
facture insulators from it require a great amount
of intensive research and engineering work. How-
ever, the development costs may be distributed

over a large volume of product so that the special

ceramic insulators with carefully specified and
controlled properties can be produced at moderate
cost in the large volume required.

The technical papers that will be presented in

the program that has been arranged for this

Symposium should be of great benefit to all of

us who have the responsibility of fundamentally
studying, developing, endeavoring to improve,
producing, testing, specifying, or using ceramic
materials.
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ASTM—Its Function and Philosophy

Francis J. Mardulier, President, ASTM

Manager, Rock Products Chemicals, Dewey and Almy Chemical Division, W. R. Grace and Co.,

Cambridge, Mass. 02140

The American Society for Testing and Materials is a nonprofit privately operated
interdisciplinary materials-oriented society which specializes in standards rather than a
discipline-oriented society. ASTM provides the meeting ground for the technically com-
petent engineers and scientists who comprise the technical committees which develop the
realistic compromises, known as standards, which govern our economic life. Its membership
comes from and is supported by industrial companies, government bureaus, educational
institutions, testing laboratories, etc., all of whom are vitally interested in the voluntary
standardization process.

Key Words: Compromises; consensus; materials; standards; technology; voluntary
standardization process.

It is a privilege to be here to tell you about
ASTM and the part it plays in voluntary stand-
ardization and its relation to the other organi-
zations represented here in this forum. I welcome
particularly this opportunity to discuss ASTM's
principles of operation. We are grateful indeed
to the National Bureau of Standards for providing
this second opportunity to join with them and
the American Ceramic Society in a technical
conference.

Founded in 1898 as the American Section of

the old International Association for Testing and
Materials, ASTM's original charter, dated 1902,
stated its purpose to be "the promotion of the
knowledge of materials of engineering, and the
standardization of specifications and the methods
of testing." Inherent in this statement of purpose
is ASTM's fundamental interest in research and
education as well as its standardization work.
ASTM's specialty, therefore, is materials research
and standards, although it has formulated non-
materials standards on request when no other
organization was available to fill an existing need.
As a result of its research and standards develop-
ment activities, ASTM has achieved worldwide
recognition in the field of standard methods of
testing, whether applied to materials, products, or
assemblies.

ASTM, like the American Ceramic Society, is

not a discipline-oriented professional society, like
ASCE, AIA, AIME, ASME, etc. Instead, because
it is materials oriented and its specialization is

standards, it must be considered an interdisci-
plinary society in which the standardization
interests of its members predominate. Its member-
ship comes from and is supported by industrial
companies, governmental bureaus, educational
institutions, testing laboratories, etc., all of whom

are vitally interested in the voluntary stand-

ardization process. ASTM provides the meeting
ground for the technically competent engineers

and scientists who comprise the technical com-
mittees which develop the realistic compromises,
known as standards, which govern our economic
life.

Standards are necessarily compromises—com-
promises among the many conflicting producer and
nonproducer interests involved. Each participant

in the standardizing process wants a standard
that helps him but the self-interests of these

of these participating individuals or organiza-

tional representatives are necessarily diverse. The
standardization process thus must involve con-

cessions by all the interested parties to the extent

needed to achieve an acceptable compromise which
protects all and seriously injures no one.

Such compromises—not of the technical truths

or principles involved but rather of the quantita-

tive restrictions needed for the maintenance of

reasonable quality levels—represents a realistic

evaluation of the relationship between quality and
cost. Highest quality and lowest cost to the con-

sumer are not compatible. However, with an agreed

upon quality level acceptable to the producer,

user, and general interests involved, goods may be
mass produced utilizing the most modern tech-

nologies and processes to provide the consumer
with standard quality at minimum cost.

I can assure you, ladies and gentlemen, that

the ASTM procedures involved in the develop-

ment of standards by our technical committees

do guarantee a consensus of the parties involved,

and, at the same time, protect the interests of

minorities. In addition, these procedures require

that the representatives of the various interests

involved be technically competent and support
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actively the interests they represent to the end
that the resulting standard be an effective,

realistic compromise of all the interests involved.

The procedural details whereby this is accom-
plished will be given to you by Mr. Richmond, who
follows me.

Reference to the word "consensus" brings to

light one of the probably unique features of our
technical committee procedures. Webster's
Seventh New Collegiate Dictionary defines

"consensus" as "general agreement—unariimity."
To me there is a gap of about 49 percentage
points between these two definitions, since the
first can be taken to mean majority agreement,
while the second definitely calls for 100 percent
agreement. In ASTM balloting on proposed or
revised standards, a consensus of the magnitude of

95 percent or more is usually achieved, and even
then it is required that negative votes be care-
fully considered and resolved if possible. A large
majority of ASTM standards are, as a result,

unanimously approved and accepted.
However, consensus of the committee member-

ship would be meaningless if any one interest

—

particularly a producer interest—predominated.
For this reason, each ASTM technical committee
is required to maintain a balance of interest
between the producer and nonproducer interests
so that the producer voting membership never
exceeds 50 percent. It may be less, but too much
less is not desired either. Unfortunately, for a
variety of reasons—mostly financial—it is much
more difficult to get technically competent non-
producers to assist in the preparation of ASTM
standards. We are particularly grateful, therefore,
to the General Services Administration, the
National Bureau of Standards, the U.S. Bureau
of Reclamation, the U.S. Corps of Engineers
and many other governmental agencies for their
active participation in our standardization work
as representatives of consumer interests. I might
mention in passing that the National Bureau of

Standards whose primary interest is the standard-
ization of units of measurement has one or more
representatives on a majority of ASTM's technical
committees and contributes significantly to the
technical soundness of ASTM standards.
We would similarly welcome the greater partici-

pation by consumer and general interest represent-
atives from other areas of our free-enterprise
economy so that its present and future needs will

be made known and provided for in terms of new
standards or revisions of old standards. Techno-
logical change is impossible without the develop-
ment of appropriate standards. Consumers and
industry use ASTM standards extensively by re-
ferring directly or indirectly to many ASTM
standards in purchasing, design, and construction
specifications. Yet consumers and even industry
in some cases participate in ASTM standards work
in far less proportion than established by their
standards usage and needs. To maintain ASTM's
balance of interest in its technical committees, we

need the active participation of all interested
parties, but more particularly that of consumers.
ASTM's scrupulous observance of its demo-

cratic principles in its standardizing procedure
have caused ASTM standards not only to receive
national and international acceptance, but has
legal implications of tremendous importance to
industry and our free enterprise system. It also

guarantees the continuation of industry's direct
participation in standards development and of

government's participation as a representative of

the consuming public. Strict adherence to ASTM
operating procedures make it possible for technical
committee members to articulate their organiza-
tion's special interests without fear of antitrust
violation, provided, of course, there is adequate
representation of the parties at interest on the
committee.This emphasizes the balance-of-interest

requirement in the membership of ASTM com-
mittees.

As an interesting side effect of its requirement
that there be balance of interest in committee
membership, ASTM's standards when submitted
through USASI for acceptance as an ISO standard
are generally well received by the other members
of the ISO committees having jurisdiction over
the materials area in question. Thus, ASTM
standards proposed for such acceptance are fre-

quently converted into ISO standards with little

or no revision of technical content and require-

ments. For example, the bulk of the ISO standards
on plastics are essentially ASTM standards as

originally formulated by ASTM Committee D-20.
The significance of this fact to the U.S. plastics

industry which is interested in export business is

inescapable.

It seems appropriate at this point to digress in

order to describe the relationship between ASTM
and the USA Standards Institute (USASI). USASI
is a private organization, of which the former
American Standards Association was the proto-

type, whose function is that of a USA standards
coordinator and clearing house of information on
standards. It is the official USA member of those

international organizations which establish inter-

national standards. Except for the unusual cir-

cumstances when existing standards organizations

are unable or unwilling to provide needed stand-

ards, USASI does not itself actively participate

in standards development and then only through
the medium of a USA Standards Committee
sponsored or administered by some outside orga-

nization or a USASI member body.
ASTM is such a member body, competent and

willing to develop standards where needed. ASTM
has formulated more standards than any other

organization, private or public. It has in fact

provided approximately 40 percent of the stand-

ards which to date have been processed through

USASI and published as USA Standards. Its

only requirement for such standards development
activity is that there be a clearly defined standards

need and to this end ASTM has issued an invita-
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tion to all organizations, be they companies,
governmental bureaus, educational institutions,

etc., to bring to our attention standards needs
where they exist, and join with us in formulating
the appropriate standards.

I hope that in this brief presentation I have
given you a clear picture of the basic principles

governing ASTM procedures, and the importance
of meticulous observance of its democratic pro-

cedures to the continuation of voluntary stand-

ardization in the U.S.A. I hope I have made clear

ASTM's relationship to USASI as one of the
latter's most important member bodies and over-

seas representatives. I would be remiss indeed if

I did not emphasize that USASI is also dedicated
to the same principles in the development of

standards and as U.S. coordinator of standards is

in a position to see that all USA standards
similarly conform.

In closing, I should like to call to your attention

a final and most important requirement of a good
standard—it should be realistic and legally defend-
able. A unilaterally developed standard may be
technically correct but legally and politically

unacceptable if it does not recognize the needs
and rights and represent the participative effort

of all the parties at interest. This is a fact of life

which becomes increasingly clear as the needs and

rights of the consumer are daily accorded growing
recognition.

Two years ago at a similar symposium I told

you of a decision which had been made in a
restraint of trade case which ASTM had instigated
to clear itself of any stigma which might exist as
a result of its involvement in a prior criminal suit

brought against three USA manufacturers of

asbestos-cement pipe for alleged antitrust viola-

tion. One of Judge Van Deusen's findings of fact
in the U. S. District Court for Eastern Pennsyl-
vania sums up far better than I can the basis on
which ASTM won its case. And so, in closing, I

take the liberty of quoting these findings once
more:

"The technically qualified balanced member-
ship of ASTM committees, and the demo-
cratic procedure governing their operation,
make it likely that the results reached by them
will be scientifically sound and will represent
the general interest".

"Because of the heavy reliance of federal,

state and municipal governments on ASTM
for specifications, the society may be regarded
as an essential arm or branch of the govern-
ment and its acts may be entitled to the
immunity from antitrust laws accorded gov-
ernmental acts".
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The organization of the American Society for Testing and Materials is described, the
procedure followed in the promulgation of ASTM Standards is briefly outlined, and the
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The American Society for Testing and Materials
is the largest voluntary standardizing organization

in the world. Its membership is made up of over
11,000 individual engineers and scientists, 2700
companies, associations, and research institutes,

1300 educational institutions, governmental agen-
cies (federal, state, and municipal) and profes-

sional societies, and 900 engineering and science

students. It functions by the committee system,
with some 106 main technical committees that are

primarily responsible for the development of

standards.

The large membership of highly qualified

individuals with widely diverse technical back-
grounds is particularly advantageous for the
development of standards. A technically sound
standard is likely to be approved by such tech-
nically qualified members and the standards that
are approved will receive wide distribution and
acceptance.

The membership of each technical committee
is made up of individuals knowledgeable in the
specific field covered by the committee, each of

whom, it is assumed, represents the interests of

his employer, or himself, if self-employed. Mem-
bership on a committee is attained by election to

the committee after application by an individual,
stating his qualifications for membership. In
general only those considered capable of con-
tributing to the work of the committee are elected
to membership. Membership is lost automatically
when a member changes employment, or ceases
to participate in the work of the committee.
The primary objective of the society is to

promulgate the standards prepared by the tech-
nical committees. The generic term "standard"
includes documents that differ both in the degree
of acceptance and in content. With respect to
content, they generally fall into one of the follow-
ing classes: a) definitions of terms, b) recommended
practices, c) methods of test, d) classifications,

and e) specifications. With respect to the degree
of acceptance they are published as: a) Proposed

Standards, b) Tentatives, or c) Standards. As
a matter of Society policy its Standards are sub-
mitted for recognition as USA Standards, and
currently more than 40 percent of all USA
Standards are ASTM Standards.
Many technical terms are not adequately

defined in standard dictionaries or if they are

defined, the technical meaning is different from
that which is technically accepted. Adequate
definitions of terms are thus the first prerequisite

for meaningful communication, not only between
individuals in the same area of technology, but
particularly between individuals in different areas

of technology.
Engineers and scientists in many fields have

found that in many cases certain ways of doing
things are likely to lead to trouble or yield erro-

neous results, while other procedures will generally

avoid such trouble or errors. Information of this

kind that is not properly a part of a test procedure
or specification is termed a recommended practice.

The detailed description of test apparatus and
techniques to be used in evaluating the properties

of materials and equipment form the basis for a

method of test. If the techniques are intended for

verifying the calibration of testing machines or

equipment, such a document is another form of an
ASTM method of test. A specification may include

one or more test procedures, but its primary
purpose is to set limiting values for the parameters
of a material or equipment for a specific applica-

tion; it may classify a material into different grades

on the basis of its physical or chemical properties.

Documents may be published for information
only, particularly when in a new or rapidly ex-

panding area of technology. This type of publica-

tion implies no acceptance or approval by the

Society. In the case of new areas of technology,

or controversial subjects, a document may be
published as a proposed method or specification in

order to bring it to the attention of interested

members of the Society, so that if they wish they

may express their opinion regarding the merits of
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the proposal before it is accepted as a Tentative.
Publication as a Tentative implies that the docu-
ment is new and requires more testing data. Such
a document has the approval of the sponsoring
committee and the Administrative Committee on
Standards representing the Society. Publication as

a Standard implies full approval by the sponsoring
committee and the Society as a whole. Acceptance
of an ASTM Standard by the U.S.A. Standards
Institute transforms it into a U.S.A. Standard.
Not all U.S.A. Standards originate in ASTM, but
far more come from ASTM than from any other
source.

The term "Tentative" has an unfortunate con-
notation, and the Society is actively searching for

a better term to express the thought that such a

document does indeed represent the best available

technical knowledge on the subject, but cannot be
granted the status of a Standard because of lack
of knowledge of the accuracy and precision of the
test methods involved, or the correlation of test

and service data, or some similar lack.

The procedures followed in the promulgation of

an ASTM Standard are quite involved. This in-

volvement results in part from the elaborate safe-

guards that have been instituted (1) to ensure that
every interested individual member of the Society
will have an opportunity to express his opinion
and be heard, and (2) to prevent domination
of any group within ASTM by special interest
representatives.

ASTM Standards are developed by the demo-
cratic process implied in the term "consensus."
Each Standard is subjected to letter ballot at least
three times before adoption, twice in the technical
committee and once by the Society. A key pro-
vision in the adoption process is that any negative
vote in a letter ballot must be accompanied by
valid technical reasons, and must be considered and
reconciled if possible before adoption of the
Standard.
The first draft of a standard is generally pre-

pared by a small task group appointed for that
purpose, made up of technically qualified individ-
uals who represent as many diverse interests as is

practical. Development of a suitable test pro-
cedure, for instance, may involve research work
in the laboratories of the members of the task
group, followed by round-robin tests to prove that
the method is precise and reliable. After the group
has agreed upon the technical details, a draft is

prepared and presented to the subcommittee,
where it is discussed, revised if necessary in the
light of the discussion, and after approval by
letter ballot, is presented to the main committee,
where it is again submitted to letter ballot. Al-
though only a two-thirds favorable vote is re-
quired in subcommittee and committee letter
ballots, the ballot is usually unanimous in the
subcommittee and nearly unanimous in the main
committee. When approved by the committee it

is submitted to the Society as a whole, either at
the Annual Meeting or through the Administrative

Committee on Standards, where it is accepted as a
Tentative. After one year as a Tentat ve, the
sponsoring committee may recommend that it be
advanced to a Standard, with or without revision,

which must again be confirmed by a two-thirds
favorable letter ballot. After such a recommenda-
tion, it is submitted to letter ballot of the Society as

a -whole. After approval by two-thirds of these
voting, it is formally accepted and published as an
ASTM Standard. If immediate adoption as a
Standard is recommended by sponsoring commit-
tee, approval by nine-tenths of those voting is

required in the Society letter ballot.

Any technically sound proposal that accurately
represents the best knowledge available, that is

capable of the desired precision and accuracy,
and that is arrived at by the concensus process
mentioned above, may and should be submitted
for immediate adoption as a Standard, without
prior adoption as a Tentative.
ASTM Standards are subject to periodic re-

vision and reapproval by the sponsoring commit-
tee at least once in each six year period. They do
not remain in force unless the committee makes
such a recommendation, confirmed by letter

ballot.

The Regulations Governing ASTM Technical
Committees provide that the members of each
Committee shall be classified as either producers,
consumers, or general interest members, on the
basis of their interest in the material or product
involved in a document. The regulations also re-

quire that in no case shall the producers dominate
any committee. No producer shall serve as

chairman of a committee that prepares or recom-
mends adoption of a specification. As a further

check on domination by producer interests, the
regulations require that each member indicate on
each letter ballot his classification with respect to

the material or product involved, and a two-third
vote requires that two-thirds of the producers and
two-thirds of the nonproducers separately approve
the recommendation. This insistance on participa-

tion by consumers and general-interest members
in the development and approval of ASTM docu-
ments has contributed greatly to their wide ac-

ceptance by industry, government, and consumers
generally, and has kept the Society free from
involvement in antitrust actions.

As a further restriction, while each member has
an individual vote in the subcommittee, the repre-

sentatives of each organization have only one vote

collectively in the letter ballots of the committee
and of the Society.

There are 106 technical committees. These are

classified as follows: 7 "A" Committees on Ferrous

Metals, 9 "B" Committees on Nonferrous Metals,

24 "C" Committees on Cementitious, Ceramic,

Concrete, and Masonry Materials, 30 "D" Com-
mittees on Miscellaneous Materials, 27 "E"
Committees on Miscellaneous Subjects, 6 "F"

Committees on Materials for Specific Applica-
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tions, and 3 "G" Committees on Corrosion, De-
terioration, and Degradation of Materials.

Most of the "C" Committees are concerned
with ceramic materials. Time does not permit a

detailed account of the activities of these Com-
mittees, but a list of the major "C" Committees
will indicate something of the breadth of their

scope: C-l on Cement, C-3 on Chemical Resistant

Nonmetallic Materials, C-4 on Clay Pipe, C-7 on
Lime, C-8 on Refractories, C-ll on Gypsum,
C-14 on Glass and Glass Products, C-15 on
Manufactured Masonry Units, C-l6 on Thermal
Insulating Materials, C-17 on Asbestos-cement
Products, C-20 on Acoustical Materials, C-21 on
Ceramic Whitewares, C-22 on Porcelain Enamel
and Related Ceramic-Metal Systems, C-25 on
Ceramics for Electronics. In addition, several other
committees also deal with ceramic materials. D-9
on Electrical Insulating Materials has a subcom-
mittee on Ceramic Products. E-12 on Appearance
of Materials covers test methods for measuring
reflectance, gloss, and color of ceramic as well as

other materials. E-20 on Temperature Measure-
ment covers methods of calibrating thermometers,
thermocouples, and pyrometers. F-l on Materials

for Electron Devices covers ceramic-metal seals.

The standardization of methods of testing and
specifications is the primary objective of ASTM.
In 1967, 2565 Standards and 1403 Tentatives were
published in 32 volumes, with over 25,000 pages.

The complete Book of Standards is republished

annually, in order to incorporate all revisions as

well as new Tentatives and Standards. Standards
dealing with ceramic materials are included pri-

marily in Part 13, and comprise 127 Standards
(including 34 U.S.A. Standards) and 31 Tentatives.

A recent bulletin from ASTM Headquarters
states that about 30 percent of the contents of the
ASTM Book of Standards is obsolete after one
year, and 65 percent after two years. This state-
ment indicates the effort put forth by ASTM
technical committees to keep their standards up
to date.

In addition to its primary work of promulgating
standards, ASTM sponsors and publishes the pro-
ceedings of a wide variety of symposia, generally
in the fields of properties of materials and mate-
rials research. The fact that our meeting here is

jointly sponsored by ASTM is an example of such
sponsorship. ASTM also sponsors research, either
directly or through the technical committees. The
Cement Reference Laboratory and the project on
x-ray powder diffraction patterns here at NBS are
good examples.
ASTM has a number of other publications.

Materials Research and Standards is a monthly
magazine which includes announcements of all

ASTM sponsored meetings, general information
on Society activities, and technical articles of

general interest. The quarterly Journal of Ma-
terials contains technical papers on materials
research. The annual Proceedings contains the

annual reports of all technical committees. Many
special publications containing technical papers

on a single general topic are published each year.

This is an abbreviated account of some of the

activities of the American Society for Testing and
Materials, but indicates something of their scope,

particularly in the field of ceramics. We expect

that these activities will continue and even

expand in years to come.
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1. New Markets Open to Ceramics

The opportunities for new or improved ma-
terials with the properties to perform new func-
tions, or to operate in more extreme environ-
ments, or to fulfill their functions more efficiently

are commonplace in the aerospace industry and
are increasingly evident in the hydrospace and
automotive industries.

Ceramics, by virtue of the spectrum of func-
tional and structural properties they offer, are an
especially attractive source for such materials.
Prominent among their functional properties are
extreme resistance to heat, oxidation, corrosion
and abrasion; outstanding dimensional stability

(in thermal, corrosive, abrasive or mechanical
environments) ; and unique nuclear, optical, mag-
netic, electronic and energy-conversion capabili-
ties. Unparalleled stiffness and specific stiffness

are available for structural purposes, and achieve-
ments of substantial portions of the predicted
theoretical strength (and the associated specific

strength) are increasingly frequent and some-
times commercially successful [4, 8, 9].

Functional applications of ceramics are wide-
spread and common. They often include low-
level structural requirements (secondary structural
requirements), as in sanitary ware, electrical in-

sulators, windows, and corrosion-resistant process-
ing equipment, but functional considerations are
predominant. Ceramics have also been used
routinely for many years in a wide variety of

thermal and structural applications, oftentimes
in systems incorporating both modes simultane-
ously, such as kiln construction and furnace
linings.

However, virtually all current applications of
ceramics in which there have been appreciable

mechanical stresses due to thermal or mechanical
loading have been successful, or at least adequate,

because one or more of three conditions prevailed:

(1) The loads were accommodated by gross

overdesign

.

(2) All appreciable stresses were successfully

confined to the compression mode.

(3) Failure, if it occurred, was not catastrophic

either in mode or else in consequences.

In almost no instance could one say that the

system or part was weight-efficient, that is, that

it fulfilled its purpose at the lowest possible

weight. Yet weight-efficiency is almost a sine qua
non in industries where each pound saved in

functional or structural weight during the concep-

tual stage can be cascaded on the drawing board,

via savings in structural, powerplant, and fuel

requirements, into savings of tens and hundreds

of pounds, and, in the case of missiles, thousands

of pounds in total systems weights.

2. The Obstacle to Weight- Efficient
Uses of Ceramics

One persistent obstacle prevents a burgeoning

use of ceramics in applications where primary or

secondary structural properties are needed. That
obstacle has many descriptors. Most commonly
they are "brittleness" or an "inability to design

with brittle materials." But one can live with the

brittle failure mode when one is certain that

failure will not occur or when one can predict and
control when it will occur. And, though the

techniques may be primitive because of insufficient

usage and lack of accrued experience there is

some ability to design using brittle materials.

A more accurate descriptor is "lack of reliability"

or, as some designers say, the "variability" of
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ceramics. But even controlled or bounded varia-

bility could be endured if its limits could be pre-

dicted. "Poor predictability" is probably the best

descriptor for the major obstacle.

An even finer focus on the real obstacle to more
widespread applications of ceramics is that

"variability" and "unpredictability" apply pri-

marily to the strength properties of ceramics.

Though thermal, electrical, elastic, and other

properties are influenced by compositional and
microstructural variations, they are usually much
less variable than the strength properties. That
lesser variability is usually attributed to a lower

sensitivity, but it may also suggest that the first

two of the following suggested causes of variability

in strength properties are the major ones, since

they should have no effect on the nonstrength

properties and they are also the most readily

identifiable causes of variability in strength.

3. The Causes of Variability

Possibly the major contributor to variability

in strength data is the testing situation. Just as

special design techniques are needed for brittle

materials, so also special test procedures per-

formed by skilled and careful operators are needed
to evaluate brittle materials. A ductile material

will ignore or forgive parasitic stresses, due to

misalignment and mistreatment, that are cata-

strophic to a ceramic material. The paper by
Mordfin and Kerper in this proceedings discusses

this subject in greater detail.

The surface of a ceramic specimen is also of

major importance, especially when the part is

loaded in tension or flexure. But the variability

of a surface finish is likely to be a greater cause of

variability in strength data than is the surface

finish itself. A uniformly poor surface finish will

cause low strength values but will not necessarily

cause a scatter in data. However, as the average
surface finish improves, the effects of surface

finish variations will be more prominent. An
added complication becoming increasingly evident
is environmental sensitivity, which is also experi-

enced via the surface and which is also more promi-
nent as the surface finish improves. This is

discussed further in the paper by S. M. Wiederhorn.
The character of the ceramic specimen, the

resultant of the raw materials and the processing
as evidenced by the composition and micro-
structure, has a prominent but mixed role in

ceramic property variability. Pores, microcracks
and cracks will have some effect on variability,

but the size, shape, location, and distribution of

defects are probably more critical than their

frequency. Grain size variability, grain shape, and
orientation can also be factors. But, except for

cracks, it is probable that body character is im-

portant to variability only after test and surface

deficiencies are under control.

4. Steps to a Brighter Future for

Ceramics

4.1. Design Techniques Based on
Predictability

From the foregoing it would appear that there

are several steps that must be taken for ceramics

to fulfill their potential in future hardware. One is

a substantial advance in ability to design for

brittle materials. This subject is beyond the scope

of this discussion; however, it must be obvious
that the availability of ceramic materials having
predictable performance would provide both an
impetus to advances in design techniques and the

means or substance for physical substantiation of

theoretical advances.
One contribution to predictability might be a

total confrontation with brittle failure—an inten-

sive study and analysis of the failure mechanism
to determine where and how and why failures

begin and how and why they proceed to comple-
tion. Modest efforts of this nature have been very
fruitful. Griffith flaws have provided a useful

concept for theoretical analysis. Their physical

reality has been demonstrated in a variety of

forms ranging from mechanical damage [1-3]

through thermal shock damage [4] to stress cor-

rosion sites [5] and possibly phase separation

boundaries that occur at the surface. Once the

flaw and its genesis have been identified, it is

possible to conceive of prevention, elimination, or

at least control. Current techniques for providing
compressive stresses in the surface of a body [6, 7]

are essentially efforts to prevent Griffith flaws from
acting as stress concentrators and failure initiation

sites. Efforts along this line are encouraging;

bending strengths above 200,000 psi after abrasion

have been achieved with glass ceramics [8] and the

techniques have been shown to be feasible with
conventionally processed ceramics [4, 7]. More
recently a procedure for coating glass that appears

to prevent Griffith flaws due to either mechanical
or stress corrosion effects has allowed bending

strengths of seven percent of the elastic modulus
to be realized in glass rods of five different

compositions [9].

Such studies, some aimed at understanding

brittle failure and some aimed at enhancing useful

strength, tread a common ground and are mutually

supporting, suggesting that predictability and
great strength may be achieved simultaneously.

What an impetus to advances in design techniques

that would be!

4.2. More Useful Tests and Data

A second essential step toward weight-efficient

structural applications of ceramics is an improve-

ment in data, primarily strength data. Several

facets are involved: improvements of tests to

minimize variability due to the tests; sufficient

identification of any test specimen or part so
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it can be duplicated; and a concept of strength
and measurements of strength that extends from
properties to behavior.

An improvement in test procedures and tech-

niques with a resultant reduction in variability

of strength data and a concomitant increase in

predictability is necessary but not sufficient to

advance the use of ceramics. It is necessary to

provide sufficiently sensitive comparative data to

facilitate process or product improvement studies

and it is necessary to provide useful numbers to

evaluate probable material performance in various
stress states. Part of the insufficiency in the
case of development studies is obvious, since the
development activity itself is also essential. And
part of the insufficiency in design analysis is so

fundamental that its neglect is possibly the
greatest paradox in the ceramic industry: the
failure to identify or characterize the test specimen
or the piece of hardware sufficiently so it can be
reproduced so that the test data or the service

experience that have been acquired achieve
meaning via future utility. This deficiency is by
no means confined to strength data though it

may be more critical for strength data. The dis-

tressing fact is that much of the data in the
literature including some of the most carefully

acquired data is useful only to suggest trends in
behavior; it cannot be used with exactitude
because the ceramic material from which it was
taken can never intentionally be reproduced. The
incredible truth is that there are a few instances
where there was no further identification than
the word "alumina."
The accumulation of carefully controlled and

reliable data on reproducible ceramic materials is

necessary but not yet quite sufficient; the data
must be meaningful and useful. Strength is not
an invariable condition; it is rather a numerical
measure of a process that is influenced by many
external features. It is sensitive to the rate of

loading; to the duration over which the load is

applied; to the temperature of the stressed

material; to chemical influences such as those
which cause corrosion or stress-corrosion; to the
kind of stress, its origin and uniformity; to the
simultaneous presence of other stresses, macro
and micro; to surface energy effects which, in

boundary cases, may include size and geometry
effects. In fact, in many cases test data do not
so much describe a property as a behavior in the
presence of a variety of conditions. Thermal
shock behavior is a good example. A less clearcut

but equally important example is the ability to

sustain long enduring loads during immersion in

seawater or some other uncommon medium.
It should be evident that test data obtained at

random, that is, without a specific use in mind
for that data with that use determining the
conditions under which the data are obtained,

will be of value only to suggest trends in behavior.
It will not suffice for any specific decisions.

A supplier of metals to the aerospace industry
reports that tensile data on his material was all

that the designer desired 35 years ago. Today he
must obtain data from 63 different test specimen
configurations to obtain the variety of data
demanded by aerospace designers. The ceramic
industry, with a product that is presently much
less predictable, will need more sophistication

than an advance from three to four point loading.

4.3. Improved Ceramic Processes and Parts

Several volumes might be written about the
general and specific actions related to processing

that coidd be taken to improve the predictability

of ceramic materials. Each individual composition
and each separate process has its merits and
shortcomings, its areas especially susceptible to

improvement. But what is improvement? It may
be higher or more uniform properties achieved via

smaller average grain size, or smaller grain size

range, or more or less orientation of anisotropic

grains, or fewer, or rounder, or smaller pores.

An almost endless list can be made and it would
be rather fruitless to complete it or to attempt to

act on it. What seems more appropriate is to

apply to the materials presently in use, and to a

few model materials, the best principles available

at the time, such as uniform small grain size,

minimum porosity, etc., as the material and
process combination allow, in order that uniform-
ity within a part, reproducibility from part to

part, and reliability in service may be improved.
Usable strength levels would undoubtedly rise as

a consequence.
One area that merits special attention is the

surface, and one process that requires special

attention, since it is used on most test specimens
and parts, for shaping, dimensioning, or applica-

tion of a specified finish, is abrasive machining or

grinding. Another paradox of the ceramic industry
is the evident recognition of the contribution of

the surface of a ceramic part to the strength and
reliability of the part set off against the failure

to study what grinding, which is a rather brutal

treatment, does to that surface. A knowledge of

the nature and the extent of the influence of

grinding on a ceramic surface is a prerequisite to

any efforts to prevent, control, or cure such
influence.

5. Characterization

The character of a ceramic has been defined

as the sum of the compositional and structural

descriptions which identify a specimen uniquely,

may be correlated with its properties, and suffice

for the reproduction of the material
_ [10]. It is

apparent that the need for characterization has

been a consistent thread throughout the previous

discussion. In particular, characterization was em-
phasized as essential to provide meaning to test

data by providing the opportunity to use that
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knowledge again in further production of the
same material. Less emphasized, but equally
important, is the need for characterization during
process and product improvement. This is par-
ticularly so as technology becomes more sophisti-

cated and subtle and the earlier direct relationships

between processing and properties become insuf-

ficient. Character then becomes, in addition to
all above, the link joining processing and
properties.

Complete or total characterization (CT) con-
sists of the sum of all character features on the
atomic scale (CA ), on the microstructural scale

(C(x) and on the macrostructural scale (CM) and
is often expressed in the equation:

CT= CA -\-Cfi-\- CM -

Atomic character includes chemical composi-
tion and uniformity. Microstructural character
includes the size, shape and orientation of grains;

the nature of interfaces and grain boundaries;
the presence and disposition of additional phases;
the distribution of dislocation and intergranular
stresses. Macrostructural character includes the
size and shape of the part, its uniformity, density,
gross chemical composition and surface topog-
raphy, and the major stresses present.

Complete characterization is an ideal state;

it may never be realized in entirety for any
body and it is certainly too extensive, complex,
and expensive to do routinely. Accordingly, a
second concept is available to provide, simul-
taneously, a means to approach the ideal state
and a more practical exercise, so benefits can
be realized at once. The concept is labeled "de-
scription'' (D) and it is the sum of the total

characterization available (CT) plus data on the
properties (P) of the body plus the sample his-

tory (H), including raw material background and
processing data. This too has an equation:

D=CT+P+H.

In the hope that the current partial reliance
on properties and sample history may eventually
be discarded, the equation is expressed as

:

where as X approaches 1, description will equal
total characterization.
The provision of the second and third equations

recognizes the need for a practical approach to
characterization but it still does not suggest what
a happy medium might be or should be. In trying
to make specific recommendations one is torn
between the desirability of having the maximum
amount of information available versus the
practicality of a minimum expenditure of time
and effort. The most practical suggestion is not,
of course, to do no characterization; that is

shortsighted and self destructive; it is, rather, to

do as much as is known to be important, to do as

much as provides a useful immediate return in

fostering growth. Wachtman's [11] recommenda-
tions concerning conventional, augmented con-
ventional and more intensive characterization, as

shown in table I, seem to be the most reasonable.
Thus, in the most routine cases one might accept
only chemical composition, average grain size,

and density. This is not in any way adequate, but
if confined to production materials it has the
added benefits of accumulated experience in the
typical properties and histories of the materials.

Table 1. Parameters needed to specify the mechanical
properties of a ceramic

Conventional Characterization:
chemical composition (1 percent level)

average grain size

density

Augmented Conventional Characterization
crystalline and amorphous phases
grain shape
grain size distribution
degree of preferred orientation
distribution of porosity
surface roughness

Fine Microstructure and Other Characteristics
trace impurities, amount and state of aggregation
dislocation concentration
twin concentration
point defect concentration
residual stresses

ambient atmosphere
radiation field

state of temper (glass)

In any effort other than routine production,

for example in product or process development,
the augmented conventional characterization out-

line should be followed. This, again, is minimally
adequate, but assumes prior knowledge about the

process or product that helps complete the

knowledge and understanding of the material.

Lastly, in any research study on ceramics, the

last grouping of character features must be con-

sidered in addition to the ones already discussed.

Not all of them will be needed in all circum-
stances. In fact, some may be quite difficult to

determine. But the effort must be made to foster

an optimum practical growth of the state of the

art and the range of applications of ceramics.

6. Summary
Broad opportunities exist for much wider and

more extensive applications of ceramics, in pri-

mary structural applications ranging to the hulls

of deep submergence vehicles and beyond, and in

secondary structural applications from rod end
bearings in helicopter blade control rods to gas

bearings, fuel cell components, and yet uncon-
ceived applications, if:

• poor predictability is overcome by confronting

brittle behavior and learning to prevent, over-

come or control it;

• poor predictability is eliminated by the skill-

ful use of well-conceived test procedures;

• poor predictability is overcome through
achievement of understanding and control of
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ceramic processing, in all stages from the

preparation of raw materials through surface

finishing and assembly.
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Melting Points of Ceramics
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The melting behavior of a ceramic, as for any material, can be described by the phase
rule and its graphical expression, the phase equilibrium diagram. The solid to liquid transi-

tion (melting point) is discussed in terms of a one-component system and extended to more
complex systems utilizing unary principles as basic building blocks. Phase equilibrium
diagrams of hypothetical and of real ceramic systems are presented to illustrate the relation-

ship between melting point and the pertinent intensive variables—pressure, temperature
and composition. The effect of metastable equilibrium upon the melting point is also em-
phasized. Experimental methods for melting point determinations are outlined and include

the thermal analysis and quenching techniques. Relevant details of temperature measure-
ment are given.

Key Words: Ceramics; fusion curve; melting point; melting point methods; meta-
stability; phase rule.

1. Melting Point and the Phase Rule

Ceramics as a general class are materials with
rather high melting points, characteristically

having a somewhat viscous liquid phase. Although
ceramics possess distinguishing features which
impart experimental difficulties in their study, the
general principles governing the fusion and crystal-

lization process are the same as that inherent in

all materials. Conceptually, the melting point of a
ceramic cannot be viewed any differently from
that of any other material and is the temperature
at which solid and liquid of the same chemical
composition are in equilibrium for a given con-
fining pressure. Normally, the pressure is inferred

to be equal to 1 atm but most certainly is not
limited to that value. An equally valid but less

widely used definition would be the pressure at

which solid and liquid are in equilibrium for a
given temperature.
The significant thoughts embodied by both

definitions are related by the familiar Gibbs phase
rule for heterogeneous systems: 1

P+^=(7+2 (1)

where
P=the number of homogeneous phases present

at equilibrium. Phases may consist of either
solid, liquid, or vapor and must be mechan-
ically separable one from another.

.F=the number of intensive variables of a
system such as pressure, temperature, and
composition which can be arbitrarily changed

1 Numerous publications are available describing the theory and utilization
of the phase rule. Some of these are tabulated in references [1] through [14].
(Figures in brackets indicate the literature references at the end of this paper.)

without disturbing the equihbrium. These
variables are commonly termed degrees of

freedom or variance of the system.
C=the least number of independent components

from which P phases can be made.
Equation (1) applies to all noncondensed systems.
Inasmuch as many ceramic materials have low
vapor pressures, the vapor phase is often neglected,

thus reducing eq (1) to

{P-\)+F= (7+2-1
or (2)

p+F=C+\

where F and C have the same meaning as previ-

ously stipulated and P refers only to solid and
liquid phases. The condensed phase rule, however,
is not strictly applicable to true one-component
systems.
The phase rule says nothing about rates of

reactions between the components, nor does it

infer the amount of each phase present at equi-

librium. It does, however, stipulate the number
of phases allowable for a given set of conditions. 2

At times the utility of the phase rule may appear
to be purely academic, but a real insight into

the behavior of materials can be gained through
its use. Of course, the entire field of phase equi-

libria is merely the experimental extension of the

phase rule. When applied to the melting phe-

nomenon the aforementioned definitions of melting

point become more clear. For example, in the

familiar water system, ice and water are in equi-

librium at the melting point. Here the number of

2 For noncondensed and condensed systems the maximum number of

phases equals C+2 and C+l, respectively.
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components is one (H20), the number of phases,

two (solid and liquid), and the variance, one,

(F=C+2-P=l+2-2=l). Thus, if one degree of

freedom is utilized by holding the system at

constant pressure, the temperature of melting is

automatically determined. Conversely, when the
temperature is held constant the pressure is then
specified.

At the melting point the number of degrees of

freedom (F) always equals unity for a noncon-
densed single-component system. Moreover, ex-

pansion to a multicomponent system does not
permit an increase in the variance of the solid-

liquid equilibrium at the melting point of a com-
pound. Since the composition is fixed by specifying

the compound, the only remaining variables are

either pressure or temperature. Hence F—l, the

same as for a one-component system. In essence,

regardless of the number of elemental constituents

involved in the reaction, proper application of

the phase rule requires that only the smallest

number of components necessary to describe the

equilibria need be considered. By way of illustra-

tion, the compound CaO-Al203-2Si02 melts to all

liquid at 1553 °C [15]. Treating the system as

containing three components (CaO
,
A1203 ,

Si0 2 )

would yield at the melting point of the compound
a variance of three, an obviously false conclusion.

The degree of freedom, of course, equals unity
as for a one-component system.

Furthermore, the number of components under
consideration may be altered within a system
depending upon the conditions of experiment. The
compound 3CaO-Al 203 , for instance, melts at

1535 °C and atmospheric pressure to CaO and
liquid [16]. At temperatures below melting and
at fixed pressure, the compound can be thought
of as one component possessing one degree of freedom
for the condensed system. At 1535 °C three

phases, CaO, 3CaO-Al203 , and liquid are in equi-

librium with a variance of zero. The number of

components then must equal two. Basically, the
system appears to change from one to two com-
ponents (3CaO-Al 203

—>CaO and A1203) all within
the framework of the CaO-Al203 binary.

The phase rule is basically a statement of the

conditions which exist when a system is at thermo-
dynamic equilibrium. Theoretically, equilibrium
conditions require that a system cannot change
with time without a gain or loss in energy. Here,
the Gibbs energy of the system is at a minimum
and the entropy at a maximum. The attainment
of equilibrium may be difficult and often presents
a dilemma to the investigator. In certain systems,
particularly those involving ceramics, reactions
and transformation may proceed at such a slow
rate that a quasi state of equilibrium will be ob-
tained. Such a situation, termed metastable equi-
librium [2, 3], is often consistent with the phase
rule. A good case in point is supercooled water
which is in metastable equilibrium with its vapor
at temperatures below its freezing point. More
pertinent to this discussion is the metastable equi-

librium exhibited by fused silica when supercooled
to room temperature [17]. The liquid is metastable
with respect to quartz, the stable room tempera-
ture modification. The system strictly obeys the
phase rule and yet is not at thermodynamic equi-
librium. It is axiomatic that compliance with the
phase rule is not a test for equilibrium but only
a guide. However, disobedience of the phase rule
furnishes positive evidence that equilibrium con-
ditions are absent. The importance of metastable
equilibrium cannot be stressed too strongly. Many
significant processes depend upon it for the man-
ufacture of common, everyday products such as
glass.

2. One-Component Systems

2.1. Stable Equilibria

For practical use the phase rule must be com-
bined with experimental information. The graph-
ical representation of the data encompassing the
principles set forth by the phase rule is the phase
equilibrium diagram. Figure 1A gives a hypothet-
ical phase diagram for a single-component system
using pressure and temperature as the independent
variables. Real systems can be infinitely more com-
plicated in detail but the figure illustrates the es-

sential features inherent in all single-component
systems. The diagram consists of three individual
curves, intersecting at point b, which separate
solid, liquid, and vapor phases. The variance of

each area and curve is indicated by an F value,

the maximum being two (divariant) for single-

phase areas and the minimum, zero (invariant) for

point b. Univariant curves ab and be are the vapor
pressure curves for the solid and liquid phases,

respectively. At point b, the triple point, three

phases, solid, liquid, and vapor, are in equilibrium.

(A) (B)

TEMPERATURE

Figure 1. Schematic phase diagrams for one-component

systems. F equals number of degrees of freedom.

Systems A and B

:

ab—univariant sublimation curve,

be—univariant liquid-vapor curve (boiling point curve),

bd—univariant melting point curve,

b—invariant triple point (solid, liquid, and vapor).

System B only:

ad—univariant solid I-solid II transition curve,

de—univariant melting point curve of solid I,

d—invariant triple point (solid I, solid II, and liquid),
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Curve bd represents the melting curve and indi-

cates the change in the solid-liquid equilibria

(melting points) with pressure and temperature.

The curve indicates quite clearly that any defini-

tion of melting point must include statements
regarding both variables. It is insufficient to quote
a melting temperature without specifying the

pressure.

Theoretically, the melting curve is involved

only with solid-liquid equilibria and only at the

triple point does the vapor phase enter into

the reaction. Take for instance, the compound
A X0V which vaporizes congruently to a number
of gaseous species. For simplicity the reaction

can be written as AxOv (s, l)^>Ax {g) -\-O v {g). The
reaction equation describes the stoichiometry of

vaporization and will be reflected in the one-
component phase diagram by the location of

curves ab and be, figure 1. Even here the two-
vapor species, A<t(g) and 0v (g), still only constitute

a single-vapor phase and consequently obey the

phase rule. In effect, the vaporization curves
for ^.^(s, I) are dissociation curves. The mecha-
nism of vaporization will have no definitive effect

upon the fusion curve in a one-component system,
for in theory, there is no vapor phase to contend
with at melting and the equilibrium of interest

is: AxOv (s)
—>A X0V {1). In this hypothetical situation

the pressure confining the system must be visual-

ized as that exerted by a frictionless piston. In
actuality, however, all real experiments must be
carried out in some type of environment, say air

or inert gas. Now the system becomes binary
because a second component, the environment
(air), has been added and the melting equilibrium
is describable as:

AxOv (s) + environment (air)-*AxOy (l)

+environment
(ai r >

•

Both the solid and liquid then are also in equilib-

rium with a vapor phase and vapor pressures
may be influential. In terms of the phase rule

along the melting curve of AX0V : [P-\-F=C+2

]

= [3(s, I, v)+F=2+2] or F=l, the same as for

a true one-component system. If the vapor
pressure of the compound is very low, as is the
case for many ceramics, the condensed phase
rule can be applied: [P+F=C+l]= [2(s, l)+F
=2+1] or F=l, again the same F value as

previously obtained when considering the vapor
phase. It should be emphasized that neglecting
the vapor as a possible phase does not remove
it as one of the components {AxOy

-\- environment).
The condensed phase rule, eq 2, only accounts
for a vapor phase deletion and the system, in
essence, is not truly a one-component system.
The assumption that the presence of an environ-

ment will not affect a melting curve is normally
valid, provided the vapor pressures of the con-
densed components are low and provided that
the environment is nonreactive. For example, if

the component AxOy dissociated to AxO v- z (s)

+ Oz (g) or A x (s)-\-Oy(g), the determined melting
curve then would be representative of the new
system, AxOy- z (s) or ^lx(s), not the original system
under investigation. In this context, the dissocia-

tion (or oxidation) pressures become extremely
important to the melting point determination.

Figure IB indicates another hypothetical dia-

gram for a one-component system in which a
polymorphic change occurs in the solid state.

Curve ad represents the transition curve for

solid phases I and II. Point a is another triple

point where the two solids and vapor are in

equilibrium. The transition curve, ad, is drawn to

intersect the melting curve, bd, at the triple

point, d, where solids I and II and liquid exist.

With increased temperature and pressure solid I

melts directly to liquid, thus exhibiting its own
melting curve, de. This situation, where at high
pressures the low form melts at a higher tempera-
ture than the maximum fusion temperature of

the high form, is not at all uncommon. In ceramic
systems there is a general scarcity of data showing
such phenomena because of the extreme experi-

mental conditions involved. Silica, the mainstay
of all ceramics, does exhibit this type of behavior
when subjected to high pressures. Figure 2

gives a composite phase diagram for Si02 drawn
from the data presented by several investigators

[6, 18, 19, 20]. High quartz is seen to melt at

higher temperatures than cristobalite, the high

STISHOVITE /

/

/

COESITE

/ LIQUID

/ HIGH— / QUARTZ /

LOW / X \S
QUARTZ / / \s\

/ /\/ CRISTOBALITE

/ TRIDYMITE

/ / VAPOR

TEMPERATURE —•>

Figure 2. Schematic phase diagram for the one-

component system, S1O2. Portions of diagram

after Levin et al. [6], Ostrovsky [18], Boyd and
England [19], and Fenner [20].
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temperature-atmospheric pressure form. Coesite,

the high pressure-low temperature phase, melts
at still higher temperatures and although data
are not available, stishovite conceivably would
fuse at temperatures successively higher.

In the silica diagram the majority of the
melting and transition curves all have positive

slopes, that is, an increase in pressure will cause
an increase in temperature for the transition.

Negative slopes, although somewhat rare, do
occur in a number of materials including water,
bismuth, and gallium [2, 211. Normally the overall

change in melting point with pressure is rather
small and generally is disregarded. However
slight, these changes can be approximated from
the Clapeyron equation provided values of the
molar volumes of the solid and liquid phases as

well as the heat of fusion are available:

dT TUVt-Vs) TmAV
dP~ AH, ~ AH, w

where
dT= change in melting temperature from Tm ,

dP= change in confining pressure,

Tm= melting temperature at given pressure,

Vi=mo\tibr volume of liquid,

Va
= molar volume of solid,

AH,= molar heat of fusion.

A semi-empirical equation describing the melt-
ing curve has been derived by Simon [21, 22, 25]

for the case where the coordinates of the triple

point are known:

These small pressure effects are characteristic of
ceramic systems involving only solid-liquid

equilibria.

The differential form of the Clapeyron equation
is seldom applicable over very wide pressure
ranges, for both AH, and AV are functions of
pressure and temperature. The compressibility of
the liquid phase generally is greater than that of

the solid [3] so at very high pressures Vi will

become less than VB . At some point Vi will equal

dTVB and ^p- will then be zero, resulting in a maxi-

mum or reversal point on the melting curve. Few
ceramics have been studied at sufficiently high
pressures and temperatures to determine whether
or not they exhibit this type of behavior. How-
ever, some data are available and figures 3 and 4
illustrate such maxima found for the carbon [18,

24] and Li2Cr04 [25] systems. The reversal phe-
nomenon, of course, is an experimental observa-
tion and a detailed explanation of why it occurs
for some materials involves careful analysis of

the structures of both the liquid and solid phases
at fusion temperatures.
A maximum in the fusion curve dictates that

AV is zero. If, coincident with AV=0, the change
in entropy were also zero, the system then would
cease to be heterogeneous and the solid and
liquid phases would be indistinguishable, analo-

gous to the critical phenomena which exist for

liquid-vapor transitions. The fusion curve at this

P-Po
a

(4)

where
P0
= pressure of the triple point,

T0= temperature of the triple point,

P and T= pressure and temperature of some
point on melting curve,

a and c= constants characteristic of the material.

At the triple point the Simon equation is related

to the Clapeyron equation by [21]:

dT
dP c{a+P)

(5)

where P»P0

The Simon equation is in essence a curve-fitting

equation requiring extensive and accurate ex-

perimental data to be of any great utility. For
ceramic systems the Clapeyron relationship will

suffice for most purposes. As a practical example
the slope of the melting curve for A1203 is 0.02

deg per atm assuming Afl/=28.3 kcal/mol,

y,=0.338 cm»/g and F8=0.251 cm 3
/g. For a

change in melting point of only 2 deg, a pressure
of at least 100 atm would be required—indeed a
very negligible pressure effect. Similar calculations

applied to the cristobalite-liquid transformation
yield a 0.07 deg/atm slope, still a slight effect.
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Figure 3. Schematic phase diagram for the

one-component system carbon. Diagram re-

drawn from that given by Bundy [24~\.
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Figure 4. Phase diagram for the one component system,

Li 2Cr04. After Pistorius [25].

critical temperature and pressure point would
terminate in a manner similar to the upper limit
found for liquid vaporization curves. Critical
melting has been postulated but not verified for
several materials [21]. If such melting occurs in
ceramics the pressures involved would be exceed-
ingly high.

2.2. Metastable Equilibria

Metastable equilibria can be depicted graphi-
cally in a manner similar to that illustrated for
stable systems. However, a certain definite rela-
tionship always exists between the two types of
equilibria which dictates the behavior of meta-
stable phases with pressure and temperature.
Figure 5 gives diagrams for three one-component
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Figure 5. Schematic phase diagrams for one-component
systems showing stable (solid lines) and metastable (dashed

lines) univariant curves.

eb—supercooling,

bf—superheating (system A)

,

fg and gi—metastable melting point curves.

systems showing the effect of metastability upon
the fusion curve. In the general case, (A), the

metastable univariant curves (dashed lines) are

extensions through the triple point, b, of the

stable curves (solid fines) with bf representing

superfusion, and eb, supercooling. Superfusion,

that is, the heating of a solid above the melting
point without the appearance of the liquid phase,

has seldom, if ever, been found experimentally

[3]. Supercooling on the other hand, is quite

common and as mentioned previously, ordinary
glass offers a perfect example.
Both metastable extensions, curves bf and eb,

must be drawn between the stable univariant

curves so that the stable phases will be always
illustrated as having the lowest vapor pressures.

This requirement is necessary because a phase is

always stable with respect to another if it possesses

a lower Gibbs energy or, in practical terms, lower
vapor pressure [2, 3].

In case (B), figure 5, the system is seen to

contain a phase II which has no stability field

whatsoever. The vapor pressure curve of II, ef,

intersects the extension of the liquid-vapor curve
at f, a metastable triple point. The fusion curve,

fg, indicates metastable melting at temperatures
lower than those for stable melting, curve bd.

Example (C) of the figure illustrates metastable
melting, curve gi, as influenced by the presence
of a stable polymorph, I. Here solid I melts
rather than transforming to solid II as required

by the stable equilibrium relationships. It is

interesting to note that both situations, (B) and
(C), show how it is possible for certain materials

upon heating, to melt, then solidify, and finally

remelt again.

The question sometimes arises whether or not
a metastable phase can melt at temperatures
higher than its stable counterpart. The metastabil-

ity represented by (B) and (C), fig. 5, indicate

lower melting. In these examples the metastable
liquid phase is always unstable with respect to a

true equilibrium solid. For metastable melting to

occur at higher temperatures, a liquid phase would
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have to be formed which is unstable with respect

to an equilibrium liquid. Figure 6 (A) and (B)

gives hypothetical examples of higher melting in

which liquid II would be unstable. In essence two
immiscible liquids would have to be postulated
for a one-component system. This, of course,

represents an improbable situation and conse-
quently higher melting cannot occur. It should
be pointed out that example (A), figure 6, repre-

sents nothing more than superfusion previously
illustrated in figure 5A. The unlikelihood of liquid

immiscibility in a one-component system accounts
for the fact that superfusion has never been demon-
strated experimentally.

Instances of metastable equilibria occurring in

ceramic materials are numerous. The Ge02

system [26], figure 7, perhaps offers a perfect

example of the types of metastability given in

figure 5. It is evident from the figure (curve jc)

that liquid Ge02 can be supercooled from above
1116° C, the true melting point, to room tempera-
ture. The rutile form of Ge02 , the stable low
temperature form, is seen also to melt metastably
at 1086 °C instead of transorming to the stable /3

quartz polymorph at 1049 °C. Furthermore, the

/3 quartz form on cooling, can transform metastably
at 1000 °C to a quartz, a form that presumably
has no stability field whatsoever.

Other examples of the prominent role played by
metastable equilibria in the behavior of ceramics
are given by the Si02 [20] and Bi203 [27] systems,
figures 8 and 9. Here again metastable melting
is a significant feature of both systems.

3. Binary Systems

Although few commercially important ceramics
involve only single-component systems, then-

basic behavior can be developed rather nicely from
one-component principles. Consider first a one-
component system, solid A, to which small
increments of an impurity, solid B, have been

(A) (B)

SOLID SOLID

VAPOR VAPOR

TEMPERATURE-*

Figure 6. Phase diagrams for one-component systems showing
two situations of superheating.

Solid lines—stable univariant curves,

Dashed lines—metastable univariant curves,
I—stable liquid,

II—metastable liquid.

VAPOR

O 01 ID
O I" 00 ID

O O O -

TEMPERATURE °C

Figure 7. Phase diagram for the one-com-

ponent system, GeC>2. Essentially after

Sarver and Hummel [26\.

Dashed lines—metastable univariant curves,

Solid lines—stable univariant curves,

fe—metastable melting point curve of rutile form,

de—stable melting point curve of 0-quartz form,

hi—metastable transition curve of metastable form
a-quartz and stable form a-quartz.
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/

I

^13 Tridymite
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Figure 8. Stability relations of the silica minerals. After

C. N. Fenner [20].
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added. Further presuppose that no reaction occurs

between solids, but that the impurity does react

to form a liquid solution containing both constit-

uents. If each binary combination is viewed as

an individual one component, then a series of

typical solid-liquid-vapor curves can be estab-

lished for every compositional increment as given
in figure 10A. An orthogonal projection of the

pseudo one-component curves on the 100 percent
composition plane of A produces a two-dimensional
representation, figure 10B, which clearly indicates

the effect caused by the addition of the second
component. The impurity, B, reacting in the liquid

only, causes a sequential lowering of the liquid-

vapor pressure curves as more and more of the

second component goes into solution. Because of

nonreaction between solids, the solid-vapor pres-

sure curve remains unchanged. Intersection of the
liquid-vapor curves with the unaltered solid-

vapor univariant forms a series of triple points
and consequently a number of melting point
curves (1 through 5, fig. 10B). The fusion curves
are seen to occur at progressively lower tempera-
tures, indicative of the amount of impurity added
to the pure component. The area defined by
curves 1 and 5 and the solid-vapor pressure curves
represent, in three dimensions, a volume contain-
ing both solid, A, and liquid phases.

For experimental convenience, it is customary,
and sometimes necessary, to investigate the
behavior of binary and other multicomponent
systems at a fixed pressure. The constant pressure
plane of importance to ceramics normally would
be at pressures greater than those of the binary
triple points. Graphically, figure 11 would rep-
resent an isobaric study of a binary system in

which the pressure plane intersects only the
melting and liquid-vapor curves. The melting
point of the pure component, A, at the fixed

pressure is indicated by Tx while T2 ,
T3 ,

Tiy and
T5 are melting points of the binary increments.
If the various melting points (Ti—»T5) are con-
nected as shown in figure 12A, the resulting curve,

TEMPERATURE

Figure 10. Schematic representation showing the effect

on the univariant curves of a one-component system by
the addition of a second component.

(A) Three-dimensional model illustrating progressive change of

one-component univariant curves.
(B) Projection of binary univariant curves on pressure-temperature

plane of pure component A. Curve 1—melting point curve of

solid A; Curves 2, 3, 4, and 5—melting point curves of binary
mixtures.

Figure 11. Isobaric cut through melting point and boiling

point curves of binary mixtures and pure component, A.

Tt, Ti, T%, Tt , and TSl
—melting points at constant pressure for pure

component A and binary mixtures.

COMPOSITION
100%—

Figure 12. Schematic derivation of liquidus curve for portion

of binary system at constant pressure.

(A) Portion of three-dimensional model given in figure 11.

(B) Conventional two-dimensional phase diagram for a portion of a two
component system. Ti, Tt, T3, Ti, and Ts—liquidus temperatures

at constant pressure.
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given on the two dimensional temperature-com-
position plot, figure 12B, becomes the familiar

liquidus curve found for so many phase diagrams
of binary systems.
The same general treatment can be applied to

the other end member, B, with component A now
acting as the impurity. Lower melting tempera-
tures for B would occur with the end result being
a simple eutectic system as shown in figure 13.

The intersection of the two depressed liquidus

curves defines the eutectic temperature and
composition for a given pressure.

The extent of the melting point depression of

each end member can be approximated from the

Raoult-Van't Hoff equation for dilute solutions

[2, 3]

:

RT 2

AT=2^(tfBL) (6)

where
AT= change in melting point,

T= melting point of pure component A,

A^BL=niole fraction of impurity B in liquid

solution,

i?=gas constant,

AHf
=molar heat of fusion.

Quite obviously eq (6) is based on ideal solutions

and therefore is of limited use for real systems.

General trends, however, can be anticipated from
the relationship and when applied to A1203 ,

for

instance, it is found that the melting point would
be depressed approximately 3° for every mole
percent contaminant. For Si02 a similar calcula-

tion indicates a change in melting point of about
80° for each mole percent of added impurity.
Thus, these data suggest that the slope of any
liquidus curve involving A1203 as the pure com-
ponent would be less than that for Si02 . This fact

is borne out by experimental results on the A1203
-

Si02 system [28], figure 14, which indicates a
greater depression for the melting point of Si02

than for A1203 .

Systems exhibiting only liquid solution are the

ultimate in simplicity and seldom are found in

real situations. Most systems contain one or

20 40
Wt %
60 80

COMPOSITION

Figure 13. Schematic derivation of liquidus curves for binary

system A-B at constant pressure.
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Figure 14. Phase diagram for the Si02-Al203

system. After Aramaki and Roy [28]. Figure

reproduced from Levin et al. [6].

more intermediate compounds, and more often

than not, some solid solubility between end
members. Compounds which melt to a liquid and
solid of different composition are termed incon-

gruent and their presence will be reflected by
an inflection or break in the liquidus curves

indicative of the melting temperature (peritectic

point) . Congruently melting compounds are those

which fuse to a liquid of the same composition.

They can be treated in entirety as a one-compo-
nent system with the melting point always
appearing as a maximum on the liquidus curve of

the full binary.

Approximations are difficult to establish con-

cerning the effect of solid solution upon the melting

point of a compound or pure component. Solid

solution can either raise or lower the melting

point depending upon the solubility of the solute

in both the liquid and solid phase. To show the

influence of solid solution the Raoult-Van't Hoff

relationship, eq (6), can be modified to [3]:

RT2

ri-^i (7)

where, AT, R, T, and AHf have the same meaning
as described for eq (6) and

ATBL=mole' fraction of impurity B in liquid

solution,

AfB8=mole fraction of impurity B in solid

solution.

It is readily apparent that if iVBs is zero then eqs

(6) and (7) become equivalent and a simple

melting point depression will occur. On the other

hand, if NBS is greater than NBU then the melting

point will be elevated. Figure 15 graphically

illustrates this principle by indicating an effect on

the vapor pressure curves caused by both liquid

and solid solutions. Example A shows greater

vapor pressure change for liquid solution

(A^bl>A^bs) and thus a lower melting curve.

For case B the solid vapor pressure curve is
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Figure 15. Schematic phase diagrams for one-component

systems showing effect of solid solution on the melting point

curve.

(A) Melting point curve lowered by solid solution.

(B) Melting point curve raised by solid solution.

affected to a greater degree (NBIj<iNBS) and a
raised melting point results.

4. Pseudo One-Component Systems

Many ceramic materials seemingly behave as
single components in that they exhibit all the
overt characteristics of one-component systems,
melting at defined pressures and temperatures.
Some compounds, for example, will melt at a
given temperature in one atmosphere oxygen and
simply by changing the environment to one
atmosphere of air, a different melting point will

be observed. If the course of each different heat
treatment is followed with, say, simultaneous
x-ray examination of the samples, it will become
evident that compositional changes have taken
place. Because of the environment the resulting
equilibrium cannot be described in terms of the
starting material. Titanium dioxide for instance
is known to lose oxygen upon heating in a sup-
posedly oxidizing environment such as air. Con-
sequently the determined melting point probably
will not be representative of stoichiometric Ti0 2

and the composition of interest would lie in the
Ti-02 binary system. Examination of the Ti-Ti02

diagram [29], figure 16, clearly indicates that an

Ti-0 2000
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Figure 16. Phase diagram for the Ti-Ti02 system. After DeVries and Roy [29]. Figure reproduced from Levin et al. [6].
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Figure 17. Phase diagram for the iron-iron oxide system as a function of oxygen partial pressure

in atm. After Muan [30] and after Darken and Gurry [31, 32].

Dot-dash-lines of equal Ph 2o/Ph 2 ratio of gas phase at 1 atm.

infinite number of "melting points" are possible,

all dependent upon the extent of reduction and
the final composition at fusion. Unfortunately,
the type of diagram illustrated lacks one important
feature; it gives no information concerning the
amount of reduction or change in the condensed
phases which could occur for each environment.
Knowledge of the phase relations as a function

of both temperature and oxygen partial pressures
is therefore of great importance, particularly in

those systems involving the transition metal
oxides where oxidation and reduction are common
occurrences. As an illustration, figure 17 gives

information of this type for the Fe-0 binary
system [30, 31, 32]. In this plot the stability

fields of the condensed phases, iron and iron oxides
in various oxidation states, are given as a function
of temperature and oxygen partial pressure.

Overall, the diagram has the appearance of the
typical one-component system with each bound-
ary curve representing a univariant situation.

Although not shown, each phase is assumed to be

in equilibrium with a gas phase. If the oxygen

partial pressure were held constant say at log

Po
2
~ — 0.7 (one atmosphere air) hematite would

upon heating transform through reduction to

magnetite before melting. On the other hand, if

the hematite composition were fixed, the oxygen

partial pressure would continually change during

the course of the heat treatment. It is interesting

to note that for stoichiometric Fe^ (hematite)

to melt, the oxygen pressure would have to be
much greater than 1 atm. As far as is known,
"Fe203

" as such has never been melted.

The phases listed in fig. 17 have been designated

as magnetite, hematite, etc. for good reason. The

psuedo one-component diagram provides no infor-

mation on the exact compositions (Fe/O ratios) of

the condensed phases. Wiistite, for example, can

vary in composition depending upon the tem-

perature and oxygen partial pressure. The same

is true for hematite and magnetite. To alleviate

this problem the conventional binary plot can be
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Figure 18. Phase diagram of the Fe-Fe203 system. After Darken and Gurry [31, 32] and after Muan [30].

Heavy solid lines are boundary curves separating labeled phase areas. Dash-dot lines are 02 isobars in atm.

combined with the one-component representation
in a manner as shown in figure 18 [30, 31, 32].

Here, various oxygen isobars are plotted across

compositional lines and indicate the pressure of

the gas in equilibrium with the condensed phases.
Each two-phase region is equivalent to the
univariant boundary curves given in figure 17.

Single-phase areas in addition to being defined
by temperature and oxygen pressure, are also

located with respect to composition.
Some exceedingly useful information can be

gained from proper utilization of this type of

diagram. Certain rules, however, must be adhered
to in its use. If the oxygen partial pressure is held
constant, the path or course of events for a

particular composition would follow that given
isobar. For instance, Fe304 (FeO-Fe203), upon
heating from room temperature in a gas of 10

-4

atm oxygen partial pressure and one atmosphere
total pressure, would oxidize at low temperatures
until Fe203 is formed. This is necessary because
the IO

-4 atm isobar does not intersect the Fe30 4

composition at low temperatures, thus making the

phase metastable with respect to Fe203 . Further
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increases in temperature would cause a subsequent
reformation of magnetite ("Fe304") but of a

different composition than the starting material.

The magnetite phase would continue to change in

composition with temperature until melting oc-

curred. At the melting point the solid (magnetite)

would be in equilibrium with a liquid only at one
temperature for the 10

-4 atm isobar, thus giving

the appearance of congruently melting. If the

oxygen partial pressure were altered, a different

"congruent" melting temperature would be
observed. In these cases, congruent melting is a

misnomer since the solid and liquid in equilibrium

do not have the same composition.

5. Multicomponent Systems

To the novice, the phase diagram of a multi-
component system may appear as a quagmire of

points, curves, areas, and polyvariant situations.

Multicomponent systems present a problem not
only in their investigation but also in the mere
graphic representation of their equilibrium rela-

tions. As stated previously, the independent
variables of any system are pressure, temperature,
and composition (of n components), each requiring

an axis in space for pictorial representation. It is

apparent that a major problem exists in repre-

senting all variables in three-dimensional space.
A plane, two-dimeDsioual figure is suitable for a

one-component system with an axis each for

pressure and temperature. Likewise, a binary
system can be depicted in two dimensions if one
of the variables is fixed; or in three dimensions, if

both the pressure and temperature variables are
utilized. Ternary systems can be illustrated fully

by a three-dimensional model only by fixing the
pressure (or temperature) and setting up a co-
ordinate system of temperature and the con-
centration of the three components. For systems
containing four components graphic representa-
tion is impracticable because both pressure and
temperature then must be held constant. Thus,
for a system of 3-i-n components a complete
graphic model cannot be formulated since 3+n
dimensional space would be required. Fortunately,
phase equilibrium relationships between materials
are such that the multicomponent system can be
viewed as groups of interrelated limiting boundary
systems consisting of a lesser number of compo-
nents. The four-component system, A-B-C-D,
for example, can be thought of as the four bound-
ary ternary systems; [A-B-C], [A-C-D], [A-B-D],
and [B-C-D]. These ternary systems in turn can
be broken down into other boundary subgroups
which are more conducive to investigation.
For apparent reasons, the ternary system plays

a prime role in the understanding of more complex
systems. Similar to binary mixtures, the ternary
system also can be developed using one-component
systems as basic building blocks. Consider first,

three one-component systems A, B, and C, which
react to form only liquid solution. The individual

Figure 19. Schematic derivation of the three-

component system, A-B-C, from individual

one-component systems.

X—Isobaric lines.

systems can be arranged about a common temper-
ature axis 120 deg apart in the manner illustrated

by figure 19. Lines of equal pressure (X) drawn to

intersect the univariant curves, in essence fix the
pressure variable at the same value for each one-
component system. By connecting the isobaric

lines with planes of constant pressure a three-

dimensional model (figure 20) is obtained which
relates the three components with temperature
at constant pressure. Points TA ,

TB , and Tc
indicate the melting temperatures of components
A, B, and C for that given pressure. The resulting

Figure 20. Schematic derivation of the three-

component system, A-B-C, showing the

three-dimensional relationships between

components at constant pressure.

Ta, Tb, and Tc—melting points of components A,
B, and C, respectively, at constant pressure.
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model, more clearly shown in figure 21A, consists

of three planes, each representing a limiting

boundary binary system at constant pressure,

which intersect at 60 deg. Temperatures are

indicated by the vertical axis. Concentration of

each end member can be located by the coordinate
system shown by the equilateral triangle projected
below the solid figure. The apex and corresponding
base of the triangle represent 100 percent and
0 percent, respectively, of the designated compo-
nent. Point 4, for example, would have an overall

composition of 40 percent A, 40 percent B, and 20
percent C.
As described before, the melting point of each

component in binary combination will be depressed
to form a eutectic. Figure 2lB indicates the
liquidus curves for the three binary systems with
points 1, 2, and 3 locating the binary eutectic

compositions and temperatures. The addition of

the third component to a binary combination will

cause further depression of melting points, thus
forming a series of curved liquidus surfaces meet-
ing at a common ternary eutectic point. The
complete ternary model is given in figure 21C.
Projection of the various important points to the
base of the solid model results in the two dimen-
sional plane triangle given below the triangular

prism. Point 4 is the ternary eutectic and as before

points 1, 2, and 3, the binary eutectics. Arrows
indicate the direction of falling temperatures.
Although not shown, temperatures on the liquidus

surface can be indicated by contour lines similar

to those designating elevations on topographic
maps. The entire liquidus surface can be seen as a
group of individual surfaces, each indicating a
primary phase field. Upon cooling from a melt the
primary phase would be the first solid phase to

(A) (B) (O

B B B

B B B

Figure 21. Schematic representation of the three-com-

ponent system, A-B-C, in various stages of develop-

ment. Upper figures indicate three-dimensional models;

lower, the projection of important points on base.

T\, TB,and Tc—melting points of components A, B, and C. Numer-
als (1, 2, 3, and 4)—eutectic temperatures and compositions. Curves

1-4, 3-4, and 2-4—boundary curves separating primary phase areas.

Arrows—indicate direction of falling temperatures.

crystallize. The intersection of the individual

surfaces form a series of boundary curves 1-4,

2-4, and 3-4. The projection shows clearly which
primary phase is in equilibrium with the melt
along the liquidus surface. Phase A, for illustra-

tion, will be in equilibrium with liquid for those

compositions in area A-l-4-3. Along univariant

curve 1-4, phases A, B, and liquid will coexist.

Likewise, curves 3-4 and 2-4 separate primary
phases A and C, and B and C, respectively. At
point 4 (invariant) all three components plus

liquid will comprise the equilibrium assemblage.
As a consequence of Raoult's law, congruently

melting compounds will always melt at tempera-
tures higher than those of adjacent compositions
(excluding some solid solutions) . Thus, the liquidus

surface will appear as a dome or mountain with
the peak occurring at the composition of the

compound. On the other hand an incongruently
melting compound will produce a terrace effect in

the liquidus surface. A general guide to the

behavior of ternary liquidus surfaces is given by
the Alkemade theorem [6] which in essence states

that the direction of falling temperatures on a

boundary curve is always away from the straight

line (Alkemade line) connecting the composition

points of adjacent primary phase fields. The point

of intersection of an Alkemade line and a boundary
curve or its extension will be a maximum on that

boundary curve. In figure 21C (lower triangle)

line AB (or AC and BC) can be thought of as an
Alkemade line. The intersection of AB with
boundary curve 1-4 at point 1 is seen to be at a

higher temperature than any ether point along
1-4. Similarly points 2 and 3 must represent the

highest temperatures on boundary lines 2-4 and
3-4, respectively.

Figure 22 (upper) gives six hypothetical systems
which demonstrate typical situations encountered
in ternary mixtures. The middle set of binary
systems indicate the phase relations between the

two base end members of the ternary system.

The lower diagrams illustrate binary representa-

tions of segments or joins (dashed lines) through
the ternary systems. With the exception of system
A, the join (dashed line) is coincident with an

Alkemade line. Temperatures are indicated on
the three sets of diagrams by numerals.

The ternary system A, is a simple eutectic

system similar to that developed for figure 21.

The binary system, A-B, exhibits elementary

eutectic behavior while the join, X-C, does not.

Line X-C fails to meet the requirement of an

Alkemade fine in that composition X has no pri-

mary phase field. Consequently point 5 will not

be a maximum along boundary curve 1-4 or along

the extension of curve 2-4.

The remainder of the ternary systems, B
through F, are somewhat more complicated with

each containing an intermediate binary or ternary

compound. System B indicates a congruently

melting compound AB and two ternary eutectics.

In this case line AB-C (Alkemade line) represents
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Figure 22. Typical three-component systems of various complexity.

Upper—After Levin et al. [6]. Arrows indicate direction of falling temperatures.
Middle—Phase diagram of one binary system included in respective ternary system (upper). Numerals indicate temperatures of points corresponding to
those given in respective ternary systems.
Lower—Binary representations of joins through ternary systems (dashed lines). Systems B and F (lower) are true binary systems.

a true binary subsystem and triangles A-AB-C
and AB-C-B true subternaries. Each subsystem
may be considered individually, independent of

the overall larger system. The distinction here
between true and pseudo system becomes im-
portant. A true system is one in which all primary
phases formed in that system can be expressed in

terms of the end member components. As illus-

trated by the binary diagram, AB-C (figure 22B,
lower), the primary phases are either AB or C
and thus AB-C is a true system.

Conversely, system C, figure 22, indicates a
situation in which compound AB does not form a
true subsystem with component C. The diagram
of the AB-C join (Alkemade line) shows this

clearly. Phase A which occurs throughout cannot
be formed from any combination of AB and C,
thereby relegating system AB-C to a pseudo
binary status. Furthermore the AB-C pseudo
system yields three phase equilibrium at regions
other than invariant points, a situation which is

not allowed by the phase rule for two components.
It should be noted that points 7 and 8 will not
be temperature maxima of curves 1-5 and 4-5,

respectively. This is due to the fact that the
Alkemade theorem is applicable only to boundary
curves of adjacent primary fields. The intersection
of line AB-C with the extension of the C and AB
boundary curve, line 5-6 will be at a maximum.
Thus, point 5 in the ternary system C represents

a ternary peritectic and point 6 a ternary eutectic.

System D, figure 22, illustrates an incongruently
melting compound, AB, with its primary phase
field indicated by area 3-4-5-6. Again, point 5 is

a peritectic and point 6 a eutectic. As before in

system C, the subsystem AB-C is not a true

binary.

System E indicates a situation not at all un-
common for ceramic systems. The binary com-
pound, AB, decomposes before melting to solids

A and B. In the ternary system, however, AB is

seen to be the primary phase in equilibrium with
liquid in field 4-5-6. Both points 4 and 6 are

peritectics while point 5 is a ternary eutectic. It

is evident that the appearance of AB as primary
phase in ternary mixtures offers interesting

possibilities for single crystal growth not possible

in the binary system, A-B, alone.

System F, figure 22, contains two intermediate
congruently melting compounds, ABC (ternary)

and AB (binary). The larger system, A-B-C, can
be subdivided into four true ternary systems,
A-ABC-AB, A-ABC-C, ABC-C-B, and ABC-
B-AB. Each sub-binary in turn is a true system.
System AB-ABC (lower, figure 22), typical of

each subsystem, illustrates only eutectic con-
figuration.

Often it is difficult to visualize the distinct

relationships which exist between various sub-
regions of multicomponent systems. Levin et al.
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[6] have formulated a useful graph, reproduced
in figure 23, which aids immensely in clarifying

matters. For a complete discussion of the figure

reference must be made to the original article.

In essence the figure basically relates the variance
and its geometrical representation to the number
of solid phases (squares) in equilibrium with
liquid for a given number of components in a
condensed system. As a simple example, the figure

indicates that at a eutectic point in a condensed
ternary system, three solid phases and liquid will

be in equilibrium. Similarly the liquidus surface

of a ternary is a divariant situation in which one
solid phase and liquid are in equilibrium. The
vertical arrows and numbers in parentheses
indicate the interrelationships between regions of

any given system. For illustration, in a ternary
system two divariant surfaces will intersect to

form an univariant curve. Three univariant curves
in turn will intersect to form an invariant point
(eutectic) at which three solid phases are in equi-

librium with liquid. Finally, the diagonal arrows
relate the origin or terminus of regions at bound-
ary systems. For instance, a univariant curve in

a ternary system will originate (or terminate) at

an invariant point of a binary boundary system.
In essence the region loses one degree of freedom
because the boundary system always has a lesser

number of components.

Degrees
of

Freedom

0
Invariant

I

Univariant

2

Divariant

3

Invariant

Tetravariant

Pentavariant

F + P =

C + I
=

Geometrical

Representa -

tion

Point

Curve

Surface

Volume

None
(4 dimen-
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)

None
( 5 dimen-

sional )

NUMBER OF SOLID PHASES IN EQUILIBRIUM
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nary
Quinary

4 5

(4) \ 15)

3 4

(3)_N (4)
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n-3

n- 4

n-5
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Figube 23. The interrelationships of subregions of multi-

component condensed systems at constant pressure. After
Levin et al. [6].

procedures in establishing the melting or freezing

point of a material. All first order transitions

such as the solid to liquid and solid I to solid II

transformations, produce an energy change which
is reflected by a corresponding change in the heat

content of the system. Heat will be absorbed from
the surrounding areas upon heating, and con-

versely, will be evolved during cooling. At the

transformation point, simultaneously with the

heat change, there will also be a discontinuous
change in a number of physical properties, as for

example, thermal expansion or electrical re-

sistivity. Basically the thermal analysis method
utilizes these changes to detect the occurrence of

the transition. Once detected, the problem re-

solves itself to one of the accurate measurement
of the temperature at which these overt changes
indicative of melting take place.

The thermal analysis method most commonly
employed makes use of the change in heat content

inherent in the solid to liquid transition. General-
ly, the experimental arrangement simply consists

of a crucible containing the sample in which a

temperature measuring device has been centrally

located. A continuous record during controlled

heat treatment of the specimen will result in a

time-temperature plot commonly referred to as a

heating or cooling curve (direct method). If no
transition takes place during cooling the curve
will be smooth and continuous similar to that

shown by A, figure 24. At the freezing point heat
will be evolved thus causing an arrest or halt in

the cooling process. For ideal situations the

temperature of the specimen will remain constant
until the last trace of liquid has solidified, at which
point further cooling takes place. The freezing

point will be reflected by that portion of the

cooling curve which is flat and parallel to the

time axis (B, figure 24). Usually, the solidification

rate of most materials is slow enough to cause
some supercooling, the end result being a cooling

curve illustrated by C, figure 24. If the rate of

cooling exceeds the rate of evolution of heat the

true freezing point will not be indicated by the

F.P.

TIME

6. Methods

6.1. Dynamic Methods

Tradit :

onally, the thermal analysis method has
been widely accepted as one of the more desirable

Figure 24. Typical thermal analyses cooling

curves. Essentially after Weber [36].

A—no transition,

B—theoretical cooling curve with freezing arrest,

C—cooling curve illustrating supercooling,

D and E—imperfect cooling curves which give false

indication of freezing point.
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cooling curve. Curves D and E, figure 24 exemplify
this type of behavior with both curves yielding
a freezing point less than the true value.

Freezing and melting points are numerically
equal, the terminology being merely a reflection

of the experimental approach to the solid-liquid
transition. Heating curves generally are less well
defined than the corresponding cooling curves. A
cooling liquid is more likely to possess a uniform
temperature because of greater thermal conduc-
tivity throughout the melt. Furthermore on heat-
ing, small variations in power supplied to the
furnace will cause abnormalities in the heating
curve not related to melting. Supercooling, espe-
cially for ceramics, can be troublesome in utilizing

cooling curves. On the other hand, superheating
does not occur, at least readily, thus making the
heating curve method more desirable in this re-

spect. The choice between a heating or cooling
curve as a means of establishing the transition
point is strictly material dependent. Figures 25
[33] and 26 [34] give examples of experimental
determinations of the freezing points of gold and
several ceramics. Figure 27 [35] shows both the
heating and cooling curve obtained for alumina
(A1203). Here supercooling is so pronounced that
the observed freezing point of A1203 is some 200
degrees less than the observed melting point.
The thermal analysis method, of course, is not

limited to the study of pure materials. It is equally
adaptable to binary and other multicomponent
systems. Figure 28A, curves I and II, give illustra-

tions of cooling curves for a pure component and
a mixture. Line A-B, curve I, represents the freez-
ing temperatures for the pure component while
the inflections C and D indicate the liquidus and
solidus temperatures, respectively, for the mix-
ture. The temperature interval between C and D
indicates the region in which both the solid pure
component and liquid containing the mixture are
in equilibrium. Obviously, it is possible to con-
struct a phase diagram from thermal analysis data
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1 2* 4 S 6789

B TIME

Figure 28. Typical cooling curves as applied to

a binary mixture. After McNamara [42].

A—Curve I—pure component; Curve II—a mixture,

B—relationship between cooling curves and a binary

phase diagram. Curves 1 and 9—pure components;

Curves 2 through 8—mixtures. Time axis and composi-

tion axis are superimposed.

on various compositional increments. The relation-

ship between these data and the phase diagram
for a simple eutectic system is given by figure 28B.
Curves 1 and 9 indicate the cooling behavior for

the end members while curves 2 through 8 repre-

sent similar data for intermediate compositions.
Normally the heat of fusion (or crystallization)

is not large in comparison with the total heat
content of the system; consequently, the melting
or freezing arrest usually is not very pronounced.
To alleviate this problem, various alternate
methods have been devised to enhance the inflec-

tion points. In all, there are four principal methods
which are used to obtain thermal data [36, 37]

:

1. Direct (heating and cooling curves),

2. Inverse rate,

3. Differential (D.T.A.),
4. Derived differential.

The direct and inverse rate procedures differ only
in the method which is used to record the data.
The same experimental apparatus is appropriate
for both. The inverse rate method consists of

determining the time required for the specimen
to change a definite temperature interval, which

in effect, amounts to differentiating the tem-
perature-time curve (direct method) with respect

to temperature. Methods 3 and 4 require the same
experimental setup and, as before for methods 1

and 2, differ only in the way the data is collected.

The differential method records the difference in

temperature between the specimen and an inert

body which undergoes no transformation. These
differences are plotted against either the tempera-
ture of the specimen or that of the furnace cavity.

The derived-differential method (4) consists of

differentiating the differential curve with respect

to temperature. Typical examples [36] of the four
types of plots are given in figure 29. Each indicates

the relative sensitivities in estabhshing the same
transition point.

Various other dynamic methods have been
devised for melting point determinations [37, 38,

39, 40, 41]. Although these methods differ some-
what in detail, conceptually, they all involve

visual observation of a specimen during heat
treatment. The temperature at which a specimen
is seen to fuse is taken as the melting point. Here,

the measurement of temperature becomes the

major obstacle in obtaining an accurate value.

The direct thermal analysis method is generally

more conducive to accurate temperature measure-
ment in that a blackbody can be built into the

experimental setup, thereby permitting a realistic

assessment of true temperatures. The other

dynamic methods depend on the ability of an
observer to distinguish a specimen from surround-
ing areas to detect melting. This requirement is

not compatible with the achievement of the

1

b /c [d

At / (
AT

\ aT 1 aT \ T

Figure 29. Four methods

of thermal analysis.

After Weber [36].

a—direct

b—inverse rate

c—differential (D.T.A.)

d—derived differential

T= temperature
i=time
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blackbody conditions as a specimen located in a
blackbody enclosure for all practical purposes
becomes invisible. The obvious recourse has been
to allow the necessary deviation from perfect

blackness to see the specimen and to incorporate
a temperature correction factor obtained from
emissivity data or from in situ calibration.

Published emissivity data as well as some calibra-

tion procedures, however, are not always reliable

and are generally not applicable to specific

experiments.

6.2. Static Methods

The quenching method [6, 42, 43, 44] is the one
procedure specifically developed for study of

ceramic cystems. The method relies upon the
fact that many reactions in ceramics are sluggish

and may be arrested or "frozen in" by rapid
cooling or quenching. In general, a small homoge-
neous charge is placed in a container which in

turn is heated at a constant temperature until

equilibrium is attained. The specimen is then
quenched by dropping the container into a cooled
liquid or alternatively, by rapidly cooling the

furnace. Examination of the cooled specimen by
various means reveals the degree of melting.

If the specimen shows no signs of melting, addi-

tional heat treatments are performed at succes-

sively higher temperatures. After a series of

heatings the melting point can be established as

that temperature midway between the maximum
temperature at which no melting occurred and
the minimum temperature where fusion was
complete. Quite obviously the success of the

method depends upon the ability of the examiner
to establish the degree of melting the specimen
had undergone. For glass-forming materials evi-

dence of fusion can be detected by microscopic
techniques which will identify the presence of

liquid by the appearance of isotropic material
(glass). For nonglass formers the problem of

liquid detection becomes more formidable.
Physical appearance of the cooled specimen is a
useful guide. A sample which had lost its original

shape and flowed to surrounding areas can, of

course, be considered completely melted. Un-
fortunately, many ceramics when melted tend
to form viscous liquids and consequently little

slumping or flow occurs. In these cases the
problem is minimized if single crystals are used
as test specimens [45] . Unless melted, the single

crystal will retain its identity, that is, remain
single. If fusion occurs the cooled specimen will

appear as a polycrystalline mass which is readily
identifiable.

7. Temperature Measurement

7.1. Temperature Scales

Perhaps the greatest difficulty inherent in the
determination of a melting point is the accurate
measurement of temperature. The thermodynamic

temperature scale [46] is the fundamental scale,

to which all temperatures should be referred.

The scale is based on the second law of thermo-
dynamics which allows complete definition by
fixing one thermodynamic temperature. At present

this temperature is designated as exactly 273.16

K, the triple point of water [46]. Because of

experimental problems associated with the meas-
urement of temperatures on the thermodynamic
scale (gas thermometry), a practical temperature
scale was established in 1927 by international

agreement [47]. A major revision of the 1927
scale was made in 1948 [48] with subsequent
text revision in 1960 [46]. Further changes in

this scale are anticipated to make it conform
more closely to the thermodynamic scale. The
International Practical Temperature Scale of

1948 (IPTS) [46], the scale now in use, 3 in essence

represents a realistic experimental approach to

the ideal thermodynamic scale.

Currently six points define IPTS between the

lowest assigned value, the oxygen point (—182.97
°C) and the highest, the gold point (1063 °C).

Certain thermometric instruments and formulas

are specified as a means to realize these fixed

points and intermediate temperatures. Above
the gold point, temperatures are based upon the

Planck relationship

:

where,
JAu and J t

= radiant energies per unit wave-
length emitted by unit area of a

blackbody at temperature t and
the gold point Au (1063 °C),

\= wavelength,
C2
= second radiation constant (1.438

cm deg),

jT0=273.15 deg.

Although no instrument of measurement is desig-

nated by IPTS for temperatures above 1063 °C,

the optical pyrometer has been traditionally

utilized for this purpose. In addition to the six

primary points IPTS recommends certain other

points which may be used for calibration purposes.

Table 1 summarizes important features of the

practical scale.

7.2. Instruments

Since IPTS specifies certain instruments it is

generally advisable to limit their use to the desig-

nated temperature ranges. This is not always

possible, however, and frequently the investigator

must extend the range of the instrument beyond

that stated by IPTS. Of prime importance to the

study of ceramics are the (1) thermoelectric, and

(2) radiation pyrometers. The theory, use, and

calibration of these temperature measuring de-

a Recently a new scale (IPTS 1968) was adopted, official text of which will

appear in Metrologia, April 1969.
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Table 1. Fixed and secondary points on the International
Practical Temperature Scale of 1948 1

[46].

Material

Oxygen _

Carbon dioxide
Mercury
Water _._

Water
Phenoxybenzene
Sodium sulphate decahydrate _

Water..
Benzoic acid— _

Indium
Naphthalene
Tin
Benzophenone
Cadmium
Lead.
Mercury _

Zinc... _. .

Sulfur
Antimony.
Aluminum
Silver _

Gold..
Copper
Nickel
Cobalt
Palladium
Platinum _

Rhodium
Iridium
Tungsten

Property 2

B.P.
S.P.
F.P.
F.P.
T.P.
T.P.
Tr.P.
B.P.
T.P.
F.P.
B.P.
F.P.
B.P.
F.P.
F.P.
B.P.
F.P.
B.P.
F.P.
F.P.
F.P.
F.P.
F.P.
F.P.
F.P.
F.P.
F.P.
F.P.
F.P.
M.P.

Temperature, "C.

Primary
point

-182. 97

+0. 01

"166

444.

6

960.8
1063

Secondary
point

-78.5
-38. 87

0.000

26.88
32.38

122.36
156.61
218.0
231. 91

305.9
321. 03
327.3
356.58
419. 505

630.5
660.1

1083
1453
1492
1552
1769
1960
2443
3380

1 Certain instruments of measurement are specified as a means to realize
the scale between different fixed points. These are: —182.97 to 630.5 °C,
platinum resistance thermometer; 630.5 to 1063 "C, platinum versus platinum-
10% rhodium thermocouple; 1063 °C and above, no designated instrument
although an optical pyrometer is generally utilized.

2 The symbols B.P., S.P., T.P., F.P., M.P., and Tr.P. refer to boiling
point, sublimation point, triple point, freezing point, melting point, and
transition point, respectively. All points except the triple points applicable
when determined under one standard atmosphere. The copper point re-
quires a reducing environment.

vices have been well documented [33, 36, 49,
50, 51, 52, 53, 54].

Thermoelectric pyrometers, thermocouples, are,

of course, the mainstay of the ceramic industry.
Quite simply, thermocouples consist of two dis-

similar electrical conductors joined together at
their ends. A temperature difference between the
two junctions will produce an emf which is

characteristic of the type of material and of the
magnitude of the temperature gradient. Calibra-
tion of a particular thermocouple at several
fixed and secondary reference points will yield an
emf versus temperature plot generally in the
form of

E=a+bM+c(M) 2

where,

E= emf,
At= temperature of hot junction minus

temperature of cold junction,
a, b and c= constants.

The types of thermocouples available are many
and varied [50, 52, 53]. Generally it is advisable
for the thermocouple to have as large a thermo-
electric power /dE\ as possible. Resistance to de-

\dtj
terioration by oxidation or reduction is also of
great importance. The melting point of the lowest
melting member will set the maximum temperature

of use. However, other factors generally limit its

utility to lower values.

Radiation pyrometry can be divided into two
categories: (a) total, and (b) spectral. Total
radiation pyrometry employs radiation from a

large part of the spectrum according to the Stefan-

Boltzmann relationship

:

J=eToT (10)

where,
J= total radiant flux per unit area per second,
T— temperature (K),

eT= total emissivity,

cr=Stefan-Boltzmann constant.

The radiation pyrometer in effect collects the

energy emitted by a definite area of a hot body
withm a limited solid angle and converts that
energy to some measurable quantity such as emf.

The emf or other deflection, D, of the indicating

instrument is related to temperature by:

D=c(T*-T0*) (11)

or

D~cTn (when T»T0) (12)

where,
D= deflection of indicating instrument,

7
1=blackbody temperature (K),

T0
= pyrometer reference temperature (K),

c= empirical constant,

n= exponent, approximately equal to 4.

For a nonblackbody the total radiation pyrometer
will indicate temperatures lower than the actual

target temperatures. Observed temperatures are

related to the true temperature by:

T0=T,fc (13)

where,
T0
= observed temperature (K),

T,=true temperature (K),

e t
= total emissivity.

Spectral pyrometry uses only a narrow region

of the spectrum, traditionally about 0.65 (im.

The spectral pyrometer compares the intensity of

filtered radiation emitted from a target with that

of a comparison source of known but variable

temperature. Since its inception, this type of

pyrometer has utilized the human eye as the

means to compare the two intensities and thus

has become known as an optical pryrometer. Of
late, however, a photoelectric tube has been used

for this purpose [45, 51]. The comparison source

is generally a lamp filament contained within the

pyrometer. By varying the current of the lamp
filament its intensity can be adjusted until a

match in brightness is obtained with the target.
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Calibration of the pyrometer against targets of

known temperatures gives an equation:

T=a+bI+cP+dP (14)

where,
T=blackbody temperature (°C),

7= pyrometer lampcurrent,
a, b, c and d= empirical constants.

In spectral radiation pyrometry the measuring
instrument determines a brightness temperature,
not the true temperature of an incandescent body.
Using Wien's law (an approximation) the relation-

ship between these two temperatures is given by:

where,
T^true temperature (K),

T0
= observed (brightness) temperature (K),

\e = effective wavelength,
Ct
= second radiation constant,

ex = spectral emissivity.

7.3. Blackbodies

Radiation pyrometry plays a prominent role in

the determination of the melting point of ceramics
primarily because of the high temperatures in-

volved. The theory behind this type of pyrometry
is well established and easy to utilize. Equations
13 and 15 of the previous section relate the true

temperature (Tt) of a body with the observed
temperature (T0) as monitored by a total and a
spectral pyrometer, respectively. Quite obviously,
for a given wavelength band or effective wave-
length, the difference between T t and T0 may be
rather large, depending upon the emissivity. For
example, if the true temperature of a material
having a total or a spectral emissivity of 0.5 is

2000 °C, an optical pyrometer would indicate

about 1880 °C or 120 °C too low. Similarly, for

the same situation, a total radiation pyrometer
would read a temperature of about 1640 °C or be
in error about 360 °C.

Emissivity is known but for a few materials;

thus, a real problem exists in the accurate measure-
ment of temperatures by radiation methods. The
only practical solution available is to incorporate a

blackbody into the temperature measuring system

.

By definition, a blackbody is a substance or object
which absorbs all incident radiation, and reflects

or transmits none. A blackbody is also a perfect

radiator, emitting the maximum possible energy
as the result of temperature alone. Consequently,
the emissivity of a perfect blackbody is equal to

unity. It is evident, then that if a radiation
pyrometer is sighted on a blackbody the observed
temperature would necessarily be equal to the true

temperature.
Fortunately, experimental blackbodies can be

constructed so that their effective emittances are

sufficiently close to unity as to make errors in

temperature measurement small. An experimental
blackbody generally consists of a uniformly
heated opaque enclosure containing a small aper-
ture. The enclosure may be any shape but usually
is in the form of a sphere, cylinder, or closed end
tube. Providing isothermal conditions exist, radia-

tion within the enclosure, after numerous reflec-

tions, emerges through the hole as nearly black.

All interior details of the enclosure are indis-

tinguishable. The smaller the area of the aperture
in comparison with the total internal area of the
enclosure, the greater the emittance. The omit-
tance of any enclosure supposedly built as a
blackbody is extremely dependent upon the nature
of the internal reflections. Even enclosures in

which the geometric design is correct, can have low
emittances if the internal reflections are specular
rather than diffuse. A roughened internal surface
aids in this respect.

A perfect blackbody, like a perfect gas, repre-

sents an ideal situation unobtainable in practice.

Therefore, an estimate must be made of the quality

of the experimental blackbody. Excellent papers
by several authors [55, 56, 57, 58] give methods of

evaluating the effective emittances of blackbodies
having different configurations. It should be em-
phasized that these estimates can be valid only for

enclosures which are uniformly heated. If thermal
gradients exist along any enclosure there is little

possibility that its effective emittance can approach
the theoretical limit of unity.

8. Melting Point Standards

Numerous ceramics have been utilized through-

out the years as high temperature melting point

standards. Materials such as A1203 ,
Cr203 ,

MgO,
NiO, CaMgSi203 (diopside), 15%CaO : 85%Si02 ,

and CaSi03 [59] all, at one time or another, have
been used, often as fixed points on practical

temperature scales [37]. These materials, however,

only can be regarded as pseudostandards for there

is no common agreement as to their exact melting

point. There is such a wide divergence between
published melting points for the same material [59]

that the user more often than not selects a value

that best conforms with his own experimental data.

In reality, the only materials acceptable for use as

high temperature standards are those having inter-

nationally recognized melting points such as given

by the International Practical Temperature Scale.

Unfortunately, the materials specified by IPTS
which melt above the gold point are too few in

number and generally not adaptable to a wide

variety of experimental conditions. Furthermore,

many of the melting points were established many
years ago [60, 61, 62, 63] and thus a reevaluation

might be in order. The need for additional second-

ary reference points is all too apparent. The metal

oxides as well as other ceramics, indeed, warrant

consideration for this purpose.
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Thermal Expansion of Ceramics

Richard K. Kirby

Institute for Basic Standards,
National Bureau of Standards, Washington, D.C. 20234

Various types of coefficients of thermal expansion are defined and their application

described. The theory of thermal expansion is also reviewed and several applications to

ceramics are given. Variations of four general test methods are described with special emphasis
placed on techniques of obtaining high accuracy. Included are three variations of the vitreous

silica dilatometer, two types of interferometers, an optical comparator, and two types of

x-ray diffractometers. The effect of several characterization parameters on the expansion

of ceramics is discussed. These include crystalline and amorphous phases, Active temperature
of glassy phase, quantity of phases, grain size, orientation of anisotropic grains, microcracks,

and stress.

Key Words: Anisotropic grains; ceramics; composites; glass-crystal system; inter-

ferometer; microcracks; optical comparator; stress; thermal expansion;

vitreous-silica dilatometer; x-ray diffractometer.

1. Introduction

During the last twenty years over 200 papers
have been published in the Journal of the American
Ceramic Society that have contained information
on thermal expansion [1-216] 1

. All but a few of
these papers have presented experimental data
obtained by the author(s), two have been review
papers on thermal expansion [17 and 35], and
several have described equipment for measuring
thermal expansion [16, 37, 81, 85, 130, 138, 139,

150, 156, 168, 169, and 180]. This represents about
12 percent of all papers published by the Journal
during this period. Of these papers about 30 per-
cent have given data on crystalline oxides, 20
percent on glasses, 15 percent on multiphase sys-

tems, 15 percent on porcelains, enamels, etc., and
about 6 percent on carbides, nitrides, and borides.
Very little of this body of information, however,
has been obtained on materials sufficiently char-
acterized to be of usefulness beyond knowing the
expansion of some particular specimens.

In general, thermal expansion is not greatly
dependent upon Che history and character of
materials, the variation of coefficient of linear
thermal expansion being about the same order as
the coefficients themselves. This is in contrast with
the behavior of transport properties and some
mechanical properties where the variations reach
several orders of magnitude. History, however, is

of relative importance in its effect on thermal
expansion of ceramics.

1 Figures in brackets indicate the literature references at the end of this
paper.

History includes the method of preparation
and thermal treatment and to a great extent
determines the character of the material. Of the
many parameters of character which affect the

properties of ceramics, the following will some-
times have a significant effect on thermal expan-
sion:

Chemical composition (1 percent level)

Crystalline and amorphous phases [32, 141,

185, 197]

Quantity and size of phases [92, 125, 184,

201]

Orientation of anisotropic grains (87, 165,

183]

Residual stress [55, 93, 198]

Fictive temperature of glassy phase [6, 83,

94, 155]

Formation of cracks [113]

Formation of point defects

Chemistry of surface [205, 206, 207]

Those parameters which usually do not have a

significant effect on thermal expansion include:

Density [83]

Grain size [65, 75, 165]

Porosity [59, 82, 165]
Stoichiometry of grains [196, 212]

Impurities (<1 percent level)

Dislocations

Grain boundaries
Topography of surface [60]

There are always exceptions to the above rule,

however. For instance, in graphitic materials the

grain size and porosity have very significant

41
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effects on the thermal expansion through the
orientation of the anisotropic grains [217].

The general range of values of the coefficient

of linear thermal expansion of ceramics is indi-

cated in table 1. Compilations of thermal expan-
sion can be found in five readily available sources

[218-222]. Literature values for the expansion
of ceramic materials vary on the average by
about 10 percent but variations as large as 40
percent also appear. It is difficult to judge how
much of this variation is due to experimental
procedures and how much is due to history and
character differences. An interesting interlabor-

atory study has been made on magnesium oxide

[223], however, in which it was found that an
average variation of about 5 percent was due to

experimental procedures.

Table 1. Coefficients of linear thermal expansion of some
ceramic materials at 300 K

Material Coefficient

NaCl [224] 40 X 10-«/K
PbS [224] _ 18
MgO [224].. ._ 11

Th0 2 [224] _ 7

Al 203 [224] 5
InSb [224] 5
SiC [218] _ 4
Borosilicate glass [218] _ 3
Vitreous silica [224] 0.4
(3-Eucryptite (c axis) [113] -17

2. Definitions

The thermodynamic coefficient of thermal ex-

pansion is defined as

V\dTjP
0=

where the volume, V, is a function of tempera-
ture, T, at constant pressure, P. The coefficient

of linear thermal expansion is defined as

1/dZA
a=

L\j5T)P

where the length, L, is a function of temperature
at constant pressure. If the material is isotropic

then
/3=3a.

Single crystals having cubic symmetry, annealed
polycrystalline solids having randomly oriented
grains, and annealed glasses or amorphous ma-
terials are isotropic.

The coefficients of linear thermal expansion
needed to describe the expansion of crystals of

various symmetries are as follows [225]

:

Cubic Oil Oil Oil 0 0 0
Hexagonal Oil Oil Oi3 0 0 0
Tetragonal Oil Oil «3 0 0 0
Trigonal Oil Oil Oi3 0 0 0
Orthorhombic Oil OL2 <*3 0 0 0

Monoclinic Oil Oi2 Oi3 0 Oi5 0
Triclinic Oil a2 «3 Oi5 <*6

The principal coefficients (ai, a2) and a3) describe

the volume change of the crystal so that

&=ot\-\-ct2 -\-a3 .

These coefficients are not necessarily in the direc-

tion of the crystallographic translation vectors

but are in the direction of the principal axes

[225]. The remaining coefficients (<x4 ,
a5 , and a6)

describe the change in shape (but not the sym-
metry) of the crystal. A monoclinic or triclinic

crystal will change shape during a temperature
change even if it is cut in the crystallographic

reference system. For example, the lattice para-
meters of a monoclinic crystal are given as a,

b, c, 90°, /3 90° (see fig. 1). The special relations

a=7=90° cannot be changed by temperature
change. While a2 and a3 are the coefficients along

the crystallographic translation vectors b and c,

cci is the coefficient in the direction of the principal

axis Xi which is orthogonal to the X2 (b) and

X3 (c) axes. The remaining coefficient, a5 ,
represents

the change in the angle /3 and is given by

Oi5
'- J_ dp

V/2 df

Except for monoclinic and triclinic symmetries,
the expansivity of a single crystal in a direction

different from the crystallographic axes is given

by
a w=2a iCOS

2
aj j

where coj is the angle between the direction of a t

and the direction of interest. For hexagonal,

tetragonal and trigonal symmetries this relation-

ship reduces to

a w= ai+ (a3— ai) cos
2
o>3 .

Monoclinic

a*b*c
Coefficients

a, along X,

a
2 along X 2 (b)

a 3
along X 3 (c)

a 5 the change in /3

Figure 1. Coefficients of thermal expansion for a

monoclinic crystal.

The direction X\ (orthogonal to X2 and X, in the xz plane) varies

with temperature and a
5

is a measure of the change in the angle (I.
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If the values of a u are plotted against the corre-

sponding values of cos2w3 the result is very close

to a straight line. Deviations from the straight

line can result from residual stresses. Data
obtained by the author on several crystals of

Ti02 having different orientations are illustrated

in figure 2.

The thermodynamic coefficient of thermal
expansion can be calculated from an equation
that represents the expansion of the material

or by graphically determining the slope of the
expansion data at a particular temperature and
dividing by the volume at that temperature. The
difficulty with the first procedure is that while
equations (usually polynominals) can be obtained
in limited temperature ranges that appear to fit

the data, a closed equation will not in fact exactly

represent the thermal expansion. This is especially

true in the lower temperature range as can be
seen in figures 3, 4, and 5. Equations derived from
Griineisen's theory of the solid state are probably
the best to use for representing thermal expansion.

Derivation of these equations will be given in

the next section.

Under certain conditions the instantaneous
coefficient of thermal expansion will satisfactorily

0 0

Figure 2. Coefficients of thermal expansion of
single-crystal rutile in various directions from
the c axis.

200 300 400

TEMPERATURE, K

500 600

Figure 4. Expansivity of single-crystal rutile as function of
temperature.

150 200 250

TEMPERATURE, K

Figure 5. Expansivity of indium antimony as a function of
temperature.

0 200 400 600 800 1000

TEMPERATURE, K

Figure 3. Expansivity of magnesium oxide as a func-
tion of temperature.

represent the thermodynamic coefficient. The
instantaneous coefficient is defined as

R _l_dV_ limit V2-V1

at

2

where V0 is the volume at some reference tempera-
ture, usually room temperature. The instantaneous
coefficient of linear thermal expansion is given by

limit L2—h\

If the expansion over a limited temperature range
can be approximated by a quadratic,
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then

and

L=L0+aT+bT2

a+2bT
di-

et-

L0

a-\-2bT

L 0+aT+bT 2

For the case of a quadratic, the limit of Tl-^T2

does not need to be applied. For low-expansion
materials such as vitreous silica, cti equals a for

temperatures as high as 1200 K. If the expansion
curve takes the shape of higher polynominals the
limit of T\—>T2 must be applied if it is desired
that cti

—>a.

For practical applications the mean coefficient

of linear thermal expansion between temperatures
Tx and T2 ,

<Xm=
L2 L\

is very useful. Values of the mean and instantane-
ous coefficients for quartz are shown in figure 6.

It is quite apparent that the mean coefficient is

relatively insensitive to changes in expansion. The
mean coefficient of volume thermal expansion is

not equal to three times the mean coefficient of

linear thermal expansion but can be approximated

/Jm~3«m+3(T2-TiVm .

reliable information about the anharmonic terms
in the potential energy function. The inelastic

scattering of neutrons by a lattice has been
studied as a function of volume by application

of external force [227]. The frequency shifts of

the lattice vibrations that are thus produced
reflect the deviation of the crystal potential from
the harmonic approximation. These measurements
have resulted in calculated values for thermal
expansion and confirm what has been approxi-
mated by simple approaches.
From thermodynamics we have the following

set of definitions and relationships:

and

£=
KT

1 fdV\ a 1 fbV\

(1)

where k t is the isothermal compressibility, S is

the entropy, and F is the free energy. Applying
statistical mechanics to the quasi-harmonic
approximation (the interaction constants of the

harmonic theory are allowed to be volume
dependent) for a set of harmonic oscillators it

can be shown that

d 2F I 3N

V i=i

where

For example, if <xm=10X 10- 6/K and T3— 2V=1000
K then /3m=30.3X 10~ 6/K.

3. Theory of Thermal Expansion

It has been known for years [226] that thermal
expansion originates in the anharmonic vibrations
of atoms in a solid. It is only recently, however,
that real progress has been made in obtaining

l.8|— —50"

TEMPERATURE, K

Figure 6. Comparison of the mean and instan-

taneous coefficients of quartz.

and

C^kihoiJkT) 2 exp (hco (
/kT)/[exp (hUi/kT)-l] 2

.

Ct
is the contribution of each vibrational mode

to the heat capacity, k is Boltzmann's constant,

h=h/2T where h is Planck's constant, and is the

frequency of the ith mode. If y is the weighted
average of the individual y^'s,

3N 3N

8=1 i=l

then

&F _y_Cy

bVdT V ' K
'

Gruneisen's relation is obtained from eqs (1) and

(2),

0=7^' (3)

where y, the Griineisen parameter, is a measure
of the average anharmonic interaction.

At temperatures higher than the Debye char-

acteristic temperature, 6D , the value of y is nearly

constant since the whole spectrum of vibrational
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frequencies is excited and ym is merely the arith-
metic average of the 7/s,

I
3N

7co=3iV§ 7< "

In the low-temperature limit as T—>0 K, the
Debye continuum is a valid model and again 7
will approach a constant value,

Vdd0

where 6 0 is the limiting value of 6D at low temper-
atures and is directly related to the elastic con-
stants. At intermediate temperatures the behavior
of 7 may be investigated through Gruneisen's
relation,

The variation of 7 for A1203 is shown in figure 7.

Since the free energy is an additive function of
state, eq (3) can be expressed as a sum of the
contributions from the lattice vibrations (both
the acoustical and optical), the conduction elec-
trons in metals, magnetic interactions, etc.,

0~!p(7acoCaco+7optC
,

opt+ 7eC
r

c+7mCm+. . .). (4)

In the case of nonmagnetic metals, the heat
capacity of the conduction electrons and the
lattice can be approximated by

Ce^aT and C,~bT3

at very low temperatures.
Equation (4) can therefore be written as

l3=^(yeaT+yibT3
).

If the terms are rearranged,

0V=yea+yibT2
,

and the values of are plotted against (T 2
)

a straight fine should result. Such a plot for copper
is shown in figure 8.

The separation of the free energy terms for

the acoustical and optical vibrations in a poly-
atomic crystal can also be obtained [228]. The
heat capacity of the optical modes is determined
from Einstein's function using the value of the
infrared resonance frequency at the absorption
maximum,

Copt—/ (j^)
where QE=he

The heat capacity of the acoustical modes is taken
as the difference between observed values of Cv
and calculated values of Copt. If values of

(/3T7Cac0 KT) are plotted against the values of

(Copt/Caco), a straight line should result. Such a
plot for Ti02 is shown in figure 9.

Equations can also be derived to represent the

anisotropic expansion of any class of crystal [226].

Using matrix notation, eq (3) can be expressed
as a sum of the expansion in the crystallographic

directions,

Cv 6

"1=^7 2jS«7i, i=l, 2, 3,

where s%j are the elastic compliances for the lattice.

This equation gives a linear relation between
components of the expansion tensor and the heat
capacity. The volume coefficient is the trace of

the expansion tensor so that

Figure 7. Gruneisen's parameter for alumina as a function

of temperature.

100

(TEMPERATURE)f K z

200

Figure 8. Contributions to the thermal expansion of
copper of the conduction electrons and the lattice

vibrations.
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Figure 9. Contributions to the thermal expansion of rulile

of the acoustical and optical vibrational modes.

C 3 6

V i=l 7 =1

When Sy 0=4, 5, 6) = 0, as in cubic, hexagonal,
orthorhombic, and some tetragonal crystals, a
single value of y can be determined by

3 i3

».i=i / i,;'=i

For the case of a hexagonal crystal,

Cv
ai=-y [(Sli+Si2)7l+Sl373]j

Q!3=^7 [2 S1371+ S33Y3],

|3=^ [2(sn+si2+s13)7i+ (2^13+533)73],

and

7=
2(gii+ g 1 2+ 5 13)7 1 +2(g 1 3+ S33)73

2sii+s33+2s 12+4si3

Observed and calculated values of ax and a3 for

A1203 are shown in figure 10.

The use of the equations derived so far re-

quires knowledge of the compressibility or the
elastic compliances as a function of temperature.
A useful variation of Griineisen's relation can be
obtained that circumvents a possible lack of

this knowledge [226]. The Debye equation of

state [229] is given by

(5)

200 400 600 800
TEMPERATURE, K

1000

Figure 10. Comparison between observed (solid lines)

and calculated values (points) of the expansivity of

alumina in the crystallographic directions.

where U0 is the internal energy at 0 K and UD is

the contribution of the lattice vibrations to the
internal energy. On setting P equal to zero

eq (5) becomes

V^=G(V)=yUD . (6)

On expanding G(V) in a Taylor series, eq (6) be-

JG(Vo)
,

(V-V0) 2

comes G(Vo) + (V-V0y- dV0
1

d2G(V0)

dV0
2

-...=yUD (7)

where V0 is the volume at 0 K. Assuming a

reasonable model for the potential energy of the

lattice, it can be shown that

G(y0)=0

dG(V0) 1

dV0

d2G(V0) 2A
dV0

2 V0K0

where k 0 is the compressibility at 0 K. Sub-
stituting these terms in eq (7) one obtains

(8)

If the approximation

Y^Jh where q=YiV0 Q «o7
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is used in eq (8), a variation of Griineisen's rela-

tion is obtained:

V-Vo= UD
V0 Q—AUd

This equation is best used to represent expansion
data by determining the values of Q and A
through a least squares calculation. This has been
done for A1203 and Th02 with excellent results

over a temperature range of 100 to 1100 K [139].

4. Methods of Measuring Thermal
Expansion

While there are many different methods and
variations of methods of measuring thermal
expansion, for reasons of space, only four general
types will be described: (1) The vitreous-silica

dilatometer is very useful in the range 100 to

1200 K. The measurements of thermal expansion

("IT")
a dilatometer are usually accurate 2

to 25 ppm but the precision can be as good as

0.1 ppm. (2) The interJerometric method is useful

in the range 20 to 1200 K. Smaller specimens are

used, which increases the accuracy of the tempera-
ture measurements. The measurements of expan-
sion with this method are usually accurate to

4 ppm but can be accurate to 1 ppm. (3) The
optical comparator method is most useful in the
range 1000 to 3500 K. The measurements of

expansion can be accurate to 50 ppm. (4) The
Debye-Scherrer x-ray diffractometer can be used
in the range 20 to 2500 K. Only crystalline ma-
terials can be measured but very small amounts
are sufficient. The measurements of expansion
can be accurate to 50 ppm.

4.1. Vitreous Silica Dilatometers

Three general types of dilatometers are shown
in figure 11. Two of these types are described in

an ASTM method of test [230]. The tube type,
shown on the right, is the best known and the
most widely used. The single-rod type shown on
the left is the easiest to use and is more accurate
than the tube type. The double-rod type shown
in the center is in principle the most accurate but
has been used very little. In all three types, the
thermal expansion of the test material is given by

where (AZ) 0 is the observed length change, A is

a calibration constant for the system, and B is

the net expansion of the dilatometer.
There are three ways of using and calibrating a

dilatometer. These are, (1) Very careful calibra-

2 The following values for the accuracy of the thermal expansion measure-
ments are based on a temperature interval of 100 K and a material having
an expansivity of 10 X 10-6/K.

Figure 11. Variations of the vitreous-silica

dilatometer.

tion of the extensometer and thermometer so that

A=l and assume a value for the expansion of

the vitreous silica. (2) Same as (1) but a reference

material of known expansion is used to determine

the expansion of the vitreous silica. (3) Two
reference materials are used to determine the

values of A and B (this is not a substitute for the

calibration of the extensometer and thermometer
but provides additional information on the be-

havior of the system). It can be seen in table 2

that the method of using two reference materials

is in general somewhat better than the other

methods except that a more accurate calibration

can be obtained with just one reference material

if the expansivity is within 2 percent of the test

material.

The vitreous silica parts of a dilatometer

should be fine annealed 3 after they have been
fabricated and should thereafter not be heated
above 1200 K. Dial indicators and linear variable

differential transformers (LVDT) [81] are used
the most for measuring the length change but
many other types of extensometers are also used.

These include optical levers [231], interferometers

[232], strain gages [16], and optical gratings [37].

One of the most common sources of error in

using dilatometers is the measurement of tempera-
ture. All too often, the temperature that is

measured is not the temperature of the specimen.

This is especially true if measurements are made
while the temperature is changing. If a thermo-
couple is used it is recommended that the junction

and at least 3 cm of the leads should be at the same
temperature (preferably by being in contact with

the specimen). This procedure will prevent heat

from being transported away from or to the

junction.

3 Heat at 100 K/hr to 1475 K, hold at that temperature for 2 hr, cool at 60

K/hr to 1275 K, at 120 K/hr to 900 K, and at 200 K/hr to room temperature.

Care should be taken to minimize viscous distortion during the annealing.
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Table 2. Accuracy that can be obtained with a vitreous silica dilatometer on measurements of coefficients of thermal expansion
(a one percent linear error is assumed in either the length or temperature measurements), X10~ 6/K.

Method of using dilatometer

1* 2 2 3 3

1st reference material.. .

Accuracy ....
None 0. 50 10. 00 0. 50 0. 50
used ±0.02 ±0.04 ±0.02 ±0.02

2nd reference material
Accuracy .

None None None 4. 00 10. 00
used used used ± 0. 03 ± 0. 04

Nominal expansivity of 0. 0 ±0. 10
test material and pre- 0. 5 ±0. 10
cision of measurement. 4. 0 ±0. 10

10. 0 ±0. 12

±0.17 ±0.15 ±0.19 ±0.16 ±0.15
±0. 17 ±0. 15 ±0. 19 ±0. 14 ±0. 14
±0. 17 ±0. 15 ±0. 18 ±0. 15 ±0. 13
±0.20 ±0.18 ±0.17 ±0.36 ±0.18

•For these calculations it was assumed that the value used for the expansivity of the dilatometer was accurate to ±0.12X10_e/K-

Dilatometers may be used in either the vertical

or horizontal position. For use at temperatures
above 1200 K, a dilatometer can be made from
sapphire [233], SiC [234], or other refractory

materials [150].

4. 2. Interferometers

Three general types of interferometers that
produce fringes of equal thickness are also de-
scribed in an ASTM method of test [235]. These
are the Fizeau, Abbe-Pulfrich, and Priest inter-

ferometers. Because of its limited use, the Priest

type will not be described here. The Abbe-
Pulfrich type (see fig. 12), like the dilatometer,
measures the thermal expansion of a specimen
relative to the expansion of the material from
which it is constructed. The Fizeau type, on the
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Figure 12. The Fizeau and Abbe-
Pulfrich types of interferometer.

other hand, measures the "absolute" expansion
of the specimen.
When using a Fizeau interferometer the ex-

pansion of the specimen from TV to T2 is given by

AL NXV nx—n2

where N is the number of fringes, including
fractional parts, that have moved past the

reference point, Xv is the vacuum wavelength of

the monochromatic light used to produce the

fringes, and «i and n2 are the indices of refraction

of the gas between the optical flats at pressure P
and temperatures Ti and T2 respectively.

Experimental values of the index are not avail-

able over extended temperature ranges and there-

fore it is recommended that the Fizeau inter-

ferometer be placed in a reduced pressure atmos-
phere. When helium is used, a pressure of 5 torr

or less will usually not produce a significant fringe

shift over a range of 50 to 1200 K. Air should not
be used in any case at temperatures below 250 K.
Vacuum is not recommended, however, except in

specially designed equipment because of the

difficulty of temperature control and measure-
ment. The index of refraction at a fixed wavelength
can be estimated by

n=l+ (nT
—

1) 288P/760T

where n T is the index at a reference temperature
of 288 K and a pressure of 760 torr. For air, n r

=
1.0002771 (yellow light) or n r

= 1.0002779 (green

light). For helium, nT= 1.000036.

In the case of the Abbe-Pulfrich interferometer,

the effect of the index change is made insignificant

by reducing the length of the optical path to a
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sufficiently small value. Under this condition the
expansion of the specimen is given by

AL N\v
|

(AZ) r

L0 2L 0ni L0

where (AL) r is the length change of the material
from which the interferometer is made.
With the Fizeau interferometer reliable results

can be obtained with pin specimens, see figure 13,

but special care must be taken. One technique is

to place the three pins so that one of them carries

jy J± A,
A

v

—

v—w

Figure 13. Variations of specimen shape for use in inter-

ferometers.

most of the weight of the top optical flat [236].

That pin is taken as the reference point for the
fringe system so that if one or both of the other
pins tip it will not effect the measurement of

expansion. A "ring" or "T" shaped specimen,
however, is the easiest to work with because it

cannot tip. The specimen used in the Abbe-
Pulfrich interferometer may be the "ring" etalon

or the center post. The ends of the post are
polished optically flat and parallel and it is rung
or contacted to the lower optical flat.

A Pulfrich viewer, shown in figure 14, is usually
used to observe the fringe system. The position of

the fringes with respect to a reference point, see

figure 15, can be estimated with the unaided eye
to 0.1 of a fringe separation (~0.03 nm) and
easily measured with a micrometer eyepiece to

0.03. The number of fringes that move past the
reference point can be counted by eye or by
photographic [237, 238] or photoelectric [239]

techniques. It is also possible to avoid the count-
ing problem by determining the correct order of

the fringes at each temperature with two or more
different wavelengths of light [240].

4.3. Optical Comparators

The optical comparator method is most useful

for measuring thermal expansion at high tempera-
tures. There are many variations [85, 156, 168,

169, 241] of this type of apparatus but the best
results are obtained when two general techniques

are followed, see figure 16. The first of these is

that two microscopes should be used. They should
be rigidly mounted and the length change measured
with filar micrometer eyepieces. The second tech-

nique is that the fiducial marks observed with the

POINT

Figure 14. Pulfrich viewer.
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(a)

vertically in the furnace, see figure 17. The gage
length of the specimen, between the fiducial

marks, is 10 cm. Since the windows may cause a
significant error in the measurement of absolute
length, a light source is built into the furnace to

illuminate the specimen for a room-temperature
measurement. The windows are flat to one wave-
length and parallel to one second. Since the maxi-
mum temperature of the furnace is 1900 K, the
measurement of temperature can be made with
thermocouples. Both W-Re and Pt-Rh 30-6
thermocouples are used. These thermocouples are

calibrated in the furnace by a probe thermocouple
inserted in place of the specimen.

This probe is also used to measure the tempera-
ture profile in the furnace. As seen in figure 18,

the microscopes are mounted on an invar bar and
as a unit can be rotated and moved vertically.

The microscopes have a magnification of 50X
and a working distance of 16 cm. During each
measurement, the length of the specimen is com-
pared to the length of a reference scale kept at

room temperature. This procedure compensates
for any apparent change in distance between the
microscopes that might be caused by the expansion
of the invar bar or by the tilting of a microscope.
When using the optical comparator method, a

vacuum can be used but an argon atmosphere is

sometimes necessary to suppress vaporization. When
an atmosphere is used, care must be taken in the

measurement of length to avoid refraction effects

in optical paths that travel through temperature
gradients [110, 241]. An optical pyrometer should
be used to measure temperature in the range
above 2000 K. When a pyrometer is used, care

must be taken to provide blackbody conditions
and to keep the furnace window clean. The pyrom-
eter and the window should be calibrated together.

Figure 16. (a) Schematic drawing of optical com-
parator.

Microscopes mounted on Invar bar can be either vertical or

horizontal.

Figure 16. (b) Two types of fiducial marks that can
be cut into the specimen.

Parallel (=) hairs in the microscope eyepiece should be used to
sight on the cut or nick type of fiducial mark and cross (X)
hairs should be used to sight on the step or knife edge type.

the microscopes should be machined into the
specimen in such a way that they will be in sharp
focus. If a cut or nick is used then it should be
symmetrical and of a size that when viewed with
the microscope it appears to be comparable to the
separation between the parallel hairs in the eye-
piece. If a knife edge is used then crossed hairs
(X) should be used in the eyepiece. Small, clean
holes drilled through the specimen are also satis-
factory for fiducial marks.

In the optical comparator used at the National
Bureau of Standards [242] the specimen is hung

4.4. X-Ray Techniques

The thermal expansion of crystalline materials

can be measured with x-ray cameras or with x-ray
diffractometers. This method is important because
it provides accurate data under conditions that
preclude the use of any other method, for instance,

when only a small amount of material is available.

The method is unique in that it can provide data
on expansion in different directions in anisotropic
crystals and permits direct observation of phase
changes, measurement of the expansion of each
phase when two phases coexist [243], and measure-
ment of the change in specific volume resulting

from the phase change. There is a further advan-
tage in that the expansion measured is that of the
crystal lattice and does not include effects that are

observed in the macroscopic expansion [244].

The use of the x-ray method depends upon the
Bragg equation

d=n\/2 sin 8

where d is the distance between crystal planes, n
is the order of reflection, A is the wavelength of
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Figure 17. Schematic drawing of controlled-gradient vacuum furnace and probe thermo-

couple for measurement of expansion.

A. Specimen support
B. Bellows
C. Position adjusting screw, one of three
D. Thermocouple feedthrough
E. Electrical feedthrough, one of ten
F. Tungsten wire loop

G. Water cooling coil

H. Resistance bleating wire
I. Thermocouple protection tube
J. Radiation heat shields

K. Alumina Core
L. Specimen
M. Window
N. Shutter

O. Vacuum port

P. Vycor tube
Q. Vacuum
R. Thermocouple protection tube
S. Pyrometer viewing hole

T. Tantalum tube
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Figure 18. Photograph showing relative position of compar-
ator, furnace, and reference scale.

the x-ray beam, and 6 is the angle of incidence of

the beam with the crystal plane. From the Bragg
equation it is easy to show that the change of the
spacing between crystal planes is given by

Ad sin di— sin 02

d sin 62

Except for a small correction due to refraction of

the x-rays [223] this measurement of expansion is

independent of wavelength.
The distance between planes in crystals of

various symmetries is given by

[1
— cos2 a— cos2 j3— cos2 7+2 cos a cos B cos 7]

2kl . q v 2hl

,

—t— (cos a— cos 8 cos 7) (cos 8
be ac

2hk 1/2

—cos a cos 7) — (cos 7— cos a cos 8) >

where h, k, and I are the Miller indices. Using this

equation it can be shown that for cubic crystals
(a=b= c and a=0=7=90°) the expansion

Ad_Aa
d a

can be measured by using the reflection from any
crystal plane. In the case of hexagonal crystals

(a=b^c and a=./3=7=90°)

Ad

d

/[*~(h2+hk+k2)+l 2~]

the expansion in the a and c directions must be
determined from simultaneous equations except
for special planes such as (100) and (010) where

and (001) where

Ad_Aa
d a

Ad_Ac
d~~ c

To obtain accurate data with an x-ray camera it

is necessary to measure the film shrinkage so that
the angles can be determined. The position of the
diffraction lines should be determined with a

travelling microscope or a microdensitometer. To
obtain accurate data with an x-ray diffractometer
the furnace must be mounted on a precision wide-

angle goniometer. In both techniques it must be
possible to aline and maintain the sample on the

focusing circle, see figure 19. Any tilt of the sample
surface about the axis of the goniometer or the

plate holder results in broadened x-ray lines, as

part of the surface will be above or below the

focusing circle. A displacement of the sample sur-

face in the X direction from the focusing circle

by an amount S will cause an error in the

measurement of d by as much as

Ad

d''

s cos2
e

R sine

where R is the radius of the circle. Determinations
of d, therefore, are very sensitive to sample dis-

Focus of

X-Ray Beam

Focussing
Circle

Film or

Counter Tube

Figure 19. Focusing conditions for an x-ray diffraclometer

.
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placement in the front reflection region with sensi-

tivity rapidly decreasing at higher angles.

Furnaces that have precision sample movements
[245, 246] provide results that are equivalent
in resolution and line profile to conventional x-ray
techniques. There is a 10 to 25 percent loss of

intensity due to absorption in the furnace windows
and a reduction of from 5 to 40°, 20, in useful

angular range due to limiting windows, radiation
shields, etc. Because of this reduction in angular
range some back-reflection cameras and diffractom-
eters are not able to measure the more complex
crystal systems such as the orthorhombic, mono-
clinic, and triclinic.

Because of the small size of x-ray furnaces and
the relatively large window area, thermal gradients
exist in the sample which makes accurate tempera-
ture measurements difficult to obtain.Temperature
gradients across the sample also results in broad-
ened x-ray lines. At temperatures around 1300 K
there can be thermal gradients of 20 to 30 K/cm
across the sample and 100 to 600 K/cm through
the sample holder. Since the penetration depth of

the x-rays is only about 0.01 cm, the temperature
of the surface must be measured. If a thermo-
couple is used it should, therefore, be attached to

the front surface of the sample with the junction
in the x-ray beam and the leads also in contact
with the surface. If possible, providing there is no
alloying or reactions, an internal standard of

known expansion should be used to measure the
temperature.

4.5. Reference Materials

Two reference materials, chemically pure plati-

num and copper, are recommended by ASTM
standards [230, 235] for calibrating thermal
expansion apparatus in the range 100 to 1200 K.
Platinum, silver, gold, iron, tungsten, and MgO
have also been used with success in high-tempera-
ture x-ray measurements. In using these materials
it is hoped that their thermal expansion, even when
purchased from different suppliers, will be close to

the tabulated literature values. Since there is some
doubt that these materials will behave as hoped,
the National Bureau of Standards, through its

Office of Standard Reference Materials, will shortly
offer a group of materials for sale that will have
certified values of thermal expansion. These refer-
ence materials will include vitreous silica, boro-
silicate glass, single-crystal sapphire, copper, and
tungsten and will be certified within the range 20
to 1900 K.

5. Effect of Some Characterization
Parameters on Thermal Expansion

As indicated in the introduction, the thermal
expansion behavior of a ceramic is in general not
greatly influenced by its history or character. A
glass, for example, should have about the same
expansivity as a crystal from the same melt even

though it does not have the long-range structure
of the crystal. Porosities of up to 50 percent do not
alter the expansivity but do have a drastic effect

on mechanical properties. Shifts from stoichiom-
etry, a slight loss of oxygen in Ti02 , for instance,

can cause a striking change in electrical conduc-
tivity but little or no change in expansivity. Some
parameters of character that do affect thermal ex-

pat sion will be discussed.

5.1. Amorphous and Crystalline Phases

Materials that form glasses usually have a
crystalline form characterized by an open structure
and because of the high viscosity of their melts a
random structure characteristic of the melt can be
frozen in by rapid cooling. Glasses are therefore

said to be in metastable equilibrium relative to

the crystalline form. An idealized diagram of a
glass-crystal system is shown in figure 20. In the
range between the melting temperature and the
glass transition temperature, Tg , the atomic con-
figuration possesses a degree of randomness which
is temperature dependent. Because the viscosity

is increasing very rapidly in this range, it is possible

to freeze in different configurations by varying the

rate of cooling or by quenching from different

temperatures within the range. This results in

glasses having different specific volumes at room
temperature.

Figure 21 indicates the sort of results that are

obtained with borosilicate glass [247]. On fast

cooling from above Tg a high volume structure is

obtained and on very slow cooling a low volume
structure is obtained. On slow heating of the

quenched glass it will expand normally to a tem-
perature near Tg but then its volume will decrease
toward that of the fine annealed glass before

V

g 'm

Figure 20. Volume-temperature diagram for an
ideal glass former.
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Figure 21. Volume-temperalure diagram for a

borosilicate glass.

again expanding. On the other hand, the rapid
heating of the fine annealed glass will carry its

low volume structure to temperatures above Tg .

It is expected that a glass characterized by
different densities would have different expansiv-
ities. Eitland [83] has found this to be the case for

borosilicate glasses, as indicated in figure 21, and
Brueckner [248] has found the same behavior in

vitreous silica. Ritland also pointed out that there
is a difference between the expansivity of a glass

that has been quenched and that of the same
glass that has been slowly cooled, even though
the same specific volume had been obtained.

The volume dependence of several glass-crystal

systems is shown in figures 22, 23, and 24. In the

B203 system the relationship between the crys-

talline and glassy states is more or less normal
with the glass having the largest expansivity. The
situation for Si02 is not so clear, however, because
of the 22 phases that can form. It is of interest,

however, that all of the stable high-temperature
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Figure 23. Volume-temperature diagram for S1O2.
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Figure 22. Volume-temperature diagram for B2O3.

Figure 24. Volume-temperature diagram for eucryptile

(Li20 • AI2O3 • 2 Si02).

crystalline phases have near-zero expansivity and
that when silica glass is heated to a high enough
temperature it will crystallize in the cristobalite

phase. Silica is therefore normal in that the glassy

and crystalline states of the same configuration

have about the same expansivity. It is, of course,

the near-zero expansivity of vitreous silica that

makes it so useful.

A metastable crystalline phase of Li2OAl203

•2Si02 ,
/3-eucryptite, also has a near-zero ex-

pansivity at room temperature. This glass-crystal

system does not seem to be normal in that the

glassy phase has a higher density and expansivity

than the crystalline phase. The structure of

/3-eucryptite is similar to that of silica, however,
and is described as a stuffed derivative of the

/3-quartz structure where Al3+ ions are substituted

for Si4+ ions in the network and Li+ ions are

positioned in the interstitial openings to preserve

electrical balance [207]. In these materials the

near-zero expansion is presumably associated
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with transverse optical modes, the transverse
vibrations of the oxygen atoms in the open
network structure.

Figure 25 indicates other compositions in the
Li20-Al203-Si02 system which also have the
property of near-zero expansion. Compositions
in this system are used in the glass ceramic
materials that are finding wide application.
The expansivities of compositions along the
section between Si02 and Li2OAl203 are shown
in figure 26. The expansivity of the crystalline
phases stays near zero from high Si02 content to
eucryptite. The expansivity of the glassy phase,
however, increases linearly from Si02 to spodu-
mene. This type of behavior is expected when two
network formers are involved. The significantly
lower expansivity of the glass corresponding to
the eucryptite composition is probably caused
by the interstitial Li+ ions.

5.2. Quantity of Phases

The thermal expansion of two-phase composite
bodies can be predicted with some but not

SiO„

Li 20 AI.O,

Figure 25. Ternary diagram of the Li2O-Al203-Si02
system showing the compositions that have near-
zero expansivity.

10 —

— Li 20-Al 2 0,
WEIGHT PERCENT

Figure 26. Expansivities of the crystalline and glassy phases
of the Si02-Li20 A1203 system.

complete success. An equation derived by Turner
[249] seems to be very useful in spite of its

simplicity. In his derivation the average co-
efficient of the composite is given by

aj-E^Pj 012E2P2

di do

E1P1
,
E2P2

d 1 d 2

where and a2> Ex and E2 ,
dx and d2 , and Pi

and P2 are the coefficients, Young's modulus,
density, and weight fractions of the two phases,
respectively. Kerner [250] has developed an
equation based on a model that takes shear
stresses into consideration. In his derivation
the average coefficient is given by

_(4+s) aiPi <*2P2

L
4|+3 4I+3

where G and K are the shear and bulk moduli
of the composite body and Ki and K2 are the

bulk moduli of the two phases. Kerner has also

developed equations for predicting the values

of the shear and bulk moduli in composites but
they are very difficult to use.

Fortunately, a paper by Hunter and Brownell

[201] provides all of the data that is needed to

compare Turner's and Kerner's equations. Figure
27 shows such a comparison for composites
formed from spinel and alumina. It can easily be
seen that the values of the coefficient calculated

with Turner's equation are in good agreement
with the experimentally determined values. Figure
28 shows the same comparison for composites
formed from a borosilicate glass and alumina. In
this case neither equation represents the experi-

mental values.

5.3. Grain Size and Formation of Cracks

Grain size, as such, does not affect the thermal
expansion of ceramics. In anisotropic crystals,

however, two effects of grain size have been

2§ 8
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1
1
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MgO-AI 2 0, 0.2 0.4 0.6 0.8

WEIGHT PERCENT
AI.O,

Figure 27. Comparison of the Turner and Kerner
equations for calculating expansivity.

Points indicate experimental values for the spinel-alumina

composite bodies.
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Figure 28. Comparison of the Turner and Kerner
equations for calculating expansivity

.

Points indicate experimental values for the alumina-borosili-

cate glass composite bodies.

observed. Fryxell and Chandler [165] found that
increasing grain size in BeO specimens was
accompanied by a preferred orientation which
caused a change in expansivity. Charvat and
Kingery [90], on the other hand, found that
large-grained rutile specimens formed microcracks
because of grain boundary stresses. This effect

caused a hysteresis loop on heating and cooling

between 300 and 1400 K. Gillery and Bush [108]

observed the same behavior in polycrystalline

/3-eucryptite, see figure 29. Because of the extreme
anisotropy of (3-eucryptite, high stresses arise

between grains during cooling from the firing

temperature and fracture occurs, causing a
decrease in density. During reheating the fractures

heal and a hysteresis loop is formed.

5.4. Stress

From thermodynamic relationships it can be
shown that the effect of an elastic stress, a (it

does not make any difference whether the stress

is applied externally or arises internally from
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Figure 29. Thermal expansion of 0-eucryptite.

Figure 30. Effect of stress on the expansivity of alumina.

mechanical or thermal causes), on the expansivity

of a solid is given by

Wr E 2\dTj;

Rosenfield and Averbach [251] have demonstrated
this effect in metals, but there is no indication that

anyone has done as much with ceramics. Using a

literature value for the temperature coefficient of

Young's modulus, a calculation of this effect in

alumina was made: the results are shown in

figure 30.

6. Summary

The definition of terms used in the field of

thermal expansion and a brief review of the theory
involved have been given. Four general methods
of measuring this thermophysical property have
been described, with emphasis placed on the

techniques needed to obtain high accuracy. The
effects of some characterization parameters on
thermal expansion have been discussed. All of the

papers published in the Journal of the American
Ceramic Society from 1948 through 1967 that

contain information on thermal expansion have
been referenced. Other survey papers on the

expansion of ceramic materials are also referenced

[17, 35, 252].
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Thermal Conductivity of Ceramics

D. R. Flynn

Institute for Applied Technology,
National Bureau of Standards, Washington, D.C. 20234

A description is given of the underlying phenomena governing thermal conduction in
ceramic materials. Heat transfer via lattice vibrations, electronic conduction, and thermal
radiation are discussed in some detail. The effects of environmental variables (temperature,
atmosphere, electromagnetic fields, pressure and stress, heat flow) on the thermal con-
ductivity of ceramics are discussed. The effects of composition (molecular structure, impuri-
ties, stoichiometry, alloying) and structure (crystallinity, imperfections, additional phases,
microstructure) on thermal conductivity are discussed.

It is pointed out that many thermal conductivity data reported in the literature are
unreliable, either due to experimental errors or to inadequate sample characterization. A
number of methods of measuring thermal conductivity are described, with attention being
given to precautions to assist in avoidance of measurement errors. The use of thermal
conductivity reference standards is discussed and a list is given of materials which may be
used, on an interim basis, as reference standards.

Key Words: Ceramics; conductivity; glass; iieat conduction; heat transfer; thermal
conductivity.
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1. Introduction and Scope

The thermal conductivity of ceramics and other
nonmetalhc solids is of considerable practical

and theoretical importance. Many of the practical

applications which require accurate knowledge of

thermal conductivity are concerned with devices
for conversion of heat into other forms of energy.
Furnace and boiler design requires knowledge of

the thermal conductivity of insulating bricks and
refractories from ambient to high temperatures.
In a nuclear reactor, the maximum temperature
of the fuel elements is directly related to the
thermal conductivity of these fuel elements. The
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efficiency of a thermoelectric power generator is a

function of the thermal conductivity of the thermo-
element.

The extreme temperatures encountered in aero-

space applications, ranging from containment of

cryogenic fuels to ablative heating during re-

entry, have created yet another area where

accurate thermal conductivity data are required.

In many applications of solid-state electronics,

materials used as heat sinks or as potting com-

pounds must have as high a thermal conductivity

as possible in order to dissipate the heat generated

by the device.
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At very low temperatures (i.e., below the boiling

point of nitrogen), the thermal conductivity of

solids is extremely sensitive to imperfections.
Thus thermal conductivity measurement provides
a valuable tool for the solid-state physicist.

In this paper we define thermal conductivity
and present a brief phenomenological description
of the energy transport mechanisms involved. We
then discuss the influence of environmental
effects, such as temperature, pressure, and stress,

on the thermal conductivity of solids. This is

followed by a discussion of the effects of compo-
sition and structure on the thermal conductivity
of ceramics and other nonmetallic solids. Some
sources are cited for thermal conductivity data
and a few remarks are made regarding the re-

liability of thermal conductivity data. We de-
scribe some of the techniques which are used to

measure thermal conductivity and comment on
the availability and use of thermal conductivity
reference standards.

2. Definition and Phenomenological
Theory

2.1. Definition

The thermal conductivity, X, of a substance is

related to the rate of heat flow per unit area,

q, and the temperature gradient, vT, by Fourier's

law, which for an isotropic medium can be written
as

q=-XV T. (1)

For one-dimensional heat flow, eq (1) is simply

5T
2*=—

X

bz
(2)

Equation (1) may be regarded as the definition

of thermal conductivity.

If one considers an elemental volume in an
isotropic medium which is opaque to thermal radia-
tion, the following second-order differential equa-
tion is easily derived

:

V • (\VT)+W=C dT (3)

where C is the heat capacity per unit volume, t is

time, and, if heat is produced in the solid, W is the
rate of heat production per unit time and unit
volume. In general the thermal properties, X and
C, can be functions of position and of temperature.
For a homogeneous material which has no

internal heat production and in which thermal
conductivity is independent of temperature, eq
(3) reduces to the form

a Ot
(4)

independent of temperature and position over the
temperature range of interest but C may still be
temperature-dependent.
Many engineering applications involving time-

dependent temperatures require a knowledge of

the thermal diffusivity rather than, or in addition
to, the thermal conductivity. In this paper we
shall confine our attention to thermal conductivity
and will not discuss thermal diffusivity. If needed,
the thermal diffusivity of a material can be
measured directly or can be computed from the
thermal conductivity and the volumetric heat
capacity. Since heat capacity is relatively insensi-

tive to variations of composition and structure,

remarks we make concerning the effects of these

on thermal conductivity are applicable to thermal
diffusivity as well.

Many applications which require a knowledge
of thermal conductivity or thermal diffusivity

involve analytical or numerical solutions of some
variation of eq (3). The reader who is interested

in mathematical solutions of the heat conduction
equation should consult, for example, the books
by Carslaw and Jaeger [l]

1

, Schneider [2], and
Arpaci [3].

2.2. Phenomenological Theory

The theory of thermal conduction is the subject

of many research papers and review papers and
forms a major portion of the material in quite

a few books. Thus we can only briefly touch on
the theory of thermal conduction and will limit

ourselves to a phenomenological discussion of the

processes and principles involved. For detailed

discussions of this subject the reader can consult

the various books and review papers cited [4-15].

It is important to realize that the form of eq (1)

implies that heat conduction is a diffusion process.

The thermal energy diffuses through the material.

In conduction heat transfer the flow of heat is

proportional to the temperature gradient. This
may be contrasted with radiative heat transfer

through a perfectly transparent medium (e.g., in

vacuo) where the thermal flux is related to the

temperatures of the surfaces which are exchanging
heat. In many cases the heat conducted through
a material is directly proportional to the tem-
perature difference—however, these are special

cases which arise, for example, because the

thermal conductivity is essentially independent
of temperature over the temperature range of

concern.

A well-known result of the kinetic theory of

gases is that the thermal conductivity of a gas

is given by

(5)

where a=\/C is the thermal diffusivity. Note
that in order for eq (4) to be valid, X must be

where C is the heat capacity per unit volume,

v is the average particle velocity (group velocity),

1 Figures in brackets indicate the literature references at the end of this

paper.
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and A is the mean free path of a gas particle

between collisions with another gas particle. It

is extremely useful to carry eq (5) over to the
case of heat conduction in a solid. Before dis-

cussing this it is instructive to consider one-
dimensional heat flow in an elemental length,
Az, of material supporting a temperature gradient
AT/Az. From (2) and (5) the rate of heat flow in
the 2-direction is

*-=-xtf=-*(CAr>(^> oo

The quantity CAT is the excess thermal energy
per unit volume at one end of the elemental length
with respect to the other end. This excess energy
is propagated down the specimen with an effective

transport velocity which is just the particle

velocity reduced by the ratio of the mean free

path to the length of the element.
In a solid material, heat can be transported by

a variety of carriers or mobile excitations. For
this "gas" of heat carriers we can write, by analogy
to eq (5),

X=*SC>«A„ (7)
i

where the summation is over all carriers. Equation
(7) simply states that the heat transported by
different carriers may be added to obtain the
total heat transported. In a solid where thermal
transport is via several types of carriers, the total

thermal conductivity is given by

\=\i+\ e+K+. • (8)

where the different subscripts refer to different

types of carriers. One definitely should not infer

from eqs (7) and (8), however, that the different

mechanisms of heat conduction do not interact.

The different components of the total thermal
conductivity are additive but they are not
independent.
Of the three quantities on the right hand side

of eqs (5) and (7), the carrier heat capacity and
the carrier velocity normally have a relatively

well-known temperature dependence and are

relatively insensitive to material imperfections
and impurities. The carrier mean free path is the
troublemaker. It may have a rather complicated
and elusive temperature dependence and may be
very sensitive to material imperfections and
impurities. The mean free path of carriers is deter-

mined by the interactions ("collisions") between
the carriers and by the interactions between the

carriers and material imperfections and impurities.

In the remainder of this section we will discuss

the theory of thermal conductivity as it applies to

the several mechanisms of heat transfer which
take place in ceramic materials.

a. Lattice Conduction (Phonons)

A solid material may be thought of as a three-

dimensional array of masses (atoms) held together

by springs (interatomic forces) . Each atom vibrates

with an amplitude which is dependent on tem-
perature; atoms which are at higher temperatures
vibrate more vigorously than those at lower tem-
peratures. This thermal motion of the atoms can
be resolved into traveling elastic waves which
transport thermal energy through the solid. The
energy carried by these waves may also be thought
of as being carried as a number of quanta of energy,
called phonons, which can be treated as particles.

This is analogous to the better known practice

of treating light waves (or traveling electromag-
netic waves) as particles called photons.

In order to better discuss the properties of

phonons, it is helpful to consider certain aspects of

the vibrational spectrum of a discrete lattice. For
this purpose it will suffice to consider a one-

dimensional lattice with two kinds of atoms
equally spaced as shown in figure 1 . If we consider

each atom to behave as a classical harmonic
oscillator which interacts only with its nearest

neighbors, it can be shown that the only waves
which can be propagated along this chain of

atoms are those having an angular frequency
(rad s

-1
) given by

2 of 1
,

1 V alY 1
,

1 V 4 sin2 kaj2

where m and M are the masses of the two kinds of

atoms, a is the separation between adjacent atoms,

j8 is the force constant acting to restore each atom
to its equilibrium position, and k is the wave
vector, which has a sign corresponding to the

direction in which the wave travels and a magni-

tude equal to 27r/(wavelength). The two branches

of eq (9) are shown plotted in figure 2. The limiting

values of eq (9) are shown in figure 3. The lower

branch is called the acoustical branch and the

upper branch is called the optical branch.

Phonons transport energy with a velocity

(known as the group velocity), v= du/dk. For

small values of k (long wavelengths), the group

velocity in the acoustical branch is

v=dk=lm^nl
a=

k
(10)

For wavelengths long in comparison to the inter-

atomic spacing, adjacent atoms vibrate in phase

in the acoustic branch and our one-dimensional

M m M m M

Figure 1. Schematic representation of a

diatomic linear lattice.
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Figure 2. Plot of angular frequency, versus wavenumber,
k, for a diatomic linear lattice.
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Figure 3. Positive half of the first Brillouin

zone for a diatomic linear lattice.

lattice behaves like a continuous elastic string
down which phonons propagate with a constant
velocity given by eq (10)

2
.

In the higher frequency, or optical branch, the
phonons have a constant frequency for long wave-
lengths. Adjacent atoms vibrate 180° out of phase
for the long-wavelength optical phonons. Since
dw/dk=0 for these phonons, their group velocity
is zero and they can transport no energy.
From figure 3, we see that there is a forbidden

band, _2/3/m<co2<2/3/M, in which no phonons can
be excited.

The periodic structure of eq (9), as shown in
figure 2, has a very important consequence.
Looking at figure 2 and recalling that the energy
of a phonon is propagated with the group velocity,

v=dw/dk, we see that a phonon having a wave
vector between w/2a and ir/a has a group velocity
opposite in sign to k. Although the wave is travel-
ing to the right, the energy is traveling to the left.

As an example consider a phonon of wavelength
8a/3 traveling in the positive direction (i.e., to

2 The "density" (mass per unit length) of our one-dimensional lattice is

d=(M+m)l2a. The "Young's modulus" is E=£a. Thus eq (10) is simply the

usual expression, »= -^E/d, for the velocity of sound in an elastic continuum.

the right) in our one-dimensional lattice; this

phonon has a wave vector +37r/4a. Consider also

a phonon of wavelength 8a traveling in the nega-
tive direction; this phonon has a wave vector
— x/4a. Since 3ir/4a and — ir/4a are completely
equivalent in eq (9) , we see that these two phonons,
of quite different wavelengths, are completely
equivalent both as to the frequency of vibration

and the direction of energy propagation. In view
of this periodicity, we need only be concerned with
phonons having wave vectors whose magnitude
is less than ir/2a (wavelength greater than 4a).

The region — 7r/2a<&<7r/2a, indicated by the

vertical dashed lines in figure 2, is known as the

Brillouin zone. Wave vectors falling outside the

Brillouin zone can be brought back inside by
adding or subtracting the appropriate integral

multiple of ir/a.

The equivalence of two phonons having wave
vectors differing by nw/a arises because of con-

structive or destructive interference effects due
to reflections of the phonons from the discrete

lattice. Phonons of wave vector equal to nw/a
cannot propagate at all because their reflections

are exactly 180° out of phase. For phonons of

wave vector equal to («—};>) 7r/a, the reflections

are in phase and the phonons at the edge of the

Brillouin zone correspond to standing waves for

which the group velocity vanishes.

It should be noted that all of the aspects dis-

cussed so far in this section are classical. We have
used the term phonon to represent quanta of

energy traveling through the lattice—however,
this was done for convenience and not from
necessity. Thus, to this point in our discussion, it

has not been necessary to invoke any quantum
theory.

The extension of the above discussion to a three-

dimensional lattice of harmonic oscillators presents

no particular difficulty. The wave vector k indi-

cates the direction of propagation and has the

magnitude 2x/(wavelength). For a given k, there

are three independent directions in which the

atoms can vibrate. For a not-too-complicated
lattice, there is a single longitudinal wave having
particle displacements parallel to k and two
transverse waves having displacements perpen-
dicular to k. Depending on the symmetry of the

crystal, the longitudinal phonon and the two
transverse phonons for a given k can have
different frequencies. For a diatomic crystal

there may be three acoustical branches and
three optical branches for a given direction of

propagation.

References [4-15] all contain some discussion

of phonons. Other useful references to the theory

of lattice vibrations include [16-28].

Having introduced the concept of phonons, we
can think of an ideally perfect crystal as an
otherwise-empty box containing a "gas" of

phonons which collide with one another and with

the walls of the box (i.e., the surface of the

crystal). These phonons will have different wave-
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vectors and frequencies as discussed above.
Bringing in some quantum theory, each phonon
transports energy in the amount hu, where
ft= 1.05450X10-^ Js.

3

In our discussion above, we assumed that the
atoms behaved as purely harmonic oscillators. If

this were strictly so, the phonons would not
interact with one another and the thermal con-
ductivity of a perfect crystal would be infinite.

In fact, there are anharmonic terms which allow
the phonons to interact and cause thermal resist-

ance. The simplest type of interaction which
can occur is when two phonons combine to form
a third phonon as shown in figure 4.

Conservation of energy requires that

hwi-{-ha)2=fow3', (11)

while conservation of the wave vectors (analogous
to conservation of momentum) requires that

k1+k2=k3 . (12)

Phonon interactions such as described by eqs (11)

and (12) are known as normal processes or re-

processes. Both energy and quasi-momentum (a

name sometimes given to hk) are conserved and
there is no attendant thermal resistance.

Consider, however, an interaction in which kx

and k2 aie roughly in the same direction and
their magnitudes are sufficiently large that k3

lies outside the Brillouin. zone and, therefore,

corresponds to energy transport in a different

direction. For a square, two-dimensional lattice,

such an interaction is illustrated in figure 5.

The resultant vector, k3 , can be replaced by
k4=k3— G, where G is a vector perpendicular to

the boundary of the Brillouin zone and equal
in magnitude to the width of the zone. For such
an interaction, eq (12) can be replaced by

k,+k2=k4=k3-G. (13)

k2 , co 2

k,, u>,

Figure 4. A normal- or N-
process in a square, two-

dimensional lattice.

A phonon of wavevector ki (wi)

combines with a phonon of wave-
vectork2 (102) to form a new phonon
of wavevector ks (wi) Both energy
and quasi-momentum are con-
served.

ft=A/2jr, where A is Planck's constant.

—

k 2 » co 2

0<
k 4 ,co4/^ \

Hi*

*k, ,
co,

Figure 5. An umklapp- or U-process in

a square, two-dimensional lattice.

A phonon of wavevector ki (on) combines with
a phonon of wavevectork2 (w). Since the result-

ant vector k3 (0)3) crosses the boundary of the

first Brillouin zone, the direction of energy
flow is changed so that the newly-formed phonon
has the wavevector k* (ut), where wi =oi3. In a

U-process, energy is conserved but quasi-

momentum is not conserved.

In such an interaction, known as an umklapp
process, or U-process, the direction of energy

flow is changed and there is an attendant thermal

resistance. The change in direction of energy

flow which accompanies a U-process can be

thought of as an interference effect in which the

phonons are reflected by the lattice; this is analo-

gous to Bragg reflection of x-rays.

According to quantum theory, the energy of an

oscillator can assume only the discrete values

E(\t)=fu*{N+%), (14)

where N is a positive integer.
4 The energy corres-

ponding to a given k thus consists of a zero-point

energy, hu/2, plus N phonons, each carrying an

energy hu. For a crystal in thermodynamic equilib-

rium, the average number of phonons in a mode
of frequency w is

r)=;xP (Hi D-i
(16)

where ^ =1.38054 X10- 23 JK" 1
is the Boltzmann

constant, and T is the absolute temperature.

Classically, the energy corresponding to a given

temperature would be simply k T. The number of

units of energy of size fiw in a classical oscillator

is thus T/6, where 0 is a vibrational temperature

defined by d=fiu/ Jt . In figure 6 we have plotted the

quantity ON/T, N being given by eq (15). This is

simply the ratio of the number of phonons in a

mode of frequency co to the number of phonon-

sized units of energy that would exist if there were

no quantum effects. We see that at temperatures

which are low in comparison to 0, there are very

few phonons available.

The paucity of phonons at low temperature

affects the lattice thermal conductivity in two

* We can let it be understood that k specifies the polarization as well as the

magnitude and direction of the wave vector.
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ways: (1) the specific heat of the solid decreases
with decreasing temperatures thus tending to

decrease the thermal conductivity; (2) the number
of U-processes decreases with decreasing tempera-
ture thus increasing the phonon mean free path
and tending to increase the thermal conductivity.

It is customary to discuss the heat capacity of

a solid in terms of the Debye model; in this model
the low temperature heat capacity is proportional
to (T/6) 3

, where the Debye temperature, 6, is

defined by / 6=/icomax , where comax is the highest
frequency of vibration in the lattice. From our
discussion above, it is seen that in order for

U-processes to occur it is necessary that the

interacting phonons have wave vectors extending
about halfway to the boundary of the Brillouin

zone. This would correspond to phonon energies of

about /Lgj=^ 9/2. The number of such phonons is

given by eq (15); for T<<G this is exp(— 6/2 T).

The rate at which U-processes occur, then, should
be approximately proportional to this factor.

Since the mean free path of phonons in an infinitely

large ideal crystal is limited only by U-processes,

the mean free path should be approximately
inversely proportional to this factor. Assuming
that the phonon velocity is essentially independent
of temperature, the low temperature thermal con-
ductivity of an ideal crystalline lattice is given by

x <
=a(£f ex

p(^r)'
when T«e

>
< 16 )

where a depends on the structure of the crystal,

n has a value of 3 or less, and b is of the order of 2.

At temperatures larger than the Debye tempera-
ture, the specific heat of a dielectric crystal

becomes essentially constant. At such tempera-
tures, most phonons will have wave vectors of

sufficient magnitude to permit U-processes to

occur. The number of U-processes will therefore

be approximately proportional to the number of

phonons; from figure (6) we see that this is pro-
portional to the temperature. Again assuming
that the phonon velocity is essentially independent
of temperature, the high temperature thermal
conductivity of an ideal crystalline dielectric is

given 5 by

\
t
=Aj> when 7»9> (17)

At low temperatures, the phonon mean free

path would increase exponentially with decreasing
temperature in a sufficiently large ideally perfect

crystal. In a crystal of finite size, the mean free

path of a phonon is limited to a value of the order
of the crystal diameter. This was first predicted
by Pieirls [30], observed experimentally by de

5 Equation (17) is not necessarily valid for T'=e.Leibfried and Sehlomann
[ 29] obtain

x.=4Mf)'+ . • }>

where the coefficient of (6/T) 2 is positive and has a magnitude depending on
the frequency spectrum of the lattice.

1.0
1

r

3

T/e

Figure 6. The number of phonons in a

given mode, as predicted by quantum

mechanics, divided by the number of

phonon-sized units of energy in a classical

oscillator at the same temperature.

Haas and Biermasz [31], and calculated by
Casimir [32]. The reflections of phonons from the

specimen boundaries is analogous to the flow of a

rarified gas in a tube as first discussed by Knudsen

[33] and Smoluchowski [34]. Ziman [7, ch. XI]

and Klemens [11] discuss boundary scattering of

phonons in some detail. Other references include

[10, 35-43]; Guyer and Krumhansl [42] and

Thacher [39] give still more references to theo-

retical and experimental work on boundary

scattering of phonons.
At temperatures low enough that the specific

heat varies as T3
, the thermal conductivity of a

finite crystal varies approximately as

(18)

where d is the effective diameter of the crystal;

the proportionality constant depends on the

nature of the crystal surface—a roughened surface

which scatters phonons diffusely will result in a

lower thermal conductivity than, for example, a

cleaved surface which scatters specularly.

Figure 7 shows the data obtained by Thacher

[39] for single crystals of isotopically pure LiF

of different sizes. Note that this is a log-log plot

and the differences among the four curves shown

are large.

Qualitatively, at least, we now have discussed

the factors which affect the thermal conductivity

of a dielectric single crystal which is free from

defects. In figure 8 the thermal conductivity of a

sample of single-crystal artificial sapphire (AZ 20 3 )

is shown plotted versus temperature. At higher

temperatures, the thermal conductivity is con-

trolled by Umklapp processes and goes approxi-

mately as T' 1 (eq (17)). As the temperature

decreases, Umklapp processes are frozen out,

the mean free path increases exponentially, and

the thermal conductivity varies with temperature
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Figure 7. Thermal conductivity of different

sized crystals of lithium fluoride, illustrat-

ing the effect of boundary scattering of
phonons (after Thacher [39]).

according to eq (16). At still lower temperatures,
the mean free path becomes constant at a value
of the order of the effective crystal diameter and
the thermal conductivity varies approximately as
T3 (eq (18)); in this temperature range it is no
longer meaningful to speak of the thermal con-
ductivity of a given material—one can only
speak of the thermal conductivity of a given
specimen.
In a real crystal, the height of the peak in the

thermal conductivity will be reduced, due to
scattering of phonons by impurities and imper-
fections, to a value less than that which would
be extant in a perfect crystal. We shall now
briefly discuss theoretical predictions of the influ-

ence of impurities and imperfections on the
thermal conductivity of a dielectric crystal. The
very large amount of theoretical work in the
area and the complexity of the calculations
involved make it impossible for me to do much
more than state the results. The interested
reader should consult one of the review papers by,
for example, Klemens [9-11] or the book by
Ziman [7]. Other references include [4-6, 8, 12-15,
29-30, 42, 44-61].

Consider an imperfection (this could be an
impurity, vacancy, dislocation, etc.) in an other-
wise perfect crystalline lattice. In the vicinity
of this imperfection the elastic properties of the
lattice will differ from those in the perfect lattice.

Consequently, a lattice wave or phonon will be
deflected or scattered when it encounters an
imperfection. If one thinks of a perfect dielectric

0 25 50 75 100

TEMPERATURE, K

Figure 8. Idealized temperature-dependence

of thermal conductivity for a single-crystal

(AI3O3) in which the only mode of heat

conduction is via lattice vibrations (after

Ziman [7, p. 292}).

crystal as an otherwise empty box containing

a gas of phonons, then an imperfect crystal can
be thought of as a box containing a number of

stationary obstacles with which the phonons
interact or collide. The effective scattering cross-

section of an imperfection is dependent on the

extent of the surrounding strain field. If a dis-

ordered region is small (point defects) compared
to the wavelength of the interacting phonon,
the details of the strain field are not important.

If a disordered regions is comparable to, or larger

than, the wavelength of the interacting phonon,
interference effects will enter in and the detailed

shape of the strain field must be considered. If a

number of impurities or point defects are arranged
in some regular array, interference effects again
must be considered. In the case of a substitutional

impurity, the mass difference between the impurity
atom and a normal atom will lead to scattering

of phonons, irregardless of the associated strain

field.

Quantum-mechanically, one usually considers

the Hamiltonian of a system of phonons in the

absence of impurities and then applies time-

dependent perturbation therory to find the effect

caused by impurities or imperfections. The
references cited above may be consulted for details.

The total lattice thermal resistivity (Wi=l/Xi)
can be expressed as the sum of the thermal
resistivities due to various scattering mechanisms

:

W l=Wlu+W l»+Wlp+ . . ., (19)

where Wtu is the thermal resistivity due to

U-processes, Ww is that due to boundary scat-

tering, Wip is that due to point defects, etc. In
table 1 we present the temperature dependence
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Table 1. Temperature variation of Thermal Resistivity due
to Various Interaction Mechanisms (after Klemens [10])

Temperature
Scattering mechanism dependence of

thermal
resistivity

Low temperatures (T<6):
Umklapp processes-. T-> e -e/tT

Point defects... Ti
Long cylinders yo
Dislocations (core) yo
Dislocations (strain field)

Conduction electrons in metals y-2
Stacking faults... T-i
Thin sheets embedded in crystal of

continuous orientation T-i
Grain boundaries. _ T-3
External boundaries y-3

High temperatures (T>6):
Umklapp processes Ti
All imperfections __

of the component of thermal resistivity due to

these various scattering mechanisms. If the rela-

tive strengths of the different scattering mecha-
nisms are known, eq (19) can be used to obtain

the temperature dependence of the total lattice

thermal resistivity.

At temperatures well above the Debye tempera-
ture, we see that the thermal resistivity due to all

imperfections should be independent of tempera-
ture and the total thermal resistivity should be
simply

W,=l/\t=A+BT, (20)

whereA and B are constants which can be obtained
empirically. For fairly pure dielectric crystals,

experimental data conform reasonably well to

eq (20) in many cases.

In section 5 we shall discuss experimentally
obtained thermal conductivity values with respect

to the influence of composition and structure.

b. Electronic Conduction

In many traditional ceramic materials such as

metallic oxides, the electrical resistivity is suffi-

ciently high that the electronic component of

thermal conductivity is negligible. However, in

metallic carbides, graphite, and many semicon-
ductors, for example, the electronic portion of

thermal conductivity may be comparable with or

larger than the lattice portion. Cermets, or mix-
tures of metals and ceramics, are also of interest

to the ceramic industry; in such two-phase ma-
terials, the thermal conductivity of the metallic

phase may be almost entirely due to electronic

conduction. It is therefore quite appropriate that

we briefly discuss the theory of electronic thermal
conductivity.
The electrons which conduct heat and electricity

may be thought of as a gas of essentially free

electrons wandering aimlessly around in the per-

iodic potential field of the crystalline lattice. In
the presence of an electric field or temperature
gradient, the electrons are motivated in a partic-

ular direction and there is a net transport of charge
or thermal energy.

These wandering electrons have energies that
fall within certain "bands". Between these bands
there are gaps, or energy regions which may not
be occupied. The two bands which are of interest

to us are the valence band and the conduction
band. The valence band is analogous to the outer-

most shell of electrons in a free atom—the electrons

are bound to the atom but can be set free if they
acquire sufficient kinetic energy. Electrons in the

conduction band have sufficient kinetic energy
to permit them to travel through the crystal.

In a metal the conduction band is partially filled

with electrons even at 0 degrees kelvin. The aver-

age number of electrons in a state of energy E is

given by the Fermi function:

f(E)= 1

exp l(E-t)UT\+l
(21)

where the Fermi energy, f, is determined by the

condition that 2/(2?) over all quantum states

must equal the total number of electrons in the

conduction band. 6 The behavior of the Fermi
function is shown in figure 9. At a temperature of

absolute zero, all states having energies less than

f are filled and none of the higher energy states

are filled. As temperature is increased, j{E) no
longer is a step function but rather decreases

from j{E)=\ tof(E) = 0 over an energy interval

of width approximately equal to ^ T centered at

E=£. Because of this behavior of the Fermi
function, only those electrons having energies

near f are affected by temperature change. An
electron gas is considered to be "degenerate" when
T<^<^TF , where TF=£/Jl is known as the Fermi
temperature. 7 For a degenerate electron gas, the

specific heat of the electrons is proportional to the

absolute temperature.
At very low temperatures, electrons could

travel essentially unimpeded through a perfect

metallic crystal and the mean free path of the

electrons would increase very rapidly as the

temperature is decreased toward absolute zero.

The electronic thermal conductivity of a

perfect metallic crystal would thus be limited at

low temperatures by boundary scattering as was
discussed for the phonon thermal conductivity.

However, in a real crystal, as opposed to a perfect

UJ

Figure 9. The Fermi function, eq{2i).

6 Electrons obey the Pauli exclusion principle so that only two electrons

(of opposite spin) may occupy a given energy level.

7 Typically, V» K< 2X105 K for metals.
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one, the limiting factor for electronic thermal
conductivity is scattering of electrons by im-
purities and perfections. In the case of very thin
films or fine wires, the electronic component of

thermal conductivity will be limited by boundary
scattering.

At high temperatures, electrons are scattered
very effectively by phonons and the mean free

path of the electrons is approximately inversely
proportional to the number of phonons and thus
inversely proportional to temperature. With a
heat capacity which is proportional to temper-
ature, an electron velocity (corresponding to f)

which is essentially constant, and a mean free

path which is inversely proportional to temper-
ature, we see that eq (7) predicts an essentially

constant electronic thermal conductivity for a
pure metal at temperatures which are high com-
pared to, say, the Debye temperature, 0, but
low compared to the Fermi temperature, TF . If

impurities are added to a metal, the electronic

heat capacity will not be seriously affected and the
mean free path will be decreased more at low
temperatures than at high. For a completely
disordered alloy, the mean free path would be
essentially constant and the electronic thermal
conductivity would be proportional to the electron-

ic specific heat and hence to temperature.
In discussing electronic thermal conductivity,

it is customary and useful to discuss it in terms of

the Lorenz function

:

L=\> (22)
0~±

where X e is the electronic component of thermal
conductivity, o~ is electrical conductivity, and T
is absolute temperature. An expression analo-

gous to (19) may be written for the electronic

thermal resistivity:

We=l=We0+Wel+ . . .
, (23)

where We0 is the thermal resistivity due to

scattering of electrons by static imperfections
and Wel is the thermal resistivity due to scattering

of electrons by phonons [7, 60-61]. Similarly, the
electrical resistivity may be expressed as

P=-=Po+P*+ ... .
, (24)

0~

which is exactly analogous to eq (23). We now
assume that each component of electronic thermal
resistivity is related to the corresponding electrical

resistivity by a relation such as eq (22) but with
a different characteristic "Lorenz function" for

each scattering mechanism. The electronic thermal
resistivity may then be written as

w-=h=T[£+£+ ]• ™

These "Lorenz numbers" are not, in general,

constant but may vary with temperature. To
a good approximation, the structural electronic

thermal resistivity (i.e., that due to scattering

of electrons by impurities and imperfections) is

related to the structural electrical resistivity at

all temperatures by a Lorenz relation where L 0

has the constant theoretical value Z 0=2.443X 10
-8

V2K-2
.

8 (In the present paper, the nomenclature
L0 will always be used when this theoretical value

is meant.) The coefficient, L h associated with the

electronic thermal resistivity due to lattice vibra-

tions, is not a constant. At low temperatures,

electrons are scattered inelastically and non-
isotropically by electron-phonon interactions. Thus
the effective mean free path for thermal conduc-
tion is smaller than for electrical conduction.

Therefore L h as here defined, rises from a value

of zero at 0 degrees kelvin and asymptotically

approaches the theoretical value, L0 , at tempera-
tures well above the Debye characteristic tem-
perature, 0.

If there are no additional scattering mechanisms,
so that We=We0+Wel and p= Po -\- Pl , then the

effective Lorenz function is, from eqs (22) and

(25),

l=l{i
--X

i-t)T- (26)

For a very pure metal where po/p<C<11, L~L t ;

for a highly disordered metal where p = p0 ,
L=L 0 .

In figure 10, the theoretical temperature de-

pendence [62-64] of L/L0 is shown for various

values of p0 . For any real specimen, p0 is finite

so that at sufficiently low temperatures p=p0

and L=L0 .

At low temperatures, the electronic thermal

conductivity of a fairly pure metal or dilute

alloy is given closely by

±=aT*+P T«Q> (27)

TEMPERATURE

Figure 10. The temperature variation of the

Lorenz function as a function of purity and
temperature.

La is the limiting value of L at low and high temperatures.

The top curve relates to the most impure specimen (after

Rosenberg [8, p. 120]).

8 £o=y(j)
2

where k is Boltzmann's constant and e is the charge on an

electron.

71



where n>2, 0~p o/L o , and a is an empirical
constant which is characteristic of the particular
metal. At higher temperatures, electrons are
scattered elastically and isotropically by phonons,
and Li~L 0 ; therefore

-s(?+i> T>6
' <28 >

since p~p0 -\-bT at higher temperatures. For
highly pure metals, the electronic thermal con-
ductivity approaches the constant value \ e=L 0/b

at high temperatures. For extremely disordered
alloys, the structural resistivity, p0 , dominates
and the electronic thermal conductivity increases
linearly with temperature.

In figure 11 we see the idealized behavior of the
thermal conductivity of copper as derived by
Cezairliyan and Touloukian [65-67]. At the lowest
temperatures, the thermal conductivities increase
linearly with increasing temperature. The thermal
conductivity values pass through a maximum
value, Xm , at a different temperature, Tm , for each
sample and then decrease again at higher temper-
atures to an approximately constant value. These
recommended values of Cezairliyan and Toulou-
kian are in only fair agreement with experimental
data obtained on copper [68-72].

The electronic component of thermal conduc-
tivity for ferromagnetic metals, transition metals,
and semi-metals (e.g., bismuth) is less well
understood than for more ideal metals and the
above is of somewhat restricted applicability.
Additional references to the theory of the thermal
conductivity of metals include [7-9, 11, 73-79].

10 io2

TEMPERATURE ,K

Figure 11. Thermal conductivity of samples of
copper of different purity as a function of
temperature.

The parameter /3, expressed in units of mK 2 W->,
(see eq (27)) is approximately equal to the residual
electrical resistivity of the sample divided by the
theoretical value of the Lorenz function (after
Cezairliyan and Touloukian [65-67]).

In an "intrinsic" semiconductor at 0 degrees
kelvin, the valence band is completely filled and
the conduction band is completely empty; thus
the electrical conductivity and the electronic

thermal conductivity of an intrinsic semiconductor
are zero at absolute zero. As the temperature
increases, some electrons attain sufficient thermal
energy to get into the conduction band. This
results in "holes" being left in the valence band.
It is possible for energy and charge to move
through the crystal by means of electrons moving
from one hole in the valence band to another hole.

The semiconductor acts as if there were particles

of positive charge moving through it. Thus it has
become common to talk about the motion of the
holes, which under the influence of a temperature
gradient or electric field will result in a net transfer

of thermal energy or electric charge.

In an intrinsic semiconductor, the number of

electrons in the conduction band and the number
of holes in the valence band increase very
rapidly with increasing temperature. This results

in a rapid increase in electrical conductivity with
temperature. The relation between electronic

thermal conductivity and electrical conductivity
for an intrinsic semiconductor is rather complex
[7, 12, 14, 80-81]. At higher temperatures, the

Lorenz function is given, if certain assumptions
are met, by

HH(0I1+1?(4+iI)1 (29 >

where o-=ae
-\- ah ,

ae and ah being the portions of

the electrical conductivity due to electrons and
holes, respectively, and Ee is the width of the for-

bidden gap between the valence and conduction
bands. Equation (29) has its maximum value
when ah=ae , L then being greater than 6(^/e) 2

by an amount which depends on Eg .

An "extrinsic" semiconductor, which may in

its purest state be an electrical insulator, contains
impurities which have either more or fewer
valence electrons per atom than the normal atom.
This results in the creation of either electrons in

the conduction band («.-type semiconductor) or

holes in the valence band (p-type semiconductor).
Either results in an increase in the electrical

conductivity. 9 In a compound semiconductor, a
stoichiometric deficiency of one constituent will

act as an impurity. 10

If the conduction band of an extrinsic semi-
conductor is only slightly filled, the Fermi energy,

and hence the Fermi temperature, will be low so

that, at sufficiently high temperatures, T^>y>TF
and the electron gas is nondegenerate. Similarly,

if there is a small number of holes in the valence

band, the hole gas is nondegenerate. Under such
conditions, the Lorenz function is simply L—
2U leY, which is what eq (29) reduces to if either

9 For example, 10 ppm of boron in pure silicon will increase the room temper-
ature electrical conductivity by a factor of 103 .

10 For example, CU2O and ZnO.
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ue or 0-
ft
vanish. If many electrons (or holes) are

present so that T<C<CTF , the carrier gas becomes
degenerate and L=L^=)'%-k2

(11 /e)
2

, as for a metal.
The curve in figure 12 shows how the electronic

thermal conductivity of a simple extrinsic semi-
conductor varies with the electrical conductivity.

c. Radiation "Conduction"

Planck's law [82-84] states that the energy
emission per unit time and per unit area (Wm~2

)

from a blackbody in a range of angular frequency
du (rad s

_1
) is given by

eba(T)d<j}=
47r

2
c
2[exp (fa/AT)—l]

(30)

where fi and k have previously been identified,

c is the speed of light in vacuum, and n is the
index of refraction (at u>) of the medium which
bounds the blackbody. Expressing eq (30) in

terms of frequency rather than wavelength is

preferable for our present purpose since a does
not change when radiation travels from one
medium to another medium which has a different

index of refraction (i.e., speed of light). Equation
(30) can be rearranged as

eba _15h / %w \ 3
1

<™2T3

~irH \kTJ [exp (ha/tT)-!]
(31)

where a--

«2
k

-- 5.6697X 10- 8 Wm-zK~i
is known

60h3
c
2

~

as the Stefan-Boltzmann constant. In this form

the right hand side of eq (31) is a universal func-
tion of / T/hco and is so plotted in figure 13.

We note that

kT=kT^nlTj

% o) hv Ci
(32)

where v—2tw is frequency, I is wavelength (in the
medium having n as its index of refraction), and
c2 =27rftc/^ =hcjk= 1-43879 X10-2m K is known as
the second radiation constant. 11

The total energy radiated is obtained by inte-

grating eq (30) over all frequencies:

Jo 4*VJ 0 [exp (hoofkT)-l]

(33)

If we assume that the index of refraction of the
bounding medium is independent of frequency, eq
(33) can be integrated to yield

eb{T)=n2aT\ (34)

Eq (34) is usually seen without the factor n2
, since

7i=l in a vacuum.
The monochromatic energy emitted from a

real (non-black) surface is

(35)

where ea is the hemispherical emittance of the
surface for radiation of angular frequency w (i.e.,

2.0

rueT, m K
0 0.01 0.02

Figure 13. Spectral emissive

power of a blackbody.

Figure 12. Plot of electronic thermal
conductivity versus electrical conduc-
tivity for a simple extrinsic semi-

conductor at constant temperature.

Region A is the nondegenerate region in which
the carriers obey classical statistics and the
Lorenz function is given by 1=2 We) 2

. In the
degenerate region, C, the carriers obey Fermi-
Dirac statistics and L=l/3ir2 (k/e) 2

. Region B is

intermediate between these two limiting cases.

11 Usually one sees en, the energy emission in a range of wavelength dl,

rather than etu, which we have discussed here and plotted in figure 13. The
quantity which is usually plotted is some multiple of

n3 T« (nl T) » [exp (cj/«tf T)—l]'

where c\=2ivh c 2=3.7405X10"16 Wm 2 is known as the first radiation constant.

This is most frequently seen without the n appearing explicitly, n=l being

assumed. Even if n is included, this expression of Planck's law in terms of

wavelength rather than frequency is not generally valid since it depends on
the assumption that n is independent of wavelength.

323-655 O - 69 - 6
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photons of energy hco). The total energy emitted
from a surface is

/» 00 /» 00

2=
I e adto= I e aebada
Jo Jo

(36)

The total hemispherical emittance is defined as
the ratio of the emissive power, e, of a given
surface to that of a black surface at the same
temperature, i.e.,

(37)

Note that e is a property of the surface and its

temperature.
The monochromatic energy per unit time and

area absorbed by a real surface is

where Ha is the intensity of the incident radiation
and au is the monochromatic hemispherical
absorptance of the surface. The total hemis-
pherical absorptance is

a

(38)

ta

Note that a is not a property of the surface alone
but is a function of the nature of the incident
radiation.

Kirchhoff's law states that

au= ta . (39)

One frequently sees the assumption being made
that Kirchhoff's law holds for total absorptance
and emittance. This assumption is valid in some
cases [84, pp. 41-42] but in general

a 7^ €. (40)

We now wish to discuss radiative transfer of
energy within a diathermanous material; that is,

one which is partially transparent to infrared
radiation. Radiation (photons) traveling through
a medium can suffer attenuation due to absorption
and/or scattering. Consider a monochromatic
beam of radiation of intensity Ia (energy per
unit time per unit solid angle) as shown in figure 14.

The intensity will be attenuated as

la,= I0ae~ u »+y «> s= Ioae-f>»
s

(41)

where I0a) is the intensity at s=0, the apex of the
beam, ku is the monochromatic absorption co-

efficient for photons of energy frw, y a is the mono-
chromatic scattering coefficient, and (8u=K a,+7u

is the monochromatic extinction coefficient.

+ dl<

-s = 0

Figure 14. Attenuation of radiation

due to absorption and scattering

{after Sparrow and Cess [84, p. 17]).

There is a fundamental difference between ab-
sorption and scattering of photons which should
be kept in mind. When a photon is absorbed it is

out of the picture, so to speak, and we need no
longer be concerned about it. When a photon is

scattered, on the other hand, it is still active as an
energy carrier and hence we must consider where
it goes after being scattered. In isotropic scatter-

ing, which is often assumed (and probably rarely

justified), a photon has no memory of which way
it was going before being scattered and hence has
equal probability of traveling in any direction.

In small-angle scattering the photon is deflected

only slightly by interaction with a scattering

center so that this type of scattering has much
less effect on energy transfer.

From an extension of Kirchoff's law, it is

apparent that any medium which absorbs radi-

ation must also emit radiation. For an isotropic

medium, the monochromatic emission per unit

time and volume is

4«ue

The total emission is

where

4/Cp6&a),

/» CO

.
Jo

u

(42)

(43)

(44)

Total absorption and scattering coefficients

may be defined as

I k u \
IudQ,do)

Jo J 4jtK= ~

IadQ.dwnJO J 4ir

(45)

and

f"T.f
Jo Jin

IadSldv

f f Undo
Jo Ji-r

(46)
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where dti is the element of solid angle and the 4tt

signifies that the integration is to be oyer all

directions. However, since will depend on con-
ditions throughout the medium and at the sur-
rounding surfaces, a and y are not generally
properties of the medium and hence are of rather
limited usefulness.

We now have set forth the basic equations
which are necessary in order to calculate the heat
flux through a diathermanous material. Let us
consider one-dimensional heat flow in a slab of
thickness L. It is convenient to define a mono-
chromatic optical thickness:

(47)

where 2 is a position coordinate measured from
the lower surface of the slab. Sparrow and Cess
[84, Ch. 7], who cite earlier work, show that the
intensity of radiation at any point in the slab can
be divided into two components as shown in

figure 15. The monochromatic radiation having a
component in the positive 2-direction is designated
as Iu

+
(tu,h) ; that which has a component in the

negative 2-direction, by Ia~(T 0,n), where m=cos 0

designates the direction in which the photons are
traveling (0 is measured relative to the normal to
the slab). The component of radiation in the
positive direction is given by

It{r a , n)=H(0, n)e-
TJ»

+

where

- r^l^eM+^G^y^'^ (48)

=2
-X'

(49)

is the incident energy per unit area inside the
slab. Both e ba (t) and Ga (t) which appear in eq
(48) are unknown functions of position. The first

term on the right hand side of eq (48) is the
energy that enters at the 2=0 surface of the slab
and is attenuated in accordance with eq (41).
The first term in the integral in eq (48) represents
energy which is emitted by the medium in the
region below t„; the second term in the integral
represents energy scattered in the 0 direction in
the region below r u . An equation analogous to
eq (48) can be written for Iu~, the component in

surface 2

SURFACE I

Figure 15. Coordinate system for one-
dimensional radiative transfer (after

Sparrow and Cess [84, p. 196]).

the negative 2-direction. The projection of

Io=l\>
+Jrl\>~ in the 2-direction gives the total

monochromatic radiation flux normal to the slab

at any position. Integration over all values of co

gives the total radiation heat transfer, g r .

If both radiative heat transfer and conductive
heat transfer are present, conservation of energy
requires that, at steady state,

V.(\VT)=V-q T , (50)

where A does not include any radiative contribu-
tion to the thermal conductivity. Equation (50)
implies that there is an interaction between heat
transfer by conduction and that by radiation.

One cannot, in general, compute the heat flow
and temperature distribution due to conduction
and, separately, those due to radiation and then
add them. As we shall see, this can be done under
certain rather restrictive circumstances. In general,

the system of equations describing energy transfer

in a diathermanous medium consists of two
rather formidable simultaneous, nonlinear, integro-

differential equations that must be integrated

over all photon frequencies. Solution of these

equations under various conditions is the subject

of a great deal of recent research [85-117]. In this

paper we shall only briefly discuss some limiting

cases.

Consider first the optically thin limit Avhere

the optical thickness of the slab is small, i.e.,

t m(z=£X'0> for all co. In this case, the mean
free path of a photon is much larger than the

thickness of the slab so that absorption, scattering,

and volume emission within the slab are not im-
portant. We are only concerned with radiation

between the two surfaces. The monochromatic
radiation flux between the two surfaces, of

emittances e l01 and e2u , is

[e^{Tx)—

e

ba(T2 )] .

(l/eiJ+ (l/e2J-l
(51)

where Tx and T2 are the temperatures of the

surface. In general, eq (51) would have to be
integrated over all frequencies. For the special

case in which the bounding surfaces of the slab

are gray, 12 diffuse 13 emitters (and absorbers) of

energy, the total radiation flux is

where
1E=

(52)

(53)

ex and e2 being the total hemispherical emittances

of the two surfaces. Let us further assume that

\T1-T2\«T=(Tl
+T2)/2; then

q T=4*miET3{Tl-Ti ). (54)

> 2 That is, e, and t
2u

are the same for all u.

>3 That is, the intensity of the radiation leaving either surface is the same in

all angular directions.
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In the optically thin limit it can be shown [84]

that the total heat flux is the sum of the radiative
flux and the conducted flux; thus for a medium of

constant thermal conductivity,

2=2c+2r=(X+W#f3Z) ^=^2
> (55)

where L is the total thickness of the slab. The
apparent total thermal conductivity is

Xapp=\+W#r3Z. (56)

Note that in the optically thin limit, the apparent,
or effective, radiative component of thermal con-
ductivity is proportional to thickness and hence
is not an intrinsic property of the material.

Consider next the optically thick limit where the
optical thickness of the slab is large, i.e.,

r u (2=i)]>>l, for all co. In this case the mean
free path of a photon is much less than the thick-
ness of the slab so that conditions at the surface
become unimportant and radiative heat transfer

is controlled by absorption, scattering, and volume
emission. In the optically thick limit, the mono-
chromatic radiant energy content per unit volume
in a frequency interval dw is

so that the monochromatic contribution to the
volumetric heat capacity is

Ca—
4nde

c dT
fCO, (57)

the velocity of a photon is v=c/n; the mean free

path of a photon is A.=l/pu . With these quantities

substituted into eq (5) or eq (7), the monochro-
matic contribution to the thermal conductivity is

4 debaj
Xra~dpa~dT

au '

The total radiative thermal conductivity is

4 de b 16riVT 3

3PR dT 3/3,

(58)

(59)

where pR is the Rosseland mean extinction coeffi-

cient defined by

1= f°°JL
PB oj j8„

de b01

deb

da- (60)

Thus under conditions where the optically thick

approximation holds, it is meaningful to define a

radiative component of thermal conductivity.
In many materials, the extinction coefficient,

p a , varies strongly with co. The factor de ba/de b in

the integrand of eq (60) gives greater weight to

the values of p u in the frequency region where
there is the most energy. Thus even if p a were
independent of temperature for all co, the effective

extinction coefficient, pR , could be a very strong
function of temperature. For certain materials

\ r could, therefore, increase as Tn
, where n might

be as large as 10.

In figure 16 we show the qualitative behavior
of the apparent thermal conductivity of a diather-

manous material as a function of thickness. The
increase in the apparent thermal conductivity
for small thicknesses will vary as EL, where E (see

eq (54)) is the effective emittance of the bounding
surfaces and L is thickness. As the thickness is

increased, the increase in the apparent thermal
conductivity will asymptotically approach X T as

defined in eq (59).

In summary, the radiative contribution to

thermal conductivity can be considered as a

unique property of a material only when the

characteristic dimensions of the sample in question

are large compared to the average mean free path
for photons. 14 This is analogous to the situation

with the lattice component of thermal conduc-
tivity at low temperatures, where we noted that

it was necessary to speak of the thermal conduc-
tivity of a particular size of specimen in the region

where the lattice thermal conductivity is limited

by boundary scattering of phonons.
Values for the monochromatic extinction co-

efficient and index of refraction of a number of

materials are given in [118]. Most of these corres-

pond to room temperature. Gardon [119] presented

values for the spectral absorption coefficient of

window glass in the solid and liquid state. Inspec-

tion of these values, which are illustrated in figure

17, reveals that below 600 °C the monochromatic
absorption coefficients are practically independent

THICKNESS

Figure 16. Apparent thermal conduc-

tivity of a diathermanous material as

a function of thickness and the effec-

tive emittance of the bounding

surfaces.

» The average mean free path for photons is simply I/Pr, as defined in

eq (60).
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of temperature so that one could use room tem-
perature values [118, 120-121] of monochromatic
absorption coefficients to estimate, using eqs (60)

and (61), the radiative component of thermal
conductivity for glasses. At temperatures suffi-

ciently high that photons are excited in the wave-
length region 15 shorter than about 2.8 /mi, the
weighting factor, deiw/deb, in eq (60) will cause the
Rosseland mean extinction coefficient to decrease
very rapidly with increasing temperatures and
thus cause a rapid increase in the radiative thermal
conductivity. There do not appear to be many
high temperature data on the extinction coeffi-

cients of ceramics. Folweiler and his group [122-

124] have carried out high temperature absorption
coefficient measurements on single crystal A1203 ,

MgO, SrTi03 , and CaF2 and on fused Si02 glass.

Chapin and Howe [125] have made measurements
on radiant energy transport in BeO.
In general, the radiative thermal conductivity

will be reduced below the value in, say, a single

crystal by grain boundaries, pores, and any im-
purities which absorb or scatter photons. In other
sections of this paper we will see some experimental
results which illustrate certain aspects of radiant
energy transfer in ceramics.

Since there are no comprehensive review papers
(to my knowledge) which adequately cover the
subject of the radiative component of thermal con-
ductivity, I have included a rather large number
of references [126-223] to individual papers and
books which have bearing on this subject. These
references, plus those previously cited [82-125],
while not exhaustive, cover a good portion of the
pertinent literature.

d. Gas Conduction

In porous ceramics, it is necessary to be con-
cerned with the thermal conductivity of the gas
which fills the pores. For a classical gas, the heat
capacity per atom is/^/2, where/ is the effective

o
K
Q.

2 3 4

WAVELENGTH, pm

Figube 17. Monochromatic absorption coeffi-

cients of window glass at different temperatures
(after Gordon [119]).

The original reference also shows data at 1000 and 1300 °C.

number of degrees of freedom (translational-h

vibrational + rotational) of the gas molecule.
For an ideal classical gas, then, the heat capacity

per unit volume at cons'tant volume is simply

C= 2T (61)

where p is the pressure of the gas. The mean free

path of a gas molecule for a not-too-dense gas is

Ps
(62)

where S is the effective cross sectional area of a

gas molecule. This relation follows easily from
the reasonable assumption that the mean free

path is inversely proportional to the density of

the gas. The average translational velocity of

an ideal classical gas is

3RTW (63)

where m is the weight of the gas molecule, M is

the molecular weight of the gas, and i?=8.3143
JK _1 mol -1

is the gas constant.

Combining eqs (5, 61, 62, and 63), the thermal
conductivity of an ideal classical gas is given by

6SV
3RT
M (64)

s Wavelengths measured in air, not in the glass.

The implications of this equation are as follows

:

1. Thermal conductivity is independent of

pressure.

2. Thermal conductivity increases as the square

root of absolute temperature.
3. Thermal conductivity is proportional to the

number of degrees of freedom of the gas

molecule.

4. Thermal conductivity decreases with in-

creasing molecular weight. The scattering

cross section, S, in general increases with

molecular weight, so that thermal conduc-

tivity decreases more rapidly than M-1/2
.

For gases with the same number of degrees

of freedom, thermal conductivity is very

roughly inversely proportional to molecular

weight.

Perhaps the most surprising thing about the

thermal conductivity of a gas is that it is inde-

pendent of pressure. This happens because the

specific heat is proportional to pressure, the mean
free path is inversely proportional to pressure,

and the average velocity of a molecule is inde-

pendent of pressure; thus the pressure dependences

cancel out. At low pressures, the mean free path

becomes large and may be limited by the size of

the pores in which it is contained, thus resulting

in a decrease in the effective thermal conductivity

of the gas. At high pressures, the mean free path
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approaches the size of the molecules and the
thermal conductivity increases with pressure.

Real gases depart somewhat from the simplified
analysis given above. At low temperatures, par-
ticularly in the case of helium, quantum effects

enter in. At higher temperatures, additional
degrees of freedom may become excited. In general,
however, eq (64) provides a fair quantitative
description of the thermal conductivity of a gas.

For an extended treatment of all the factors which
affect the thermal conductivity of gases, the
interested reader may consult the treatise by
Hirschfelder, Curtis, and Bird [224].

e. Other Transport Mechanisms

There are some mechanisms, in addition to

those discussed above, by which energy may be
transported in a ceramic material. In general,
these are much less important than phonons,
electrons, photons, and gas molecules so we will

accordingly only mention them briefly.

In section 2.2b we briefly discussed the inde-
pendent motion of electrons and holes in a semi-
conductor and the associated thermal conductivity
(see eq (29) and accompanying text). It is also

possible for an electron and a hole to form a
bound state known as an exciton in which an
electron and a hole are bound together (in a
manner analogous to the formation of a hydrogen
atom by a proton and an electron) and can travel

through a solid as a single entity. Since an exciton
is electrically neutral, there is no electrical current
associated with its motion.
There has been some speculation in the litera-

ture [225-228] regarding the existence of exciton
heat transfer in ceramics at high temperatures.
To date, however, there is insufficient evidence to

prove that this mode of heat conduction is of any
practical importance. Recent literature concerning
the theory of excitons includes [229-231]; these
references cite some of the earlier work.
Ziman [7, p. 319] points out that in some solids

the molecules have a significant rotational specific

heat which presumably can be transferred be-
tween neighboring molecules, thus contributing
to the thermal conductivity.
Ziman [7, p. 319] also mentions the possibility

of heat conduction by spin waves in which energy
is transferred by interaction of spin magnetic
moments.
We have not mentioned thermal conductivity

in superconductors. In brief, the thermal con-
ductivity of a material will be lower in the super-
conducting state than in the normal state since

the superconducting electrons do not contribute
to heat transport. At sufficiently low tempera-
tures, there is no electronic contribution to the
thermal conductivity of a superconducting ma-
terial. Rosenberg [8] discusses the thermal con-
ductivity of superconductors.

If there is mass transport of any kind in a
material, there will be an associated energy of

transport which can augment heat conduction.

The most obvious mechanism that we have not

discussed is gaseous convection. In a fibrous or

granular material having a continuous gaseous

phase, there can be convection within the material

which under certain circumstances can transfer

very large quantities of heat. Even in a material

having closed pores so that there is no net transfer

of gas through the material, convection within

the pores can cause increased heat transfer across

the pores. As a rule-of-thumb, convection within

closed pores is not important unless the pores

are larger than, say, 5 mm.
A more subtle type of mass transfer is the

diffusion of individual molecules or imperfections

under the influence of a potential field. For
example, in electromigration, molecules or impuri-

ties can migrate under the influence of an applied

electric field. In the Soret effect, molecules or

impurities can migrate under the influence of the

temperature gradient. Since the energy transport

is proportional to the temperature gradient, the

Soret effect is a legitimate augmentation (or

depletion, depending on the sign of the heat of

transport) of the thermal conductivity. However,
since the Soret effect can result in a redistribution

of impurities, vacancies, etc., the thermal con-

ductivity could change with time. Both electro-

migration and the Soret effect become significant

only at temperatures approaching the melting

point of the solid. I do not know of any cases

where the effect of either mechanism on thermal

conductivity has been observed.

If the vapor pressure of a material or one of its

constituents becomes significant, a large energy

transfer can occur through porous materials due
to sublimation (or evaporation) and condensation.

Even in nonporous materials, the heat of vapori-

zation could make it very difficult to make an

accurate thermal conductivity measurement.

3. Effects of Environment

Before discussing the effects of composition and
structure on the thermal conductivity of ceramics,

it is important to briefly discuss the influences of

environment.

3.1. Temperature

As we have seen in section 2.2, thermal con-

ductivity is influenced by temperature for all of

the heat conduction mechanisms which were

discussed. In later sections, we shall see examples

of how the dependence of thermal conductivity

on composition or structure varies with tempera-

ture. In this section we present several figures

showing thermal conductivity versus temperature

for a number of ceramic materials and then show
a few examples to illustrate the relative importance

of different mechanisms of heat conduction at

different temperatures.
In figure 18 we compare on a log-log plot the

low temperature thermal conductivity of several
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Figure 18. Thermal conductivity

of some non-metallic crystals com-

pared with very pure copper

(after Berman [232]).

nonmetallic single crystals with the thermal
conductivity of a very pure copper sample. Heat
conduction in these dielectric crystals is entirely

due to phonons at low temperatures while the

thermal conductivity of copper is chiefly due to

electrons. At higher temperatures the thermal
conductivity of copper decreases slowly with
increasing temperatures, falling from 400 Wm_1K_1

at room temperature to 340 Wm^E" 1 at 1200 K.
Conversely the thermal conductivity of the dielec-

tric materials continues to decrease fairly rapidly,

going roughly as T_1
.

In figure 19 we compare the high temperature
thermal conductivity of several dense ceramic
materials. In figure 20 the thermal conductivities

of a number of porous ceramics are shown as

functions of mean temperature. We shall discuss

the effect of porosity in section 5.2.
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Figure 19. High temperature thermal

conductivity of several dense ceramic

materials (after Kingery, Klein, and
McQuarrie [238])

.

400 800 1200

MEAN TEMPERATURE, °C

Figure 20. Thermal conductivity of several

refractory brick (after Ruh and McDowell
[234]).

The thermal conductivity of titanium carbide
is shown in figure 21. The electronic component
of thermal conductivity, computed from eq (22)

using L=L 0 for the Lorenz function, is seen to be
about one-half of the total thermal conductivity,
the remainder being due to lattice conduction
(phonons). This behavior can be contrasted with
that of oxide ceramics which generally have a
negligible electronic contribution to the thermal
conductivity. This separation of thermal conduc-
tion into an electronic and a lattice component
should not be taken too seriously since L may
not be equal to L 0 for titanium carbide.

In figure 22, the thermal resistivity data of

Taylor [236] for beryllium oxide are shown as a
function of temperature. The samples were hot-

pressed to 99 percent of theoretical density. From
1000 to 1850 K the thermal resistivity increases

T

Ql 1 1 ' 1

0 500 1000 1500 2000

TEMPERATURE, °C

Figure 21. High temperature thei-mal con-

ductivity of titanium carbide.

The upper curve represents the total measured
thermal conductivity, X= X«+Xi. The lower curve

represents the electronic contribution, \«, computed
using the theoretical Sommerfeld value for the

Lorenz function (after Williams [235]).
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Figure 22. High temperature thermal resis-

tivity of two samples of high density

beryllium oxide (after Taylor [236]).

linearly with temperature, as predicted by eq
(20). At higher temperatures, the thermal resis-

tivity departs from this linear relation, passes
through a maximum near 2100 K and then de-
creases with increasing temperature. The depar-
ture of the high temperature data from the
extrapolation of the line through the data below
1850 K increases as approximately T 17

. There
are several possible reasons for this departure.
At these very high temperatures, the mean free

path of a phonon is becoming very short—of

the order of interatomic distances. Thus the
mean free path of a phonon may become essen-

tially constant at sufficiently high temperatures.
Since specific heat and phonon velocity are also

essentially constant at very high temperatures,
this would result in a temperature-independent
phonon contribution to the thermal conductiv-
ity. Such behavior of the mean free path would
explain the departure from a linear relation

but would not explain the decrease in thermal
resistivity (increase in thermal conductivity) at

the highest temperatures. To explain this it is

necessary to invoke an additional mechanism of

heat conduction. The most plausible candidate is

radiative heat transfer, or photon conduction.
Equation (59) predicts a T 3 temperature depend-
ence for the total radiative thermal conductivity
if the index of refraction and the extinction

coefficient are independent of temperature. Chapin
and Howe [125] found that beryllia became more
opaque to thermal radiation at very high tempera-
tures; if this is so the radiative component of

thermal conductivity would increase less rapidly
than T3

. However, the combination of a constant
mean free path and a radiative contribution might
still lead to the behavior observed in figure 22.

There is also the possibility of some more exotic

mechanism such as exciton conduction. At such
high temperatures, experimental errors could be
quite significant and might account for part of

the turn-down in figure 22.

In the case of glasses, the importance of radia-

tive heat transfer is quite clear. Referring back to

figure 19, the thermal conductivity of fused silica

is seen to increase slowly with temperature near
room temperature and then to increase much
more rapidly at higher temperatures. Since fused
silica is an amorphous material, the phonon mean
free path above room temperature is essentially

constant at a value approximating the size of a
silicon dioxide tetrahedron [237]. The increase

with temperature in the thermal conductivity of

fused silica near room temperature is due to the

increase in the heat capacity. The spectral absorp-

tion coefficient for fused silica is similar to that for

window glass as shown in figure 17. Fused silica

is essentially opaque to wavelengths (measured in

air) longer than 2.8 jum. At temperatures below,

say, 400 K, there is negligible thermal radiation

(cf. figure 13) at wavelengths below 2.8 so that

the radiation contribution to thermal conductivity
is completely negligible. Above approximately
600 K, there are sufficient short-wavelength
photons to transfer significant amounts of energy
and the radiative component of thermal conduc-
tivity rises very rapidly (perhaps as Ti to T6

)

with increasing temperature.
Figure 23 shows some values for the apparent

radiative contribution to thermal conductivity in

a sample of fused silica and in single crystals of

three oxide ceramics. These samples were probably
not large enough, in comparison to the photon
mean free paths, for these measured values to be

true properties of the materials.

The temperature dependence of the thermal

conductivity of a number of oxide ceramics can be
observed from the recommended values given by

2
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Figure 23. Effective radiative com-

ponent of thermal conductivity in 2.5

cm samples of silica glass and three

single crystal oxide ceramics (after

Kingery, Klein, and McQuarrie

[233]: the original data are due to

Charvat and Kingery [439] and

Lee and Kingery [189]).
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Powell, Ho, and Liley [238]. Recommended values
for the thermal conductivity of several types of

graphite are given by Ho, Powell, and Liley [239].

If one wishes to study the temperature dependence
of the thermal conductivity of other ceramic ma-
terials, the best place to find the appropriate ref-

erences is from one of the various data compila-
tions issued by the Thermophysical Properties
Research Center [240]. A good review paper,
which includes discussion and examples of the
temperature dependence of thermal conductivity,
has been written by Kingery [241].

3.2. Atmosphere

The thermal conductivity of a porous material
is dependent on the type of atmosphere pervading
the material. In the case of materials having no
continuous solid phase, the difference between
the thermal conductivity in vacuo and in the
presence of, say, atmospheric pressure gas may be
several orders of magnitude. Many of the refer-

ences cited in Section 5.2b are concerned with
multiphase materials having no continuous solid

phase.
In the case of porous ceramic materials, the

thermal conductivity will vary in different atmos-
pheres provided the atmosphere can pervade the
pores. In figure 24 we show the thermal conduc-
tivity of a commercial insulating fire brick in
helium, air, and argon. As is apparent from eq
(64) , the low-molecular-weight gas has the highest
thermal conductivity. Reducing the gas pressure
would not significantly affect the thermal conduc-
tivity values shown in figure 24 until the mean
free path of the gas molecules approached the
pore size. A reasonably good vacuum would result
in thermal conductivity values below those shown
for argon. We will return to porous materials in

Section 5.2b.
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Figure 24. Thermal conductivity of a
commercial insulating firebrick in
various gases (after Young, Hartwig,
and Norton [242])

.

3.3. Electromagnetic Fields

The effect of an electromagnetic field on thermal
conductivity is much too complex a subject to

discuss in any detail here. Consequently, I shall

only make a few brief remarks.
In general, thermal conductivity will not be

significantly affected by an electric field of the
magnitude normally encountered in engineering
applications. In the case of a metal, platinum,
Flynn and O'Hagan [243] found no measurable
effects on thermal conductivity due to electric

current densities of 10 8 Am-2
; it should be noted

that this corresponded to electric fields of less than
400 Vm_1

. In semiconductors, or insulators, larger

electric fields can be sustained and effects on
thermal conductivity might conceivably become
significant.

A magnetic field of rather small magnitude
exerts a much greater force on an electron than
can be exerted by any attainable electric field. In
brief, a magnetic field causes an electron (or hole)

to follow a curved path so that the effective mean
free path in the direction of the temperature
gradient is reduced. This can result in a very
significant reduction in the electronic component
of thermal conductivity. The application of a
magnetic field can cause the thermal conductivity
to be anisotropic. Ziman [7, pp. 483-523] may be
consulted for details. In a dielectric solid, where
there is no significant electronic contribution to

the thermal conductivity, the application of a
magnetic field would normally not affect thermal
conductivity.

We have previously discussed the transfer of

heat by photons through partially transparent
materials. In that discussion, it was tacitly as-

sumed that the spectral distribution of radiation
impinging on a volume element of the material
was, at least roughly, the same as the spectral
distribution of energy emitted by the volume
element. If a material is subjected to radiation
with an electromagnetic field (photons) of quite
different spectral characteristics from those of

the field which would be extant in an infinitely

large, approximately isothermal, body of the same
material (at the same temperature), the radiative
heat transfer through the material may be very
dependent on theinttnsity and spectral distribution

of this applied electromagnetic field. For example,
at room temperature there is a negligible radiative
contribution to the thermal conductivity of

window glass. However, high frequency photons
due to solar radiation will pass readily through
window glass with a large attendant transfer

of heat. Under such conditions, it is meaningless
to attempt to associate a thermal conductivity
with this heat transfer.

3.4. Pressure and Stress

In sections 3. Id and 3.2 we mentioned briefly

the effect of pressure on the thermal conductivity
of gases. Near atmospheric pressure, the thermal
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conductivity of a gas is almost independent of

pressure.

There has been very little experimental work
on the effect of hydrostatic pressure on the
thermal conductivity of solids. Bridgman [244,

245] measured the thermal conductivity of a
number of rocks and minerals as a function of

pressure. Hughes and Sawin [246] have recently
measured the pressure dependence of thermal
conductivity of several dielectric solids at pres-
sures up to about 1.9X10 9 Nm" 2 (~1.9X103 atm)
and temperatures to 450 °C. They found the
(lattice thermal conductivity to increase by 50
to 100 percent over the range 0 to 2X10 8 Nm-2

(~2X103 atm) and then to increase less rapidly
at higher pressures. This corresponds to less than
0.05 percent for a pressure change of 1 atm.
In a dielectric solid, the increase in thermal

conductivity with pressure can be associated
with the increase in the Debye temperature
(see eqs (16) and (17)). Drickamer et al. [247]

review the effect of pressure on the lattice param-
eters of solids and cite a number of pertinent
references. The effect of pressure on the thermal
conductivity of a dielectric solid is much greater
in the case of solid helium [248-250] where the
Debye temperature can be changed very drastically

by applied pressure.

At high pressures, of the order of 10 10 Nm-2
,

many insulators and semiconductors transform
to metallic behavior so that the electrical conduc-
tivity, and presumably the electronic component
of thermal conductivity, increase by several

orders of magnitude. Drickamer [251] has surveyed
the literature on this increase in the electrical

conductivity; I do not know of any experimental
thermal conductivity work in this pressure region.

Bridgman [252] found that the Lorenz function,

X e/a-T, of metals could either increase or decrease
with increasing pressure. Starr [253], however,
found the ratio of thermal to electrical conductiv-
ity at constant temperature to remain essentially

constant at pressures up to about 10 9 Nm-2
. If

this is so, one can predict the change in electronic

thermal conductivity from the change in electrical

conductivity. Review papers on the effect of

pressure on the electrical properties of metals or

semiconductors include [245, 251, 254-258]. In
brief, the electrical conductivity of most metals
increases by an amount less than 0.01 percent for

each atmosphere of pressure increase. Most semi-
conductors, and some metals, exhibit a decrease
in electrical conductivity with increasing pressure.

In the vast majority of engineering applications,

the pressure dependence of thermal conductivity
for solid materials can be neglected.

There is also very little information on the effect

of elastic strain, due to nonhydrostatic compression,
to tension, or to torsion, on thermal conductivity.
Any strain, other than hydrostatic, will distort

the lattice and thus make it more difficult for

energy carriers (e.g., electrons, phonons) to travel

through the lattice. This will decrease the thermal

conductivity. Bridgman [259] has measured
the effect of tensile stress on the thermal conduc-
tivity of a number of metals near room temper-
ature and found the decrease in thermal conduc-
tivity to be proportional to the stress. As an
example, he found that a tensile stress of about
10 8 Nm- 2 (~1.5X104 lb kr 2

) decreased the

thermal conductivity of copper by about 0.2

percent. The apparent thermal conductivity,

however, computed using the unstressed dimen-
sions of the specimen rather than the stressed

dimensions, would have increased by about 0.8

percent under this stress. For metals in torsion,

the thermal conductivity decrease is approxi-

mately proportional to the square of the twist

[260-261]. In the case of copper, a twist of 1

rad m_1
of length reduced the thermal conductiv-

ity by about 0.2 percent.

At low temperatures (say, <100 K), the thermal

conductivity of relatively pure metals and dielec-

tric crystalline solids might be significantly af-

fected by elastic deformation. Above room tem-
perature, any such effects are probably of no
practical importance in most engineering applica-

tions. An exception to this would occur if stresses

caused microcracks to appear in the material.

If a solid undergoes plastic deformation, its

thermal conductivity will be significantly de-

creased due to the large number of dislocations

formed in the lattice. Cold-working of a metal

could reduce its thermal conductivity by an order

of magnitude. Such a large effect would be much
less likely in most ceramic materials due to their

brittle nature. We will return to the subject of

dislocations and other lattice imperfections in

section 5.2.

3.5. Heat Flow

Fourier's law, eq (1), defines thermal conduc-

tivity as the negative ratio of the heat flux to th e

temperature gradient. In practically all applica-

tions of thermal conductivity, it is tacitly assum ed

that the thermal conductivity of a material does

not depend on the heat flux (or the temperature

gradient) within the material. In principle, this

assumption need not be valid. In practice, no one
has yet conclusively proven it is not.

Austin [262] reviewed some of the early attempts

to find a variation of thermal conductivity with
heat flow and concluded that the existence of such

an effect had not been established. Recently,

Patrassi [263] reported a very large dependence of

thermal conductivity on temperature gradient (or

heat flow) for uranium dioxide. His experimental

procedure and conclusions have been severely

criticized by Fulkerson, McElroy, and Moore
[264], who made independent measurements of the

thermal conductivity of uranium dioxide and found

no measureable effect due to temperature gradient.

Other laboratories, as a result of Patrassi's article,

have attempted to find an effect such as he de-

scribes. None of this other work has yet been
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published but as far as I know, there has been
no confirmation of Patrassi's results.

There are several possible effects, other than
experimental error, which could result in meas-
ured thermal conductivity values being dependent
on heat flow:

1. Further extension of the formal theory of

heat conduction might reveal the necessity
of including some higher order terms which
would indicate that heat flux is not strictly

proportional to temperature gradient.

2. Steep temperature gradients may induce suffi-

cient strain in the solid to scatter energy
carriers and lower the thermal conductivity
(see section 3.4). Alternatively, the induced
strain may open microcracks in the sample.

3. The differential equation for heat flow in a
solid may not be valid in the presence of

very steep temperature gradients. Examina-
tion of the derivation of the diffusion equa-
tion reveals that an implicit assumption is

made which may not be valid at very high
temperature gradients. Without going into
detail, it is necessary that

!$X§XA«1.

Essentially, we are saying that if the diffu-

sion equation is to be valid, it is necessary
that there be no significant change in the
thermal conductivity over a distance of the
order of the mean free path of the energy
carriers.

It appears that some further theoretical and
experimental work will be required before the issue
of the possible dependence of thermal conductivity
on heat flux is resolved.

4. Directional Effects

Many materials are anisotropic as regards
thermal conductivity. All single crystals of other
than cubic symmetry may be expected to possess
thermal conductivities which are directional-
dependent. For single-crystal quartz, the ratio
of the thermal conductivity parallel to the c-axis
to that perpendicular to the c-axis drops from 2.0
at 40 K to 1.4 at 700 K. The thermal conductivity
of pyrolytic graphite is extremely anisotropic,
typically by a factor of as much as 100 to 200,
depending on temperature and details of
fabrication.

Polycrystalline materials will generally be more
isotropic than single crystals of the some material.
Hydrostatically pressed and sintered materials
are usually reasonably isotropic. Extruded mate-
rials normally retain a significant portion of the
anisotropicity characteristic of the single-crystal
material.

Carslaw and Jaeger [1] discuss the mathe-
matical theory of heat flow in anisotropic mate-
rials. The thermal conductivity of an anisotropic

material is best expressed as a tensor rather than
a scalar. Drabble and Goldsmid [14, p. 67] discuss

the phenomenological theory of heat conduction
in anisotropic solids.

In highly-anisotropic materials, it is question-

able whether or not the intrinsic thermal conduc-
tivity in the lowest-conductivity direction has
ever been measured. Kaspar and Zehms [265],

who cite a few earlier references, point out that
the observed thermal conductivity value for

pyrolytic graphite in the c-direction is often simply
a component of the conductivity perpendicular
to the c-axis which arises due to departures from
ideal crystalline orientation.

In an application where anisotropicity of thermal
conductivity may be important, experimental
checks are in order unless previous measurements
have been made on the same material produced
by the same process.

5. Effects of Composition and
Structure

It would be possible to write a fairly large book
solely concerned with the effects of composition
and structure on the thermal conductivity of

solids. In this paper I can only attempt to touch
on most of the factors of importance and give

examples of a number of them.
The influence of compositional and structural

variations at low temperatures is covered in some
depth, either directly or by reference, in the

reviews by Ziman [7], Rosenberg [8], and Klemens
[9-11]. At high temperatures, the somewhat more
pragmatical reviews by Austin [78, 262] and
Kingery [233, 241] are very helpful.

5.1. Composition

In this section we shall be concerned with the

effect of the chemical composition of a solid

material on thermal conductivity.

a. Molecular Structure

The electronic thermal conductivity of a

material is related to the number of "free" con-

duction electrons in the material. As discussed

in 2.2b, the electronic component of thermal
conductivity is approximately proportional to the

electrical conductivity. Thus copper and silver

have very high electronic thermal conductivities

as a result of their high electrical conductivities.

Many metallic carbides, borides, silicides, nitrides,

and sulfides have sufficiently high electrical con-

ductivities to possess significant electronic com-
ponents of thermal conductivity. The magnitude
of the electronic component of thermal conduc-
tivity of electrically conductive ceramics can be
estimated using the Lorenz relation (eq (22)) with
the theoretical Lorenz number, L0 =2.443X
10- 8V2K- 2

.

The lattice component of thermal conductivity

in a pure, dense, crystalline material is strongly
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correlated with the complexity of the molecular
structure. For example, referring back to figure

19, the thermal conductivity of alumina is greater

than that of spinel which in turn is greater than
that of mullite. A rule of thumb is that the simpler
structure will have the higher lattice thermal
conductivity. For similar molecular structures,

the material with the lowest molecular weight
will generally have the highest intrinsic thermal
conductivity. This trend can be observed for the

nonmetallic elements by looking at the data
compilation due to Ho and Powell [266]. In the

case of metallic oxides, this trend is seen in figure

25, where thermal conductivity is plotted versus

the atomic weight of the cation.

b. Impurities

Introduction of impurities into a pure crystalline

material normally reduces the thermal conduc-
tivity. This is true for metals where the foreign

atoms scatter electrons, thus reducing the elec-

tronic thermal conductivity. It is true for dielec-

tric materials where the foreign atoms scatter

phonons and reduce the lattice thermal conduc-
tivity. The thermal resistivities due to impurities

are additive for each conduction mechanism (see

eqs (19) and (23) for phonons and electrons,

respectively)

.

The additional electronic thermal resistance

due to impurities is related to the corresponding
increase in electrical resistivity by the Lorenz
relation (see eq (25)). Thus we can confine our
attention to the effect of impurities on electrical

resistivity. The increase in electrical resistivity,

due to x atomic percent of a given impurity, is

essentially independent of temperature and is_

given remarkably well by Nordheim's rule [267]

:

general, the constant A is eq (65) will be smallest

if the impurity atom has the same valency as the

parent material. In the case of metals, Linde's

rule [268], although not very accurately obeyed,

serves as a rule of thumb for the effect of valency

:

Ap=a-\-bZ2

, (66)

where Z is the valency difference and a and b are

constants for a given solvent for each row in the

periodic table from which the solutes are taken.

There is no simple relation, analogous to the

Lorenz relation, which permits one to use a more
easily measured property to compute the change

in the lattice thermal conductivity due to intro-

duction of impurities. In general, the effect of a

given atomic percent of impurity on the lattice

thermal conductivity will be greatest when the

atomic mass difference between solvent and solute

is greatest. Except at very low temperatures^ the

additional thermal resistivity due to impurities

is essentially independent of temperature. Since

the thermal resistivity due to phonon-phonon
interactions (Umklapp-processes) increases ap-

proximately linearly with temperature, the relative

effect of impurities decreases approximately line-

arly with temperature in a dielectric crystal. In

figure 26 we see the thermal conductivity of a

number of specimens of potassium chloride doped

with different amounts of potassium nitrite.

Increasing the concentration of impurities lowers

the peak in the thermal conductivity curve and

shifts it to a higher temperature. Different types

of impurities will affect the thermal conductivity

by different amounts. The curves shown in figure

26 are typical, however, in that the effect is very

Ap(x) =Ax(\— x) (65) io-

where A is a constant which depends upon the

parent material (solvent) and the impurity
(solute). For small concentrations, the increase

in electrical resistivity is proportional to the

atomic concentration of impurity atoms. In

5 10 30 100 300

ATOMIC WEIGHT OF CATION

Figure 25. Thermal conductivity of

several dense ceramic oxides (after

Kingery, Klein and McQuarrie

[233]).
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Figure 26. Thermal conductivity

of -potassium chloride crystals

doped with N02
~ ions (after Pohl

[286]).

The curves are identified according to

the density of NO2- ions in each sample.
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TEMPERATURE , K

Figure 27. Thermal conductivity of
single crystals of LiF with various 6Li
contents (after Berman and Brock
[269]):

Symbol Percent «LiF Symbol Percent «LiF
A 0.02 D 90.4
B 0.01 E 25.0
C 4.6 F 50.1

pronounced at low temperatures and then de-
creases rapidly with increasing temperature.
At low temperatures the presence of different

isotopes of the same element can cause large
differences in thermal conductivity. An example
of this is shown in figure 27.

The different survey papers cited [7-15] may
be consulted for the many references to the effect
of impurities on thermal conductivity. Some refer-
ences which are too recent to be covered in existing
reviews include [39, 270-280].

c. Stoichiometry

Departures from stoichiometry in dielectric
compounds will decrease the lattice thermal con-
ductivity since the interstitials or vacancies
present act as impurities. In some cases, departures
from stoichiometry will increase the electrical con-
ductivity by a sufficient amount to significantly
contribute to the electronic thermal conductivity.
The resultant thermal conductivity, arising from
the sum of the lattice and electronic components,
could, in principle, be either increased or decreased
by departures from stoichiometry. Pertinent refer-
ences to the effect of nonstoichiometry on thermal
conductivity include [281-285].

d. Alloying

Alloying is simply the addition of controlled
amounts of "impurities", perhaps to the extent
that the solvent and solute lose their identities.

In the case of two metals which form a con-
tinuous series of solid-solution disordered alloys,
the electronic component of thermal conductivity
is related, by the Lorenz function, to the electrical
conductivity. In the absence of ordering (e.g.,

intermetallic "compounds"), Nordheim's rule, eq
(65), holds reasonably well over the entire com-
position range. Austin [78] shows several examples
of the thermal conductivity of binary solid solu-

tions of two metals.
In the case of solid solutions of dielectric mate-

rials, the thermal conductivity usually varies

with composition in a manner similar to that
shown in figure 28 for the KCl-KBr system and
in figure 29 for the MgO-NiO system. The chief

characteristic feature of these plots in that the
thermal conductivity values always fall below the
straight line connecting the end points, the depar-
tures from this line being roughly parabolic in
shape. As shown in figure 29, the relative effect of

alloying decreases with increasing temperature.
Abeles [289] has presented a phenomenological

theory describing the variation of lattice thermal
conductivity with alloy composition and tem-
perature. Other pertinent references include [290-

303].

5.2. Structure

a. Crystallinity

In a highly crystalline material, the mean free

path of an energy carrier is much longer, and thus
the thermal conductivity much higher, than in a
disordered or amorphous solid. This effect is most
pronounced at lower temperatures. In figure 30,

the thermal conductivity of fused quartz is con-
trasted with that of crystalline quartz. The curves
shown differ by almost three orders of magnitude
near 40 K and then approach a common value at

higher temperatures. As mentioned in section 3.1,

the phonon mean free path in fused quartz above
room temperature is approximately constant at a
value approximating the size of the silica tetra-

hedron. At some sufficiently high temperature,
the increased number of Umklapp processes will

u 20 40 60 80 IOO

KCI MOLE PERCENT KBr

Figure 28. Thermal conductivity of

solid solutions of potassium chloride

and potassium bromide (after Eucken
and Kuhn [287]).
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Figure 29. Thermal conduc-

tivity of solid solutions of

magnesium oxide and nickel

oxide (after Kingery [£88])

.

(The left-hand axis represents pure

MgO).

in much the same manner as we saw for impurities.

Table 1, in section 2.2a, lists the temperature
dependence of the thermal resistivity due to

different types of imperfections. The various
review papers cited [7-15] discuss the effects of

imperfections on the thermal conductivity of

solids and cite numerous pertinent references.

Recent additional references include [304-315].

One class of imperfections that is of particular

importance, because of the extensive use of ceramic
materials in nuclear applications, is that of the
imperfections caused by irradiation. In figure 31,

the effect of fast neutron irradiation on the low-
temperature thermal conductivity of single-crystal

sapphire is shown. The radiation damage lowers
the thermal conductivity, especially near the peak.
Part of the damage due to irradiation can be
annealed out at high temperatures. Figure 32
shows the thermal conductivity of beryllium oxide
at 50 °C as a function of irradiation dose and
irradiation temperature. The effect of a given dose

100

10

E

01

I

-

FUSED QUARTZ

200 400
TEMPERATURE, K

600

6.0x10 Sapphire

Neutron Irradiation

20 40 60

TEMPERATURE, K

80 100

Figure 31. Thermal conductivity of synthetic sapphire,

A120 3 , before and after the indicated reactor irradiations.

The doses were 1.5, 8.9, 20.2, and 50.2X1021 fast neutrons m"2
,
respectively

(after Berman, Foster, and Rosenberg [316]).

Figure 30. Thermal conductivity of crystal-

line and fused quartz.

The uppermost curve represents the thermal con-

ductivity parallel to the c-axis while the curve just

below it represents the conductivity perpendicular

to the c-axis. These are the recommended values

from Powell, Ho, and Liley [238].

decrease the mean free path in crystalline quartz
until it reaches the size of the silica tetrahedron.
Above this temperature the phonon mean free

path will be essentially the same in crystalline

and amorphous quartz.

We will see the effect of less drastic departures
from crystallinity in the following section.

b. Imperfections

Dislocations and other imperfections perturb
the perfect periodic structure of a crystalline

lattice and hence lower the thermal conductivity

2.4x10'

E

>
t-
o
Z>Q
-z.

o
o
_J
<
<r
UJ

0 I ^ I 1—^ 1

0 5 10 15 20 25x10'"*

IRRADIATION DOSE, neutrons m"2

Figure 32. The effect of neutron irradiation

dose and irradiation temperature on the thermal

conductivity of BeO at 50 °C (after Moore et al.

[317]).
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is less if the irradiation occurs at an elevated
temperature.

It is very interesting to compare the effects of

neutron irradiation on fused and crystalline quartz.
Berman and his co-workers [320-321] found that
neutron irradiation lowered the thermal conduc-
tivity of crystalline quartz. Crawford and Cohen
[322-323] found that irradiation significantly in-

creased the low-temperature thermal conductivity
of fused quartz.

References on the effect of neutron and other
types of irradiation on thermal conductivity in-

clude [324-341]. A few general references on the
effects of radiation damage in solids are [342-345].

c. Additional Phases

All of our previous discussion has been concerned
with homogeneous materials. Except for single

crystals, most ceramic materials are heterogeneous
at least to the extent of having grain boundaries
or small porosities. Many ceramic materials have
very significant amounts of a second phase present.

In this section we will discuss the effects of ad-
ditional phases on thermal conductivity.

In section 2.1, thermal conductivity was defined
as

X=- VT

For a heterogeneous material, we extend this def-

inition to

q .

^effective
—

"

(VT)
(67)

where (VT) is the average value of the tempera-
ture gradient over a region large in comparison
with the size of the inhomogeneities. Unless the
sample is large in comparison with the inhomo-
geneities, it is scarcely meaningful to attempt to

define an effective thermal conductivity.
In a multiphase material the effective thermal

conductivity will depend upon:

1. The thermal conductivity of each phase.
2. The proportions of each phase.
3. The manner in which the phases are distrib-

uted; in particular

a. whether or not the phase is continuous in
the direction of heat flow,

b. whether the phase distribution is ordered
or random,

c. the size, shape, and orientation of each
segment of each phase.

4. The nature of the contacts between the
different phases.

5. The emissive and absorptive properties of the
phases if there is significant radiative heat
transfer through one or more of the phases.

The problem of computing the effective thermal
conductivity of a mixture from the thermal con-
ductivities of the components is mathematically
the same as the problem of computing the elec-

trical conductivity, dielectric constant, or mag-

netic permeability of a heterogeneous mixture.

There exists a large body of pertinent literature,

much of which is covered in the review articles by
Powers [346] and by Meredith and Tobias [347].

Additional references, not given by either [346]

or [347], include [78, 140, 149, 162-164, 175, 178,

188, 207, 213, 219, 221, 223, 233-234, 241, 242,

262, 281, 286, 288, 348-434]. These references

include most of the mathematical analyses of

multiphase media and also contain a more limited

amount of experimental data on multiphase
media. The papers by Everest, et al. [149],

Gorring and Churchill [376], Nahas, et al. [400],

and Krupiczka [391] contain other reviews of

various analytical expressions for predicting con-
ductivity of multiphase media.
We shall now discuss a few of the available

mathematical relations for correlating the effective

thermal conductivity of a mixture with the

thermal conductivities of the individual compo-
nents. We shall limit our discussion to two-phase
systems.
The simplest model for purposes of analysis is

that in which the two phases are arrayed in

alternative parallel layers as shown in figure 33.

If the heat flow is parallel to the layers, the

effective thermal conductivity is given by

X—/1X1+/2X2, (68)

where fi and f2 are the volume fractions of the

phases having thermal conductivities X, and X2

respectively. If the heat flow is perpendicular to

the phase layers

/2X1 +/1X2

Equations (68) and (69) represent the extreme
limits of the thermal conductivity of a two-phase

mixture. These limits are shown in figure 34 for

the case X
1
= 10X2 . Although both eq (68) and (69)

predict thermal conductivity values intermediate

between the conductivities of the individual com-
ponents we see that the conductivity obtained

is very different for the two cases. Thus these

limits are of relatively little use except for lami-

nated materials.

HEAT FLOW
PARALLEL
TO LAYERS

HEAT FLOW
PERPENDICULAR

TO LAYERS

Figure 33. Two-phase material with

phases distributed as parallel slabs.
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Figure 34. Effective thermal

conductivity of a laminated

material with heat flow

parallel or perpendicular to

laminations.

It is possible to obtain tighter limits for the

thermal conductivity of a two-phase mixture

by calculating the apparent effective conductivity

by each of two simple methods:

Series Slabs

The material is divided into thin slabs perpen-

dicular to the direction of principal heat flow.

The effective conductivity of each slab is com-
puted by assuming that the two phases act as

conductors in parallel. The effective conductiv-

ity of the mixture is then computed by assum-

ing that the slabs act as conductors in series.

Parallel Tubes

The material is divided into thin tubes or rods
parallel to the direction of principal heat flow.

The effective conductivity of each tube is

computed by assuming that the two phases act
as conductors in series. The effective conductiv-
ity of the mixture is then computed by assum-
ing that the tubes act as conductors in parallel.

Jackson and Coriell [435] have very recently
shown that these two methods provide upper and
lower bounds for the true effective conductivity
of a mixture. In order to calculate these bounds it

is necessary to assume some sort of model repre-

senting the manner in which the phases are de-
ployed. Several investigators have represented a

disperse second phase by a cubic array of cubes

as shown in figure 35. The two methods described

above can then be used to calculate limits for the

effective conductivity of the mixture. Since there is

some confusion in the literature on these calcula-

tions, it is worthwhile to spell out the steps and
assumptions involved.

Series Slabs

1. As shown in figure 35, the mixture is divided

into slabs (A) containing no disperse second

phase and into slabs (B) containing both con-

tinuous and disperse phases.

2. The effective conductivity of the B-slabs is

computed, using eq (68), by assuming the

PARALLEL TUBES

SERIES SLABS

p.x.

(l-Py)

rA/WWVS

Pi

(i-P„> K

Figure 35. Cross-section of the model in which a disperse second phase is con-

sidered to be a cubic array of cubes.
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disperse and continuous phases act as conduc-
tors in parallel

:

XB=PaXd+(l-Pa)\c ,

where Pa is the fraction of the total area which
contains the disperse phase of conductivity
Xd and (1—

P

a) is the fraction of the area which
contains the continuous phase of conductivity
Xe .

3. The effective conductivity of the mixture is

computed, using eq (69), by taking the A-slabs
and the B-slabs in series:

X= XAXaab

P,Xa+(1-Pi)Xb

where XA=X C ,
XB was given above, and P z is

the fraction of the total length containing the
disperse phase. Evaluation of this equation
yields

(l-Pa)+PaX,/Xc

X c {l-Pa+PaPl)+Pa{l-Pl)\al\
(70)

Parallel Tubes

1. In this approximation, the mixture is divided
into parallel "tubes" (A) containing no disperse
second phase and "tubes" (B) containing both
phases.

2. The effective conductivity of the B-tubes is

computed, using eq (69) ,
by assuming the dis-

perse and continuous phases to be in series

:

XR= X„X

p
lxc+{l-p l)\d

3. The effective conductivity of the mixture is

computed, using eq (68), by assuming the
A-tubes and B-tubes to be in parallel:

X=PaXB+(l-Pa)XA .

Evaluation of this yields

:

\_P l(l-Pa)+(l-P
l
+PaPl)Xd/\ c

Xc P
l+(l-Pl)K*c

(71)

In the above derivations, we stated that our model
was a cubic array of cubes. In fact, it is not neces-
sary to be so restrictive. For eq (70) to be valid,
it is only necessary that the model can be divided
into two types of slabs (perpendicular to the flow
of heat)—one containing no disperse phase and
one having a fraction, Pa , of disperse phase which
can be distributed in any manner. For eq (71)
to be valid, it is only necessary that the model
can be divided into the two types of "tubes"
(parallel to the flow of heat). Thus eqs (70) and
(71) are, in principle, also applicable to dispersions
of, for example, fibers or platelets oriented parallel
or perpendicular to the flow of heat. However,

these equations will not necessarily bound the true
effective conductivity unless both are based on
the same phase deployment.
For a disperse phase in the form of cubes, or in

which cubes may be used to approximate an
isometric disperse phase, equations (70) and (71)
may be recast in terms of the volumetric fraction
of disperse phase, which we shall designate as /.

For the model used, it is easily seen that Pi=f1/3

and Pi=J2/3
; with these substitutions, we obtain

the forms usually seen

:

16

Series Slabs

(i-/»/3)+/2/yx e

xc (i-/2/3+/)+(/2/3-jr

)x,Ac

Parallel Tubes

X l/
1/3-/)+(i-/ 1/3 +/)xg/x c

k /
i/3+(i-/ i/3

)x,/xc

(72)

(73)

Although one would appear to be, on the face of

things, considering a fairly complicated model in

deriving eqs (70) to (73), a little thought reveals

that the model reduces to the two simple electrical

networks shown in figure 35. In the series-slabs

model, one effectively assumes that the continuous
phase has an infinite thermal conductivity normal
to the principal flow of heat; thus this approach,
resulting in eqs (70) and (72), always overesti-

mates the effective thermal conductivity. In the
parallel-tubes model, one effectively assumes that
the continuous phase has zero thermal conduc-
tivity normal to the principal flow of heat; thus
this approach, resulting in eqs (71) and (73),

always underestimates the effective thermal con-
ductivity.

Maxwell [346, 347] derived an expression for the

conductivity of a two-phase dispersion of spherical

particles of conductivity Aa- imbedded in a medium
of conductivity X c - This expression is rigorously

valid for dilute dispersions where the average
distance between dispersed particles is much
larger than the particle size. Maxwell's relation

can be written in the form:

X=2-2y+(l+2/)\t
/X e

Xe 2-h/+(l-/)Xd/Xc

(74)

The behavior of eq (74) for small / is more easily

seen by expanding it in the form:

X 3/(l-X,/X c ) 3/
2(l-Xg/Xc )

2

\ c 2+X./X, (2+Xd/Xc)
2

(75)

In figure 36, we compare the predictions of the

series-slabs expression (eq (72)), the parallel-

tubes expression (eq (73)), and the Maxwell
dilute dispersion expression (eq (74)) for the case

y=0.1. For values of Xd/X c near 1, all three expres-

>6 Equation (4) of Powers [346] and Equation (5) of Nahas, et al. [400]

,

which should agree with our eq (73), are obviously erroneous in that they
do not reduce to X=X e when Xd=X e .
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Figure 36. Computed effective conductivity of a dispersion

of 0.1 volume fraction of a material of conductivity Xd in

a continuous matrix of material of conductivity \ c .

S Series-slabs expression, eq (72);

P Parallel-tubes expression, eq (73);

M Maxwell dilute dispersion expression, eq (74).

sions agree. However, if the thermal conductivities
of the two phases differ significantly, the series-

slabs and parallel-tubes expressions disagree with
the Maxwell expression, which should be very
accurate for/< 0.1.

To predict the thermal conductivity of a dis-

persion having less than about 0.1 volume fraction

of isometric dispersed phase imbedded in an
isotropic continuous phase, one should use the
Maxwell dilute dispersion expression, eq (74) or

(75). The expressions obtained from the cubic
array of cubes, eqs (70) to (73), should not be
used for dilute dispersions in media having an
isotropic continuous phase. For anisotropic media,
the Maxwell expression would have to be modified.

For highly anisotropic media, such as pyrolytic
graphite, the implicit assumptions of either

infinite or zero lateral thermal conductivity of

the continuous phase might be more nearly met so

that one of the series-slabs or the parallel-tubes

expressions (eqs (70) to (73)) might be more
accurate than in isotropic materials. For heat
conduction in the poorest conducting direction,

the series-slabs expressions, eqs (70) and (72),

should be more accurate while for heat conduction
in the best-conducting direction, the parallel-

tubes expressions, eqs (71) and (73) should be
more accurate.

A special case of interest for ceramics is the
effect of porosity on thermal conductivity. If the

thermal conductivity of the continuous ceramic
material is much greater than the effective con-
ductivity of the pores, we can set X tf/X c=0 and
our expressions reduce to:

Series-Slabs

x l—
j~l=fk+f **«V (76)

which for small / reduces to

~=l-J-f^+. Xd«Xc- (77)
Ac

Parallel -Tubes

r=l-/^ Atf«Xc (78)

Maxwell Dilute Dispersion

l=2W'
X'<<V (?9)

which for small / reduces to

~1-|/+|/2-. • X,«XC . (80)

In figure 37 the predictions of eqs (76) , (78) , and
(79) are shown for void volume fractions up to 0.1.

Over this porosity range the Maxwell equation

should be rather accurate if the porosity is in

the form of dispersed, disconnected, isometric

pores. In many ceramics this will not be the case

and eq (79) should then serve only as an upper
limit for the effective thermal conductivity of a

porous ceramic material.

For dispersions which are sufficiently dilute

for eq (74) to be valid, neither the size distribution

of the disperse particles nor the manner in which

Figure 37. The effect of poros-

ity on thermal conductivity as

computed by:

S Series-slabs expression, eq (76);

P Parallel-tubes expression, eq

(78);

M Maxwell dilute dispersion ex-

pression, eq (79).
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they are deployed are of consequence. However,
these factors must be considered if the concen-
tration of the dispersed phase is increased. Lord
Rayleigh treated the case of uniform spheres
arrayed in a cubic lattice distribution. Meredith
and Tobias extended Rayleigh's derivation by
an additional term and obtained [347]

:

which reduces to

:

A=1
K 2+Xd/Xc

3/

-/-
1.315(l-Xd/Xc)/

10/3

4/3+Xd/\ c+0.409(l+Xtf
/Xc)/

7/3

(81)

for the conductivity normal to a side of the cube.
If the term involving f

10 '3 in the denominator of

the right hand side is dropped, this expression
reduces to the Maxwell dilute dispersion expres-
sion, eq (74). Equation (81) should be more
accurate than eq (74) for values of / up to x/6
= 0.524, which is the maximum possible value for

a cubic array of spheres.

A rigorous solution for the effective conductivity
of a concentrated random array of particles of

varying sizes has not been achieved. Several
approximations have been developed which are
useful in many cases. Bruggeman (see [346-347])
developed an expression,

X-Xd

GO" =1-/' (82)

which has proved rather effective in predicting
the conductivity of a dispersion containing a wide
range of particle sizes. For X

tf
—>0, eq (82) reduces to

_=(1_/)3 /2
j

X,«X„ (83)

while for \d
—>»

,

Ac (1-/) i' K»K (84)

For a concentrated dispersion containing only a
narrow range of particle sizes, the Bruggeman
variable dispersion expression (eq (82)) tends to.

overestimate the effect of the disperse phase while
the Maxwell expression (eq (74)) tends to under-
estimate. Meridith and Tobias [347] suggested an
alternative semiempirical expression that predicts
conductivity values intermediate between the
Bruggeman variable dispersion equation and the
Maxwell dilute dispersion equation:

X _r2(X,/Xe-r-2)+2(XgAc- !)./
"!

X, L.2(Xtf/Xc+2)-(X,/Xc-l)/J

X r(2-/) (x,/xe+2) +2(xtf/x c
- 1)n

L (2-/)(X,Ac+2)-(Xd/Xc-l)/

J

(85)

and

X 8(2—/)(!—/)
X c (4+/) (4-/)

X = (l+/)(2+/)

X c (l-/)(2-/)'

(86)

(87)

Meredith and Tobias [347] contrast the predic-

tions of the various expressions we have given
above. For a given two-phase system, all of these

expressions predict
,
]two different conductivities,

dependent on which phase is assumed to be
disperse. Bruggeman (see [346]) derived another
approximate expression that should be applicable

to mixtures where neither phase is necessarily

continuous

:

-/l
X 1+2X

+-/2
X2+2X~°

(88)

In figure 38, the predictions of the Bruggeman
mixture equations are compared with those from
the Maxwell dilute dispersion equation. We see

that for small values off2 the Bruggeman mixture
equation is in agreement with a dilute dispersion

of particles of conductivity X2 in a matrix of con-

ductivity Xi while for values of j2 approaching
unity the mixture equation predicts a conductivity

due to particles of conductivity Xi dispersed in a

matrix of conductivity X2 .

There have not been enough accurate meas-
urements of the thermal conductivity of

well-characterized ceramics to provide adequate
experimental confirmation of any of the above
equations. For well-defined systems (such as

spheres dispersed in a continuous matrix) which
are in good correspondence to the models used in

deriving these equations, measurements of electri-

cal conductivity or dielectric constant have shown

Figure 38. Commuted effective

thermal conductivity of a

mixture.

B Bruggeman mixture expression,

eq (88);

H Maxwell dilute dispersion ex-

pression, eq (74), high-conduc-

tivity phase continuous;

L Maxwell dilute dispersion ex-

pression, eq (74), low-conduc-

tivity phase continuous.
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good agreement with the theoretical predictions of

these equations. Two-phase ceramics, in general,

cannot be readily described in terms of a simple
model such as spheres dispersed in a uniform me-
dium, and hence in many cases the expressions we
have cited will indicate qualitatively the effect of

an additional phase but should not be relied upon
for accurate quantitative predictions.

In the remainder of this section we shall cite a
few examples from the literature to illustrate the
effect of an additional phase on the thermal con-
ductivity of ceramics. The next section, on micro-
structure, is also pertinent here.

In figure 39 we show the data of Kingery [288]

on six samples of the two-phase system magnesia-
forsterite (MgO-Mg2Si04 ) which is reported to

form essentially no solid solution. The solid curve
shown represents the Bruggeman mixture expres-
sion (eq (88)) fitted to the end points. The devia-
tions of the data from the smooth curve could be
due to a combination of several factors:

1. The Bruggeman mixture equation is only
approximately valid.

2. The data may contain some experimental
error.

3. There may be some formation of a solid solu-

tion phase which would have a lower con-
ductivity than would a mixture.

4. Errors may have been introduced by the
procedure Kingery used to correct his data
to correspond to 100 percent dense material.

5. The thermal conductivity of these samples
may have been affected by their (perhaps
differing) microstructures.

Kingery corrected his data to correspond to theo-
retically dense material by dividing the measured

0 .2 .4 .6 .8 1.0

VOLUME FRACTION

Mg
2
Si0

4

Figure 39. Thermal conduc-
tivity of mixtures of magnesia
and forsterite as measured by

Kingery [288].

The solid curve represents the
Bruggeman mixture expression, eq
(88).

values by (1—/), where / is the volume fraction

porosity. As we have seen (e.g., eqs (76 to 80) and
figure 37), porosity would be expected to have a

greater effect than was assumed by Kingery. For
small values of /, it would seem preferable to

divide measured conductivity values by (1— 3//2)

to obtain an estimate of the conductivity of the

dense material.

As an example of the effect of porosity on the
thermal conductivity of magnesia, we show the

data of Moore et al. [317] and of Koenig [436, 437]

in figure 40. The data shown for zero porosity were
obtained on single crystals; the other data points

correspond to polycrystalline specimens of the

porosity shown. Moore, et al. wrote a semi-

empirical expression to relate conductivity and
porosity:

The three solid curves in figure 40 correspond to

different values of 0 in eq (89). For 0=0, eq (89)

reduces to the simple expression \=(1—f)\ c used
by Kingery, among others, for adjusting thermal
conductivity data to correspond to theoretical

density. For 0=0.5, eq (89) is the same as the

Maxwell dilute dispersion expression, eq (79), for

the case where the disperse phase has zero conduc-
tivity. Moore, et al. found that an empirical value

of 0=1 fit the data reasonably well for values of/
up to 0.08 but that at higher porosities the conduc-
tivity decreased more rapidly.

In section 2.2c we saw that the apparent con-

tribution to thermal conductivity due to radiation

through a transparent slab was proportional to

the thickness of the slab in the optically thin

limit where there is negligible absorption or emis-

sion of radiation within the slab. By analogy to

0 MOORE, el al. [317]

X KOENIG [437, 438]

\
\

I I I I
I I I 1

0 .04 .08 .12

Figure 40. Effect of porosity on the

thermal conductivity of MgO at

90 °C (after Moore, et al. [317].
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eq (56), the radiative component to the termal

conductivity of a pore is

\ r=4an2ET3-gL, (90)

where a is the Stefan-Boltzmann constant, n is

the index of refraction of the material filling the

pore, E is the effective emittance of the boundary

of the pore, T is mean temperature, L is the pore
size in the direction of heat flow, and g is a geo-
metrical factor dependent on the pore shape.

Thus the effective thermal conductivity of a pore
is proportional to the size of the pore, all other
factors being equal. This effect is shown in figure

41 where the calculated effect of two different pore
sizes is shown. For pores less than about 0.01 cm
in diameter, the effect of radiation is slight. At
larger pore sizes, however, radiation across the

pores can make a very significant contribution to

the overall effective thermal conductivity of a
porous ceramic, particularly if the emittance is

high.

One other effect of porosity, not previously
discussed, is to decrease the radiative contribution

to heat transfer through diathermanous materials.

Even quite small amounts of porosity will act as

scattering centers thus reducing the photon mean
free path so that the high temperature radiative

component of thermal conductivity is less than
in single crystals or glasses.

In this section we have specifically discussed
only those cases of two-phase media in which
the disperse phase was isometric, e.g., spheres or

cubes. Powers [346] and Meredith and Tobias
[347] also discuss cases in which the disperse

phase is anisometric, e.g., ellipsoids or cylinders.

E=0.9

SOLID

0 400 800 1200 1600 2000

TEMPERATURE, °C

Figure 41. Thermal conductivity of
zirconia sample with 20 -percent

porosity, assuming various emit-
tances (after Kingery [438].

d. Microstructure

The microstructure, or internal structure on a
microscopic scale, of a ceramic material can have
a significant effect on the thermal conductivity
of the material. It is helpful to think of a poly-
crystalline ceramic material as a concentrated
dispersion of grains of conductivity X g in a con-
tinuous matrix (the grain boundary region) of

average conductivity X 6 . In this way, a poly-
crystalline ceramic may be treated as a two-phase
system and the thermal conductivity estimated
using the expressions cited in the previous
section.

We have seen that the two expressions (eqs

(72) and (73)) derived from the model of a cubic
array of cubes disagree seriously with one another
in the limiting case of small volume fractions of

disperse phase. However, for volume fractions of

the disperse phase approaching unity, eqs (72)

and (73) converge to a common expression which,
quite interestingly, is identical to the Maxwell
dilute dispersion expression, eq (74) . The Maxwell
equation can be put in the form

X =3-2(l-X6/Xg)/»

\g 3+(VV-l)/»
(91)

where jb is the volume fraction of the grain
boundary material. If the average grain size is g
and the average boundary thickness is b, the
volume fraction of grain boundary material is

given by

fb=j' b«9- (92)

With this substitution, eq (91) becomes

X=l-2(l-X6Ag)%
Xg l+ (Xg/X6-l)% (93)

If b and g are measured from a photomicrograph
of the ceramic, the approximate effect of grain
boundary size on thermal conductivity may be
calculated using eq (93), if a reasonable estimate
can be made of the conductivity of the grain
boundary region. In figure 42 we show a family of

curves computed from eq (93). As an example of

the use of these curves, if the average grain size

is about 200 times the average boundary thickness
and the grain boundary conductivity is estimated
to be about one-fifth of the conductivity of the
grains, then the effective thermal conductivity
of the polycrystalline material would be about
97 percent of the conductivity of the grain material.

The catch here, of course, is to come up with a
reasonable value for the average conductivity
of the grain boundary material.

As figure 42 illustrates, thermal conductivity
can be very sensitive to both the relative thickness
of the grain boundary material and to the effective

thermal conductivity of the boundary region. If
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1.00

1000

Figure 42. Calculated effect of grain size on the effective

thermal conductivity, X, of polycrystalline materials.

The grains, of average size g in the direction of heat flow, have a thermal
conductivity X, while the grain boundary region, of average thickness 6

,

has an average conductivity Xi,.

there are no pores or microcracks in the grain
boundaries, the thermal conductivity of the
boundary region should be at least as high as
that of glasses since short-range order persists in

the boundary region. The distribution of impuri-
ties, pores, and microcracks in a ceramic can be
very significant. If such imperfections occur in

the grain boundaries they can both lower the
conductivity and increase the width of the grain
boundary region and hence have a much greater
effect than if these same imperfections were
dispersed throughout the grains. If enough were
known about the degree of crystallinity of the
boundary region and the types and amounts of

impurities and imperfections concentrated there,
it should be possible to estimate the thermal
conductivity of the grain boundary region. To
my knowledge, no one has attempted this.

For a reasonably pure ceramic material, the
grain boundary thickness is probably of the order
of 1 nm. At room temperature the thermal con-
ductivity of glasses is about 1 Wm_1K_1 while
that of single crystal ceramics would typically be
less than 100 Wm_1K_1

. Inspection of figure 42
shows that for X 6/Xg=0.01 and g/b=1000 (cor-

responding to an average grain size of 1 nm) the
effective conductivity would be about 91 percent
of that of a single crystal. Evaluation of eq (93)
for an average grain size of 10 /um yields a corre-
sponding value of 99 percent. Thus, at room
temperature and above, one would not expect
grain size to have much effect on the thermal
conductivity of a dense, pure ceramic unless the
grain size were less than 10 /mi. However, if

porosities or impurities are present, grain size

effects might occur even at larger grain sizes.

One case where microstructure can very sig-

nificantly affect thermal conductivity is in ma-

terials that have different coefficients of thermal
expansion in different directions or, in the case of

poly-phase materials, between different phases.

Microstresses in such materials can cause micro-
cracks in the grain boundaries, thus severely

reducing the effective conductivity of the grain

boundary region (see e.g., Kingery [241]).

There has been very little definitive work on
the effect of microstructure on thermal conduc-
tivity. A few pertinent references include [241,

281, 285, 288, 439]. Three references to the general
subject of microstructure are [440-442].

As an example of the effect of microstructure
on the thermal conductivity of a ceramic, we show,
in figure 43, the data of Moore, et al. [317] on
thoria samples prepared by two different processes.

The samples prepared from thoria obtained by
the sol-gel process consisted of large particles of

fairly high density materials suspended in a low
density matrix of fine particles; the samples pre-

pared from thoria obtained by an oxalate-precipi-

tate process contained only small pores located

predominantly within the grains of a homogenous
material. The values of j8 shown on this figure

correspond to eq (89).

The thermal history and the method of fabrica-

tion of a ceramic material can greatly affect the

thermal conductivity since the composition and
structure of the ceramic depend on such factors as

type of pressing or casting used, maximum firing

temperature, time of firing, and, in some cases,

rate of cooling. There has been very little work
directly relating thermal conductivity with method
of fabrication or thermal history. The thermal
conductivity of a ceramic is a function of its present

composition and structure so that we need not
concern ourselves unduly with how that composi-
tion and structure were attained. It is useful, how-
ever, to list some of the factors affecting thermal
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Figure 43. Effect of porosity on the thermal

conductivity (at 75 °C) of thoria samples

having different microstructures (see text)

.

The oxalate thoria samples and one of the sol-gel thoria

samples were sintered in air at 1650 °C while the other

sol-gel thoria sample was sintered in hydrogen at 1750 °C

(after Moore, et al. [317]).
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conductivity which depend on the fabrication and
thermal history:
— quantity and distribution of impurities and
whether impurities are in solution or dis-

persed as additional phases,
—stoichiometry,

—crystallinity,

—quantity and distribution of other phases,
including pores,

—grain size and boundary thickness,
—quantity and distribution of imperfections

(e.g., dislocations, microcracks)

.

The most obvious effect of heat treatment is to
control the final density, and hence porosity, of a
ceramic. Two general references to the sintering
process are [443-444].

In figure 43, we saw the effect of a different
starting material on the thermal conductivity of
thoria. To illustrate the effect of heat treatment,
I have taken several examples from Austin [262].
Figure 44 shows the effect of firing time at 1350 °C
on the thermal conductivity of an initially unfired
magnesia brick in which the porosity decreased
as a result of sintering; the thermal conductivity
increased, asymptotically approaching a value
corresponding to an infinitely long firing time.
Figure 45 shows the effect of firing time at 1350 °C
on the thermal conductivity of an initially unfired

4 0

1.5 1 1 1 1 1 1 1 1 1

0 40 80 120 160

FIRING TIME AT 1350 °C, Hr

Figure 44. Increase with firing period

of the thermal conductivity at 800 °C
of a brick in which the chief reaction

during firing was sintering (after

Austin [262]).

0 40 80 120
FIRING TIME at 1350 °C, Hr

Figure 45. Decrease with firing
period of the thermal conductivity

at 800 °C of a brick in which the

chief reaction during firing was
the removal of combustible or

volatile matter (after Austin
[262]).

1200 1400 1600
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Figure 46. Influence of

maximum temperature

attained during firing on
the thermal conductivity at

800 °C of fire clay, and of

magnesite blocks with dif-

ferent size starting material

(after Austin [262]).

brick in which the porosity increased as a result of

burning off some of the material of the brick; the
thermal conductivity decreased, again asymptot-
ically approaching a value corresponding to an
infinitely long firing time. As a final example of the
effect of heat treatment, figure 46 illustrates the
effect of firing the same material at different

maximum temperatures.

6. Reliability of Existing Data

In general the accuracy of thermal conductivity
values found in the literature is not good. Thermal
conductivity values reported for ceramics are, if

anything, less accurate than values reported for

metals or thermal insulating materials. The
reasons for this unhappy state of affairs are several

:

1. Thermal conductivity is a difficult property
to measure accurately. This is particularly

so for materials having intermediate values
of thermal conductivity (i.e., neither good
conductors nor good insulators)

.

2. Thermal conductivity reference standards are
not readily available nor is the proper use
of such reference standards well known or
understood.

3. Adequate characterization of thermal con-
ductivity samples seems to be the exception

rather than the rule. This is probably partic-

ularly so for ceramic materials where the

porosity is not always reported, the purity

is rarely reported, and the microstructure
almost never reported.

Even a cursory examination of the available

data compilations [e.g. 238-240] covering thermal
conductivity values reveals that the spread in

the existing data on a given material is very large,

often of the order of 20 to 40 percent. Since many
of the samples tested were uncharacterized, it is
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usually difficult, if not impossible, to separate the
effects of sample differences from the effects of

measurement errors. It is quite apparent, however,
that both effects are important. Some of the
examples cited in previous sections of this paper
clearly illustrate the effects of sample differences,

such as purity and porosity, on the thermal conduc-
tivity of a given material. As for measurement
errors, I have seen cases where reputable, and
reasonably experienced, investigators have re-

ported thermal conductivity values (obtained,
for example, by an ASTM Standard Method of

Test) which were in error byfactors of two, three,

or even five.

In the above discussion, I do not mean to

appear to be an alarmist. There are many good
data in the literature. However, to distinguish

between good and bad data is not always easy. If

you wish to find a suitable value for the thermal
conductivity of a particular material, you should
approach the available data on similar materials

cautiously and critically. Was the specimen ade-

quately characterized? Has the investigator uti-

lized the same equipment to measure the thermal
conductivity of reasonably well-defined materials

(having a thermal conductivity similar in magni-
tude to that of the material in question) and, if so,

how do the results compare with those of other
investigators?

In summary, as regards literature values for

thermal conductivity, especially when material

characterization data are lacking, caveat emptor!

7. Measurement Methods

The technique selected for measuring the

thermal conductivity of a particular material

depends upon:
1. The thermal conductivity of the material.

2. The temperature range.

3. The physical nature of the material.

4. The accuracy which is required.

5. The availability of existing equipment.
6. Cost.
7. The experience, skills, knowledge, and prej-

udices of the investigator.

In this section we shall discuss a number of

different methods for measuring thermal conduc-
tivity. The methods being discussed were selected

to illustrate the principles and problems involved

as well as to cover, if only in a somewhat cursory

manner, many of the types of methods in common
use. Where possible, apparatuses used at NBS
were selected as examples since I am more familiar

with the advantages and disadvantages of our
equipment.

In most methods of measuring thermal con-

ductivity, the experimental arrangement is de-

signed to force the flow of heat to be in the direc-

tion of one of the coordinate axes. Most methods
utilize a cylindrical specimen geometry and force

the heat flow to be in either the longitudinal or

the radial direction. For anisotropic materials, it

is usually preferable to have the heat flow be along

one of the principal crystallographic axes.

7.1. Longitudinal Heat Flow

a. Mathematical Development

The total longitudinal heat flow through a

specimen of constant cross sectional area is

Q=~XA Vz'
(94)

where v is the temperature relative to an arbitrary

datum plane, and where it is to be understood

that X now refers to the thermal conductivity in

the 2-direction. If the temperatures are inde-

pendent of time, if the specimen is properly

insulated or guarded so that there is no trans-

verse gain or loss of heat, and hence Q is a cons-

tant, if there is no heat generation within the

specimen itself, and if, further, the specimen is

homogeneous in the 2-direction so that X does

not depend on z, then (94) is easily integrated

to yield

«=fj>*- (95)

where Vi and v2 are the values of v at positions

z=l and 2=0, respectively.

Equation (95) is valid under the following

restrictions

:

1. The specimen is opaque to thermal radiation.

2. The specimen is homogeneous in the direction

of heat flow.

3. There is no internal heat production (or

absorption).

4. All temperatures in the system are inde-

pendent of time.

5. The cross-sectional area is constant at all

2-positions between z=0 and z=l.

6. The planes 2=0 and z=l are isothermal

surfaces.

7. There are no transverse heat gains or losses.

Immediately following eq (94), v was defined as

the temperature above an arbitrary datum plane.

For reasons which will shortly become obvious,

it is convenient to designate this datum plane as

T0 so that v=T—T0 , where T is the temperature

on a fixed scale (e.g., T is expressed on the Celsius

or Fahrenheit scale). The temperatures at z=l and

2=0 are T1
= T0+v1

and T2=T0+v2 ,
respectively.

In order to use eq (95), it is convenient to

assume a particular form for the temperature

dependence of the thermal conductivity so that

the integration can be carried out. Three cases

will suffice:

A. The thermal conductivity is independent of

temperature so that

X=X0 . 06)
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In this case eq (95) becomes, after integra-

tion and rearrangement,

Ql

A{T2-T,)
(97)

B. The thermal conductivity is a linear function
of temperature, so that

X=Xo(l+j9p). (98)

Substitution of eq (98) into eq (95) yields

(2=XoA^=^[l+|(2,

1+r2-2r0)]- (99)

If we define T0 as

To=^±^2
> (100)

then the term in eq (99) involving 0, the
temperature coefficient of thermal conduc-
tivity, vanishes so that eq (99) reduces
exactly to eq (97). For a material having a
thermal conductivity which is a linear func-

tion of temperature, the thermal conduc-
tivity, X 0 ,

given by eq (97) corresponds to

that at the temperature, T0 ,
given by (100),

C. For many crystalline dielectric solids, the
thermal resistivity, or reciprocal of the
thermal conductivity, is a linear function
of temperature over a considerable temper-
ature range so that

l+7»
(101)

Substitution of eq (101) into eq (95) yields

Q=\0A
T2-Tx

I l_7(»2-

In the present case, the coefficient, y, is not
so amenable to elimination by choice of a
particular reference temperature as was the
coefficient, /J, in eq (99). If we retain the
definition for T0 given by eq (100), then eq
(102) becomes

Q=XoA
[^..g,)

arctanh

(103)

+!(M)V..} (,04,

For sufficiently small values of y{T2— T
t ), eq (104)

reduces to eq (97). Consider a case where 7=.003

°C-\ a rather high value; if (Ta-T^lOO °C,
the second term in the square brackets in eq (104)
represents a correction of 0.75 percent; if {T2—Ti)
= 300 °C, this term represents a correction of

almost 7 percent.

In computing thermal conductivity values for

a material whose thermal conductivity is expected
to have a temperature dependence such as that
in eq (101), one may use eq (100) and eq (97) to

compute a mean temperature and the approximate
thermal conductivity at that temperature. The
first approximations to the thermal conductivity
thus obtained for several tests at different mean
temperatures can be used to compute values of

the coefficient, y which can then be used in eq
(103) or (104) to obtain more refined values for

thermal conductivity. The resultant values of X 0

can be used to obtain better values of y etc.

The convergence is quite rapid in most practical

cases, so that only one or two iterations will

normally be required.

If eq (97) is used to compute thermal conduc-
tivity, the maximum fractional error in the
resultant thermal conductivity value is given by

AXr

X0

+ +

+
\\dTj,

I

AT0

A(r2-ro
T2-Tx

+
a<2

Q

+
errors due to failure to meet
requirements of eq (97)

(105)

where
|

AA/A\ is the absolute value of the fractional

error in the area, etc.; the term in AT0 is the frac-

tional error in the thermal conductivity due to

the error in the mean temperature; the last term
represents errors due to test conditions departing
from the assumptions made in deriving eq (97),

e.g. temperatures varying with time.

b. Experimental Techniques

The first concern in most techniques for meas-
uring thermal conductivity is to force the heat
flow to be unidirectional, which, for purposes of

the present discussion, means longitudinal. Since
heat flow is proportional to a geometric factor, a

thermal conductivity, and a temperature differ-

ence, the direction of heat flow must be controlled

by controlling one or more of these variables. 16

The experimenter's freedom in adjusting these

parameters is constrained, sometimes severely,

by the often-conflicting requirements of being
able to accurately measure total heat flow, area,

and temperature differences. Very practical con-

siderations, such as available specimen size,

frequently constitute severe constraints on appa-
ratus design.

16 This statement is strictly true only for conductive heat transfer. In some
apparatus, transverse heat flows would be by radiation or, rarely, convection.
If these transverse heat exchanges are small, as is desired, they usually can be
represented as being proportional to an "effective" thermal conductivity.
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It is not possible to directly measure the heat
flow in a specimen; one must, rather, measure
the heat flow into a specimen or out of a specimen.
This necessitates that not only must transverse
heat losses or gains of the specimen be prevented
or accounted for but, further, there must be no
unaccounted-for losses or gains between the speci-

men and the location at which the heat flow is

measured. The most common method of measuring
heat flow into a thermal conductivity specimen
is to measure the electrical power dissipated in

a heater at the hotter end of the specimen. The
heat flow out of a specimen is sometimes measured
by a "flow calorimeter," with which one observes
the temperature rise and flow rate in a circulating

liquid of known heat capacity, or by a "boil-off

calorimeter," with which one observes the boil-off

rate of a fluid of known heat of vaporization.
Another common method of measuring the heat
flow into or out of the specimen is by use of a
"heat-flow meter," with which one observes the
temperature drop across a known thermal con-
ductance. As most commonly employed, the heat-
flow meter is a solid material of known thermal
conductivity placed in series with the specimen
so as to, hopefully, carry the same heat current.

Similarly, it is not possible to directly measure
the temperature gradient in a specimen; one must,
rather, measure the temperature difference between
two or more locations and then compute the
gradient. Consider a specimen held between a heat
source and a heat sink. If the total thermal
resistance of the specimen is large compared with
the thermal contact resistances between the
source and the specimen and between the specimen
and the sink, then the temperature drop across

the specimen can be taken as equal to the tempera-
ture of the source minus the temperature of the
sink and it is not necessary to install temperature
sensors in the specimen. However, if the specimen
has a low thermal resistance such that thermal
contact resistances are not negligible, it is neces-

sary either to correct for these contact resistances

or, what is usually done, to install temperature
sensors in the specimen.

The apparatus illustrated in figure 47 has re-

cently been used at NBS to measure the thermal
conductivity of a specimen of microcrystalline

glass over the temperature range 100 to 330 K.
The thermal conductivity of the specimen was
measured by a steady-state longitudinal heat
flow method in which the thermal conductivity
was computed from the measured power input to

a heater at one end of the specimen, the measured
longitudinal temperature distribution along the
sample, the measured thermocouple separation,

and the cross-sectional area.

The specimen (A) was fastened to a heavy
copper "cup" (C) which was thermally connected
by three brass legs (E) to a liquid-nitrogen-cooled
copper heat sink (F). A heater (I) wound around
the copper cup (C) was used, in conjunction with
a thermopile and controller, to maintain the

Figure 47. An apparatus utiliz-

ing longitudinal heat flow

to measure thermal conduc-

tivity over the temperature

range 100 to 830 K. The
components are identified in

the text.

copper cup at any temperature from about 90 to

330 K.
A copper block (B) with an internal heater

winding provided the measured heat flow down
the specimen. The specimen was held between
thin copper caps (shown in black) fastened to the

adjustable-temperature cup (C) and the heater

block (B). In order to achieve good thermal con-

tact, a eutectic alloy of gallium and indium (freez-

ing point 15.7 °C) was used in the interfaces

between the specimen and the thin copper caps.

This assembly was pressed together by means of

a loading screw, spring, and stainless steel spider,

as shown at the top of figure 47. The spring was
necessary to accommodate differential thermal

expansion; it also provided considerable resistance

to heat loss from the heater block.

A copper guard cap (H) and radiation shields

(G) surrounded the specimen and heater block.

Using the heater (J) on the guard cap in con-

junction with a thermopile and controller, the

temperature of the guard cap (H) was automatic-

ally controlled to closely match the temperature

of the heater block (B) . The space between the

specimen and the guard cap and radiation shield

was packed with glass wool to minimize radiative

heat losses. The entire apparatus was contained

in a bell jar which was evacuated to less than
10~ 5 torr to further reduce losses from the

specimen and the heater block.

Current leads from the specimen heater were

thermally grounded to both the heater block

and the guard cap so as to minimize conduction

of heat along the leads. Because the temperature

of the guard cap matched quite closely that of the

heater block, the current leads to the specimen

heater could be made large enough for heat

generation in these leads to be negligible.
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The temperature distribution along the speci-

men was measured by three butt-welded thermo-
couples pressed into transverse slits in the convex
surface of the specimen. Additional thermo-
couples, designated by X in figure 47, were used
to monitor other temperatures in the apparatus.
All thermocouples were fabricated from calibrated
0.013 cm diam copper and constantan wire.

Care was taken to thermally temper all thermo-
couple leads by wrapping them around the speci-

men in an isothermal region for several centimeters
from the junctions. All thermocouple leads were
wrapped around and cemented to a copper
tempering block (D) to prevent heat from being
conducted to the measuring junctions. The
thermocouple leads passed through epoxy vacuum
seals to individual ice junctions from which copper
wires lead to the emf-measuring circuitry.

Power to the specimen heater was provided
by a regulated dc power supply operating in a
constant voltage mode. The power input was
determined by measuring the current through the
heater using a standard resistor and the voltage
drop across potential taps to the heater using
a high-resistance voltbox. Voltages from the
standard resistor and the voltbox were read to

five significant figures using a precision potenti-
ometer. The emfs of the specimen thermocouples
were read to 0.1 uV. The emfs of other thermo-
couples were read to 1 mV.
Each data point was obtained from two tests

at essentially the same mean temperature but
with different power inputs to the specimen
heater in order to minimize systematic errors,

especially in temperature measurement.
The thermal equilibriums obtained were such

that the specimen temperatures did not drift

more than 0.01 K over a half-hour period.

Several tests were run with a rather large
temperature difference between the specimen
heater block and the guard cap in order to

evaluate the thermal conductance between these
regions. Most of this conductance was due to

the screw-spring-spider arrangement used to

press the heater against the specimen. Using
the thermal conductance values thus obtained,
all tests were corrected for heat exchanges due
to small temperature differences between the
specimen heater block and the guard can.

The thermal conductivity values obtained using
this apparatus exhibited an estimated standard
deviation from a smooth curve of less than one-
half of 1 percent. The uncertainty in the smoothed
thermal conductivity values was believed to be
not more than 2 percent
The apparatus just described utilizes several

features which are not necessary at lower tem-
peratures or in making measurements on materials

having higher thermal conductivity values than
did the microcrystalline glass (X =5Wm_1°C_1

).

Further comments are also in order for several

other features of the apparatus.

If the heater were wound directly onto the
specimen or if the heater block could be clamped
or soldered to the specimen, the heater hold-
down assembly shown in figure 47 would not be
necessary. A procedure used by some investigators

is to place the heater between two similar speci-

mens as shown in figure 48. We have recently
fabricated an apparatus of this general design
for use in measurements on glass samples.
The gallium-indium alloy between the heater

and the specimen and between the specimen and
the adjustable-temperature cup in the apparatus
shown in figure 47 was for the purpose of provid-
ing uniform thermal contact and hence promoting
plane isotherms in the specimen. If the specimen
is longer, relative to its diameter, so that all

thermocouples can be placed one to two specimen
diameters from both the heat source and the heat
sink, the method of introducing and extracting
heat from the specimen is not critical since these

longer relative lengths allow plane isotherms to

become established near the thermocouple loca-

tions even if the isotherms are distorted near the
source or sink.

At lower temperatures, or in the case of highly
conductive specimens, it is not necessary to sur-

round the specimen and heater with thermal in-

sulation—a good vacuum will suffice to preclude
unwanted heat exchanges. Similarly, in some
applications, particularly below liquid nitrogen
temperatures, guard caps or shields are not neces-

sary, it being sufficient to surround the specimen
and heater with an essentially isothermal environ-

ment not too different in temperature from the
temperatures in the specimen. In our application

of the apparatus shown in figure 47, it was neces-

sary to use a guard cap and shield, to install

insulation around the specimen, and to evacuate
the insulation (to reduce its thermal conductivity)

in order to render extraneous heat exchanges
essentially negligible. At higher temperatures, as

we shall see, it is not always possible to reduce
extraneous heat exchanges so as to be negligible

and it becomes necessary to evaluate these ex-

changes and make corrections.

-HEAT SINK

SPECIMEN

THERMOCOUPLE

HEATER

|—GUARD HEATER

GUARD SHIELD

Figtjbe 48. An apparatus to measure

thermal conductivity by longitudinal

heat flow through two glass specimens

with a heater sandwiched between

them.
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The method of controlling the temperature of

the heat sink varies considerably among different

investigators. Most apparatuses designed for oper-
ation below room temperature are immersed in a
fluid bath (e.g., liquid nitrogen, liquid helium)
rather than having a cryogenic fluid circulated
through the apparatus. I feel that the ease-of-

accessibility to the apparatus shown in figure 47
more than offsets the slightly higher costs due to

increased liquid nitrogen consumption. Many in-

vestigators control the temperature of a cryogenic
bath by using a pump to reduce the vapor pressure
above the bath. The temperature of the bath is

determined from the heat balance condition that
at equilibrium the rate of heat flux into the bath
equals the latent heat of the fluid times the mass
rate of exhaust. The minimum temperature avail-

able for a given fluid depends on the pumping
speed and the magnitude of the heat input. The
temperature of the cryogenic fluid can be raised

by decreasing the speed of the pump, which usually
is not practical, by increasing the pressure drop
between bath and pump, or by increasing the heat
flow into the bath. The general problems of pro-
viding a controlled-temperature heat sink at cryo-
genic temperatures are discussed in, for example,
the very useful book by White [445].

The apparatus shown in figure 47 utilized copper
versus constantan thermocouples fabricated from
.013 cm diam wire. The cross-sectional area of

one wire was only 1/40,000 of the area of the
specimen. However, the thermal conductivity of

copper is about 100 times that of the micro-
crystalline glass specimen. Thus the thermal con-
ductance per unit length of one thermocouple wire
was about 0.25 percent of that of the specimen.
For the accuracy desired, this high a thermal con-
ductance for thermocouple wires is barely toler-

able. The options are to use finer wire, which is

very delicate to handle; to use an alloy in each
leg of the thermocouple so as to have a lower
thermal conductivity, with perhaps some sacrifice

in the homogeneity of the wire; or to lead the
thermocouple wires radially and attach each of

them thermally to the guard shield at a point
which is at the same temperature as the thermo-
couple junction on the specimen, a not-too-easy
procedure in many apparatuses.
The apparatus shown in figure 49 was used by

Ditmars and Ginnings [446] to measure the ther-

mal conductivity of beryllium oxide over the
temperature range 40 to 750 °C. This apparatus
is similar in principle to, but different in detail

from, the apparatus (figure 47) previously dis-

cussed. Measured electrical heat, introduced in

the sample heater at the top of sample, flowed
down the sample and its "adapter" to a heat sink.

The sample heater consisted of six small helices of

fine wire located in holes in the top of the sample.
Anhydrous boric oxide was used to give good
thermal contact between the adapter and the sink.

The sink was cooled with either water or air, de-
pending on the temperature range, and was
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Figure 49. An apparatus utilizing longitudinal heat

flow to measure theimal conductivity of beryllium

oxide over the temperature range Jfi to 750 °C
(after Ditmars and Ginnings [446)]-

equipped with a heater and a thermocouple so

that it could be automatically kept at a constant
temperature.
The temperatures along the sample were

measured with three thermocouples (0.013 cm
diam platinum-rhodium versus platinum) having
reference junctions at 0 °C and principal junctions

on the sample at the three levels shown in figure

49. In addition, a differential thermocouple was
used to measure the temperature difference be-

tween the upper and lower levels on the sample.
All of the thermocouples on the samples were made
with junctions peened into small holes (about 0.06

cm in diameter and depth) in the cylindrical
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surface of the sample. In order that the temper-
ature difference measured on the sample would
correspond to the electric heat put into the top of
the sample, precautions were taken to minimize
radial heat loss from the sample. For this purpose
the sample was surrounded by a metal guard tube
provided with thermocouples. The top of the
guard tube was automatically controlled at the
desired temperature using the guard heater. The
top portion (tempering ring) of the guard tube was
made of thick nickel to which the electrical leads
to the sample were thermally connected, so that
it served as a tempering region for bringing the
leads to the temperature of the top of the sample,
and thus to reduce heat conduction along them. 17

A thermal shield and heater, placed above the
sample and tempering ring, also served for this
purpose and to prevent heat transfer upward
through supports and insulation.
The whole assembly, supported by rods ex-

tending down to the bottom of the guard, was
filled with fine alumina powder for insulation and
enclosed in a thin metal tube which served to hold
the powder. The apparatus, which was filled with
argon during operation, was maintained at the
chosen temperature by the surrounding furnace.
Two basic types of experiments were performed

for each measurement of thermal conductivity. In
the first type, which Ditmars and Ginnings called
a conductivity experiment, the furnace temper-
ature was controlled to the desired value, a known
constant electric power was put into the sample
heater, the temperatures of the guard and shield
were adjusted to match those on the sample as
closely as possible, and the sink temperature was
adjusted to a constant value. In the second type
of experiment, which Ditmars and Ginnings
called a calibration experiment, no power was put
into the sample heater but in other ways the
experimental procedure was similar to that in the
first type of experiment. The purpose of this
experiment was to correct for errors that did not
depend on the power transmitted through the
sample. Errors of this type are those due to
differences in thermocouples, and those resulting
from unknown heat leaks, which presumably were
the same in both types of experiments.
Ditmars and Ginnings estimated that their

results on beryllia were in error by less than about
3 percent. Laubitz [447] feels this possible in-
accuracy could be reduced with only minor
modifications.

Laubitz [447] has carefully analyzed extraneous
heat flows in thermal conductivity measurement
apparatus utilizing longitudinal heat flow methods
such as those discussed to this point in this
section. His chapter should be required reading
for anyone contemplating building an apparatus
of this nature. Laubitz and his co-workers at
the National Research Council in Canada (see

references given in [447]) and our group at the

National Bureau of Standards (e.g., see Flynn
and O'Hagan [243]) are among the few workers
who have undertaken detailed mathematical
analyses of this type of apparatus in order to

evaluate extraneous heat flows. As Laubitz' recent

work [447] clearly illustrates, most apparatus
would benefit enormously from such an analysis.

Other useful survey papers pertinent to the
type of apparatus we have been discussing

include White [445, 448], Drabble and Goldsmid
[14], and Mikryukov [449]. The discussion of

error sources by Bauerle [450] is also very helpful.

The apparatuses described so far can be used
when there is an available insulation, suitable

for use between the specimen and guard, which
has a thermal conductivity value much lower
than that of the specimen. However, if the

specimen has a low thermal conductivity, such
as is found for example in very porous materials

(fibrous or granular materials, insulating fire-

brick), there may be no insulation which has a

significantly lower thermal conductivity. Then
the specimen is often used as its own insulation.

The first example of an apparatus of this type
which we shall discuss is the guarded hot plate.

Since this is an ASTM Standard Method of Test,

which is adequately described elsewhere [451],

I shall only briefly describe the apparatus in

order to illustrate the concepts involved.

As shown in figure 50, a guarded hot plate

apparatus consists of a heated metering plate,

which may be square or circular, separated by
a narrow insulating gap from a surrounding
coplanar guard plate. Similar specimens are

placed on either side of the hot plate; the outside

surfaces of the specimens are held between
constant temperature cold plates. In operation,

the electrical power input to the guard plate is

adjusted, usually automatically, so that a mul-

GUARD PLATE

GUARD GAP

METER PLATE

SPECIMENS

COLD PLATES

" Laubitz, who recently analyzed this apparatus, [447] feels that the temper-
ing ring caused unwanted heat exchanges between the sample and the guard
and hence should not be used.

Figure 50. A guarded hot

plate apparatus for meas-

uring the thermal conduc-

tivity of relatively good

insulating materials using

ASTM Standard Method

of Test C177.
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tiple-junction differential thermocouple spanning
the guard gap has zero output, indicating that
there is no temperature difference across the
guard gap. Thus the electrically generated heat
input to the metering plate flows perpendicularly
from both sides of the plate through the specimens
to the cold plates. The average thermal con-
ductivity of the two specimens is determined
from the measured power to the metering plate,
the temperature drops across the specimens, and
the geometry.

In using a guarded hot plate, measurement
errors can arise from imperfect guarding, inac-
curate determination of temperature differences,
or failure to achieve thermal equilibrium, as
well as from possible errors in reading instruments
or measuring specimen thickness or in thermo-
couple calibrations.

While it is relatively straightforward to ac-
curately measure the electrical power dissipated
in the metering plate heater, it is not at all easy
to ascertain that all of this heat is going where it

is supposed to. The hot plate must be well designed
in order that there be no significant heat ex-
change between the metering and guard plates.
The thermal resistance across the guard gap should
be large, the differential thermocouple junctions
must be installed so as to appropriately sample
the temperature on either side of the gap, and
the power to the guard heater must be controlled
so as to maintain a sufficiently small temperature
difference across the guard gap. If the conductivity
of the specimen is high, a corresponding gap may
be cut part way or all the way through the speci-
mens. If the guard is too small, or its surfaces
are not isothermal, the guarding will not be ade-
quate. In order to ensure adequate guarding, it

is common to use edge insulation around the
periphery of the guard plate and specimens and/
or to effectively increase the area of the guard
plate by using a second (outer) guard plate or by
controlling the ambient temperature around the
apparatus to a value near the mean temperature
of the specimens.

If the thermal resistance of the specimen is

sufficiently high, determination of the temperature
gradient is easy. The temperature drops between
the metering plate and the cold plates are measured
using thermocouples (or other temperature-meas-
uring devices) embedded in the metering and
cold plates. Contact resistances are neglected
and the gradients are computed from these
temperature drops and the specimen thicknesses
(which preferably should be the same and should
be measured under the conditions of testing).
If thermal contact resistances may not be ne-
glected, the determination of temperature gradients
becomes more difficult. Thermocouples may be
installed in the specimen in such a manner as not
to disturb the uniform flow of heat. It is fre-
quently advisable, as in the case of rigid specimens,
to install a thin resilient pad (rubber, asbestos
paper, etc.) on either side of each specimen

(i.e., cold plate, resilient pad, specimen, re-

silient pad, hot plate, resilient pad, etc.). The
philosophy here is that if you cannot get good
contacts it is better to have uniformly poor
ones so that heat flow through the specimens will

be uniform. One technique which we have found
very useful is, using the thermocouples in the hot
plate and cold plates, to measure the effective

thermal resistance of the pad-specimen-pad as-

sembly and then, separately, the resistance of
the resilient pads without the specimens. By
subtraction, the resistance of the specimen is

found, providing the contact resistance between
the specimen and resilient pads is negligible. In
this manner we have obtained good data on, for

example, 2.5-cm thick glass specimens using
0.3-cm gum rubber pads.

If contact resistance problems can be handled,
a well-designed guarded hot plate will yield results

having uncertainties less than 2 percent near room
temperature with the uncertainties increasing at

both lower and higher temperature. ASTM Com-
mittee C-16 is currently studying the problems
involved in using a guarded hot plate apparatus
to make thermal conductivity measurements at

low and high temperatures.
Because of the difficulties of guarding, and be-

cause of contact resistance problems, a guarded
hot plate is usually not appropriate for measure-
ments on materials having thermal conductivities

much higher than that of, say, fused silica.

Useful references to the use of the guarded hot
plate, as well as to its associated possible errors,

include [452-455].

In all of the thermal conductivity measurement
methods we have discussed thus far, the heat flow

through the sample has been determined by meas-
uring the electrical power dissipated in a heater.

We shall now discuss methods in which the heat
flow is determined by other means.

In ASTM Standard Method of Test C201-47,
the heat flow through a ceramic specimen, such
as a firebrick, is determined by measuring the
temperature rise in a stream of water passing at

a known rate through the meter section of a

guarded water-flow calorimeter. Typically the cal-

orimeter is double-guarded and the water-flow-

rate through each guard must be carefully adjusted

if the guarding is to be effective. This test method
is adequately described elsewhere [456] so we will

not discuss it further here.

We have been using a somewhat similar test

method at NBS intermittently for about 20 years.

The NBS guarded steam calorimeter apparatus,

which we believe to be simpler and more expe-

ditious in use that a water flow calorimeter appa-
ratus, has not previously been described in the

open literature.

Figure 51 shows the arrangement of the as-

sembled apparatus, which consists of a high tem-
perature furnace, the disk-shaped 15.2-cm diam
specimen, and the steam calorimeter. The speci-

men is supported slightly above a circular silicon
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SILICON
CARBIDE
SLAB

FIRE BRICK (I200°C)

Figure 51. The NBS steam calorimeter apparatus for

measuring the thermal conductivity of refractories.

carbide plate heated by the furnace, and is heated
by transfer of heat across the space between them.
At high temperatures, the heat transfer is chiefly

by radiation, with a relatively small temperature
drop. Heat passes through the specimen, and is

transferred from its upper surface, by radiation

and conduction, across an air space, to the under-
side of the steam calorimeter, which is supported
above it. The use of thin air spaces on both sides

of the specimen is for the purpose of avoiding,

or reducing, problems of thermal contact with
solid surfaces that arise when a specimen is warped
or distorted by expansions resulting from the tem-
perature gradient established in it.

The heat flow through the specimen is deter-

mined by means of the steam calorimeter, the
metering area of which is the 7.6-cm diam area
covered by the metering chamber bottom. The
guard chamber of the calorimeter, which operates
at the same temperature, acts to protect the
metering area of the specimen from edge effects.

The temperature drop through the specimen is

measured by means of thermocouples imbedded in

its surfaces, as indicated. The relatively high
thermal conductivity of the silicon carbide plate

promotes substantial uniformity of temperature at

its top surface. To promote uniformity of radiant
heat emission and absorptance, the surface of the
calorimeter bottom, and either one or both sur-

faces of the specimen, may be painted with a high
temperature paint of high emittance.
The high temperature furnace has a fixed cyl-

indrical base, with a removable annulus resting on
it which surrounds the specimen and the calorim^
eter bottom. The base and annulus are fabricated

from 1200 °C insulating firebrick, but each has an

inner liner capable of withstanding 1600 °C. The
heat source consists of six silicon carbide electrical

resistance elements located in the circular chamber
in the furnace base. The chamber opening is

covered by a 1-cm thick by 18.4-cm diam plate of

self-bonded silicon carbide, capable of withstanding

1600 °C in an oxidizing atmosphere. A heater

ring, not shown in figure 50, surrounding the speci-

men is used to minimize radial heat flow.

A detailed illustration of the steam calorimeter

is given in figure 52. Under test conditions, the

heat entering the calorimeter base boils the water

in both the metering chamber (A) and guard
chamber (B). Steam from the metering chamber
rises through the stack (H) from which it passes

to the condenser (I) through a connecting tube

with a 10 deg downward slope. The condensate is

collected in the flask (F). By determining the

time required to fill the known volume of the flask

between index marks with condensate, it is possible

to calculate the heat flow rate represented by the

steam condensed. The guard steam passes up on
both sides of the radiation shield (G), through

the orifice (K), and into the condenser (L). The
condensate drains from the base of the condenser

back to the guard chamber through the external

return tube (E).

u

F

Figure 52. Detailed schematic of the

NBS steam calorimeter. The com-

ponents are identified in the text.
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The wetted surfaces of the 0.6-cm thick copper
bottoms are grossly roughened by means of 0.3-cm
cubes of brass distributed over and soldered to the
surfaces, to aid boiling. The diameter of the
metering chamber bottom is 7.6 cm; the gap to the
inner diameter of the guard chamber bottom
averages 0.02 cm.
Both steam condensers are operated at atmos-

pheric pressure, and boiling in the chambers
occurs at substantially this pressure. However,
to preclude the possibility of condensation of the
metering chamber steam before it reaches the
downward sloping tube to the condenser, the
temperature of the guard chamber steam is auto-
matically kept about 0.1 °C higher than that of

the metering chamber steam by means of the
small pressure drop occurring across the orifice

(K), which can be changed in size. Metallic con-
nection of the sloping thin stainless steel tube to

the guard chamber wall, and to the brass radia-

tion shield (G), also tends to prevent cooling of

the stack (H) by the condenser (I).

An auxiliary electrical heater (C) is located on
the outer wall of the guard chamber, for use when
necessary in tests at very low flux rates to assure

an adequate flow of steam through the orifice

(K). Two thermocouples are installed in the bot-
toms of the metering and guard chambers for

monitoring purposes.

In preparation for tests, the two chambers are

filled with an excess of water, which is then
withdrawn by suction to the level of the ends of

the filler tubes (J, D), which are self-trapping.

The condensate collected from the flask (F) is

returned manually to the metering chamber
through the filler tube (J). Flasks of a few differ-

ent volumetric capacities are used, depending on
the rate of condensate collection. The volumes
between index marks are determined to within
0.01 cm3

.

Since the water in both the guard and meter
sections boils at nearly the same temperature,
the guard section temperature automatically
matches that of the meter section without the

need for critical adjustments such as are required
in using ASTM C201.

We intend to make several changes in the steam
calorimeter apparatus in order to improve the

accuracy and render it more convenient in opera-

tion. These changes include: (a) putting a second
guard, of about 30-cm diam, around the existing

guard to extend the 100 °C isothermal surface

and thus improve the guarding action, (b) build-

ing a new furnace, of lighter construction so as to

attain equilibrium more rapidly, with a 30-cm
diam hot plate, and (c) investigating the possible

advantages of changing to an all-glass condenser
for the meter section. Even without these modi-
fications, the apparatus is very convenient in

operation and yields thermal conductivity values
estimated to be uncertain by not more than, say,

3 or 4 percent at specimen hot-side temperatures
of 1200 °C or higher.

The last longitudinal heat flow method we
shall discuss is the type of comparative method
which is variously known as a comparator, cut-
bar method, or divided-rod method. Ideally, in

this method the same heat flow is caused to pass
through both the specimen, of unknown thermal
conductivity, and a reference specimen, of known
thermal conductivity, which acts as a heat flow
meter and hereafter will be referred to as the
"meter bar". For constant properties, the heat
flow is given by

QJhAAT1=\mAj,Tm
j (1Q6)

' s I'm

where A, AT, and / refer to cross-sectional area,

temperature difference, and length, respectively,

the subscript s designates the specimen, and m
designates the meter bar. The thermal conduc-
tivity of the specimen, under these ideal condi-
tions, is given by

Xs=x-^B^" (io7)

As normally used with ceramic materials, the

cut-bar method is subject to essentially the same
uncertainties in determining temperature gradient
and area as would be present in other types of

longitudinal heat flow methods. However, we are

involved with two areas, two lengths, and two
temperature differences, so in principle, it would
be possible for the total error from these sources

to be roughly twice as large. (In practice, certain

systematic errors would have the same sign in

both the specimen and the meter bar and hence
would partially cancel.) In addition, one must
add the uncertainty in the thermal conductivity
of the "known" meter bar. The additional un-
certainties introduced via \m,

Am ,
lm , and ATm

are almost invariably larger than the error would
have been if the heat flow were determined by
measuring the electrical power dissipated in a

heater.

Probably the largest uncertainty in comparative
methods arises from failure to meet the basic

underlying requirements of eqs (106) and (107),

namely that the heat flow must be the same
in the specimen and the meter bar. In the some-
what vain hope of ascertaining compliance with
this requirement, many investigators have sand-

wiched their specimen between two meter bars

in a configuration such as that shown in figure 53.

The lower meter bar supposedly measures the

heat flow into the specimen while the upper meter

bar hopefully measures the heat flow out of the

specimen. Agreement between the readings ob-

tained with the upper and lower meter bars is a

necessary, but not sufficient, condition for the

heat flow through the specimen to be the same as

that through the meter bars. The heat-flow

indications provided by the two meter bars will
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Figure 53. A comparative, or "cut-bar"

apparatus in which the heat flow
through the unknown specimen is

determined from the temperature gradi-

ents and thermal conductivities of the

"meter-bars" on either side of the

specimen.

<r
UJ
>

tr o
-J LU
UJ D_

LU

-L/2

METER SPECIMEN METER

1

\ \
1 \ \\ \

\ \
\\

1

1

1

1

1

1

1

1

1

1

1

1

V !

1

\\ \

\\ \

1

L/2

POSITION

agree provided the following rather general
conditions are met:

(a) The apparatus is geometrically symmetrical
about its midplane.

(b) The two meter bars have the same thermal
conductivity.

(c) The temperature distribution along the
inner surface of the guard cylinder and
along the surfaces which bound the outer
faces of the meter bars (e.g., the planes
2=±Z/2 and the cylinder r=b shown in

figure 53) possesses odd symmetry with
respect to the temperatures at the midplane
of the apparatus. By this, I mean that
[T (r, 6, z) + T (r, d, -z)]/2=T (r, 6, 0),

where T is temperature and r, 6, and z are

cylindrical coordinates (z being measured
relative to the midplane of the apparatus),
for all points on these bounding surfaces.

To illustrate the above, let us suppose that the
apparatus shown in figure 53 meets conditions
(a) and (b). We further suppose that the planes
z=±L/2 are each isothermal such that condition
(c) is satisfied for these two planes. All of these
suppositions are very reasonable and, in fact, are
goals which investigators often strive for in de-
signing this type of apparatus. In figure 54 we
show three possible temperature distributions

that might exist along the inner surface of the
guard cylinder, r=b. The solid curve represents
"matched guarding", where the temperature
distribution along the guard is the same as that
which would be along the meter bar/specimen/
meter bar assembly if the heat flow through this

assembly were constant (which is required if

eq (106) is to be valid). The dashed curve rep-

resents "linear guarding", where the guard
temperature varies linearly with longitudinal

position from end to end. The hatched curve
represents "isothermal guarding", where the
guard is isothermal at the specimen mean temp-
erature except very near the ends where it changes
rapidly to match the temperatures of the iso-

Figtjre 54. Three possible types of
guard temperature distribution which
will result in agreement between the

heat-flow indications of the two

meter bars even though the heat

flow through the specimen may be

different.

thermal surfaces (z=±L/2) which bound the

outer faces of the meter bars. All three of these

guarding conditions (plus an infinite number of

others) satisfy condition (c) given above so that

the two meter bars will indicate the same heat
flow. However, the heat flowing in the specimen
can differ considerably from the heat flow in-

dicated by the meter bars.

In some unpublished work that H. E. Robinson
and I carried out in this laboratory in 1961 and
1962, it was shown that the fractional power
change, from that power which would flow through
the meter bars and specimen if they were perfectly

insulated, can be represented quite closely, for

matched or linear guarding, by

e(2)=\i
(i~).JV(g) (108)

where X s ,
Xm and X 4

are the thermal conductivities

of the specimen, meter bar, and insulation, respec-

tively, and F(z) is a geometrical factor which de-

pends on the type of guarding. Figure 55 shows
F(z) for the case of matched guarding in the ap-

paratus shown in figure 53. It is informative to

evaluate eq (108) for a not-too-unreasonable set of

values for the thermal conductivities. Assume we
wish to use dense aluminum oxide meter bars

(X=36 Wmr 1 °C_1
) to measure the thermal con-

ductivity of a borosilicate glass sample (X= 1.1

Wm"1 °C_1
) near room temperature. As insulation,

we use fine aluminum oxide powder in air (\= 0.1

Wm-1 °C~ 1 corresponds to very low density

powder). Substitution of these values into eq

(108) yields #(2) =0.09 F(z); at the midplane of

the apparatus, F=2.0 so that #(0)=0.18, or in
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Figure 55. The geometrical factor, F(z), to be used in

eg. (108) for the case of matched guarding in the

cut-bar apparatus shown in figure 53.

other words, the heat flow through the midplane
of the specimen is 18 percent less than it would
be if the specimen and meter bars were perfectly
insulated. The error if eq (107) were used to

compute X s would be less than this but still of the
order of ten percent. Since the temperature distri-

bution along the guard is assumed to be the same
as that along the specimen and meter bars, there
are no radial heat exchanges with the guard. For
matched guarding the error arises simply due to

shunting of heat around the specimen through
the insulation. For other than matched guarding,
there will be radial heat exchanges between the
specimen-meter bars assembly and the guard
cylinder in addition to the longitudinal shunting
heat flow in the insulation. The attendant error in

Xs , if it is computed using eq (107), can be very
large.

For matched guarding, an upper limit for the
geometrical factor for shunting heat flow is given

where a is the radius of the specimen and meter
bars and b is the inner radius of the guard cylinder.
For any other type of guarding, there will be a
contribution due to radial heat exchanges.
As revealed in eq (108), the error due to shunting

heat flow in the insulation is proportional to the
difference between the thermal resistivities of the
specimen and the meter bars. This error can,
therefore, best be minimized by using meter bars
having a thermal conductivity as similar as
possible to that of the specimen. This also makes
guarding easier since no sharp breaks are required
in the longitudinal temperature distribution along
the guard. A further advantage to having similar

thermal conductivities is that the temperature
drops in the specimen and meter bars can be made
large enough to facilitate accurate measurement
while the total temperature drop is kept small.

References which may be consulted for dis-

cussions of various aspects of guarding of cut-bar
apparatuses including Laubitz [447, 457-458],
Bauerle [450], Petrov [459], Didion [460], and
Minges [461]. Apparatuses of the type we have
been discussion are described by, for example,
Francl and Kingery [462], Francis and Tinkel-
paugh [463], Mirkovitch [464], and Mahmoodi
[465].

A rather different configuration for a compara-
tive cut-bar apparatus is typified by ASTM C408-
58, Standard Method of Test for Thermal Conduc-
tivity of Whiteware Ceramics [466]. In this ap-
paratus the specimen is soldered between two
rather long copper meter bars or "thermodes".
There is no guard—the apparatus is contained
within an evacuated chamber so that heat loss can
occur only by radiation. No thermocouples are

placed in the specimen—the temperature drop
across the specimen and the contacts with the
thermodes is determined by extrapolation of

temperatures in each thermode. No correction is

made for thermal contact resistance between the
specimen and the thermodes. I feel that thermal
conductivity values obtained using ASTM C408,
in its present form, are liable to large errors. For a
material, such as beryllia, which has a high thermal
conductivity, errors may arise due to thermal con-

tact resistance. For a material, such as mullite,

which has a low thermal conductivity, errors may
arise due to heat losses. These factors are consid-

ered for a somewhat similar apparatus in the report

by Moore, et al. [317].

A number of error sources can be eliminated if a

comparative thermal conductivity apparatus is

calibrated using specimens of known thermal con-

ductivity. If this is done, it is not necessary to

know the thermal conductivity of the meter bars.

These considerations led us to suggest an appara-
tus, which Laubitz [447] has since called an inter-

polator, such as that shown in figure 56. The meter
bars and specimen are each of length equal to
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Figure 56. A cut-bar apparatus in which the guard diameter

is sufficiently large that the detailed temperature distribution

along the guard is unimportant.

Such an apparatus can most accurately be calibrated by the use of sub-
stitute specimens.
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twice their radius, a. Thick disks of conductive
material of radius 6= 7a, approximately, are used
to provide substantially isothermal surfaces at
the outer faces of the two meter bars. The "guard",
constructed of conductive material, is positioned
on poorly conducting supports carried by the lower
disk.

With a guard of such large diameter, shunting
heat flows are independent of the details of the
temperature distribution along the guard. We
have calculated the heat exchanges between the
meter bars and the insulation and between the
specimen and the insulation and found that these
exchanges are essentially identical for the three
guarding conditions shown in figure 54. Thus in
this apparatus all such extraneous heat exchanges
are constant for given meter bars and specimen
provided only that the rather general condition
(c) described previously is met (i.e., the guard
temperature distribution possesses odd symmetry
about the midplane of the apparatus). This is

easily assured, for example, by making the guard
conductive enough for it to be essentially iso-

thermal.

In using this apparatus, the conductivity of the
meter bars is assumed to be unknown. A number
of specimens of known and differing thermal con-
ductivities should be measured in the apparatus
over the intended temperature range. The appar-
ent thermal conductivity, Xm , of the meter bars
should then be computed from eq (107) for each
calibration specimen tested. The several Xm values
obtained will differ somewhat due to shunting
heat flows in the insulation surrounding the speci-

men and meter bars. A plot should be made of

these apparent XTO values as a function of the
known Xs values. This constitutes the calibration

curve for the apparatus. To compute a thermal
conductivity value from data obtained on an
unknown specimen, use eq (107) with an approxi-
mate value of Xm to compute a first approximation
of Xs . Using this value of \ s , enter the calibration
curve and obtain a better value of Xm which then is

used in eq (107) to compute an improved X s . One
or two such iterations should suffice.

There are, of course, alternate methods of

treating the data. The main point to be made is

that the measurements on unknown specimens
are made under the same guarding conditions as

existed when the apparatus was calibrated using
known specimens. In this way, certain systematic
errors cancel out and the attainable accuracy can
be significantly improved.
Some obvious precautions or arrangements

desirable in the use of the envisaged apparatus
include the following:

(a) The insulation of conductivity X 4 should be
installed, and if necessary, renewed from a
uniform stock, so that X* is substantially
the same in all tests at the same tempera-
tures.

(b) Contacting surfaces of the meter bars and
specimens should be clean and quite flat to

avoid perturbations of the calibration and
tests due to altered thermal resistance at
contacts.

(c) The reference specimens and the test

specimens should always have the same
dimensions and thermocouples should be
installed at the same locations and in the
same manner.

7.2. Radial Heat Flow

Although a few investigators have utilized

radial heat flow in spherical or spheroidal speci-

mens, the great majority of thermal conductivity
measurements utilizing radial heat flow have been
carried out on circular cylindrical specimens and
we will restrict our discussion to these.

a. Mathematical Development

The total radial heat flow through a cylindrical

element of axial length, L, is

c dr
(HO)

where v is the temperature relative to an arbitrary
datum plane, and where it is to be understood that
X now refers to the thermal conductivity in the
r-direction. If temperatures are independent of

time, if the specimen is properly insulated or
guarded so that there is no axial gain or loss of

heat, and hence. Q is constant, if there is no heat
generation within the specimen itself, and if,

further, the specimen is homogeneous in the
^-direction so that X does not depend on r, then
(110) is easily integrated to yield

where va and vb are the values of v at r=a and r=b,
respectively. Equation (111) is valid under restric-

tions analogous to those listed following eq(95).
By analogy with the development of eqs (98)

to (100), if X is a linear function of temperature,
we obtain

n_2tL\0 (Ta—

T

b) nio\

where Ta and Tb are the temperatures at r=a
and r=b, respectively, and X0 corresponds to the
temperature T0=(Ta-{-Tb)/2. For materials

having a thermal resistivity which is proportional
to temperature, expressions analogous to eqs

(103) and (104) are easily obtained.

If eq (112) is used to compute thermal conduc-
tivity, the maximum fractional error in the

resultant thermal conductivity value is given by

AXo

X0

< Ab

+

b In (b/a)

A(Ta—Tb)

+
Aa

Ta-Th

+

a In (b/a)

AQ

+1x1

Q
+ (113)
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+ errors due to failure to meet requirements
of equation (112)

where the terms are analogous to those following
eq (105).

b. Experimental Techniques

Many of the problems and techniques used in
radial heat flow methods for measuring thermal
conductivity are similar to those we have discussed
in conjunction with longitudinal heat flow
methods. Accordingly, I will only briefly discuss
the configuration usually used in radial heat flow
methods and mention a few of the problems
encountered with these methods. A very compre-
hensive discussion of radial heat flow methods is

given by McElroy and Moore [467].
A generalized thermal conductivity apparatus

utilizing radial heat flow is shown in figure 57.
The specimen, in the form of a right circular
cylinder, is supported coaxially within a furnace
which is used to control the mean temperature
of the specimen. A coaxial central hole in the
specimen contains either a heater which produces
metered power flowing radially outward through
the specimen or a heat sink which measures
(e.g., by means of a water-flow calorimeter) the
power flowing radially inward through the speci-
men. Temperatures within the specimen, usually
at or near the midplane position, are measured
by thermocouples or by an optical pyrometer.
Guard heaters may or may not be used to control
longitudinal heat flows.

The worst errors usually arise from the difficul-

ties of measuring small temperature differences
and from nonradial heat flows. Each thermocouple

THERMOCOUPLES
OR PYROMETER
SIGHTING HOLES

GUARD HEATER

HEAT SOURCE
OR SINK

SPECIMEN

FURNACE

GUARD HEATER

Figure 57. A typical configuration

for a thermal conductivity appa-
ratus which utilizes radial heat

flow in a right circular cylinder.

or pyrometer sighting hole should run for some
distance along an isotherm. It is usually preferable
to have at least three temperature measuring
stations at each radius so that the effects of

possible eccentric isotherms can be averaged out.

Consideration should be given to errors arising

from distortion of the heat flow pattern by the
finite holes used for temperature sensing. It is good
practice to conduct measurements at two different

power levels to reduce the effects of certain

systematic errors in thermocouples or due to non-
radial heat flow. If guard heaters are not used, the
specimen should be well-insulated at the ends and
should be sufficiently long that the heat flow is

radial near the midplane of the specimen. All of

these points are discussed by McElroy and Moore
[467].

8. Reference Standards

Standards and standard reference materials are

the basis of a consistent and accurate measuring
system. The need for standard reference materials
in thermal conductivity measurements is twofold.

In the first place, such materials are required for

comparative measurements in which the thermal
conductivity of the material under test is deter-

mined in terms of that of the standard reference
material. Secondly, such materials are required in

evaluating the accuracy of apparatus designed for

direct, as opposed to comparative, thermal con-
ductivity measurements. The degree to which the

measured value of the thermal conductivity of the
standard reference material agrees with the ac-

cepted value is a check on the accuracy of the
measurement process.

The basic requirements for any standard
reference material are that it be stable, repro-

ducible, and appropriate for the measurements at

hand, and that the property in question be uniform
throughout the material. The ideal thermal con-
ductivity reference standard should meet the

following criteria (also, see [468])

:

1. The thermal conductivity of the reference

material should be similar to that of the

materials to be measured. This is true whether
the reference standard is being used to

calibrate a comparative type of apparatus or

to check an absolute type of apparatus.

2. The reference material should be homo-
geneous and isotropic. Preferably it should be
reproducible. Four categories of uniformity,

in decreasing order of desirability, are as

follows

:

(a) Reproducible materials

The most obvious of these would be
materials of quite high purity—usually

either chemical elements or compounds.
A disadvantage here is that the thermal
conductivities of such materials are

usually markedly affected by the first

traces of impurity, at least at low and
moderate temperatures. Another, per-

haps less obvious, type of reproducible
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material is one in which the manufactur-
ing process is sufficiently refined that one
may procure a sample of X from manu-
facturer Y with confidence that the
thermal conductivity of this sample is

substantially identical to that of any
other sample of X procured, at least
from Y, at another time.

(b) Stocked materials of proven uniformity:
batch samples.

These are materials known, or found, to
be quite uniform in thermal conductivity
within a batch or lot, so that measure-
ments made on a relatively few samples
of it are sufficient to define the conduc-
tivity of the entire batch.

(c) Materials whose thermal conductivity cor-

relates well with some other more easily
measured physical property.

An example of this type of material would
be certain metal alloys, for which thermal
conductivity values may be computed
from electrical resistivity data using an
empirical correlating equation. A disad-
vantage of this procedure is the large
amount of work that may be necessary in
order to adequately define the correlating
equation.

(d) Materials not sufficiently uniform to forego
need for measuring each reference speci-
men.

This procedure, although often necessary,
is expensive and places quite a work load
on the calibrating laboratory, which must
maintain an adequate facility indefi-
nitely. In addition, lead-time to obtain a
specimen may be onerous.

3. The thermal conductivity of the material
should not be affected by age or by environ-
mental or temperature experience; i.e., it

must be stable under the conditions of use.
Phase transformations, even if completely
reversible, are not desirable.

4. The material should be usable over as broad
a temperature range as possible, preferably
in air, inert gas, or vacuum.

5. The material should be substantially opaque
to thermal radiation over the entire tempera-
ture range of interest.

6. The material should not react chemically
with materials commonly used in construct-
ing thermal conductivity apparatus, especially
not with thermocouples.

7. The material should have suitable mechani-
cal properties to permit reasonably economic
specimen fabrication while still possessing
sufficient strength and hardness to permit
normal handling during installation and re-
moval from an apparatus.

8. The cost should not be excessive. "Excessive,"
however, appears to be defined rather differ-
ently by various individuals. Usually the cost

of the material is much less than the cost of
the measurement.

9. All other things being equal, an electrical

insulator offers a slight advantage over an
electrical conductor in that thermocouple
leads do not need to be insulated from the
specimen.

8.1. Current Status

With regard to the four categories of uniformity
listed above under item 2, a few comments are in
order. There are a few hopefully reproducible ma-
terials, for which thermal conductivity is reason-
ably well known over a limited temperature range,
that can be used as reference materials. We will

discuss these shortly. As regards stocked materials,
I know of no source where a stock of material of
known thermal conductivity is maintained and
samples are sold. Efforts to make such materials
available are currently underway at the National
Bureau of Standards.

Powell [469] has summarized the correlations
which exist between thermal and electrical

conductivity for a number of alloy systems.
For a number of copper alloys having thermal
conductivities in the range 50 to 350 Wm_1 K_1

,

it appears that thermal conductivity can be
predicted to within a few percent from measured
electrical conductivity values, at least in the
temperature range from room temperature to

about 500 K. Other systems that exhibit rela-

tively good correlation include aluminum alloys,

magnesium alloys, certain steels, and certain

nickel-chromium alloys. In as-yet-unpublished
work, we have developed a somewhat more
complicated correlation expression for ferritic

iron-nickel alloys that seems to be good within
three percent from 200 to 800 K.
One approach to obtaining thermal conductivity

reference materials is to have a particular sample
calibrated by an experienced, reliable laboratory.

We have carried out a number of such ad hoc
measurements in the past and can continue to

do so whenever the workload permits.

Returning to the category of reproducible
materials, you will find listed below a number of

materials that may be used as reference standards
on an interim basis. The materials are listed

in two categories, metals and nonmetals, in

decreasing order of room temperature thermal
conductivity within each category. Unless other-

wise stated, materials of at least 99.99 percent
purity are implied.

a. Metals

Copper (X=400 Wm-'K" 1 at 300 K)
Powell, Ho, and Liley [238] give recommended

values for the thermal conductivity of pure
copper. They estimate a probable uncertainty
in these values of "±3 percent near room tem-
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perature increasing to ±5 percent at low and
high temperatures."

Their recommended values are in excellent
agreement with the very recent experimental
data of Laubitz [71] and Moore, McElroy, and
Graves [72].

Aluminum (A = 240 Wm-'K" 1 at 300 K)
Powell, Ho, and Liley [238] give recommended

values for the thermal conductivity of pure
aluminum which "are thought to be accurate
to within ±4 percent below room temperature
and ±2 percent to ±3 percent above." I feel

that this uncertainty estimate may be too
optimistic.

Tungsten (A = 180 Wm-'K" 1 at 300 K)
Powell, Ho, and Liley [238] state that while

their recommended values for pure tungsten
"are thought to be within ±3 to ±5 percent of

the true values, further confirmatory work on
tungsten still seems to be required." As will be
briefly discussed at the end of this section,

further work on tungsten is currently in progress.
Powell and Ho [470] show some additional data
that were not given in [238].

Iron (A = 70 to 80 Wm-'K" 1 at 300 K)
Commercially pure iron, usually produced by

the American Rolling Mill Company and known
as Armco iron, has been used for many years as a
thermal conductivity reference material. The rec-
ommended values for Armco iron by Powell, Ho,
and Liley [238] "are thought to have an accuracy
of ±3 percent below room temperature, ±2 per-
cent to about 1000 K, the uncertainty probably
increasing to about ±8 percent at 1600 K". C. F.
Lucks, of the Battelle Memorial Institute Colum-
bus Laboratories, has been investigating the effects

of heat treatment on the conductivity of Armco
iron and should be publishing his findings in the
near future. In principle, pure iron would be more
reproducible and probably less subject to heat
treatment effects and hence would be a preferable
standard. Powell, Ho, and Liley have also given
recommended values for pure iron which they feel

are similar in reliability to the values for Armco
iron (see also Powell and Tye [476]).

Platinum (X=70 Wm-'K' 1 at 300 K)
The "very tentative" values given by Powell,

Ho, and Liley [238] for pure platinum should not
be used. Recent measurements by Laubitz and
van der Meer [471], Martin Sidles and Danielson
[472] _

and Flynn and O'Hagan [243] have led to a
revision of the recommended values (see Powell
and Ho [470, figure 16]). Until additional measure-
ments on platinum, currently in progress at the
National Bureau of Standards and elsewhere, are
completed, I suggest using the averages of the
values reported by Laubitz and van der Meer
[471] and by Flynn and O'Hagan [243].

Lead (A = 35 Wm-'K" 1 at 300 K)
The use of lead as a thermal conductivity ref-

erence standard at the National Bureau of Stand-
ards [473, 474] has led to its use in a number of

other investigations. Ho, Powell, and Liley [239]
give recommended values which "are thought to
be accurate to within ±3 percent of the true
values at moderate temperatures ±5 percent at
high temperatures and ± 10 percent at low tem-
peratures . . .". The recent work of Lucks [475]
indicates that the thermal conductivity of lead
may be very sensitive to small amounts of impurity.

Stainless Steel (A = 15 Wm-'K" 1 at 300 K)
Powell and Tye [476] have recently reported

thermal conductivity values for nine samples of

stainless steel of somewhat similar composition
(nominally 18 %_ Cr, 8% Ni). The differences

found among their samples indicate that the ther-

mal conductivity of an arbitrary sample of 18/8
stainless steel would probably be within ±10
percent of their mean value at a given temperature.

Inconel 702 (\ = 12 Wm-'K" 1 at 300 K)
Measurements of the thermal conductivity of

specimens of age-hardened Inconel 702 18 from a

single lot of material reported by Laubitz and
Cotnam [477], Watson and Flynn [478], and
McElroy and Moore [467], as well as other un-
published measurements at the National Bureau
of Standards, all agree within ±2 percent of a
mean curve through these data. As far as I know,
there have been no measurements on samples of

this alloy from another lot of material. As discussed
by Laubitz and Cotnam [477] and Powell and Tye
[476], Inconel 702 is subject to changes in conduc-
tivity resulting from heat treatment so care is

indicated in using this material.

b. Nonmetals

Beryllium Oxide (A =270 Wm-'K- 1 at 300 K)
Powell, Ho, and Liley [238] give recommended

thermal conductivity values for 99.5 percent pure,

98 percent dense polycrystalline beryllium oxide.

The uncertainty of the recommended values "is

though to be within ±8 percent at temperatures
from 500 to 1000 K and increases to ±15 percent
below 300 K and above 1800 K".

Silicon (A — 150 Wm-'K" 1 at 300 K)
Silicon is potentially a good reference material

due to its availability in large sizes of high purity.

Ho and Powell [266] show a plot of a recommended
curve for pure silicon. They do not tabulate their

recommended values but do state that the pro-

posed curve was drawn intermediately between
the data of Glassbrenner and Slack [479] and of

Fulkerson, et al. [480].

18 A proprietory alloy of the International Nickel Company; the material

used in these measurements was 79.3 percent Ni, 17 percent Cr, 2.5 percent Al,

plus other elements in smaller quantities.
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Magnesium Oxide (X = 50 Wm-'K" 1 at 300 K)
Powell, Ho, and Liley [238] give recommended

values for 99.5 percent pure, 98 percent dense
polycrystalline magnesium oxide. The uncertainty
in these values "is though to be within ±8 percent
at temperatures from 500 to 1000 K and increases
to ±15 percent below 300 K and from 1650 to

2000 K. The uncertainty increases to about ±20
percent above 2100 K".

Aluminum Oxide (X=40 Wm-'K" 1 at 300 K)
The uncertainty in the recommended values of

Powell, Ho, and Liley [238] for 99.5 percent pure,
98 percent dense polycrystalline aluminum oxide
"should be within ±8 percent at temperatures
from 500 to 1000 K and increases to about ±15
percent below 250 K and above 1800 K."

Crystalline Quartz (X = 10 Wm-'K-1
parallel to c-

axis and X = 6 Wm-'K"' per-

pendicular to c-axis at 300 K)
Powell, Ho, and Liley [238] give recommended

values for the thermal conductivity of quartz
single crystals for heat flow both parallel and
perpendicular to the c-axis. The uncertainty for

both sets of values "is thought to be within ±5
percent at temperatures from 300 to 500 K and
increases at lower and higher temperatures up to

± 10 percent at 40 and 800 K". Because of infra-

red transmission of energy, I would not recommend
using clear quartz as a reference material above
about 600 K.

Pyroceram Code 9606 (X=4 Wm-'K"' at 300 K)
Powell, Ho, and Liley [238] state that their

recommended values for Pyroceram Code 9606 19

"should be accurate to within ± 5 percent at
temperatures from 200 to 1000 K. The uncer-
tainty increases to ± 10 percent at 100 K and
1400 K". Of the six sets of data used in deriving
these recommended values, two sets were pro-
duced by direct measurement of thermal conduc-
tivity in two different apparatuses in our
laboratory; the other four sets were derived from
thermal diffusivity data obtained in three other
laboratories. Two of these sets of diffusivity data
were obtained in another laboratory at the Na-
tional Bureau of Standards on material from the
same lot of material as was used in our conduc-
tivity measurements. Thus at least four of the
six sets of data were obtained on the same lot

of material. In more recent measurements, using
a third, and different, apparatus,20 we have
obtained thermal conductivity values on a speci-
men of Pyroceram Code 9606 from a different
lot of material; these values, obtained over the
temperature range 100 to 300 K, are about 5
percent higher than our previous data which
were used as a basis for the recommended values
given in [238]. We are not certain whether the

w A product of Corning Glass Works; the material is a "microcrystalline
glass."

20 The apparatus shown in figure 47.

differences observed are due to experimental dif-

ficulties or to sample differences but believe the

differences do reflect a variation between samples.

Further work is clearly indicated.

Fused Quartz (X-1.4 Wm-'K-' at 300 K)
Powell, Ho, and Liley [238] give recommended

thermal conductivity values for high-purity clear

fused quartz; the uncertainty "should be within
±4 percent at temperatures from 200 to 500 K,
and increases to ±8 percent at 50 K and 900 K
and up to ±15 percent below 10 K and at 1400
K". Carwile and Hoge [481] present independently
derived recommended values for the thermal con-
ductivity of "vitreous silica" over the temperature
range 80 to 660 K. They state that "the tabulated
values of X between 150 and 450 K are believed

to be accurate to ±7 percent; near room tem-
perature they may be somewhat better. Below
150 K the uncertainty increases and may reach

±12 percent. Likewise above 450 K the uncer-

tainty increases and may be as large as ±15
percent at the upper limit of the table". These
two sets of recommended -values agree to within

less than 1 percent from 200 to 600 K. I would
not recommend using clear fused quartz as a

thermal conductivity reference standard at tem-
peratures above 600 K.

Pyrex Glass Code 7740 (X= l.l Wm-'K-' at

300 K)
The recommended thermal conductivity values

given by Powell, Ho, and Liley [238] for Pyrex
Glass Code 7740 21 are "thought to be accurate

to within ±5 percent at moderate temperatures
and within ± 10 percent below 200 K and above
700 K". Again, I would not recommend this as

a standard above about 600 K.

8.2. Ongoing Activities

In order to make better thermal conductivity

reference materials available, the National Bureau
of Standards has efforts underway both in our
Washington and in our Boulder laboratories. In
order that these efforts may be properly directed,

you are urged to communicate your needs in this

area to R. L. Powell at Boulder (cryogenic tem-
perature range—liquid helium to ambient tem-
peratures) or to me at Washington (liquid nitrogen

to high temperatures).
The Air Force Materials Laboratory is sponsor-

ing a program at Arthur D. Little, Inc. to establish

high-temperature ( above about 1000° C) thermal

conductivity and thermal diffusivity standards.

Part of this work has already been described

[468, 482] ;
most, if not all, of the work will be

included in the Proceedings of the Eighth Con-
ference on Thermal Conductivity held at Purdue
University in October, 1968. The materials being

investigated are polycrystalline sintered aluminum

2 ' A borosilicate glass produced by Corning Glass Works.
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oxide and thorium oxide, arc cast tungsten, and
two commercial grades of graphite.

In a program under the auspices of AGARD
(Advisory Group for Aerospace Research and
Development of the North Atlantic Treaty Orga-
nization), samples of gold, platinum, tungsten,

and aluminum oxide are being distributed to a

number of laboratories for the purpose of measur-
ing thermal conductivity and ultimately estab-

lishing these materials as reference standards.

Several laboratories, notably the groups under
M. J. Laubitz at the National Research Council

of Canada and under D. L. McElroy at Oak Ridge
National Laboratory, have active programs to

study the thermal conductivities of well-defined

materials over broad temperature ranges. Meas-
urements such as these will contribute greatly to

establishing accurate thermal conductivity values

on reproducible materials that are suitable as

reference standards.

9. Conclusions

Many inaccurate thermal conductivity data
have been reported on poorly characterized mate-
rials—such data are almost useless and, if used in

critical applications, may even be harmful. In-

accurate data on well-characterized materials are

not much, if any, more useful. Accurate data on
poorly characterized materials may be very useful

in applications where the identical material is

used but are not of much use otherwise. Accurate
thermal conductivity data on well-characterized

samples, the ultimate desiderata, are characterized

by their paucity.

Admittedly, thermal conductivity is a relatively

difficult physical property to determine. Accurate
thermal conductivity values are expensive to

obtain—but not much, if any, more expensive than
inaccurate values. And when one considers the
possible costs in fuel, efficiency, or safety due to

the use of inaccurate thermal conductivity values
in designing a system, one is led to the conclusion
that the overall cost of an inaccurate measure-
ment is usually larger than the overall cost would
have been if a little more effort had been expended
to obtain an accurate value. If thermal conduc-
tivity is worth measuring, it is worth measuring
well.

Similar arguments hold true regarding sample
characterization. Adequate identification of a
given sample may be expensive, but if everyone
did properly characterize his samples, it would
eventually be possible, in many cases, to correlate
thermal conductivity with density, pore size,

impurity content, etc. Such correlations could
eliminate the need for many thermal conductivity
measurements at a later date. A seemingly un-
necessary investment in sample characterization
might thus yield future dividends.

In selecting a suitable apparatus for use in

measuring thermal conductivity, there are a
variety of factors, such as those listed at the

beginning of section 7, which need be considered.

I strongly urge that anyone contemplating the

construction of a thermal conductivity apparatus
study the book "Thermal Conductivity" [483]

prior to committing himself to a given type of

apparatus. The thirteen chapters in this book,
written by some of the top workers in the field,

contain a veritable wealth of useful information.
A comprehensive error analysis (particularly help-

ful references include [243, 447, 450, 467]) prior

to construction of an apparatus can save many
difficulties later.

Once an apparatus has been constructed, it is

absolutely essential to undertake measurements on
a material, such as one of those listed in the

previous section, whose thermal conductivity is

well known. Ideally the material selected should
be as similar as possible, in thermal conductivity
and other physical properties, to the material
or type of material for which the apparatus was
designed.

Prior to undertaking a measurement of the
thermal conductivity of a particular material it is

important to consider (and, if any doubts exist,

check) whether any chemical reactions or material
changes might occur during the measurement.
Many specimens could contaminate thermocouples
or react with apparatus components, especially at

elevated temperatures. Before fabricating speci-

mens for conductivity measurements, the sample
should be checked for homogeneity to be sure

representative specimens are tested.

The material should be characterized as com-
pletely as possible. This would include finding out
the method and details of material production and
any heat treatments or other special treatments
given to the material. Minimal characterization

should include a statement of the principal

chemical composition, the general type of micro-
structure (single-crystal, crystalline orientation,

polycrystalline, amorphous, etc.), the density, and,

whenever possible, a detailed chemical analysis.

Materials having noncubic structure should be
checked for anisotropy. A detailed microstructural
analysis should be made to determine grain size,

porosity, presence of other phases, and other
factors which conceivably could affect the thermal
conductivity (see Picklesimer [484]).

If there is any possibility of an electronic contri-

bution to the thermal conductivity, the electrical

resistivity should be measured over the tempera-
ture range of interest. If there is any possibility of

significant radiative heat transfer, it would be
helpful to measure optical absorption and scatter-

ing coefficients, even if this can only be done at

room temperature. Other thermal and mechanical
properties (e.g., thermal expansion, thermoelectric

power, specific heat, sound velocity) can be very
helpful in understanding the results of thermal
conductivity measurements, particularly if a phase
change or other unusual behavior occurs.

In carrying out high temperature determi-

nations, it is good practice to make measure-
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merits at 50 or 100 deg intervals in increasing order
of temperature with an adequate number of repeat
measurements at lower temperatures to check for

changes in the specimen or in some component of

the apparatus. If there is any question of change
in the specimen, post-test characterization is

indicated.

During testing, especially with new apparatus,
it is important to make systematic variations in

the test conditions (temperature gradients, guard
temperatures, type of gas in insulation surrounding
specimen, etc.) to enable a more meaningful error

analysis. All test conditions which conceivably
could affect the results should be recorded.
A detailed error analysis [243, 467] is essential

in order to arrive at meaningful estimates of the
uncertainties in thermal conductivity values; the
estimated uncertainties should be stated clearly

and unambiguously [485-486].
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Thermal Radiation Properties of Ceramic Materials
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The thermal radiation properties of materials are defined, and the basic physical laws
governing the amount of thermal radiation emitted by a blackbody radiator, and its geo-
metric and spectral distribution, are reviewed. Equations are given relating the thermal
radiation properties of emittance, reflectance, transmittance, and absorptance to the optical

properties of index of refraction, absorption coefficient, and scattering coefficient. The
effect of impurities and processing variables such as grain size and porosity on the optical

properties is discussed. The influence of thermal gradients normal to the surface of ceramic
specimens on the observed thermal radiation properties is reviewed. Several methods of

measuring thermal radiation properties of ceramic materials are discussed briefly, and
representative normal spectral emittance data for alumina, thoria, magnesia, and zirconia

are given.

Key Words: Alumina; ceramics; emittance; magnesia; reflectance; temperature coeffi-

cient of emittance; thermal radiation properties; thoria, zirconia.

1. Introduction

Thermal radiation is electromagnetic radiation
that is generated by the thermal motion of the
particles of which a material is composed, such
as molecules, atoms, ions, and electrons. All
matter is constantly emitting thermal radiation,
and in turn is constantly being irradiated by
thermal radiation from its surroundings. Both
processes occur simultaneously, and the net rate
of heat transfer to or from a body is determined
by the relative rates of the two processes.
The thermal radiation properties of a body are

those properties that determine the rates of
absorption and emission of thermal radiation, and
hence the rates of heat transfer to or from the
body by radiation. When thermal radiation is

incident on a body, it is either reflected, absorbed
or transmitted. Nothing else can happen to it.

Hence, we can write

(1)

where * is flux, the time rate of flow of radiant
energy, and the subscripts r, a, t and i designate
the reflected, absorbed, transmitted, and incident
flux, respectively. If we divide both sides of
equation (1) by $i and define the reflectance, p,
as 3>

TI$U the absorptance, a, as $a/$< and the
transmittance, r, as we get

P+«+t=1. (2)

For an opaque specimen, t=0, hence

P+«=l. (3)

Kirchhoff's law states that the absorptance, a,

is equal to the emittance, e,

(4)

hence, for an opaque body the reflectance and the
emittance sum to one

P+€=l. (5)

We thus see that for an opaque body the thermal
radiation properties are fully defined by either

the emittance or the reflectance.

Fluorescent and phosphorescent materials ab-
sorb radiant energy at one wavelength and re-

emit it at another, usually longer, wavelength.
Because of this behavior, they may appear to

deviate from the above relationships when irradi-

ated with heterochromatic flux, since at the

wavelength of fluorescent or phosphorescent
emission the reflected or transmitted flux may
exceed the incident flux. For such materials it is

necessary to measure the spectral reflectance or

transmittance by a technique in which the speci-

men is irradiated by monochromatic flux, and the
reflected or transmitted flux is measured by means
of a detector that senses only flux of the same
wavelength as the incident flux. The flux emitted
by phosphorescent or fluorescent emission is not
considered to be reflected flux.

2. Definition of Terms

Up to this point we have described thermal
radiation, thermal radiation properties, and flux.

It will be appropriate at this time to more rigor-
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ously define a number of additional terms that
we shall be using. 1

Reflectance, p, is the fraction of the incident
flux that is reflected without change in frequency.

Absorptance, a, is the fraction of the incident
flux that is absorbed and converted to another
form of energy.

Transmittance, r, is the fraction of the incident
flux that is transmitted without change in

frequency.
All of these properties are influenced by the

wavelength, direction of incidence, and degree and
direction of polarization relative to the plane of

incidence of the incident flux, and, for reflectance

and transmittance, by the size and direction of

the solid angle over which the reflected or trans-

mitted flux is collected for measurement. They
may also vary somewhat with the temperature of

the specimen. Hence, these terms are modified to

indicate these conditions.

Spectral means at a given wavelength, or in a

narrow wavelength band centered about a given
wavelength.

Directional means in a given direction, usually

measured from the normal to the surface.

Normal is a special case of directional, and
means in a direction normal to the surface.

Specular, referring to reflectance, means in the

direction of mirror reflection.

Diffuse, or hemispherical, referring to incident

flux, means incident uniformly from all possible

directions.

Hemispherical, referring to reflected, trans-

mitted, or emitted flux, refers to flux summed
over a hemisphere.
The terms reflectance^ absorptance, and trans-

mittance are defined as fractions of incident flux,

and are dimensionless numbers. The numerical
value, being a ratio, is independent of the magni-

tude of the incident flux, but for equations (2)

and (3) to be valid, the conditions of irradiation

must be the same for each term in the equation.

This means that the spectral or wavelength

composition and state of polarization of the

incident flux and its direction of incidence must
be the same for each term.

A blackbody radiator absorbs all radiant

energy incident upon it, and emits radiant energy

at the maximum possible rate for any body at

its temperature. The amount of flux emitted by
a blackbody radiator is given by the Stefan-

Boltzmann equation, its spectral distribution by
the Planck equation, and its geometric distribu-

tion by Lambert's cosine law. These are the

fundamental laws of thermal radiation.

The Stefan-Boltsmann equation is

M=aTi
(6)

1 There has been much confusion in nomenclature in this area. Judd [1]

has published a recommended system of nomenclature for reflectance terms.
( Figures in brackets indicate the literature references at the end of this paper)

.

where M is the radiant exitance, or total flux

emitted per unit surface area by a blackbody
emitter in units of Wm-2

, a is the Stefan-
Boltzmann constant, 5.6697 x lO

-8 Wm^K"4
,

and T is the absolute temperature in kelvins.

Lambert's cosine law may be expressed as

follows

:

It=I0 cos 6 (7)

in which I9 is the intensity per unit area in units

of Wsr-1cm-2
of a blackbody radiator in a

direction 6, 6 being the angle between the given
direction and the normal to the emitting surface,

and In is the intensity per unit area of the blackbody
radiator normal to its surface.

Planck's radiation equation is

Mx
= Cl

\- 5[exp (c2/\T)— l]
-1

(8)

where Mx is the spectral radiant exitance of a

blackbody radiator per unit wavelength interval

at wavelength X, in units of watts per square
meter and meter wavelength interval, cx is the
first radiation constant, 3.7415 x 10-16 Wm 2

, X

is the wavelength in meters, c2 is the second
radiation constant, 1.43879 x 10~ 2 mK, and T is

the absolute temperature, in kelvins.

No real material is a true blackbody radiator;

hence, for all real materials, the flux emitted is

less than that emitted by a balckbody radiator.

However, the radiation laws can still be used for

real materials by using the emittance as a pro-

portionality factor.

Emittance, e, is defined as the ratio of the radiant

exitance of a specimen (radiant flux per unit area

emitted) to that of a blackbody radiator at the

same temperature and under the same conditions.

Emissivity is defined as the emittance of a

specimen having an optically smooth surface and
a thickness sufficient to be completely opaque,

and is a property of the material of which the

specimen is composed.
Emittance varies with the direction of emission

relative to the surface of the specimen, the wave-
length of the emitted radiation, and the tempera-

ture of the specimen. The emitted radiation may
be elliptically polarized, particularly if emitted

at large angles from the normal to the surface of

the specimen. The terms directional, normal,

hemispherical and spectral apply to emittance as

well as to all of the other terms previously defined.

The term total, referring to emittance, means at

all wavelengths. This term has no specific mean-
ing for reflectance, absorptance, and transmit-

tance, unless the spectral distribution of the

incident flux, or source, is specified. For emittance,

however, it is only necessary to specify the tem-

perature, since the spectral distribution of flux

emitted by a blackbody radiator is given by the

radiation laws as a function of temperature.

For Kirchhoff's law, equation (4), to be rigor-

ously correct, 2
it is necessary that the spectral

2 See reference [2] for a proof of Kirchhoff's law.
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composition, degree of polarization, and direction
of incidence of the incident flux for the absorp-
tance evaluation should be the same as the spectral
composition, degree of polarization, and direction
of emission for the emitted flux in the emittance
evaluation. This would appear to impose a severe
restriction upon the general applicability of Kirch-
hoff's law. However, there are no polarization
effects for normally incident flux, and the effects

become of appreciable significance only for specu-
larly reflecting materials at angles near the
Brewster's angle. This point will be discussed in

more detail later. For spectral incident flux the
spectral distribution within the narrow wave-
length interval approximates that of blackbody
radiation sufficiently closely that the effect of

the deviation is negligible. Hence equation (3)

applies to normal spectral values of absorptance
and emittance, and can be used to convert one
to the other.

Normal spectral emittance over a wide wave-
length range, at a given temperature, can be con-
verted to total emittance at the same temperature
by multiplying the spectral values, wavelength
by wavelength, by the value of the Planck dis-

tribution function at the same wavelength to

produce a curve of emitted flux as a function of

wavelength. This curve is integrated to obtain
the total emitted flux, which is then divided by
the total integrated flux for a black body at the
same temperature to obtain the total normal
emittance. For most nonconducting materials,
the emittance, either total or spectral, does not
change appreciably with angle of emission at
angles of emission less than about 50° from the
normal. For conductors such as metals, the effect

begins to appear at angles greater than 10 to 15°

from the normal.

Spectral emittance and absorptance are not
strong functions of temperature, hence values
obtained at one temperature can be used to

predict values at other temperatures with only
small errors, if the difference in temperature is

not great. Total emittance, on the other hand,
may or may not vary appreciably with temperature
depending upon the shape of the spectral emittance
curve.

Figure 1 shows the variation with temperature
of the total hemispherical emittance of Inconel
coated with two different ceramic coatings, and
figure 2 shows the variation with temperature of

total hemispherical emittance of electropolished
and of oxidized type 321 stainless steel. Figure 3

shows variation with temperature of normal
spectral emittance of alumina, thoria, magnesia
and zirconia.

Reflectance is usually easier to measure than
absorptance, and spectral absorptance is fre-

quently computed from spectral reflectance by
use of equation (3). In this case, the reflectance

must be measured under conditions of hemispher-
ical viewing, and the resulting absorptance is for
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the same conditions of irradiation as the reflec-

tance.

Thermal radiation properties are frequently

referred to as surface properties. This is obviously
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a gross approximation, and is true only to the
extent that the thermal radiation properties can
be markedly affected by the surface condition of

the specimen being measured, particularly its

roughness. The processes of absorption and
emission involve interaction of the electromag-
netic waves with material particles, and hence
cannot occur at a surface, which is only a two-
dimensional interface. While in one sense reflection

occurs at an interface, even this process involves
penetration of the incident electromagnetic waves
beyond the interface to a depth that may be
several times the wavelength.
The function of the surface, or interface, in

determining thermal radiation properties is that
it affects the amount and geometric distribution

of the reflected flux, and the amount and dis-

tribution of the flux that penetrates the interface

to where it can be absorbed and transmitted. It

also affects the fraction of the internally generated
flux that penetrates the interface and is emitted,
and to a lesser extent, its geometric distribution.

This will be discussed in more detail later.

Surface contamination, even in amounts that
are difficult to detect by normal chemical means,
can also significantly affect thermal radiation
properties.

For metals, all of which have a very high
absorption coefficient over most of the wave-
length range of thermal radiation, the processes

of emission, absorption and reflection occur in a

very thin surface layer, perhaps only a few hundred
atomic diameters in thickness. Hence for metals,

it is a fair approximation to say that the thermal
radiation properties are surface properties. Ceramic
materials, on the other hand, usually have much
lower absorption coefficients than do metals, at

least at some wavelengths, and for such materials
the thermal radiation properties must be con-
sidered to be volume properties.

The thermal radiation properties of a specimen
can be affected by the contour of its surface. The
specimen will have the highest reflectance or the
lowest emittance if its surface is completely
smooth. Increasing surface roughness will decrease
reflectance and increase emittance. In the case

of a metal, the effect can be large. For instance
the total hemispherical emittance of type 321
stainless steel at 400 °C increased from about 0.2

in the electropolished condition to about 0.55

when sandblasted [3]. The normal spectral emit-
tance of polycrystalline ceramics, on the other
hand, has been shown to be nearly independent
of surface roughness [4].

Bennett [5] has derived the following equation
relating reflectance of a metal at normal incidence

to surface roughness:

p/p 0=exp- (47r<r/\)
2+327r>/\) 4(Aa/m) 2

, (9)

in which p is the reflectance of a rough metal
surface for normally incident flux reflected into

an optical system having an acceptance solid

angle with a half angle Aa (Aa=7r/2 for hemis-
pherical collection), p 0 is the reflectance of a

perfectly smooth surface of the same metal under
the same conditions, a is the root-mean-square
(rms) roughness of the surface, X is the wave-
length of the incident radiation, and m is the rms
slope of the surface.

The first term, exp— (4tt(t/X)
2

, accounts for

interference effects, and predominates when a/\

<<1.0. The second term accounts for geometric

effects, and predominates when cr/X>>1.0.

The treatment becomes almost hopelessly com-
plex at oblique incidence, because of polarization

effects. If such effects are neglected, equation (9)

can still be used by substituting for a the term a

cos 0, where 0 is the angle of incidence, measured
from the normal to the gross plane of the surface.

3. Wavelength Range of Interest

The spectral distribution of the radiance (the

flux per unit wavelength interval, unit solid angle

and unit area of source projected normal to the

direction of emission) of a blackbody radiator is

given by the Planck equation:

Zx=1.19096X- 5

x[exP (l^syg/x^-i^xio- 16
,

(io)

where Lx is the radiance in watts per square

meter, steradian, and meter wavelength interval

(Wm" 2sr
_1)m_1

, X is wavelength in meters and

T is temperature in kelvins. A plot of L\ as a

function of X for a blackbody at 1000 K is shown

in figure 4.

The nature of equation (10) is such that there is

some energy emitted at all wavelengths between

zero and infinity, but the amount at very short

and very long wavelengths is so small that it can

be neglected. At any temperature, 99 percent of
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Figure 4. Relative spectral radiance of a blackbody radiator, plotted as a function

of XT in cmK, curve A, and percentage increase in spectral radiance produced

by a one percent increase in temperature, plotted as a function of XT in cmK,
curve B.

the energy is emitted between wavelengths repre-
sented by values of XT of 1322 and 29372 umK,
and about 25 percent of the energy is at wave-
lengths shorter than the peak. At room tempera-
ture (300 K) 99 percent of the energy is at

wavelengths between 4.4 and 97.9 jum. As a
practical matter, most determinations of thermal
radiation properties cover the wavelength range
of 1 to 15 pim, with others covering the extended
range from about 0.25 to 40 p.m. There is con-
siderable interest in spectral emittance at 0.65

fj.m, the wavelength often used in optical pyrom-
etry. Most of our discussion will be confined to the
1- to 15-jum range. Figure 5 shows how the wave-
length limits for 99 percent of the radiant energy
change with temperature.

4. Theoretical Considerations

When two transparent media of different indices

of refraction are separated by an optically smooth
interface, a beam of radiation striking the inter-

face will be refracted according to Snell's law, and
reflected according to Fresnel's law. Snell's law is

expressed as:

rix sin 6i=n2 sin 0r , (11)

where %x is the index of refraction of the medium
from which the beam is incident, d t is the angle of

incidence, measured from the normal to the inter-

face, n2 is the index of refraction of the medium
into which the beam is refracted, and 0r is the angle
of refraction, again measured from the normal to
the surface. The equation is valid over the entire

range of 6x when n2^>ni. When nx^>n2 , the equation
is still valid at values of 0, less than the critical

angle. At angles greater than the critical angle,

total internal reflection will occur. The critical

angle, 6 C , is defined by the equation

0 c=sin- 1 (n2/nx). (12)

Fresnel's law, in its general form, is expressed as:

_ , cos dj—

n

2 cos 6 r~V
p

\_nx cos Qi+rh cos 8 rj

Vn2 cos dj—nx cos 0 rT
\_n2 cos d t -\-nx cos 0 rJ

where p is the reflectance of the interface for

unpolarized incident flux. Equation (13) can be
reduced, by substituting for n x or n2 from equation

(11), to

fsin2 Ran2 fo-m
(

,

P~ 1/2
Lsin2

(ei+6r)r 1/2
Ltan2

(0i+0,)J
(14)

In equations (13) and (14) the first term gives

the reflectance for radiation polarized perpendic-

ular to the plane of incidence, and the second
term that for radiation polarized parallel to the

plane of incidence. The place of incidence is the

plane containing the direction of incidence and
the normal to the interface (surface). There is

some disagreement in the literature as to what
constitutes the plane of polarization. In this paper

it is defined as the plane containing the E (electric)

vector.

It can be seem from equation (14) that when
(d t+dT )

= Tr/2, tan (0i+0r) goes to infinity, and the

reflectance for radiation polarized parallel to the

plane of incidence goes to zero. The angle at
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flux emitted by a blackbody radiator at the indicated

temperature, for high temperatures, top curve; and low

temperatures, bottom curve.

which this occurs is known as the Brewster's
angle, 6B , and is defined as:

0B=tan-1n2AH (15)

Equations (11) through (15) were derived for

a perfect dielectric that is optically homogeneous.
Such a material has no absorption. Although no
real material conforms completely to this model,
the equations can be applied with no significant

error to transparent dielectric materials in general.

For materials of which the absorption coefficient

is not negligible, the complex index of refraction,

n*, must be substituted for the simple index of

refraction, n, in the equations.

n*=n-\-ik (16)

where i=V— 1, and k is the absorption index.

k=a\/4:w (17)

where a is the absorption coefficient, and X is

wavelength.
The absorption coefficient, a, is defined by the

equation

$x=$o exp(-aa:) (18)

where <i>z is the flux remaining after traversing
a thickness x of nonscattering material, and <£0 is

the flux at x=0.
Let us assume that we have an optically homo-

geneous specimen of a dielectric material, having
two parallel faces, A and B, that are optically
smooth and essentially infinite in extent, so that
edge effects can be neglected. We will further
assume that interference effects can be neglected.
This is a reasonable model for a sheet of polished
plate glass, or a single crystal of quartz or sodium
chloride, for instance. When a beam of radiation
is incident on surface A of such a specimen, it is

partly reflected and partly refracted, according to

the Fresnel equation (13) or (14). The radiation
that is refracted is transmitted undeviated until

it hits the second surface, B, where it again under-
goes reflection and refraction according to the
Fresnel equation. In its course through the ma-
terial, it is partially absorbed according to equa-
tion (18). By following the beam until it is com-
pletely absorbed or has left the specimen, we can
compute the reflectance, transmittance, and ab-

sorptance of the specimen. All of the flux initially

reflected by surface A plus that leaving the speci-

men through surface A makes up the reflected

portion, that leaving through surface B makes up
the transmitted portion, and that absorbed makes
up the absorbed portion. These portions divided

by the incident flux are the reflectance, trans-

mittance, and absorptance.

Gardon [6] gives a very complete account of

the emittance of isothermal transparent materials.

He derives a spectral volume emissive power, j\,

defined by the equation

:

j,=a
x
n 2MB^ (19)

whereMB ,\ is the spectral exitance of a blackbody
radiator at the temperature of the specimen.

MB ,x can be obtained from the Planck equation.

His final equation for the spectral radiance on
the inside of the surface, L.x{pXj at wavelength X

and angle <p for a specimen of thickness X is

:

L^=n2 [1— exp (—aX/cos <p) cos <p],

7T

(20)

and for the internal spectral irradiance on the

inside of the surface, jSJiXX) at wavelength X for a

specimen of thickness X,

EiXx=n2Mb,x[2- exp(- a*X)- (axX) 2-£i(- axX)]
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where the exponential integral £*(—p) is denned

as — = e~"q~
1
dq. The flux that is incident

internally on the surface of the specimen under-
goes reflection and refraction. All of the flux that

is incident at angles greater than the critical angle

is totally reflected. For a specimen thick enough
to be opaque, this is a fraction 1— 1 jn 2 of the total

flux. For a transparent specimen, the fraction is

larger. The critical angle, 9 C , is defined by equa-

tion (12). The fraction of the internally incident

flux that is incident at angles less than 6 C is re-

fracted to fill the entire hemisphere on the

external side of the surface, and the fraction trans-

mitted at any angle can be computed from equa-

tion (14) by setting d r as the internal angle of

incidence and 6 { as the external angle of refraction.

For transparent birefringent single crystals

each ray appears as two plane polarized compo-
nents with their planes of polarization normal to

each other, and the fraction of each component
is determined by the orientation of the ray relative

to the crystal axes of the specimen. For such a

specimen the index of refraction will be different

for the two portions of the ray, and because the

two portions are plane polarized, the two parts of

equation (14) must be used separately. As a

further complication, unless the plane of incidence

happens to include a crystallographic axis of the

crystal, neither of the planes of polarization will

be in the plane of incidence. The situation where
there is a thermal gradient normal to the surface

of the specimen has been treated in a second paper
by Gardon [7].

For an optically inhomogeneous specimen, the
situation becomes so complex that Gardon's ap-

proach is no longer valid. A single ray undergoes
so many internal reflections and refractions that

it soon loses its identity. Practically all poly-

crystalline materials fall into the category of

intensely scattering materials, which have been
treated by Kubelka [8] and by Hamaker [9]. The
scattering occurs by reflection and refraction

whenever the index of refraction of the material
changes along the path of the ray, primarily at

pores, grain boundaries, or inclusions. For mate-
rials of this type, an entirely different mathemati-
cal treatment is required.

Consider a specimen of very large area, so that

edge effects may be neglected, that is irradiated

diffusely over its entire area. Under steady-state

conditions, the incident flux not reflected at the

surface will penetrate into the specimen, diminish-
ing with the depth of penetration; the amount
of the diminution at any point along a plane
parallel to the surface will be a function only of

the distance of the plane from the surface. Under
these conditions a one-dimensional analysis can be
used. All flux lost by lateral scattering will be
compensated by an equal gain through similar

scattering from the surrounding area.

The flux is separated into two portions, /,

traveling outward from the interior of the speci-

men, and J, traveling inward from the surface,

both traveling normal to the plane of the surface.

Both are attenuated by scattering and absorption.

A diffuse absorption coefficient, K, is defined by
equating KI dx to the reduction in I by absorp-

tion within an infinitesimal layer dju. It should be
noted that the diffuse absorption coefficient, K,
is exactly twice the absorption coefficient, a,

referred to previously. A diffuse backscattering
coefficient S is similarly defined by equating SI dx

to the flux scattered backwards from / and added
to J in the layer dx.

Within the distance dx the flux / will be dimin-
ished by absorption and backscattering, and
reinforced by the flux backscattered by J. Hence
we can write:

dI/dx=-(K+S)I+SJ, and (22)

dJ/dx=(K+S)J-SI. (23)

These are the basic differential equations used by
Kubelka [8], Hamaker [9], and others.

Klein [10] derives the following equations for

those materials where there is essentially no
specular reflection at the surface. These equations

should apply to most unglazed ceramic specimens,

particularly if the surface is not polished:

(1— ft,
2
) sinh<r0Z)

p~(l+,82
) sinh (ToD+2/30 cosh cxJD

2ffo (Bp sinh o-0J>+cosh a0D— 1)a-
(l+(82

o) sinh <toD+2I30 cosh aJD

T= (24)
(l+ft>

2
) sinh <r0D+2l3o cosh aJ)

V '

in which p 0=[K/(K+2S)] 1/2
,

a 0=[K(K+2S)] 1/2
, and

D= thickness of specimen.

Equation (24) has been further developed [11]

to include the effects of external specular reflec-

tance of the specimen and internal specular

reflection at both surfaces of the specimen. The
final equation is

:

p(27r;2x)=pe+ (l-Pe)(l-p ! )

( 1- ft,)Afe"Q°- (1+ &,) Oe-'o
0

,

?)X MNe°oD-OPe-°oD K
'

where p(27r;27r) is the hemispherical reflectance

of the specimen for completely diffuse irradiation,

pe is the specular reflectance of the specimen front

surface for externally incident diffuse flux, p, is

the specular reflectance of the specimen front

surface for internally incident diffuse flux, ps is
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the specular reflectance of the specimen back
surface for internally incident diffuse flux, and

Af=(l+/30)-A.(l-jS0),

AT=(l+/3o)-p*(l-/3o),

O=(l-j8o)-p,(l+.j8„),

P=(l-/3 0)- Pi(l+/3o).

For a specimen thick enough to be completely
opaque, equation (27) reduces to:

nt9-.<hr\— n |

(1— Pe) (1— Pi) (1— ft))
p(2rr,2,)- Pe+ (28)

and for such a specimen:

e(27r)= l-p(27r;2ir), (29)

which states that the hemispherical omittance is

equal to one minus the hemispherical reflectance
for diffuse irradiation.

The absorption coefficient, either a or K, is

primarily a function of composition, and is usually
not greatly affected by the structure. However,
for some impurities, the effect on the absorption
coefficient will depend on whether they are present
in solution in the crystals of the primary con-
stituents or as separate crystallites at grain
boundaries, and if present as crystallites, by their

size. The scattering coefficient, on the other
hand, is markedly affected by the structure of the
specimen, particularly the grain size and porosity.

A few years ago we observed an interesting
example of the effect of the form in which impuri-
ties are present on the thermal radiation properties
of a ceramic material. We are making some meas-
urements on sintered magnesium oxide. The
material as received was a dirty brown color,

which we assumed was due to contamination by
iron oxide. A specimen was treated with hydro-
chloric acid in an effort to remove the contaminant,
then washed and heated with a torch to drive off

any remaining chlorides. After this treatment
the specimen was white, and we assumed that
the contaminant had been removed. However,
when the specimen was heated in a furnace for

measurement of its emittance, it regained its

dirty brown color on cooling to room temperature.
We then discovered that the color change was
reversible. When the specimen was cooled rapidly
from a high temperature, it was white; when
cooled slowly, it was dirty brown. The explanation
offered was that the impurity, presumably iron

oxide, went into solution in the MgO crystals at

high temperature, and remained in solution on
rapid cooling, where it had little effect on reflec-

tance. On slow cooling, the impurity precipitated

out at grain boundaries, where it had an appreciable

effect on reflectance.

Typical values of j8 0 , 0o> & and K are as follows.

For a highly opaque white porcelain enamel with
a reflectivity of about 0.9, /3 0=0.05 and o- 0=50
mm" 1

, K=2.5 mm" 1 and £=500 mm-1
. For a

polycrystalline ceramic with a reflectivity of

about 0.82 that is essentially opaque at a thick-

ness of 3 mm, the values would be /3 0=0.1,
0-0=1.67 mm" 1

, #=0.167 mm" 1 and S=8.25
mm-1

. For a material with a reflectivity of about
0.6 that is essentially opaque at a thickness of

25 mm, /30=0.25, o- 0=0.2 mm-1
, K=0.05 mm" 1

and #=0.375 mm-1
. A material such as an

opalescent glass might have these properties.

In general, K can vary from near zero for materials
composed of highly transparent crystals, to a
value as high as 50,000 mm-1

for some metals at

some wavelengths. S will vary from near zero
for an optically homogeneous material such as an
optical glass or a pure metal to a high of perhaps
1000 mm-1

for some white paints. It should be
emphasized that for light-scattering materials

the reflectivity is related to /3 0 , which is a function
of the ratio of K to S, and not to the absolute
value of either K or S, while the extinction

coefficient, which determines the opacity of a

material, is related to the product SK.
The usual laws of reflection and refraction at

an interface between two materials of different

indices of refraction, equations (14) and (11)

above, apply only if there is a finite thickness of

material on each side of the interface. This finite

thickness is of the same order of magnitude as the

wavelength of the radiation involved. The phe-

nonemon can be explained quantitatively in terms

of frustrated internal reflectance [12]. If two 45°

totally reflecting prisms are placed so that their

totally reflecting surfaces are parallel, and are

then brought slowly together, the totally reflecting

surfaces will begin to transmit as they approach

each other. The transmission for polarized radia-

tion with its electric vector in the plane of inci-

dence is given by

where p is the reflectance of the interface, r is its

transmittance (p+t=1), iVis the index of refrac-

tion ratio, d is the distance separating the prisms

and X is the wavelength of the radiation involved.

For these conditions, p/t=% that given in equa-

tion (30) when the electric vector is normal to the

plane of incidence. The index of refraction ratio is

N=n-il,n2, where n x is the index of the prisms and

n2 is that of the layer. When the layer is vacuum,
N=nu When it is air, N=n1 with an error of

about 3 parts in 10,000.

Because of this phenomenon, there is a marked
effect of the size of particles such as inclusions,

crystallites, or pores on the scattering efficiency

of each particle. The scattering efficiency per

particle will decrease markedly with diameter
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below a critical diameter. As a rough approxima-
tion, the total scattering power will be propor-
tional to the total interface area, and from this

standpoint the scattering particles should be as
small as possible. The net result of the two effects

is that there is an optimum size for scattering
efficiency. A study of rutile pigments in paint
[13] has shown that in this case the optimum
diameter of the pigment particles is about 0.4

times the wavelength of the light being scattered.

The scattering power of a particle diminishes as

the distance separating it from its nearest neigh-
bors becomes less than the critical distance
mentioned above. On this basis the maximum
scattering power per particle would occur when
particles of the optimum size are separated by a
distance at least equal to their diameter. If

spherical particles were arranged in a cubic array,
this would occur at volume concentrations of

particles of less than about 6.6 percent. Actually
the total scattering for all particles increases as
the number of particles increases, because of the
increase in total interface area, until the particles

get so closely packed that the decrease in effective

interface area is greater than the increase in total
interface area. Reference [13] indicates that for
the rutile pigment studied, the maximum total

scattering occurred at a pigment volume con-
centration of about 25 percent.

Radiant heat transfer within and from optically
inhomogeneous materials with no specular reflec-

tion at the surface is covered by Hamaker [9] and
Klein [10], for the case where there is a thermal
gradient in the material.

5. Thermal Gradient Problems

The general physical properties of ceramic
materials combine to make thermal gradients a
serious problem in the evaluation and use of
thermal radiation properties of ceramics. Ceramic
materials in general tend to be somewhat trans-
lucent, and hence emit and absorb thermal radia-
tion within a surface layer of appreciable thickness.
Ceramic materials in general also have low thermal
conductivity and high total emittance as compared
to metals. These properties combine to produce
th ermal gradients within a heated specimen unless
careful precautions are taken to minimize such
gradients. The gradients tend to be normal to a
surface that is emitting or absorbing thermal
radiation. As a further complication, the gradients
tend to be nonlinear near such a surface.
When a specimen is emitting from a surface

layer of appreciable thickness with a large thermal
gradient normal to the surface, it has no unique
temperature, and it is difficult to define an effective
temperature for the emitting layer. Emittance is

denned as the ratio of the flux emitted by a speci-
men to that emitted by a blackbody radiator at

the same temperature and under the same con-

ditions. It is thus necessary to define an effective
temperature for the nonisothermal specimen

before its emittance can be evaluated. If the
effective temperature is defined as that of the

surface, a specimen with a positive thermal
gradient (surface cooler than interior) will emit
at a greater rate than an isothermal specimen at

the same temperature, and in some cases may even
have an "emittance" greater than 1.0. If the
gradient is negative (surface hotter than interior)

it will emit at a lesser rate. If the "effective

temperature" is defined as that of an isothermal
specimen that emits at the same rate as the non-
isothermal specimen, we find that the "effective

temperature" is difficult to evaluate even if the
extinction coefficient and thermal gradient are

accurately known. Also, if spectral emittance is

desired, we find that the extinction coefficient,

and hence the thickness of the emitting layer,

varies with wavelength, and we have the anomolous
situation of a specimen whose effective temper-
ature varies with wavelength. There is no com-
pletely satisfactory solution to this problem.
The Planck equation does not apply to a non-
isothermal specimen, and any attempt to apply it

to such specimens will result in errors. Because of

these considerations, all measurements of emit-

tance of ceramic specimens should be made under
conditions where thermal gradients within the
specimen are as small as possible.

6. Methods of Measurement

The properties of reflectance, absorptance, and
transmittance for most materials, and particularly

ceramic materials, are not strong functions of tem-
perature, and hence these properties can be meas-
ured on nonisothermal specimens with but little

error. However, such measurements are not easy
to make on hot specimens. First, all of the reflected

or transmitted flux must be measured, which in-

volves collection over a hemisphere. Such meas-
urements are difficult at wavelengths beyond about

2.5Mm, where conventional integrating sphere coat-

ings decrease markedly in reflectance. Second, the

small amount of reflected or transmitted flux must
be measured in the presence of a much larger

amount of flux emitted by the hot specimen. Such
measurements require the use of chopped incident

flux and synchronous amplification of the signal

from the detector.

Because of the difficulties mentioned above,

most measurements of thermal radiation proper-

ties of ceramic materials have been direct emit-

tance measurements, where the flux emitted by a

hot specimen is measured and compared to that

emitted by a blackbody reference at the same
temperature.
Any temperature difference between the speci-

men and reference blackbody will cause an error

in the measured emittance that is much larger

than the percentage difference in absolute tem-

perature. For total emittance measurements, the

percentage error in emittance is approximately

four times the percentage difference in tempera-
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ture. This is illustrated in figure 4 for a one percent
difference in temperature. As seen in figure 4,

curve B, the error in spectral emittance can be
much larger at wavelengths shorter than the peak
in the Planck curve, A.

In most cases where direct emittance measure-
ments of ceramic specimens have been made, an
effort has been made to heat the specimen
under conditions where the thermal gradients are
kept as small as possible. This may involve alter-

nate heating and viewing of a moving specimen.
The specimen is enclosed in a furnace where it is

heated then moved in front of a cooled port where
it is viewed briefly. It may also involve alternate
heating by radiation and viewing of a stationary
specimen, where the periods of heating and view-
ing are controlled by rotating shutters. Movable
specimens have been tested in the form of a rotat-

ing disc [14, 15, 16, 17], arotating cylinder [18,19],

or as discs mounted on an oscillating beam [20].

Stationary specimens have been heated in an arc-

image furnace [21, 22, 23, 24] and in a solar

furnace [25].

In the case of a moving specimen that is alter-

nately heated and cooled, the specimen will reach
a steady-rate temperature, and if the motion is

rapid enough that the viewing time is short, the
temperature fluctuation of the viewed surface will

be so small that it can be neglected.

Photon conduction does not generate a thermal
gradient in a material. The photons pass through
the material without affecting it in any way until

they are absorbed. As a result, a specimen that is

heated by radiation tends to have a small thermal
gradient normal to the heated surface. The radia-

tion is absorbed within the surface layer from
which the emitted radiation originates, and after

the specimen has reached a steady state condition,

there is little phonon conduction within the sur-

face layer. If the time periods during which the
specimen is alternately heated and viewed are

brief, the temperature fluctuation of the specimen
will be small. Usually these periods are only a
fraction of a second. With both moving specimens
and radiantly heated stationary specimens the
thermal gradients normal to the surface can be
reduced to a point where they do not introduce a
significant error into the measurement.
The rotating cylinder method used at the Na-

tional Bureau of Standards [18] will be described
briefly. The specimen was a hollow cylinder
25 mm (one inch) in diameter and 25 mm (one
inch) high, with an outer surface ground to be
round to about .05 mm (0.002 in). A cross sec-

tional view of the furnace is shown in figure 6.

The specimen was mounted on top of an alumina
pedestal, which revolved inside a platinum-wound
resistance furnace. The winding of the furnace
was designed so that there was no axial thermal
gradient along the specimen. The specimen re-

volved in front of a water-cooled viewing port. A

theoretical analysis [26], confirmed by temperature
measurements at a point near the surface of a

rotating specimen, indicated (1) that the temper-
ature drop at a point on the surface of the rotating

specimen as it passed in front of the viewing port
was inversely proportional to the speed of rotation

of the specimen, and was only about 2 K at a speed
of 50 rmp, and (2) that the temperature measured
by a stationary, radiation-shielded, thermocouple
located at the center of the hollow rotating speci-

men was the same within about 1 K as that
measured by the thermocouple imbedded near the
surface of the rotating specimen.
The flux from the hot specimen was focused on

the entrance slit of one beam of a double beam
infrared spectrometer, and the flux from a lab-

oratory blackbody furnace was focused on the

entrance slit for the second beam of the spectrome-
ter. The blackbody furnace was controlled to the

same temperature as the specimen. The spectrom-
eter automatically scanned over the spectral

range of 1 to 15 jum, and plotted the ratio of the

signals from the two beams, which after correction

for spectrometer errors, was the normal spectral

emittance of the specimen.
Typical data at 1400 K for alumina, thoria,

magnesia and zirconia are shown in figures 7, 8, 9,

and 10. The curves are similar in several respects.

The emittance is low at short wavelengths, where
the absorption coefficient for these materials is

low, and high at long wavelengths, where the

absorption coefficient is high. The location of the

absorption edge, the steep part of the curve
connecting the high and low portion, and its

slope, is different for different materials. The height

of the low-emittance and high-emittance portions

of the curve is also different for the different

materials. The effect of temperature on the

spectral emittance at several wavelengths for

these materials is shown in figure 3. In general,

the spectral emittance increases with an increase

in temperature, and the percentage increase is

greater at short wavelengths, where the emittance

is low, than at long wavelengths, where the

emittance is high. The absorption edge also tends

to move toward a shorter wavelength as the tem-
perature is increased, but the change is not large.

7. Summary

The terminology in the field of thermal radiation

properties and radiant heat transfer has been

reviewed, and the equations relating the thermal

radiation properties of ceramics to their optical

properties of index of refraction, absorption coeffi-

cient, and scattering coefficient have been given.

The problems involved in measuring the thermal

radiation properties of ceramic materials have

been discussed, one specific method has been

briefly described, and data on alumina, thoria,

magnesia, and zirconia presented.
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Figure 6. Cross-sectional view of the rotating cylinder specimen furnace used in measuring
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Figure 7. Normal spectral emittance of commercially pure
alumina at 1400K.
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Figure 10. Normal spectral emittance of commercially pure
zirconia at 1400K.
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Figure 9. Normal spectral emittance of commercially pure
magnesia at 1400K.
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Elastic deformation of ceramics is reviewed first from a continuum, thermodynamic
point of view; nonlinear effects and pressure dependence of elastic moduli are included.

The results of several important technological problems, including wave propagation,

resonance, and the effects of gross microstructure on elastic moduli, are discussed in terms
of continuum elasticity. The atomic theory of elastic moduli is then briefly sketched from
the lattice dynamics point of view and correlations of other physical properties with elastic

moduli are discussed. Finally the measurement of elastic moduli and the characterization

of ceramics with respect to elastic moduli are considered.
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1. Introduction

Anyone reading in modern elasticity theory
might well obtain the impression of a vast and
complicated field with little contact with labora-
tory experiment or technological practice. Yet
much of that theory is based on sound analysis.

Its applicability and relevance of some of its

results cannot be seriously doubted. The more
experimentally inclined and the more techno-
logically interested should be given a clear state-

ment of the principal conclusions derived. This
then is such an attempt at a review of elastic

theory for the ceramist.
Elastic properties of ceramics are of interest to

a variety of scientists and engineers in relation

to a wide range of problems. They provide one of

the most direct measurements of chemical bonding
and accordingly are needed as basic data in calcula-

tions of cohesive energy, surface energy, theoretical

strength of crystals, a wide range of properties

such as specific heat which are interrelated by
lattice dynamics, point defect properties, and dis-

location properties. They are needed for direct

engineering use in calculating the stress distribu-

tion and deflection of structures under static load

and their resonances under dynamic loads, the

values of thermal stresses, and the stress distribu-

tion in composites. They are needed in designs of

electromechanical transducers and of various

devices employing ultrasonic wave propagation.
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Elastic properties are needed to interpret wave
propagation in the earth as used in fundamental
studies of its composition, in prospecting, and in
study of soils. Elastic moduli, or quantities
directly dependent upon elastic moduli, are
sometimes measured as a quality control tech-
nique. We seek here to provide sufficient back-
ground knowledge on the elastic properties of

ceramics and the factors upon which they depend
to facilitate their use in such applications. We
hope also to convey some impressions of the
interesting and active research going on in many
areas of elasticity.

Solids respond to the application of stress by
undergoing deformation which may be either
elastic (i.e. recoverable) or plastic (i.e. not re-

coverable). This definition of elastic deformation
includes not only instantaneous deformation which
is linearly proportional to the stress, but also

includes deformation which is time dependent
and/or nonlinearly related to stress, provided the
deformation is fully recoverable in time, however
long. The subject of elasticity is frequently de-
veloped by introducing empirical relations between
stress and strain, but may also be developed from
the point of view of thermodynamics in which a
generalized form of the Helmholtz free energy is

written as a function of the strain and temperature.
The usual stress-strain relation at constant temper-
ature is then obtained by differentiating the free

energy; the second derivatives are the isothermal
elastic constants. This thermodynamic approach
is useful in treating the relation of the elastic

properties of solids to other properties; solids also

respond to stress by changes in their thermal,
electrical, and magnetic properties. The latter

are not properly a part of the subject of elasticity,

but a number of equations can be derived from
thermodynamics which express relationships be-
tween the value of an elastic property measured
under one condition, such as constant electric

field, to the value of the same property measured
under a different condition, such as constant
electric displacement.

In the usual thermodynamic development of

elasticity one treats a solid as a continuous
material and the resulting treatment is strictly

applicable only to volumes containing many
atoms. Within this limitation many important
scientific and technical problems can be treated.

Section 2 of the present paper outlines the develop-
ment of continuum elasticity including a brief

discussion of single crystal effects (anisotropy) and
nonlinear effects.

In section 3 the use of the continuum theory to
solve various problems of technological importance
is considered. The application of this theory to
resonance, wave propagation, and the relation of

the texture and microstructure of ceramics to
their elastic properties is briefly discussed.

Section 4 discusses the relation between the
atomic structure of solids (including defects) and
their elastic properties. On one level this involves

lattice dynamics in which each atom is treated

as a point mass (or as a point mass and concentric

shell) connected by springs to other atoms; the

resulting theory leads to useful relations between
elastic properties and a variety of other proper-
ties such as specific heat, index of refraction,

dielectric constant at low frequency, cohesive

energy, and surface energy. If nonlinear springs

are used, relations to anharmonic properties such
as thermal expansion, thermal conductivity, and
high frequency scattering result. On a deeper
level elastic properties should be derivable by
detailed calculation starting from fundamental
constants; recent work in this area is beyond the
scope of this paper. Some physical properties,

such as phase changes and solid solution effects,

are discussed in section 4. The effect of structural

defects in producing anelastic (time dependent
but recoverable) deformation is then discussed.

In section 5 special topics including elastic

moduli of graphite and the correlation of other
physical properties with elastic moduli are dis-

cussed. Experimental techniques for determining
elastic properties have been greatly improved by
modern electronic instrumentation. These tech-

niques are described and estimates of their

accuracy are given.

The paper is concluded with a discussion of

the features of composition and microstructure

upon which elastic properties of ceramics depend.
Throughout the paper, qualitative features are

described and just enough mathematics is intro-

duced to indicate the manner in which the quan-
titative treatment is developed; the mathematic
details are left to the references as much as

possible. The subject, however, demands the in-

troduction of an appreciable number of symbols
and the use of a subscript notation; the symbols
approved by IRE [1]

1 are used (except that we
retain £ and T without subscript as entropy and
absolute temperature respectively), and are sum-
marized in table 1. Table 2 lists the International

System of Units [2] and their equivalents in some
of the customary engineering units.

Tables listing numerical values of various elas-

tic properties are given as the properties are

introduced. In selecting data for each table, the

contemporary definition of ceramics as inorganic,

non-metallic materials was used, and accordingly

data on some important semiconductor materials

is included, but data on alkali halides are not
included because these are extensively covered

elsewhere [3].

Data on some refractory materials (here con-

sidered as materials melting above 1000 °C)

other than ceramics are also included because

one of the major applications of ceramics is at

high temperatures so that a comparison with

other high temperature materials is of interest.

The literature on single crystal elastic constants

through 1964 has been surveyed in a pair of

1 Figures in brackets indicate the literature references at the end of this

paper.
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Symbol

A=U-TS

A,A*
A(ijk)

a=(ai, a2 ,
a3)

B
Cijk imn

Cijkl
.

Cij

C

d
E

3
G=H-TS
G= ji

H= U+pV
Kn

k

i_

m
n

P
P

R
r

S

Si

T

T

Table 1. Symbols

Quantity

Helmholtz free energy per unit
mass.

Anisotropy factors.

Constants in nonlinear stress-

strain relation.

Initial position vector.

Bulk modulus.
Third-order elastic constants in

tensor notation.

Third-order elastic constants
in matrix notation.

Second-order elastic constants
in tensor notation.

Second-order elastic constants
in matrix notation.

Velocity of light.

Specific heat at constant pressure
or volume.

Diameter of cylinder.

Thermal energy.
Force per unit area.

Frequency.
Gibbs free energy per unit mass.
Shear modulus.
Enthalpy per unit mass.
Thickness correction factor for

longitudinal vibration of a
slender cylinder.

Boltzmann's constant, also wave
number.

Unit normal to plane.

Length of rod or bar.

Reduced mass.
Index of refraction, also mode
number for resonance.

Porosity.

Pressure, also number of atoms
per molecule.

Gas constant.

Interatomic spacing.

Entropy per unit mass.
Infinitesimal strain in tensor

notation, also spheroidal mode
of sphere.

Infinitesimal strain in matrix
notation.

Second-order elastic compliances
in tensor notation.

Second-order elastic compliances
in matrix notation.

Absolute temperature, also cor-

rection factor in flexural

vibration of slender bar or rod.
Stress components in tensor

notation, also torsional modes
of sphere.

Stess components in matrix
notation.

Thickness of plate.

Table 1. Symbols—Continued

Symbol

tij

u

u
u=(uuu2,u3 )

V
v

Y
ze

a

7
8

€0

i=G

V

"0

p

X
CO

Quantity

Thermodynamic tension in
tensor notation.

Thermodynamic tension in
matrix notation.

Internal energy per unit mass.
Motion vector.

Volume.
Velocity of sound; v { for longi-

tudinal, vs for transverse.
Final position vector.

Young's modulus of elasticity.

Ionic charge; e= electronic charge.
Linear thermal expansion coeffi-

cient.

Volume thermal expansion co-
efficient.

Gruneisen's constant.
Griineisen's second constant.

Finite strain components in tensor
notation and spatial description
(sometimes called an Eulerian
description).

Finite strain components in matrix
notation and spatial descrip-
tion.

Static dielectric constant.

Finite strain components in tensor
notation and material descrip-
tion (sometimes called a
Lagrangian description).

Finite strain components in matrix
notation and material descrip-
tion.

Lame second-order elastic con-
stant for elasticially isotropic

material, also wavelength.
Lame second-order elastic con-

stant for elastically isotropic

material.

Poisson's ratio.

Long wavelength limit of the
frequency of the transverse op-
tical mode of vibration.

Density.

Compressibility.

Angular frequency.

Table 2. Units

Quantity
Inter-

national
unit

Value in other commonly used units

Volume m 3 10« cm3 =35.314 ft 3 =6.1024X10< in3

Pressure N/m2 10 dyn/cm2 =1.450X10-< psi=1.020X10-«
kg/cm2

Energy J 0.239 Cal (gm)
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excellent papers [3, 4] which draw on a number
of previous surveys [5-9]. We have accordingly
concentrated on listing values published since

1964, but have included some of the older data
for comparison. The engineering data on elastic

modidi of polycrystalline ceramics has been
surveyed [10] and several other useful compilations
of elastic properties and related properties of

ceramics have recently been published [11-13].

2. Continuum Elasticity

2.1. Thermodynamics and Simple Pressure-
Volume Relations

The simplest type of elastic behavior is the

change of volume (and sometimes of shape) in

response to pressure (i.e., to isostatic stress).

If the solid is isotropic (i.e., if its properties do
not vary with direction), its shape will not change
under pressure and its equation of state is simply
its volume as a function of pressure and temper-
ature. The exact functional form of the equation
of state is not known for any solid; a power
series approximation is commonly used. Overton
[14] has discussed the equivalence of Bridgman's
form of the equation of state,

V(T,p)=V(T,p=0) [\-al {T)p+a2 {T)p>+..\, (D

to that of Slater,

V(T,p)=V(T=0,p=0) [l+A0 (T)-a\(T)p
+a2

8

(7V+..], (2)

where V— volume, p= pressure, T= absolute tem-
perature, superscript s refers to Slater's param-
eters, a0 is a function of temperature which gives

the volume expansion at zero pressure, and the

remaining a's are empirical functions of tempera-
ture which express the elastic properties. In
general, contribution of higher terms is small.

To give a complete thermodynamic description,

these elastic properties are needed together with
the thermal expansion and specific heat. These
data permit the internal energy, U, and the
entropy, S, to be calculated from which the
enthalpy, H= U-\-pV, the Helmholtz free energy,

A= U— TS, and the Gibbs free energy,

G= U-\-pV— TS can be calculated.

Randomly oriented polycrystalline ceramics and
glass are isotropic so that either equation (1) or (2)

provides a complete description of their elastic

response to isostatic pressure, but the behavior of

anisotropic ceramics such as single crystals re-

quires the introduction of strain and stress with
a corresponding increase in complexity of notation.

Even for isotropic ceramics, however, strain and
stress must be introduced to describe their elastic

response in other situations such as in bending.
Before going on to do so it is helpful to use the
conceptually simple pressure-volume relationship

to illustrate some points concerning the distinc-

tions between adiabatic and isothermal values

and between linear and nonlinear behavior.

The isothermal bulk modulus, BT , is defined as

the reciprocal of the isothermal compressibility,

Xt, defined by

From equation (1) the compressibility is given by

xT ( T,p) = [a, ( T)- 2a2(T)p)V( T,p=0)/V( T,p)

.

(4)

For small pressures, the second term can be
neglected and the volume ratio taken to be unity

so that xAT,p=0)=ai(T). This is the quantity
commonly measured in static tests at relatively

low pressures. Even at modest pressures the second
term can be determined, however, by using high-

accuracy ultrasonic velocity measurements and
the results used to predict behavior at high pres-

sure. The calculations involve some complexity in

converting from transit time data to elastic

properties which we will not consider here, and
also necessitate careful handling of the values of

bulk modulus measured at different pressures

because a pressure dependent volume enters into

equation (4). Another complication arises because
ultrasonic measurements give adiabatic rather

than isothermal values. The conversion equation

from the adiabatic to the isothermal compressi-

bility is

XT=Xs+W/pCp (5)

where /3 is the volume thermal expansion coeffi-

cient, p is the density, and Cp is the specific heat

at constant pressure [15]. These latter values are

all to be taken at the pressure of measurement.
Cook [16] has derived equations which permit one

to combine specific heat and density measured as

a function of temperature at a single, fixed pressure

with ultrasonic data measured as a function of

pressure and temperature to calculate Xr{T,p). A
modified form of these equations, due to McSkimin
[17] was used by Anderson [18] to obtain the

isothermal compressibility of vitreous silica over

the range 0 to 300 K and 1 atm to 8000 atm.

Thurston [15, 19] has reviewed the calculations

necessary if the solid being studied is anisotropic

as well as nonlinear. Anderson [20, 21] has fol-

lowed Murnaghan in assuming that the bulk

modulus is a linear function of pressure given by

B(p,T)=B0(T)+B' 0(T)p (6)

and has applied the resulting Murnaghan logarith-

mic equation [21]

ln(Vo/V)= (5'c)-
1 ln[B' 0(p/B0)+ 1] (7)

and a similar equation due to Birch to a variety

of metals and ceramics. He evaluated the param-
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eters B0 and B' 0 from ultrasonic data taken in the
pressure range 0 to 4 kbar and found that the
resulting equation was in reasonable agreement up
to quite high pressures, for example up to 1500
kbar for A1203 as shown in figure 1

.

Simple thermodynamic manipulation leads to
the relation

This is a useful expression for the isothermal bulk
modulus which involves only the internal energy
as a function of volume and does not involve the
pressure explicitly. Similar expressions give various
other isothermal elastic constants as second
derivatives of the Helmholtz free energy with
respect to various strain components, as we shall
see. These expressions are useful in discussing the
coupling of elastic properties to electrical and
magnetic properties. For the elastic properties to
be accurately defined, the electrical and magnetic
state must be specified during the deformation.
This may be accomplished by holding the electric

and magnetic fields constant, or, as one of several
other possibilities, by holding the electric polariza-
tion and the magnetic field constant. The resulting
elastic properties will generally have slightly
different values; equations relating the two sets of

0-60 1 1 I I I
|

0 250 500 750 1000 1250 1500

PRESSURE (KBARS)

Figure 1. Compressibility of AI2O3.

Solid line calculated from data taken at pressures below
2 kbar using the Murnaghan equation (7). See
Anderson [21] for details of calculations and references
to experimental work.

values can be derived by using the appropriate
expressions similar to equation (8) as described in

detail by Nye [22].

In the following sections we sketch the mathe-
matics necessary to extend the foregoing to

stresses other than simple pressure and to defor-

mations which involve change of shape as well as

change of volume. It is simplest to first introduce
the stress and strain in a form suitable for de-
scription of small deformations; this is the sub-
ject of infinitesimal elasticity and is the level on
which engineering problems in elasticity are
usually solved. A complication arises because
the strains and stresses are second rank tensors
and so would normally be written with two sub-
scripts, but are instead usually written with one
subscript because they possess a symmetry which
allows this to be done. A second complication
arises from the fact that some of the engineering
strains differ by a factor of two from the strains

in tensor notation commonly used in modern
treatments of elasticity because of the conven-
ience of the latter in expressing the orientation

dependence of elastic moduli. For elastically

isotropic bodies, such as glass and randomly
oriented polycrystalline ceramics, the equations
relating stress and strain take a simple form. For
all single crystals, including cubic crystals, the

equations take on a similar form but have more
terms which increase in number for less symmetric
crystals. Another complication arises for single

crystals; the value of the elastic constants depends
on the orientation of the coordinate axes used to

describe the deformation. In using single crystal

elastic constants one must bear this in mind.
When the strain is large and accurate treatment

is required, finite elasticity must be used. A new
definition of strain must be introduced and a dis-

tinction must be made between the use of coor-

dinate axes fixed in space (giving a spatial or

Eulerian description) and coordinate axes which
move with the deforming material (giving a

material or Lagrangian description). The stress

previously defined in infinitesimal elasticity is

appropriate to a spatial description; for a material
description a related concept, the thermodynamic
tension, is appropriate. Throughout the treatment
of either infinitesimal or finite elasticity the

distinctions previously mentioned concerning the

difference between adiabatic and isothermal be-

havior and the specification of electrical and
magnetic state remain necessary.

2.2. Stress

Stress is simply the force per unit area with
which the material on one side of a chosen surface

acts on the material on the other side. We see

from figure 2 that two vectors are required to

specify stress for a particular surface. One vector

is required to describe the orientation of the surface

and is drawn perpendicular to the surface; the

other describes the force per unit area on the
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z = x,

Figure 2. TTie force, F, acting on a surface with unit normal
vector 1.

surface and can have any orientation. The surface
can be chosen through a given point in an infinite

number of orientations: for each there will be a
different value of the force vector even though
the same stress is acting at the point. It can be
shown [22] that the stress acting at a point is

completely specified by giving six numbers; the
six stress components Tn ,

T22 ,
T33 ,

Tl2= T2l ,
T13=T31 ,

and T23=T32 . The force (with components Fx ,
F2 ,

F3) acting on a surface with unit normal (with
components lu l2 ,

l3 ) is given by [22]

Fi= Tnli+ Tl2l2 -\- T13l3 ,

F$= T21I1+ T22l2 -\- T23/3,

F3= T3ili-\- T32l2 ~\~ ^33^3-

The same equation can be written

and

F^J^TJj, i=l,2,3.
i=i

(9)

(10)

The stress components have the following physical
meaning

;
Ttj is the force in the x t direction acting

on a unit surface area whose normal is in the x,

direction.

These stress components written with two sub-
scripts are said to be in tensor notation. It is

convenient to introduce a single subscript nota-
tion, called matrix notation, by denning Ti=Tn ,

T2=T22 ,
T3~T33 , Ti=T23 ,

TB=T13 , and T6=T12 .

2.3. Strain

The components of strain at a chosen point in a
solid body are introduced to specify the deforma-
tion of a small region around the point. The strain
components are deliberately chosen to specify
only the deformation of this region and do not

include translation or rigid body rotation. Figure
3 is an illustration of the deformation of a body
which carries a portion initially at A 0B0CoD 0 into
ABCD. We specify the position of A0 by the
vector a; after being moved along the vector u, A 0

becomes A at position x. If the whole portion
AqBqCqDo moves by the same amount u, the
motion is simply one of rigid body translation.

We are therefore interested not in u itself, but in

how u varies as we examine different points, such
as D 0 , near A 0 and so we wish to know the values

of the set of 9 quantities at A0 (i,j=l,2,Z).

The same information is also provided by the set

of 9 quantities ^ which have the same value as

^4

if iy^j and are greater by one if i=j; these

quantities are called the deformation gradients
and the whole description of strain can be written
in terms of them as an alternative to using

^—1 [19, 23]. Either set of quantities is satisfactory

in that rigid body translation has no effect on
their values, but both sets are still affected by
rigid body rotation. We can, however, take com-
binations of either set which will exclude rigid

body rotation and so give a proper description of

strain.

In most engineering applications of ceramics,

the elastic strain is small enough to justify the
use of infinitesimal elasticity although some ex-

ceptions exist for very high strength materials,

for isostatic pressure applications, for devices

which exploit nonlinear behavior, etc. A strain is

considered infinitesimal if the largest of the

+ du C

Figure 3. Deformation of a portion A0B0CoDo of

a body into ABCD by a motion vector u which

is a function of position.

144



quantities is small (typically less than 0.01)

so that powers and products of the quantities
but~ can be neglected. Then the infinitesimal strain
oa,j

°

component S i; is defined by

The same symmetry holds here as for the stress

so that S12=S2i, S13=S3U and S23=S32 - As in the
case of the stress, these strain components written
with two subscripts are said to be in tensor nota-
tion. As with the stress, it is customary to introduce
a single subscript matrix notation, but factors of

2 are introduced into the definition of the shear
strains in matrix notation so that the whole set

of strain components in matrix notation is just

the usual engineering strains: Si= Sn, S2=S22>

S3=S33 ,
*S

,

4=2iS
,

23, S5=2Sl3 , and S6=2S12 .

The physical meaning of the infinitesimal

strains is illustrated in figure 4. The strain Si
refers to an increase from initial length I to l-\-Al in

the Xi direction with other dimensions remaining
constant. Its value is Si= Al/l. The strains $2 and
S3 refer to the same type of deformation along the
x2 and X3 axes respectively. The strain S6 refers to
a shear in the XiX2 plane and also has the value
Al/l, but now Al is measured at a right angle to
I. It thus corresponds to changing a square into a
parellelogram as shown. Si and $5 refer to the
same type of deformation in the x2x3 and xxx3

planes respectively.

These definitions of infinitesimal strain suffice

for infinitesimal elasticity and hence for most
engineering problems. When large deformations
or nonlinear effects must be treated, the definition
of strain in equation (11) is replaced by defining
the finite strain components given by

(12)

In this equation, the last term contains a repeated
subscript k, which is understood to mean a sum;
that is

buk du]s= Sy duk buk
(13)

1 *2
1

* 2

I AX

t

i I
1

*

1

1

1

1

1

1

1

Ml

S| = S|| S 6 =2S I2
=

x

2S 2I

Figure 4. Illustration of the strain components Si and Si.

When the partial derivatives are small, this term
can be neglected and the finite strain of equation

(12) reduces to the infinitesimal strain of equation

(11). A new feature arises here, however. The
finite strain of equation (12) is called the Lagran-
gian strain in a material description because the
independent variables, a { refer to points fixed in

the material. An alternate and equally valid

definition of finite strain is that of the Eulerian
strain or strain in a spatial description which is

defined by

= 1 fduj buj buk buk\
(

As the partial derivatives become small

bUi

dx,

approaches so that the strain of equation

(14) also approaches the infinitesimal strain of

equation (11). When the strain is finite, however,

77y is not the same as e u . Either can be used, but
one must carefully distinguish which is being
used as we shall see. The physical meaning of

these strain components in terms of the local

rotation and stretch of line elements in a deforming
body is discussed elsewhere [19, 23].

2.4. Linear Elasticity

For stresses small enough to allow use of infini-

tesimal strains, it is found that strain is propor-

tional to stress to a good approximation (Hooke's
law) . Thus a stress Tx will produce six strain

components for a body with no symmetry and all

can have different constants of proportionality

which we call the elastic compliances, s i} . These
strains are given by

S'i= Sn2i,
S2=s2iTi,

$3= 531 >

iS
,4=s4iT1 ,

Ss=sbiTi,

and S6=sSiTu (15)

If all six independent stress components are acting

simultaneously, these equations become the gen-

eralized Hooke's law, which is

Si= Si 1 Ti+ snT2+ s i3T3+ su T±+ S15T5+ s i6T6 ,

S2=s2iTi-\-s22T2 -\- s23 T3+ s2i Ti+

s

25T5+

s

26T6 ,

S3=

s

3 i Tx+

s

32T2+ S33T3+

s

34 Ti+

s

35T5+

s

36T6 ,

Si=

s

41 Ti+

s

42T2+

s

43T3+ S44 Ti+ S45T5+

s

46T6 ,

S5
= s51 Ti+

s

52 T2+

s

53T3+

s

54 Ti+

s

55T5+

s

56T6 ,

and (16)

S6
= s61 Ti+

s

62T2+

s

63T3+

s

64 Ti+

s

65Tb+

s

68T6 .

These equations can all be written in one line as

St=S ««2V, i=l, 2 . . . 6. (17)

These are six equations giving the six strains in

terms of the six stresses. Alternately we can solve
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these equations for the stresses in terms of the
strains and get

6

rf=X) CtjSj, i=l, 2, 6, (18)

where c {j are called the elastic constants and can
be calculated from the s tj and conversely [22].

For any material, it can be shown that sw=Sj4

and Cij=cn . This means that for a crystal of very
low symmetry (triclinic) there are 21 independent
elastic compliances or constants. Fortunately this

number is much reduced for higher symmetry
crystals being only 3 for cubic crystals and 2 for

isotropic materials. For each of the 32 crystal
classes, the scheme of elastic constants and com-
pliances has been worked out from the symmetry
elements possessed by the class and the results are
listed in many texts [3, 5, 7, 22]. In table 3 the
numerical values of the constants and compliances
are listed for a number of ceramics and some other
refractory materials. These data are the funda-
mental description of the linear elastic properties
of crystals. They are independent except that
conditions of crystal stability require some to be
larger than others [24, 25].

For cubic crystals the generalized Hooke's law
becomes

S1=su T1+s 12T2+s 12T3+0-\-0+0,

S2=Sl2T1+.SllT2+s12T3+0+0-\-0,

S3=s12T1+s12T2+snT3+0+0+0,

St= 0+O+O+S44T4+O+O,'

S5= 0+ 0+ 0+ 0 + S44
7'

8+ 0,

and S6= 0+0+0+0 +0 +s447V

(19)

Thus, for example, the application of a tensile

stress, Tu along the xx axis causes a tensile strain,

Si, along the x x axis and perpendicular tensile

strains, S2 and S3, which make up the contraction
expressed by Poisson's ratio. This ratio is defined

by v=—S2/S1 when only Tx is acting and so is

given by —s 12/sn . It is important to note that the
form of equation (19) depends on the reference

axes x xx2x3 being chosen along the usual axes of a

cubic crystal. If the axes are rotated equation

(19) goes over into equation (16) (usually written

with primes on the s {j to indicate a rotated system
of coordinates) even for a cubic crystal; in this

case each of the s'

'

tj of (16) is a complicated trig-

onometrical function of the orientation of the

axes and the three independent compliances

^44; and S12 of equation (19). For example:

s'u=Sn— [2(su— S12)— S44] [sin20cos20+ .25sin40sin2
2</>]

(20)

where 6 and
<f>

express the position of the x' 3 axis

in the usual spherical polar angles. The compliance

Table 3. Single crystal elastic constants of some non-
piezoelectric ceramics and some metallic refractory

crystals

In units of 10 10N/m2 for c„ and 10-i2m2/N for

Substance Subscripts of c, or «,, Refer-
ence*

Cubic

11 44 12

C (diamond) c

8

102.0
1. 12

49.2
2.07

25.0
-0. 22

[3]

Fe--_- C 23.0 11.4 13.5 13)

s 7.65 8.78 -2. 82

Garnet:
YA1G 33 3 11.

5

11.

1

T31

s 3. 60 8.69 -0.90

YGaG. c 29.0 9. 55 11.7 [3]

s 4.49 10.5 -1.29

YFeG c 26.9 7. 64 10.8 [3]

[26]

[26]

[27]

EuFeG—

8

C

C

4.83
26.8
25.1

13.

1

7. 66
7.62

—1.38
11.1

10.7
Natural
Almandite-
nvrnnp
garnet C 30.6 9.27 11.2

Ge c 13.

0

6. 70 4.90 [3]

s 9. 72 14.9 -2.66

MgO ... c 29.6 15.6 9.51 [28]

Mo
s

c

3.99
47.0

6.41
10.7

-0. 97
16.8 [29]

g

c

s

2. 62
44^1
2.92

9.36
12.2
8.22

—0. 69
17.2
-0. 82

[30]

Nb c 24.6 2. 87 13.4 [3]

8

3

6.60
23.

5

6. 54

34.8
2.82

35! 45

-2. 33
1. 21

-2. 22
[31]

Si 16.

6

7.96 6 4 [31

8 7^68 12! 6 -2. 14

Spinel (MgO
2.61 AI2O3)

Th ....

C

C

29.86
5. 152
7! 53

15. 76
6.347
4^78

15. 37
—1.751
4.89

[32]

[3]

3 27.2 20.9 -10.7

Th0 2 C 36.7 7.97 10.6 [3]

3 3. 13 12.5 -0.70

TJC — C 32.0 6.47 8.4 [3]

3 3. 51 15.4 -0.73

UO2 C 39.5 6. 41 12.1 [3]

3 2.96 15.6 -0.70

ViOt C 31.9 4.1 12.1 [33]

v...
8

C

3.96
22.8

24.4
4.26

-1.09
11.9 [3]

3 6.83 23.5 -2. 34

w_. C 51.5 15.6 20.4 [3]

8 2. 50 6.40 -0. 71

ZrC C 42.3 14.6 4.08 [34]

11

Hexagonal

33 44 12 13

Beryl c 28.2 24.8 6.86 9.94 6.59 [3]

3 4.20 4.51 14.6 -1.28 -0.82

Re C 61.2 68.3 16.2 27.0 20.6 [3]

8 2. 12 1.70 6. 16 -0.80 -0.40

11

Trigonal

33 44 12 13 14

Corundum
-2. 35 [35](AI2O3) c 49.7 49.8 14.7 16.4 11.1

3 2. 35 2. 17 6.94 -.716 -.364 .489
[36]c 49.0 49.0 14.5 16.5 11.3 -2. 32

Hematite
[3](Fe20 3) c 24.2 22.8 8.53 5.49 1. 57 -1.27

8 4.41 4.43 11.9 -1.02 -0.23 -0.79

See footnote at end of table.
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Table 3. Single crystal elastic constants of some non-
piezoelectric ceramics and some metallic refractory
crystals—Continued

Substance Subscripts of c,-j or s,-,- Refer-
ence*

Tetragonal, higher symmetry

11 33 44 66 12 13

Rutile (Ti0 2)_..- c 27.3 48.4 12.5 19.4 17.6 14.9 [37]

S 6. 55 2.59 8. 00 5. 16 -3. 76 -0. 86
c 26.6 47.0 12.4 18.9 17.3 13.6 [38]

s 6.79 2.59 8.07 5.30 -4. 02 -0. 80

Zircon c 7.35 4. 60 1.38 1.60 0. 90 -0. 54 [3]

s 13.9 22.1 72.0 62.0 -1.6 1.4

Tetragonal, lower symmetry

11 33 44 66 12 13 16

CaMo04 c 14. 47 12. 65 3.69 4.51 6.64! 4.46 1.34 [39]

s 9. 89 9.29 27. 10 24. 68 -4. 32 -1.96 -4.22
c 14. 50 12. 82 3. 67 4. 56 6. 18 4. 96 -1.46 [40]

8 9. 74 9.58 27. 22 24. 71 --3. 80 -2. 30 4.33

•References used by Hearmon [3] are not repeated in our list of references
except in a few cases where comparison with other data on the same material
is involved.

Sn is the reciprocal of Young's modulus (defined

as the ratio of an applied tensile stress to the
resulting parallel tensile strain) and s'n continues
to have this meaning when the coordinates are

rotated. Thus, Young's modulus of cubic crystals

varies with orientation as do all the other elastic

moduli. It is therefore of importance to avoid
misunderstanding in dealing with the elastic

moduli of crystals, including cubic crystals, to

refer all measurements to a standard set of axes

[41,42].

If 2(sn— S12) is equal to s44 ,
Young's modulus

and all other elastic moduli become independent
of orientation. Zener [43] has defined A= 2(sn—
Si2)/s44, which is also equal to 2c44/(cn— Ci 2 ), as the
anisotropy factor for cubic crystals. It has the
physical significance of expressing the ratio of the
resistance to shear deformation in the [010]

direction on the (100) plane to that in the [110]
direction on the (110) plane. A modified anisot-
ropy factor for cubic crystals, A*, has been
introduced by Chung and Buessem [44]. The
factor A is found to vary with composition from
0.25 for Rbl to about 8 for Li [44].

For elastically isotropic materials, the gener-
alized Hooke's law takes the form

S1=snT1+s12T2+s12T3+0+0+0,
S2
= Sl2Tx+ Sil T2+ snT3+ 0+ 0+ 0,

s3=s12T1+snT2+s11T3+o+o+o,

S4=0+ 0+ 0+ 2(s 11-s 12)7
7

4+0+ 0,

S5=0+0+0+0+2(su-s12)r5+0,

and S6=0+0+0+0+ 0+2(s 11-s12)T6 . (21)

That is, for isotropic materials s44=2(sn— s12). It is,

however, more usual to describe an elastically

isotropic body in terms of any two of the five

quantities Y= Young's modulus, G= shear mod-
ulus (sometimes called one of Lame's constants
and designated by p.), i/=Poisson's ratio, B= bulk
modulus, and X=the other Lame constant. Table
4 gives the relations between these isotropic

moduli; for example, if B and G are chosen as

the independent pair, the remaining moduli are

given by Y= 9BG/(3B+G), v=(3B-2G)/{QB+
2G), and \=B—(2G/3). A connection to the
compliances for elastically isotropic material is

provided by Y=l/su and G= l/s44= l/2(su—

s

12),

v—— s12/sn ,
i?=l/3(s 1 i+ 2si2), and a connection to

the elastic constants by 6r=c44 ,
X=ci2 .

Table 4. Expressions for various isotropic elastic moduli in

terms of various pairs of moduli

Independent Pair of Moduli

Y, G=y. B, G=M B, v X, G=ii

Y Y 9BG/(3B+G) ZB(\-2v) G(3X+2G)/
(X+G)

G=„ G G 3B(l-2^)/
2(l+x)

G

B VG/3(3G-K) B B X+(2G/3)

V (V/2G0-1 (3B-2G)/
(6B+2G)

V X/2(X+G)

X (Y-2G)GI
(3G-Y)

B-(2G/3) 3vB(l+v) X

Both glass (treated elsewhere in this volume
[45]) and randomly oriented, fine grained poly-

crystalline ceramics are isotropically elastic. Values
of isotropic moduli for polycrystalline ceramics
are presented in table 5. This table gives values

for pore-free ceramics obtained by measuring at

various porosities and extrapolating to zero

porosity. The elastic moduli of many porous
ceramics have been measured [10]; we defer a

discussion of the effect of porosity on elastic

moduli to section 3.7.

Table 5. Elastic moduli of isotropic polycrystalline ceramics

at or near zero porosity

Substance Porosity
Y G B

V Reference

100 bar= 10'0 N/m*

AI2O3-- 0.0
.0
.0
.004
.0
.0
.0
.0

.0

.0

.0

.0

.0

.0

41.02
40.68
40. 20
39.86
40. 39
17.05
18.63
30.50
31. 77
31.00
26. 10
28.42
13.83
12. 35

[46]

[47, 48]

[12]

[12

[49

[50

[50

[51

[52

[12

[53

[49

[54

[49

AI2O3 -
AI2O3
AI2O3*
AI2O3
Dy 20 3

16. 33
16.40
16. 14

16. 35

(26. 65)

(24. 42)
25.02

(25. 42)

(0. 246)

(. 226)

(. 235)

(. 235)

Er 20 3

MgO
MgO
MgO
Th0 2-._:..

T1O2
Y2O3

12.90
13.96
13. 15

10. 06
11.15

(15.99)

(14. 62)

(16. 08)
(21. 45)

(21. 00)

( 182)

(. 138)

(. 179)

(. 297)

(.274)

ZnO 4.56 (14. 11) (.354)

Values in parentheses calculated from other values using expressions in

table 4; B value is quite sensitive to error in Y or G.

•Values for all other materials extrapolated to zero porosity. These values

taken at p =3.972 g/cm3 on alumina containing trace of MgO; density of pure

alumina from x-ray lattice constants is 3.986 g/cm 3
.
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2.5. Nonlinear Elasticity

There has been much work done in recent years
on nonlinear mechanics and on nonlinear elasticity

in particular. The subject is large and complex;
we can only give a brief introduction supported
by references for further reading. Much of the
recent work is directed toward attempting to

describe the properties of fluids; Truesdell and
Toupin [23] have given a general survey and
Fung's book provides a readable introduction

[55]. Within the very general field on nonlinear
continuum mechanics we shall restrict our at-

tention to the finite elasticity of solids.

In discussing finite strain we introduced the
Lagrangian strain, y\ u and the Eulerian strain,

as being appropriate for use with coordinate
systems fixed in the material and in space respec-

tively. Finite elasticity can be developed in terms
of either but most of the experimental work is

reported in terms of Lagrangian strain. The
stress, Tk , which we discussed is referred to axes

fixed in space. The corresponding quantity for

axes fixed in the material is called "the thermo-
dynamic tension," f <; in tensor notation or t { in

matrix notation with the same rule relating t t to

as was given for relating Tt to Ti} . The thermo-
dynamic tension is related to the stress by [19]

(22)

where J= determinant W,7 For infinitesimal

strains ttj becomes equal to Tu .

In introducing infinitesimal elasticity we con-
sidered the stress to be applied and developed
equation (17) to express the resulting strain.

Much of the basic data on nonlinear elasticity is

determined in plane wave propagation experi-

ments in which a strain is imposed by the wave
motion and the resulting stress (for infinitesimal

elasticity) would be given by equation (18).

The literature on nonlinear elasticity of solids is

accordingly written in terms of the cw of equation
(18) and their generalization rather than the s i} of

equation (17).

To generalize equation (18) one first replaces the
infinitesimal stress and strain by their Lagrangian
counterparts for finite strain

;

««=Z)CW (23)

One then adds a nonlinear term of the form

JZMij^C^^ (24)
j, /c = l

to express the nonlinear contribution to the
thermodynamic tension. The A(ijk) are numerical
constants which various authors have introduced
dfferently leading to definitions of the third order

elastic constants, Cijk , which differ from one
another by numerical factors. The definition which
is usually used today is due to Brugger [56]. It

is easiest to express Brugger's definition by re-

calling the relation that the stress is the derivative
of the internal energy per unit volume with respect
to the strain and using the corresponding relation
for finite strain

:

:po
(i!)s

=po G£t' (25)

The internal energy is taken per unit mass for

finite strain and the factor p0 (which is the density
of the unstrained solid) is introduced to give the
proper limit of energy per unit volume for in-

finitesimal strain. The internal energy is then
given by [56]

1
6 1 6

* = l O k = l

and the elastic constants are given by

/ b 2U \
CiJ- po Wdr,J s

and °™=*(*M*d:

(26)

(27)

(28)

By using (25) and (26) one obtains the generalized

form of (23) including the term (24) and the
numbers A(ijk). In using the original literature

in which the third order elastic constants were
introduced and enumerated for various crystal

symmetries [6, 57, 58, 59, 60] care must be used
because of the different definitions used for the

cm . The relations between the different definitions

are summarized by Brugger [56].

For cubic crystals there are three independent
second-order elastic constants as mentioned ear-

lier: cu=c22=c33 ,
c 12=c 13=c23 ,

c44=C55=c66 and all

others zero. The five cubic crystal classes split

into one set of three with six independent third-

order constants and a set of two with eight in-

dependent third-order elastic constants. Cubic

crystals with point group mZm, 432, or 432 have
the following six independent third-order elastic

constants: Cm =6222=^333, C144 =£7255=^366,Cm

=

£223= Ci33= Cu 3= Ci22= £233, Ci55= ^244= £344= C166

= C2m=C355 ,
Cm ,

Cib6 , and all others zero.

These third-order constants are determined ex-

perimentally by measuring the variation of the

velocity of ultrasonic waves with application of

homogeneous static stress as we shall discuss in

a later section. This procedure causes some com-
plexity in the analysis of the data; the experi-

mental results give the isothermal variation of

combinations of adiabatic effective second-order

elastic constants with pressure. The resulting

"mixed derivatives" must be corrected either to

purely adiabatic or purely isothermal conditions
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using appropriate thermodynamic relations [61,

62, 63, 64]. The term "effective second-order
constants" is used to make a distinction from the
thermodynamic second-order elastic constants which
are defined as second derivatives of the energy.
The effects of pressure enter the thermodynamic
formulation through the third-order and higher-
order elastic constants all of which are defined by
(27) and (28) evaluated at zero strain and so are
pressure independent. One may, however, choose
to express the effect of pressure by allowing the
second-order thermodynamic coefficient to be
evaluated as a function of strain and so giving its

pressure derivative. On the other hand, the effect

of pressure may be described by using only the
second-order constants which enter wave velocity
expressions and allowing these to vary with
pressure; in this case they are termed effective

elastic constants. One may calculate either set

of data given the other complete set, but the
calculations are quite compex. This type of

calculation is considered for various crystal

symmetries and types of experiments in many
papers; we refer to some of the more recent from
which earlier references can be obtained [65, 66,

67]. Both types of data are useful. One may be
interested in the response of solids to isostatic

pressure in which case a table of dc^/dp is useful.

Data for a number of solids is presented in table 6.

For isotropic materials, as mentioned previ-
ously, the number of independent second-order
elastic constants is reduced from three for cubic
crystals to two. The three constants cn ,

c44 , and
C12 are no longer independent; c 11= 2c44 -|-c 12.

The independent pair are sometimes given the
symbols x and tx and are termed the second-order
Lame constants with X= c I2 and m=c44 . Similarly
the six independent third-order elastic constants
for cubic crystals reduce to three which are
sometimes [65, 74] written vu v2 ,

?3 and called
the third-order Lame constants with vi=Cm,
V2=CUi ,

f3=C456, Cr

ii2= fl+ 2y2 , Ci55=f2+ 2l/3 , aild

Cm= ^i+ 6j>2+ 8^3. Some numerical values of

third-order elastic constants for ceramic materials
are given in table 7 and isotropic materials in

table 8.

Recent developments in nonlinear elasticity

theory include the calculation of lattice parameter

changes with pressure in terms of second and third-

order moduli [76]. Ghate [77, 78] has introduced
fourth-order constants and calculated the pressure

dependence of the effective second-order constants

in terms of these; Chung has also considered
fourth-ordered effects for cubic crystals [79].

Truesdell and Toupin [80] have considered condi-

tions on elastic constants in finite elasticity similar

to those previously mentioned for infinitesimal

elasticity [24, 25].

Table 7. Third-order elastic constants of some ceramic
crystals

All djk in units of 10"> N/m2
.

Substance Cm Cm Cm Cm Cm C«e Refer-
ence

GaAs -62.2 0.2 -38.7 -26.9 -5.7 -3.9 [70]

Ge -71.0 -2.3 -38.9 -29.2 -1.8 -5.3 [71]

Ge -71.6 -5.3 -40.3 -31. 5 -1.8 -4.7 [72]

MgO
Si

-489. 5 11.3 -9.5 -65.9 -6.9 14.7 [72]

-82.5 1.2 -45.

1

-31.0 -6.4 -6.4 [71]

YFeG -233 -14.8 -71.7 -30.6 -3.3 -9.7 [73]

Table 8. Third-order elastic constants of isotropic materials

All Cuk in units of 10>» N/m2
.

Substance "\ =Cm n=Cui "3= Cm Reference

Polycrystalline Mo 1 19.4 -39.8 -22.7 [75

Polycrystalline W ' -42.9 -25.8 -26.7 [75

Vitreous Si02 . 54 93 -11 [72

1 Specimens were sintered and had some porosity.

2.6. Generalizations of Linear Elasticity

Mindlin and Tierstein [81, 82] have proposed a

generalization of linear elasticity in which couple-

stresses acting on a unit area are taken into

account as well as the usual stress. A propor-
tionality is assumed between couple-stress (couple

per unit area) and curvature (gradient of rotation)

.

The ratio of couple-stress to curvature is then a
new type of modulus of elasticity with the dimen-
sions of force. The theory has been generalized to

take into account nonlinear effects [83, 84]. The
linear theory has been applied to the calculation

of stress distribution around a hole [82] and to the

bending and torsion of bars [85]. Schijve [86] has

Table 6. Dependence of effective second-order elastic constants upon pressure

Cn 8 for Some Ceramics at 26 °C.

Superscript S indicates constant entropy.

at zero pressure and their values,

Substance c
S /dcii s\

V dp / t

/dcus\

\ dp / t V dp / t V dp / t

Reference

GaAs.._ _

lOiW/ro 2 10'W/m2 lO'W/m2 lO'W/ra 2

[68]11.877 4.63 5.944 1. 10 5. 372 4. 42 7.540 4.49
Si 16. 577 4. 33 7.962 0.80 6. 393 4. 19 9. 788 4.24 [69]

Spinel 1 29. 857 4.9 15. 758 0. 85 15. 372 3.9 20. 200 4.2 [32]

Garnet 2 30. 619 7.48 9.266 1. 31 11.246 4. 41 17. 704 5. 43 [27]

MgO 29. 647 9. 477 15. 589 1.160 9. 507 1.992 16. 220 4.497 [28]

' MgO-2.61 AI2O3.
2 Almandite-pyrope type.
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carried out bending experiments which suggest
that the new couple-stress elastic moduli for

aluminum are small (he could not detect them)
and that stress distributions around holes are not
likely to be in significant error if couple-stress

effects are neglected. It should be noted that the
couple-stress theory appears to be on a firm

theoretical foundation; only the size of the effect

is in question.

A different attempt to generalize linear elasticity

was previously made by Laval [87] and by Raman
and his co-workers [88-90]. This point of view has
been developed by LeCorre [91] and by Joel and
Wooster [92]. Some data from the literature were
examined [90, 93] and it was claimed that the

classical theory of infinitesimal elasticity was
inadequate. Recently, however, a careful experi-

mental test of Raman's version [89] of this theory
was made [94]; the results support the classical

theory. In any event, it appears that the proper
way to introduce rotations into elasticity is that

discussed in the preceeding paragraph and that

the effects are small, at least for small strains.

Further discussion of the Laval-Raman approach
can be found in Huntington's review paper [7].

3. Specific Problems Involving Elastic

Deformation

3.1. General Discussion

So far we have been concerned with elasticity

as a way of describing a property of material; we
have assumed the stress and strain to be uniform
throughout the material. In many practical situa-

tions the stress and strain vary from point to

point in a specimen being tested for its properties

or in a material in service. Many materials are

inhomogeneous so that the stress varies within
the body even though the external loading may
be uniform. We must therefore be concerned with
some problems involving stress distribution within
materials even though it is the properties of ma-
terials and not the solution of elasticity problems
that is our subject.

The propagation of elastic waves is the basis

for the most accurate methods of determination
of elastic properties as well as being of great

importance to the study of many other physical
properties (physical acoustics), to nondestructive
testing, to military applications, and to geological

studies. Accordingly, we sketch some of the

elementary results of the theory of wave propaga-
tion in solids.

Resonance of solid shapes is another technique
used to measure elastic properties. Resonance
is also a behavior of considerable engineering
importance. We therefore give the relations

between resonance frequencies and elastic prop-
erties for a few simple shapes.

Polycrystalline ceramics are aggregates of

elastically anisotropic crystals and frequently
include pores. The effect of porosity and the

relation between bulk elastic properties and the

properties of the grains are therefore discussed.

Ceramics are increasingly being fabricated as

composites so that the elastic properties of

composites are also of interest.

3.2. Elastic Waves in Isotropic Materials

The simplest and most widely used type of

elastic wave is a plane wave in an infinite medium
(one whose dimensions are many times the wave-
length). The general result (as derived, for

example, by Kolsky [95]) is that two types of

plane wave can be propagated in an isotropic

medium. The first is called longitudinal (or

irrotational or dilational) and has its direction

of vibration parallel to the direction of propaga-

tion. The second is called transverse (or equivo-

luminal or distorsional) and has its direction of

vibration perpendicular to the direction of propa-

gation. For each wave the velocity squared times

the density is equal to an elastic modulus or

combination of elastic moduli. Table 9 lists

expressions for pv2 in terms of various choices of

elastic moduli; see Anderson et al. [12, 96] for

expressions in terms of the pairs B, Y, and Y, v

as well as most of the present pairs. If the veloc-

ities and density are known, one can, for example,

solve for G and for \+2G (see the last column of

table 9) and then obtain other elastic moduli by
using the expressions in terms of X and G given

in table 4.

When the body is not large compared with the

wavelength, these expressions no longer hold; the

velocities become dependent on frequency and

approximation methods must be used in most

cases. One case which can be solved exactly is

that of a very thin cylindrical rod (circular cross

section). The equations for pv
2 are unchanged but

the longitudinal waves have a different velocity,

termed the rod velocity, vr , which is given by
pv

2=Y. If the diameter of an initially thin rod

is continuously increased, the value of pv 2=Y
should change to Pv l

2=Y(l-v)/(l+ v)(l-2 v )

which is equivalent to the forms of table 9. The
transition is not continuous, however, surface

waves are involved; the two values of pv
2 are

correct for the limits of small and large diameters,

respectively [97-102]. The same transition occurs

if the dimensions of a slender rod are kept con-

stant but the frequency is changed from a low

value to a high one. At sufficiently low frequency

the wavelength (given by \=v/j where / is the

frequency) will be large compared with the diam-

Table 9. Expressions for pv2 for Longitudinal (vO and

Transverse Waves (v t) in an Infinite, Isotropic Medium

Independent Pair of Moduli

Y, G=M B, G=n B, v X, G=M

pfl 2 G(4G-Y)I(3G-Y)
G

B+(4G/3)
G

3B(l-x)/(l+")
3B(1-2f)/(2+2f)

\+2G
G
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eter of the rod and pv 2 should approach the value

Y. It is therefore convenient in the resonance
method of determining Young's modulus to use

slender rods; correction factors for finite thickness

are discussed in a subsequent section. At suffi-

ciently high frequency, the wavelength becomes
small compared with the rod diameter and pv

2

should approach pv
2

. In the high-frequency

methods of determining elastic moduli it is there-

fore convenient to use cylinders of large diameter.

Experimental work [102] supported the theoretical

prediction that as the diameter-to-wavelength
ratio increased the bulk velocity was approached;
for ratio values above five no difference in velocity

was detected. Modern, high-precision methods are

capable of precision of velocity measurement ex-

ceeding one part in 105
,
however, and diameter-to-

wavelength ratios of 50 or more appear necessary

when working to this precision. For aluminum
oxide Vi is about 10 4 m/sec so that a diameter of

5 cm would be required for a frequency of 10 Mhz
or 0.5 cm for 100 MHz for high precision work.
The propagation of elastic compressional waves

in rectangular bars [103], in impulsively loaded
cylindrical rods [104], and in explosively loaded
plates [105] has also been studied. Truesdell [106]

has discussed the propagation of waves in an
isotropic elastic material subject to a finite static

strain.

3.3. Elastic Waves in Anisotropic Materials

Single crystals are elastically anisotropic as are

most composite materials. The symmetry of

many composite materials is the same as that

of certain crystals so that the results derived for

single crystals can sometimes be applied to cer-

tain composites. For this reason a qualitative

understanding of the elastic behavior is useful

in discussing behavior of engineering materials
even though single crystals may not be directly

involved.
A simple example of wave propagation in an

elastically anisotropic material is that of plane
wave propagation along the [110] direction in a
cubic crystal. It is found [8] that a longitudinal
wave (vibration in the [110] direction) travels

with velocity given by

Pv l

2=(2cii+cn+ c 12)/2 (29)

In addition, there are two transverse waves:

v n with vibration in the [110] direction and v a
with vibration in the [001] direction. Their
velocities are given by

pva*=(cn-c12)/2, (30)

and pv^^cu. (31)

This example illustrates one feature of a general
result for small-amplitude elastic waves in an
unstrained body. For any given direction of prop-

agation there are three waves whose directions

of vibration are at right angles to each other.

In the above example one direction of vibration

coincides with the direction of propagation so

that one wave is purely longitudinal and the
other two are purely transverse. In general,

however, one wave is quasi-longitudinal (vibra-

tion at a small angle to the direction of propaga-
tion) and the other two are quasi-transverse. If

the wave is propagating along an axis of rotational

symmetry one wave is required by symmetry to

be purely longitudinal; the other two are accord-
ingly purely transverse. In addition to these pure-
mode directions, each type of crystal symmetry
permits some additional special directions whose
number and orientation depend on the numerical
values of the elastic constants. These special direc-

tions have been tabulated for all crystal sym-
metries except monoclinic and triclinic by Borgnis

[107] and Brugger [108]. These directions are useful

because a plate cut perpendicular to such a di-

rection will vibrate in a pure thickness mode [107]

and because the use of these directions for the
propagation of waves simplifies the determination

of the third-order elastic constants [65, 66]. A
second class of special directions is one for which
a pure transverse mode may be propagated but
for which the other two modes are quasi-transverse

and quasi-longitudinal; equations for these di-

rections have been derived for several classes of

crystal symmetry [109].

The expressions for the velocity of propagation

in directions for which crystal symmetry requires

pure longitudinal and transverse wave propaga-
tion are easily derived and many have been tabu-

lated [8]. Unfortunately these do not provide

enough information to completely determine the

elastic constants for low-symmetry crystals. A
complete determination for low-symmetry tetrag-

onal crystals has, however, been carried out [39]

and equations for monoclinic crystals have been
derived [110].

An interesting feature of wave propagation in

anisotropic crystals is the fact that the ray direc-

tion need not be parallel to the direction of propa-

gation of a plane wave [111-115]. This effect

occurs for light waves as well as sound waves.

Thus, if a mechanical transducer (such as a quartz

crystal) is cemented on an arbitrary flat face of

a crystal specimen, three plane waves (one quasi-

longitudinal and two quasi-transverse) will be
excited in the crystal. Each will have its direction

of propagation normal to the face of the specimen

but the energy will travel along inclined directions

(ray direction) and each of the three rays will

reach the opposite side of the specimen at a

region not directly opposite the transducer. It is

desirable when possible to avoid this complication

by choosing directions for which the ray direction

coincides with the wave normal, but even when
this is not done the velocity expressions men-
tioned previously are still correct. One must
arrange ' the experiment to measure the wave
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velocity even though the ray is traveling at an
angle [116]. A method of calculating the elastic

constants by successive approximations using
velocities measured in an arbitrary direction has
been developed [117, 118].

3.4. Attenuation of Elastic Waves
by Scattering and Nonlinear Effects

Elastic waves lose amplitude by gradual con-
version of their energy into heat. This occurs by
many mechanisms; this subject is generally termed
"Physical Acoustics" and is a large subject in

itself [119, 120]. This attenuation in solids fre-

quently is caused by nonelastic behavior associated

with impurities and defects; these effects are

briefly discussed in a subsequent section. Attenu-
ation also takes place in purely elastic materials
by scattering in inhomogeneous materials and as

a result of nonlinearity. Mason and McSkimin
[121] have discussed scattering in polycrystals;

the process of Rayleigh scattering which takes
place when the wavelength is greater than three

times the grain size gives a loss proportional to

grain volume. At higher frequencies the type of

loss process changes and becomes a diffusion

process with the loss inversely proportional to

grain diameter when the wavelength is one third

the grain diameter or less.

In pure and highly perfect single crystals the

attenuation is typically very low at frequencies

of a few megahertz but increases with increasing

frequency due to interaction between the elastic

waves and thermal phonons through the third-

order elastic constants [122-124].

The velocities of elastic waves in rocks and
minerals have been compiled [12, 125] and the

attenuation observed in seismology has been
discussed [126].

3.5. Resonance of Isotropic Materials

A simple type of resonance is the thickness
vibration of a thin plate. The motion can be
described by a pattern of standing waves resulting

from the reflection of traveling waves at the large

flat surface of a plate. Constructive interference
will occur whenever the thickness of the plate
equals an integral number of half wave-lengths;
t=n\/2=nv/2f. If the lateral dimensions of the
plate are large, the velocity of waves in an infinite

medium can be substituted. Thus, for thickness-
longitudinal resonance of a thin flat plate of large
extent

\+2G=4 Pf l

2
t
2/n 2

(32)

and for thickness-shear resonance

G=4:f>ftH
2/n 2

. (33)

For a cylinder of circular cross section the last

equation holds unchanged and results from an
analysis of torsional resonance so that a cylinder

of any diameter-to-length ratio is suitable for the
determination of the shear modulus from torsional

resonance. The longitudinal resonance frequency
of a very slender cylinder can also be deduced from
the condition for standing waves and the resulting

equation is

Y=4pj lH 2/n 2Kn (34)

where Kn approaches one exactly as the diameter-
to-length ratio approaches zero. Rayleigh derived
an approximate expression for Kn valid for small
diameter-to-length ratios which is

Kn=l-nWd2
/8P. (35)

More accurate Kn values can be obtained from
Bancroft's [97] velocity results; a table is given by
Spinner and Tefft [127] who also summarize theo-
retical and experimental resonance equations for

torsional, longitudinal, and flexural vibrations of

cylinders and bars of rectangular cross section.

For the fundamental mode of flexure of a cylinder

Y=1.2Q1886 Pl
ifT/d 2

(36)

where T is a correction factor [128-130] which
approaches one exactly as d/l approaches zero and
which is tabulated up to d/l=0.Q0 [128]. Equations
for the vibration of thick-walled hollow cylinders

have also been derived [131]. Lucey [132] has pro-

posed approximate equations for thick discs and
thick cylinders derived by requiring the first order

corrections for thin discs and slender rods to be

compatible.
Resonance equations for bars of rectangular

cross section are available [128] but are accurate

only for slender bars.

A sphere displays two types of vibrational

modes [133, 134]; one, designated Tnm is torsional

and involves only shear deformation so that the

shear modulus can be calculated from a frequency

measurement. The other type, designated Snm ,

is spheroidal and involves both shear and dilation

so that a frequency measurement combined with

a knowledge of the shear modulus completely

determines the properties of an isotropic material.

All of the discussion of resonance refers to free

vibration. In practice care must be taken not to

constrain the vibration if the equations for free

vibration are to be used.

3.6. Resonance of Anisotropic Materials

The resonance of thin plates of large extent can

be treated as before by using t=nv/2j but for

anisotropic materials the velocity is a function of

the orientation and the single crystal elastic

constants as previously discussed. Many single

crystals are piezoelectric so that the electrical

boundary conditions must be taken into account.

Tiersten treats this problem [135]; vibration of

plates has been used to determine the elastic con-

stants of several piezoelectric crystals [136].
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The vibration of slender single crystal cylinders

has been treated by Voigt [137] and Goens [138];

the use of this theory has been clarified by Kimura
[139] and Brown [140]. The general result is that

the flexural and torsional modes are coupled except
when the axis of the cylinder lies along certain

special orientations in the crystal. This coupling
changes the flexural and torsional resonance
frequencies in general. If, however, the cylinder

is very slender, the flexural resonance frequency
is unchanged and the torsional frequency is shifted

by an amount which can be calculated. Measure-
ments of flexural and torsional resonance fre-

quencies can therefore be used to determine the

single crystal elastic constants as has been done,
for example, for CaMo04 [40].

3.7. Effect of Porosity on Elastic Moduli of
Isotropic Materials

Most polycrystalline ceramics are porous; we
shall define porosity byP= fractional pore volume.
Elastic moduli (bulk, shear, or Young's modulus)
all decrease with increasing porosity; the initial

decrease is rapid but becomes less rapid at higher
porosity. Many authors have proposed equations
to account for this effect; these equations are

listed in table 10. Equations 2, 3, 6, 7, 13, and 14

of this table are theoretical equations and should
agree at small porosity values. In fact they do;
all reduce to the form G/G0=l-bp and similarly

for B and Y at small porosity with the same values
of b from any of the equations for the same modulus
[53]. For a Poisson's ratio value ^=0.20 all give
6=2.00 [149]. The predicted slope agrees with
experiment for alumina with large, artificially

made spherical pores [144] and for glass with
spherical pores [149]. At larger values of porosity

Table 10. Equations proposed by various authors for
porosity dependence of elastic moduli of isotropic materials

Subscript zero indicates value at zero porosity.

Number Equation Reference

1 G=G0[l-5P/3] [1411

2 l/B=l/Bo(l-P)+3P/4G0(l-P)+terms of [142
order P3

3 G=Go[l-5P(3Bo+4Go)/(9Po+8Go)+terms [1421

of order P2
]

4 dY/dP= -2.36 [143
5°___ G=Gotl-5P(3Bo+4Go)/(9Bo+8G0)+AP2] [144
6. B=Bo[l-P(l+3B/4G)] [145
7 G=Go[l-5P(3B+G)/(9B+8G)] [145
8' y=Foexp(-6P) [47
9& G=G0 exp (-6P) [48
10* y=y0 exp (-60Po-6 cP c) [146
11" B=Boll-AP/(l-(A+l)P)] [147
12" G=G0[1-APK1-(A+1)P)] [147
13 ____ B=Bo(l-P)/[l+(l+*o)/2P(l-2*o)] [148
14 G=Go(l-P)/[l+2(4-5r0)/P(7-5^o)] [148
15 y=yo(l-P)/[l+(l+»o) (13-15xo)/ [148

16« _

2P(7-5-o)]
G=G0(l-6P+cP2) [53]

17« Y=Yo(l-bP+cP2) [53]
18 G=G0[l-15P(l-xo)/(7-5^o)] [153]
19 K=Yi>[l-3P(9+5..<,)(l-*o)/2(7-5»o)] [153]

« Parameter A to be determined by setting G=0 at P=l.
' Parameter 6 to be determined experimentally.
c Parameters 60 and 6 e to be determined experimentally. Subscripts o and

c refer to open and closed pores.
d Parameter A to be determined empirically.
• Parameters b and c to be determined experimentally.

the slope becomes smaller in absolute value. The
equations of Hashin as modified by Hasselman
[147], equations 11 and 12 of table 10, and by
Weil [148], equations 13 and 14 of table 10, appear
preferable in combining a theoretical foundation
with a proper form, but the empirical equations

8, 9, 16, and 17 appear to give a satisfactory fit

to the data out to 40 or 50 percent porosity.

Although the theoretical equations correctly
predict the slope at low porosity for specimens
with spherical pores, the slope in normal poly-
crystalline ceramics is larger numerically [46].

Table 11 gives slope values for a number of poly-
crystalline ceramics; the values vary widely for
some materials and generally depart from the
theoretically expected value of about 2.0. Spriggs
[146] proposed that open and closed pores affect

elastic moduli to a different extent (see equation 10
of table 10). It has long been suspected that b

values greater than 2.0 (see table 11 for examples)
are the result of pores not being spherical. Hassel-
man and Fulrath [151] used the solution by
Hashin and Rosen [152] for cylindrical pores
perpendicular to the direction of measurement
and found that the data on alumina compiled by
Knudsen [46] fall within the upper and lower
bounds predicted by Hashin and Rosen's theory.

Table 11. Slope of elastic modulus versus porosity curve at

zero porosity

Material Modulus

Type of
equation
fitted to
determine

slope

Slope=6 References

AI2O3- Y A 1. 61 to 4. 35 [47]

AI2O3 Y A 3. 95 [46
AI2O3-- G A 1. 72 to 3. 26 [146

BeO _. Y B 1. 99 to 2. 81 [150

BeO G B 2. 00 to 2. 80 [150

Dy 20 3 ---- Y C 2.44 [50

Er2Os Y C 2. 36 [50

Glass* Y C 2.06 [149'

Glass* G C 1.94 [149

MgO Y A 4.74 [52'

MgO G A 3.90 [52

Th0 2 Y D 2. 34 to 2. 68 [53

Th0 2 G D 2. 52 to 2. 88 [53

Y2O3 Y C 2.49 [54

A: V=K0 exp (-6P).
B: y=Yo[l-6P/(l-(6+DP)].
C: y=y0(i-&P).
D: y=Yb(l-6P+cP2

).

•16% Na20, 14% B 20 3) 70% Si0 2 .

3.8. Relation of Elastic Moduli of Poly-
crystalline Materials to the Moduli of the
Single-Crystal Grains

The elastic moduli of isotropic aggregates of

anisotropic crystals in terms of the moduli of

the crystals has been calculated by a number of

writers. There are two general approaches. In
the first approach upper and lower bounds are

rigorously derived; in the second approach ap-

proximations are introduced to calculate an
average value whose reliability is then difficult to

assess.

The first approach was introduced by Hill

[153] who showed that averages previously in-
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troduced by Voigt and Reuss were in fact upper
and lower bounds respectively; i.e., Bv>B>B r

and Gc>G>Gr . The values for these bounds are

given in table 12. Hashin and Shtrikman developed
a variational method giving closer bounds and
used it to obtain specific expressions for cubic
crystals [154-156]. Peselnick and Meister [157,

158] have used this method to determine bounds
for crystals of hexagonal, higher trigonal, and
higher tetragonal symmetry. The Hashin-Shtrik-
man bounds are always better and sometimes
much better than the Voigt-Reuss-Hill bounds as

shown in a number of compilations [11, 13, 157,

158].

Table 12. Expressions for Bounds and Estimates on Elastic

Moduli of an Isotropic Aggregate of Anisotropic Crystals

Crystals of Any Symmetry

B,>B>B, and (Voigt-Reuss-Hill) [7, 152]

G,>G>Br

where:
-B.= (Cll+C22+C33+2Cl2+2C23+2Cl 3)/9

G,= (Cll+C22+C33-Cl2-C23-Cl3+3C44+3C55+3C6e)/15
-Br= [«ll+S22-|-«33+2Sl2+2S23+2Sl3]-1

0«=[(4sii-|-4S22+4S33—4«i2—4«23—4si3+3s«+3s55+3see)/15]-i

Cubic Crystals

-B=(cii+2ci2)/3 (Exact expression)
G lies between Gi* and G2* (Hashin and Shtrikman as expressed by

Simmons [13])
Where:

Gi,=Gi+3[-4^i+5/(<?!-(?i)]-i
<?2*= G2+2[-6|S2+5/(Gi-G2)]-i
ft= -3(B+2Gi)/5Gi(3B+4Gi)
02= -3(B+2G2)/5G2(3B+4G2)
Gi= (Cn-ci2)/2
G2=cu

G is conjectured by Kroner [160] to be exactly equal to a root of the equation:
we)H«WO)!-6Wfi)-(=o

where:
a=Zn(k+iv)/6ki>
b=it(,9k+ir)l6kv
c=WI3kv
fc=(Cll+2Cl2)/3

M= C44

»=(Cll-Cl2)/2

The second approach was followed by Hershey
and by Kroner [159, 160] who used a self-consistent

method. Kroner et al. [161] have shown that his

solution for the shear modulus of an aggregate of

cubic crystals lies within the Hashin-Shtrickman
bounds and Kroner suggests that his result is

exact provided the orientations are completely
random. Kroner [160] subsequently derived an-
other expression for the shear modulus using the
correlation function method; this answer is also

said to be exact but is too complex to give here.

Walpole [162, 163] has given another proof of the
Hashin-Shtrickman bounds and confirmed that
Kroner's first solution does lie within the Hashin-
Shtrikman bounds for cubic crystals.

Polycrystalline ceramics sometimes display suf-

ficient preferred orientation to significally affect

elastic moduli. Extruded BeO shows varying
degrees of preferred orientation depending on the
starting materials and the degree of sintering [150].

The variation of Young's modulus with degree of

preferred orientation has been used to draw con-

clusions about the single crystal elastic constants
[164]. Rocks usually have a preferred orientation
of the grains; the linear compressibility has been
studied as a function of preferred orientation [165].

3.9. Elastic Moduli of Composites

The engineering importance of a wide variety of

composite materials has led to extensive work on
means of describing and measuring their bulk
properties and on the relationship between these
bulk properties and the properties of their con-
stituents. One important type of composite is

typified by a plywood sheet. This is usually treated
as a problem in two-dimensional elasticity and
orthorhombic symmetry is assumed; the material
is said to have orthotropic symmetry. Formulas
for bending, twisting, etc. are available [166].

Another important class of composites consists
of slender fibers dispersed in a matrix. The case in
which all the fibers are aligned parallel to each
other and are so long that end effects can be
neglected has been treated in detail. Such a com-
posite has five independent elastic moduli and is

equivalent to a single crystal with hexagonal
point group. A convenient description of elastic

properties is provided by using the plane strain

bulk modulus, the tranverse shear modulus, the
axial shear modulus, the axial Young's modulus,
and the corresponding Poisson's ratio. Upper and
lower bounds in terms of the elastic moduli and
volume fraction of the fibers and matrix have
been derived [167, 168]. Hill [169] has derived
estimates for these five moduli, using the self-

consistent method, which lie within these bounds.
Similar estimates have been given for aligned

ellipsoids or spheres in a matrix [170-171]. Com-
parisons with some of these theoretical results

have been made for the systems graphite in zir-

conium carbide [172], alumina in glass [149], and
tungsten in glass [173].

A number of special problems involving the

elastic response of composites have been treated

with varying degrees of approximation. We men-
tion concrete [174], plaster and procelain [175],

and rocks containing cracks [176-178].

4. Atomic Theory of Elasticity

4.1. Lattice Statics

A treatment of the internal energy of a crystal

in terms of elastic constants and a simple atomic

model was given by Born in 1918 [179; 180].

The theory has subsequently been elaborately

developed but the original simple treatment still

gives insight into the dependence of elastic con-

stants on interatomic distance and on a unique

characteristic of many ceramic oxides. In this

simple model one assumes the energy is given by

U=-A/rm+B'/r n (37)
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where r is the interatomic spacing. The first term
is the contribution due to attractive force; for

ionic crystals having ions with charge z the ex-

ponent m is one and the addition of all the Cou-
lomb forces gives A= a(ze)

2 where a is a numerical
constant (a— 1.7476 for MgO) obtained from
this sum. The second term is the contribution of

the repulsive forces; the constants B' and n must
be determined by fitting the equation to experi-

mental data in the following manner. We have
from thermodynamics.

dU
dv

and B= -vdp

dv

(38)

(39)

Since v— constant times r
3

, we have Svdr—rdv
and so obtain

and
p=(-A/r+nB'/r n)/3v

B=p+(-A/r+n 2B'/r n
)/9v.

We now use r=r0 at p=0 and obtain

nB'/r0
n=A/r0

which gives

B=p(l +n/3)+ (n- l)A/9rv.

(40)

(41)

(42)

(43)

The parameter n is determined by setting p—0
and requiring this expression to give the measured
value of the bulk modulus. The resulting value of

n ranges from 6 to 12 for various alkali halides and
from 6 to 9.5 for a small number of oxides con-
sidered [181]. The internal energy calculated
from n usually agrees with the measured cohesive
energy within 10 percent. This simple theory
has a further success in predicting how the bulk
modulus varies with lattice parameter in a family
of ionic compounds with the same crystal structure.
Taking p=0 and r=r Q we have

B=a(ze 2
) (n-l)/9r0v 0 . (44)

Since r 0vQ is proportional to a4 (where a is the
lattice parameter) we expect plots of log B
as a function of a to have a slope of —4 and plots
of both the bulk modulus and the shear modulus
do show this slope for alkali halides [182, 183].
The above treatment also provides a basis for
equation (6) which is the basic assumption needed
for the successful Murnaghan equation, number
(7).

.

Oxides do not generally obey the predicted
1/a4 variation of bulk modulus, however. The
variation is more nearly described by 1/a9

[183,
184], see figure 5. Anderson [183] has given a
qualitative explanation in terms of a modification
of the above model in which another term of
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Figure 5. The variation of the bulk modulus with

volume for several classes of materials.

(Oxides have a slope of —3 on this plot.) After
Anderson [183].

the form C/Rm is introduced to account for the
repulsion of the large anions which will be in

direct contact with each other for a cation-anion
radius ratio less than 0.414. Many oxides have
smaller ratio values and are essentially structures

made up of close packed oxygen with small
cations in the interstices. The attractive forces

draw the oxygen into a state of compression and
it is the form of the oxygen-oxygen repulsive

term which causes the 1/a 9 variation of the bulk
modulus. Anderson [185] has proposed that the

change of bulk modulus of oxides with temperature
or pressure is approximately accounted for by
the change of volume through the 1/a 9 law. That
is, the bulk modulus of a pore-free oxide made
up of close packed oxygen ions can be calculated

approximately simply from its specific volume,
even though changes of volume may result from
change of cations, of pressure, or of temperature.

General approximation formulas are given [183]

for the large class of oxides (including most
oxides of technological interest) having a mean
atomic weight of about 21 ; these permit estimation

of averaged B, 6, and related elastic properties

from the density.
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4.2. Linear Lattice Dynamics: Relation of

Elastic Constants to Sound Velocity,
Specific Heat, Optical Absorption, and
Dielectric Constant.

The foregoing static model permits the calcula-

tion of the internal energy, U, and the enthalpy,

U+pV, as a function of pressure. By considering

the vibrations of the atoms one can introduce
temperature as a variable and calculate many
properties. The subject of lattice dynamics is large

and mathematically complex. We shall quote a few
results to show how some thermal and electrical

properties depend on the elastic constants and
other quantities. The simplest lattice dynamics
treatments are based on the MgO structure or

other simple structures; the resulting equations
cannot be expected to apply exactly to other

structures. The simplest treatment assumes linear

springs between atoms (the harmonic approxima-
tion) and successfully treats sound velocity, spe-

cific heat, optical absorption, and ionic contribu-

tions to the dielectric constant. We defer to the

next section a discussion of such properties as

specific heat which depend on the introduction

of nonlinear springs (the third-order elastic

constants)

.

We have already given the relation of sound
velocity to elastic constants in discussing contin-

uum mechanics. The equations for v t and vs are

compatible with the atomic model for crystals and
hold unchanged for wavelengths large compared
to atomic spacings. As the wavelength decreases

the velocity eventually begins to decrease also.

This effect is usually shown on plots of frequency
as a function of wave number (k=2ir/\). This plot

has two curves emerging from the origin with
slopes equal to the velocity of lingitudinal and
transverse waves respectively as shown in figure 6.

WAVE NUMBER

Figure 6. Frequency-wave number plot for a three-dimen-

sional isotropic body.

After Anderson [186].

There are also two optical branches of this plot
corresponding to vibrations in which ions of oppo-
site sign move in opposition. It is possible to
choose light of such a frequency (usually in the
infrared) that it equals v 0 of figure 6 with the
result that a strong absorption occurs. Szigeti

[187, 188] has derived an equation giving this

frequency in terms of the isothermal bulk modulus,
BT , the lattice parameter, a, for the MgO structure,

the static dielectric constant, e 0 , the index of re-

fraction, n, and the reduced mass, m:

2™ 0= [6 (n
2+ 2)BTa/m(e 0+ 2)]

1 /2
. (45)

Anderson and Glynn [189] have used the measured
absorption frequency to calculate the bulk modu-
lus successfully for MgO.
The dielectric constant at low frequency (below

10 10 Hz) is the sum of a contribution due to
electronic motion and ionic motion; its value at

optical frequencies (which equals the square of

the index of refraction, n) is due to electronic

motion alone. Szigetti has shown that the differ-

ence, Ae, due to the ionic contribution is given by

Ae=(n 2-f2)V/6Wa3m (46)

for the MgO structure. We see that this depends
on the bulk modulus through v 0 .

The specific heat of a crystal is obtained from
counting up all the modes of vibration using the
frequency-wave number plot mentioned above.
Debye approximated this complex problem by
taking the sound velocity to be independent of

wave number and obtained a useful approximate
equation giving the specific heat as a function
(tables of which are available [190]) of T/6 where
6 is the Debye temperature and is given by

e= (h/k) (3pNP/4:TrM) V3vm (47)

where A=Planck's constant, &=Boltzmann's con-
stant, p=number of atoms per molecule, N=
Avogadro's number, p= density, and M= molecu-
lar weight. The velocity vm is a special type of

average over all directions in the crystal given by

«m =[ave. of [(l/^3
)+ (l/^ (1

3
)+ (l/^3

)]/3]-
1/3

(48)

The problem of calculating vm and hence 9 and the
specific heat at any temperature is simple in

principle; for any direction the three velocities

can be calculated from the elastic constants and
a numerical average over a large number of

directions can be taken. Alers [191] has reviewed
a number of procedures for doing this. Anderson
has shown that approximating a single crystal by
an isotropic material with elastic constants given
by averaging the Voigt and Reuss bounds leads

to a simple expression for vm which agrees with
the accurately calculated value within a few
percent for many crystals [192]. The calculation of

Debye temperatures from elastic constants con-

tinues to be an active field [193-196].
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Detailed treatments of the vibrational spectrum
and related properties have been given for a

number of structures besides MgO including
rutile (Ti02 ) [197, 198] and the fluorite structure
(U02 ,

Th02 ,
etc.) [199, 200].

4.3. Nonlinear Lattice Dynamics: Thermal
Expansion and Temperature Dependence of
Elastic Constants

The forces between atoms in a crystal are not
simply linear functions of displacement but in-

clude nonlinear terms as well. This leads to great
complexity in the treatment of lattice vibrations
and properties dependent upon these vibrations

[9, 179]. Some properties, such as thermal ex-

pansion and temperature dependence of the elastic

constants, depend for their very existence upon
the nonlinear terms in the interatomic force laws.

These properties are usually treated in the so-

called quasi-harmonic approximation in which
the forces are taken to be linear but with a

vibrational frequency, co, for the atoms which
depends upon the average interatomic distance.

This dependence is expressed by a number y,

called Griineisen's constant, defined by y=dln
a/dln V which is assumed to be the same for all

vibrations and in the simplest treatment is

independent of temperature. It can be shown
[179, 201, 202] that the volume thermal expansion
coefficient, 0, is given by

p=yc,,/BTV (49)

where c„ is the specific heat at constant volume.
The use of an integrated form of this equation
has been discussed [203] and it has been shown
[204] that y is not truly constant but may vary
by about 10 percent as the temperature is in-

creased from absolute zero to the melting point.

We shall leave further discussion of thermal
expansion to the companion paper in this volume
on thermal expansion and simply point out that
in principle one can calculate the thermal ex-
pansion from knowledge of elastic properties
alone. We have already discussed the calculation
of c v from elastic constant data; y can be calculated
using both the second-order and third-order
constants [205, 206].

The elastic constants change with temperature
because of the presence of nonlinear terms in the
force expressions. Leibfried and Ludwig [9] give

B=B0 (1-DE +dp) (50)

where B 0 is the value in the absence of nonlinear
terms and D and d are complicated functions of
the nonlinear terms. The temperature dependence
comes in through the thermal energy, E, which
increases with the temperature. Anderson [207]
has derived the following equation for the tem-
perature dependence of the bulk modulus

:

B=B0-3RySEIVo (51)

where R is the gas constant, subscript zero in-

dicates value at absolute zero and 5 is a second
Griineisen constant (approximately independent
of the temperature) defined by

S=-(lfa)(blnB/bT) v . (52)

This proportionality of the temperature dependent
part of the bulk modulus to the thermal energy
leads to a variation proportional to T4 at low
temperature (where the specific heat goes as T3 in

the Debye theory) and proportional to T at high

temperature (where the specific heat is ap-

proximately constant). It is sometimes said that

elastic constants vary with temperature because
of thermal expansion and this is true in the sense

that both depend on nonlinear terms in the

potential energy. However, Stern [208] points

out that thermal expansion depends only on the

odd terms (corresponding to third-order elastic

constants) but the temperature dependence of

elastic constants depends on both odd and even
terms (corresponding to third-order and fourth-

order elastic constants). The transition from zero

slope at absolute zero to a linear decrease with

increasing temperature predicted by theory is

found in plots of Young's modulus or the shear

modulus for many crystalline oxides and is shown
in figure 7 for A1203 . This behavior is well described

by the empirical equation

Y=YQ-bTexV (-T0/T) (53)

in which Yn is Young's modulus at absolute zero

and b and T0 are empirical constants [209]. Ander-
son [207] has shown that at high temperatures T0

corresponds approximately to one-half the Debye
theta. Tables 13 and 14 give temperature coeffi-

cients for elastic moduli of various single-crystal

and polycrystalline ceramics respectively. These
coefficients are actually functions of temperature,

usually changing smoothly from a value of zero

at low temperature to a constant at high tempera-

ture, but the value calculated from any tempera-

ture interval above 0/2 will generally approximate

the high temperature limit. An order-of-magnitude

rule is that at high temperatures, elastic moduli of

crystalline ceramics decrease one percent with each

increase of 100° C. Extrapolations of elastic moduli

to very high temperatures has been given for

several oxides [215].

Barker [216] has shown that the quantity a2Y
is approximately constant for 68 of 79 materials

examined. This implies a correlation between the

anharmonic properties and the elastic moduli.

4.4. Effect of Solid Solution and Phase
Changes on Elastic Constants

The effect of solid solution on elastic moduli

has been studied in a number of metal alloys

but little appears to have been done in ceramic

systems. Slagle and McKinstry [217] have studied

the system KCl-KBr and found that plots of
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Figure 7. Young's modulus of single-crystal aluminum, oxide as a function of
temperature.

After Wachtman et al. [209].

Table 13. Temperature coefficients for some single crystal

elastic constants

Material

Al203
YA1G

(garnet)

MgO
UC

Quantity

(ABslAT)/Bs

(ACu/AD/Cu .

(AC44/AD/C44
(AC12/AD/C12
(i>Bs/dT)/Bs
(ACu/ATJ/c,,
(AC44/AD/C44
(Ac, 2/AT)/c12

Value

-0.68
-0.9
-0.7
-0.5
-0. 97
-1.0
+2.0
-0. 75

Tempera-
ture range

K
300 to 800
200 to 300
200 to 300
200 to 300

300
150 to 300
150 to 300
150 to 300

Refer-
ence

[2101

[211]

[211]

[2111

[28]

[212]

[212

[212]

Debye
theta

K
1045

946

Refer-
ence

[209]

[190]

Table 14. Temperature coefficients for elastic moduli of
some polycrystalline ceramics

Material

AUO,

Dy 20 ;

Er203
MgO.

Mg2Si04.-_
(forsterite).

Mg2Si0 3 .._

Th0 2 .

Y 20 3 .

Quantity

(dY/dT)/Y
(dY/dT)/Y
(dG/dT)/G
(dB/dT)/B
(dY/dT)/Y
(dY/dT)/Y
(dYldT)IY
(d^ldT)IY
(dG/dT)/G
(dB/d T) /B
(dY/dT)/Y
(dGldT)IG
(dB/d T)/B
(dY/dT)/Y
(dG/dT)/G
(dB/d T)/B
(dY/dT)/Y
(dY/dT)/Y

Value

io-*/k
-1.4
-1.3
-1.4
-0. 84
-1.1
-1.1
-1.9
-1.8
-2.0
-1.1
-1.6
-1.7
-1.3
-1.2
-1.2
-1.2
-1.4
-1.1

Tempera-
ture range

K
M

300-1400
300-1400
300-1400
300-1100
300-1100

W
300-1100
300-1100
300-1100
300-900
300-900
300-900
300-900
300-900
300-900

M
300-1300

Refer-
ence

[209

[213

[213
[213'

[50;

[50

[209

[213;

[213;

[213

[214

[214;

[214

[214

[214
[214

[209

[54]

Debye
theta

K
1045

946

6363

Refer-
ence

[209]

[209]

[209]

"Fit of B in Y=Y0-BT exp (-T0/T) over 78 to 873 K.
6 Incorrectly listed as 782 rather than 363 in reference

[209].

cu and c44 fall below the straight line predicted

by a simple method-of-mixtures rule; i.e. the

curves are concave upward. Examples of de-

partures from straight line behavior in both
directions (either concave upward or concave

downward) are known in various metal systems

[7] so that no simple rule can be given.

The behavior of elastic constants near the

melting point of materials with the MgO struc-

ture has been extensively studied [217]. It is

proposed that melting occurs when vibrations

corresponding to the shear associated with cu
-

C12 become so large that the structure becomes

unstable. One might therefore expect cn-Cn to

approach zero or at least to become small as

the melting temperature is approached. The most

recent measurements show a smooth decrease of

C11-C12 with temperature to a value just before

melting of about one-quarter of the value at

25 °C for NaCl, KC1, KBr. In the system KC1-
KBr the values of cn-c12 measured at 700 °C vary

with composition in the same way as the melting

point.

In solid-to-solid phase changes the elastic con-

stants change as would generally be expected

for physical properties in a first-order phase

change. In second-order phase changes the usual

thermodynamic state functions are continuous

but their derivatives, including elastic constants,

may be discontinuous. Second-order phase changes

are important in connection with order-disorder

processes, change from nonferroelectric to ferro-

electric state, etc. Some phase changes of this

type were first discovered by measuring elastic
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constants as a function of temperature; this was
the case for SrTi03 [218]. Typically some of the
elastic constants may show a smooth change with
temperature while others show a large variation
and may approach zero. Presumably the latter

correspond to a type of vibration whose ampli-
tude is becoming large as the transition tempera-
ture is approached and which corresponds to the
type of atomic rearrangement involved in the
phase change. Thus the phase change of first or
second order may be signaled by the behavior
of the elastic constants at temperatures well
removed (e.g., 20 °C) from the transition tem-
perature. Examples are the change at 184 K in

KMnF3 [219], the paramagnetic-antiferromag-
netic transition at 30.8 K in U02 [2201, and the
order-disorder transition at 243 K in NH4 CI [221].

4.5. Internal Friction and the AE Effect

We have previously emphasized that elastic

deformation (in our definition) is characterized by
complete recovery when the stress is removed
even though the recovery may require a long time.
Time dependent behavior of this type causes a
portion of the energy used in producing the
deformation to be converted into heat. This loss

is said to be due to internal friction and is usually
a function of temperature and of frequency in

cyclic deformation. Loss also occurs in cyclic

plastic deformation and as a result of other
irreversible processes (such as domain wall motion)
induced by stress. Only the type of internal friction

associated with recoverable deformation is an
appropriate subject for discussion in a treatment
of elasticity but the two types are sometimes
difficult to separate experimentally and even
conceptually for certain processes which have
long recovery times. Extensive reviews of internal

friction are available [222-225] and we limit our
treatment to a brief discussion of two types which
are particularly useful in throwing light on the
properties of point defects and dislocations

respectively.

A point defect (such as a vacancy, an inter-

stitial, or an impurity atom) generally causes a
distorsion of its neighborhood. If this distorsion

has a symmetry lower than the point group of the
crystal, it can occur in more than one way. The
different ways of occurring will have equal energy
and equal probability in the absence of stress or
other influence such as electric field which lowers
the symmetry of the crystal. Under stress the
different ways can become inequivalent leading
to the development of a preferred distribution if

time is allowed for the necessary thermally acti-

vated jumps. This jumping is accompanied by an
additional strain (causing the appropriate elastic

modulus to decrease) and an energy loss. This
subject has been worked out in detail [226-238].
Measurement of this internal friction can be used
to obtain several different types of information
concerning defects in crystals. First, the variation

of the amplitude of the internal friction peak
with type of stress applied gives information on
the symmetry of the defect and can sometimes be
used to reduce the number of possible models for

an unknown defect. This type of investigation is

most useful when it can be combined with measure-
ments of other properties such as dielectric loss,

optical spectra, and electron spin resonance which
also give information on the symmetry of the
defect. Second, study of the temperature de-

pendence of the internal friction with varying
stress components at constant frequency can
give information on the number of relaxation

times involved in point defect motion which can
then be interpreted in terms of a specific atomic
model of the defect. Third, the anisotropy of

distortion around a defect can be deduced,
although one other piece of information such as

the lattice parameter dependence on defect con-

centration is needed to completely specify the

strain caused by a defect. Fourth, studies of the

size of the internal friction peak in quenched
specimens as a function of annealing temperature
can sometimes be used to measure the association

energy for pairing of point defects. Fifth, the

jump frequency for the motion involved in diffu-

sion can sometimes be measured so that diffusion

measurements can then be made at temperatures
much lower than is possible with direct diffusion

measurements [239]. Ceramics in which point

defect properties have been studied by internal

friction measurements include CaF2 [240, 241],

Ce02 [2421, MgO [243, 2441, NiO [245], Si0 2

(quartz) [246], Th02 [231], Ti02 [247-250], TJ02

[251], and Zr02 [252].

Dislocations in crystals are usually pinned at

various points along their length by impurities

or point defects; they are pinned more firmly at

intersections with other dislocations. Under small

stress the free segments bow out, but the ends
remain attached to the pinning points if the stress

is not too great; the dislocations return to their

original positions when the stress is removed. This
inelastic, recoverable deformation gives rise to a

frequency-dependent but amplitude-independent
internal friction and a corresponding decrease in

elastic moduli. If greater stress is used, the disloca-

tions break away from their less firm pinning points

producing a loss which increases with increasing

amplitude. These effects have been extensively

studied in metals in which plastic deformation may
. produce such a high density of dislocations that

reduction of the elastic moduli by a few percent

occurs. This is termed the AE effect. The elastic

moduli can be returned to their original value

by annealing or by pinning the dislocations by
radiation damage. The theory of dislocation

damping has been extensively developed [253]

and can be used to determine the resistance to

dislocation motion if the other parameters of the

theory are determined. The theory has been
applied to explain internal friction in Al 20 3 [254,

255], MgO [254, 256, 257], and Ti02 [258].
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Polyc^stalline ceramics may exhibit damping
caused by point defects and dislocations, but other
effects such as porosity, viscous phases, and phase
changes are frequently predominant in causing
damping [259].

5. Special Topics

5.1. Correlations of Other Properties With
Elastic Constants

Several physical properties in addition to those
already discussed are related to elastic moduli.
The presence of interstitials and vacancies should
cause a change in the bulk modulus [260]; accurate
measurements of bulk modulus might be useful

as a measure of high densities of Frenkel defects.

Solid solution causes a change of lattice param-
eter; the lattice parameter of ruby has been cal-

culated as a function of chromium content in

terms of elastic moduli [261]. The change of lattice

parameter is usually proportional to the concentra-
tion of the solute in a solid solution (Vegard's
law) , but deviations occur which have been treated
in terms of elastic moduli [262]. The elastic

constants of many valley semiconductors depend
somewhat on the population of electrons in the
conduction band and hence on the doping [263].

We have previously mentioned the relation between
elastic moduli and volume for isostructural

compounds; a similar correlation involving both
the volume and cohesive energy has been proposed
[264]. Finally, a correlation between elastic

moduli and strength is often noted as, for example,
for a series of whitewares [265]. There is an
apparent justification for this relation; approximate
treatments of theoretical strength typically give

values of the order of one-tenth of Young's
modulus. Empirical correlations, however, usually
involve much lower strengths under circumstances
in which fracture starts at some flaw. The correla-

tion of strength with elastic moduli is often due
to having both bulk elastic moduli and strength
affected in the same way by a variation of micro-
structure such as porosity. This type of correlation

must not be expected to hold in general, however.
A series of alumina bodies showed a variation in

strength of a factor of 500 [266]; their elastic

moduli vary by only about a factor of 2.

5.2. Elastic Moduli of Graphite

Graphite is not a unique material but a family
of materials differing in crystal structure, micro-
structure, and preferred orientation. Single crystals

are usually hexagonal with a layer structure and
have a very much greater stiffness parallel to the
base plane than perpendicular to it. Spence [267]

gives the single crystal elastic constants as

di= 116, c33=4.7, c44=0.23, c 12=29 and c 13=10.9
X10 10 N/m2

. A typical extruded polycrystalline

graphite has Young's modulus values of 1.06 and
0.47 X10 10 N/m2 parallel and perpendicular respec-

tively to the direction of extrusion [268]. Measure-
ments of Young's modulus on various pyrolytic
graphites gave values ranging from 56 to 0.8 X10 10

N/m2 where dislocations were pinned by light

neutron irradiation [269] to eliminate the AE
effect which is large in graphite [270-273]. The
temperature dependence of Young's modulus
from 25 to 1000 °C has been reported as a function
of various heat treatments at higher temperatures
[274].

5.3. Measurement of Elastic Moduli

Elastic moduli were originally determined by
static tests in which relatively large loads were
applied and the resulting deflection was measured.
These static tests are less accurate than dynamic
tests but are still of great engineering importance.
They are covered in the paper on mechanical
testing in this volume. The dynamic tests are of

two basic types: measurement of the velocity of

propagation of waves, and measurement of the

resonance frequency. We have previously dis-

cussed the relation of elastic constants to wave
velocity or resonance frequency; it remains now
to briefly sketch the experimental procedures.

The principles of wave velocity measurement
and the calculation of elastic moduli from the

velocities have long been understood. The avail-

ability of good megahertz oscilloscopes and other

electronic apparatus following World War II has

led to much work in this field. We shall mention
a few papers which are important to the develop-

ment of this technique to its present highly

refined state and some which consider its applica-

tion specifically to ceramics.

The basic technique is to bond a piezoelectric

generator onto one flat face of a specimen cyrstal,

excite sound waves, and measure the transit time

to a flat and parallel opposite face. Price and

Huntington [275] measured the echo time for

ultrasonic pulses in single crystals and studied

some of the phenomena of acoustical
_
birefrin-

gence, mode coupling, and beam spreading. Eros

and Keitz [276] discussed the problem of transit

time error arising from change of shape of the

pulse upon reflection from the interface between

two media. McSkimin [277, 278] has summarized

(and greatly developed) methods in which re-

flected but unrectified pulses are compared with

an identical later pulse whose delay is controlled

by a continuous wave oscillator. This is essentially

an interference technique capable of a precision

approaching one part in 106
. Application of

accurate methods to high temperatures [279] and

low temperatures [280] has been discussed. The
application of these techniques to rocks and

minerals has been reviewed [12, 281]. Neighbours

and Schacher [282] have presented a general

perturbation method for calculating second-order

elastic moduli from measurements made in direc-

tions other than those for which pure modes are

propagated.
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The accuracy of elastic constant measurements
generally much less than the precision with which
measurements can be repeated in the same appa-
ratus or with which changes of elastic constants

with temperature or pressure can be measured.
Einspruck and Truell [283] conducted a survey in

which nine laboratories made measurements on
the same vitreous silica specimen; seven of the

nine agreed within 0.3 percent in values of transit

time. An error in absolute value of 0.3 percent is

much greater than precision of 1 in 106 achievable

in relative measurements but is still better than
the accuracy of static tests which is rarely better

than a few percent. In addition to experimental
problems, the comparison of dynamic and static

test results may be affected by the different stress

level and the different effects of defects such as

cracks [284].

The resonance method of determining elastic

moduli is capable of achieving absolute accuracy
of 0.1 percent or better when care is taken to

choose a shape for which the vibrational equations
are accurately known and when the dimensions
can be held to a corresponding tolerance. It can
be used to measure changes with temperature of

1 in 104 or better when care is taken to minimize
coupling to the apparatus and the atmosphere.
Methods of exciting and measuring resonances
have been extensively reviewed [127, 285, 286]

and specialized apparatus has been described for

use at low temperature [287], high temperature
[288], constant strain amplitude [289], very low
strains [290], and for materials with very high
damping [291]. Techniques for direct mechanical
excitation and detection of resonance up to 300
kHz have been developed [292]. Resonance of

spheres at frequencies up to 2 MHz has been
used [134].

A method of measuring elastic constants using
diffuse reflection of x-rays has been developed
[293, 294] but accuracies of only 5 to 45 percent
were reported in a recent evaluation of the method
[295]. A technique for detecting mechanical
resonance and measuring sound velocity by
nuclear magnetic resonance techniques has been
described [296].

Measurement of the elastic moduli of libers

presents special problems
;
experimental techniques

have been reviewed [297].

5.4. Characterization of Ceramics With
Respect to Elastic Moduli

It is sometimes desired to reproduce a given
physical property closely in a whole series of

ceramic parts. The manufacturer should then seek
to control the aspects of composition and micro-
structure upon which the property of interest

depends. If property reproducibility is not suffi-

ciently well achieved, it is then of interest to

characterize the specimens, i.e. to measure
appropriate aspects of composition and micro-
structure, and to determine which are varying.

For elastic moduli the characterization required
is usually relatively straightforward for single
crystals, but more complicated for polycrystals
and composites. Our whole discussion of elastic

moduli has been aimed at explaining the factors
upon which elastic moduli depend; in conclusion
we briefly summarize the more important ones.

For single crystals the presence of impurities
is usually of little consequence to elastic moduli
provided the solid solution limit is not exceeded.
Within the range of solid solution a simple linear
method-of-mixtures calculation, though not exactly
correct, will give a resonable estimate. If the solid

solution limit is exceeded and precipitate particles
are included within the crystal the system may
be treated as a composite using one of the theories
previously discussed provided the shape of the
precipitate corresponds to the model assumed.
Care is necessary, however, because if the precip-
itate shrinks more than the crystal during cooling
and breaks away from the matrix the specimen
may actually be a single crystal with pores so far

as elastic behavior is concerned. If the precipitate
shrinks less than the crystal, internal cracking or
dislocation generation may occur so that the elastic

moduli are reduced more than would be expected
from the volume of second phase. Single crystals

are usually sufficiently pure, however , that these
problems do not occur. A more common problem
is lack of accurate measurement of orientation and
sometimes lack of understanding that elastic

moduli of single crystals depend on orientation

even for cubic crystals and that for trigonal and
tetragonal crystals they depend on the angle around
the optic axis as well as the angle to the optic axis.

The elastic moduli of relatively ductile ceramics
such as single crystal MgO can be reduced by the

presence of a high density of unpinned dislocations

through the AE effect.

In single-phase polycrystalline ceramics the

factors most likely to affect elastic moduli at room
temperature are porosity (including cracking from
thermal stresses) and preferred orientation. As
mentioned previously equations are known which
correctly predict the change in elastic moduli as a

function of a small volume fraction of spherical

pores, but porosity usually is not even approxi-

mately spherical and causes a greater reduction in

elastic moduli. Polycrystalline ceramics prepared

by sintering of a powder made up of equiaxed

particles are likely not to have a significant degree

of preferred orientation. Ceramics prepared by
extrusion or hot pressing or ceramics prepared

from unequally axed powder particles are likely

to show appreciable preferred orientation and

this can have a pronounced effect on elastic moduli.

Polyphase polycrystalline ceramics are subject

to the same sources of variability, but may in

extreme cases of thermal mismatch exhibit severe

internal cracking causing a large reduction in

elastic moduli. Such a body may undergo a degree

of crack healing when heated and develop a new
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pattern of cracks upon recooling. This type of

body has no well defined values of elastic moduli;
the measured values will change erratically as a
result of thermal cycling.

Ceramic composites may possess any of the

above sources of variability but the degree of

orientation of the reinforcing fibers or plates and
the degree of bonding between components are

likely to be the predominant factors.
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Viscoelasticity of Glasses*
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Viscosity measurement techniques such as rotating cylinder, beam bending, fiber elonga-
tion, etc., are reviewed and compared to each other as to their viscosity range and experi-
mental uncertainty. Thermal expansion coefficient and density measurements are discussed.
Since the high-temperature melt density values in the literature do not agree with each other
to within their respective standard deviations, a detailed discussion of such measurements is

given. The high-temperature ultrasonic interferometer used to make sound absorption and
velocity measurements is described along with its elaborate electronic circuitry.

Viscoelasticity provides a linear mathematical framework to analyze both the time and
the frequency dependence of the mechanical parameters in the glass transition. The deforma-
tion, annealing, and strain points are analyzed as to the particular physical process (viscous

flow, volume relaxation, shear relaxation) involved.
The limits of validity of the empirical (technological) experiments used to characterize

these processes are considered. Volume relaxation is distinguished from shear relaxation.

Non-Newtonian flow is considered to be due to immiscible glasses.

Since the viscosity governs most manufacturing processes, such as the ability to stir a
melt or to shape an object, its temperature dependence is of utmost importance. Not only is

the least squares method to fit data to the Fulcher equation discussed, but also the various
theories which lead to the equation. The validity of these theories is tested with recent data
on B2O3, and they are found to be deficient.

Key Words: Annealing density; glasses; glass transformation; modulus; viscoelasticity;

viscosity.

1. Introduction

In the first part of this paper a review of the
best techniques for making viscoelastic measure-
ments in molten glasses will be made. There will be
a detailed description of viscosity measurements,
since viscosity plays such a critical role in the
manufacture and fabrication of glass. A shorter
discussion of density, sound absorption, and phase
velocity measurements will also be given.

Secondly, a review of annealing and relaxation
theory as well as a discussion of the interpretations
of experimental data which are still controversial,
such as the role of microstructure in viscous flow,
will be made. These reviews are planned to help
both the quality control man and the researcher.

Thirdly, a review of viscosity theories will be
made. The material in this section is taken from
a recent paper by Napolitano and Macedo [l].

1

Since this area is highly controversial, the opinions
expressed here are those of the author and may
or may not be widely accepted throughout the
scientific community. Unlike the first two sections,
this last section will be of primary interest to the
researcher, but the engineer should be aware of

existing viscosity theories.

•Work ft Otholic University of America supported by Air Force Office
of Scientific Research Grant No. AFOSR-68-1376.

1 Figures in brackets indicate the literature references at the end of this
paper.

2. Measurement of Physical Properties

of Molten Glasses

2.1. Viscosity

Between the boiling point and the glass transi-

tion a liquid may exhibit viscosities ranging from
10~ 2 to 10+15 poise. [One poise is the cgs unit of

viscosity. A newton-s/m2
, the mks unit, is equal

to 10 poise.] In most molten silicate glasses, the

difficulty in readily obtaining temperatures in

excess of 1500 °C rules out the measurement of

viscosities much below 102 P. Thus, for molten

glasses one is interested in measuring viscosities

between 10 2 and 10 15 poise. At present this cannot

be done with a single technique. Table 1 gives the

most common techniques used for molten oxides,

as well as the range of viscosities and the approxi-

mate error. Most of the techniques require cali-

bration of the equipment with liquids of known
viscosity at room temperature. In fact all the

high-temperature viscosity measurements below

10 7 poise rely on the calibration made with NBS
standard viscosity oils.

The most reliable high-temperature viscometer

is the rotating cylinder one [2, 3, 4, 5, 6, 7]. The

latest version of this type of apparatus is described

in detail by Napolitano et al. [2], and can measure

323-655 O - 69 - 12 169



Table 1. Viscosity measurement techniques

Technique Viscosity Error a References
range

Poises Percent
Rotating cylinder 10° •-1010 2 2, 3, 4, 5, 6, 7

Counterbalance-sphere 101 --10' 5 8,9
Penetrometer 105 --10° 5 10, 11

Fiber elongation 10> --10" 10 3, 4, 12, 13, 14

Beam bending 10' -101* 10 15, 16

Softening point.. ~10?-« 2°C 3, 19

Annealing point ~10'3 2°C 3, 16, 19

Strain point ~10H.S 4°C 3, 16, 19

"The estimated proportional standard deviation of viscosity will vary
between various authors using the same technique.

viscosities from the centipoise range up to 10 10

poise. The instrument is capable of measuring
viscosities to within 1 percent, but the reported
errors are at least double that because of the in-

ability to eliminate temperature gradients and
fluctuations during measurements. The rotating

cylinder viscometer is based on the general

equation of motion:

where

r
d2

e dd

dt
+K2e=K3i (1)

I=moment of inertia,

0= angular displacement,
t=time,
r]= viscosity,

Ku K2 , and K3 are constants of the apparatus;
and i is current through the coil. Thus the first

term of the equation is the torque from inertia.

The second term is the torque from viscous drag.

The third term is an elastic torque due to an
angular deflection of the suspension, and the last

term is the magnetic torque applied to the system.
Method 1. Over the lowest viscosity range log

t?= 0 to log 77= 5 (log stands for log i 0) the outer
cylinder is rotated at a fixed angular velocity. The
viscous drag of the liquid produces a torque on
the inner cylinder. A measure of this torque is

made by applying an appropriate current to the
coil such that the resulting magnetic torque will

bring the inner cylinder back to its rest position

at 0=0.
Therefore the first term of eq (1) is zero, because

there is no angidar acceleration in the system
when measurements are being made. The second
term is present and significant. It is retained in

the equation of motion for Method 1, but since

the inner cylinder is held at rest, the angular
velocity of the outer cylinder is used in this term.
The third term is zero when the system is balanced,
since the angle across the suspension is zero. Even
so, it controls the sensitivity. By changing sus-

pensions the value of K2 can be changed and with
it, the sensitivity. Since the fourth term is sig-

nificant, it is kept. Thus the equation of motion
for Method 1 is

-nK^=K
}
i (2)

or

where Ci=|^ an<i W=W (angular velocity). Cx

in eq (3) was obtained by calibrating the viscometer
with NBS standard oils. Thermal expansion cor-
rections on Ci, known for room temperatures,
have to be made for accurate viscosity measure-
ments at temperature, T, up to 1400° C according
to the following equation:

G(D=clM.c
a+/yr-25])-3

(4)

where /3P is the linear expansion coefficient of

platinum.
Method 2. For viscosities from about log

77=4.5 to log 77=7.5 the aperiodic method [4] is

used. In this decay mode of operation, the outer
cylinder remains at rest while the inner cylinder
is displaced by an angle 0 and allowed to return
to its zero position under the force of the torsion

wire. Since the system is an over-damped harmonic
oscillator, one observes an exponentially decaying
angular velocity as the inner cylinder approaches
its equilibrium position. The term involving the
moment of inertia in eq (1) is extremely small
and can be neglected, giving rise to the following

equation

:

where

Integrating

we have

C2=K2IKX .

Je
l

0 J,

j

Cidt

_C2 (t 2— £1)
V~ ln0,/02

' (6)

The calibration constant (C2) for Method 2

can be calculated once the viscometer has been

calibrated by Method 1. First an independent

measurement of the current required for a given

angidar deflection of the inner cylinder is made.
This gives us:

K2

i = CA- (7)

From eqs (3), (5), and (7) one may obtain C2

from Ci and C4 according to the following

:

c2=(a/ct). (8)

n=C\%lu> (3)

Method 3. For viscosities from about log

77=5.5 to log 77= 10 the following method was used.

The outer cylinder again remains at rest whfle a

constant torque is applied to the inner cylinder by
means of the magnetic field interaction, and the

angular velocity is measured about 0=0. Thus the

term K2 0 is negligible and can be omitted. Since
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measurements are made in a steady state the
acceleration is zero, and we have the following:

de K3 . n .

(9)

integrating

we have

rsi ft
r,de=\ C3i dt

n=03i
d2—6\

(10)

C3 and Ci are equal.
An easier way of obtaining the torque involved

in the measurement is with a Brookfield viscom-
eter after adapting it for high temperatures.
This was done by Eppler [5], Gruber and Litovitz

[6], and Tiede [7]. Eppler [5] not only used the
Method 1 operation, which is the one recom-
mended by the manufacturer, but also Method 2,

with a similar increase in viscosity range.
For viscosities higher than 10 10 poise two tech-

niques are commonly used, the fiber elongation
and the beam bending techniques. Both of the
techniques represent absolute methods of meas-
uring viscosity and, unlike the rotation methods,
require no calibration.

The fiber elongation technique has been used
by many authors [3, 4, 12, 13, 14]. The recent
work of Napolitano and Hawkins [3] gives one
of the best descriptions of the apparatus de-
scribed below:

Weights ranging from 5 to 1000 g, depending on
the test temperature and viscosity of the glass,

were used to apply tension to fibers of uniform
diameter (~0.75 mm) and 10 cm long. An optical
lever with a multiplication factor of 50 was used
to observe the resulting elongation with a tele-

scope equipped with a vertical scale. The viscosity,

v, can be calculated from [14].

v=Fl/(3Adl/dt) (11)

where

F= extending force (dyne)
1= fiber length (cm)
A= fiber cross section area (cm2

)

dl

dt
= elongation rate (cm/s)

Some glasses cannot be made into fibers because
of devitrification, phase separation, surface vola-
tilization, etc. For many of these, samples can be
cut and ground to form beams of simple geometry.
The beam-bending method, devised by Jones [15]

and perfected by Hagy [16], gives viscosity results
derived from the rate of viscous deflection of a
beam according to the equation

gU
2ALv

\m-
pALl
1.6 J

(12)

where
g— acceleration due to gravity (cm/s2

)

Ic
= cross section moment of inertia (cm4

)

v

=

midpoint deflection rate (cm/min)
M= centrally applied load (g)

p= density of glass (g/cm3
)

A= cross section area of beam (cm2
)

Z=suport span (cm).

The second term within the brackets accounts for

the contribution of the weight of the beam to

bending and is usually neglected.

Both techniques can measure between 108 and
10 15 P. Figure 1 of Napolitano and Macedo [17]

shows an Arrhenius plot (log n versus l/T) of the

viscosity of Ge02 glass in the annealing region. As
can be seen from the scatter of points both fiber

elongation [17] and the beam bending [18] data
not only give the same values but also have about
the same uncertainty.

Table 1 also shows other viscosity measurement
techniques, and the interested reader can look up
the appropriate reference. When building a viscom-

eter it is highly recommended that the apparatus
be tested at or about the temperature one plans to

use it. For this, one can now buy NBS Standard
Reference Materials with certified viscosities.

In industry complete viscosity runs are made
only to evaluate a new glass. For quality control
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one uses fixed point measurements such as soften-

ing point, annealing point, and strain point. These
three points represent empirical measurements
which not only involve viscosity but also other
physical quantities. They are described in the
ASTM part 13 [19]. NBS also provides five refer-

ence glasses for the calibration of furnaces used in

measuring these fixed points.

2.2. Density

Density measurements of glasses are usually

made by Archimedes' principle either by direct

weighing or by flotation. These measurements are

now routine and require no further discussion.

The expansion coefficient methods are also gen-

erally accepted and can be made either by inter-

ferometric technique [20] or by dial technique [19].

Measurements of the density of molten glasses,

on the other hand, have not been standardized
and the disagreement between various authors

[21, 22, 23, 24, 25, 26] is outside their respective

standard deviations. The technique universally

used is to weigh a restrained platinum sphere
suspended by a platinum wire in a melt. The
possible sources of error are:

(a) homogeneity of the melt; if there are seeds

(bubbles) in the melts, the measured density will

be lower.

(b) difficulty in finding the null point, because
of viscous drag.

(c) the role of surface tension on the suspension
wire; it has either been ignored or miscalculated.

Shartsis [8] made an error in the calculation of

the surface tension effect which was extensively

copied by other authors.

(d) convection currents caused by an updraft
from the furnace may give erroneous weighings.

I will describe the technique Napolitano et al.

used in a previous publication [21] to measure
the density of B 203 .

The density was measured by Archimedes'
principle using a restrained sphere. Equilibrium
was obtained by letting a one-arm deflection

balance settle. Thus it was necessary only to adjust

the weights to 0.1 g, whereas the next decimals
were obtained by deflection and required only
periodic observations. Densities were measured
on glasses with viscosities up to 106 poise. At the

aforementioned value, the balance took 92 hr to

come to equilibrium. To estimate the uncertainty
of these measurements after the first equilibrium
was obtained, the cup was lowered 1 mm so that
an upper uncertainty limit could be obtained in

the weight; then it was raised 1 mm for the lowered
limit. It took 92 hr for the balance to come to

equilibrium at each of the subsequent weighings.
These limits were within ±0.001 g/cm3

.

To calculate the density from the data, the
effects of surface tension on the suspension wire
had to be considered. Surface tension force was
not reproducible at room temperature with a
platinum wire 0.081 cm in diameter because of

variation in contact angle; therefore, a gold-

plated tungsten wire 0.010 cm in diameter was
used. The volumes of three spheres (2.0, 1.5, and
1.0 cm in diameter), as well as the platinum
suspension wire (0.081 cm in diameter), were
calculated from the difference in weight in air

and in 4 C distilled water. The combined effects

of surface tension and buoyancy of the tungsten
wire were computed to be less than 1 mg in weight
and therefore were neglected.

At high temperatures the surface tension effect

was reproducible in molten B 203 . This was dem-
onstrated by weighing each sphere at three depths.

From the difference in volume and weight between
the spheres an absolute calculation of the density
can be made. In order not to make measurements
at each temperature with three balls, the effect of

surface tension was calculated assuming 100 per-

cent wettability and disregarding the Wilhelmy
[27] correction (for the effect of surface tension on
thin wires). The authors found that Wilhelmy
gave experimental evidence that this correction,

reported in the early part of his publication, was
not correct. Thus the density was calculated

according to the following:

d=(»r
alrWR|2W#.(l+^) !r 1

(13)

where W& \ T
— weight of sphere in air (g)

W"m=weight of sphere in melt (g)

V0
= volume of sphere in distilled water

at 4° C (cm3
)

r=radius of suspension wire (cm)
0-= surface tension of B 203 (dynes/cm 2

)

g= gravitational constant (cm/s2
)

/3p=linear expansion coefficient of plati-

num/0^
T= temperature (°C)

Density values from this calculation, using

spheres 2.0 and 1.5 cm in diameter, fall within

±0.002 g/cm3 of the average values obtained by
the difference in volume calculations.

In comparing the data [21] in figure 2 with other

authors, our data approximately parallel those of

Mackenzie [23] and of Shartsis et al. [25] but are

about 1 percent higher. Our data are more nearly

in agreement with the results of Li et al. [26] and
Riebling [22]. I believe that most of the disagree-

ment lies in the surface tension correction. The
best way to minimize such errors is to have as

large a sphere as possible, since in this case the

surface tension correction is a minimum.
A more difficult problem is to make density

measurements on melts having viscosities higher

than 106 poise. In this region it becomes prohibi-

tively long to obtain balance by the Archimedes

method. Thus a new technique was developed by
Macedo, Capps, and Litovitz [18] to operate at

high temperatures. A picnometer was fashioned

which had a ground-glass ball joint, which made
it possible to add or remove large specimens with-

out affecting the internal volume of the picnom-

eter. Cylindrical specimens of boron trioxide glass
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Figure 2. Specific volume versus temperature for vitreous B2O3.

Data above 400 C taken from NMH, ref. [21], below 400° C from MCL, ref. [28].

were cast with a diameter of about 2 cm and a
length of about 7 cm. A Teflon stopcock in the
filling tube made it unnecessary to use any grease.

Mercury was used as the picnometer fluid which
on heating was allowed to overflow into a weighing
bottle outside of the furnace. The overflow spout
was immersed below the mercury level in the
weighing bottle, permitting intake of mercury
when the system contracted on cooling. The bottle
was removed from the assembly for weighing.
Temperature changes were made in discrete steps.

After thermal equilibrium was reached at a new
temperature, the overflow bottle was weighed and
then replaced; all of the overflow accumulated
from step to step, and the total amount was always
weighed to prevent an accumulation of weighing
errors. This weight gain or loss of the picnometer
system between temperatures represented the
amount of mercury displaced by the expanding
or contracting system. Comparing the expansion
rate of the mercury system with the expansion
rate of the mercury-plus-sample system enables
one to determine the density p of the sample alone.
Figure 3 shows the weight of mercury displaced
in both runs. The solid points represent the pic-
nometer filled with mercury. They are numbered
in chronological order to show reproducibility.
The open circles represent the picnometer with
B20 3 sample and Hg. The first three points are
high due to the fact that the original sample was
highly quenched. Upon heating we have annealed
our sample, and only points after No. 4 were used
in our calculation. The agreement of Nos. 6 and 11
shows that once the sample is annealed the agree-
ment is comparable to that of the mercury curve.
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Figure 3. Weight of mercury displaced from picnometer as

a function of temperature.

•, picnometer filled with mercury; O, picnometer Med with sample

plus mercury. , roB,

Symbol 1 is common to both curves. Figure taken from MCL, rel. L^J-

The greatest source of error comes from the

degassing of mercury at high temperatures and

can be estimated from the scatter of the data

points about the smooth curve. In both cases this

173



scatter is less than 0.5 g which corresponds to a
fractional uncertainty in the volume, of 0.15
percent. Thus the maximum error of the reported
density or specific volume is ±0.2 percent. This
data was used together with that of Napolitano,
Macedo, and Hawkins [21] to produce a complete
volume versus temperature curve in figure 2.

Interpolation was necessary between 325 and 411
°C, but this was easily carried out because of the
smooth nature of the specific volume versus
temperature curve.

An upper limit of 325 °C for picnometer experi-
ments was a practical limit. Degassing of the
mercury was a troublesome and imperfect process
as some of the bubbles released would cling

tenaciously to the vessel walls. This problem
increased with temperature. Under ideal condi-
tions the upper limit would be the boiling point
of the mercury (356-357 °C) but because it has a
high vapor pressure well below this, safety con-
siderations also forced a compromise. This tech-
nique can be used at higher temperatures if one
substitutes for mercury other molten metals such
as Wood's metal or tin.

2.3. Ultrasonic Propagation

Mason's volumes on physical acoustics [29]

describe ultrasonic measurements very well. There-
fore, I will only describe a new technique which
has not been included yet in this series. It was
developed by Litovitz [30], Tauke [31], Simmons
[32], and myself. Prior to this work high-temper-
ature ultrasonic measurements were made in

such a way that the sound was generated at

room temperature and transmitted to the high-
temperature section of the oven through fused
silica or polycrystalline alumina rods. The diffi-

culties of this technique for measurements in

corrosive liquids such as the molten oxides have
been clearly outlined by Bockris and Kojonen
[33]. Two main problems appear: firstly, the
temperature range desired is above the softening
point of fused silica (1100 °C) and secondly, both
fused silica and alumina are soluble in the molten
oxides. To overcome this difficulty Bockris and
Kojonen glued molybdenum crucibles on the ends
of alumina rods. This technique has two disad-

vantages: firstly, there is a large acoustic loss at

the junction of the crucible and rod, and secondly,
polycrystalline alumina exhibits large grain bound-
ary loss at high temperatures. The ultrasonic

attenuation in the bond was so high in this system
that the top alumina rod had to be directly im-
mersed in the liquid. The resultant rapid corrosion
caused considerable experimental difficulty.

To avoid these difficulties we [30] used molyb-
denum acoustic transmission lines. This metal is

superior to alumina for several reasons. It is not
corroded by molten oxides and melts at a much
higher temperature (2700 °C). It withstands high

thermal gradients and is mechanically strong.

JM]

'I

7^

Figure 4. High-temperature interferometer.

1, melt sample; 2, water cooled shear transducer holders; 3, single crystal

molybdenum rods oriented with their axes along (110) and 1.27 cm in

diameter by 20 cm in length; 4, furnace wound with molybdenum wires;

5, micrometer screw; 6, water cooled alignment columns; 7, metal belljar

used as both a shield against stray pickup of electrical signals and a

chamber for a controlled atmosphere of 95% N2 and 5% H2 gas; 8, base

plate and support; 9, tuned cathode follower (from ref. [32]).

An obvious disadvantage of molybdenum is its

high thermal conductivity. This was surprisingly

easy to overcome. The heating element was taken

from the walls of the oven and put right on the

rods. Polycrystalline molybdenum has a higher

value of ultrasonic absorption than quartz owing
to scattering from crystalline boundaries. To
diminish this loss, arc cast molybdenum was used

because of its smaller crystal size with upper
frequency limit of 15 MHz. Single crystals of

molybdenum are readily available and permit

measurements up to 85 MHz.
The alumina rods used by Bockris and Kojonen

have a disadvantage compared with either poly-

crystalline or single crystals of molybdenum in

that they have a significantly higher absorption at

temperatures about 1100 °C due to grain bound-
ary losses. This temperature-dependent increased

loss is not observed in molybdenum.
This interferometer shown in figure 4 can be

used for both shear and longitudinal ultrasonic

measurements in the megahertz range (1 to 85

MHz). All that is required to change from one

measurement to another is to replace the quartz

transducers, which convert electromagnetic en-

ergy to accoustical energy and back to electro-

magnetic.
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a. Electronic Apparatus

Tauke, Litovitz, and Macedo [31], using the
standard pulse echo technique (described below)
with a 50-dB dynamic range (difference between
maximum signal and noise), were able to make
shear measurements through a melt of B203 ,

only in cases of absorption per cycle less than
2 Np/cycle. This restricted their measurements
to the region wr>l (r is relaxation time), so

that they could obtain only half of the relaxation
curve. In order to make shear transmission
measurements over a larger range of cor, other
methods were investigated by Simmons and
Macedo [32].

The use of a lock-in amplifier was considered
to reduce noise. Normally such an amplifier is

used with "continuous wave" operation and
reduces the frequency bandpass of the receiver to

less than 1 Hz with much lower noise levels.

Unfortunately the dynamic range gained at the
receiver by the "continuous wave" operation,
in the case of the high-temperature interfero-

meter, is lost at the transmitter. Due to the con-
tinuous excitation of the crystal, the peak power
must be lowered to keep the average power
level constant and avoid damaging the crystal

and bond. In addition crosstalk, which is the
receiving of transmitted signals by electrical

pickup rather than ultrasonic transmission, cannot
be discriminated against in the "continuous
wave" application of the lock-in amplifier.

In pulse operation however, crosstalk is sepa-
rated by time discrimination since such signals

travel with the speed of light and arrive at the
receiver promptly, while the ultrasonic signal is

delayed. Simmons and Macedo [32] showed how
one could advantageously combine the pulse
technique and the lock-in amplifier technique,
while still using a commercial amplifier. This is

done by using the triggering rate of the transmitter
in pulse operation as the reference frequency for

the lock-in amplifier.

(i) Standard Pulse Operation. The standard
equipment for pulse-echo measurements in wide
use today is shown in figure 5. The transmitter
generates a radiofrequency pulse of the order of

1 kW peak power which is applied to the lower
transducer through a matching network. The
signal after passing through both rods and the
liquid is received by the upper transducer, ampli-
fied using a tuned cathode follower at the crystal
holder, and then fed into a narrow band preamplifier.
It is added to the comparison signal and then fed
into the wide-band amplifier. The amplifier has a
wide enough band to allow the use of the compari-
son signal generator at its lowest frequency (10
MHz) to measure signals of much lower fre-

quencies without distortion. This was checked
using a step attenuator. The video output from
the amplifier is displayed on an oscilloscope.

(u) Pulsed Phase-Lock Detection. Figure 6 shows
the circuit diagram of Simmons and Macedo [32]
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SIGNAL
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TRIGGER

Figure 5. Standard equipment for pulse-echo measure-
ments showing both the water and high temperature inter-

ferometers (from ref. [82]).

for the operation of the pulsed ultrasonic system
with the lock-in amplifier. The details of the
ultrasonic system are shown in figure 5. It should
be noted in examining figure 6 that since the lock-

in amplifier detection system is used on the video
signal from the first amplifier, it can be added to

any ultrasonic apparatus in which the rf signal is

rectified.

The triggering system provides a series of pulses

which alternately trigger the ultrasonic system
and the comparator pulse. These rf pulses are

combined, amplified, and rectified in the receiver.

Five hundred times a second the following train

of video pulses leaves the receiver: the first pulse

is due to the electronic crosstalk (it carries no
ultrasonic information) ; the second pulse repre-

sents the straight through transition of sound
energy, which has the desired ultrasonic informa-

tion; subsequently a series of echoes arrive, which
for this experiment are not interesting. After the

NBS STANDARD

FREQUENCY SOURCE TRIGGERING SYSTEM

(1000 Hz

DELAYED]

ULTRASONIC

SYSTEM

FUORIER

ANALYZER

COMPARATOR

SIGNAL

GENERATOR
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FOURIER

ANALYZER

10CHN
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Figure 6. Modifications of the pulsed ultrasonic equipment

necessary for use of the phase-lock detection system.

For simplicity, the section of figure 5 between the transmitter and
amplifier, which remains unchanged, has been included into one "ultra-

sonic system." (from ref. [32]).
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echoes have died out (have been attenuated in

time till their amplitude is much less than the

noise of the system) approximately 1 ms later the

comparison pulse arrives. The gate width and
trigger are chosen to allow transmission of only

the maximum amplitude sections of the echo of

interest and the comparator pulse. In this manner
the information fed into the Fourier analyzer and
the lock-in amplifier is made up of two nearly

square pulses. The Fourier analyzer passes only

the 500 Hz component of these pulses. This not

only cancels out the gate pedestal which has a

1000 Hz repetition rate, but also subtracts the

comparison signal from the echo since they are out
of phase. The output C at 500 Hz is used as com-
parison signal for the lock-in amplifier, which
therefore analyzes the echo pulse as an in-phase

signal and the comparison pulse as an out-of-phase

signal, thus changing phase by 180° according to

which signal is largest. Intensity measurements
are made by matching both signals and obtaining
a null.

The lock-in amplifier uses its narrow band pass

with an integration network and produces an en-

hancement in signal to noise ratio of around 25
dB over the video display of the pulse. The null

detector feature of this system permits comparison
with a high degree of sensitivity (less than 0.1 dB)
provided the original signal is 10 to 15 dB above
noise.

b. Measurement Technique

Methods used for measuring absorption and
velocity of ultrasonic waves in liquids are dis-

cussed below using the apparatus described in the
preceding sections. I am summarizing previously
used methods [30, 31] as described by Simmons
et al. [32].

i. Absorption. The absorption measurements are

made by stepwise decreasing the path length in

the melt with a micrometer screw and recording
the amplitude of the comparison pulse necessary
to produce a null at the lock-in amplifier for each
step.

ii. Velocity. Depending on the magnitude of the
absorption coefficient and the viscosity of the melt,
various techniques can be used to measure the
ultrasonic velocity in the sample. For low absorp-
tion and viscosity below 2X10 5 poise, the signal

coming through the high-temperature ultrasonic
system is beaten against a pulse coming through
a water interferometer at room temperature. The
position of the rods in the water remains fixed. As
the high-temperature path length is changed, a
series of maxima and minima can be observed on
the oscilloscope. The slope of a plot of minima
versus rod separation in the melt is the ultrasonic
wavelength, X, in the sample. Knowing the fre-

quency /, the velocity, V=\f, can be calculated.
As the absorption increases, this measurement
becomes progressively more difficult as fewer and
fewer minima are measured, and the accuracy
consequently goes down.

The technique used in the high attenuation
regions is similar to the preceding one, in that
two ultrasonic systems are used in parallel, one
with water, the other with the sample at high
temperatures. The smallest detectable signal is

found by closing the gap between the two rods
in the high-temperature path. Then an attenuator
in the water path must be adjusted so that the
intensities of both signals match each other.
By adjusting the path length in the water, the
signals can then be superimposed, a minimum
attained by phase cancellation; and the respective
positions of the interferometers recorded. The
melt gap is then decreased by steps of 0.0C5 or
0.010 cm, depending on the available range of

travel, and the gap in the water is reduced until

a minimum is again observed. After the positions
of the interferometers are again recorded the
above procedure is repeated (see fig. 7). To obtain
good phase cancellation one must adjust the
attenuator in the water line until both signals

have approximately the same strength. Whenever
this is not possible (i.e., large melt signal) the
comparison pulse must be adjusted to cancel out
the excess signal and emphasize the minimum
at the lock-in. Since the velocity of sound in

water is known, the velocity in the sample can
be calculated by the relation

V, (14)

where Vs is the velocity in the sample,

the velocity in water, and Xn
2o the separation in

water corresponding to Xs in the melt.

For viscosities above 2X 10 5 poise (temperatures

below 840 °C in the alkali borosilicate glass tested)

it becomes difficult to move the two rods with

200 300 400

DISTANCE IN MELT./J.

Figure 7. Velocity measurements at 15 MHz in alkali

borosilicate glass over the temperature range 1003 °C to

1264 °C and having absorption per wavelength between

1.88 Nplcycle and 4.87 Npjcycle from ref. [32].
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respect to each other without noticeable slippage

in the micrometer screw driving linkage. In this

case, Simmons et al. [32] devised a new technique

for measuring the sound velocity. The temperature

induced change in transit time of the shear wave
through the two transmission lines separated by
a fixed distance in liquid is first measured. The
change in transit time in the liquid alone is then

obtained by subtracting the temperature-induced

change in transit time of the wave through the

transmission lines with the two rods touching.

Since the measurements are made for a fixed

distance of travel in the liquid, the temperature-

induced change in transit time can be related to

a temperature dependence of the velocity.

This technique was used on the molten soda-

borosilicate glass below 830 °C. The first echo of

the transmitted wave in the sample was beaten

against the water echo, but in this case the travel

distance in the water (whose temperature was
kept constant) was adjusted to remain out of

phase with the sample echo while the sample
temperature was varied and the sample distance

remained fixed. Thus, one could keep track of

the temperature-induced changes in transit time

by recording the changes in the travel distance

in water necessary to keep the two echoes out of

phase. Plots of the temperature dependence of

the travel through the water are shown in figure

8 [32]. Curve (a) represents the distance traveled

in water versus temperature when the two molyb-
denum rods are touching. Curve (b) is the same
plot except that the rods are separated by 0.254

cm of melt, and the added slope represents the
temperature dependence of the sound velocity in

the sample. The water temperature was kept
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Figure 8. Temperature dependence of distance traveled in
water necessary to keep the water echo out of phase with the

sample echo in the measurements of velocity at viscosities

above 2 X 10s poise.

Curve (a) is the temperature dependence corresponding to the trans-

mission lines only, and curve (b) is the dependence corresponding to

the transmission lines and the melt from ref. [32].

constant; thus the change in transit time could

be directly related to a change in travel distance

in the water through the known sound velocity in

water. The shear velocity outside the relaxation

region (temperatures lower than 830 °C in this

liquid sample) was then calculated by adding the

changes in velocity to a directly measured value

at a higher temperature. This was done using the

following equation:

V(T) = V0 [l
AV0

xmv, (To-T)] (15)
m V H2O

where V0 , is the velocity of the melt at T0 ,
Xm is

the fixed distance of travel in the melt, Vh 2o the

velocity in water, and A the difference between
the slopes of curves (b) and (a) in figure 7.

3. Viscoelastic Considerations

The fundamental question in viscoelastic be-

havior is : What and where is the glass transition?

In figure 9 from ref. [17], the increase in length

is plotted versus temperature for a Ge02 glass

sample. In this experiment the temperature was
raised at 2 °C/min. The region where the expan-
sion coefficient increases drastically is known as

the transformation range. Above this range one
has a liquid in metastable thermal equilibrium.

By metastable it is meant that the state of lowest

free energy is the crystalline, but this transfor-

mation requires nucleation and as long as there

are no nuclei present the liquid is in thermal

equilibrium. The larger expansion coefficient above
Tg is characteristic of the liquid state and is due
to the change in order as one changes temperature.

This order has been characterized by various au-

thors as the "number of holes," or "free volume,"

or "excess entropy," or "number of broken bonds,"

etc.

In a glass the degree of order does not change

as one raises or lowers the temperature; thus all

the second-order thermodynamic parameters

(thermal expansion, (3=(l/V)(c)V/dT) p ;
specific

heat Cp=(dH/bT) v ;
compressibility K,= —

(dV/5P) s ) have a value lower than the correspond-

ing parameters in the liquid. This lack in change

of the degree of order makes the glass in a ther-

modynamic non-equilibrium or unstable situation.

If one observes a glass for long periods of time

one would expect to see the degree of order change

as it tries to approach equilibrium. This process

is known as relaxation and measurements of its

time dependence are commonly called annealing.

In order to mathematically describe the anneal-

ing process, one has to study the time dependence

of the approach to equilibrium as a function of

both temperature and one or more order param-

eters. This work can be separated into two parts

:

firstly, the study of the time dependence of the

structural rearrangements, which will be charac-

terized in terms of a spectrum of relaxation
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Figure 9. Thermal expansion of vitreous Ge(>2 showing the critical point and the deformation

point.

Figure taken from N & M, ref. [17].

times; secondly, the temperature and structure

dependence of this spectrum.

3.1. Measurement of the Spectrum
of Relaxation Times

Let us define as linear an experiment where the
time dependence of the normalized stress or strain

relaxation is independent of the initial stress or

strain. Of course, a nonlinear experiment is one
which is not linear. One of the major problems is

to design an annealing experiment which is linear.

Ultrasonics provides probably the best solution
to this problem. Sound waves can be generated
and detected (see sec. 2) with stresses and strains

which may be treated as infinitesimal. From the
sound absorption, a, and velocity, V, the real and
imaginary parts of the complex modulus can be
calculated according to

pF 2 (l-(aF/co) 2
)m*=m' +im"=

(l+ («T7co)T

+i
2pV 2 (aV/u>)

(i+m 2
)
2 (16)

where m* can either be the complex shear modulus
G*, or the complex longitudinal modulus M*,
depending whether the shear or longitudinal sound
absorption and velocity are used. The longitudinal

modulus can be calculated from G* and the com-
plex compression modulus, K*, according to

M*=K*+4/3 G* (17)

Figure 10(a) shows a plot of the real and imaginary
components of the longitudinal modulus, M*,
versus frequency. At low frequencies where the

structure of the liquid has plenty of time to re-

arrange itself between successive crests of the

sound wave, M* is real and frequency independent
and represents the modulus of compression of the

liquid (the reciprocal of the liquid compressibility).

As the sound period becomes shorter and shorter

the structure cannot keep up with the cycling

pressure, and the liquid becomes progressively less

and less compressible. Finally, at high frequencies

the liquid exhibits glasslike moduli, (M a>
=K a>

+4/3 where Km is the unrelaxed modulus of
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Figuee 10. (a) Plot of real and imaginary parts of modulus versus log frequency.

(b) Reduced plot.

(c) Plot of shear modulus versus log frequency.
This plot is exaggerated to show all three relaxation mechanisms:

(1) entropy or polymer like relaxation not observed in molten oxides; (2) pseudo glass transition; (3) delay elastic effects; in silicate and borate melts
the relative strengths are 0%; 90%; ~10% respectively.

(d) Spectrum of relaxation times.

compression and is the shear modulus). By
definition liquids do not exhibit equilibrium shear
rigidity; thus the high-frequency behavior is

definitely a solidlike property. Actually, it is the
glass modulus that one is observing, and by
changing the frequency one can go through the
glass transition. Associated with the dispersion of

the real part of the modulus there is an absorption
of the sound wave which is related to the imaginary
part of the modulus. Just as the low-frequency
real part of the modulus was the liquid modulus
of compression (reciprocal of the compressibility),
the low-frequency imaginary part of the modulus
is given by urjL , where co is the angular frequency
and vl is the longitudinal viscosity. In a liquid
there are two elementary and independent stress-

strain processes, one associated with shear and the
other with compression. The shear has the well-

known shear viscosity, v s , the measurement of

which is described in section 2, while the compres-
sion exhibits an analogous volume viscosity, riv .

The longitudinal viscosity represents the following
sum of these viscosities:

ifc=^+4/3 ^. (18)

By measuring the propagation of both shear and
longitudinal sound waves, one can subtract G*
from M* and obtain the relaxation curves for pure
compression. By calculating the reduced modulus
for compression

m

=

K'-K,
-• 777"

orforshear TU^G'/G^; Tfl"=G"\Gm (19')

at each frequency one can compare the experi-

mental curve with theoretical results. For a

single relaxation time, r, one has

K'
(19)

m+im" (cor)
2

COT

l+ (cor)
2

' l+ (cor)
2

(20)

In general, the data do not fit, and one has to

assume a distribution of relaxation times #(r).

Thus, one has integrals of the form

m'+im"=f"\jM 2

+ («r)
2

cor

l+ («r)
fj#(r)d7

(21)
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where for molten oxides g(r) is taken to be

g(r)dT ={bl^K) exp[-6 2 In2
(r/r')] (flnr (22)

where r' is the most probable t, and b is the width.
Schematically g(r) is given in figure 10(d). From
eqs (21) and (22) one obtains a very useful expres-
sion

7?s=lim (—)=Gmf=Ga Crg{T)dT (23)
wt->0 \ W / JO

where r is the average shear relaxation time.
This is the reason why t? s is used to define the
annealing range (annealing point and strain point)

.

Working with glass one needs to specify the
time-temperature relationship for three basic
processes (deformation, annealing, and strain

points). The upper limit of the annealing range is

determined by the deformation point, where
within minutes the glass will sag under gravity.

This process is directly related to the viscosity

itself and can be well characterized by viscosity

measurements. Next, one is interested in the glass

transition itself, where the volume relaxation
time becomes comparable with the effective

experimental times. A priori the volume relaxation
time has nothing to do with the shear viscosity,

and a measurement of shear viscosity would be
useless to characterize this process. Fortunately,
there are some relationships which we found to

hold for silicate glasses between the shear and
volume relaxation times. The average volume
relaxation time at constant pressure and tempera-
ture is about six times larger than the average
shear relaxation time. Also the shear modulus of

rigidity Gm is about 2X10 11 dynes/cm2
. Thus,

using eq (23) for a viscosity of 10 13 poise one
calculates the average shear relaxation time to

be ^50 sec and the average volume relaxation
time ~5 min. If one measures the expansion
coefficient of a glass by rate heating at 2 °C/min,
the first kink (critical point in fig. 9) corresponds
to a temperature having an average volume relaxa-
tion time of a few minutes. For silicate glasses the
sample has ~10 13 poise at the critical point, but
this is not a viscosity measurement; and for the
same volume relaxation time the shear viscosity
varies from 10 14 poise for Ge02 to 10 12 poise for

B 203 . A second and sometimes worse error is the
use of the average relaxation times rather than
the spectrum, since the very small relaxation times
often play the predominant role in annealing.
This introduces at least a factor of 10 error in
estimates of annealing times.

To better understand the effects of a spectrum
of volume relaxation times let us examine figure

11 [17]. In the relaxation curves shown, the
structure changes enough to affect the relaxation
time spectrum during an approach curve (non-
linear effect). The existence of both nonlinear
effects and a distribution of relaxation times make
the calculation of the relaxation time spectrum
very difficult, if not impossible. In order to cir-

cumvent this problem the crossover technique

[34, 35] was developed. The thermal history
involved in the crossover can best be understood
if one first understands the mathematical model
used to represent the spectrum. The analysis is

simplified by assuming that the spectrum is given
by two relaxation mechanisms of equal strength,

each having a single relaxation time. Thus the
average index N is given as a function of time by
the following relation

N=y2[Ml(t)+M2 (t)] (24)

where M t(t)=N^ JrNie- tlTi
, in which iV» is the

equilibrium value of index; N{ , the initial deviation
of index from iV» associated with mechanism i

having relaxation times r t . This formulation can
be thought of as describing the relaxation (change
of volume) to a final equilibrium value following

a change in temperature (analogous to an iso-

thermal recovery function) in terms of two
separate mechanisms, the first of which relaxes

appreciably faster than the second. Ni and 7V2
are measures of the total relaxation undergone by
the two separate mechanisms in reaching equi-

librium. If the starting point is one of equi-

librium (Mi (0)=M2 (0)), the two mechanisms
will have to relax the same total amount Ni=
N2=(Na,(Tl)—Na>(T2)). However, when starting

from a nonequilibrium approach curve, Ni and
N2 will depend on the particular approach curve
being followed. Figure 12 due to Macedo and
Napolitano [34] shows schematically the time
dependence of N, Mu and M2 at T2 for a glass

initially at equilibrium at Tx , where T^>T2 . As
the structure rearranges itself to the new equi-

librium, Mi will rise faster since it is associated

with the shorter relaxation time while M2 will

change more slowly. Thus, around the bend of

the approach curve, there will be the largest

difference between Mx and M2 in the glass. As
time progresses, Mi will reach its equilibrium value

for T2 first (r2>ri) and stay there. From then on
the spread between Mi and M2 narrows because
the slow relaxation process continuously ap-

proaches the same equilibrium value at a slower

rate. Finally, when the structure is completely,

at the new equilibrium the spread becomes zero

and one has again an equilibrium glass (My=M2 ).

The crossover experiment involves taking a

glass having index, a (see fig. 12) from the ap-

proach curve and introducing it into a furnace

whose temperature is Tx . Tx is preselected such

that the equilibrium index at Tx ,
iV^T*), is equal

to a. Thus at a crossover, a, the fast relaxation

time (n) corresponds to an index Mx higher than

the (average) measured value, N, and the slow

relaxation time (r 2 )
corresponds to an index M2

lower than N.
If the index at the point of crossover, a, is

equal to the equilibrium index at the crossover

temperature Tx , then N2=—Ni. A prerequisite

for a minimum in the crossover experiment is
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Figure 11. Index of refraction versus time isotherms for vitreous GeOi.

Figure taken from N&M, ref. [17].
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Figure 12. Illustration of the two relaxation time model
{ref. 34) represented by the upper and lower dashed
curves.

The average or measured index is given by solid line. The crossover
equilibrium index (x) and the transfer point (a) are also shown.

that Ni and N2 have opposite signs. This is

fulfilled when N has a value between A and B

in figure 12. Figure 13, from Macedo and Napoli-
tano [34], shows M x (the upper curve), M2 (the

lower curve) and N the solid line (calculated index).

The agreement of the calculated curve with the
actual experimental points for a borosilicate

crown glass is seen to be good.
From this discussion there are two points one

shoidd consider. First, because of the spectrum
of relaxation times, two glasses with the same
composition and same index of refraction or

Active temperature can have vastly different

structures (compare glasses in the beginning and
end of figure 13). Second, the two relaxation time

model shoidd only be considered as a mathemati-
cal convenience; the spectrum of relaxation times

physically can be represented better as a gaussian.

This explains the existence of a very small number
of relaxation times, orders of magnitude smaller

than the average relaxation times. These very fast

relaxation times are responsible for the annealing

observed at 351 °C in figure 11.
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35) ,
showing the average of the fast and slow

relaxation processes.

3.2. Strain Point and Viscosity in
Nonequilibrium Structures

Glasses that are cooled through the glass trans-

formation region with a temperature gradient

across the sample have frozen (thermally arrested)

strains. These strains produce optical birefring-

ence. Such glasses are brought to the "bottom"
of the annealing range and there strain relaxation

will eliminate birefringence. This relaxation is

due to shear flow and shear viscosity controls

relaxation rates. The problem is that glasses are

not at thermal equilibrium, because complete
volume relaxation takes too long at this tempera-
ture region. The viscosity is not a unique function

of temperature, but also depends on the structure.

Thus, in order to characterize strain relaxation

one needs to know how to extrapolate the viscosity

to lower temperature for a glass at fixed structure.

This area is in a major controversy between
theoretical arguments, experiments, and technical

applications. The theoretical arguments will be
discussed in section 4. The problem with making
a viscosity measurement as a function of volume
relaxation is that viscosity can not be measured
instantaneously. Upon applying a load the elonga-
tion rate is much larger than one would expect
from viscous flow. This occurs because glasses are

complicated materials and there are several
different relaxation mechanisms acting at the
same time. If the load is removed there will be a
time-dependent contraction, but when the process
is completed not all of the deformation will have
been recovered. Those relaxation processes whose
deformation can be recovered are called delayed
elastic effects, while the irreversible deformations

are associated with viscous flow. In fact one does
not have to remove the load and measure the
permanent part of the deformation, but one need
only wait till all the delayed elastic effect has
worked itself out and the elongation rate is no
longer a function of time. Zijlstra [36] made
measurements of elongation rate versus time after

temperature jumps and erroneously associated
all the elongation rate with a viscous process.
From these measurements he concluded that the
viscosity of the nonequilibrium frozen structure
glass was almost temperature independent (fig.

14). On the other hand, Kurkjian [37] showed that
by the time that the delayed elastic effects are
worked out the glass is at or almost at thermal
equilibrium (volume relaxation is almost com-
pleted). Kurkjian not only questioned Zijlstra's

work, but also indicated that he considered that
type of measurement would be impossible to make.

Lillie [13], studying the technical problem of

strain relaxation in glass, had in effect solved the
theoretical problem 30 years before it was pro-
posed. He loaded the sample at high temperature
where both volume relaxation and delayed elastic

eflects take a reasonable time. Then the sample
was cooled at a constant rate. For awhile volume
relaxation kept up with the cooling rate but as

volume relaxation time became longer and longer
its structure lagged the equilibrium structure.

That could be seen from the viscosity-temperature

curve as it changed slope. However the change
in slope was only 25 percent, far less than Zijlstra's

value (95 percent). This rate cooling measurement
is the now Annealing-Strain Point ASTM pro-

cedure. As it will be seen in the next section, this

relatively small change in slope contradicts most
modern theories of viscosity. A sample run of the

viscosity versus temperature at constant cooling

rate is shown in figure 15 for NBS Standard glass

710 due to Hagy [15].

3.3. Nonlinear Viscoelasticity

All the viscoelastic theory thus far presented

rested on the fact that one can linearize the equa-
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Figure 14. Viscosity-temperature curves

taken from Zijlstra [36].
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per minute for determination of annealing and
strain points.
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um viscosities for glass shown by solid line.

tions. For viscosity that means that the shear

strain rate is proportional to the shear stress. Re-
cently authors [38, 39, 40] have shown experimen-

tal proof of nonlinear behavior in the annealing

region of several glasses. Since the experimental

uncertainty of these measurements were compara-
ble with the effect, the results were generally

attributed to bad data and ignored. However,
the effect is probably real and must be accounted
for before it destroys our whole theoretical frame-
work. Bartenev [38] states that the nonlinear

effects are most pronounced when the glasses

were observed to phase separate. Lack of linear

behavior of two liquid-phase composites is ex-

pected, and does not contradict our theoretical

structure.

This existence of microphase in melts and
glasses does cause unexpected and otherwise un-
explained behaviors. Whenever one is working
with a glass, one should keep track of its micro-
structure by electron microscopy. Glasses must
now be characterized not only by composition
but also by detailed thermal history, since it will

affect both its volume relaxation (Active tempera-
ture) and its microstructure.

4. Temperature Dependence of the Vis-
cosity and Relaxation Time

4.1. Fulcher Equation

In order to interpolate and extrapolate viscosity

measurements, one would like to have an ana-
lytical expression for the temperature dependence
of the viscosity. The most widely used expression,

is an empirical equation proposed by Fulcher [41],

log r,=A+B/(T-T0) (25)

in which A, B and T0 are arbitrary constants. In
order to fit this equation to data by the least

squares method, it has to be linearized to the form

T log V=B-AT0+AT+ To log n. (26)

One needs a program subroutine for least squares
fitting a function of three variables (vectors)

Yi=CiXu-\-C2X2i+C3X3U (27)

where Yt are the unknowns, XH are the variables,

and Ci are the desired coefficients. Note "i"

differentiates each set of data. Matching equations

(26) and (27) one has

Yi=Ti log ri i

Xu=l
X2i= Tt

-ST3<=log Vi

and A=C2

T0=C3

B=C1+C2C3 .

We have minimized the error on T log v which
favors the high-temperature data. This is the usual

procedure since the low viscosity measurements at

high temperatures are more accurate than the high

viscosity data at low temperatures. Because of the

linearization of the Fulcher equation the standard

deviations calculated for Cx , C2 and C3 are not

applicable to A, B, and T0 . If one wants the

standard deviation of the data about the Fulcher

curve, a, one can calculate it

0-2= (jV-3)-%(log w-log lea.,)
2

(28)

where N is the number of data points. If, on the

other hand, the uncertainties on A, B, and T0 are

desired, a second calculation has to be performed.

This time we assume a set of parameters (A', B'

,

and Tq from the above calculation) and proceed

to calculate an improved set {A, B, and T0) by the

following iterative procedure. A difference in log v

can be caused by:

Alog^S^AX^
-f(T-ro)- 1 Aff+Tr^yp ATo- (29)
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Matching eq (29) and (27) we have

Fi=log 7/iexp—log i?ical=log 77jexp

-A'-B'iTt-To')- 1

(30)

^^(T.-To)" 1

X3i=B (Ti—T0
)~ 2

.

After the least squares fit one has: AA=Cy \

AB=C2 ;
AT0=C3 .

The best values then become

A=A'+AA=A'+d
B=B'+AB=B'+ C2

T0=T0
' +AT0=T0

'+a
and the standard deviations of A, B, and T0 are

those of Cu C2 , and 03 respectively. If the initial

values of the parameters are taken from a least

squares fit to eq (26), the Ct are comparable to

their standard deviations and only one iteration

is necessary. Notice, that eq (29) minimizes the

error in log 77 rather than T log 77. If the reader is

interested in the latter he can multiply all the

equations by T. The rest of this section is taken
from Macedo and Napolitano [1].

The extensive measurements carried out at the

National Bureau of Standards and several par-

ticipating laboratories on standard glasses No. 710

[3] and 711 [42] have shown that the Fulcher
equation does indeed fit the viscosity of these

glasses within experimental accuracy between
10 2 and 10 12 poise. A plot of the deviations between
the experimental points and a least squares fit

to the Fulcher equation in this range for both of

the standard glasses is shown in figure 16 from
reference [2].

For a comparison a plot of the deviations from
a least squares fit to the Fulcher equation for a

BSC glass (Ritland's) [43] where viscosity measure-
ments have been made to 10 14 72 poise is shown in
figure 17 from reference [1]. The deviations are
well outside experimental error but still reason-
able. In general, if the data are limited to viscosity
values below 10 12 a good fit can be obtained to
the Fulcher equation [41]. In extrapolating this

fit to (low temperature) higher viscosity values,
the Fulcher equation predicts higher values than
the actual measured values, whereas, if (as shown
in fig. 17) a least squares fit is made to the Fulcher
equation with all of the data (up to 10 14 72 poise)

an "s" shape type of curve is obtained for the
deviations.

In view of the great empirical success of the
Fulcher equation, many different theoretical

bases have been proposed for it. In all of these
models approximating assumptions had to be made
to reduce the theoretical equation to the form of

the Fulcher equation. In the hope that one of

these theoretical models will be an improvement
over the Fulcher equation we will review theories

in terms of all the available viscosity data in

vitreous B 20 3 . For the sake of presentation, the
smooth data taken from reference [1] will be used
and plots will be given of the differences between
the predicted and experimental values.

These approximating assumptions are especially

bad for B 203 because of the peculiar temperature
dependence of the expansion coefficient [44] and
the specific heat [45]. Thus, it can be expected that

the Fulcher equation will be a poor fit to the B 203

data. In fact, as shown in figure 18, curve A, the

equation is a very poor fit, having a proportional

standard deviation of 40 percent and deviating by
as much as a factor of 2.2. The calculated con-
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stants for this equation and those that follow are

given in table 2.

Table 2. Calculated constants for each equation for B 20 3

glass from ref. [1].

Constants 1" 2" 3" 4" 5"

AOogio)
B

-0. 176
1825
138

-5. 239
1. 160

-0. 668
562.1

-5.334 -8. 634
115, 500

To
Vo(cm3/g.) 0. 492 0.480
£(kcal/mol) 11.9

5. 68
6.70

0. 147

A£(kcal/mol)
AS(cal/k/mol)
AV(cmVg.)

"1—Fulcher equation (ref. 41).
2—WLF equation (ref. 46).
3—RRE equation (ref. 51).
4—Hybrid equation (ref. 52)

.

5—A & G equation (ref. 56)

.

4.2. The Free Volume Approach

a. Doolittle Equation

Williams, Landel, and Ferry (WLF) [46] have
shown that the Fulcher equation can be considered
identical (assuming the expansion coefficient is

TEMPERATURE-°CxlO Z

2.6 3.0 3.5 4 5 7 10 14

16 14 12 10 8 6 4 2

L0G|07y- POISES

Figure 18. Deviations between the observed log

viscosity values and those calculated from the least

squares fit to several models for B2O3 glass [1].

• A—Fulcher [41].

O B—WLF [46]

C—Ree, Ree and Eyring [51]

D—Macedo and Litovitz [52]

A E—Adam and Gibbs [56]

temperature independent) to the free volume
equation (in the Doolittle [47] equation) where

log V=A+B/(V-V0) (31)

in which V-V0 is the free volume per unit mass,
and A, B, and V0 are arbitrary parameters. This
equation was later derived by Cohen and Turnbull
[48] and Bueche [49]. Even though a constant ex-

pansion coefficient would be a good assumption
for most liquids, it would be especially bad for

B 203 since 0 changes by a factor ~20 between
270 and 1300 °C. Curve B, figure 18, represents a
fit to the free volume equation, and, as can be seen
even though the deviations are well above experi-

mental uncertainty, the fit is much better than the
Fulcher equation fit.

The free volume equation not only predicts

the temperature dependence of the viscosity

through the volume but also the pressure. In fact,

it predicts that if one changes the pressure
appropriately to maintain constant volume, the
viscosity should be temperature independent.
Sperry and Mackenzie [50] have observed strong
temperature dependence of the viscosity at

constant volume, and found the activation energy
at constant volume to be not only large as in most
other liquids but almost equal to the activation

energy at constant pressure. Thus, the free

volume approach can not explain the viscosity-

pressure dependence, suggesting that the success

in fitting the viscosity-temperatue dependence
is probably fortuitous.

b. Significant Structure Theory

In an effort to introduce a temperature de-

pendence of the viscosity at constant free volume
Ree, Ree, and Eyring [51] proposed an equation
of the form

log n=A+B/[T(Y-V0)] (32)

in which the activation energy [B/(V—V0)] is

a function of the free volume. Curve C, figure 18,

shows the deviations of the least squares fit of this

equation to the data.

c. Hybrid Equation

In the hybrid equation [52] the probability of a

molecule obtaining simultaneously enough energy

to break its bonds and free volume to perform a

jump is calculated. This equation has the form:

In V=A+V0/(V-V0) +E/(RT) +ln T. (33)

It became evident that this equation, similar to

the free volume equation (31), overestimates the

pressure dependence of the viscosity. Among
investigators in this field there has grown a general

sentiment that VQ is pressure dependent. For

example, Matheson [53] solved a similar problem

with the viscosity of glycerine by making the

323-655 O - 69 - 13
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reasonable assumption that V0 is temperature and
pressure dependent. Such a calculation has been
made for B203 [54] where a two-state model for

the free volume of B 203 was assumed. In this case

the hybrid equation takes the form

In r,=A+(V-V,))V,+E,/(RT) (34)

in which Vf is the free volume given by a two-state
calculation,

Vf=AV. (1+ exp [(AH—TAS)/RT\) (35)

where AV, AS, and AH (AH=AE+PAV) are

respectively the differences in volume, entropy,

and enthalpy between states 1 and 2. It was also

shown that these equations not only predicted

the temperature dependence of the volume and
viscosity, but also the pressure dependence of the

viscosity as measured by Dane and Birch [55].

Figure 19 shows a plot of d log n/dP versus tem-
perature where the two extreme data points are

from Dane and Birch, while data between the

extremes is the more recent work of Sperry and
Mackenzie [50]. As can be seen in figure 19 the

two sets of data agree well with each other, and
since the hybrid equation was shown to be con-

sistent with the Dane and Birch data it also agrees

with the Sperry and Mackenzie data.

In figure 18, curve D, the hybrid equation is

tested with Macedo and Napolitano's [1] new low-
ter .^erature data and it also fails by predicting a

too fast increase in viscosity in the glass transition

region. The failure can be attributed to either eqs

(33) and (34) (viscosity theory) or eq (35) (im-

proper calculation of the free volume). This point
is discussed at length in ref [1], the conclusions of

which are given in section 4.4.
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Figure 19. Plot of dlogVdp versus temperature from ref.

HI
#—Dane and Birch [55]

O—Sperry and Mackenzie [50]

4.3. Configurational Entropy Model

Adam and Gibbs [56] proposed that in order to
have viscous flow a flow unit has to overcome a
potential barrier. In addition, depending upon
the configurational entropy, more than one unit
may have to perform the jump at a time. This
gives an equation of the form

log r,=A+B/[T (S-S0)] (36)

in which {S—S0) is the configurational entropy,
Se . Araujo [57] equating the temperature depend-
ence of Sc to the difference between the liquid
and the crystal temperature dependence of the
entropy, was able to fit the viscosity data for
B203 between 106 and 10 1

4

poise very well.

Unfortunately, there must have been an arith-

metical mistake since over this temperature range
the extrapolation of crystal specific heats of

Kelly [58] and Thomas and Parks [45] (which
Araujo claims to use) crosses the liquid values,

see figure 20. This would predict increasing vis-

cosity with increasing temperatures at a temper-
ature above the crossover point but still within
the measurement range. This phenomenon was
not observed. Thus, one must assume, the specific

heat extrapolation is incorrect. The viscosity

data was cut off at 500 °C and refitted where T0 ,

A, and B were varied for best results. Curve E,
figure 18, shows the deviation from the fit. The
fit is still poor, but better than average. This
appearance of improvement is due to a much
smaller temperature range.

4.4. Conclusions of Equation of Viscosity

Having considered the best known viscosity

theories, in view of their new additional viscosity

data, and finding no reasonable fits, Macedo and
Napolitano [1] examined the validity of the basic

assumptions underlying these theories. They found
that the temperature dependence of the viscosity

is not controlled by structural effects such as free

6O1 1 1 1 1 1 1 1
1 r
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1 20-
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o
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Figure 20. Plot of specific heats versus temperature from

Kelly and Thomas and Parks for B203 from ref. [1].
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volume, configurational entropy, etc., but by
activation energy effects which are probably
caused by the necessity of bonds to be broken in

the viscous flow process. Further, the onset of

the non-Arrhenius region is a direct consequence
of the appearance of a distribution of relaxation

times and/or a distribution of activation energies

(as shown by Tauke, Litovitz, and Macedo [31]).

The appearance of a symmetric distribution of

relaxation times (activation energies) cannot be
explained by existing viscosity theories.

In the annealing range all the theories are in

error in that they predict that the viscosity

should go to infinity much faster than experi-

mental data shows ($E/b(l/T) should be an
ever-increasing function and it is not (see fig. 21)).

In fact, B20 3 viscosity was again Arrhenius at low
temperatures for over five decades. Therefore, one
must conclude that the present theories of viscos-

ity are inadequate, in particular, to fit the vis-

cosity data and, in general, to give physical

significance to the calculation of shear relaxation

and its spectrum times.

A naive, yet better, model for the viscosity of

B 203 is one similar to that of Ottar and Ruigh
[59] in which the liquid has a "disassociated"

state at high temperature (T>800) in the Ar-
rhenius region. Then, there is an intermediate
region where association takes place, finally,

almost completely associated, the liquid again
becomes Arrhenius. This model has to be made
much more specific in order to explain the distri-

bution of relaxation time behavior, and to be
generalized for other liquids. However, this must
await the more extensive data on the distribution

of relaxation times.
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Figure 21. Plot of apparent activation energies versus

temperature for B203 glass from ref. [1].
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Inelastic Deformation of Oxide Ceramics

Richard M. Spriggs*

Physical Ceramics Laboratory, Materials Research Center, Lehigh University,
Bethlehem, Pennsylvania 18015

The current understanding of the inelastic deformation of oxide ceramics is reviewed.

Special emphasis is given to the permanent deformation caused by stress-enhanced diffusional

creep, dislocation motion, and grain-boundary sliding. Brief reference is also made to recov-

erable inelastic deformation caused by point defect motion, dislocations, and grain boundary
sliding. It is recognized that the observed permanent deformation is usually the result of

more than one process, with complicating interactions frequently occurring, and with the

relative contribution of each mechanism depending upon a host of structural, compositional,

and experimental factors. Detailed information is available for only a few oxide ceramics

and the need for additional research is evident.

Key Words: Anelasticity; creep; deformation; dislocations; grain boundaries;

inelastic (plastic); oxide ceramics; point defects.

1. Introduction

When ceramic materials are subjected to a
stress at ambient or elevated temperatures, they
respond by deforming. This deformation fre-

quently is the result of more than one deformation
process. Furthermore, interactions among simul-
taneous processes often occur, making it difficult

to assess quantitatively the effects of each process.

However, the individual processes can frequently
be separated or indentified and qualitatively or

semiquantatively evaluated.
The deformation experienced by a ceramic ma-

terial may be elastic and hence recoverable (i.e.,

strain which is fully and instantaneously recovered
when the stress is removed). Alternatively, the
deformation may be inelastic and may or may not
be recoverable. Recoverable inelastic deformation
can be considered to be time-dependent strain

which is fully recovered when the external load
is removed, even though recovery may take infi-

nite time, i.e., observations over experimentally
practical times indicate complete recovery upon
extrapolation [1] Nonrecoverable inelastic defor-
mation, on the other hand, is permanent strain or
deformation which is not recovered in any length
of time when the load is removed ; it is frequently
referred to as plastic deformation.
The subject of the present discussion is re-

stricted to inelastic deformation, primarily the
permanent deformation caused by phenomena
such as the introduction of microcracks, disloca-

*The author is professor of metallurgy and materials science, director of
the Physical Ceramics Laboratory, and associate director, Materials Re-
search Center, Lehigh University, Bethlehem, Pennsylvania 18015.

1 Figures in brackets indicate the literature references at the end of this
paper.

tion motion, grain boundary sliding, and stress

-

enhanced diffusional creep. Furthermore, it deals

largely with oxide ceramics. Brief reference is also

made to recoverable inelastic deformation. The
reader is referred to other papers in this Symposium
for a complete description of elastic deformation

of crystalline ceramics and other refractory ma-
terials [2], and inelastic deformation of non-oxide

ceramics [3]. An unusually complete introductory

survey by Wachtman [1] on the mechanical
properties of ceramics serves as a starting point

for much of the following discussion.

2. Recoverable Inelastic Deformation

Wachtman [1] cites several important examples

of recoverable inelastic deformation which_ are

summarized below. Included are anelasticity

caused by point defect motion, anelasticity in

amorphous glasses, and recoverable inelastic de-

formation caused by either dislocations or grain

boundary sliding. In each of these instances, it is

important to keep in mind that recoverable in-

elasticity implies that when a load is applied to a

specimen, the free energy is increased in such a

way that when the load is removed the deforma-

tion is eventually fully recovered as the free energy

returns to a minimum under the action of thermal

vibrations [1].

2.1. Anelasticity Caused by Point Defect
Motion

Small inelastic deformation which is linear in

the stress, i.e., anelasticity, is produced by the
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stress-driven motion of point defects such as
interstitial ions or vacancies. Anelastic deforma-
tion is usually and more easily studied in dynamic
experiments in which the stress varies periodically
with time and the internal friction (fractional
energy dissipated per cycle) is measured.
While most of the work on anelasticity caused

by point defects has been conducted with metals,
some work has been done on ceramics and such
studies promise to be quite useful in identifying
types of point defects in ceramic crystals and
measuring their jump rates [1]. Wachtman [1]

cites work which has been reported on MgO [4, 5],

Zr02 [6, 7], Th02 [8], Ti02 [9-11], CaF2 [12], and
Si02 [13]. Under certain circumstances, electronic
motion can also contribute to anelasticity in

ceramics, as in lithium-doped NiO semiconductors
[14]. In addition, typical internal friction values
have been tabulated for commercial ceramics [15];

such values tend to be variable, however, and
depend upon factors such as trace impurities,
phase changes, etc. [1].

2.2. Anelasticity in Amorphous Glasses

According to Wachtman [1], internal friction

measurements in glass may show either the motion
of alkali ions or the viscoelastic behavior of the
glass network, or even a combination of the two
effects [16, 17]. The motion of alkali ions gives
rise to a pronounced "elastic after effect" in
chemically strengthened glass; an anelastic strain

equal to 11 percent of the elastic strain has been
observed after 15 min at 25 C [18]. The viscous
relaxation of the glass network itself at high
temperatures gives rise to large differences in

elastic moduli measured at frequencies low enough
to permit relaxation [1]. For B203 at 800 C, for

example, the longitudinal modulus at high fre-

quency is three times the low-frequency value [19].

2.3. Recoverable Inelastic Deformation Caused
by Dislocations

The movement of dislocations is the most im-
portant mechanism of inelastic deformation in

metals at room temperature and in many glass-

free ceramics of large grain size at high tempera-
tures [1]. Dislocation mobility is thus very im-
portant to an understanding of the deformation
of ceramics and depends strongly on the presence
of other imperfections such as point defects, pre-

cipitates, and other dislocations [20].

Under lower stresses, segments of pinned dis-

location bow outward while the ends remain
attached to the pinning points. At greater stresses,

the dislocation breaks away from some of the
pinning points. With the former situation, where
bowing only occurs, the dislocations return to

their original positions when the stress is removed

;

this inelastic, recoverable deformation gives rise to

a frequency-dependent but amplitude-independent
internal friction. By contrast, the latter occurrence,

where dislocations break away, produces ampli-
tude-dependent internal friction [1]. Dislocation
mobility can be related to measurable internal

friction by theory [21-23], but other factors such
as dislocation loop length and dislocation density

are also involved.

Chang [24] analyzed data for MgO and A120 3 ,

but Carnahan and Brittain [25] found that for

Ti02 (rutile) the experimental results showed
qualitative disagreement with the theory, as was
also found for MgO [26] and Cu-Ge alloys [27].

Wachtman [1] concluded that while the study of

internal friction caused by dislocations in ceramic
oxides is a promising area, the analysis is not yet
completely reliable.

The ordering of point defects in the stress field

of a moving dislocation should represent still

another source of inelastic deformation in ceramics,

but apparently has not yet been investigated [1].

2.4. Recoverable Inelastic Deformation Caused
by Grain Boundary Sliding

Inelastic deformation due to grain boundary
sliding appears to be a general phenomenon in

polycrystalline ceramics [1], and the role played

by impurities is probably of critical importance.

However, grain boundary properties and their

effect on the deformation behavior of ceramics are

not well understood at present. The frequent

occurrence of concurrent recoverable and non-

recoverable phenomena tends to make it difficult

to separate effects. Some inelastic deformation

effects attributable to grain boundary sliding,

however, have been cited by Wachtman [1].

A rapid decrease in Young's modulus of poly-

crystalline alumina above 950 C, accompanied by
an increase in internal friction over the single

crystal values, has been attributed to grain

boundary sliding [28]. Other studies of alumina

show qualitatively the same effects [29-31], with

increasing purity increasing the temperatures at

which these effects occur by as much as 400 C.

Thus the introduction of grain boundaries appears

to raise the damping capacity (i.e., internal

friction) in a certain characteristic temperature

range; this range is broadened and usually ex-

tended to lower temperatures by the addition of

impurities.

Creep measurements with Cr20 3-doped alumina

at 1000 to 1200 C have revealed decreasing creep

rates which were slowly recovered when the load

was removed [32, 33]. This recovery was attributed

to viscous grain boundary sliding accompanied by

elastic deformation of the grains. The elastically

deformed grains reversed the grain boundary

sliding when the external load was removed.

Higher stresses, higher temperatures, or longer

times permit plastic deformation within grains, so

that only part of the inelastic strain can then be

recovered [1].
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3. Nonrecoverable Inelastic
Deformation

The deformation of a ceramic material may, in
certain circumstances, be completely recoverable
(e.g., a small amount of grain boundary sliding
accompanied by elastic deformation), partly re-

coverable, or completely plastic, depending upon
the mechanisms operating [1]. The latter behavior
is of particular interest in this section, especially
creep deformation under constant load.

At elevated temperatures, two factors become
important to change the deformation behavior of

ceramics. First, dislocations become more mobile
on existing slip systems and new slip systems
become possible, and second, the diffusion of
point defects is enhanced to the point where they
begin to contribute to the deformation [34].

Unfortunately, the temperature range where a
multiplicity of slip systems becomes available in
most ceramic oxides is so high that additional
complications come into play and the occurrence
of nonrecoverable inelastic deformation by the
simple movement of dislocations is never observed
[34]. Elevated temperature deformation is always
enhanced by the diffusion of point defects and by
the onset of viscous sliding at grain boundaries.
The diffusion of vacancies (or interstitial ions)
contributes to each of the three basic mechanisms
considered responsible for creep: vacancy mi-
gration under stress, dislocation motion, and
grain boundary sliding. (The first and third proc-
esses, it should be noted, apply specifically to

polycrystalline materials.) In the sections that
follow, each of these mechanisms is discussed.
Additional factors are considered, including the
viscous deformation of glass and combined
deformation processes.

The mechanisms responsible for deformation
depend upon a host of structural and compositional
factors as well as stress, temperature, and other
test parameters. Structural variables include
crystallography, grain size, subgrain structure,
and porosity. Insofar as possible, the dependence
of deformation on each of these factors is reviewed.

3.1 Vacancy Migration Under Stress
(Diffusional Creep)

In vacancy migration under stress, deformation
results from diffusional flow within each grain
away from those boundaries where there is a
high local compressive stress toward those boundaries
having a high local tensile stress. This is generally
referred to as Nabarro-Herring creep [35, 36] and
has been found to be the primary deformation
process for many ceramics at high temperatures,
relatively low stresses, and fine grain sizes, with
a temperature dependence similar to that for
volume diffusion.

In Nabarro-Herring creep, self-diffusion within
the grains of a polycrystal^ne solid permits the
solid to deform under a shear stress, leading to

viscous flow with the diffusional viscosity, -q,

given by:

where k is Boltzmann's constant, T is the absolute
temperature, r is the average grain radius, D

l
is

the bulk self-diffusion constant, and 12 is the
volume of the diffusing species. The diffusion

coefficient, D lt is exponentially related to tempera-
ture as follows:

D
,
=D0 exp (- AH/R T). (2)

Under a tensile stres, a, the tensile creep rate
is given in terms of the average grain diameter,
GS, by [37]:

€= 13.ZaDfr/kTiGSy. (3)

In a similar mechanism proposed by Coble
[38], the changes in grain shape are attributed to

grain boundary diffusion rather than lattice diffu-

sion, and the creep rate is described by:

t=±7*DbwQ/kT(GS) 3
, (4)

where Db is the diffusion coefficient for the slowest
moving species in the grain boundary and w is

the width of the grain boundary.
In a very recent brief review of diffusional creep

mechanisms, Gifkins [39] compared both Nabarro-
Herring creep and Coble creep with the sugges-

tion that creep can occur by grain boundary
sliding, also controlled by diffusion. Gifkins creep
leads to movement along the boundary of grain-

boundary protrusions and can be accommodated
by diffusion around triple points. The original

diffusion-controlled mechanism for grain-boundary
sliding was proposed by Gifkins and Snowden
[40] and is based on the idea of the movement of

double ledges or protrusions along the boundary.
The rate of sliding, for a grain boundary at

45 deg to the applied stress is then:

Sb~aaDbQ/LkT, (5)

where a is a geometrical constant, approximately
equal to 2; L is the length of the grain boundary
protrusion (~10 -6 cm in tungsten [31]); and a,

Db ,
fi, k, and T have their former meanings.

The predicted creep rates, utilizing eq (5), have
been 100 times too fast to match certain experi-

mental results [42]; this has been attributed to

factors which prevented continuous sliding on all

boundaries. An equation for the accommodation
of sliding by diffusion around triple points, one
possible reason for sliding pauses, has also been
derived by Gifkins [43]; the rate of accommoda-

tion, Sa , for a boundary at 45° to the applied

stress, is:

Sa~40QD b<Tw/(GS)
2kT, (6)
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where w is the grain boundary width and GS is the
grain diameter.
By combining the mechanisms represented by

eq (5) and (6) with some grain boundary migration,
Gifkins envisions creep extension which occurs
entirely by diffusional mechanisms but which
does not result in permanent change of grain shape
[39], as is required by Nabarro-Herring and Coble
creep. The predominating mechanism would
depend upon grain size; coarse grain sizes would be
controlled by accommodation (eq (6)), while fine

grain sizes would be controlled by sliding (eq (5)).

To compare eqs (5) and (6) with Nabarro-
Herring creep and Coble creep, Gifkins [39] makes
certain further approximations and assumptions
and derives the proportionalities between creep
rate and stress, temperature, grain size, and numer-
ical constants shown in table 1.

The suggestion by Gifkins [39] of diffusion-

controlled grain-boundary-sliding-type creep is

too recent to have been critically examined in

relation to the creep of polycrystalline ceramic
oxides. The most promising evidence offered to

date has been the very recent work of Hensler
and Cullen [42] on grain shape change during the
creep of 98 percent dense MgO at 1200 to 1500 C
and 1000 to 6000 psi. Hensler and Cullen found
no change in grain shape after compressive creep
deformation up to 30 to 44 percent compression;
these results where qualitatively interpreted in

terms of Gifkins grain boundary sliding creep [39].

As previously mentioned, Nabarro-Herring
intragranular diffusional creep has been found to

be the primary deformation process for many
ceramics at high temperatures, relatively low
stresses, and fine grain sizes; eq (3) has been
confirmed for A1203 [45-49], MgO [50], BeO [51-

53], U02-BeO mixtures [54], and NaCl [55].

For A1203 ,
eq (3) is obeyed using D

t
for aluminum

in aluminum oxide despite the fact that D, for

oxygen is smaller and should be rate controlling;

this is thought to be due to enhanced diffusion of

oxygen along the grain boundaries [56].

A brief summary of the major findings concern-
ing AI2O3, BeO, MgO, and SiC is presented below.

a. Creep of Alumina

As cited by Vasilos and Passmore [57], the avail-

able creep data at high temperatures for poly-

crystalline alumina generally support the Nabarro
Herring diffusional creep model over a range of
stress (100 to 4,000 psi) and temperature (1200 to

1800 C). Studies of high-density, fine-grained
AI2O3 (LUCALOX) by Warshaw and Norton
[46] and Folweiler [45] illustrate this point. Both
found the creep rate to vary linearly with stress
between 1500 and 1800 C, and the activation
energy was measured to be 130 kcal/mole. Sim-
ilarly, Chang [58] also found a viscous behavior,
although with a higher activation energy (200
kcal/mole) in this temperature range.

Recently, Passmore et al. [49, 59] determined
the variation of creep rate in alumina with stress

and temperature by using the incremental stress

and temperature method introduced by Dorn [60]

and illustrated in figure 1. Specimens were first

crept to a strain of 0.32 percent at the relatively

high stress of 9000 psi±50 psi; the stress was
then decreased to a lower level. After further creep
at constant temperature and the lower stress, the
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Figure 1. Typical creep rate-creep strain curve used in the

evaluation of the stress and temperature dependence of

creep for pure, dense, fine-grained aluminum oxide.

(After Vasilos and Passmore. Courtesy of Syracuse University Press)

Table 1. Dependence of creep rate (e) on variables in equations based on diffusion-controlled creep mechanisms [39]

Creep type Mechanism characteristic Stress Temp.
Grain size

Numerical
constants

(A)i (B)2

Nabarro-Herring [36] Grain elongation. <r

a

a

a

D,

D b

D b

D„

(GS)-2

(GS)-3

(GS)-i (GS)-2

(GS)-'

13.3

3 i7w

«2/x

40w

Coble [38] Grain elongation _ _

Gifkins-Snowden [40]

Gifkins [43]

Grain-boundary sliding; some grain elongation

Grain-boundary sliding, accommodated; no grain elongation

"Assuming L in eq (5), grain boundary protrusion length, is independent of (OS) for Gifkins-Snowden creep.
'Assuming L depends on (OS).
3 w (grain boundary width)~:10-7 cm.
4 x is a factor introduced to account for pauses other than the necessity for triple point accommodation, and may have a value of

'

-100.
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temperature was rapidly changed to a new con-
stant level. This process was repeated several
times with periods of creep at constant tempera-
ture being alternated with rapid temperature
changes. This procedure yields several estimates
of the activation energy for creep. Rapid stress

changes at constant temperature can likewise be
employed to determine the creep rate dependency
on stress.

In contrast to the observation of Warshaw and
Norton [46], Passmore et al. [49, 59] observed no
region of steady-state creep. As indicated in
figure 1, the creep rate continued to decrease with
increasing creep strain up to strains of 1.5 to 2.0

percent. Warshaw and Norton, on the other hand,
reported constant, steady-state creep in bending
at strains of 0.2 percent and below. Vasilos and
Passmore [57] concluded that the different creep
rate-strain dependences may have resulted from
the different temperatures employed. At the high
temperatures (1600 to 1800 C) used by Warshaw
and Norton, recovery processes may have been
rapid enough to offset any strain hardening,
whereas the latter process predominated at the
lower temperatures used by Passmore et al.

Creep rates determined graphically at a strain

of 0.32 percent are shown as a function of stress

(OOO 2000 3000 4000 6000 9000

STRESS. PSI

Figure 2. Effect of stress on the temperature-compensated
creep rate of dense, fine-grained alumina at constant strain

of 0.32 percent.

(After Vasilos and Passmore. Courtesy of Syracuse University Press)

in the range of 1,000 to 9,000 psi in figure 2. After
Passmore et al., creep rates for the two tempera-
tures used, 1150 and 1250 C, are expressed in

terms of the temperature-compensated creep
rate, commonly called the Zener-Hollomon param-
eter, Z=e exp(AH/RT), using a value of 141
kcal/mole for AH. At low stresses (up to about
2000 psi), a linear relation between creep rate

and stress was observed. At higher stresses, how-
eve,, the creep rate dependence of stress increased

to a square dependence, which suggests a transi-

tion from predominantly viscous creep mecha-
nisms of the Nabarro-Herring type to a more
complex one, probably involving plastic flow. A
nonlinear stress dependence (eoco-4) was also

observed by Warshaw and Norton [46] in the

650 to 1,300 psi stress range for coarse-grained

(50 to 100 yum) alumina. The results of Passmore,
et al. [49, 59] appear to be consistent with the
interpretation of Warshaw and Norton and are

considered more definitive, because possible effects

of variations in substructure and intergranular

separation were minimized or eliminated by
carrying out the creep-rate experiments at low
stresses immediately after creep at a constant
level of higher stress (9000 psi) to a constant
creep strain (0.32 percent). Vasilos and Passmore
[57] thus believed that the enhanced creep rates

observed above 2,000 psi by Passmore et al. were,

in fact, indicative of a transition in the creep
mechanism.
The Nabarro-Herring creep mechanism (eq

(3)) predicts an inverse proportionality between
creep rate and grain size, i.e., iccl/(6S) 2

. This has
been confirmed by several investigators, the first

for alumina being Folweiler [45]. Thus, large-

grained material has a higher creep resistance

than fine-grained material.

Table 2 summarizes the high-temperature
deformation behavior of pure and doped poly-

crystalline alumina with regard to temperature
range, rate-controlling mechanism, and activation

energy [57].

Several investigators have compared diffusion

coefficients calculated from creep rates using eq

(3) 'with directly measured diffusion coefficients,

but there has been no general agreement. The
creep-diffusion coefficients have generally been
greater than self-diffusion values, although Pala-

dino and Coble [56] have reported very good
agreement with aluminum ion diffusion, which is

the faster moving species. Enhanced diffusion of

oxygen along grain boundaries has been invoked
to explain this finding [56].

b. Creep of Beryllia

Chang [51] reported good agreement between
creep deformation rate and measured diffusion

coefficients for BeO, thus supporting the diffusional

creep model. In further work on the compressive
creep behavior of beryllia, Vandervoort and
Barmore [52] also found that the creep rate was
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Table 2. High temperature deformation and creep of polycrystalline alumina (after Vasilos and Passmore)

Result
No.

Material Temperature
range

Rate-controlling deformation mechanism Energy Investigators

1 High-density Lucalox, S-lO/im grain size.

2... High-density Lucalox, 5-35^m GS

3 97% dense, 50-100>m GS

4 High-density, 100/im GS

5 Same as 4 plus Crj03

6 Polycrystalline

7 Same as 6 plus 1% CraCM

8 Same as 6 plus 1% L.j03'_

9 99% Dense, 2 /im GS

10 Same as 9 plus 1 m/o CrzCh 2

Centigrade kcallmole
1600-1800 Vacancy migration 130

1600-1800 Vacancy migration 130

1600-1800 Grain-boundary sliding 185

1750-1900 Grain-boundary sliding 280

1750-1900 Grain-boundary sliding 280

1400-1700 Vacancy migration plus grain-boundary sliding 200

1400-1700 Vacancy migration plus grain-boundary sliding 200

1400-1700 Vacancy migration plus grain-boundary sliding 200

1200-1375 Vacancy migration 154

1300-1376 Vacancy migration and formation 151

Warshaw and Norton [46].

Folweiler [45].

Warshaw and Norton [46].

Coble and Guerard [47].

Coble and Guerard [47].

Chang [51].

Chang [51].

Chang [51].

Passmore et al. [49 , 59].

Passmore et al. [49, 59].

1 o/o=weight percent.
2 m/o=mole percent.

linearly dependent on the applied stress (up to

6,000 psi) over the temperature range of 1370 to

1510 C, with an apparent creep activation energy
of 96 kcal/mole. In addition, a comparison of

calculated diffusion coefficients with directly-

measured beryllium ion coefficients revealed fair

agreement. In work of Fryxell and Chandler [53]

on the compressive creep of BeO, a linear relation
was also found between stress and creep rate up
to a stress of 6,000 psi at 1200 C. Above 6,000 psi,

however, the creep rate depended upon stress

raised to a power greater than unity. In addition,
for small-grained specimens, they observed a
creep rate which decreased with both time and
strain considerably more than for larger (10 fim
and larger) grain sized material. These latter

observations are consistent with the previously
mentioned findings of Passmore and Vasilos for
fine-grained alumina.

c. Creep of Magnesia

As is the case with alumina and beryllia, the
available creep data for polycrystalline magnesia
at low stresses also generally support a diffusional

creep model [50, 61]. Perhaps because of the more
plastic behavior of magnesia, however, the re-

sults for magnesia are more complicated, with a
creep activation energy which is not invariant
with grain size, a grain size dependence which is

intermediate between the Nabarro-Herring and
Coble creep models, and a change in the stress-

creep rate dependency from unity (viscous creep)
to 1.5 below 5 jtm grain size.

Passmore et al. [61], in a comprehensive in-

vestigation, recently determined the creep of
MgO over a range of temperature, stress, and
grain size. A typical creep rate-strain curve for

dense, fine-grained (2 to 3 jum) magnesia is shown in
figure 3 [61]. The creep behavior of MgO is similar
to other polycrystalline oxides in that the strain
rate decreases with increasing strain. Typical
changes in creep rate corresponding to changes in

temperature, are also shown in figure 3. Vasilos

and Passmore [57] attributed the changes in

creep rate in figure 3 solely to temperature
changes, since stress was maintained constant
and substructural effects were eliminated by
extrapolating creep rates to the same value of

strain for each temperature.
The activation energy values from Passmore'

s

work [61] are plotted versus grain size in figure 4

for grain sizes from 2 to 20 fim. As seen, AH at

first decreases sharply with increasing grain size

from about 96 kcal/mole for a grain size of 2^im

to 54.1 kcal/mole at 5.5Atm and then remains
constant with further grain size increases. Pass-

more et al. [61] observed no variations in AH
with stress, strain, or temperature. The observed

energy of 54.1 kcal/mole for the larger grain sizes

was held to be consistent with a diffusional creep

mechanism in which the creep rate is controlled

by extrinsic oxygen ion diffusion (Ai?=62.4
kcal/mole according to Oishi and Kingery [62]).

For grain sizes below 5.5jum, the increasing AH
may indicate a transition to control by intrinsic

magnesium ion diffusion (AH=70 kcal/mole ac-

cording to Lindner and Parfitt [63]).

Passmore et al. [61] observed a linear relation-

ship between creep rate and stress for grain sizes

of 5.5 to 20jum. There was, however, a transition

to a higher-order stress function, i.e., from 1.0 to

1.5, with decreasing grain size, which Passmore
took as further evidence of a transition in creep

mechanism for the finer grain sizes.

The grain size dependence of the creep rate

below 5.5Mm could not be determined [61] be-

cause of the variations in AH with grain size, which
made it impossible to compensate the creep rates

satisfactorily for variations in temperature over

a significant range of grain sizes. The observed

grain size dependence for the range from 5.5 to

20 jum was described by an exponent of —2.5
(i.e., iocl/(GS) 2 - 5

), which is intermediate between
those predicted by the Nabarro-Herring and
Coble models for diffusional creep.
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Figure 3. Typical creep rate-creep strain curve for dense, fine-grained

{2 to 3 fim) magnesium oxide.

(After Vasilos and Passmore. Courtesy of Syracuse University Press)

100

90
UJ
_i

O

<
U 80

i
<1

I 70
UJ

z

2 60

<
>

50 -

40
5 10 15

GRAIN SIZE, MICRONS

20

Figure 4. Effect of grain size on the activation energy

for creep of dense magnesia.

(After Vasilos and Passmore. Courtesy of Syracuse University Press)

Impurities such as 1 m/o Zr02 or CaO added
to the MgO had no significant effects on creep
rate but did increase the activation energy by
20 percent [57].

Passmore et al. [61] attributed creep in MgO
in part to a stress-directed diffusional mechanism
controlled by extrinsic oxygen ion diffusion in the

5.5 to 20 nm grain size range, although the calcu-

lated diffusion coefficients were higher than those
predicted by the Nabarro-Herring model. It was
suggested that this discrepancy may be due to a
vacancy formation mechanism, which was con-
sistent with the observed formation of dislocation

substructure and preferentially distributed poros-
ity during creep, as well as with the observed
decrease in creep rate with increasing creep
strain [61].

d. Creep of Silicon Carbide

Farnsworth and Coble [37] concluded that
diffusional creep was also the most probable rate-

controlling mechanism for the deformation of

polycrystalline silicon carbide. Viscous flow was
observed in dense SiC at temperatures from
1900 to 2200 C, at stresses from 3,000 to 30,000
psi, and at strain rates up to 10_3/min.

3.2. Creep by Dislocation Motion

The deformation of polycrystalline ceramic
oxides by plastic flow processes is less common
than deformation by stress-directed diffusion.

This fact results largely from the lack of sufficient

slip modes in most polycrystalline oxides. Taylor

[64] has shown that for plastic deformation to

occur by dislocation movement in polycrystalline

bodies, slip must occur on five independent slip

systems to allow a general change in shape of

individual grains without void formation. While
metals, in general, meet the foregoing criterion,

many ceramics do not, especially at reasonable

temperatures. For example, Groves and Kelly

[65] have examined the observed crystallographic

slip systems for a number of common ceramic

materials; their results are shown in table 3.
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It is concluded that none of the common ceramics
is capable of a great amount of plastic deformation
at low temperatures, although at elevated tem-
peratures materials with the sodium chloride and
calcium fluoride structures should possess the
potential for such deformation. At brief summary
of results for oxides such as magnesia and alumina
is given below.

Table 3. Number of independent slip systems for some
common ceramic crystal structures [after Groves & i\ elly]

Structure
Crystallographic Number of

slip systems independent
systems

NaCl (low temps.) (e.g., MgO) (110) <ilo> 2
NaCl (high temps.) (e.g., MgO). (110) <110> and 5

(0011 <110>
Hexagonal (e.g., AI2O3, graphite). (0001|<1120> 2
CsCl 1100) <010> 3
CaF 2 (low temps.) (e.g., UO2) (001) <110> 3
CaF 2 (high temps.) (001) <110> and 5

(110) <110>
Ti0 2 _ (101) <101> and 4

(110) <001>

a. Magnesia

As cited by Vasilos and Passmore [57], the
requirements for plastic flow in magnesia are rela-

tively severe as compared to simple halides. The
stress required to promote slip in MgO on the

{001} <110> system at room temperature is

approximately 100 times higher than that to cause

slip on the {110} <110> system, and extremely
high stresses are required even for local deforma-
tion. Therefore, polycrystalline magnesia exhibits

virtually no plastic deformation at room tempera-
ture, even though dislocations are quite mobile
and equivalent single crystals are ductile. The
difference in stress level for slip on the two sets of

systems decreases with increasing temperature,
and at 1000 C is down to a factor of 10 (equiva-
lent to LiF at room temperature) . A slight amount
of plastic deformation in MgO has been observed
by Copley and Pask [66] in compression at tem-
peratures up to 1000 C. At room temperature,
the strain at fracture was about 0.6 percent for

polycrystalline MgO and about 2 percent above
600 C [66].

Slip in. magnesia also tends to be nonuniform.
Slip bands are usually few and randomly spaced
before yielding at room temperature. Further
straining causes the widening of these already
existing slip bands, rather than the appearance
of new ones. Such slip localization into wide bands
causes stress concentration and the formation and
growth of crack nuclei where slip bands intersect

grain boundaries.
An important additional consequence of non-

uniform slip is that a grain cannot change shape
as required. For such a change to be possible,

slip must occur on closely spaced planes, the
amount of shear varying continuously from one
phase to the next. With nonuniform slip, there-

fore, large elastic strains necessarily occur in the
grains of a deformed polycrystalline specimen.

Such strains, again, favor the growth of crack
nuclei and help propogate cleavage fracture [57].

As the temperature is increased, conditions
become less favorable for cleavage fracture to

occur. Self-diffusion becomes more rapid and, as a
result, stress-induced climb can occur, increasing

the difficulty of nucleating cracks. Dislocations

also become increasingly mobile at higher tem-
peratures and stress relaxation by plastic deforma-
tion becomes more important [57].

Day and Stokes [67] have shown that plastic

deformation of polycrystalline magnesia under
tension is possible only when the temperature
exceeds 1700 C. Below 1700 C, an insufficient

number of the available independent slip systems
are capable of interpenetrating and operating con-
currently within a given volume of material to

satisfy the Taylor-Groves-Kelly criteria for defor-

mation of polycrystalline bodies [67]. Therefore,

grain boundary constraints arise which, when re-

laxed by intergranular sliding, lead to intergranu-

lar flaws and eventually intergranular rupture.

Day and Stokes [67] observed a slight amount
of slip below 1700 C in the vicinity of the fracture.

Passmore, et al. [61] also observed a slight amount
of slip at temperatures near 1400 C in bending
creep studies. Above 1700 C, Day and Stokes [67]

concluded that sufficient independent slip systems
were operating concurrently for continuity to be
maintained between adjacent grains. The addi-

tional ability of the material to polygonize and
recrystallize permitted a continuous relaxation of

internal stresses and contributed to both the

overall plasticity and change of shape under
tension [67]. Deformation was found to proceed in

fully dense specimens without intergranular sepa-

ration and fracture occurred in a ductile manner
[67]. In the presence of porosity, however, inter-

granular rupture was observed at temperatures as

high as 2100 C, although plastic deformation
occurred at temperatures below 1900 C [67].

b. Alumina

It has been considered for some time that

polycrystalline alumina creeps by a diffusion-

controlled mechanism rather than by dislocation

motion, as a consequence of the limited number
of independent slip systems available. It now
appears that at temperature above 1400 C, the

creep deformation of alumina is caused by a com-
posite mechanism consisting partly of stress-

directed diffusion, grain-boundary sliding and
dislocation motion [1, 571. As long as basal slip

predominates (cf. table 3), there are only two
independent slip systems in alumina, and even
taking into account the additional flexibility

afforded by dislocation climb, polycrystalline

alumina should not be able to deform by slip

without the generation of intergranular con-

straints [57]. Several experimental results, how-
ever, show that extensive inelastic nonrecoverable

deformation is possible with dense, fine-gain

material.
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Plastic deformation, with associated strain

hardening, has possibly been observed by Pass-

more, et al. [57], in the range of 1300 C to 1400 C.
Furthermore, Vasilos and coAvorkers have been
able to extensively deform polycrystalline alumina
at temperatures above 1800 C by press forging

with a heavy resulting crystallographic texture.

These observations, coupled with the recent dis-

covery of [1011] dislocations, suggest that limited

to extensive ductility is possible in alumina at very
high temperatures. Contributions due to diffu-

sional creep, grain-boundary sliding, and disloca-

tion motion all appear likely, with the relative

contribution of each changing with changing
experimental conditions.

c. Steady- State Creep by Dislocation Motion

In addition to the foregoing qualitative dis-

cussions concerning the role of dislocation motion
in the creep of polycrystalline ceramics, a number
of theories have been advanced to describe the

steady-state creep of crystals by dislocation

motion. As opposed to diffusional creep and
grain boundary sliding, it should be noted that

these dislocation motion theories do not apply
specifically to polycrystalline materials and do
not contain explicit grain size terms. Limited use

of these theories has been made, however, as

described below, to explain certain creep behaviors

of polycrystalline material.

The most familiar of the so-called "micro-
dynamical" dislocation motion theories of plas-

ticity is that due to Weertman [68, 69], and relates

to dislocation climb. Dislocation climb occurs

when vacant lattice sites condense on or escape
from edge dislocations, causing them to be
displaced vertically in a direction perpendicular

to the slip plane [34]. The climb process permits
unlike dislocations to annihilate and also permits

dislocations to detour around obstacles in the slip

plane. Thus, dislocations trapped in a pileup

against obstacles such as subgrain or grain

boundaries can escape by climb and rearrange
themselves; the relaxation of the back stress

enables the dislocation source to resume operation

and deformation continues [34]. When the rate

of dispersion of dislocations is approximately
equal to the rate at which they are pumped into

the pileup, a steady-state creep rate is established.

The rate-controlling step in this process is vacancy
diffusion, a fact which, according to Stokes [34],

has been well established for all metals for which
accurate data are available [60].

In a detailed analysis of the dislocation climb
mechanism, Weertman [68, 69] has shown that
the creep rate (e) varies with the applied stress

(a) and temperature (T) according to the fol-

lowing relationship [34]:

where U is generally the activation energy for

self diffusion. In ceramics, the presence of two
ion species having different self-diffusion activa-

tion energies, and the possibility that diffusion

may occur in pairs, makes the interpretation of

U more difficult [34].

It is seen in eq (7) that the creep rate depends

on a high power of the stress (4.5) in contrast

to the first powder dependence of diffusional

creep (eqs (3), (4), (5), and (6)).

A theory similar to Weertman's, but due to

McLean, also involving dislocation climb, has

been applied to Ti0 2 (rutile) [70] and gave a

creep rate dependence on stress to the 1.7 power

Chang [71] reviewed creep data for single

crystals and large grain size polycrystals of UC,
TiC, AI2O3, and BeO, all of which give creep

rates proportional to the stress raised to a powder
from 4 to 6; Chang proposed a theory in which
the creep rate is controlled by the dissolution by
diffusion of debris left behind by moving disloca-

tion [1]. Chang's theory gives a dependence of creep

rate according to the fourth or fifth power of stress,

depending upon which mechanism of dissolution

is assumed. Weertman [72] has also derived creep

rate equations for the case where the motion of

individual dislocations is rate controlling. Other

recent work on creep equations derived from
dislocation dynamics models is also cited by
Wachtman [1].

Stokes [34] outlined the work of Rogers et al.,

Kronberg, and Chang on the deformation of

single-crystal alumina at elevated temperatures

which has been related to dislocation motion.

Briefly, in the temperature range of 900 to

1700 C, basal slip by simple slip on the basal

plane, with an activation energy of 85 kcal/

mole, appears to be the rate-controlling mecha-
nism, whereas dislocation climb, with an activa-

tion energy of 180 kcal/mole and a stress de-

pendence of 4.5, appears to be rate controlling at

1800 C for single crystals of alumina.

3.3. Creep by Grain Boundary Sliding

Grain boundary sliding has been inferred from
internal friction measurements and dynamic
elastic modulus measurements at high tempera-

tures [1]. Very little direct evidence exists,

however, of the quantitative nature of grain

boundary sliding in ceramics. It has usually

been thought of as a separate process, due possibly

to either the presence of an impure glassy phase

or controlled by vacancy diffusion or even dis-

location motion through the disordered boundary
region [34]. Stokes [34] cites that the creep rate

due to this process should be roughly proportional

to the applied stress and inversely proportional

to the grain size, i.e.,

eoca/GS. (8)
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On the other hand, Dorn [60] has shown that
grain-boundary creep in metals is not a distinct

mechanism but should follow the same stress

and temperature relationships as intragranular
creep. The recent efforts of Gifkins [39] to describe

a stress-directed diffusional creep mechanism
for grain boundary sliding have also been de-
scribed in an earlier section (3.1).

Prior to Gifkins' work [39], it had generally been
considered that grain boundary sliding could not
contribute to deformation of a continuous nature
without auxiliary processes, since intergranular
deformation should occur coincidentally m order
to maintain geometrical continuity between the
grains [57]. Under such conditions, it has been
argued that pores and eventually cracks would
form at triple points, leading to overall fracture.

Clearly, considerable additional study of grain

boundary sliding mechanisms in ceramics is

required.

3.4. Creep of Glasses

As cited by Wachtman [1], oxide glasses at high
temperatures deform viscously. In this case, there

is no detailed atomic model comparable to matter
transport by vacancy motion in crystals under-
going Nabarro-Herring creep. However, viscosity

in glass is related to self-diffusion and the flow is

enhanced by an increase in free volume in a man-
ner analogous to an increase in the Nabarro-
Herring creep rate by an increase of vacancy con-
centration [1]. A theory taking into account both
free volume and thermal activation effects has
been advanced by Macedo and Litovitz [73]. The
resulting equation correctly describes viscosity as

a function of temperature over many orders of

magnitude in viscosity. An alternate approach for

associated liquids has been given by Adams and
Gibbs [74].

3.5. Effect of Porosity on Creep

Insofar as possible, the major influences of

structural factors, such as grain size, have been
covered in the preceding sections. The influence

of porosity, however, has not been mentioned and
is briefly considered here.

An increase in the creep rate with porosity has
long been recognized. Wygant [75], for example,
found that the creep rate of a 12 percent porosity
slip cast magnesia specimen was 10 times faster

than a 2 percent porosity magnesia specimen; both
specimens were tested at 1300 C and 1800 psi.

Coble and Kingery [76] studied the effect of poros-

ity on the creep rate of sintered alumina with up
to nearly 50 percent porosity; their results re-

vealed that the torsional creep rate increased from
1.5X10

-6
in/in/hr to 7.0X10

-5
in/in/hr for an in-

crease from 8 to 50 percent porosity under a stress

of 600 psi at 1275 C.
Several functional relationships for the relation

between creep rate and porosity have recently

been suggested, largely as an outgrowth of at-

tempts to describe hot pressing as a diffusional

creep process. For example, Spriggs and Vasilos

[77] suggested a linear relation between creep rate

and porosity (1/(1-P2/3
)) when applied to the data

of Coble and Kingery [76]. However, when ap-

plied by Vasilos and Passmore [57] to magnesia
with porosity from 1 to 17 percent, a nonlinear

relationship was observed. It is concluded that

further study is required before specific comments
can be made about observed differences and sug-

gested relationships between creep rate and
porosity.

3.6. Combined Deformation Processes

As suggested earlier, the observed deformation

is frequently the result of more than one process

and interactions also frequently occur. Deforma-
tion of a polycrystalline ceramic at high tempera-

ture is thus a complex process with_ several of the

deformation processes previously discussed prob-

ably operating simultaneously.

At small grain sizes, low stresses, and high

temperatures, Nabarro-Herring creep and grain

boundary sliding probably take place together in

most ceramics of commercial purity [l]. At larger

grain sizes and higher stresses, a combination of

grain boundary sliding and dislocation deforma-

tion may occur [1]. The transition with increasing

grain size in alumina from creep controlled by the

Nabarro-Herring mechanism to that controlled

by dislocation glide has been suggested
_
[46].

Creep of polycrystalline thoria has been inter-

preted as grain boundary sliding plus dislocation

motion [78]. Other examples have also been given.

It has generally been considered that [1],

when creep occurs by more than one mechanism
operating simultaneously, the rate will be con-

trolled by the slower process if the faster process

is unable to provide all the degrees of freedom

needed to maintain contact between adjacent

grains; too great a disparity between the rates

will generally lead to the development of high

tensile stresses of some grain boundaries and
will favor the development of pores with attend-

ant increase of creep rate and loss of strength [1].

An alternate approach to compound deforma-

tion has recently been suggested by Backofen

et al. [79], in an effort to devise a comprehensive

model to explain the phenomenon of super-

plasticity. Basically, a three-element mechanical

model has been proposed with two elements in

parallel (one of which is Newtonian in nature) and

a third in series with that pair. A strongly devel-

oped Bingham-type behavior at low strain rates

has been interpreted as a result of the parallel

operation of diffusional creep and grain-boundary

shear. The third element operates at high stresses

or high strain rates and may be associated with

plastic slip creep, e.g., dislocation climb. The
three mechanisms in competition would

_
thus

produce the full strain-rate hardening behavior of

a superplastic material and be capable of describing
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the three-branch log stress-log strain rate curve
frequently observed for such materials.

4. Summary

The state-of-the-art of understanding the in-

elastic deformation of oxide ceramics has been
briefly reviewed. Special emphasis was given to

the permanent deformation caused by phenomena
such as stress-enhanced diffusional creep, disloca-

tion motion, and grain-boundary sliding. Brief

reference was also made to recoverable inelastic

deformation, especially anelasticity caused
by point defect motion, and recoverable inelastic

deformation caused by both dislocations and
grain boundary sliding. The information given
dealt largely with polycrystalline oxide ceramics.

The primary mechanism by which most poly-
crystalline oxide ceramics appear to deform at
high temperatures, relatively low stresses, and
fine grain sizes was cited as Nabarro-Herring dif-

fusional creep. Under most experimental con-
ditions, however, it was recognized that the ob-
served deformation is usually the result of more
than one process, with complicating interaction
frequently occurring, e.g., grain boundary sliding

and Nabarro-Herring creep. At larger grain sizes

and higher stresses, combinations such as grain
boundary sliding and dislocation deformation may
occur, but considerably less data are available to
substantiate this.

A host of structural and compositional factors,
as well as stress and temperature, influence the
responsible mechanisms. Information concerning
such influences exists for only a few ceramics, e.g.,

A1 20 3 ,
MgO, BeO, SiC, and in no case is the infor-

mation complete and unambiguous. The need for
additional studies in essentially every area con-
sidered is clearly indicated.
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Plastic Deformation of Carbides
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A significant research effort is being directed towards obtaining technologically useful

materials for high-temperature structural applications. The refractory metal carbides are of

particular interest since (a) they include the materials having the highest melting point, (b)

they are extremely strong, and (c) they deform plastically in a manner similar to the face

centered cubic metals. This paper reviews the current understanding of the mechanical

behavior of the carbides. It concentrates on evaluating the more meaningful information

obtained from studies of single crystals rather than that from sintered polycrystalline ma-
terials, where inadequate characterization may have led to confusion in the literature. The
present knowledge of the behavior of these materials suggests that they may be of techno-

logical importance in the future.

Key Words: Carbides; high-temperature; mechanical behavior; microstructure; plastic

deformation.

1. Introduction

The need for improved materials for high-

temperature structural applications has stimulated
research into the mechanical behavior of high
melting-point ceramics—carbides, borides, ni-

trides, aluminides, beryllides, silicides, etc. The
properties of these materials have been discussed
by, for example, Schwartzkopf and Kieffer [l],

1

and Kendall [2]. Additionally, several tabulations
of properties are available [3, 4, 5]. Material char-
acteristics such as microstructural details have
recently been clearly recognized as variables

important in determining the properties of ceramics

[6]. Many of the materials used in past work on
the carbides have lacked sufficient characteriza-

tion and the results therefore need careful evalu-
ation if an understanding of their properties is to

be reached. It is evident that more scientifically

meaningful information has been obtained from
studies of single crystals of the carbides than has
been obtained by some 50 years research on
sintered, polycrystalline material. Although the
value of this latter work in producing techno-
logically useful material is not to be underrated
or denied, the prospects for significant future
developments of structural carbides will be con-
siderably enhanced by an understanding of the
relationship between microstructure and mechan-
ical behavior.
The study of plastic deformation in ceramics is

comparatively new, but some cubic materials,

•Present address: Brown Boveri Research Center, Baden, Switzerland.
1 Figures in brackets indicate the literature references at the end of this

paper.

for example, MgO, NaCl, and LiF have been
studied in recent years [7, 8, 9]. Much of this work
is applicable to the even newer field of plastic

deformation in the carbides. With the exception

of the hexagonal carbide, WC [10, 11, 12], plastic

deformation studies appear to have been restricted

to single crystals of cubic monocarbides. No
equivalent effort on similarly characterized mate-
rial has been directed towards understanding the

other non-oxide ceramics, although single crystals

of several diborides have been obtained and their

structure examined [13, 14]. Consequently, in this

review the relationship between structure and
properties of the carbides will be emphasized.

The occurrence of these materials has been well

documented [1, 15], and it is summarized in

figure 1. The titanium-carbon equilibrium dia-

gram, figure 2, which is representative of the

equilibrium between Group IV metals and carbon,

illustrates the typical wide range in composition
observed in these materials [15].

2. Mechanical Behavior of Carbide
Single Crystals

2.1. Titanium Carbide

Single crystals of TiC deformed in compression

or bending at temperatures below about 800 °C
are completely brittle [16]. No macroscopic plastic

flow has been detected by etch-pit or slip line

observations. As expected, the observed fracture

strength is very dependent upon surface condition,

but values as high as 800,000 psi (0.4 of the shear

201
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Figure 1. The occurrence of refractory carbides.
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of the cubic refractory carbides and these are indicated in heavier print
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CARBON: TITANIUM RATIO

Figure 2. The titanium-carbon equilibrium diagram.

The TiC phase exists over a range In composition by incorporating vacan-

cies in the carbon sublattice (after Storms [15]).

modulus) have been measured on carefully

electropolished samples. Failure occurs by cleavage
on {100} planes initiated at surface or internal

defects, although the possibility that microcracks
are produced by dislocation interactions cannot be
completely eliminated. Evidence for some dis-

location motion at room temperature has been
obtained from the surface markings close to Knoop
microhardness indentations [17] or close to friction

tracks [18], and these are consistent with slip

on { 111 }
planes. Also, Williams [17] has shown that

the microhardness number is dependent on the

orientation of the indenter with respect to the

active slip planes in TiC, suggesting that dis-

locations participate in room temperature
deformation.

At testing temperatures above 800 to 900° C,
plastic deformation takes place on the {111}

<110> system [16, 19]. The critical resolved
shear stress for slip is very dependent upon carbon
content, figure 3. For example, at 900° C it in-

creases linearly from about 12 kg/mm2 for TiC 079,

to about 22 kg/mm2 for TiC 0.97 [20].

Vacancies have been commonly recognized as a
cause of hardening in crystal lattices. For example,
the yield strength of quenched aluminum is greater
than annealed aluminum as a result of dislocation-

vacancy interactions [21]. Also, nonstoichiometric
Ti02 is stronger than the stoichiometric composi-
tion because of the interactions between dis-

locations and vacancies [22, 23] or clustered

vacancies [24]. In TiC, however, the decrease in

strength as the concentration of vacancies in-

creases is attributed to a decrease in the con-
tribution made by carbon atoms to cohesion in

TiC. The nature of the electronic interactions

between constituent atoms in the lattice has been
deduced from studies of the band structure of

this material. Lye [25] has shown that the pre-

dominant contribution to the bonding is from
covalent metal-metal bonds, the strength of which
increase with carbon content because (i) carbon
atoms donate electrons to crystal states derived
from metal atom wave functions and increase the
number of 3c?-electrons available for metal-metal
bonding, and (ii) the presence of carbon atoms in

overlap regions of neighboring metal atom 3d-

0.8 0.9 1.0

CARBON: TITANIUM RATIO

Figure 3. The critical resolved shear stress for

slip in TiC as a function of carbon content.

(After Williams [20].)
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HYPOTHETICAL fee.

f.C.C. TITANIUM TITANIUM CARBIDE

0 Titanium • Carbon

Figure 4. Schematic representation of the

bonding between ir-oriented 3-d functions in

TiC compared with that of hypothetical

f.c.c. titanium.

This illustrates the position of carbon atoms in the over-

lap region between orbitals on neighboring atoms (after

Lye [26]).

orbitals introduces a potential that increases the
strength of the metal-metal interactions, figure 4.

The observations of a {111} <110> slip system is

consistent with the view that the structure should
be considered as that of a f.c.c. metal rather than
a rocksalt ionic compound.
The onset of bulk plastic flow in TiC is a gradual

transition which involves an increasing strain at

failure as the testing temperature is increased
rather than the sharp brittle-to-ductile transition

normally associated with bec metals at low
temperatures. It has been suggested that this

gradual transition indicates that diffusion may
play a role in determining the mobility of dis-

locations in TiC [27]. Some evidence to support
this concept may be obtained by considering both
the structure of the slip plane and the temperature
dependence of the yield stress of TiC.

Figure 5 shows a plan of the Ti and C atoms on
the {111} planes of the TiC [28]. Following con-
sideration of the synchro-shear process suggested
by Kronberg [29], Rowcliffe [27] points out that
for a unit of slip from Bx to B3 , the titanium atom
at Bi must pass very close to that at A x . This re-

quires a large lattice expansion normal to the slip

plane. Alternatively, if the carbon atom at C\
can move in a <112> direction to B2 or B3 at the
same time as the titanium atom moves to Ci, then
the unit displacement B

x to B3 can be accomplished
by movements of partial dislocations by slip from
Bx to Ci and Ci to B3 . The motion of the carbon
atom cannot be described by a single shear vector
and will require the diffusion of carbon atoms to

allow deformation to take place.

A 3

O Ti below plane

# Ti above plane

• C atoms in plane

Figure 5. The slip plane

of TiC.

(After Kelly and Rowcliffe [28].)

The temperature dependence of the yield

strength of TiC [20] is shown in figure 6. In TiCn.97,

the critical resolved shear stress a r for slip on

{111} <110> systems decreases from about 22

kg/mm2 at 900° C to 2 kg/mm 2 at 1600° C. Over
limited temperature ranges, the relationship:

B
o> oc exp

j,

is applicable (fig. 8) . This suggests that B may be
represented by -U/k where U is the activation

energy for plastic flow, and k is the Boltzmann
constant. Significantly, a characteristic change in

the slope of this function occurs at a critical

temperature [20] which is dependent on the carbon
content of the TiC [19] i.e., it is approximately

TEMPERATURE , °C

Figure 6. Temperature dependence of the critical resolved

shear stress of TiC as a function of carbon content.

(After Williams [20].)
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1150° C for TiCo.gs., 1305° C for TiC 0 . 95 , etc.

Williams [17] has indicated that:

aT
m

oc exp^
(where m is the exponent in the relationship

between dislocation velocity, v, and stress, a;

v=<rm [8]) describes the variation in yield stress of

TiC with temperature. Since the slope of the line

in figure 7 must be multiplied by m, he suggests

that the activation energy for plastic flow above
about 1180° C in TiC is about 3.0 eV [17]. Below
the critical temperature the slope is almost
halved, this being consistent with an activation

energy for flow of about 1.5 eV.

Values of about 2.7 eV and 5.1 eV have been
measured for the activation energy of carbon and
titanium diffusion respectively in TiC [30, 31],

carbon having the lower activation energy con-

sistent with its smaller size, interstitial position,

and the presence of a large number of vacancies
in its sublattice. Above about 0.5 Tm ,

creep

deformation appears to be controlled by titanium
diffusion [33] and so it may be expected that the
high-temperature deformation would exhibit an
activation energy for flow of about 5.0 to 6.0 eV.

This, however, is not observed, and as suggested
by the mechanism proposed for dislocation motion
[27], diffusion of the atomic species in the disloca-

tion cores may have to be considered. In this

context, Williams [17] has correlated the activation

energy for flow ^3.0 eV with that for pipe-

diffusion [32] of titanium atoms in TiC. Any
correlations with the bulk activation energy for

10
4
/ToK

Figure 7. The temperature dependence of the yield

stress of TiCo.83-

(After Williams [20].) The change in slope—close to 0.475 Tm—
corresponds to a change in the mechanism controlling the deforma-

tion.

diffusion of C and Ti in TiC must be regarded as

tentative until more accurate measurements of

these energies are available, particularly as a

function of carbon content and in single crystal

material.

Annealing of plastically deformed TiC is

accompanied by the coalescence of vacancy dis-

location loops, figure 8 [32]. The initial stages

appear to be associated with the formation of

trails of small loops, figure 8(b), produced from
dislocation dipoles. The dislocation loop density
as a function of isochronal annealing temperature
for TiC 0.97 and TiCo.88 is shown in figure 9. The
"self-diffusion temperature," TD , defined as the

temperature at which loops disappear completely
in a short time (15 min) anneal, is 1400° C for

TiCo.97, and 1270° C for TiC 0 . 88 . The relationship

TD— 0.475 Tm [32] is obeyed in these alloys as it is

in f.c.c. metals, and the activation energy for the

annealing process involving the diffusion of vacan-
cies is 5.25 eV for TiC 0 . 97 and 4.88 eV for TiC 0 . 88 .

The only reported value of the activation energy
for the diffusion of titanium atoms in TiC, 5.1 eV,

is in close agreement with these values [31].

It is significant to note that the "self-diffusion

temperatures," 0.475 Tm , are close to the values

of the critical temperatures observed for the

change in strength controlling mechanism. Above
this temperature, therefore, it appears that some
vacancy assisted process, involving dislocation

climb, is controlling the deformation behavior of

the material [19].

Measurements of the creep rate of large grained,

polycrystalline TiC 0 . 97 over the temperature

range 1600 to 1700 °C have indicated an activation

energy of between 5 and 7 eV [33]. Steady-state

creep deformation is thought to be controlled by
the climb of dislocations away from obstacles, a

process governed by the activation energy for

the diffusion of vacancies. This value is in reason-

able agreement with the energy determined from

loop annealing, and is consistent with titanium

self-diffusion in TiC.

Williams [17] has applied Haasen's analysis

[34] to the creep rate of TiC 0 . 93, and deduces an

activation energy of 3.3 eV in the temperature

range 1400 to 1700 °C. It would seem more rea-

sonable to expect that the creep rate be governed

by an activation energy of about 5 eV in this

temperature range, as titanium diffusion appears

to control the strength in this temperature range,

and consequently these results are not fully

understood.

It has been mentioned already that the defor-

mation characteristics of TiC are similar to those

of a f.c.c. metal. In addition, this material has a

high stacking-fault energy, since fringe contrast

or dissociation of dislocations into partials has

not been observed [19] (although this may occur

within
o

the width of the dislocation image,

~100A) . Moreover, the elongated dislocation loops
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Figure 8. Dislocation structures in TiC.

(a) Early stage of deformation showing elongated dislocation loops, (b) annealing of an elongated

loop, A, by pipe-diffusion along dislocation cores, (c) formation of vacancy dislocation loops on
annealing at 1300 °C, (d) final annealed structure—a hexagonal dislocation network as observed in

f.c.c. metals (after Hollox and Smallman [19, 23]).

observed in the early stages of deformation, figure

8(a), and also cell structures in more heavily
deformed samples, are thought to result from a
relative ease of cross slip in the material. The
strong directional bonding in TiC probably
accounts for the high stacking-fault energy of

TiC, since the hexagonal symmetry in stacking
faults in the f.c.c. structure requires a change in
the bond directions. An alternative explanation
relies on the observation that metals with a filled

(Z-band have a lower stacking-fault energy than
those with partially filled bands [35, 36]. The
latter case is applicable to TiC, but no quantitative
estimate of the stacking-fault energy has yet been
made.

2.2. Vanadium Carbide

Although it is far from complete, the most
detailed behavior of a carbide other than TiC
has recently been established for VC [37, 38, 39].

When VC, having a carbon-to-metal ratio of

0.84, is deformed in compression, the slip plane is

{111}, exactly as is observed for TiC. Slip lines

show a wavy appearance characteristic of a high
stacking-fault energy material, and this also sug-

gests that dislocation structures and slip mech-
anisms of VC 0 . 84 are similar to those observed
in TiC. On the basis of these observations, it was
thought that the behavior of TiC might be repre-

sentative of the behavior of all the cubic transition

metal carbides. However, a generalization of this

nature is invalid! Three significant differences

in the behavior of this material and TiC of equiv-

alent stoichiometry have been found (fig. 10)

:

(i) the brittle-to-ductile transition temperature
occurs between 1200 and 1250 °C, this being about
300 to 400 °C higher than that reported in TiC

;

(ii) in the temperature range 1200 to 1500 °C, the

critical resolved shear stress for slip in VC 0.g4

is greater than that of TiC; and (iii) the decrease
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Figure 9. The variation in dislocation loop density as a

function of isochronal annealing temperature in TiC.

(After Hollox and Smallman [32].)
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Figure 10. The critical resolved shear stress for slip in

VCo.84 and TiCo.84 as a function of temperature.

(After Hollox and Venables [38].)

in critical resolved shear stress with increasing

temperature is much more rapid in VC 0 . 84 than
that observed for other carbides, falling from about
25 kg/mm2

(26,000 psi) at 1250 °C to about 3 kg/
mm2

(4,200 psi) at 1500 °C.
The higher strength and increased brittle-to-

ductile transition temperature of VC 0 . 84 are
surprising in view of the relative melting points
of these carbides, since that of VC 0 . 84 (2650 °C)
is some 600 C below that of TiC (3250 °C). Lye
[37] has suggested that the strength of the metal-
metal d-d interactions in VC 0 . 84 is greater than in

TiC and this may account for the higher strength

of this material. However, Venables et al. [39]

have shown an important difference between TiC
and VCn . 84 is that carbon atoms in VC 0 . 84 are

ordered in a hexagonal superlattice. When the
crystals are viewed in polarized light, a colored

domain structure can be observed. This corresponds
to the several possible orientations of the aniso-

tropic superlattice within the metal lattice.

Metallographic observations, figure 11, suggest
that disordering of the carbon superlattice occurs
at some temperature between 1250 and 1300 °C
[38]. Although the precise role of this superlattice

is not fully understood, it significantly affects

mechanical behavior, since the order-disorder
transformation temperature corresponds closely

with the brittle-to-ductile transition temperature.
Using nuclear magnetic resonance techniques,

Froidevaux and Rossier [40] have obtained
evidence for the ordering of carbon vacancies
throughout the complete composition range of

VC. de Novion et al. [41] have shown that a
consequence of carbon vacancy ordering in

VC 0 .s9 is the formation of a superlattice of cubic
symmetry. Venables et al. [39] have suggested
that the symmetry of the superlattice cell depends
on carbon concentration, and, as such, smgle-

Figure 11. The change in domain structure of

VCo.84 after an anneal at 1800 °C.

Tbe upper micrograph shows the structure before anneal-

ing, and the lower one the final structure. No change is

observed in a similaranneal at 1250 °C. These observations

are consistent with disordering of the carbon superlattice

between 1250 and 1300 °C (after Hollox and Venables [38])

.
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phase VC might be more correctly described as a

series of ordered compounds V 8C7 (VCo.ss),

V6C5 (VCo.m), etc. The occurrence of ordered

structures at different compositions would be
expected to have different effects on the strength
of VC. Consequently, in comparing the properties
of VC with TiC, composition is a very important
variable. In this context, two other compositions
of VC, close to VC0.75 and VC0 .89, both appear to

be weaker than VC 0 .g4 [42]. This suggests that the
strength of VC passes through a maximum as

carbon content is increased.

2.3. Other Cubic Carbides

Very little data is available for other carbides.

Williams [20] has compared the properties of

ZrCo.gg and NbC0 .76 with TiC of varying carbon
content. He observed that ZrC 0 . 8 8 compressed in

<001> directions exhibited greater strength than
TiCo.95, while both these were weaker than
NbCo.76- The greater strengths of ZrC and NbC
were attributed to an increased number of elec-

trons in the bonding scheme. The variation in

strength with carbon content of these other
carbides has not been reported.

Lee and Haggerty [43] have measured the
strength of ZrC 0 9 as a function of crystal orienta-

tion. They observed slip on { 111 } <110>, {110}
<110>, and {001} <110> systems when the
crystal orientation was chosen such that the
Schmidt factor favored slip on these systems.
These results confirm that ZrC 0 . 9 is stronger than
TiC 0 9. In_addition, the resolved shear stress for

{110} <110> slip is slightly lower than for { 111

}

<C110> slip. This cannot be explained at present.

These workers have also investigated the creep
behavior of single crystal ZrC and they obtain an
activation energy of about 4.8 eV for the steady-
state creep. This value is slightly lower than that
expected for the diffusion of zirconium in ZrC
(5.7 eV) [31] but is in fair agreement with the
behavior of TiC.

2.4. Binary Carbide Alloys

Pseudo-binary solid solutions between carbides,

nitrides, and oxides have been reported for many
years. Schwartzkopf and Kieffer [1] state that
complete solid solution occurs between these
compounds except in cases where the lattice

parameters differ by more than about 15 percent
(e.g. VC-ZrC), reminiscent of the empirical
relationships deduced by Hume-Rotherey for

metallic solid solutions [44]. In addition, extensive
solid solubility, for example, up to 70 w/o (weight
percent) WC in TiC, has been reported for non-
cubic carbides in the cubic carbides [l].

Single crystals of binary carbides have been
prepared only recently [45] and their mechanical
behavior studied [42]. The preliminary results,

figure 12, however, are particularly interesting,

for three reasons: (i) the alloys show considerably
higher strength than the parent carbides; (ii) the
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Figure 12. The yield strength (<00^> compression) as a

function of temperature for some TiC-VC alloys, compared

with that of TiCo.84 and VCo.84.

temperature dependence of the yield strength of

the VC-25 a/o (atomic percent) TiC and VC-50
a/o TiC compounds appears to have a form dif-

ferent from that of TiC-25 a/o VC and the pure

carbides; (iii) there is evidence for a small amount
of ductility (~ 1 percent) at about 1000° C
in VC-25 a/o TiC and VC-50 a/o TiC.

It is likely that these effects are dependent on

stoichiometry and they have yet to be interpreted,

but Venables [46] has shown that the VC-25
a/o TiC alloys are two-phase, one of which is

ordered. The details of this phase separation is

not fully understood, but the fine scale precipi-

tation of a hard ordered phase in a "ductile"

matrix may explain the mechanical behavior of

this alloy [46].

2.5. Effect of Boron on the Structure and
Properties of TiC and VC

Boron has been shown to significantly increase

the strength of TiC and VC. For example, Williams

[47] observed a tenfold increase in strength at

1600° C in TiC crystals, figure 13, after they have

been heated in contact with boron powder at

2000° C. Similarly, the critical resolved shear

stress of boron-doped VC 0 . 84 is about 19 kg/mm 2

(27,000 psi) at 1500° C, compared with 3 kg/mm 2

(4,200 psi) in the undoped carbide of the same
composition, figure 13 [38]. These increased

strengths have been correlated with the formation

of boride precipitates in the carbides.

In TiC, precipitates form on {111} planes,

figure 14(a), and Williams [47] has suggested

that they are TiB2 . Using transmission electron

microscopy, Venables [48] has confirmed this

and shown that the precipitates are nucleated

heterogeneously at dislocation nodes, figure 15.

Of particular importance is the fact that the

precipitates form at boron concentrations of

the order 100 ppm. An autoradiographic technique

was used to show that the boron is almost totally
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Figure 13. The critical resolved shear stress for slip as a

function of temperature in boron-doped TiC (after Williams

[49] and VCo.84 {after Hollox and Venables [38]).

associated with the precipitates, and little or none
remains in solid solution in the lattice [49].

This technique relies on the observation by
Fleischer et al. [50] and Armijo et al. [51] that the

damage produced in thin films of cellulose nitrate

by a-particles resulting from the B 10 (n,a) reaction

can be detected by etching with 6N NaOH.
A metallographic map, figure 14(a), and a boron
map ("alphagraph") of the same area are shown
for comparison in figure 14(b).

When VC 0 .s4 is doped with boron by diffusion

at 1800° C for 1 hr, precipitates form on {111}
planes in the surface layers where a high concen-
tration of boron would be expected, but the plane
of precipitation changes to {100} with increasing

distance from the surface, figure 16 [38]. The com-
position of the precipitates has not been con-

clusively established, although the presence of

boron has been demonstrated in both types by
means of the alpharadiographic technique. It

might be expected that the precipitates which
form on {111} planes would be similar to those
which have been observed in boron-doped TiC.
The identical structures and similar atomic mis-
match in the vanadium compounds therefore
suggests that the precipitates on {111} planes of

VC are probably of VB2 .

It is possible that the precipitates on {100}
planes would be one of the lower borides of vana-
dium, since they appear in the more boron deficient

regions of the sample. In order of increasing boron
content, these borides are: (i) V3B 2 (tetragonal,

U3Si2-type structure), (ii) VB (orthorhombic,
CrB-type structure,) and (hi) V3B 4 (orthorhombic
Mn3B 4-type structure) [52]. Consequently a differ-

ent plane of precipitation may be the result of a
change in composition and structure of the
precipitate.

3. Mechanical Behavior of Polycrystal-
line Carbides

3.1. Characterization

Before examining the wealth of information in

the published literature concerning the behavior
of polycrystalline carbides, it is worthwhile to

consider which variables may be critical in affect-

ing the properties of such materials. From the
behavior of single crystals, it is clear that to com-
pare their properties, at least three variables are

important:
a. Stoichiometry

The observed dependence of the strength of

TiC and VC on carbon content has particular

significance when properties of carbides are com-
pared. Before precise conclusions about their

Figure 14. Precipitates on [111 \ planes of TiC after boron doping at 2000 °C.

A direct comparison between a metallographic map and an alphagraph (see text) indicates that

most of the boron in the lattice is associated with these precipitates (after Venables [49]).
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Figure 15. TiB2 precipitates nucleated at dislocation nodes.

Their diffraction contrast resembles that of extrinsic stacking faults
(after Venables [48]).

Figure 16. A [100\ section through a sample of boron-doped

vcw
In the surface layers where a high concentration of boron is expected,
precipitates form on {111) planes (b), but the plane of precipitation
changes to (1001 with increasing distance from the surface (c). (After
Hollox and Venables [38].)

relative behavior may be drawn, a full survey of
mechanical properties as a function of carbon
content is necessary. A comparison at equivalent
carbon-to-metal ratios may be inadequate since

ordering may occur in one carbide and not in the

other, as in comparisons between the properties

of TiC and VC.
b. Purity

The dramatic increase in strength produced by
<~100 ppm of boron in TiC single crystals illus-

trates an important influence of chemical composi-
tion on the properties of the carbides. In this case,

the impurity forms a second phase having a differ-

ent crystal structure. No mechanism for signifi-

cantly changing the properties of the carbides can
be visualized at present when impurities are in

small quantities as long as they form solid solu-

tions. This may be applicable to solutions of, for

example, TiN and TiO in TiC, although consider-

able differences in properties must be expected for

appreciable quantities of these isomorphs in solid

solution. In hardness tests, Cadoff et al. [53] have
shown that polycrystalline TiC containing 45 a/o

carbon and 5 a/o oxygen is more brittle than pure
TiC. The impurity effects may be additionally
important in polycrystalline samples and in sin-

tered materials where equilibrium conditions may
not be reached or where grain boundary segrega-

tion may be important.

c. Temperature

The observations on the high-temperature
strength of VC and TiC are contrary to the room
temperature microhardness of these compounds.
At all loads, the room-temperature hardness of

VCn.84 appears to be below that of TiC of equiva-
lent stoichiometry [42]. Gilman [54] has shown a
dependence of hardness on the elastic constant
C44 in a group of materials of similar structure.

The simple concept that the stiffer the material
at room temperature the stronger it will be at

high temperatures cannot be applied. Chang and
Graham [55] have shown that C44 is lower for

ZrCn.94 than for TiCn.91, yet the former material
is stronger at high temperatures. In this case, the
rate of decrease of the elastic constants of TiC
with temperature is more rapid than that of

ZrC [55]. Over the temperature range of 0 to

300 °C, UC, which is isomorphous with these car-

bides [56], has a positive temperature coefficient

for its elastic constants [55] and its hardness
should therefore increase with temperature if

Gilman's [54] correlations are valid, although
these data are not available. The temperature
dependence of the elastic constants in these ma-
terials would be a significant contribution to

understanding their behavior.

Three additional variables which have to be
considered in polycrystalline materials are:

d. Crystal Structure

The presence of grain boundaries in a crystal

imposes a barrier to the propagation of slip, and
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unless each grain conforms to the deformation of

its neighbors, grain boundary separation will

occur. Taylor [57] and von Mises [58] have shown
that for a polycrystalline aggregate to deform, five

independent slip systems are necessary. As Groves
and Kelly [59] have pointed out, most ceramic
materials do not meet these requirements. In the

cubic oxide ceramics, for example MgO, slip takes

place on {110} <O"l0> systems. The number of

independent slip systems is two, and ductility is

not shown in polycrystalline material until slip is

activated on additional systems [60]. Since the
cubic carbides have the five independent slip sys-

tems, they are expected to be ductile in poly-
crystalline form at temperatures not far above the
brittle-to-ductile transition temperature found in

single crystals, although the grain boundaries
could be weak due to the atomic mismatch in

these directionally bonded materials. The hexago-
nal carbides and other similar ceramics are likely

to possess more limited ductility.

e. Porosity

The yield strength of ceramics has been shown
to decrease exponentially with increasing porosity

[61, 62]. Most of the published results compare the
strengths of given carbides at different porosity
levels, and this is very difficult to interpret on a

fundamental basis. At low temperatures, porosity
gives rise to increased brittleness since the pores
act as crack nuclei, while at high temperatures
the pores may increase the brittleness by restrict-

ing grain boundary sliding [63].

f. Grain Size

It is well known that the yield strength and
fracture strength of metals and ceramics increases

as the grain size decreases. The behavior of TiC
is likely to follow this pattern. The room-tempera-
ture modulus of rupture of TiC has been shown to

increase from about 31 kg/mm2
(44,000 psi) at a

grain size of 12/xm to 51 kg/mm2
(73,000 psi)

when the grain size is 4^ [64]. These data cannot
be accurately described because of the variation
in porosity of intermediate grain sizes. For metals,
an Orowan-Petch [65] type of relationship, i.e.,

Oy a d~ 1/2
, is observed, while in some ceramics, for

example BeO [66], the variation is more accurately
described by ay a d~ l

.

3.2. Discussion of Properties

Very little use can be made of data which com-
pare the properties of the carbides unless some
attention is paid to the variables discussed in

section 3.1. Unfortunately, nearly all the data in

the literature has been obtained on inadequately
characterized material, and although technologi-
cally useful, it does not readily lend itself to

contribute to an understanding of the properties
of the carbides.

The most recently available results on the high-

temperature mechanical properties of polycrystal-

line carbides are those of Kelly and Rowcliffe

[67], who have shown that hot-pressed TiC0 .75 ,

VC0 .8„ NbCo.gg, NbCo.95, TaC, and WC, all behave
in a ductile manner in bending tests performed at

above 0.5-0.6 Tm . Their results are represented in

figure 17. At similar porosity levels, NbC0 .95

exhibited higher strength than NbC0 .88 ,
indicating

an increase in strength with carbon content in

this range of composition and at these tempera-

atures. The strength of TiC0 .75 was also shown to

be greater than that of NbC0 .95 ,
over the above

temperature range, which is in direct contrast to

the results obtained by Williams [20], who found

NbCo.75 single crystals to be stronger than those

of TiCo.97. However, in this work, the porosity level

was 97.5 percent for TiC0 .75 and 92.5 percent for

NbCo.95. The weakest carbide of the group was
shown to be VC0 .6i- However, incipient melting of

the sample was observed above 2000 °C
,
suggesting

that the carbide was probably in the two-phase

(V2C+VC) region, the former carbide melting at

about 2165 °C [15]. Hence the properties of this

lower melting, two-phase mixture probably cannot

be compared directly with TiC and the other

carbides.

Several attempts to determine the hot hardness

(a measure of the yield strength) of carbides have
been made. Westbrook [68] presents the micro-

hardness of a number of carbides as a function of

temperature (fig. 18) but no details of composi-

tion are given and it is difficult to evaluate the

results. These results do suggest that the tempera-

ture dependence of the elastic constants is an
important property, as suggested earlier in this

section.
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Figure 17. Yield strength of refractory

carbides as a function of temperature.

(After Kelly and Rowclifle [67].)
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(After Westbrook [68].)

Atkins and Tabor [69, 70] have overcome the
problems of softening and graphitization of the
diamond indenter at high temperature by using

a mutual indentation hardness technique. Their
technique provides a measure of the plastic

yield stress of the material, and measurements
for single crystal TiC are in close agreement with
those obtained in conventional compression test-

ing. The hardness variation of a number of

carbides—TiC, VC, ZrC, NbC, WC—as a function
of temperature was also reported, but again a
constructive comparison is denied by variable

porosity and composition. This mutual indentation
technique has also been used to determine the
activation energy for creep, which is again con-
sistent with self-diffusion of the metal species in

the carbide. This type of behavior seems to be
established for the cubic carbides [71] including
uranium carbide [72].

A hot-microhardness device for use up to

2000° C has been used by Koester and Moak [73]

with various oxides and carbides. Using a B 4C
indenter, a linear dependence between log hardness
and temperature was shown for TiC and NbC.
NbC is the stronger carbide at all temperatures
above room temperature, but no composition
specifications were given. This method has the
inherent disadvantage of possible specimen con-
tamination by boron at elevated temperatures,
this impurity significantly affecting the strength
of the carbides.

A particular example where specimen character-
ization may have played an important part in

contributing to confusion in the literature is

suggested by considering the properties reported
for TaC, figure 19.

Santoro [74] has shown a maximum in the hard-
ness and a minimum in the room-temperature
strength at the same composition. He correlated
these changes with several other physical changes
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Figure 19. Mechanical behavior of tantalum
carbides as a function of carbon content.

in the material, notably a change in color, and
a maximum in the melting point. There is no
simple explanation for such conflicting mechanical
properties, although it may be suggested that
measurements of tensile strengths in brittle

materials at room temperature give results which
are open to question because of stress concentrat-
ing effects which lead to premature failures.

Qualitatively, the harder the material, the more
susceptible it is to cracking, and this may be of

some significance. In addition, a microhardness
measurement implies measurement of the internal

material properties, whereas the bulk tensile

properties are more likely to reflect the properties

of the grain boundaries in the carbide.

Measurements of the bending strength of TaC
at high temperatures by Johansen and Cleary

[75], however, support the trend shown by the
room temperature hardness measurements [74].

The material has a minimum strength at about
TaCo.g. In addition, the brittle-to-ductile transi-

tion temperature increases linearly with increasing

carbon content from compositions within the

TaC-r-Ta2C two-phase field across the TaC region

to the two-phase TaC-fC field. However, if com-
positions with the TaC single-phase region are

considered, which would appear more justifiable,

then their data indicate a minimum in the transi-

tion temperature corresponding exactly with that
of the bending strength.

Steinitz [71], in the most recent data, indicates

that the room temperature hardness decreases and
similarly the creep rate at high temperatures
increases with carbon content over the composi-
tion range TaC0 . 8 to TaCi 0 . He suggests that this

decrease in strength with increasing carbon con-

tent is due to dislocation-vacancy interactions.

This may not necessarily be true! The increase

in strength of TiC with increasing carbon content
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has been interpreted as being due in part to an
increase in the occupancy of the electron states
which are responsible for cohesion in the lattice.

It is possible that in a different carbide, the carbon
atoms may contribute electrons to anti-bonding
states in a given compound as a function of com-
position, and this change in electronic structure
would give rise to a decreased strength of the
material [26].

All these investigations have utilized TaC
produced either by hot pressing with 4 percent
Co as a binder [71, 75] or by carburization of Ta
wires [74]. Although fully dense, and apparently
of constant radial composition, the latter showed
a large variation in grain size. It would seem that
with these specifications, the material lacked
metallurgical integrity and that these most con-
fusing data must be evaluated by careful investiga-
tion of the properties of TaC single crystals. The
possibility of ordering to give irregular variations
in mechanical strength, as in VC, must also not be
ignored. Ordering has not been detected in other
carbides except in TiC [76] at low carbon-to-metal
ratio 2 (0.5-0.6). It is likely that further application
of neutron diffraction, electron diffraction, and
nuclear magnetic resonance will compensate for

the lack of sensitivity of the conventional x-ray
techniques in detecting ordering in these
compounds.

It will therefore be appreciated that the present
degree of understanding of the mechanical be-
havior of the carbides is very incomplete. TiC
appears to deform in a manner similar to f.c.c.

metals rather than rock-salt structure ceramics,
and the strength arises from the complex elec-

tronic interactions between constituent atoms in

the lattice. Diffusion of the atom species is im-
portant in determining the plastic behavior of this

material. Very little is known about other Group
IV carbides, although ZrC is stronger than TiC,
and there is some indication that the strength of

HfC increases with carbon content [77] similar to

that observed in TiC. The behavior of Group V
carbides is even less clear. Ordering in the carbon
sublattice has been shown to significantly affect

the behavior of VC, and initial results suggest
that the strength of this carbide passes through a
maximum as carbon content is increased. Some of

the results presented for polycrystalline TaC
suggest a similar trend [71], although this is un-
certain.

The author feels that it is very difficult to base a
fundamental understanding of the behavior of

the carbides on the presently available data, much
which has been accumulated on poor, inadequately
characterized material. The situation would be
clarified by experiments performed as single

crystals produced from the melt [45, 78, 79, 80,

81]. In this way, undesirable specimen character-

istics such as porosity could be eliminated.

2 In the Ti+TiC region according to some phase diagrams [15].

In particular, it would appear that measure-
ments of such aspects of the mechanical behavior
as activation energies and volumes involved in the

flow process, in conjunction with diffusion ex-

periments as a function of carbon content, could

lead to a more complete understanding of the

Peierls stress in these materials. With this knowl-
edge, it would then be appropriate to discuss the

effect of controlled grain size, strain-rate, tempera-
ture, and composition, etc., on the mechanical
behavior. However, technological developments
are not likely to wait for these data. Our present

knowledge of these materials, although elementary,

does enable an evaluation of their properties for

high temperature structural applications to be
made, and this will be discussed in section 4.

The carbides appear to be a particularly ap-

propriate field of study in which to relate elec-

tronic structure to mechanical behavior. Lye [25]

has suggested that alloying may be expected to

change the relative occupancy of the electron

states which are responsible for cohesion in the

carbides. By appropriate alloying, therefore, it

may be possible to adjust the relative occupancy
of bonding and anti-bonding electronic states such
that differences in strength, ductility and brittle-

to-ductile transition temperature may be pro-

duced. Such a phenomenon may also account for

the observed variations in properties of TiC and
TaC as a function of carbon content, where
carbon vacancies may be considered as the alloying

constituents. The electronic structure of the

carbides may be controlled by alloying with solid

solutions of other carbides, nitrides, and oxides.

Although ordering may introduce complications

to these studies, a concurrent investigation of both
electronic and mechanical properties should pro-

vide valuable information on the fundamental
properties of these materials.

The present understanding of carbide base alloys

is even less than that for the component materials.

The mutual solubility between carbides was sum-
marized by Schwartzkopf and Kieffer [1], but

recent work suggests that many of these observa-

tions are incorrect [82]. One characteristic which

has been reported in many of these binary sys-

tems is that of a melting-point maximum [1].

Examples of the maximum stability compositions

include TaC-20 percent HfC, TaC-20 percent

ZrC and TiC-50 percent TiN. The TaC-20 per-

cent HfC has the highest reported melting tem-

perature for any material, 4000 °C [83] and this

has been associated with a hardness maximum
[84]. These maxima suggest that ordering may be

present in the solid state but this has yet to be

detected. The application of more sensitive experi-

mental techniques to determine phase equilibria

and to generally characterize these materials is

necessary. The scope for study of the properties

of these materials also clearly is vast.
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4. Carbides as High-Temperature
Structural Materials

The carbides are of particular interest for high-
temperature structural applications for three rea-

sons [85] : (i) they include the materials exhibiting
the highest melting points

;
(ii) they are extremely

strong; and (iii) at high temperatures, they de-
form in a manner similar to the ductile f.c.c.

metals.

Because of their high brittle-to-ductile transi-

tion temperature, fabrication of the carbides
currently presents problems. If a relatively duc-
tile carbide could be developed by alloying to

control electronic structure it would be of great
technological importance. A thermomechanical
treatment involving prestrain of a ductile carbide
solid solution (perhaps in some forming process)
followed by controlled high-temperature doping
should produce an extremely strong structure.

Venables [48] has suggested that precipitate
density and size, and hence the mechanical
strength, may be controlled by varying the dis-

location node density prior to or during doping.
The notable effect of boron in increasing the high-
temperature strength of TiC and VC must be
considered as "casual" observations, since no con-
trol of precipitate size to optimize these proper-
ties has yet been attempted. However, the
strength-to-density ratio of doped single crystals

of VCo.84 is 280,000 in at 1500 °C (fig. 20). TiC-
VC alloys show values in excess of this. In par-
ticular, that of the VC-50 a/o percent TiC alloy

appears to exceed 600,000 in at 1000 °C. It is

possible that these values are greater than those
of any conventional materials, and are of particu-

b
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Figure 20. The strength-to-density ratio of VC-50
a/o TiC and boron-doped VC0 .s4 as a function
of temperature, compared with some other high-

temperature materials.

lar interest because they exceed the target set by
the U.S. Bureau of Naval Weapons in 1964 [86].

Additionally, considerably higher values may be
obtained when these alloy carbides are hardened
by boron-induced precipitation. It is significant

to note that if the strength-to-density ratio is a
criterion for utilization, then it may not be the
carbides of highest melting point (NbC, TaC,
HfC) which will prove of greatest usefulness, since

these carbides are of considerably greater density
than TiC or VC, and would therefore be required
to be very much stronger.

If a relatively ductile alloy-carbide cannot be
developed by controlling the electronic structure,

then cladding with a ductile metal may be re-

quired to facilitate forming operations. Alterna-
tively, cast shapes can be produced, as has already
been demonstrated [87]. In recent years, one of

the major advances in turbine blade technology
has been the development of directionally solidi-

fied "monocrystaloys" of nickel-base alloys [88].

The elimination of grain boundaries in these

materials has produced marked improvements in

creep rupture properties and thermal shock
resistance in comparison with equiaxed or colum-
nar grained structures. It would appear that
similar techniques could be applied with ad-

vantage to alloyed carbides.

Ductility has been observed in polycrystalline

TiC at temperatures above the brittle-to-ductile

transition in single crystals. For example, at

1500 °C, in coarse-grained TiC of about 2 mm
grain size, about 30 percent ductility has been
observed, the yield strength being about 10 times
that of single crystals of the same composition at

the same temperature [42]. Other polycrystalline

cubic carbides may behave similarly, and addi-

tional strength may result from grain refinement.

Conversely, porosity reduces strength and in-

creases brittleness. It appears, therefore, that

fine-grain, fully-dense, alloyed, polycrystalline

carbides could provide useful mechanical strength
and ductility at high temperatures, and may
therefore be of significant technological importance
in the future.
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In this paper the fracture of ceramics is considered primarily from a fracture mechanics
point of view. The maximum theoretical strength of ceramics is discussed. The ideas of a
stress intensity factor and a fracture surface energy are developed. Finally, examples are

presented of the use of these parameters to describe strength, thermal shock resistance

and stress corrosion of ceramic materials.
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1. Introduction

Mechanical failure of ceramic materials is

almost completely controlled by brittle fracture,
which means that the failure occurs with negligible
plastic deformation and without prior warning.
This brittle behavior, combined with the presence
of surface flaws leads to low strengths in ceramics
and, consequently, severely limits the mechanical
use of these materials. Investigations over the
past decade on the deformation and fracture
properties of ceramic materials have indicated
that brittleness is an inherent property of ceramics;
consequently, any improvement of their mechan-
ical properties will necessitate designing around
this brittle behavior by understanding the causes
and effects of brittle behavior and by developing
the necessary criteria for failure.

The primary purpose of this paper is to survey
some aspects of brittle fracture that may be of
use in the design of ceramic structures. Particular

emphasis will be placed on the flaw theory of

fracture and its generalization to the continuum
approach of fracture mechanics. The ideas of a

surface energy and a stress intensity factor in

fracture will be developed and specific examples
of their uses will be given. The effect of plastic

deformation and environment on fracture will

also be discussed.

2. Theoretical Cohesive Strength

The theoretical cohesive strength of a material
depends on the physical and chemical forces

holding it together and, as such, gives a meaningful
measure of the stresses that must be overcome
during fracture. All other things being equal, the
material with the higher cohesive strength will

be stronger. Thus the cohesive strength provides
a means of comparing the potential strengths of

different materials and gives the maximum strength
to be expected from a given material.

This section will deal with a calculation of the
theoretical strength of two ceramic materials,

sapphire and glass, and will compare the calcu-

lated with the measured strengths of these

materials. The theoretical cohesive strength will

be shown to be approximately 100 times the

normal engineering strength of these materials.

The method of calculation is that described by
Gilman [l]. 1 Other discussions of the theoretical

cohesive strengths of materials may be found in

references [2-4].

Fracture is the process of separating a solid into

two parts, each of which becomes bounded by a

new surface called the fracture surface. During the

separation process attractive forces act across the

incipient fracture surfaces, first increasing, then

1 Figures in brackets indicate the literature references at the end of this

paper.
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decreasing with distance of separation. The maxi-
mum force corresponds to the theoretical cohesive

strength of the solid. This behavior may be
approximated by a potential energy function that

is characteristic of the material under study and
which relates potential energy per unit area of

fracture surface, to distance of separation. The
shape of a typical potential energy function and
its first derivative is given in figure 1. Two typical

potential energy functions are the Morse potential

and the Born potential, eqs (1) and (2).

?7=£70 [e-
2a
<*-*°>-2e-

a <*-*o>] (1)

where U represents the potential energy per unit

area of the fracture surfaces separated by a

distance x. The stress on these two surfaces is

equal to bU/dx and the cohesive strength is calcu-

lated from the fact that the stress is a maximum
when d2 £7/dx2=0.
The constants in eqs (1) and (2) determine the

shape and position of the potential function. They
are evaluated from measurable material properties

such as the surface energy, y, which determines
the depth of the potential minimum; the zero

stress separation distance, x0 , which determines
the position of the potential minimum; and
Young's modulus, E, which determines the curva-

ture at the potential minimum. The general shape
of the potential function at points away from the

Figure 1. Binding potential function and first derivative.

potential minimum is largely determined by the
type of function selected to represent the potential.
Consequently, to calculate the maximum stress,
which occurs at the point of inflection of the poten-
tial energy curve, a potential function characteris-
tic of the material under study should be selected.
In this regard, a Born-type potential would be
selected for ionic crystals, because it contains the
long-range coulomb energy term characteristic of
these materials, while a Morse-type potential
would be selected for covalent solids which exhibit
only short-range forces.

The use of the Morse and Born potential
functions to calculate cohesive strength will now
be illustrated for silica glass and sapphire respec-
tively. The constants of eqs (1) and (2) must
first be evaluated. At equilibrium displacement,
x=x 0 , the stress between the planes is zero.
Consequently, (dU/dx) x = Xo=0. By definition, the

surface energy of a solid is equal to work necessary
to form a unit area of surface. Therefore,

27 = f a(x)dx=f (dU/dx)dx = u]'°=-U(x0 )
Jxq Jxq _]x0

where U(x 0) is the value of the potential minimum.
At equilibrium displacement, x 0 , the change in

stress is directly proportional to the change in
strain, Hooke's law, do-=Edx/x0 , from which
E=x 0(d

2U/dx2
) x=Xo . Finally, the maximum stress

occurs when d2U/dx2=0. Using these four condi-

tions, it is easily shown that the maximum stress

for the Morse potential is

emax=^yE/±x0 . (3)

An equationn of this type was first derived by
Orowan [3] using a linear approximation for the

potential. The maximum stress calculated from
the Born potential is

EV 2 f+Vn-l
a™*=2 U+TJ '

(4)

where n=x0E/2y.

The theoretical cohesive strength of silica glass,

calculated from eq (3) using experimental values

ofE, y, and x 0 ,
table 1, is 2.2X.10 10N/m2

(3.2 X106

psi) while that of sapphire, calculated from eq (4),

is 3.1X1010iV/m2 (4.5X106 psi). While these

values compare well with the highest strengths

measured on these materials, it may be concluded

that they are about 100 times larger than engi-

neering strength values normally accepted for

these materials, table 2. This conclusion leads

naturally to questions of why ceramics are weak,

how they can be made stronger, and how their

strength can be characterized for design purposes.

These questions will be discussed in succeeding

sections of this paper.
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Table 1. Theoretical strength of silica glass and sapphire,

(1010) plane

Parameter Fused silica Refer-
ence

Sapphire Refer-
ence

7 4.56 J/m2 Table 3 7.3 J/m" Table 4

Xo 1.62X10-'° m [7] 2.74X10-'° m [6]

E 7.2X101° N/m2 42.5X10'° N/m2 m
Cm&x 2.2X10'° N/m2 eq(3) 3.1 X10'° N/m2 eq (4)

In fused silica, the oxygen-silicon distance was taken
as i 0 - In sapphire, the oxygen-oxygen distance was taken
as x a . If half the oxygen-oxygen distance is taken as x a in

sapphire, then "max— 4.6 X1010 N/m2
.

Table 2. Measured strengths of silica glass and sapphire

Material Strength Reference

Flame-polished silica,

-196* C.
1.35X10'° N/m2 (1.96X10° psi) [8, 9]

Silica glass fibers, -269 C ... 1.47X10'° N/m2 (2.1X10° psi) [101

Bulk silica glass 1X108 N/m? (15X103 psi) [14

Flame-polished sapphire 7X10' N/m2 (1X10° psi) [13

Sapphire whiskers 1.1X10'° N/m2 (1.6X10° psi) I"
Sapphire whiskers 1X10'° N/m2 (1.5X10° psi) [12

Sapphire, single crystals 3.5-10X10« N/m2 (50-150X103 [14

psi).

3. Flaw Theory of Fracture

The low strength and brittle behavior of

ceramics are almost entirely due to limitations on the

amount and type of plastic deformation of these
materials. Ceramics either do not deform plas-

tically or possess an insufficient number of inde-
pendent active slip systems to undergo generalized
plastic deformation. An important consequence
of this behavior is the fact that stress concentra-
tions at crack tips or flaws cannot be relieved by
generalized plastic flow. As a result any flaw
contained within the body acts as a stress con-
centrator and is a potential nucleation site for

fracture.

This section will deal with the flaw theory of

fracture as developed by Griffith [15-17], who
assumed that small cracks in the body of brittle

materials were causing their low strength. Griffith

was able to prove this by investigating the elastic

stress distribution about an elliptically shaped
crack in a uniform tensile stress field, figure 2.

Using the stress analysis of Ingles [18], he was
able to show that the tensile stress at the tip of
such a crack was

o*vv=2SjLTp, (5)

where L is half the length of the crack, p is the
radius of curvature at the crack tip, S is the
applied stress, and i/p»l. If one assumes the flaw
length to be of the order of 10~ 6 m and the radius
of curvature of the crack tip to be 10~10 m, then
the stress concentration is of the order of 100.

Therefore, materials that ordinarily rupture at a
stress of 104 psi would have crack-tip stresses of
the order of 106 psi, which is approximately equal
to the theoretical cohesive strength found pre-

2L

ii S

Figure 2. Elliptically shaped crack in an infinite two-

dimensional plane.

viously. Thus, the flaw theory seems to adequately
account for the weakness of ceramic materials.

A second approach to the strength of materials
was also conceived by Griffith [15, 16] by using a

mechanical energy balance to determine the con-
dition for material fracture. At incipient failure,

the external work, dW, equals the change in energy
stored in the material, dV, plus the energy neces-

sary to form two new surfaces, d£ =4*ydL, where
7 is the surface energy.

dW=dV+d£ (6)

From the elastic solution of the crack problem,

d(W-V) = [()(W-V)/bL]dL
= (2irLS2/E)dL=iydL (7)

or

S=^2Ey/irL, (8)

where S is now the critical applied stress for

failure. Equation 8 is the famous Griffith criterion

for failure. Note the similarity between eqs (8)

and (3) . If one were to assume the crack length in

the material to be of the order of the interatomic

spacing, the rupture stress calculated by eq (8)

would be of the order of the theoretical strength.

In addition, the strength calculated for a crack of
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length 10~ 6 m is approximately one-hundredth of

the theoretical strength, as found previously.

Therefore, the energy balance approach for calcu-

lating weakening effects of cracks in completely
brittle solids is consistent with the stress concen-
tration approach in that they both predict the
same degree of material weakening.
At first glance, the Griffith criterion for fracture

might seem limited because it deals only with
two-dimensional cracks and ignores the cohesive
forces that must be acting between the fracture

surfaces at the crack tip. In fact, the approach is

applicable to a great variety of fracture problems.
Three-dimensional crack problems that have been
solved yield equations not greatly different from
eq (8) [19, 20]. Griffith recognized the fact that
forces act across the crack tip, but avoided
discussing them by assuming a finite radius of

curvature at the crack tip. Crack problems with
cohesive forces at the crack tip have been treated

by Barenblatt [21], Elliot [22], and others [23,

24], with the conclusion that stresses are every-
where finite and the crack tip is cusp-shaped.
These treatments are compatible with the Griffith

assumption of a finite radius of curvature pro-

vided that radius is assumed to be of atomic
dimensions. Therefore, Griffith's equation is

valid provided an appropriate radius of curvature
is assumed.

Several authors [25, 26] have discussed the

relative merits of the stress concentration and
energy balance methods as criteria for fracture,

eqs (5) and (8) respectively. The stress concentra-
tion method assumes that a maximum stress must
be overcome for fracture, eq (5) , while the energy
balance method assumes fracture results after

the creation of maximum amount of stored energy.

The two approaches are equivalent for crack
radii of the order of the interatomic spacing;

however, for a large radius of curvature, the stress

concentration approach, eq (5), is more funda-
mental since it always presents the criterion for

fracture in terms of the maximum cohesive
strength, which means that fracture always re-

sults when crvy^> o-max . Unfortunately, this more
fundamental approach is not too useful since the

crack root radius cannot be measured in most
cases. In contrast, the energy approach can be used
to establish fracture criteria provided it is recog-

nized that the surface energy term reflects the

chemical and mechanical processes occurring at

the crack tip during fracture. The development of

the Griffith ideas into useful fracture criteria will

be discussed in the next section.

4. Continuum Approach to Fracture

4.1. Stress Intensity Viewpoint

The basic reason for the weakness of brittle

materials is that cracks tend to redistribute in-

ternal stress fields, causing high stress concentra-
tions at crack tips. Fracture occurs when the stress

fields near the crack tip reach a critical value.
This local criterion for fracture depends entirely
on the stress fields at the crack tip. To determine
the maximum load at fracture it is necessary to
relate the crack tip stress field to the crack shape
and applied load. Therefore, some understanding
of the stress distribution around a crack tip is
essential.

The most general form for the stress distribution
near a crack tip was given by Irwin [27] and
Williams [28], who noted that the stress field at
any point near a crack tip, figure 3, is related to the
distance, r, from the crack tip, the angle of in-
clination, 0, and a constant, K, called the stress
intensity factor. The radial dependence is always
inversely proportional to the square root of the
distance from the crack tip, r~ 1/2

, regardless of the
type of loading, crack geometry, or magnitude of
the load. The angular dependence is independent
of the magnitude of the load and flaw geometry,
but does vary with stress component and type of
loading. The stress intensity factor, K, is always
proportional to the magnitude of the applied
load and is related to the crack geometry and type
of load, but is independent of inclination angle 0.

Before giving examples of stress field distributions,
three general types of loading will be discussed.

Stress fields near a crack tip can be related to
three basic modes of deformation, figure 4. Mode
I, the opening mode, is associated with displace-
ments perpendicular to the fracture surface.

Figure 3. Coordinate relationship near the crack tip

After P. C. Paris and G. C. Sin [29].

Figure 4. Three modes of loading

After P. C. Paris and G. C. Sin [29].
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Modes II and III are associated with displace-

ments parallel to the fracture surface. Mode II

is called the edge sliding mode and is characterized

by shear displacements perpendicular to the crack
tip. The tearing mode, mode III, is characterized

by shearing displacements parallel to the crack

edge. The superposition of these three modes is

sufficient to describe the most general type of

crack tip deformation in a general stress field.

It is necessary to distinguish among these three
modes for a particular application or test because
the stress intensity factor and angular distribution

depend on the mode of load application. Because
ceramic materials fail in tension, mode I is the
most important type of loading. Consequently,
most fracture tests in ceramics are designed for

mode I failure. Torsion tests on ductile metals
are an example of mode III loading.

The stress and displacement fields for mode I

loading are listed below for the case of plane strain
deformation [29]. The notation used is given in
figure 3.

<rxx= [KI/(2Trr)
1/2

] cos 6/2 [1- sin 6/2 sin 36/2] (9)

<x
1/v=[KI/(2Tr)

1/2
] cos 6/2 [1+ sin 6/2 sin 36/2] (10)

<rxv=[KI/(2irr)
1/2

] sin 0/2 cos 6/2 cos 36/2 (11)

^zz= v(<Xxx+<Tyy), <TXi=<JVi=0 (12)

u=(KI/G)(r/27r)
1/2 cos 6/2 [l-2j/+sin2

6/2] (13)

v= (Kj/G) (t/2t) 1/2 sin 6/2 [2- 2f-cos2
6/2] (14)

w=0 (15)

Kx is the stress intensity factor for mode I loading,
u, v, and w are displacements in the x, y, and z
directions, and G and v are the shear modulus
and Poisson's ratio, respectively. Equations for
mode II and mode III deformation may be
found in reference [29]. Stress intensity factors
for these types of loading are denoted by Ku
and Km-
The most significant feature of eqs (9) through

(15) is the separation of the stresses and dis-

placements into radial, angular, and stress in-
tensity dependent portions. The angular and
radial distribution of stress about the crack tip
are identical for a given mode ot loading. The
level of stress, or stress intensity, depends en-
tirely on the stress intensity factor which, in
turn, is a function of the crack geometry and
method of loading. In fact, the stress intensity
factor is given by K^azS, where S is the applied
load or applied stress and aT is a geometric fac-
tor, in this case for opening mode failure. The
geometric dependence of the stress intensity
factor can be obtained by solving the appropriate
elasticity equations, see reference [29]. Figures 5
through 7 give important examples of test speci-
men geometries for which the stress intensity
factor has been solved [30-32]. In all cases, Kz

tan
7TL

w

Figure 5. Center-notched plate tension specimen con-
taining a crack of length 2L.

After J. E. Srawley and W. F. Brown [30].

p

/ /
w

l

c /
t

/
2L = 8W

2 2 2 r t

K
I =(-7-) —~ 31.7 c/W - 64.8(c/W) 2 +211 (c/W) 3

V I ' yy2 <- J

Figure 6. Edge-cracked bend specimen containing a crack of
length c.

For four-point loading see ref. [30]. After J. E. Srawley and W. F. Brown [30].

is dependent on the applied load S, the crack

length and the specimen dimensions. A wide
variety of other geometries is given in reference

[29].

The radial dependence of the stresses in eqs

(9) through (11) leads to the conclusion that the

stresses are infinite at the crack tip, r==0. This

conclusion is, of course, erroneous and arises from
the assumption of a true continuum in deriving
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Figure 7. Double-cantilever specimen, Ki= (PL/Wt1 - 5
)

(3.^7+ ^.3/ j t/L).

eqs (9) through (11). Since matter is not con-
tinuous, but discrete, deviations from eqs (9)

through (14) will occur in brittle materials at

distances from the crack tip of the order of several

atomic dimensions, say 10-9 m. In ductile ma-
terials crack blunting occurs and deviations from
these equations result over even greater distances,

depending on the amount of plastic flow. If the
discrete nature of matter or size of the plastic

zone is regarded as a disturbance in the continu-
um, then it can be concluded from St. Venant's
principle that the effect of the disturbance is

negligible at large distances with respect to the

size disturbance and that the real stress fields

approach those given by eqs (9) through (11) for

sufficiently large distances. It is usually assumed
in the continuum approach to fracture that the
disturbance is small and is contained within the
limits of applicability of eqs (9) through (11).

This assumption is quite adequate for ceramics
which exhibit little plastic relaxation at crack
tips.

Because the stress fields near the crack tip of a

real material approach those given by eqs. (9)

through (11), a one-to-one relationship will exist

between the maximum tensile stress at a crack tip

and the value of the stress intensity factor at

fracture. The strength of a material can therefore

be characterized by a critical value of the stress

intensity factor, usually denoted KiC for opening-
mode failure. KIC is a material constant dependent
on physical processes occurring at the crack tip

during fracture, but independent of crack geome-
try, specimen shape, or test procedure. It charac-
terizes the inherent difficulty of propagating a

crack in a material and provides information that

is independent of the flaw distribution in the

material. For a given load condition and crack
geometry, the maximum load at fracture is ob-
tained by equating KY to K1C -

A valuable use of K1C is to predict the size of a

plastic zone at a crack tip. The estimation of the
plastic zone size presented below is based on the
Dugdale [33, 34] model of plastic flow at a crack

tip. The plastic zone is assumed to extend a dis-

tance R in front of the crack, figure 8. The length
of the zone is

R=(ir/8)(Klc/<rv)
2

, (16)

where K1C is the critical stress intensity factor
and <j v is the yield stress of the material. When
the plastic zone extends from the crack tip a
distance R, the sides of the crack become displaced
a distance 2V(C) at the crack tip.

V(C)=4ayR/vE. (17)

Equations (16) and (17) are valid provided the
breaking stress is much less than the general yield
stress of the material, a condition that holds for

most ceramics. Equations similar to (16) and (17)
have been derived for other plastic flow models
[35]. Equations (16) and (17) are valuable because
they relate the extent of plastic flow at the crack
tip to macroscopic measurements of yield stress

and critical stress intensity factor at fracture.

4.2. Surface Energy Viewpoint

Another method of treating fracture problems
is the surface energy method, which is based on
the fact that work is associated with the creation
of new surfaces. As envisioned by Griffith, this

energy was considered to be the thermodynamic
free energy for the surface. In most cases, however,
the energy associated with a fracture surface is

not the surface free energy, but is much greater
than the free energy of the surface. Irwin [17]

and Orowan [3, 26] first noted that the surface
energy in eq (8) should be written y=ys -\-yp

where ys is the surface free energy and yP repre-

sents the amount of plastic work going into the
formation of the surface. A number of other surface
energy terms may enter into eq (8) . For example,
if crack propagation were accompanied by a
chemical reaction a term yc ,

representing the
energy of reaction per unit area of surface formed,
would have to be subtracted from 75. Similar
surface energy terms would be added for other
processes and the total fracture surface energy y
could be larger or smaller than the surface free

energy 75. In metals, for example, yP is typically

104 J/m2 while ys is 1 J/m2
.
Consequently, 7~7p.

CRACK 2V(C) PLASTIC
ZONE

Figure 8. Dugdale model of plastic flow near a

crack tip.

After G. R. Hahn and A. R. Rosenfield [34].
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A general relationship between the fracture

surface energy and experimental parameters can
be derived using a mechanical energy balance

[17, 37]. Consider a crack in a solid, subjected to

a constant load P, figure 9. As the crack extends
the work, dW, performed on the solid by the ex-

ternal load must equal the change of internal

strain energy, dV, j lus the change of surface

energy, d£, dW=dV+d£- The work by the

external load is Pdu, where du is the differential

displacement of the ] ad P as the crack extends
a small amount. Th< total elastic strain energy

of the body is V-X Pdu. For a linear elastic

body, the displacement is proportional to the

applied load, u=\P, where A is called the com-
pliance of the system. It therefore follows that
the total elastic energy is V=u2/2\=T>

u/2, and
at constant load dV=%Pdu—}idW. The change
in surface energy is 2ydA where 2dA is the amount
of surface formed as the crack propagates. As
mentioned above, the surface energy per unit

area of surface formed, y, includes contributions

from chemical and mechanical processes associated

with crack motion. Substituting expressions for

dW, dV, and d£ into the energy balance, the
following equation is obtained

7= (P/4) (bu/dA) P= (P2
/4) ®\/bA) P . (18)

'////////////////////A

Figure 9. A body containing a crack that is extended a

distance, dL, by a force P.

Displacement of the point of load application is du. After P. C. Paris

and G. C. Sin [29].

For specimens of constant thickness, t, dA=tdL
where dL is the increase in crack length. Equation
(18) then becomes

y=(P2/4t)(d\/dL) P . (18a)

As discussed below, eq (18a) provides a general
experimental means of measuring y.

Irwin originally expressed many of his results in

terms of a strain energy release rate, Q, which is

just equal to twice the fracture surface energy,

y. In parallel to the stress intensity factor defi-

nitions, Qic, Que, and Qnic represent the critical

strain energy release rates for crack motion, modes
I, II, and III respectively. They are material
constants dependent on the physical processes
occurring at the crack tip during fracture, but
independent of crack geometry, specimen shape
or test procedure. Finally, it should be noted that
eq (18) is valid for fixed grip as well as fixed load
conditions.

The relationship between the surface energy
and stress intensity approaches to fracture can
be easily proven [17, 27, 37]. The calculation will

be given for opening mode failure and then the
general relationship between stress intensity fac-

tors and strain energy release rate values will be
presented. As a result of these relationships, the
two fracture viewpoints may be used inter-

changeably.
Consider the crack shown in figure 10 and

assume that the crack faces are gradually loaded
in some reversible manner to cause the crack to

close a distance a. Prior to closing the crack, the
surfaces are stress free and the contour of the
crack surfaces is described by eqs (13) through
(15). After closing the surfaces, the stresses are

described by eqs (9) through (12) and the crack
surfaces are coplanar with the surface y=0.
The reversible work to close the fracture sur-

faces is

Qlc={2la)^(^<rvvv^dx. (19)

Other possible energy terms containing (axxu)/2

or (axyv)/2 all equal zero. The stress o-yv is given
by eq (10) with r=x and 0=0. The displacement
v is given by eq (14) with r=a-x and Q=ir. Sub-
stituting eqs (10) and (14) into eq (19) and inte-

grating, one finds,

Qxc—
{l-v)Klc* (l-v2)KIC

2

26 E

Values for other modes of displacement are

SO (1— V
2
) K 2y IIC— 55 XVE

5*- IIIC Jji

IIC >

K 2
-^MIIC •

(20)

(21)

(22)
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a

Figure 10. Closure of a crack a
distance a by applying the

stresses of equations (9)—(11) to

the free surface of the crack.

After P. C. Paris and G. T. Sih [29].

For combined mode failureQ=2y=Qi-\-Q II -\-QIn ,

which constitutes a generalized Griffith condition
for crack propagation. Equations (20) and (21) are
for plane strain. Equations for plane stress are
obtained by dropping v

2 from eqs (20) and (21).

Equations (20) through (22) are given for iso-

tropic media. Other types of media are discussed
in the literature [29] and relationships between the
stress intensity factors and strain energy release

rates values are available.

4.3. Measurement Methods

There are three experimental methods for

determining the critical fracture parameters, KiC
and Qic- In each of these methodsK1C and QIC are
related through eq (20). One method requires a
solution of the crack problem for the specimen
geometry under consideration so that KT can be
expressed as a function of applied load, crack size,

and sample dimensions. K1C is obtained from a
strength measurement on the material being
studied. At failure KIC=Ki. Therefore, KIC is

calculated from the specimen dimensions, crack
size and critical load at failure. For a given

set of physical circumstances, KIC should be inde-
pendent of test method.

Several practical test geometries are shown in
figures 5 through 7. The center notched plate
tension specimen (fig. 5) and the edge-cracked
bend specimen (fig. 6) have been used extensively
in the testing of metals and the dimensions sug-
gested are for metallic materials. The double
cantilever specimen (fig. 7) also known as the
infinite crack-line loaded edge-crack or Majoine
specimen, has been used in various forms for both
metals and ceramic materials.

The second method is called the compliance
method and requires the use of eq (18a) to deter-

mine Q. 1C - A series of specimens is prepared con-
taining a range of crack sizes. As the specimen is

loaded, the relative displacements of the loading
points, u, must be measured as a function of P
for each crack length. Since \=u/P, X can be
plotted as a function of L and dX/dL can be deter-

mined from the slope of the plot at any crack
length. Because the derivative of X is important in

the determination of Qic, displacements and loads
must be measured to a high degree of accuracy.
The main limitation of this method is the dis-

placement measurements. The method has the
great advantage of being applicable to any speci-

men shape and can be used to check elastic solutions

of crack problems.
In the third method of measurement, the work

to propagate a crack over a complete cross section

is determined [38, 39]. The test is conducted in

three point bending and edge cracked bend speci-

mens are used (fig. 6). This type of test requires

a testing machine with a large spring constant.

Specimens are slowly deformed at a continuous,

constant rate throughout the test, and the test is

continued until specimens have been completely
fractured. The method depends on the fact that

as the crack propagates, the compliance, X, de-

creases, and crack propagation occurs continu-

ously and stably with gradually decreasing load.

The force-displacement curve during the test is as

depicted in figure 11, and the area under the curve
is equal to the total work performed during the

experiment. There is no elastic energy stored in

the testing machine at the completion of the test,

since the machine is load free once the crack has
passed through the specimen. Consequently, all

of the work performed during the experiment has

gone into the fracture process and the strain

energy release rate, Qic, can be determined by
dividing the total work by half the total fracture

area.

The three methods of measurement just de-

scribed are based on three different criteria for

fracture. Method 1, the stress intensity method,

is based on the assumption that crack motion

occurs when the stress intensity in the vicinity of

the crack tip has reached a certain level. The
critical stress intensity will depend on the physical
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5.1. Glass

DISPLACEMENT, U

Figure 11. Force displacement curve for the work of fracture

method of determining the fracture surface energy.

processes occurring at the crack tip, but not on
crack size or shape.

In the second method of measurement, the

compliance method, fracture occurs when the net
mechanical energy input into the body equals the

surface energy required for the production of new
fracture surfaces. The method is differential in

that energy values are expressed in the limit as

the amount of new fracture surface area ap-

proaches zero. Thus, the second method, as the

first, is only concerned with initial crack motion.
The equivalence of the two methods is proven by
eqs (20) through (22).

The third method, the work of fracture method,
is also based on an energy criterion for fracture.

It differs from the second method in that the

fracture surface energy is determined by an inte-

gral technique. In other words, the surface energy
is determined by an averaging procedure over the

entire fracture cross section. Fracture surface

energy values obtained by the third method are

related more to crack propagation than crack
initiation. This difference has been emphasized
recently by Davidge and Tappin [40], who clas-

sify fracture surface energy measurements with
reference to crack initiation, y T , or crack propaga-
tion, yF . Their experiments on graphite, alumina,
polymethylmethacrolate and glass show that ji
and yF are not necessarily equal, but depend on
physical processes occurring during fracture.

5. Experimental Fracture Surface
Energy Values

The available fracture surface energy data will

be reviewed in this section, first for glass, then
for single crystals and bicrystals, and finally for

polycrystalline ceramics.

Glass provides an excellent material for testing

the various ideas presented in previous sections.

It is elastically isotropic so that linear elastic

theory is applicable. It can be made homogeneous
so there is no concern with the interaction of the
crack tip with internal flaws or grain boundaries.
Finally, glass is one of the most brittle materials
known, so there is little concern with plastic

flow at crack tips. The one limitation of glass

is its extreme susceptibility to stress corrosion.

The data presented will be that for which there
was little or no stress corrosion.

Table 3 presents a summary of data for various
glasses tested in various environments. Most of

the data were obtained by the double cantilever

method; however, two sets were obtained by
other means. Agreement among the various test

methods is good. Variations in measured fracture

energy due to differences in composition and
temperature were as high as 50 percent, suggest-

ing a maximum difference of about 25 percent
in the inherent cohesive strength of silica based
glasses. The surface energy values of table 3

can be substituted into eq (3), yielding maximum
tensile strengths of approximately 2X10 10 N/m2

(3X106 psi), which agree within a factor of 2

with data available in the literature, table 2.

Table 3. Surface energies of glass, J/m2

Double cantilever specimens, method I

Glass Toluene-C02

Fused silica _

25 C
4. 32
4.00
3.82
4.75
4.65
3. 50

-196 C
4. 56
4. 17
4.53
4.80
5. 21

4.11

-60 C
4. 86
4.60
4. 38

96 percent silica...

Soda lime . .

Borosilicate
Aluminosilicate -

High lead...

Plate glass 3.4-5.2, 25 C, ref. [38], modified edge crack bend specimen,
method III.

Soda-lime glass 4.06, Vacuum, ref. [41], center notch plate tension specimen,
method I.

It is of some interest to use eqs (16) and (17) to

estimate the size of the plastic zone at the crack
tip. The yield stresses for soda-lime glass and
fused silica at liquid nitrogen temperature are

1X10 10 N/m2 and 1.95X10 10 N/m2 respectively

[42]. Data for the critical values of the stress

intensity factor are given in table 3. The lengths,

of R, the plastic zones for soda-lime glass and
silica glass are 2.6X10~ 9 m and 6.4 X10~ 10 m
respectively. The displacements, V(C), for the
same glasses are 4.5 X10 -10 m and 2.2 X10 -10 m
respectively. The very small value of the calcu-

lated plastic zones satisfies all of the assumptions
of fracture mechanics and, in addition, dramatizes
the reason for the very brittle nature of glass. In
the absence of large amounts of plastic flow
there is no mechanism for absorbing energy during
crack motion. As a result, a crack once started

tends to propagate catastrophically.
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5.2. Single Crystals

The fracture of single crystals depends on the

crystallographic orientation of the fracture plane
and occurs more easily along those planes having
the lowest fracture surface energy [4]. In extreme,
but common, cases, this behavior leads to cleavage
fracture, where fracture occurs only on a single

crystallographic plane characterized by a fracture

surface energy considerably lower than any other

plane in the crystal. In less extreme cases, an
orientation dependence of the fracture strength
is observed, as in the case of sapphire [43]. Thus,
a complete characterization of the fracture be-

havior of single crystals requires the determination

of y, Qi, or Kic as a function of the orientation

of the fracture plane.

Most fracture surface energy determinations on
single crystals have been made on crystals that

cleave. Thus, the energy values published are

characteristic only of the cleavage planes in the

crystal. Since many crystals that cleave exhibit

fracture on no other crystal planes, these fracture

surface energy values completely characterize the

fracture in these materials.

A summary of some of the fracture surface

energy data on crystals that cleave is given in

table 4. The data obtained by the double cantilever

technique have been recalculated by the author
according to the equation in figure 7, which was
not available at the time of the original publica-

tions. The data presented in table 4 were obtained
on specimens tested in dry environments or in

vacuum. The test conditions were such as to

eliminate environmental effects and to reduce
plastic flow at crack tips. Since the results pre-

sented in table 4 were close to those expected
theoretically, plasticity and environmental effects

may have been eliminated.

Table 4. Surface energies of single crystals

Crystal

Mica, vacuum, 25 C
Mica, vacuum, 25 C
LiF, N2U), -196 C
MgO, N2 (l), -196 C
CaF2 ,

N 2 (l), -196 C

BaF 2 ,
N 2 (l), -196 C

CaC0 3 , N 2 (l), -196 C
Si, N2O), -196 C
MgO, vacuum, —175 C
NaCl, N2U), -196 C

NaCl, vacuum, —175 C
Sapphire, (1123) plane, -196 C
Sapphire, (1011) plane, -196 C
Sapphire, (2243) plane, -196 C
Sapphire, (1123) plane, 20 C...

Sapphire, (1011) plane, 25 C...
Sapphire, (1010) plane, 25 C.__

Reference

[44]

[45]

[46]

[46]

[46]

[46]

[46]

[46]

[47]

[47]

[47]

[48]

[48]

[48]

[48]

[122]

[122]

Data from references [46] and [47] were recalculated using the equation in

figure 7. The values given represent averages of the three smallest surface
energy values in each group. Data from reference [48] were obtained on
center-notched plate tension specimens. Data from the other references

were obtained on double cantilever specimens. Morphological indices are
used for sapphire, c/a=1.365.

Fracture surface energy measurements on non-
cleavable single crystals have been obtained only
on sapphire, a— A1 20 3 . The rather meager avail-
able data are presented in table 4. Energy values
obtained by Petch et al. [48] are about 10 times
that expected theoretically. The authors explain
the high values as due either to energy absorption
by plastic deformation or to the possible fact that
the drilled hole did not offer a suitably sharp
crack from which fracture could initiate. Con-
sidering the low fracture energy values obtained
by Wiederhorn [122], it is improbable that plastic
deformation plays a role in increasing the surface
energy for fracture. Mechanical twinning induced
by fracture has been observed by several inves-
tigators and may be playing a role in the (1011)
fracture energy measurements [49-52].

5.3. Bicrystal Fracture Energy Measurements

Bicrystals occupy an intermediate place between
single crystals and polycrystalline solids. They
contain a single grain boundary, which is charac-
terized by the relative orientation of the crystals

on each side of the boundary. Because poly-
crystalline ceramics fracture primarily along grain
boundaries, a measurement of grain boundary
fracture energies is important. In theory, the
grain boundary fracture energy can be obtained
on specimen geometries such as those given in
figures 5 through 7, provided the boundary is

coplanar with the crack. Class and Machlin [53]

have performed this type of experiment on twist

boundaries of KC1 using the double cantilever

method for their study. Their results, figure 12,

indicate that grain boundaries are weaker than
single crystals. For large angle grain boundaries,
the fracture surface energy is less than 50 per-

cent of that for normal cleavage. These first ex-

periments suggest the necessity for additional

work on bicrystals.

5.4. Polycrystalline Ceramics

Fracture surface energy values obtained on
polycrystalline ceramics, table 5, are an order of

magnitude greater than those obtained from single

crystals. In addition, for small grain sizes the

fracture surface energies of polycrystalline MgO
and A1203 increase with increasing grain size,

table 5. Since the strength of a material is ex-

pected to be proportional to the square root of

the fracture surface energy, eq (8), polycrystalline

ceramics should be stronger than single-crystal

ceramics and strength should increase with in-

creasing grain size. From the best available

strength data on polycrystalline ceramics [56-58],

these conclusions are erroneous. Single crystals are

stronger than polycrystals and strengths increase

with decreasing grain size. Consequently, it ap-

pears there is no correlation between strength and
fracture energy measurements for polycrystalline

ceramics. As will be discussed in a later section
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Figure 12. Fracture surface energy of KC1 bicrystal twist boundaries.

The upper curve gives the fracture surface energy of the (001) surface and the twist angle refers

to the direction of crack propagation on the (001) surface. The lower curve gives the fracture

surface energy of the twist boundary. The angle of twist is given by the ordinate. After W. H.

Class and E. S. Mechlin [53].

of the paper, this lack of correlation suggests
that the strength of polycrystalline materials
depends more on single crystal and grain boundary
fracture surface energies than on polycrystalline

values of fracture surface energy. The polycrystal-

line values of surface energy are valuable for some
types of mechanical and thermal shock.
The high fracture energy of polycrystalline

ceramics is due to the tortuous nature of the
crack path in these materials [54, 59], figure 13.

Crack perimeters must extend through and around
many grains and can be pinned at many points
along the boundary by high-energy obstacles

consisting of poorly alined grains and grain
boundaries. As a result, the crack must overcome
all of these obstacles to propagate, requiring an
amount of work greater than is necessary to

propagate in single crystals. Some energy ab-
sorbing processes for fracture have been discussed
recently by Clarke et al. [54, 59] and include
secondary crack formation, plastic flow, area in-

crease due to roughness of the fracture surface, and
step formation which leads to high-energy tear-

Table 5. Surface energies of polycrystalline ceramics

Material Density Grain size Energy Reference

Firebrick, Douglas X
metenXlO- 11 J/m2

30 [54]

[54]MgO _ 3. 48 10 16
MgO _ 3. 51 50 19.5 [54
MgO __ 3. 56 100 35 [54

MgO, theoretical density. 3.58 7 4. 2 [54

MgO , theoretical density. 3.58 13 8.9 [54

MgO, theoretical density. 3. 58 23 16 [54
MgO, theoretical density. 3.58 38 17 [54
MgO, theoretical density _ 3. 58 130 14 [54
MgO, theoretical density. 3.58 150 7.9 [54;

BeO 2.79 5 15 [54]

Graphite 100 [54;

SiN 2.2
3. 97
3. 97
3. 97

20
18

27
46

[54;

[55

[55

[55

AI2O3, Lucalox
AI2O3, Lucalox
AI2O3, Lucalox

10
30
45

f

Figure 13. Crack propagating through polycrystalline A1203 .

Note the random nature of the crack path. After E. L. Coble, ref. [14].

p. 623.

ing, mode III fracture. The exact role played by

each of these processes has not yet been elucidated.

6. Applications of Fracture Mechanics
to Ceramics

Discussions of previous sections were phenom-

enological in outlook. No attempt was made to

relate the fracture process to fundamental phe-

nomena such as microstructure, chemical compo-

sition, and ability to deform plastically. Instead,

fracture was assumed to be controlled by three

experimental parameters, fracture surface energy,

Young's modulus, and flaw size. From an engi-

neering point of view, this approach is valuable

because it provides a convenient means of classi-

fying materials. The fracture mechanics approach

will be continued in this section where it will be
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applied to problems of strength, thermal shock,
and stress corrosion. Where applicable, the phe-
nomenological approach will be correlated with
the microscopic approach. The effect of plastic

deformation, grain size, chemical composition,
and crystal structure on the fracture surface
energy will be discussed. For an excellent coverage
of the microscopic aspects of fracture, the reader
is referred to the literature, references [60-62].

6.1. Strength of Glass

Materials that are homogeneous, isotropic, and
completely brittle with absolutely no plastic

flow, are the simplest to classify mechanically.
Crack propagation in these materials is not in-

fluenced by the presence of grain boundaries,
cleavage planes, plastic deformation, or stress

inhomogeneities due to anisotropic thermal expan-
sion. Fracture surface energies are isotropic, but
may depend on environment. Many inorganic
glasses fit this category and in the absence of

environmental effects have surface energies given
in table 3. Since these energies are nearly in-

dependent of composition, as is Young's modulus
for these glasses, fracture is almost completely
controlled by flaws contained in these glasses

[63, 64]. Experiments have shown that flaws are
almost entirely limited to the external surfaces.

It follows that glass can be strengthened either

by eliminating surface flaws or by preventing
them from propagating. The latter approach has
been used in the recent development of surface
toughened glasses [65]. The surfaces of these
glasses are put into a state of compressive stress

either by chemical or thermal treatment. Surface
flaws and cracks then cannot result in fracture

until the surface stress has been overcome by the
applied load. In this manner, the strength of

ordinary glass has been increased from 10,000 psi

to 70,000 psi, an increase of sevenfold. The ideas
of surface strenghtening have been extended to

recrystallized glasses with even more impressive
results [65].

6.2. Strength of Single Crystals

As noted by Stokes [62], the mechanical behavior
of ceramics may be divided into three categories.

Depending on the amount and type of plastic

deformation that can occur, ceramic crystals are

completely brittle, ductile, or semi-brittle.

Completely brittle crystalline ceramics cannot
be deformed plastically as dislocations are im-
mobile and all deformation is elastic. As a result,

failure occurs by brittle fracture. Generally,

covalent crystals at less than 0.5 Tm are in this

category where Tm is the melting temperature.

Since inorganic glasses fit this category, the con-
clusions and statements concerning the strength

of glass are equally valid for completely brittle

single crystals. Fracture is governed by accidental

surface flaws, the elastic constants and the surface

energy, the latter two depending on crystallo-
graphic orientation of the fracture plane. In the
absence of surface flaws, single crystal strengths
exceed 106

psi.

Ductile crystals can be deformed quite easily.
Dislocations move readily with a great deal of
flexibility in choice of slip plane. Ductile crystals
can be deformed into arbitrary shapes by applied
loads, and stress concentrations can always be
relieved by plastic flow. As a result, stresses never
exceed the cohesive strength of the solid and
failure occurs by plastic instability, in which the
solid necks to a point and then separates. Plastic
behavior is demonstrated by the silver halides [66]
at low temperature and by many ionically bonded
materials at high temperatures [67, 68], greater
than 0.5 Tm .

Semi-brittle crystals can be deformed plastically

but, in contrast to ductile solids, cannot be de-
formed into arbitrary shapes by external loads.

As a result, stress concentrations cannot be
relieved by random shape changes and fracture
occurs when local stresses exceed the cohesive
strength of the material. This behavior results

from the fact that the number of active slip

systems in these materials is insufficient for ductile

behavior. In addition, screw dislocations in semi-
brittle crystals are limited to specific slip planes
and cannot maneuver from one plane to another
by cross slip [62]. Semi-brittle crystals fail by
fracture and are sensitive to the presence of surface
cracks and notches [66, 69]. Fracture is also caused
by stress concentrations due to slip band inter-

actions with grain boundaries [70-74] and other
slip bands [75]. Semi-brittle crystals consist of

ionic materials below 0.5 I
1

, and covalent crystals

above 0.5 Tm .

The type of failure of a solid may be qualita-

tively related to its plastic properties via the

Von Mise criterion [76-78], which states that at

least five independent slip systems must be active

for ductile behavior. Any number less than this

results in semi-brittle behavior and the complete
absence of slip results in completely brittle be-

havior. The plastic behavior of several ceramic
materials is given in table 6. Most ceramics are

semi-brittle or completely brittle at room tempera-
ture. As the temperature is increased above 0.5

Tm , ceramics become semi-brittle or ductile.

For further discussion of the topics presented

in this section, references [61, 62] are suggested.

6.3. Strength of Polycrystalline Ceramics

In this section, a discussion will be presented of

some of the factors that effect the strength of

polycrystalline ceramics. Crack nucleation due to

grain boundary blocking of plactic deformation

will be discussed first. Then a theory of crack

nucleation due to anisotropic thermal expansion

will be presented. Finally, the effect of grain

boundaries on crack propagation will be discussed.
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Table 6. Plastic behavior of ceramics

Crystal
Crystallographic

slip systems
No. of

independent
systems

Category of mechanical behavior

Low temperature

NaCl (e.g., NaCl, LiF, MgO)
CsCl, (e.g., CsCl, CsBr)

(110) (110)

(1001 (010)

(001) (110)

1110) (110)

(001) (110)

(111) (HO)

2

3
3
5

Semibrittle.
Semibrittle.
Semibrittle.
Ductile.

CaF 2 (e.g., CaF 2 , BaF2)

AgCl (e.g., AgCl, AgBr)...

High temperature

Hexagonal (e.g., graphite, AI2O3, BeO) -

TiOj -

(0001) (1120)

(101) (101)

(110) (001)

1110) (110)

(001) (HO)
(HI) (110)

(001) (110)

1110) (110)

2
4

5

5

High-temperature semibrittle.
High-temperature semibrittle.

High-temperature ductile.

High-temperature ductile.

NaCl (e.g., NaCl, LiF, MgO)

CaF2 , (e.g., CaF2 ,
BaF 2 , U0 2)

Taken from ref. [79]. Original sources, refs. (62, 78, 121].

Crack nucleation due to grain boundary blocking

of plastic deformation was first suggested by Zener

[80], developed by Stroh [81] and most recently

discussed by Smith and Barnby [82]. Suppose a

dislocation slip band has impinged upon a grain

boundary as depicted in figure 14. Since the slip

planes on either side of the boundary are not
alined, the dislocations will be blocked at the

boundary, setting up a stress field at the point of

impingement. The stress field is described by an
equation very similar to that obtained for a freely

slipping crack under a shear stress [81], mode II

deformation,

o-={o--o l
)(Llryi*j{6) (23)

where as is the resolved shear stress along a slip

band of length L and o-
t
is the shear resistance of

the material referred to as the friction stress. To
a first approximation the friction stress is the
minimum stress for dislocation motion.
The stress field at the crack tip will nucleate

plastic deformation in the adjacent grain and the
stress field will be relieved by plastic flow if the
material is ductile. If the material is not ductile,

but semi-brittle, stress will build up at the grain
boundary and fracture will occur when the stresses

at the boundary exceed the cohesive strength of

the solid. For a Morse type potential the following
equation is obtained as a condition for failure,

Vt^/4x0= (a- Cj-) (L/ry*f(B) . (24)

Assuming L is proportional to the grain size, D,
and crs is equal to half the applied tensile stress,

<rs=y2S, eq (24) can be rearranged to give a
Petch-type relationship [83],

S=<t 0+JcD- 1 /2
(25)

Figure 14. Slip band of length, L, imping-
ing on a grain boundary to nucleate a
crack of length 2C.

Applied tensile stress is S and resolved shear stress

along the slip plane is as

which relates the stress to nucleate fracture, S,

to the grain size, D, and the minimum applied
tensile stress, a 0 , for dislocation motion.
The constant, k, can be evaluated by obtaining

a relationship between L and the grain size D
and by evaluating j{d) . Eshelby et al. [84] give
L=D/4: while the maximum value of jiff) is

approximately 1. Substituting these values into eq
(24) and setting r=x0 ,

k=(4:Ey) l/2
is obtained.

The exact value of k depends on assumptions made
in the derivation of eq (25). Using an energy
balance and a more exact procedure Stroh [81]

obtained k=[3iryE/(l— v
2
)}

1 '2
, which is about 1.7

times that given above.
A second mechanism for crack nucleation was

given by Clarke [85] and is based on the fact that
internal stresses occur in polycrystalline ceramics
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due to anisotropic thermal contraction or radiation

induced anisotropic expansion. Fracture is assumed
to initiate at grain boundary pores and then to

propagate along the grain boundary, figure 15,

absorbing energy from both the external and
internal strain fields. These fields arise, respec-

tively, from the applied stresses and the expansion
anisotropy. A Griffith type energy balance is used

to derive the critical stress for fracture

<j={E[2y b-Et\l-c 0)l\2{\-v
2
)]/irc o

yi2
, (26)

where e is the grain boundary strain; the grain

size is 21; y b is the grain boundary surface energy;

and c 0 is the grain boundary pore diameter.

Equation (26) is essentially the Griffith equation
with an additional term to account for the thermal
expansion strain energy release per unit area of

crack formed. The equation predicts spontaneous
fracture when the term inside the square brackets
equals zero,

2y b=Ee2(l- CQ)/12(l-v2
) (27)

or for c 0 <cZ,

e=(.24y b/Eiy<
2

. (28)

The validity of this last equation has been demon-
strated recently by Davidge and Tappin [86] on
polycrystalline BeO.
Once a crack has been nucleated, it must be

able to propagate for complete fracture to occur

[87]. Obstacles, such as grain boundaries, may

cr

Figure 15. Model for crack initiation at a grain boundary
-pore due to thermal stresses.

After F. J. P. Clarke [85].

hinder crack growth and thus prevent complete
fracture. The increase in stress required for a
crack to abruptly change directions at a grain
boundary has been recently calculated by Gell and
Smith [88], and by Barnet and Tetelman [60].

The method of treatment is identical to that used
for dislocation pileups at grain boundaries.

Consider a crack that has been momentarily
arrested at a grain boundary, figure 16. Crack
motion is assumed to reinitiate either at some tilt

angle, 6, to the original crack or at a twist angle,
<f>,

The stress distribution around the arrested crack,
given by eqs (9) through (12) may be resolved
along the projected plane of propagation by the
appropriate tensor transformation. For the case
of a two dimensional Griffith crack reinitiating

along a tilt plane, 0, these stresses are,

on=Ksl{2irryi* (29)

o-22=KT/(2irry
2

(30)

where Ks and KT are given by,

Ks=-S(way<2 sin 6/2 cos2
6/2 (31)

KT=S(wd) l/2 cos3
6/2 (32)

0-
12 and o-22 are respectively the shear and tensile

stress on the projected plane of propagation. The
stresses on these planes are identical to those
obtained on the projection of the original crack
plane provided combined mode I and mode II

deformation is assumed with stress intensity
actors KX=KT and Kn=Ks . Therefore, the condi-
tion for crack reinitiation for the case of plane
strain is given by the sum of eqs (20) and (21),

Ks
2+KT

2=2Ey/{\-v2
). (33)

The criterion for reinitiation on the new plane
therefore becomes

a= [2Ey/Td(l-v2
)Y/

2 sec2
6/2. (34)

Note that the condition for crack reinitiation along
a new direction is the Griffith equation modified
by the angular dependence sec2

0/2. This conclusion
is also true for other crack shapes.

Figure 16. Change of crack plane orientation as crack

traverses a grain boundary.

a) tilt propagation, b) twist propagation. After M. Gell and E. Smith

[88].
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The treatment by Gell and Smith [88] considers

the nucleation of a new crack at the edge of a penny
shaped crack of radius d. The equations for propa-

gation on a plane ot tilt 6, or twist <p, figure 16,

can be obtained by methods identical to those

given above. The reinitiation stress required for

the tilt and twist case respectively are

cr=[7r7#/2d(l-?2
)]

1/2 sec2
6/2 (35)

<T=[^El2d{l-v2
)]

1 '2 sec2
<p. (36)

Again, the Griffith equation for crack motion is

modified by trigonometric functions of 6 and <p.

Equations (34) through (36) give the condition for

reinitiation of crack propagation and are rigorous

only in this limit, since changes in the stress field

due to the reinitiated crack are not considered.

The increase in stress for crack reinitiation

depends on the angle of tilt or twist as would be

expected. For fracture along grain boundaries, tilt

propagation is most important, since all grain

boundaries meet at tilt angles. If a polycrystalline

aggregate is assumed to be a nested assembly of

truncated octahedra (ref [14], page 410) the angle

of tilt will always be 60°. In a real material,

however, the angle of tilt scatters around this

value and ranges from 0 to 90°. Since the larger

angles will control the ease of fracture, it might
be expected that tilt angles ranging from 60° to

90° will account for the more important obstacles

to crack propagation. Tilt angles in this range are

equivalent to surface energy increases of from 1.8

to 4 times the single crystal or grain boundary
surface energy value. Similar increases in measured
surface energies can occur for twist propagation,

which plays an important role in limiting trans-

granular crack propagation [88].

In the above discussions of crack nucleation

and propagation, a critical length and a surface

energy parameter were always involved in estab-

lishing the criteria for fracture. In general, both of

these parameters must be considered to decide

which of the possible mechanisms controls fracture.

In the dislocation pileup mechanism, eq (25) the

length parameter is the grain diameter, while the

surface energy parameter is the grain boundary or

single crystal surface energy, table 4. For the

thermal expansion mechanism, eq (26), the param-
eters are the pore diameter and the grain boundary
fracture energy. For the crack propagation

mechanism, the critical surface energy depends on
the size of the fracture nucleus. If the starting

crack is several grain diameters in size, the critical

surface energy will be the same as that measured
on polycrystalline specimens, table 5. If the start-

ing crack is of the order of a grain diameter in

size, then the critical surface energy will be the

grain boundary or single crystal fracture surface

energy, possibly modified by a trigonometric

function as in eqs (34) through (36). These
mechanisms will now be discussed with regard to

experimental results.

Conclusive experimental evidence of the pileup
mechanism in MgO at room temperature has been
given by several people. Ku and Johnston [71]

proved the validity of the Petch equation, eq (15),
for bicrystals of MgO. D was shown to be the
distance between the origin of the glide band and
the grain boundary, a0 was shown to be the stress

for dislocation multiplication at room temperature
rather than the minimum stress to move disloca-

tions, and k gave a qualitative measure of the
cohesive strength. The value of the friction stress,

(To, was 5X107 N/m2 (7.25 XlO3
psi).

Stokes and Li [70] investigated the effect of

mobile dislocations on the strength of MgO and
found that bicrystals possessed a tensile strength
of over 7 X10 8 N/m2 (100,000 psi) in the absence
of dislocation mobility, but only 7 XlO7 N/m2

(10,000 psi) in the presence of dislocation mobility.

The reduction in strength resulted from an inter-

action of the dislocations with the bicrystal grain

boundary. Stokes and Li also showed that dis-

location mobility reduces the strength of 100 per-

cent dense polycrystalline MgO from 20X 107 N/m2

(30,000 psi) to between 10 and 14X107 N/m2

(15-20X103 psi).

Recently Rice presented evidence for the dis-

location pileup mechanism in hot pressed and hot
extruded MgO [89]. Fracture data on both types
of material were found to give a straight line on a
Petch type plot. The calculated friction stress was
4X107 N/m2 (6,000 psi), which is close to the

value obtained by Ku and Johnston. Fracture was
transgranular so that the initial source of fracture

could always be identified. Microscopic examina-
tion of the sources of fracture gave evidence of

slip band pileups at the source of fracture. Thus
there can be no doubt as to the importance of

dislocation mobility to the strength of MgO at

room temperature or of the importance of the

pileup mechanism to crack nucleation in poly-

crystalline MgO.
The expansion anisotropy mechanism of crack

nucleation has beendemonstrated on polycrystalline

BeO and also may be important in A1203 . The
experimental evidence on BeO was obtained by
Davidge and Tappin [86], who used neutron
irradiation to develop expansion anisotropy strains

in BeO. Spontaneous cracking along grain bound-
aries was observed when eq (28) was satisfied,

with 7 6 assumed to be about 1 J/m2
(10

3 ergs/cm2
).

Further evidence for fracture induced by thermal
expansion anisotropy was presented by Coble
[90] who demonstrated spontaneous cracking in

completely dense A1203 ,
Lucalox, for grain sizes

greater than 100 /xm.

Crack propagation as a limiting mechanism
failure has been suggested by Davidge and
Tappin [86], who have shown that polycrystalline

BeO does not exhibit significant weakening until

cracks ot the order of 1 to 3 grain diameters have
appeared. Consequently, strength in BeO is

believed to be limited by crack propagation from
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flaws 1 to 3 grain diameters in size with a surface

energy of about 10 J/m2
.

An interesting correlation for fracture of MgO,
BeO, and A1 20 3 was presented by Carniglia

[91, 92] who plotted published strength data of

several authors [56, 93-95] as a function of D~ 1/2

and obtained bimodal curves such as the one
shown in figure 17 for MgO. Fracture data from
the upper portion of this curve was attributed to

plastic flow and could be represented by the
Petch relationship, eq (25) . The friction stress can
be obtained by extrapolating the upper portion
of the curve to infinite grain size and should be
of the same order of magnitude as the yield

strength of the material. Fracture behavior
depicted by the steeply sloped portion of the
curve was attributed to elastic crack propagation
from internal cracks or flaws of the order of a
grain size in dimensions and could be represented
by a Griffith type relationship, eq (8) where L is

proportional to the grain size. At high temper-
atures the upper portion of the curves for BeO
and AI2O3 had negative slopes that were attributed

to grain boundary sliding. Thus, failure of poly-

crystalline BeO, AI2O3, and MgO is believed to

be limited by crack growth for large grain size,

by crack nucleation due to plastic flow or
grain boundary sliding for small grain size.

Although Carniglia's explanations of fracture

behavior of ceramics might seem reasonable,

additional research is necessary to prove his views,

since the shapes of the fracture curves are not
sufficient evidence in themselves to prove his

viewpoint.
One drawback to Carniglia's correlation is its

failure to predict friction stresses for MgO, A1 20 3 ,

CO 200 100 50 20 10 5 2

10 20 30 40 50 60 70

(D)-'
/2 (cm" 1/2

)

Figure 17. Petch -plot of MgO bending data.

After S. C. Carniglia [91, 92]

and BeO that agree with other data in the litera-

ture. For example, the friction stress for MgO
obtained from figure 17 is 2.35X10 8 N/m2

(34,000
psi). This value is about five times the friction
stress obtained by Ku and Johnston, 5X107 N/m2

(7.25X103
psi) on bicrystals of MgO; four times

the stress required to initiate yielding in MgO
single crystals [96], 5.5X 10 7 N/m2 (8X103

psi);

and six times the friction stress obtained by Rice
on polycrystalline MgO, 4X10 7 N/m2 (6X103

psi).

Similarly, friction stresses of 2.9 X10 8 N/m2
(42 X

103 psi) and 2.5X10 8 N/m 2 (37X103 psi) are
obtained for AI2O3 and BeO at room temperature
despite the fact that single crystals of these
materials are not known to deform plastically at
room temperature [43, 123].

Some comment should be made on the rela-

tionship between the fracture energy measure-
ments presented in tables 4 and 5 and the observed
strength of MgO and A1 20 3 . It is possible to use
the Griffith equation for a penny shaped crack

[19], a=^irEy/D(l— v
2
), to calculate the strength

of fracture of polycrystalline MgO and A1 20 3

from the data in table 5. Calculated strength

results for 100 percent dense MgO and A1 20 3 are

in agreement with measured values provided

crack nuclei are assumed to be 10 grain diameters

for MgO and 10 to 20 grain diameters for A1 20 3 .

Nucleation cracks of this magnitude have never

been reported in these materials, therefore, it is

reasonable to conclude that the fracture surface

energy values listed in table 5 are not to be
associated with the strength of these materials.

In contrast, a similar calculation on the strength

of MgO and A1 20 3 using surface energies charac-

teristic of the single crystal, table 4, gives a

predicted flaw size of approximately one to three

grain diameters, which is in better agreement
with that expected. It therefore appears that the

strength of these materials is controlled either

by crack nucleation or propagation from nuclei

the order of a grain size in diameter, In either

case, the surface energy is of the order of the

single crystal value.

Discussions of the preceding sections have been
limited to three materials, alumina, beryllia, and
magnesia, and to mechanisms that are important

at low temperatures. It is felt that the mechanisms
presented have general applicability to many other

types of ceramics at low temperatures. At high

temperatures, where diffusion can occur, fracture

is affected by other phenomena such as grain

boundary sliding and Nabarro-Herring creep [97].

Figure 18 is illustrative of the type of failure that

can occur at high temperatures during creep. This

type of behavior has not yet been treated by
methods of fracture mechanics, however, there

may be important applications of fracture mechan-

ics in this direction.
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Figure 18. Creep fracture of initially dense AI2O3 which has

been deformed at high temperatures in a bend test.

After R. L. Coble, reference 14, p. 619.

6.4. Thermal Fracture

Fracture is often observed to occur in ceramic

materials after a rapid change in temperature
known as thermal shock. The fracture results

from stresses that arise from nonlinear tempera-
ture gradients or restraints to thermal expansion.

The thermal stresses causing fracture depend on
the rapidness of the temperature change and on
the shape of the body being shocked. To determine
the onset of fracture, it is necessary to solve the

heat transfer equations and obtain the tempera-
ture distribution in the structure from which the

stress distribution can be calculated. A review of

the results of such analysis has been given by
Kingery [98]. Failure is deemed to have occurred
once the thermal tensile stresses exceed the tensile

strength of the material, as in the case of static

loading. Thus a maximum stress criterion is used
to describe thermal failure of ceramic materials.

(Table 6.)

Hasselman [99] and Clarke et al. [54] have sug-

gested an exception to the maximum tensile

strength criterion for thermal shock failure. Their
criterion for failure is based on the availability of

strain energy for crack propagation. During crack
propagation, strain energy imparted to the struc-

ture by thermal shock is converted into fracture

surface energy. The amount of strain energy
available for fracture is limited by the severity

of the shock. If the shock is not too severe, the
conversion of strain energy into fracture surface

energy may be complete before structural integrity

is lost. Structural materials may crack in a limited
way due to thermal shock, but still may be able to

serve their original design function. Thermal
failure therefore contrasts with constant load
failure for which the available elastic strain

energy is always sufficient for complete failure

once a critical load is exceeded. Mechanical shock
and failure under fixed grip conditions is similar

to thermal shock in that the initial elastic strain

energy is fixed so that crack propagation may
cease before structural usefulness has been de-
stroyed. In the following paragraphs the approach
taken by Clarke et al. [54] will be used to illustrate

thermal shock.

In engineering practice it is always useful to

have a number that can be used to classify ma-
terials for a given end use. For the shock condi-
tions described above, a useful parameter is the
ratio of the fracture surface energy to the elastic

strain energy available for fracture, V. Since this

ratio may be large or small, the logarithm of the
ratio will be more manageable for engineering
purposes. Thus, the thermal shock resistance can
be defined by a parameter r, where

T=logl0(y/V). (37)

This definition is essentially the same as the one
suggested by Clarke et al., differing by an additive
and multiplicative constant. Larger values of r

indicate greater resistance to thermal shock.

To evaluate r , the surface energy, 7, and the excess
elastic strain energy must be determined. The
fracture surface energies can be determined by
methods described earlier in the paper. The excess
strain energy can be estimated as follows. The
strain imposed by thermal shock at a free surface
of a solid is always of the form e=AaAT [98],

where a is the thermal coefficient of expansion, AT
the temperature difference between the initial

body temperature and that of the environment and
A is a constant that depends on the rate of heat
transfer, thermal conductivity, and the dimensions
of the structure. The value of A is usually less

than 1. The stress at the free surface of the material
is proportional to the thermal strain up to the
fracture stress. At higher strains, cracks form so
that the surface stress cannot exceed the fracture
stress of the material. For purposes of approxima-
tion, it is assumed that crack formation releases

strain energy in such a manner that the surface
stresses remain constant as the material fractures.

The stress-strain relationship of a region near the
surface of the structure is assumed to be as depicted
in figure 19. The excess strain energy for fracture

is given by the shaded portion of figure 19. In
quantitative terms,

V= I <xde= (o-/E)(EAaAT-a
J aIE

) (38)

where a is the strength of the material and E is

Young's modulus. From eq (38) it may be con-
cluded that fracture does not initiate unless

a=EAaAT, which is Kingery's maximum stress

criterion for thermal failure [98]. Therefore, the
assumption used in the derivation of eq (38) are

consistent with the treatment given by Kingery.
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Figure 19. Assumed stress-strain curve in the surface layer

of a thermally shocked ceramic.

Substituting eq (38) into eq (37), the following

equation is obtained for thermal shock resistance,

r=log10 [yE/ff(EAaAT—<r)]. (39)

For identical amounts of overstressing, EAaAT
— cr= constant>0, the resistance to thermal
fihock increases with increasing Young's modulus
and surface energy, but decreases with increasing

strength. The increased thermal shock resistance

with decreasing strength has been noted pre-

viously [99].

Clark et al. have shown that a thermal shock
ennntion similar in form to eq (39) compares

favorably with other methods of determining shock
resistance. Data presented by Clarke et al. are
shown in tables 7 and 8. A comparison of r with
the British Standard Thermal Shock Test, table
7, for commercial alumina ceramics shows that
the thermal shock resistance of the various ceram-
ics occupy similar positions on both scales. The
fracture surface energy can also be used to measure
the thermal shock resistance for these ceramics,
table 7. For a broader range of materials, the
fracture surface energy cannot be used as the only
criterion for fracture, as can be seen from table 8.

The high thermal shock resistance of firebrick,
table 8, is due to its low strength.

6.5 Environmental Effects

Up to this point fracture has been assumed to
occur in the absence of environment, controlled
only by flaw geometry and inherent physical
properties of materials. This assumption is very
poor for ceramic materials, which despite their
chemical inertness, are very sensitive to stress-

chemical effects in external environments. In
this section, the effect of environment on strength
will be discussed and the role of Kj and y will be
described.

Perhaps the first evidence for strength reduction
by external environment was made by Grenet [100]
who observed a time dependence in the strength
of glass. Glass lathes loaded rapidly were stronger
than those loaded slowly. In addition, a time
delay to failure was observed in which glass lathes
would support a given load for a period of time
before failure. All of these observations were
caused by water vapor in the atmosphere, al-

though Grenet did not realize this at the time.
The phenomenon first observed by Grenet has
been termed static fatigue or delayed failure and
is common to many ceramic solids.

Table 7. Thermal shock of commercial alumina
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Comparison of a series of commercial aluminas, a) and b) are two different methods of calculating

t. c) represents the strain that can be accommodated before a fresh amount of cracking can occur,

d) is the fracture surface energy determined by method 3. e) is the British Standard thermal

shock test. The numbers refer to the specimens in ref. [120]. After F. J. P. Clarke, H. G., Tattersall,

and G. Tappin [54].
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Table 8. Thermal shock of ceramics

Material ( 10" ergs

cm' 2
)

of

cm 2
)

a

H0 »

°c->)

Young's
Modulus
(I0' 2 dyn.

cm 2
)

r

Firebrick' 3 01 60 0 13 + i

Polycrystalline alumina"

No. 9

No. 10

5-3

21
2- 2
3-45

7-55

7,
3-5

3-9

-2-9
-4-5

Single-crystal alumina 111 1-2 3-5 7 0 30 -4-8

Polycrystalline magnesia 1 *

3-48 g.cm--1 , lO^m
3-51 g.cm 50fim
3-56 g.cm lOO^m
Theoretical density. 7finV

1 6
1-95

3-5

042

U *+

0-7

10
2*5

1

2

12

12

1 Z

30
30
3 0
3-0

-317
-3-5
-3-2
— 6-9

Single-crystal magnesia 11 <d-2 10 12 3 0 -6-8

Polycrystalline beryllia*" 1 1-5 20 7-0 3-4 -4-2

Range for commercial

Zero porosity

7(i Magnesia
Sapphire

Single crystal

Magnesia

aluminas

Beryllia

Magnesia

100H

50m
| r«H

Morganite

firebrick

-4 -3 -2 -1

Toughness Parameter, T.

Comparison of some ceramics in respect to their resistance to thermal
shock. Specimens are the same as those given in table 5. After F. J. P.
Clarke, H. G., TattersaU, and G. Tappin [54].

More recent experimental results on glass

clearly showed, the effects observed by Grenet to

be a form of stress corrosion caused by water
vapor in the environment. Reviews of the subject
may be found in references [63] and [100-102].

Most studies were made using rods or lathes in

three of four point bending from which stress-

time-to-failure curves were obtained as a function
of temperature and envhohment, figure 20. From
such studies it was concluded that delayed failure

did not occur in the absence of water vapor. A
lower stress limit for failure was inferred from the
long-time strength limit of the stress-time-to-

failure curve. This limit, called the static fatigue

limit, was approximately 20 to 30 percent of the
short-time strength [64, 105]. Charles was able to

show that delayed failure was an activated process
with an activation energy of 18.8 kcal/mole* [106],

about the same as that obtained for the corrosion
of glass by water [107]. Finally Mould and South-
wick [108] were able to reduce data from specimens
of various surface treatments to a single curve,

called the universal fatigue curve. Theories of

delayed failure must satisfy the universal fatigue
curve to be acceptable.

Recently Pearson [109] and Charles and Shaw
[58, 110] were able to demonstrate a moisture in-

duced, time-dependent weakening of single and

16
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Figure 20. Stress time to failure curve for annealed
soda-lime glass rods, }{ in diam, tested in bending.

After E. B. Shand [64].

polycrystalline alumina. The experimental ob-
servations were very similar to those on glass and
it is reasonable to conclude that the static fatigue
of sapphire is also caused by a stress corrosion
process. The activation energy for the processes
is 14 kcal/mole and the static fatigue limit is about
50 percent of the short-term strength for single

crystals. Static fatigue on other ceramics has also

been observed and is apparently quite common
[111].

The theory that has been most successful in

explaining static fatigue in ceramic materials is

the one proposed by Charles and Hillig [112, 113].

They assume that static fatigue is caused by a
stress enhanced chemical reaction that occurs most
rapidly at crack tips where stresses are high.

Cracks extend at subcritical stresses under the
influence of the chemical reaction until the Griffith

condition is satisfied, at which point rapid fracture

ensues. Because of the general nature of this

theory, it is worthwhile examining some of its

underlying premises and conclusions.

Chemical reactions are well described as acti-

vated processes, in which reactants combine to

form intermediate unstable chemical complexes
that decompose to form the final reaction products

[114]. The rates of reaction are controlled by the
rate of formation of the activated complex. If

AF* is equal to the free energy of formation of

the activated complex from the reactants and
AFP

* is the free energy of formation of the activated

complex from the reaction products then according
to the absolute rate theory, the rate of reaction

will be

K= (k T/h) [exp (- AF*/R T)- exp (- AF*/RT)
] ,

(40)

where k is Boltzmann's constant, h is Planck's

constant, R is the ideal gas constant, and T is the

temperature. If the reaction is assumed to be a

heterogeneous chemical reaction between a ce-

ramic surface and a corrosive environment, then
the rate or velocity of recession of the surface, v,

will be proportional to the reaction rate K. Finally,

if AFT*^>AFP
*, the velocity of recession is

•The thermochemical calorie denned as 4.184 J Is used here. v=v0 exp(-AFr*/RT), (41)

235



which is the starting point for the Charles-Hillig

theory.

The activation energy, AFr
*, is the difference

between the free energy of formation of the acti-

vated complex and that of the reactants. Since

free energies of formation of materials are stress

dependent [115], it follows that activation energies

of chemical reactions are normally stress de-

pendent. For simplicity it will be assumed that

the stress dependent activation energy may be
expanded into a Taylor's series as a function of

stress,

AF*(<r)=AF*(a=0)+ I a+
Oct (t=o

(42)

geometry on stress corrosion process. Their
criterion for the static fatigue limit is that the
ratio of the crack tip stress to the applied load
<t/S, should be time independent, which occurs
when d(L/p)/dt=0. Charles and Hillig obtain the
following equation for the static fatigue limit:

S*=(8yVM)/(4V*JTp), (45)

which differs from that given above by a numerical
factor of 3/2.

Equation (45) may be generalized for any
crack geometry, mode I failure, by expressing it

in terms of the stress intensity factor KIt which

for an elliptically shaped crack is S^f^^L. Therefore,
eq (45) becomes

where only the first two terns of the expansion
have been retained. To simplify notation let

K/=(37T^/4F*)V^. (46)

AF*(a=0) be E0
* and

bAF*(<r)

5<r
be -V*.

<r = 0

E* is the activation energy of the chemical reac-

tion in the absence of stress and V* has units of

volume per mole and has been called the activa-

tion volume by Charles and Hillig.

In a stress corrosion process, the chemical reac-

tion is most rapid at the roots of cracks, which
act as stress concentrators. Since crack roots are

curved, the effect of curvature on the activation

energy must be considered. From thermodynamics,
the free energy difference between a flat and
curved surface is yVM/p where VM is the molar
volume of the solid and p is the radius of curvature
of the surface [116]. This free energy difference

will tend to oppose the motion of the crack and is

therefore subtracted from eq (42) . With curvature

taken into account, the velocity of recession of

the crack tip under the combined effects of stress

and chemical reaction is

v=v0exp-[Eo*-V*<r+yVM/p]/RT. (43)

Equation (43) may be used directly to obtain

an approximation for the static fatigue limit.

A reasonable criterion for the static fatigue limit

is that the velocity of the crack tip should be
equal to the general rate of surface recession, a
condition that is satisfied when

V*a=yVM/p. (44)

If the crack tip is assumed to be elliptical in shape
then the'crack tip stress, a, is related to the applied

stress, S, by the Inglis relation [18], a=^L/p/S, which
when substituted into eq (44) gives S*=(yVM)/

(2V*^Lp) for the static fatigue limit.

A more exact procedure followed by Charles
and Hillig accounts for the dependence of crack

The critical stress intensity factor for the static

fatigue limit is seen to depend inversely on the
square root of the crack tip radius of curvature.
Charles and Hillig [112] have shown that during
stress corrosion, dp/dL~—2V*a/RT= — 10, which
means that during stress corrosion a small change
in crack length is accompanied by a decrease in

flaw tip radius. The flaw tip radius cannot de-

crease indefinitely and will be limited by the
atomic nature of the solid. Therefore, p will be of

the order of 10~ 9 to lO -10 m.
A good stress corrosion theory should not only

describe the stress dependence of material failure,

but also the environmental dependence. The
Charles-Hillig theory is particularly well suited

for this purpose since the activation energy, E*,
can be related to the difference between the
thermodynamic chemical potential of the various
reactants [117]. For example, consider a gaseous
reaction at the tip of a moving crack, where
species A is reacting with species B in the glass to

form an activated complex B*. B may be con-
sidered to be proportional to the number of bonds
in the solid so that each time the reaction occurs,

the crack tip advances a small distance. There-
fore, the rate of crack advancement is proportional

to the rate of reaction. Based on 1 mole of reacting

B, the equation for the chemical reaction is

nA+B^B*,

and the change of free energy is

EZ=n%—ixB—np.A ,

(47)

(48)

where is the chemical potential of the acti-

vated complex and p.B and p.A are the chemical

potentials of species B and A respectively. At
constant total pressure and temperature, nB
and ;uf should be constant, since they depend

only on the structure and state of the solid to
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which they are attached. fxA ,
by contrast, depends

on environment. Assuming A to be a perfect gas,

»A=RT[*{T)+]npA ] (49)

where $(T) is some function of temperature,
T, and pA is the partial pressure of species A
immediately adjacent to the crack tip. Sub-
stituting eqs (49) and (48) into (43) , the following

equation is obtained for the crack velocity de-

pendence on environment and crack tip stress;

v=AP2 exp [V*a-VMylp\IRT, (50)

where all of the constant terms have been collected

into the constant A.
The important aspects of the Charles-Hillig

theory have been verified by several experiments.

The theory successfully predicts the universal

fatigue curve developed by Mould and Southwick
[108]. Using the data of Mould and Southwick,
Hillig and Charles [113] calculated the static

fatigue limit to be 0.17 of the critical stress in-

tensity, Kf=0.\lKIc . They also find that

7=0.5 J/m2 (500 ergs/cm2
) and V* = lXl0_6m7

mole, which can be compared with an activation

volume of 4.9X 10_6m3/mole for alkali diffusion

in a typical soda lime glass.

A more direct confirmation of the Charles-
Hillig theory comes from the stress-corrosion

experiments of Wiederhorn [117, 118]. Crack
velocities were measured as a function of tempera-
ture, environment and KIf using the double canti-

lever configuration. The pertinent experimental
evidence is shown in figures 21 and 22. In figure

21, the logarithm of the crack velocity is plotted
as a function of K7 for environments of several

different water vapor concentrations. Each water
vapor concentration is represented by a tri-modal
curve. In region I of these curves, crack velocity

depends exponentially on Ki and exhibits a water
vapor pressure dependency. In region II, the
plateau region, crack velocity is nearly independ-
ent of applied load, but depends on environment.
In region III, crack velocity is again dependent
on applied load, but is independent of environ-
ment. The data of figure 21, regions I and II, can
be adequately explained using the theory of

Charles and Hillig [117]. In region I the crack
velocity is limited by the kinetics of the chemical
reaction, while in region II the crack velocity is

limited by rate of transport of water vapor from
the surrounding environment to the crack tip.

Figure 22 presents crack velocity data obtained
in water at four different temperatures [118].

The data were found to satisfy the following
equation

:

v= 1.2X 10 2 exp- (19,500-1.92X lO-^/^T7

,

(51)

which is similar in form to that proposed by
Charles and Hillig. The activation energy, E0

*=

^ i i r

STRESS INTENSITY FACTOR, K, . N/mJ/z X IO»

Figure 21. Dependence of crack velocity on stress

intensity factor, Ki, in soda-lime-silica glass.

The percent relative humidity for each set of runs is given on
the righthand side of the diagram. The Roman numerals iden-

tify the different regions of crack propagation.

STRESS INTENSITY FACTOR - N/M X 10

Figure 22. Dependence of crack velocity on stress

intensity factor, Ki, and temperature in soda-

lime-silica glass.
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19.5 kcal/mole, compares favorably with values

of 20 kcal/mole and 18.8 kcal/mole obtained by
Charles respectively for fracture and corrosion

of glass in saturated steam [106, 107].

An estimate for V* may be obtained by equating

V*a to the second term in the bracket of eq (51).

Since V*a=V*2S^LfP=KI2V*l4^9, the follow-

ing equation is obtained for V*

:

F*=4.02X10- 2
V^P, (52)

where a conversion factor of 0.239 has been used

to convert from calories to joules. Assuming a

reasonable radius of curvature of 5X10-10 m,
y*= 1.6XlO-6 m3

(1.6 cm3
), which compares well

with the value obtained by Hillig and Charles.

Equation (46) may now be simplified with the

aid of eq (52) and from the fact that K 2/2E—y,
obtaining

=32^X10-73^. (53)

For the soda lime glass used in the above ex-

periments, FM=24.2X10- 6 m3 (24.2 cm3
) and E=

7.35X1010 N/m2
. With a crack tip radius of

5X10- 10 m, a value of 2.2X105 N/m3 /2 is obtained

for Ki*, which is 28 percent of KIC in liquid nitro-

gen and agrees quite well with experiment.

One of the most significant aspects of the equa-

tions presented in this section is their utility in

predicting the relative resistance of glass to static

fatigue. The crack velocity data necessary for the

estimate require less time to obtain than com-
parable stress-time to failure data. Consequently,

fracture mechanics techniques have a clear advan-
tage over the usual strength techniques for this

purpose.
Data on the stress corrosion of sapphire are

not as plentiful as those on glass. Nevertheless,

from the data available, the processes in sapphire

seem to be very similar to those occurring in glass.

Static fatigue curves [58, 110] and crack velocity

data, figure 23, bear a strong resemblance to

those obtained on glass. Consequently, it is

reasonable to conclude that delayed failure in

sapphire is also caused by a water-induced stress

corrosion process.

Data on other ceramic materials are sparse;

nevertheless, there is good evidence that delayed

failure is a general property of ceramic materials

and that the strength of these materials is limited

by stress corrosion [111]. The effect of water vapor
on the strength of several ceramic materials is

given in table 9, where it is evident that even a

complex material such as granite can exhibit

static fatigue. To establish the maximum usable

strength of each of these materials, it will be

necessary to determine their static fatigue limit

either through strength time to failure studies or

by fracture mechanics techniques. Considering

the superiority of the latter, fracture mechanics

techniques should be used where possible.

J 1 i_
1.0 1.5 2.0

STRESS INTENSITY FACTOR
,
K t ,N/m

3 ' 2
X I0

6

Figtjbe 23. Dependence of crack velocity on
stress intensity factor, Ki, in sapphire.

The percent relative humidity for each set of runs is

given on the right hand side of the diagram. Crack

propagation occurred on the (1011) rhombohedral plane.

Table 9. Effect of water vapor on the strength of ceramic
materials

Test conditions, N/m^XlO' (psiXlO3
)

Material
Liquid Dry Saturated water
nitrogen nitrogen vapor
-195 C 240 C

At 240 C At 25 C

Soda-lime-silica glass (tr) 1.51 0.757
(22. 0) (11. 0)

Fused silica glass (c) 4.52 4.44 2.52 3.83
(65. 7) (64. 5) (36. 6) (55. 6)

Granite (c) 2.57 1.36 0. 414 1.62

(37.4) (19.7) (6.01) (23. 5)

Spodumene (c) 6. 55 3.94 3. 14 2. 65

(95. 2) (57.3) (45. 7) (38. 5)

Brazilian quartz (c).. 5.61 4. 38 2. 46 3.59

(81. 6) (63. 8) (35. 8) (52. 2)

MgO crystal (c) 2. 10 1.83 0.550 0. 977
(30. 5) (26. 6) (8.0) (14. 2)

AI2O3 crystal (tr) 10.5 7.99 4. 70 7.57
(152. 0) (116. 5) (68. 3) (110. 0)

Compressive (c) or transverse (tr) strengths under conditions indicated
with machine-loading rate of 0.005 in 1 min. Table taken from ref. [14], page
617. Original data from ref. [111].

7. Conclusions

The main purpose of this paper has been to

discuss some aspects of brittle fracture that may be
of use in the design and manufacture of ceramic

materials. Strong emphasis has been placed on the
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flaw theory of failure and its generalization into a

continuum approach to fracture. The stress in-

tensity factor and fracture surface energy have been
described and the relationship between the two
has been given. One of the main reasons for using

these parameters to describe fracture is their in-

dependence of flaw size. They are material prop-

erties dependent on microstructure and environ-

ment, but independent of structure shape or flaw

distribution. Examples have been given of the use

of these parameters in describing strength, ther-

mal shock resistance, and environmental effects on
strength. It may be concluded that the continuum
approach to fracture should provide a valuable

adjunct to the usual strength measurements.
Readers interested in a more intensive survey of

this subject are referred to the recent book by
Tetelman and McEvily [60], which should appeal

to both the materials scientist and the structural

engineer. More theoretical aspects of the subject

will be found in references [17, 29], while engi-

neering aspects of the subject are discussed in

references [30, 119].
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Strength Testing Of Ceramics—A Survey

Leonard Mordfin and Matthew J. Kerper

Office of Aerospace Research, 1400 Wilson Boulevard, Arlington, Virginia 22209

Mechanical test methods for brittle ceramics are reviewed, and the state-of-the-art is

presented for tensile and compressive strength determinations. Included are various indirect

tension, flexure, and torsion test methods and the relatively new stress wave technique.
The emphasis is on technological factors, particularly on improvements achieved since

1963, but the importance of the human element is also stressed. References are provided
for more detailed study and to guide the selection of an appropriate method for a given
set of circumstances.

Key Words: Brittleness; ceramics; mechanical testing; strength.

1. Introduction

The unique combinations of properties offered

by ceramics make them attractive for many
specialized structural applications where metals
are inadequate. On the other hand, the inherent
brittleness of most ceramics makes the design
and development of reliable ceramic structural

members exceedingly difficult. This problem has
been discussed perceptively by Harmsworth [l].

1

One of the difficulties is the determination of

reliable strength data. Such determinations have
frequently been characterized by excessive vari-

ability, or scatter, due to testing errors and
material variability. The reduction in testing

errors is the subject of this paper. We assume
some understanding of this problem on the part
of the reader, particularly as it applies to brittle

materials, but where this is not the case we
recommend Duckworth's clear exposition [2] as

preliminary reading.

In 1963 Shook [3] prepared an extremely
comprehensive survey of mechanical property
test methods for brittle materials. It is our
intention here to update his work insofar as

strength-test methods are concerned. In both
Shook's work and our own, the emphasis is on
technological improvements in testing techniques.
Nevertheless, it may be appropriate to say a few
words on the human element involved. It cannot
be denied that much of the unreliable strength
data on ceramics have been generated as a result

of improper testing practices at the hands of

inexperienced or incompetent personnel. All of

the improvements in testing apparatus are for

nought if not utilized by experienced, capable
personnel. Obtaining strength measurements on a
new brittle material, or an old one under a new

1 Figures in brackets indicate the literature references at the end of this
paper.

set of conditions, is anything but a routine

operation. It should be treated as a research

experiment.
Our point is that mechanical testing is not a

degrading occupation. Good people and good
equipment are both needed to obtain reliable,

useful data on brittle materials as well as to

develop good test methods.
Although many of the strength test methods for

ceramics were originally developed for concrete,

most of the recent advances in these methods have
been accomplished by the Air Force; principally

the Air Force Materials Laboratory and its

contractors, the IIT Research Institute, the

Stanford Research Institute, the Southern Re-
search Institute, and the Battelle Memorial
Institute, to name a few. This is not surprising.

Most of the major innovations in structures

technology, for several decades now, were born
from aerospace requirements. Unfortunately, much
of this work has not found its way into the open
literature, for a variety of reasons. We have,

therefore, found it necessary to reference many
Air Force reports in preparing this paper. In
many cases we have included the AD number, by
which these reports are cataloged by the Defense
Documentation Center, Cameron Station, Alex-
andria, Virginia 22314. Copies of these are readily

available to qualified requestors. Many of the

reports are similarly available to the general

public from the Clearinghouse for Federal Scien-

tific and Technical Information, 5285 Port Royal
Road, Springfield, Virginia 22151.

2. Direct Tension Test

In order to evaluate the fracture strength of a

material, it is necessary to have a means of relating

the load on a specimen, at the instant of fracture,

to the stress at the fracture location. For certain
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loading and specimen configurations, the load-
stress relationship is directly obtainable from
equilibrium considerations. The most obvious
example is the ideal tension test, wherein a pris-

matic rod is subjected to uniformly distributed,

axial end loads. The stress is then everywhere
equal to the force intensity, or the load divided by
the cross sectional area. The simplicity of this con-
cept has made the tension test the principal tool

for evaluating the strengths of materials in general.

In practice, it is virtually impossible to apply
tensile load uniformly over the end of a rod. In-
stead, the various gripping methods available,

such as threads, button heads, tapered shoulders,

collets, etc., apply loads chiefly through a shear
mechanism. 2 However, recourse to Saint-Venant's
Principle still enables our objective to be fulfilled.

That is, if the resultant of the applied load is pure
tension, and if the specimen is long enough, then
the central portion of the specimen will still be in

the required state of tension.

Unfortunately, even this approach is not realis-

tic in practice. Friction, imperfect machining,
inhomogeneity, and other factors make the attain-

ment of a purely tensile resultant force on the end
of a rod specimen impossible. Instead, the result-

ant consists of a tensile force plus a moment,
however small. The effect of the moment is to in-

troduce bending stresses into the central portion
of the specimen in addition to the desired tensile

stresses.

If, through careful testing technique, the bend-
ing moment is kept reasonably small, its effect on
strength determinations can be ignored when
testing most metals, plastics, and other ductile

materials. The deformation capabilities of ductile

materials enable specimens to respond to small,

superposed bending moments in such a way that

the bending stresses in the central portion are

relieved, and a nearly pure state of tension is

achieved prior to fracture.

In most ceramics and other brittle materials, on
the other hand, this deformation capability does

not exist, and fracture is initiated at a point in the

specimen where the sum of the tensile and bending
stresses is greater than the tensile stress alone.

The above discussion is not intended to create

the impression that satisfactory tension testing of

brittle materials is impossible, but rather that it

can be achieved only with special care and tech-

niques that reduce the maximum bending stress to

less than, say, 2 percent of the tensile stress.

Above all, we are trying to show why tensile test-

ing of brittle materials is not a routine procedure.

To illustrate the point, Barnett et al. [5] sub-

jected an instrumented tensile specimen to 67
consecutive cycles of loading and unloading, and
recorded the ratio of maximum bending stress

to average tensile stress each time. Between cycles

the specimen was removed from the grips, cleaned,

reinserted in the grips and carefully alined. The

1 An exception applicable to large, low-strength specimens uses thick steel
plates bonded with epoxies to the ends of concrete specimens [4].

data obtained are shown in figure 1. It may be
seen that the bending stresses amounted to as
much as 80 percent of the tensile stresses. Further-
more, the nearly linear nature of the cumulative
distribution indicates that high bending stresses
are just as likely to occur as lower stress values.
It is not surprising, therefore, that relatively large
amounts of scatter are obtained in results from
tests of this kind.
In another study, which involved even more

careful alinement of specimens in grips and the
use of crushable shims, Bortz [6] still obtained
bending strains as high as 10 percent of the total
strain.

The only solution is to instrument all test
specimens and to reject or re-start all tests which
produce excessive bending. The intent of the
recommendations and descriptions which follow
is merely to reduce the difficulties encountered in
initiating a successful test. We may also reiterate,
at this point, that there is no substitute for ex-
perience and diligence on the part of the testing
personnel.

The objective is to make the applied force co-
incident with the centerline of the specimen. This
involves all elements of the load train, which in-
cludes the specimen, the grips, and any extension
rods. All of these elements must be accurately
machined for concentricity and precisely alined.
Specimens should preferably be round, for easier
machining and elimination of corner effects, and
have a reduced, uniform diameter over the gage
length. Bortz and Wade [7] recommend a gage
length of at least four times the gage diameter
to reduce the effects of fillets. The collet type
of grip is widely considered the best for repeatedly
and reliably holding the necessary alinement.
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Figure 1. Occurrence of errors due to eccentric loading in

tension tests.
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Carefully machined, threaded grips have also

proved satisfactory where the specimen material

permits it.

Digesu and Pears [8, 9] developed a tapered

collet grip much like those used in precision

lathes (see fig. 2). The grooves at each end of the

specimen that receive the grips are machined
concentrically about the axis of the gage section.

In fact, the specimen configuration was designed

to allow machining of all surfaces to a common
centerline without intermittent removal of the

specimen from the lathe, thus permitting con-
centricity to within 0.0005 in. All of the other

elements of the load train were similarly designed
and fabricated to the same tolerance. To eliminate

other sources of bending, the assembled load train

was statically balanced and instrumentation
leads were routed through the center of the ex-

tension rods.

In using this collet grip, the three-piece split

ring is pressed into the groove by advancing the

compression nut. This provides the required
gripping force, and also forces the ground end
faces of the specimen and the pull rod together,

to provide axial alinement.
Having achieved satisfactory alinement in the

load train, the next problem requiring considera-

tion is the attachment of the load train to the

testing machine crossheads. If the movable

GRAPHITE OR STAINLESS STEEL
PULL ROD

MATING SURFACE FLAT AND
PERPENDICULAR TO 0.0005"

3- PIECE SPLIT RING

COMPRESSION NUT

TRUE , CONCENTRIC , AND
PARALLEL TO 0.0005"

SPECIMEN

crosshead is constrained to move precisely parallel

to the load train centerline, then the attachments
may be rigid. Unfortunately, conventional testing
machines are often inadequate in this respect,
so the attainment of uniaxial loading requires a
frictionless universal bearing. Mechanical universal
joints are hardly frictionless under load. Chains
are better. The best attachment available at this

time is the gas-bearing universal (fig. 3) developed
by Digesu and Pears [8, 9]. This apparatus pro-
vides a 0.0005-in-thick gas film between the
extension rods and the machine crossheads at
each end of the load train. With 9-in diam bearings
and a gas pressure of 300 psi in the contact area,

the universals transmit less than 1 in-lb of torque
and essentially no bending moment to the speci-
men, at an applied load of 15,000 lb.

Since the elimination of bending stresses permits
greater tensile stresses to be applied to a specimen
before fracture, improvements in tension testing
-techniques manifest themselves in higher strength
determinations as well as in reduced scatter.

Through the use of the above innovations, Pears
obtained tensile strength data which were at
least 30 percent higher than those previously
reported for the same materials. His values agree
more closely with reported flexural strengths.
An entirely different approach to the alinement

problem was proposed by Todd [10]. He com-
pensated for the effects of eccentric loading by
applying an external moment over the middle
third of the tensile specimen. While good results

were apparently obtained, this technique is

rather slow and tedious and requires very strict

control.

Electric resistance strain gages appear to be a
convenient means of monitoring alinement during

TUBULAR FURNACE
HEATER

UPPER 9 SPHERICAL
BEARING

PRECISION LOAD CELL

FLAGS FOR STRAIN
ANALYZER
(ROTATED 90°)

SPECIMEN

PRESSURE
GAS

LOWER 9 FLAT
BEARING

LOAD YOKE

MECHANICAL SCREW
LOAD APPLICATION

Figure 2. Precision collet grip for tensile specimens.

Figure 3. Schematic of gas bearings for attachment of load
train to testing machine crossheads.
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tests, and also provide the strain data needed for

the determination of stress-strain characteristics.

At elevated temperatures or in special environ-

ments, for which the direct tension test is well

suited, other strain-measuring instrumentation

may be more desirable. Examples are the optical

strain analyzer used by Digesu and Pears [8, 9],

and the photographic strain-measuring technique

[11]. Mechanical extensometers should, perhaps,

be avoided. Bortz and Wade [7] found that they
caused a 13 percent reduction in strength. This
has been attributed to surface damage produced
by the extensometer, which magnifies the load

eccentricity, however small it may be initially.

In the determination of elastic moduli from
tensile stress-strain measurements, abnormally
large scatter is obtained with certain materials

even when proper testing techniques have been
observed. This may be explained by the possibility

that the deformation is not truly elastic but
includes the creation and propagation of numerous
microcracks.

Recognition of the problems associated with
proper tension testing has caused this method to

achieve less acceptance for brittle materials than
it has enjoyed for ductile materials. Instead,

numerous other tests have been used or proposed
for evaluating tensile strengths. These are called

indirect tension tests, and will be discussed in

following sections.

(We have omitted any discussion of tension

tests for ceramic fibers. This area of endeavor is

still suffering growing pains and, while the

literature on it is rapidly increasing, a comparative
evaluation of available methods may be premature
at this time.)

3. Pressurized Ring Test

This test was developed by Sedlacek and Halden
in 1962 [12]. The specimens are carefully machined
in the form of short, thin-walled tubes, and the

loading is applied by means of an internal pres-

surized bag. Like the direct tension test, this

test permits the stresses to be evaluated solely

from equilibrium considerations, providing the

specimen wall thickness does not exceed one-

tenth of the radius.

Numerous improvements in the testing tech-

nique have been made since this method was
introduced. Cornish and Broutman [13] used an
apparatus involving two hardened tool steel

platens with dowel pins which facilitate the

alinement of one platen above the other. A
neoprene bulb, which is formed to the internal

dimensions of the test specimen, serves as the

pressure diaphragm. The inlet to the bulb passes

through a tapered plug centrally located in the

upper platen. The bulb is approximately 0.010-in

thick.

The cylindrical test specimen is positioned in

the apparatus and the platens are mounted be-

tween the bed and crosshead of a testing machine,

which prevent separation of the platens due to

the axial force exerted by the pressure bulb.
Spacers maintain a gap of approximately 0.00 1-in
between the specimen and the top platen to permit
radial expansion of the specimen.

Sedlacek [14] has provided details of suitable
equipment for pressure generation, sensing, moni-
toring, calibrating, and recording.

This type of test has many advantages for the
determination of tensile strengths. It is relatively

simple to perform, the loading is self-alining, and
the extraneous stresses caused by gripping in

direct tensile tests are eliminated. The uncompli-
cated stress distribution is highly reproducible
and failure cannot occur outside of the gage
section.

Babel [15] examined the bending stresses that
are introduced by possible variations in the wall

thickness of the specimen, and by imperfect
contact between the specimen and the pressure

bulb at all points. His analysis showed that for

ceramics these stresses are negligible. Differences

between measured and calculated hoop strains

were found to be less than 2 percent. Babel also

concluded that frictional effects, if any are present,

do not significantly affect the fracture strength

of a specimen.
These advantages, relative to direct tension

testing, have resulted in the measurement of

tensile strengths which exceed previously reported
values and approach flexural values. Most im-
portant is that a low scatter of results is observed.

On materials such as alumina, individual groups
of specimens have yielded coefficients of variation

as low as 1 or 2 percent. This compares favorably
with the value of 5 or more that is frequently

associated with flexural strength data.

It is entirely feasible that, by proper positioning

of strain gages, determinations of stress-strain

characteristics for a wide range of stress rates can
be made during strength tests. As mentioned
earlier, however, wide scatter in results will obtain

when investigating materials that are prone to

microcrack development. On Boride Z, for ex-

ample, which is a multi-phase material that is

believed to develop microcracks on cooling after

the sintering process, strength tests reportedly

gave a coefficient of variation of 35 percent [16].

The principal disadvantage of the pressurized

ring test is the temperature limitation of bulb
materials, which is presently about 600 F. In an
attempt to overcome this limitation, a modified

test technique, called the floated ring test (fig. 4),

has been proposed. In this approach, the specimen

ring is floated between two conical end pieces

that permit a controlled gas leakage through the

gaps between the specimen and the end pieces.

The specimen ends are unrestrained, and the

temperature limitation introduced by a pressure

bulb is removed. A disadvantage is that large

power inputs are required to preheat the gas in

order to achieve high-temperature operation.
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Figure 4. Schematic of gas-floated ring test setup.

Several other interesting variations of the

pressurized ring method have been proposed. In
one of these [17], whioh is shown in figure 5, a

universal testing machine is used to apply a

compressive force to a floating piston. This force

is transferred to the silicone rubber plug which,
reportedly, acts as an incompressible fluid and
applies a hydrostatic force to the ring specimen.
A tough rubber bladder protects the soft rubber
plug. The pressure developed within the plug as a
function of applied load was measured by means
of a small liquid reservoir within it, which was
tapped with a pressure gage. No significant error

was observed, but it still remains to verify that

the plug acts isotropically. If the bladder, which
gets chewed up, is replaced after every tenth test,

coefficients of variation of about 4 percent are

apparently attainable with alumina specimens.
This apparatus is less expensive than gas-pressured

arrangements, and has been recommended for

field or routine production control uses.

Still another approach to pressurized ring testing

was introduced by Malhotra et al. [18, 19]. The
modification here is the use of thick-walled cylin-

drical specimens instead of thin-walled ones. The

Figure 5. Modified Sedlacek-Halden pressurized

ring test setup.
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application is to concrete, where the size of the

aggregate may not permit the fabrication of thin-

walled members. Tests yielded strength values

which exceed those obtained by conventional

tensile tests but which are lower than those from
flexure tests. Coefficients of variation were reported

to be about 5 percent.

The principal disadvantage of this method is

that the load-stress relation is no longer statically

determinate. The maximum tensile stress is devel-

oped on the inner periphery of the ring and it was
calculated by assuming linear stress-strain be-

havior of the specimen material to fracture. Since

concrete normally exhibits some inelastic behavior,
the fracture strengths determined from the test

results are probably higher than the actual stresses

at fracture and may not exceed the values obtained
by conventional tension tests.

In the tests, 6-in ring specimens were placed in

a jig consisting of two 11-in-diam mild steel plates

held together by five tie bolts. Pressure was
applied through a specially molded bladder made
of }£-in-thick nitrile rubber.

4. Theta Specimen Test

The direct tension test and the thin-walled

pressurized ring test, described above, have the
advantage of providing nominally uniform tensile

stresses that may be calculated from equilibrium

considerations, irrespective of the nature of the

stress-strain characteristic of the specimen ma-
terial. In the remaining indirect tensile tests which
will be discussed the tensile stresses are not
statically determinate. As is the case with the

thick-walled pressurized ring test, the determina-
tion of the load-stress relationship in these cases

requires an assumption regarding the nature of

the stress-strain characteristic. Since we are con-
cerned with brittle materials it is most convenient
to assume a linear stress-strain characteristic all

the way to fracture. This assumption includes the
condition that the elastic moduli in tension and
compression are equal. If the specimen material
does not, in fact, behave in this manner the
fracture strengths obtained from these tests are

accordingly in error.

One test that falls in this category was men-
tioned by Daniels and Weil [20]. It consists of a
diametrally loaded disk containing two holes

separated by a narrow strip of material (fig. 6).

Photoelastic studies reportedly show [3] that a
uniform tensile stress area exists in the strip

under the diametral compressive load. This test

has not received wide acceptance but it apparently
led to the theta specimen, which has been investi-

gated in several studies.

The theta specimen was introduced by Durelli,

Morse, and Parks [21] and Daniels and Weil [20]

as a means for determining tensile strengths at

elevated temperatures in an oven, where gripping
and alinement problems are more difficult to

contend with. The specimen (fig. 6) is intended
to be loaded between two parallel platens with
the central bar parallel to the platens. Outward
motion of the ring on the horizontal axis subjects
the central bar to tension. The recommended
design (fig. 7) is the final choice of over 60 shapes
based on the same principle. Most of the other
designs were rejected because they failed in the
ring rather than in the bar. The recommended
design generally fails only in the bar.

Photoelastic studies snowed that (1) the max-
imum tensile stress occurs in the bar; (2) the
stress in the bar is uniform; and (3) the fillets at
the ends of the bar do not produce unacceptable
stress concentrations.
The principal advantage of this specimen is

that it does not require excessive precautions to
achieve alinement. Alinement by eye is said to be
adequate to produce the desired symmetrical
stress distribution. A major disadvantage is

obviously the considerable precision machining
that the specimen requires.

Other factors to be considered in evaluating this

test method are apparently not so well understood.

Figure 6. Loading configurations for theta

specimen (top) and two-holed disk speci-

men (bottom).
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Figure 7. Theta specimen geometry.

The photoelastic studies indicated the following
load-stress relationship:

kP

where
o-= stress in bar
P= applied load
D= outer diameter
t= thickness of specimen

and k is a constant equal to 13.8 (according to

Durelli et al.) or 16.4 (according to Daniels and
Weil). If the deformations of the specimen are
small, and if the material is elastic, isotropic, and
homogeneous, this relationship should hold for any
model with'plane dimensions proportional to those
in the figure. (The thickness need not be propor-
tional.) Dimensional accuracy is apparently not
critical [21] except, perhaps, in the width of bar
where significant deviations produce correspond-
ingly significant changes in the stress [20]. Further
study of this test method is apparently required
before it can warrant wide acceptance.

5. Truss Beam Tensile Test

This test, proposed by Bortz in 1963 [22], uses

a bending mechanism to achieve a uniform,

uniaxial, tensile stress. The specimen, figure 8,

consists of a heavy upper beam and a compara-

tively thin lower beam. Flexural loading of the

specimen results in bending of the upper beam
and a nominally uniform tensile stress throughout

most of the lower portion, which acts like a tension

tie rod.

The advantage of this test method is that it

provides a uniform tensile stress over a relatively

large gage section, which makes it attractive for

the evaluation of stress-strain characteristics.

Measured strains in the lower beam of the specimen

agreed with theoretical predictions within 1.4

percent [23]. However, Bortz [7] recently con-

cluded that the specimen is, in fact, subject to

stress conditions other than those predicted, and

recommended further study of the method.
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Figure 8. Loading configuration for truss beam
tensile specimen.

6. Stress Wave Technique

An entirely new approach to the tensile strength

testing of brittle materials has been developed by
Cornish and Abbott [24, 25]. The method pro-

duces a dynamic state of pure tension, free of most
of the difficulties characteristic of direct tension

testing. It is applicable to many brittle materials

such as alumina which does not experience a

change in tensile strength with changes in strain

rate at room temperature.
It is impractical for us to describe the technique

in detail here, and the reader is referred to one

or the other of the referenced descriptions, which
are written in a clear, interesting fashion. Briefly,

however, consider a long, slender, freely supported

bar. Applying an impulse to one end of the bar

causes an unchanging longitudinal compressive

wave to travel down the bar. At the other end
this wave is reflected as a mirror-image tensile

wave which propagates back up the bar toward
the first end. This is illustrated schematically in

figure 9. Since the tensile strength of a ceramic

is small relative to the compression strength, a

ceramic specimen can be made to fail in tension

under the action of the reflected wave.
In a test, a strain gage is mounted longitudinally

near the loaded end of the bar in order to deter-

mine its "weakest link" tensile strength. On the

basis of previous information, or from a trial

and error process, a compressive impulse is

applied whose reflected value exceeds the tensile

strength of the specimen by a small amount.
The reflected wave travels back up the bar until

it reaches a point where the tensile strength of

the bar is less than the peak value of the wave.
At this point fracture occurs. That portion of

the tensile wave which is behind the fracture
section is lost, but the ^amount of strain which
caused fracture continues to travel up the bar
and is measured by the strain gage.

In their experiments Cornish and Abbott used
}4-in square alumina bars supported in a rubber-
coated chemical clamp and loaded with an elec-

trically ignited charge of lead azide. Their results

are noteworthy. The average tensile strength
they obtained differed by less than 2 percent from
average values obtained by the pressurized ring

test and by the gas-bearing tensile test. The co-

efficient of variation was essentially the same for

both the stress wave technique and the pressur-

ized ring test, about 8 percent. (The coefficient

for the direct tension test was not available.)

The stress wave technique appears to be ap-
plicable to elevated temperature use although the

strain rate sensitivity of the specimen materials

will first have to be evaluated.

7. Flexure Test

Because of the problems associated with direct

tension testing, the ceramics industry promoted
the well-known flexure test as a means for evaluat-

ing tensile strengths. This test, which is also

referred to as the bend test or the transverse test,

avoids the need for placing the entire cross section

of a specimen in uniform tension, and places only a

portion of the cross section in tension. The max-
imum tensile stresses occur only in the extreme

outer fibers on one side of the specimen, with the

tensile stresses decreasing to zero at the neutral

plane and being balanced by compressive stresses

in the specimen on the other side of the neutral

plane. Thus, while the test is intended to provide

a tensile strength value, it is classified as a bend-

ing test because it involves a non-uniform tensile
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Figure 9. Schematic of stress wave reflection at a free boundary.
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stress field instead of the uniform field considered

in our discussion of tension test methods.
The flexure test at first appears to be simplicity

itself. As shown in figure 10, a specimen is sup-

ported close to each end and on the side opposite

the supports a uniformly increasing load is applied

at a single point centrally located between the

supports (also called mid-point, center point, or

three-point loading) or at two points (four-point

loading) equidistant from the supports. The load

is increased until the specimen fractures. At
present, ASTM recommends three-point loading

for the strength testing of brittle materials [26].

The maximum stress at fracture is defined as

the flexural strength, and is frequently referred

to as the modulus of rupture, or MOR. The
maximum stress is obtained by using the following

equation:

MC

where a= extreme fiber stress

M=bending moment
C= distance from the neutral plane of the

specimen to the extreme tension fiber

I=moment of inertia of the cross section

of the specimen about the neutral axis.

Some assumptions have to be made for the

equation to be valid. These are:

(1) The material obeys Hooke's Law.
(2) The stress is distributed linearly across the

bent beam and is directly proportional to the

distance from the neutral plane.

(3) Bending occurs in a plane of symmetry of

the beam.
(4) The original transverse plane remains a

plane after bending occurs and is perpendicular
to all longitudinal fibers after bending.

(5) There are no shear stresses present in the

area where the maximum fiber stress is to be
measured.

In order to justify the assumptions, the flexure

test loses its simplicity and becomes more com-
plicated. Some of the more important factors
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Figure 10. Diagram of a bar flexure specimen.

The specimen is supported near the ends and loaded centrally (solid

arrow at top) or in four-point bending (dashed arrows at top). The
dashed horizontal line is the neutral axis. During a test the specimen
is in tension below this line and in compression above it.

involved in designing a flexure test to give valid,

reliable results will be discussed.

The specimen should be of a size that is large
enough to be representative of the material for
which it is serving as a sample. It should also be
of a size convenient to handle but not too large
or expensive to fabricate so as to reduce the num-
ber of available specimens for test to a point
where meaningful results cannot be developed. It
is felt that the specimen shape should be kept as

simple as possible and, where necessary, the test

assembly made complicated in order to meet the
test requirements.
The most commonly used shapes for specimens

are bars, cylinders, and enlarged-end specimens,
and a specialized enlarged-end specimen called
the dog-bone specimen. These are shown in
figure 11. The bar and cylindrical specimens have
the advantage of economy, ease of preparation,
and generally being representative of the material,
particularly the surfaces and edges, as found in use.

Care must be taken not to damage the surface
and edges of the bar specimen that will be in
tension when tested. The cylindrical specimen
has the disadvantage of having only a small part
of the specimen under maximum stress. In four-
point loading enlarged-end and dog-bone speci-

mens have the advantage of eliminating con-
centrated loads and shear stresses in the reduced
gage length, while the dog-bone specimen, which
is loaded and supported along the neutral plane,
has the further advantage of minimizing errors

introduced by frictional forces.

To minimize torsional stresses arising from
warped specimens or nonplanar test beds, rockers
are generally used on the bottoms of the supports
(which are commonly knife edges) and loading is

often done through spheres.

Frictional forces should be reduced to a mini-
mum. Since these forces act by grabbing and
slipping they produce an extremely erratic effect

on the results. These forces are generally reduced

Figure 11. Common flexure specimens.

The bar and cylinder specimens are probably the most common types

while the enlarged-end and dog-bone specimens can provide an area of

uniform stress in their reduced sections.
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by using rounded or rolling knife edges and
lubricants with the bar, cylindrical, and enlarged-

end specimens, and by loading along the neutral

plane in the dog-boned specimen. A picture of a
flexure test assembly is shown in figure 12. The
long loading arms allowed the specimens to be
tested in various atmospheres.
Some materials that are classed as brittle

nevertheless show some ductility. Using the
regular beam equation will give results higher
than they should be. A correction by Nadai [27]

will compensate for this departure from Hookean
behavior before fracture.

Three-point (or center-point) loading is not the
preferred flexure test method. There may be a
wedging action due to the concentrated load which
could lead to erroneous results. In addition, with
four-point loading a much larger area of the speci-

men is under maximum stress, giving a more
representative value of the usable strength of the

material. Figure 13 [28] shows that center-point

loading tends to "force" the glass to fail near
the loading point which is the point of maximum
stress. In four-point loading it can be seen that

as the loading knife edges are moved farther apart
the failure origins fall between them in a fairly

uniform manner. The strengths indicated along
the sides of the specimen representations in the

figure show that as the area under uniform
maximum stress increases the strength decreases.

This is representative of the size effect. Figure
14 shows photoelastically the large area placed
under uniform stress when four-point loading is

used.

8. Large Area Bending Tests

One of the problems in the flexure test is that

even a modestly large specimen may not be

Figure 12. Four-point bending test of a glass

specimen.

One support knife-edge fixes the plane of the speci-

men while the other has a rocker bottom to com-
pensate for twist in the specimen. The loading knife-

edges have rocker tops and are mounted in a fixture

which is loaded through a fifth knife-edge. These
precautions minimize the possibilities of nonvertical

load application. The long arms on this apparatus
permit testing of specimens in furnaces and cold

boxes.
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Figure 13. Locations of fracture origins and strengths for 10 X 1% X }i-in
annealed soda-lime-silica glass specimens.

Slashed squares and hollow squares indicate fractures originating on the surface and at the edge, re-

spectively. Specimens were supported on an 8-in span and tested in three-point bending (bottom
diagram), four-point bending with loads 2 in apart (middle diagram), and four-point bending with
loads 4 in apart (top diagram). The fracture origins cluster around the point ofmaximum stress for

three-point bending, and are uniformly dispersed throughout the maximum stress regions in

four-point bending. As the area under maximum stress increases, the strength decreases.
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Figuee 14. This composite photoelastic print shows the

central portion of a flexure specimen in four-point

bending.

The dark lines are lines of uniform stress which indicate that the tension

face of the specimen experiences uniform stress over a length slightly

longer than the distance between loading points.

representative of large applications such as glass

windows. Pressure tests have been used with some
success to minimize this problem. In this test the
specimen, generally a flat plate, is held near the
edges and a uniform load is applied over the
entire surface of the specimen. There are no
recognized standards and this test is generally

designed to meet specific conditions. This test

method has the advantage of being able to place
large areas of a material under load and under
conditions similar to those found in practice

(e.g., glass windows under wind load or water
pressure). It has the disadvantage of placing only
a small part of the specimen under maximum
stress.

A test method presently being considered by
several laboratories to place large areas of a
material under uniform stress is the concentric
ring test. In this test a flat specimen is supported
on a ring and loaded through a concentric ring of

appropriately smaller diameter than the support
ring. There is much that needs to be learned
before this method can be used with confidence,

such as the effects of specimen overhang, specimen
deflection, and the ratio of support ring diameter
to loading ring diameter. Advantages of this test

method are its ability to place large areas under
uniform stress and to test only the surface of the
specimen and thus eliminate the influence of

edges on the results.

9. Diametral Compression Test

In this test method a cylindrical specimen is

compressed diametrically between two flat platens.
Under proper conditions fracture occurs along the
loaded diameter (AB in fig. 15) as a result of

tensile stresses which develop across this diameter.
Like the flexure test, this test is used for the
determination of tensile strength although it

does not develop a uniform uniaxial state of
tensile stress.

The method is also known as the splitting

tension test, or the Brazilian test, and was orig-
inally developed in Brazil and Japan around 1943

(a) LOADING (b) MAXIMUM TENSILE STRESSES
DEVELOP ACROSS LOADED
DIAMETER

,
A B

Figure 15. Diametral compression of a solid cylindrical

specimen.

for concrete [19]. Figure 16 shows a diametral
compression test on an asphalt specimen [29].

This test has gained considerable favor because
of its relative simplicity. The specimen alines it-

self between the platens and can be easily tested
without elaborate fixtures.

If the specimen is not long in comparison with
its diameter, the diametral loading sets up a bi-

axial stress distribution in the cylinder. Frocht
[30] evaluated the stress distribution using elas-

ticity theory and T. S. Love [31] verified this
solution photoelastically. The maximum tensile

Figure 16. Diametral compression test of
an asphalt specimen at the University of
Texas.
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stresses which act uniformly across the loaded
diameter are given by:

2P

where P= applied load
D= specimen diameter
£=specimen thickness.

This analysis assumes that the specimen is iso-

tropic and homogeneous as well as elastic, and
that the compression loads are restricted to lines

of contact between the cylinder and the platens.

In a real situation, local deformation of the cylin-

der and platens distributes the compression load
over an area, but Rudnick, Hunter, and Holden
[32] have shown that this does not significantly

alter the stress distribution near the center of the

specimen. In fact, it is this feature of the problem
that makes the test feasible. It is considered good
practice to place narrow bearing pads of suitable

material between the specimen and the platens to

compensate for surface irregularities and to reduce
the infinite compressive stresses immediately
under the applied load. Figure 17 shows the

elastic stress distribution along the loaded diam-
eter in a specimen having a length equal to one-
tenth of the diameter, and assuming uniform load
distribution over a contact width of one-tenth of

the diameter. ox is the maximum tensile stress
(which acts normal to the loaded diameter), <r2 is

the maximum compressive stress (which acts
along this diameter), and r is the maximum shear
stress (which is inclined to the diameter). It may
be seen that very high compressive stresses act
at the loaded surfaces and that high shear stresses
exist immediately below these surfaces. Thus, in

order to achieve the desired tensile failure the
compressive and shear strengths of the specimen
must be several times higher than its tensile

strength, and the applied load must be distributed
over an adequate area.

The selection of the proper bearing pad material
is the key to a successful test. As Rudnick, Hunter,
and Holden have pointed out, if the pad is too
hard the load application will approach line con-
tact and fracture may initiate in compression or
shear rather than in tension. If the pad is too soft
and the load is thereby distributed over too great
an area the tensile stresses in the central portion
of the specimen are reduced and the apparent
tensile strength is increased. The selection of the
proper pad material is done experimentally. One
criterion is that it produce tensile, rather than com-
pressive or shear, failures. (Compressive failures

appear as local crushing, shear failures start at an
angle to the loaded diameter, and tensile failures

break the specimen along the loaded diameter.)
Another factor involved is friction between the

Figure 17. Stress distribution along loaded diameter for a diametrally compressed cylinder, assuming uniform

contact pressure over the contact area.
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specimen and the pads. This tends to increase the

apparent tensile strength [33]. Blotting paper
and punch cards are two pad materials currently

used for tests on ceramics, while plywood is

standard for concrete [34].

The most critical alinement factor in the

diametral compression test is the parallelism of

the platens in the direction of the axis of the

cylinder. In order to maintain this as loading

progresses, it is important that the specimen be

centered with respect to the loading heads of the

testing machine. Ivey and Buth [35] found that

a longitudinal displacement of the specimen by
8 percent of its length caused an apparent strength

reduction of 12 percent. On the other hand,

parallelism of the platens in the direction normal
to the cylinder axis was not found to be critical.

An angularity of 6 degrees reduced the apparent
strength by only 4 percent. If the bearing pads
are narrow and are not centered with respect to

the loaded diameter, strength reductions of the

order of 8 percent may be expected. Any kind of

misalinement increases the coefficient of variation

of the test results beyond the 5 percent value

obtainable with homogeneous materials and good
testing technique.

Another possible source of error in the diametral
compression test was described by Bortz and
Wade [7]. If the tensile strength of the specimen
material is high, and its elastic modulus is low,

considerable flattening can develop at the loading
areas before failure is attained. This distortion

invalidates the theory used to develop the load-

stress relation and results in lowered values of

apparent tensile strength.

Finally, it should be mentioned that the dia-

metral compression test is not amenable to the

direct determination of stress-strain characteristics.

On the other hand, the test has numerous ad-

vantages besides simplicity. It is suitable for

elevated temperature testing and may be used for

very small specimens. It is less affected by surface

conditions of the specimen than any of the other

test methods. Only at the ends of the cylinder

do maximum tensile stresses appear at a surface.

Shook [3] has described a means of eliminating

even this surface interaction. If the ends of the
specimen are reduced in diameter by a gradual
tapering, the applied load and resulting tensile

stresses will be smaller in this region. However,
the effects of this non-uniform load distribution

on the stress distribution near the mid-length of

the specimen are not immediately obvious.

10. Brittle Ring Test

The brittle ring test is a variation of the dia-

metral compression test and employs a thick-
walled, hollow, cylindrical specimen instead of a
solid cylinder. Loading is accomplished by com-
pressing the specimen diametrally between flat

platens. A steep stress gradient (fig. 18) is produced
in the ring similar to that obtained in the flexure

T
p

Figure 18. Stresses developed in a ring subjected to

diametral compression.

test. The maximum tensile stress appears on the

inner surface of the ring, at the loaded diameter,

in the tangential direction. Fracture always
initiates here [23].

This test method has many of the advantages
of the diametral compression test method. The
specimen alines itself between the parallel platens

without any special gripping apparatus. Further-
more, the test is easily adaptable for elevated

temperature use.

The principal deficiency of the method is the
determination of the load-stress relationship. This
problem has been studied theoretically by Timo-
shenko [36], photoelastically by Frocht [37], with
brittle coatings by Durelli et al. [38], and with
strain gages by Bortz and Lund [39]. From a

comparison of available data, the latter investi-

gators concluded that the relationship between the

maximum tensile stress and the applied load

depends only on the inner and outer radii of the

specimen, independent of the elastic constants. In
his review of this work Shook [3] expressed a less

optimistic viewpoint. It appears that more work
is required to evaluate the suitability of this test

method insofar as numerical strength determina-
tions are concerned. The statistical variation of

test results with this method, however, is report-

edly better than that obtained with standard
tensile specimens [39].

Because of the steep stress gradient, only a

small volume of the specimen experiences the

maximum tensile stress. Rudnick and Duckworth
[40] have pointed out that with large-grained

materials the highly stressed region may be
confined to a single grain, in which case trans-

granular fracture would be encouraged. With
small-grained materials fracture at the grain

boundary would be encouraged. Properly inter-

preted, the test can be valuable in both cases.
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Bortz and Lund [39] have observed that with this

test method there is no strength variation with

volume variation such as occurs with other test

methods. This, too, is probably due to the maxi-

mum tensile stress being confined to a small

volume of material.

11. Torsion Test

In most of the test methods discussed thus far,

the state of stress at the fracture location is uni-

axial. The exceptions are the pressurized ring test,

the large area bending tests, and the diametral

compression test. Classical theory holds that

fracture is dependent only on the maximum tensile

stress, i.e., that a transverse stress component does

not affect longitudinal strength. While there are

insufficient data available to categorically verify

this principle for brittle ceramics, it is equally true

that evidence to contradict it is likewise lacking.

In a torsion test of a circular cylindrical speci-

men the stresses are zero at the cylinder axis and
increase linearly with the radius. The maximum
tensile stresses occur on the surface at a 45-degree

angle to the axis. Numerically equal compressive

stresses act perpendicular to these tensile stresses.

The maximum shear stresses, which are also

numerically equal to the maximum tensile and
compressive stresses, act parallel and perpendicu-
lar to the axis of the specimen. In a brittle ma-
terial, which has lower strength in tension than in

shear, fracture occurs normal to the maximum
tensile stresses, i.e., at 45-degrees to the specimen
axis. An interesting example of such a fracture is

shown in figure 19, which shows a torsion failure

of a human leg bone, similar to those experienced

in skiing accidents [41].

The torsion test has not been used much for

determining tensile strengths in brittle materials.

An often quoted objection to it [2, 42] relates to

the consequences of improper gripping. If the
specimen is not straight, or if the torque axis is

not coincident with the specimen axis, undesirable
bending stresses are introduced. However, this

alinement problem is not as severe as the one in

the tension test, and if specimens having large

slenderness ratios (i.e., length/diameter) are used,
visual alinement should be satisfactory. In any
case, the presence of bending stresses can be
checked with strain gages.

Another objection to the torsion test is similar

to that raised in connection with the flexure test.

If the material is not, in fact, linearly elastic to

failure then the magnitude of the fracture stress

is somewhat obscured. The possibility of some
plastic deformation prior to failure is greater

in the torsion test than it is in the tension or

flexure tests because the shear stress is higher
here. But this deficiency can be overcome by
using a thin-walled tubular specimen instead of

a solid cylinder. In this case the load-stress

relation is statically determinate, regardless of

the shape of the stress-strain curve. Furthermore,

Figure 19. Spiral fracture of a tibia resulting

from a torsion test.

with the thin-walled tube the stresses through the
thickness may be considered uniform; more so, in

fact, than in the pressurized ring specimen [43].

The torsion test is readily adaptable to elevated
temperature use.

12. Compression Test

All of the test methods discussed thus far are
used, to some extent at least, to determine the
tensile strengths of brittle materials. The com-
pression test, on the other hand, is used to

evaluate "compression strengths." However, it is

realized that the values obtained are not truly

representative of the compressive strength of the
materials since, even in this case, failure occurs as

a result of induced tensile stresses [44].

"In the strength testing of ceramics . . .

analyses indicate that with proper and known
precautions specific to each test method, the use of

bending, torsion, direct tension, and diametral
compression can allow the stress that causes

failure to be determined without serious doubt.
However, with direct compression, the actual

failure stress is a subject of doubt . .
." [2].

The major problem, in compression testing, is

related to the tendency of the specimen to expand
laterally under load. Frictional forces are created

between the specimen ends and the load plates

due to differences in geometry and Poisson's

ratio. The forces can be reduced but not eliminated

by lubrication, and the nominally uniaxial com-
pressive stress distribution is thereby distorted

in the end portions of the specimen.
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Another problem in compression testing involves

alinement. Specimen ends should be ground per-

fectly flat and parallel, and normal to the axis of

the specimen. These ends should be concentrically

mated with the flat and parallel loading plates in

the testing machine. Deviations from ideality

contribute to eccentric loading which, like the

friction forces, superpose undesirable bending
stresses on the uniaxial compressive stress distri-

bution.

In order to reduce the effects of end friction,

Bortz and Wade [7] recommend the use of enlarged

end specimens in which the length-to-diameter

ratio of the reduced section is at least 2. For uni-

form specimens this ratio should be increased to

2.5. This exceeds standard requirements [45].

Of course, too large a ratio must also be avoided

since this may cause buckling. Specimens with
round cross sections are favored because their

transverse expansion under load tends to be radial

and uniform. However, friction forces cannot be
relied upon to behave uniformly. The use of a

lubricating pad (e.g., Teflon) is usually recom-
mended, but the high compressive strengths of

some ceramics require that end bearing plates be
made of very hard material such as tungsten
carbide [13]. In this case specimen ends may be
lubricated with graphite and oil.

Lynch, Ruderer, and Duckworth [42] recom-
mend using three specimens in series to eliminate

the effects of end restraints on the middle one.

This appears to be a remedy for the case where
specimen lengths are limited for some reason;

however, it will have to be demonstrated that

failure initiates in the middle specimen.
The use of a universal, or a spherically seated,

loading block in the testing machine is sometimes
recommended as a means of minimizing load

eccentricity [46]. Such devices are never entirely

friction-free and are, therefore, only a poor substi-
tute for precision machining and accurate aline-

ment.
An interesting approach to good compression

testing technique was recently described by Babel
[15, 47]. This approach employs hollow cylinders
for the specimen and end cylinders (see figs. 20
and 21). The test cylinder has a curved exterior
surface which provides a reduced thickness in the
gage area and thus precludes edge-initiated fail-

ures. The specimen and the end cylinders have
conical ends which are lapped together to minimize
stress discontinuities at their interfaces. (A better,

although more expensive, design would include
the end cylinders as integral parts of the specimen.)
This design limits bending stresses in the specimen
to less than 5 percent and is not susceptible to

buckling. Nevertheless, it yields greater scatter in
compression test results than does the pressurized
ring test using the same specimen. It is recom-
mended that strain gages be used in every test to

monitor the uniformity of stress. It is interesting

to compare a typical compression failure obtained
with this specimen design (fig. 22) with that
obtained with a solid cylinder (fig. 23) [48].

The compression test is adaptable to elevated
temperature use although, like the direct tension

test, limiting accessibility to the specimen usually

is conducive to alinement problems. Evans [49]

has described a high-temperature compression

testing apparatus capable of use to 2,200 C (see

fig. 24) . Testing is carried out in a helium atmos-

phere using a tantalum heating element. To avoid

damaging the ends of the rams, flat disks were

placed between the specimens and the rams. These
disks were removed after each test, ground to

LAP THIS SURFACE WITH END CYLINDER

THE THICKNESS MAY VARY WITHIN THE LIMITS STATED FROM SPECIMEN TO SPECIMEN,

BUT ON ANY ONE SPECIMEN THE THICKNESS MUST NOT VARY MORE THAN ± 0.0002.

Figure 20. Hollow compression specimen.
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Figure 21. End cylinder for use with the hollow compression specimen.

Figure 22. Typical failure of hollow zirconia specimen in compression.

yield a flat surface, and re-used. In tests of mag-
nesia and alumina, tungsten rams and disks were
found to be adequate to 1600 C, but for higher
temperatures alumina was required.

The Griffith criterion for fracture of brittle

materials specifies a compressive strength eight
times the tensile strength. This is based on the
assumption of infinitely sharp cracks in the speci-

men, distributed with random orientations. Babel

and Sines [50] extended the Griffith analysis to

cracks of finite sharpness and arrived at compres-
sive strengths from three to eight times the tensile

strength, depending on the sharpness of the cracks.

Measured compressive strength data for ceramics

are limited. They are often higher than reported

tensile strengths by a factor of 6 to 10, although
factors of 4 to 5 are reported for some amorphous
materials [44].
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Figure 23. Explosive failure of standard

concrete cylinder specimen in compression

test by Soiltest, Inc.

SELF ALIGNING SEAT
LOAD CELL

O-RING SEALS

FURNACE BODY

TUNGSTEN PLATENS
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SIGHT GLASS ASSEMBLY
TUNGSTEN COMPRESSION RAMS
HEATER

SPACER COLUMN
1 1. JACK PRESSURE PAD

12. JACK

13 RADIATION SHIELDS

Figure 24. High-temperature compression testing

apparatus.

13. General Considerations

There are a great many factors that can in-

fluence the results of a strength test. A good testing

program is designed so that only one property is

measured at a time. In other words, a strength test

program may be initiated to evaluate strengths for

a particular set of conditions, or it may be intended
to evaluate the influence of some other single

factor on strength. In either case, the possible

effects of other factors must be considered. Some
brittle materials are particularly sensitive to

ambient conditions, surface and edge conditions,

strain rate, or size effects. With a new material,

precautions should be taken until it is understood.
Only when the sensitivity of the material to these

factors has been studied can the required degrees
of control over them be established.

An example of the importance of not treating a
new material in a routine manner was shown when
the chemically strengthened glasses were first

tested in flexure. Peculiarities were noted in some
of the strain gage readings. Further investigation

showed these glasses had considerable delayed
elastic effects. This is shown best in figure 25

[51] in which dead weights were used. As can be
seen, the chemically strengthened glasses showed
considerable deflection and recovery long after the

load was applied and removed—a rather unusual
behavior for a brittle material like glass. Clearly,

in tests of this material it is important that loads

be applied in a controlled manner and rate and
that these conditions should be well documented.

This precaution is as applicable to quasi-static

and dynamic strength tests (e.g., fatigue, stress

rupture) as it is to static strength testing. (We
might mention, at this point, that our omission

of these types of tests from this survey is inten-

tional. The requirements for these tests that are

peculiar to brittle materials are the same as they
are for the static tests, e.g., alinement. On the

other hand, the equipment for generating cyclic

loads or for maintaining constant loads is essen-

tially the same regardless of whether the specimen
material is brittle or ductile.)

LOAD OFF

2 0.2

a 0.1
-

TIME IN MINUTES

Figure 25. Deflection and recovery of two chemically

strengthened glasses, as a function of time.
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When evaluating the effects of some environ-
mental condition on strength, a different specimen
geometry is often used under the special condition

than is used under normal conditons. A comparison
should be made of different types or sizes of speci-

mens under identical conditions before comparisons
of results under different conditions are attempted.
An example of the effect of size on the strength of

glass rods is shown in figure 26 [52], and it can be
seen that there is a considerable variation in

strength with size.

In this connection it is instructive to consider

Rudnick's [32] view. "The relationship between
tensile strengths of brittle materials determined
by any two test techniques is not a universal
constant. It depends on the stress distributions

developed by each technique, the specimen sizes

used, and, particularly, the nature of the material
itself. According to the statistical concepts of the

strength of brittle materials, it is theoretically

possible to achieve any desired value of strength,

within limits, from any test procedure simply
by varying the specimen size. Thus, while the

bend strength is higher than the uniaxial tensile

strength if specimens of equal size are used,
this order can be reversed by employing very
small tensile specimens and very large bend
specimens."
An example of the effect of surfaces and edges

on the strength is shown in table 1 [28]. This table

presents strength test results for annealed, ground,
and polished soda-lime-silica glass from two
different manufacturers. The table gives the
number of fractures that occurred at the edge or

on the surface of the specimen and the average
modulus of rupture. The data indicate that glass

B is stronger than glass A and that glass B has
less severe flaws in the surface than glass A.
Also shown, for both glasses, is that the average

22
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strength of those specimens that fracture from
the edge is consistently lower than that of those
fracturing from the surface. The table also shows
another example of the size effect, for as the area
under uniform stress increases the strength
decreases.

Table 1. Effects of surfaces and edges on flexural strength

Area Glass A Glass B
under
max.
stress Fracture Number of Mod. of Fracture Number of Mod. of

origin 1 fractures rupture origin 1 fractures rupture

in« psi psi
0 S 37 19 308 S 30 21 572

E 13 16 550 E 20 19 091

3 S 34 17 546 S 33 20 712
E 16 15 016 E 17 17 994

G S 33 15 260 S 32 19 215
E 17 13 341 E 18 14 919

12 S 19 13 365 S 21 16 968
E 31 11 942 E 28 14 788

Figure 26. Average fracture strength versus rod

diameter for annealed Pyrex glass, showing how
strength decreases as rod diameter increases.

1 S=surface.
E=edge.

14. Selecting a Test Method

The criteria involved in selecting a test method
are more complex than immediately meets the eye,

and are beyond the scope of this paper. The
reader faced with this problem is referred to

Rudnick and Duckworth [40], who have described

the principles guiding the selection of a test

method exceptionally well. The principles are

based upon the intended use of the test results.

If it is intended to determine, as closely as possible,

the "true" tensile strength of a brittle material,

the work of Bortz and Wade [7] merits careful

study. On the other hand, the designer concerned
with a particular piece of hardware would be wise

to follow Boland and Walton's [44] suggestion,

i.e., he should see that the materials evaluated

for his program are tested in such a manner that

stress fields are similar to those encountered in

service. To use data obtained under near-ideal

conditions for an application in which the material

will be used in a very non-ideal situation would
almost guarantee failure.

To this we add that no test method is better

than the experience and competence with which
it is used.
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