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This volume is one of an extended series which brings together ^ 0 ^
the previously published papers, monographs, abstracts, and bibliog- I

raphies by NBS authors dealing with the precision measurement of

specific physical quantities and the calibration of the related metrol-

ogy equipment. The contents have been selected as being useful

to the standards laboratories of the United States in tracing to

NBS standards the accuracies of measurement needed for research

work, factory production, or field evaluation.

Volume 1 deals with methodology in the generation, analysis,

and interpretation of precision measurement data. It contains 40

reprints assembled in 6 sections: 1) The Measurement Process

2) Design of Experiments in Calibration 3) Interlaboratory Tests

4) Functional Relationships 5) Statistical Treatment of Measure-

ment Data 6) Miscellaneous. Each section is introduced by an inter-

pretive foreword, and the whole is supplemented by abstracts and

selected references.

Key Words: Accuracy; analysis of measurement data;

design of experiments; functional relationships; inter-

laboratory tests ; measurement process
;
precision ; statis-

tical concepts in measurements ; systematic error.
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Foreword

In the 1950's the tremendous increase in industrial activity, particularly

in the missile and satellite fields, led to an unprecedented demand for preci-

sion measurement, which, in turn, brought about the establishment of hun-

dreds of new standards laboratories. To aid these laboratories in transmitting

the accuracies of the national standards to the shops of industry, NBS in

1959 gathered together and reprinted a number of technical papers by mem-
bers of its staff describing methods of precision measurement and the design

and calibration of standards and instruments. These reprints, representing

papers written over a period of several decades, were published as NBS
Handbook 77, Precision Measurement and Calibration, in three volumes:

Electricity and Electronics; Heat and Mechanics; Optics, Metrology, and
Radiation.

Some of the papers in Handbook 77 are still useful, but new theoretical

knowledge, improved materials, and increasingly complex experimental tech-

niques have so advanced the art and science of measurement that a new
compilation has become necessary. The present volume is part of a new
reprint collection, designated NBS Special Publication 300, which has been

planned to fill this need. Besides previously published papers by the NBS
staff, the collection includes selected abstracts by both NBS and non-NBS
authors. It is hoped that SP 300 will serve both as a textbook and as a refer-

ence source for the many scientists and engineers who fill responsible posi-

tions in standards laboratories.

A. V. ASTIN, Director
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Preface

The general plan for this compilation has been reviewed by the Information Committee

of the National Conference of Standards Laboratories. The plan calls for Special Publica-

tion 300 to be published in 12 volumes having the following titles and editors:

Statistical Concepts and Procedures, H. H. Ku
Frequency and Time, A. H. Morgan
Electricity—Low Frequency, F. L. Hermach and R. F. Dziuba

Electricity—Radio Frequency, A. J. Estin

Heat, D. C. Ginnings

Temperature, J. F. Swindells

Mechanics, R. L. Bloss

Dimensional Metrology—Length and Angle, H. K. Hammond, HI
Radiometry and Photometry, H. K. Hammond, HI
Colorimetiy and Image Optics, H. K. Hammond, III

Spectrochemical Analysis, B. F. Scribner

Ionizing Radiation, E. H. Eisenhower

This division of subject matter has been chosen to assure knowledgeable selection of

context rather than to attain uniform size. It is believed, however, that the larger volumes,

of approximately 600 pages, will still be small enough for convenient handling in the

laboratory.

The compilation consists primarily of original papers by NBS authors which have been

reprinted by photoreproduction, with occasional updating of graphs or numerical data when
this has appeared desirable. In addition, some important publications by non-NBS authors

that are too long to be included, are represented by abstracts or references ; the abstracts

are signed by the individuals who wrote them, unless written by the author.

Each volume has a subject index and author index, and within each volume, contents

are grouped by subtopics to facilitate browsing. Many entries follow the recent Bureau prac-

tice of assigning several key words or phrases to each document ; these may be collated with

titles in the index. Pagination is continuous within the volume, the page numbers in the orig-

inal publications also being retained and combined with the volume page numbers, for ex-

ample 100-10. The index notation 1-133 refers to volume 1, page 133 of this volume. A con-

venient list of SI (Systeme International) physical units and a conversion table are to be

found inside the back cover.

The publications listed herein for which a price is indicated are available from the

Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. 20402

(foreign postage, one-fourth additional). Many documents in the various NBS nonperiodi-

cal series are also available from the NBS Clearinghouse for Federal Scientific and Techni-

cal Information, Springfield, Va. 22151. Reprints from the NBS Journal of Research or

from non-NBS journals may sometimes be obtained directly from an author.

Suggestions as to the selection of papers which should be included in future editions

will be welcome. Current developments in measurement technology at NBS are covered in

annual seminars held at either the Gaithersburg (Maryland) or the Boulder (Colorado)

laboratories. These developments are summarized, along with a running list of publications

by NBS authors, in the monthly NBS Technical News Bulletin.

H. L. Mason,
Office of Measurement Services

NBS Institute for Basic Standards.
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Editor's Note

This volume deals with methodology in the generation, analysis, and

interpretation of precision measurement data. It is a collection of papers

that have been found useful to the measurement fraternity, as represented

by participants in the annual NBS seminars on Precision and Accuracy in

Measurement and Calibration. The main criterion used in selection was ease

of communication; that is, whether the author's message gets across to the

general reader, so that he can develop the idea for gainful application in his

own specialized area.

The volume contains reprints of 40 papers on statistical concepts and

procedures classified in six sections. Four works too long to be included here

are represented by titles and abstracts in Section 7. The interpretive fore-

word appearing at the beginning of each of the first six sections comments
on the individual papers and thus characterizes the particular section. The
index has been prepared to facilitate browsing. Paper 6.8 provides a list of

selected references, annotated for the reader's convenience. Some of these

are referred to in the various forewords.

I wish to acknowledge my indebtedness to Churchill Eisenhart and to

members of the Statistical Engineering Laboratory for their suggestions in

selection of papers, and for their help in the preparation of this volume.

Thanks are also due to publishers of non-NBS papers for permission to

reprint in this volume papers by D. B. De Lury, William H. Kruskal, R. B.

Murphy, Milton Terry, and E. Bright Wilson, Jr.

Harry H. Ku, Editor
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Foreword

Statistical control on the quality of manufactured items fonnally began

with Walter Shewhart some forty years ago, but statistical control on the

quality of precise measured values in a calibration laboratory did not become

a reality until just recently. The first published example of this realization

appears to be that given by Pontius and Cameron in their Monograph (1.1)

on mass measurement.

A prime mover in the transfer of this basic concept from production

processes to measurement processes has been Churchill Eisenhart, who has

spent much of his time the last two decades advocating this discipline both

within and without the Bureau. A definitive treatise based on his study

appears as the second paper, Realistic Evaluation (1.2).

The "postulate of measurement," which Eisenhart used in his paper

and which he attributed to N. Ernest Dorsey, originated from Dorsey's

treatise, The Velocity of Light. Excerpts from this work of Dorsey's, se-

lected and arranged by Eisenhart, are reprinted here under the title, On
Absolute Measurement (1.3).

In Systematic Errors in Physical Constants (1.4), Youden extended

Dorsey's observations on the effects of changing environmental conditions,

and introduced the use of weighing designs into physical experimentation.

These designs, labeled as Youden's ruggedness test designs in his papers in

section 3, are constructed for the efficient and systematic searching out of

systematic errors.

Youden's other paper (1.5) emphasized the use of statistical design

to get an indirect estimate of the error in comparing an instrument with

a reference standard. He pointed out that users of calibrated items often

have an optimistic notion of the quality of the measurements they make,

and suggested that some investigation should be made in order to ascertain

whether some of the demands made for better standards are justified.

The presentation of final results, and the uncertainties associated with

the realizations of the measurement method by which these results are ob-

tained, has always been a source of diflficulty. The recommendations given

in the Expression of the Uncertainties of Final Results (1.6) and the

tabular guide to commonly used terms and expressions (1.7) are included

to serve as references to experimenters who are faced with this problem.

X
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Realistic Uncertainties and the
Mass Measurement Process

An Illustrated Review

Paul E. Pontius and Joseph M. Cameron

This paper gives a review of the concepts and operations involved in measuring the mass of an object.

The importance of viewing measurement as a production process is emphasized and methods of eval-

uating process parameters are presented. The use of one of the laboratory's standards as an additional

unknown in routine calibration provides an accuracy check and, as time goes on, the basis for precision

and accuracy statements.

Key Words: Measurement, measurement process, uncertainty, mass measurement, precision,

accuracy, statistical control.

Introduction

This paper is a condensed version of a lecture on

"Error of Measurement" presented by Paul E.

Pontius and Joseph M. Cameron at the Seminar on

Mass Measurement, held at the National Bureau of

Standards. Washington, D. C, November 30, De-

cember 1 and 2, 1964, and is essentially as presented

by Paul E. Pontius at the 20th Annual ISA Con-

ference held at Los Angeles, California, October

4-7, 1965.

It is a review of the mass measurement process

from the initial basic concept to the statement of a

measured mass value, examining in more or less

detail certain important elements which are apt to

be misunderstood, or perhaps misused. The im-

portance of viewing measurement as a production

process is emphasized and methods of evaluating

process parameters are presented. The use of

one of the laboratory's standards as an additional

unknown in routine calibration provides an accuracy

check and, as time goes on, the basis for precision

and accuracy statements.

National Bureau of Standards Monograph 103
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Mass Measurement Requirements

One role of the Bureau is to provide an extension

of the mass measurement unit into the facihties of

those who must use mass values to do other useful

work. . . .

Figure 1

These large weights, for example, are

for use by another part of the Bureau to calibrate

force measuring devices.

*

Figure 2

The calibration service provides values for single,

selected groups, and ordered sets of standards,

the values being with reference to the national

standard of mass. These values, together with a

value for their uncertainty, allow each user to de-

termine, in combination with his measurement
process, the uncertainty of his measurements.

Figure 3

The three photographs above started with a

group of standards whose cumulative total mass was
in excess of one million pounds, and ends with a

micropound standard, a range in excess of ten to

the twelfth power (10^^).

Figure 4

The accuracy requirements for a measurement
are set partly by experience, partly by discussions

with others, and partly by analysis. For a par-

ticular purpose, the accuracy requirement must be
established with care, as it provides a point of de-

parture for the entire measurement process. Fre-

quently we tend to lose perspective in regard to

what we are measuring, or what the measurements
mean, particularly if we concentrate on routine

procedures or are remote to the actual measure-
ment.

3 -2



The aiming point for our measurement is to

establish the mass, or true value, of a particular

object for it is, in concept at least, unique and
invariant. If, for example, accuracy within .01

percent is sufficient for our purpose, the target

center is the area within the next to the last circle.

Our measurements may group on either side of

dead center, or may be randomly scattered across

the center of the target, but as long as the spread

is essentially within the target circle, the process

is satisfactory for its intended use. Troubles arise

when realistic requirements are divided by large

arbitrary constants as specifications pass through

various groups of people in a complex organization.

Measurements accurate to better than .01 percent

require attention to many details under more or less

ideal conditions, and may not be obtainable under
adverse conditions, consequently the entire meas-
urement effort may be lost if the end use involves

measurement processes of questionable precision.

In the case of calibration, for example, in order to

utilize the accuracy inherent in a good calibration,

the user must work just as hard in his measure-
ment process as the calibration facility did to de-

termine the value of the standard originally.

The importance of incorporating the properties

of the measurement process in setting up require-

ments or specifications is illustrated by the problem
of adjustment tolerances for different classes of

weights.

TYPICAL PROCESS PARAMETERS CLASS ADJ.T0L.

NOMINAL UNCERTAINTY S.D.OF SINGLE SINGLE MEAS. CLASS CLASS
VALUE (SYS. ERROR) MEAS. PROCESS M S

OF STD.VALUE UNCERTAINTY* (mg) (mg)

10 g .0087mg .0074mg .031 mg .050 .074

5g .0050 .004 .017 .034 .054

ig .0047 .004 .017 .034 .054

500mg .0024 .0007 .005 m .025

100 mg .0009 .0007 .003 .010 .025

10 mg .0008 .0007 .003 .010 .014

3 times one standard deviation of
the measureinent process plus bound
to possible systematic errors.

precision for a single measurement is shown in

the 3d column. If one tries to establish the com-
pliance with Class M adjustment tolerances by
a single weighing against a known standard, the

uncertainty of the process would be as shown in

the 4th column. This uncertainty, compared with

the quantity we are trying to detect, is such that in

the first 4 cases the measurement uncertainty is

a large fraction of the tolerance so that only those

items well inside of tolerance have a good chance
of being passed. A measurement procedure more
sophisticated than a single comparison with a

known standard may be desirable.

TYPICAL PROCESS PARAMETERS CLASS ADJ. TOL.

NOMINAL UNCERTAINTY OF S.D.OF SINGLE MEAS CLASS CLASS

VALUE aASSM SINGLE PROCESS S s-i

(WITHIN TOD MEAS. UNCERTAINTY (mg) (mg)

10 g .050 .0074 .072 .074 .18

5g .034 .004 .048 .054 .18

ig .034 .004 .048 .054 .10

500mg .010 .0007 .012 .025 .08

lOOmg .010 .0007 .012 .025 .05

10 mg .010 .0007 .012 .014 .03

Figure 6

We would be in greater difficulties if we were to

try to establish compliance with Class S adjustment

tolerances in the same manner with reference to

Class M standards, which are known only to be
within the Class M tolerance limits. In 4 of the 6
examples, the process uncertainty is of the same
order of magnitude as the quantity we are trying

to check. These examples illustrate the necessity

for a careful evaluation before venturing a commit-
ment on the performance of a particular measure-
ment process.

Figure 5

The Class M and Class S adjustment tolerance

limits for selected weights are shown in the two
right hand columns. The uncertainty associated

with the stated value for standards of the same
nominal value is shown in the 2d column and the

4-3



The Unit of Mass

INTERNATiONAL PROTOT YPE KILOGRAM _
'

TRUE [value

(EXACT BY DEFINITION) 1kg

VOLUME AT 0°G

I

(HYDROSTATIC WEIGHING) 46.40052 ml

VOLUMETRIC COEF. OF EXPANSION
(BY MEASUREMENT ON PLATINUM-IRIDIUM

ALLOY)_„

li&teifiimlirfrmw

a = (25.863 + 0.00562^)xl0

Figure 7

n6

By practically universal agreement, the mass of

the International Prototype Kilogram is the basic

unit for mass measurement. It is a particular

object, defined to have an exact invariant mass of

one kilogram, that is to say, the true value is one
kilogram. The volume and the coefficient of volu-

metric expansion are necessary to determine the

best estimate of the true value of other objects

compared with this standard.

100 lOOg
I

10kg lOOhg

0.45559257hg^Wh

amib Ql/b Lib 10lb lOOIb

TRUE VALUE SCALE

SUBDIV/SmS ARE CALLED
/VOM/A/AL MLl/ES

Figure 8

With the unit defined, we can logically construct

a true value scale which has the property that some
point on the scale will correspond to the mass of

any chosen object. We call the major subdivisions

of this scale nominal values. Other customary
units, such as the pound, are not ambiguous if they

have an exact definition relative to the basic unit.

An intermediate point on the scale can be described

either relative to the whole scale, as for example,

9.995 grams, or relative to the closest nominal
value, in which case the point would be described

as 10 grams minus 5 milligrams. The minus 5

milligrams may be called a correction or error,

depending on one's viewpoint. The use of a nom-
inal value and a correction is often convenient in

computations, however, the word "correction",

or "error", overly emphasizes the importance of

the nominal value. Interpretation of tolerance

limits on the value of the standard as the error

automatically disregards the primary benefits of

a good cahbration. Only an ideal measurement
method or process can produce true values of

multiples and subdivisions of the basic unit which
will exactly coincide with nominal values on the

true value scale. It should be emphasized that,

from a measurement standpoint, adjustment to

nearly coincide with a nominal value is necessary

only to assure an "on scale" condition when inter-

comparing equal nominal summations.

TYPICAL PROCESS PARAMETERS CLASS ADJ.TOL

NOMINAL UNCERTAINTY S.O.OF SINGLE SINGLE MEAS, CLASS CLASS

VALUE (SYS. ERROR) MEAS. PROCESS S S-l

OF STD. VALUE UNCERTAINTY* (mg) (mg)

10 g .0087 mg .0074 mg ,031 mg .074 .18

5g .0050 .004 .017 .054 .18

ig .0047 .004 ,017 .054 .10

500 mg ,0021 .0007 .005 .025 .08

100 mg .0009 .0007 ,003 .025 .05

10 mg .0008 ,0007 .003 .014 .03

'3 S.D. -t- SYS. ERROR

Figure 9

In our previous example, we elected to interpret

the adjustment tolerance limits associated with

our Class M set as the uncertainty of the value.

While this may be appropriate with respect to the

nominal value, such an interpretation raised serious

doubts as to our ability to test the Class S weight

set. If we had used the actual value and its un-

certainty as a basis for our tests, the doubt essen-

tially disappears. With minor modification at the

10 g level, the uncertainty of the values established
for the Class S weights by our single measurement
is clearly suitable for the task at hand. It must be
emphasized that our apparent increase in measure-

ment capability did not require any change in our
process hardware. It has been achieved, for the

most part, by a change in philosophy.

5-4



than was available in the starting measurements.
All mass values on NBS Reports of Calibration are
with reference to a minimum number of selected
mass standards. For example, practically all sets

of metric weights are calibrated with reference to

a pair of 1 kg or a pair of 200 g or a pair of 100 g
weights. The national reference standards group
does not include weights of all denominations.

lOOg 1kg 10 kg

UA/CERTAI/Vrr //y value for kg No.20

Figure 10

Our access to the true value scale as established

by the international standard is through prototype

kilogram number 20. The estimated true value of

number 20 is 1 kilogram minus 19 micrograms,
based on several measurements. We can construct

an accessible true value scale by setting off from
the value of kg 20 an amount equal to the correc-

tion. Practically, the stated value is assumed to be
exact, the uncertainty of the value introducing

only a slight systematic error in our reconstructed

scale.

kg No. 20

\ CORRECTION

Ikg 10kglOOg

lOOg
N

Ihg

m coRRfcrm m

M WuNCERTAINTr

TRUE VALUE OR IDEAL SCALE

Figure 11

By comparing other objects with kilogram 20,
either singly or in combination, we can assign
values relative to our accessible scale. A sufficient

number of well cahbrated standards which can be
intercompared, and which may occasionally be
compared with our prototype standard, serve to

maintain our scale with perhaps a greater precision

* ^

Measurement Method

MEASUREMENT METHOD |
CONCEPT
PHYSICAL LAWS
INSTRUMENTS
STANDARDS
OPERATORS
PROCEDURES
ENVIRONMENT
COMPUTATION

PERFORMANCE PARAMETERS «

Figure 12

A practical measurement method is easy to vis-

ualize in the form of a broad outline of the elements

of the method such as, the concept of the quantity

to be measured, pertinent physical laws, various

instruments, standards, the operators, procedures

to be used, the environment in which the measure-
ments are to be made, the computations which are

to be made, and a means of establishing some
parameters of performance. As we briefly review

some of these elements, we will find that every

mass measurement facility has many things in

common.

6-5



F= -~ G

F - ATTRACTIVE FORCE
m,.m2- MASS OF BODIES

r - DISTANCE BETWEEN C.G.'s

G - UNIVERSAL CONSTANT

Figure 13

Mass is an inertial property of an object, which,

within the framework in which our measurements
apply, is considered to be proportional to the

amount of material. Mass is generally thought of

as being measured through some application of

Newton's law of gravitational attraction, however,
it is perhaps more precise to say that measurements
are made by comparing the forces attracting sus-

pended bodies toward the earth — that is the net

vertical forces including the effects of G, air

buoyancy, rotation of the earth, etc.

Figure 14

The environment in which the measurements are

made does not vary substantially between calibra-

tion facilities. Weighing rooms are almost uni-

versally clean, with restricted access, and relatively

free of vibration. With the possible exception of

freedom from vibration, these desirable features are

easily obtained.

Figure 15

People operate the equipment, following pre-

scribed procedures. Operator skill increases with

practice, and in time, operators in a given group
approach a uniform level of skill.

Each comparison, or weighing, consists of a se-

quence of operations, more or less formalized.

Detailed procedures and weighing designs, ranging
from simple to complex, are available for a wide

variety of requirements. Modern computation
equipment ranging from desk calculator to elec-

tronic computer are now widely available so that

laborious long hand computations are no longer

necessary.

While perhaps not generally considered so,

analysis is a part of the measurement method.
Whether done by machine . . .

CHECKON

SENSITIVITY
I

0 RESIDUALS

)
-

liil

Figure 16
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Figure 17

. . . or by hand, the analysis verifies that such
parameters continue to be apphcable.

#

A PARTICULAR
MEASUREMEMT ETHOD

INSTRUMENT

STANDARDS

PROCEDURES

OPERATOR

ENVIRONMENT

COMPUTATION

ANALYSIS

. Al

. 200|,2002,I00|

. CLEAN & WEIGH

USING 52-1 SERIES

. P. CRONE

. ROOM I, SOUTH

. COMPUTER PROGRAM

. F-TEST,t-TEST

Figure 18

A particular measurement method is like a

specification for a particular measurement. The
specific instrument, the standards to be used, the

specific operations to be performed and the planned
sequence in which they are to be carried out, the

operator, the location, and the method of computa-
tion and analysis, collectively define a particular

measurement method. Until the measurement has

actually been made and analyzed, the performance
is only "on paper" and therefore ideal.

PRODUCES:

I .A USEFUL

MEASURED VALUE

2. AN ESTIMATE OF

UNCERTAINTY FOR

THAT VALUE

Figure 19

A measurement process involves the actual

physical operation of the specified equipment fol-

lowing the procedures as closely as possible. It

is subject to the many variations that can and do
occur during the operation. The end result is an

estimated best value, which, in order to be useful,

must be accompanied by the uncertainty with ref-

erence to known performance parameters.

Changes in any one or in a group of elements of

the method constitutes, in effect, a different par-

ticular method and a different process which will

in turn produce a different result and a different un-

certainty. Small changes can make the difference

between a useful value or a wasted effort.

!NSTRU«^ENT

ARE DIFFERENCES IN

INDICATION TO BE
INTERPRETED AS A...

DIFFERENCE IN MASS.?

OR
PROCESS VARIABILITY?

Figure 20

Because we must establish the mass of the object

in question by measuring the mass difference be-

tween it and some known standard, the comparator

is a vital element in the process. The inherent

characteristic of the comparator is precision — not

accuracy. The fundamental question is whether

the indicated difference is really a mass difference,

or an indication of some other variability. While
we may be able to identify large sources of vari-

ability, in the Hmit, we cannot differentiate between
instrument precision, variability from extraneous

Sources, or variability of the standard.
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Figure 21

We start by determining the indicated difference

between two objects that are nearly alike.

Figure 22

From our first comparison, it appears that the
round knob weight on the left is clearly heavier
than the flat knob weight by one scale division. If

we stop here, we would simply state the value of
one object in terms of another, however, we have no
way of knowing the uncertainty to associate with
this value.

(The sjrmbol :Q- signifies that the
relationship is not a strict equality
because of the random errors of meas-
urement that are present on the right
side.)

OBSERVATION EQUATIONS

Figure 23

If we repeat the comparison at some other time,
we are quite hkely to obtain a different result.

This raises a serious question — which of the two
results is correct?

OBSERVATION EQUATIONS

Figure 24

We repeat the comparison again . . .



OBSERVATION EQUATIONS

l| - I2 ^ Q[

Q, = + 1.0

02 = - 0.5

03 = 0.0

04 = + 0.5

Figure 25

. . . and again. Now there are tour different

values, none of which alone can be considered
the best measure of the difference, but considered

as a group they can tell us something about the

instrument. Continuing to record the indicated

difference between two similar objects, and pref-

erably making the comparisons in the environment
in which the instrument is to be used.

INDICATIONS FROM REPEATED OBSERVATIONS

INSTRUMENT 1

INSTRUMENT 2

.220

".200

INSTRUMENT 3

Figure 26

The first plot indicates a severe rounding off,

which may be from several causes. Such a re-

sponse clearly lacks the appearance of randomness.
The second plot at least appears to be random.
The third plot, while perhaps appearing to be
random, obviously lacks the precision of the sec-

ond plot. The range of the differences as plotted

gives us an idea of the smallest mass difference

that can be detected with assurance, and is ob-

viously related to the requirements our measure-
ments must meet. Repeated independent meas-
urements of the same mass difference are essential

to the evaluation of the instrument.

REASONABLY CONTINUOUS RESPONSE

THIS

CO

CO
CO

LlJ

TIME—

NOT
THIS

I

I

I •••«•

Figure 27

The operator, or manufacturer, must search for

cause and effect until repeated indications for the

same load, or differences are reasonably con-

sistent. Effects which are periodic in nature, but

with a period significantly longer than the period

of the instrument, can be minimized in the design

of the weighing method.

REASONABLY LINEAR IN THE
NEIGHBORHOOD OF THE LOAD

lOmg

LOAD

Figure 28

One additional requirement, generally beyond
the control of the operator, is that of linearity. An
instrument, used as a comparator rather than a

direct reading device, requires linearity only in the

neighborhood of the actual load.
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V PROdLiiM.

\ OBSERVED DIFFERENCES
\ TO MASS DIFFERENCES

METHOD:

\

1. SUBSTITUTION
2. TRANSPOSITION
3/^DIRECT READING"

Figure 29

The problem of establishing the correspondence
between observed dififerences and mass differ-

ences is a part of the weighing method. The first

two methods, substitution and transposition, are

comparative methods. That is to say, the method
requires observations relative to a suitable stand-

ard along with the unknown. With these methods,
the measurement equipment need be continuous
only over the time interval required for making a

group of observations and linear only over the range
of the difference between the standard and the un-

known. Most direct reading equipment is in a

sense a substitute standard, that is, at some point

in time it is calibrated with reference to a stand-

ard, and from that point until recalibration, it is

generally assumed to have a long term constancy
approaching that of the standard. Most mass
measurement equipment can be used either way.

The smallest uncertainties invariably will be asso-

ciated with the comparative mode of operation.

Weighing Method

SUBSTITUTION METHOD

Figure 30

To illustrate the principle, the double substitu-

tion method is performed as follows: We start with

a simulated equal arm balance, a tare weight —
the white cylinder near the base of the balance,

a sensitivity weight of known value immediately
in front of the dark weight near the center, and two
nearly equal brass weights, one with a flat knob in

the center and one with a round knob on the left.

The scale indication is in arbitrary numbers and
the tare weight is necessary to establish an "on
scale" condition.

(DA— 0|

Figure 31

The first observation is that produced with the

round knob weight on the pan.
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Figure 32 Figure 34

The second observation is that produced with

the flat knob weight, which might be a standard,

replacing, or substituted for, the round knob
weight.

The fourth observation is a repetition of the

first step including the sensitivity weight.

*

(1) A—0|

(2) 6-^02

(3)B+m-*03

(4)A+m-^04

Figure 33

The third observation is that produced by re-

peating the previous step and adding the sensitivity

weight to the pan load.

Figure 35

Using the requirement for continuity, a relation

can be established for A minus B from the average

of the two sets of differences as shown. Using the

linearity requirement, the constant of proportional-

ity K, or the mass value of the indicating scale

division can be determined from the second and
third observation. Finally, the difference A minus
B is expressed as a function of the observations,

in ratio form and the value of the sensitivity

weight.
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Measurement as a Process

A-B
0,-02-^0^-0-m

ros-o^j

jsmiE mAmposmoN

Figure 36

All usual methods result in very similar relations

expressing the difference between two objects

being compared. In all cases, A minus B is ex-

pressed as a ratio between sets of observations

multiplied by the value of the sensitivity weight.

Obviously requirements for knowledge of the value

of m are minimized when the size of the ratio in-

volving the observation is small. The constant of

proportionality, is really the ratio in front of

the bracket terms which we call the value of the

division. The strange equal sign is used to indi-

cate that the relations shown are observational

equations and not mathematical identities.

A PARTICULAR
MEASUREMENT METHOD

INSTRUMENT .. . Al

STANDARDS . . 200|,2002,I00|

PROCEDURES . . CLEAN I WEIGH

USING 52- 1 SERIES

OPERATOR . . P. CRONE

ENVIRONMENT . . ROOM 1, SOUTH

COMPUTATION . . COMPUTER PROGRAM

ANALYSIS . . F-TEST,t-TEST

Figure 37

With the measurement method agreed upon, let

us now discuss its performance — we put it into

production and see how it works out as a measure-
ment process.

^^MEASUREMENT
PROCESS______

OUTPUT , MEASUREMENT

PROCESS AV6 LIMITING MEAN

VARIABILITY PRECISION

* BIAS SYSTEMATIC ERROR

PROCESS LIMITS..UNCERTAINTY OR

ACCURACY

Figure 38

A measurement process is essentially a produc-
tion process, the "product" being numbers, that

is, the measurements. A characteristic of a meas-
urement process is that repeated measurements of

the same thing result in a series of non-identical

numbers. To specify a measurement process in-

volves ascertaining the limiting mean of the proc-

ess; its variability due to random imperfections in

the behavior of the system, that is, its precision;

possible extent of systematic errors from known
sources, or bias; and overall limits to the uncer-

tainty of independent measurements.

MEASUREMENTS ON 200 GRAM STANDARD

CP

E

ad

11

.20!-'

.18

LIMITING MEAN

9 €•% •/••'Wf

20 40 60 80 MEAS. NO.

Figure 39

The chart shows measurements on a 200 g weight,
plotted in the order in which they were taken.

Despite the presence of one or two stragglers, the

measurements tend to cluster around the central

line — the process average or limiting mean. Our
confidence that the process has settled down to a

single limiting mean is strengthened as the length

of the record is increased. We may have satisfied

ourselves regarding the mean but what about the

next measurement?

13-12



WHERE WILL THE NEXT MEASUREMENT FALL?

(DATA ON 200 g STANDARD)
,

NOW

INDEPENDENT MEASURE
MENTSFROM A WIDE

VARIETY OF WEIGHING

CONDITIONS

FAIRLY CERTAIN THAT

NEXT VALUE WILL FALL

IN THIS INTERVAL

EL

RENCES BETWEEN TWO 50 POUND WEIGH

I DAY 2 DAY 3 DAY 4 DAYS

J—I
I I

Figure 40

It seems clear that we cannot give an exact

answer but will have to content ourselves with a

statement that allows for the scatter of the results.

Our goal is to make a statement with respect to a

new measurement that is independent of all those

that have gone before. As indicated in the chart,

if we had a sufficiently long record of measurements
we could set limits within which we were fairly

certain that the next measurement would lie. Such
a statement should be based on a collection of

independent determinations, each one similar in

character to the new observation, that is to say, so

that each observation of the collection and also the

new observation can be considered as random draw-
ings from the same probability distribution. These
conditions will be satisfied if the collection of points

is independent, that is free of patterns, trends and
so forth; and provided it is from a sufficiently broad
set of environmental and operating conditions to

allow all the random effects to which the process is

subject, to have a chance to exert their influence on
the variability. Suitable collections of data can be
obtained by incorporating an appropriate measure-
ment into daily routine weighing procedures, for

example, a daily measurement of the difference

between two laboratory weights, or in the regular

calibration of the same weight.

Figure 41

If the measurements tend to cluster when taken
close together in time, hke the results shown on the

chart, some systematic effect is present and cer-

tainly the results are not independent. This may
be due to some as yet undetermined cause, and the

group means may have the appearance of random-
ness of the previous chart.

CONTROL LIMITS BASED ON GROUP VARIABILITY

• • •

NEXT MEASUREMENT GROUP

Figure 42

The group means may tend to a limit and the

process may have all the properties of a good meas-

urement system, once the allowance is made for

the grouping. It is important that grouping be

properly handled in determining the precision of

the process. By modifying the process or changing

the schedule of measurements to give the effect

of independent measurements, we can arrive at a

situation like the values on the 200 g standard.
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PREDICTION FOR NEXT POINT RELATIVE

9, TO LIMITING MEAN

.221-

o .20L
•

(DATA ON 200g STANDARD)

» s

• • <

NEXT POINT

WILL BE WITHIN LENGTH OF BAR

OF THE LIMITING MEAN M0ST(99%) OF THE TIME

'J

THE INTERVAL Cl

THE MEAN IN MOST (99%) OF THE CASES

1^.22

••a

1 .20

§ .18

r

( EVERY lOTH POINT SHOWN)

Figure 43

From a study of a sequence of such independent
measurements, we can use control chart techniques

to set up Hmits within which the next value should

lie. In the case where we have an extremely long

sequence, a bar, as illustrated in the chart, can be
marked off on either side of the mean so that some
suitable fraction, say 99 percent, of the observations

are within the interval represented by its length.

i .i8h

Li-.

ITH JUST THE NEW POINT.WHAT CAN WE SAY

ABOUT THE LIMITING MEAN?

^ .20b-** •

•• •
9 •

FOR MOST (93%) OF NEW MEASUREMENTS
MEAN WILL BE WITHIN BAR LENGTH OF THE POINT

Figure 45

Assuming that the limits on the chart are based on
large numbers of observations, we would find that

very nearly the intended percentage of all such
bars, centered on the observed values, would in

fact overlap the mean. Only in those cases, such
as the points in the area outside of the control

limits, will the bar fail to overlap the mean. This
is expected in only 1 percent of the cases. More
frequent occurrence is a clear indication of either

loss of control or that the limits were not properly

set. Once we are satisfied that the process has a

limiting mean value and is stable enough to permit

prediction we turn our attention to evaluating its

precision.

Figure 44

We can reverse the process and say that the prob-

ability is 99 percent, that the true value, or limiting

mean, will not be more than the width of the bar
from any observation chosen at random. This
will be true of the next observation as well, provided
it is an independent measurement from the same
process. The probability statement attaches to the

sequence of such statements. For each individual

new observation the statement is either true or

false but in the long run 99 percent of such state-

ments will be true.
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Process Precision

Let us now take a look at the situation in weighing

to see what is involved in the study of the precision

of the process.

OBSERVATION EQUATIONS

0, = + 1.0

02 = - 0.5

03 = 0.0

04 = + 0-5

Figure 46

A characteristic of a measurement process is

that it produces non-identical results. In our

previous charts we had measurements of a 200 g
weight, here are shown four measurements of the

difference in mass. Through the redundancy —
here 3 extra measurements — we get our grip on

precision. In weight calibration we do not rely

on repeated measurements of the same quantity

but achieve the same result in another way.

THIS NOTATION MEANS
s A B C

+
+

+ 03

+
+ Qs

+ 06 /

AND REPRESENTS ALL POSSIBLE
COMBINATIONS OF FOUR OBJECTS

Figure 47

When we intercompare four objects, for example,

four 1-kg standards, we could use six observations.

Weight S is compared with A for Oi, S with B for

a2 and so on. If S were a standard and the rest

unknowns, we again have 3 more measurements

than we need and these serve to tell us of the pre-

cision of the process.

s A B

+ — 0\ -S-Aa2.0 UNITS

+ — Qg-f 5-8:0:3.0 UNITS

+ aS-^A-B:^^: 1. 1 UNITS

IF OBSERVATIONS WERE EXACT.

A-B
WOULD EQUAL 1.0

Figure 48

A simple example, using only three of the observa-

tions of the previous series, with S as the standard,

A as the unknown, and B as the check standard,

might give rise to the values shown. If everything

were perfect, aU equations representing the weigh-

ings would be satisfied exactly. Their lack of

agreement would give a measure of the variability.

ISr i¥£/6H//VG OBSj -CALCj ^ cf^

2m W£/GH/A/G OBS2 -CALC^

OBSfj-CALC^-cfr,

S /SM ESr/MATE Of cr, T/VE
lONG-RUN STAA/DARD DEWAT/OA/

Figure 49

In general, for such weighing, there will be a

discrepancy between the observed value and the

best value calculated from the data, "best" meaning

in most cases the value obtained in the method of

least squares. If all is going well, none of these

deviations will be too large, and also certain combi-

nations of them, such as the sum of the squares,

will also be well behaved. For statistical analysis

the standard deviation, S, is used as the measure

for describing variabihty. The quantity, S, is a

function of the observational errors and will change

with each set of data just as the values for the un-

known weights do. (The quantity, k, is the number

of unknowns in the system;)
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Process Mean

STANDARD DEVIATION ON AH BALANCE AT 200g LOAD

O..03

E

.02 -,

.01

LIMIT VALUE FOR THE STANDARD DEVIATION

/
Figure 50

If the process is in a state of control these values

of s will scatter about some value which is the true

or long run standard deviation of the process.

SHOULD PRECISION ESTIMATE BE BASED ON TODAY'S

_ VALUE OF STANDARD DEVIATION?

g'.OSh WERE WEIGHINGS WORSE ON THIS DAY?

!5.02

.01

«

WERE WEIGHINGS BETTER ON THIS DAY?

Figure 51

The argument that the uncertainty should be

based on the internal agreement of today's values

on the grounds that each day is unique or that

weighing conditions are better on one day than on
another may well be true. However, it wiU be
expensive to make enough measurements on a given

day to be sure that the variability has indeed

changed from its long run average or to provide a

reliable enough value to represent today's results.

If the process did not change, using today's value

would be analogous to keeping the last value of a

sequence rather than using the mean represented

by the dotted line. It is a sign that weighing con-

ditions are not being reproduced, i.e., that the

process is not in control, if the standard deviation

does not stay within predicted limits. Let us now
look again at the check standard.

PROCESS IN CONTROL OHhLK

CP ON A 200 g STANDARD
E
-.22
-a

•
• • •

1.20
IE

DC ' f ' •••

u- .10
Ll_ /(=>

ACCEPTED VALUE

Figure 52

Each value obtained for the check standard serves
not only a check on the process mean, but also can
be used for evaluating the process variability. The
same check standard, perhaps one of a group re-

served for this purpose, is used consecutively in a
given procedure until many independent values are
obtained.

DIRT?

WEAR ?

Figure 53

The importance of randomness cannot be over-

emphasized. As the collection of independent
measurements on the check standard grows, it

must be continually re-evaluated with reference to

predicting the band within which the next point will

lie. Slow drifts or sharp discontinuities are cause
for concern until corrected, or satisfactorily ex-

plained.
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Figure 54

If values return to normal after cleaning, one can
rest easy, knowing the process is behaving properly.

Indication of permanent changes are sometimes
harder to explain, and even the most careful lab-

oratories must occasionally repeat measurements
because of troubles with foreign material adhering to

or falling off the standard. If the new mean value

persists over a sufficient number of measurements,
it is proper to assume the standard has changed
for some reason.

Process Control

.18 .20

200g STANDARD CORRECTION Wmm

Figure 56

For a given set of observations the precision must
be proper as shown on vertical scale and we must
have a check on a known weight to establish that

the limiting mean has not changed as shown on
horizontal scale. Until these conditions are ful-

filled, we cannot be sure exactly what it is that we
are measuring. These are necessary conditions,

and in perhaps most cases, also sufficient condi-

tions to proclaim that the measurement process is

in a state of control, as indicated by points within

the central rectangle.

20
CP

• * J^.^,•~m-^^m..,.^2^^"*^'^•

• • • •

TODAY'S VALUE

OF THE STANDARD

MUST BE IN CONTROL

.02

§ .OIK

AND

• • •

STANDARD

DEVIATION

MUST BE

IN CONTROL

Figure 5b

A check on just the value of the standard or just

the precision is not enough. It turns out that the

value for the precision and the value for the check
standard are generally independent, that is, when
s is small the deviation of the value determined for

the check standard from the accepted value is

equally often big and small. For control we need
both conditions.

>:.02
U-l

^ .01

S.D. FROM VALUES

ON STANDARD

= .OI35mg

IS

VERY NEARLY

THE

• • •

S.D.

FROM DEVIATIONS

=.0123 mg

Figure 57

Because the check on the standard is spread over

a considerable time interval, the variability will

include the proper diversity of environmental and
other factors and the sequence will, in the absence
of seasonal or other systematic trouble, approximate
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a sequence of independent values. If the weighing

conditions are reproducible, then the daily standard

deviation, s, and the variabihty as computed from

the values of the check standard will be in agree-

ment, i.e., the long run average of the variability

as estimated from the control chart on the standard

deviation should approach the corresponding value

from the control chart based on the variability of

the values of the check standard. Frequently, one

is not in as good a shape as that indicated on the

shde. When the measurements are spread out in

time or space, an additional component of variation

enters so that the lower chart gives an overly opti-

mistic view of the process. A realistic estimate of

process variability has to be based on that from the

upper chart which reflects the total variation to

which the measurements are subject. One would
still use the within occasion variability for check-

ing on control of the process, of course.

DETERMINING THE MASS OF AN
OBJECT AND THE ASSOCIATED
UNCERTAINTY IS A CALIBRATION.

THE MEASUREMENT
PROCESS REMAINS , AND
IS, IN A SENSE , A CAPITAL
INVESTMENT.

THE MEASUREMENTS

,

LIKE PRODUCTS , PASS ON
TO OTHER DESTINATIONS.

Figure 59

All who weigh, or make other measurements,
should concentrate on the properties of the meas-
urement process — the degree to which the process

re-creates the same value for its standards and
exhibits the same level of variabihty. These are

the properties that remain. The weights that are

calibrated pass on to other destinations.

ROUTINELY, THE CALIBRATION
MUST BE LIMITED TO A FEW
MEASUREMENTS.

Figure 58

If in calibration we could measure the difference

between the standard and the unknown again and
again we could make an uncertainty statement
similar to those just discussed for the case of

measurements of a fixed difference, but in fact, we
cannot routinely make enough measurements of

this type to permit reliable estimates of the un-

certainties.

Process Parameters and Uficertainty

of Calibration

If we could be sure that our measurements of the

difference between the unknown and the standard
came from a process in a state of statistical con-

trol, that is to say a stable process with a known
variability, then we could transfer the properties
of the process to the individual measurement and
be correct a stated percentage of the time.

RANDOM SYS.

ERROR ERROR

LIMIT LIMIT

HQS 3S

CALIBRATION BY LAB A AND LAB|

LABA-^ 3Sa
^

LAB B-*^ 3Sb E,
'

S,SaAND Sb can be nearly equal, if so, THEN LAB A AND

LABB CAN CALIBRATE THIER OWN SET FROM SELECTED

STANDARD WEIGHTS

Figure 60

At every stage in the extension of a measurement
unit from an accepted standard to the ultimate user,

there are three items of interest — a standard item,

or items, with announced values and associated un-

certainty, an assembly of equipment and procedures
necessary for making the necessary comparisons,
and the items which must be measured to accom-
plish some useful task. The uncertainty of the

values established for the user are of paramount im-

portance. This uncertainty has two components —
one associated with the value of the starting stand-

ard and one reflecting the contribution of the local

measurement process. The toted uncertainty at

any particular place becogies the systematic error

for those who must use the service provided.
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N.iTIONAL BUREAU OF STANDARDS INSTITUTE FOR B.iSIC STAND.irtDS
REPORT OF CiLIBItiiTION TEST NO, 189160 U.S. DEP.UITMEST OF COMMERCE

FOR LOCKHEED-CLIFOnKlA COMP.iNY
BURB.iNK, CALIFORNIA

ITEM SET OF M.i3S STaND.IRDS lOKG TO IG DESIGNATED SET C
MFR. SEEDERER-KOHLBUSCH SERI^iL NO. 7B1163
STATED DENSITY lOKG TO IG 7.83 G PER CU3 AT 20C

The internally based precision estimate is applicable
only to a narrower range of conditions, and it is

only when the measurement conditions are highly
reproducible that the two estimates of precision
become equal.

THE rtBOVE ITEMS HaVK THE BliSS V.iLUES SHOWN WITH ItEFEHENCE TO
THE National standard of mass, see nTT^iCHED SUPPLS^ENT^^n liuitatiohs
IR USE OF .kPPARENT M-lSS VALUE .iND UNCERTAINTY rRQi^Mf^^JH DENSITY.

ITEM

IKG
5O0G
300G
200G
lOOG
50G
30G
20G
lOG
SG
3G

KOMIM.iL

1000. 00
500.00
300,00
200.00
100.00
50.00
30,00
20.00
10.00
5,00
3. GO
2.00
1 .on

0.045700
0.278974

-0.265581
-0,018969
-0.093402
-0.013024
-0.000559
0.0759S3
-0.118775
0.002680
0,0154S7
0.043910

9.12G909
4,819581
2,458779
1.797272
0.814718
0.441037
0.271878
0,257624

-0.027964
0,048086
0.042730
0.062078

0,110227
0.069271
0.063098
0.052346
0.064860
0.032909
0.020735
0.014434
0.010710
0.005702

^ 0,004076
.003082 .

126.74386883
103.37196684
|38. 02312469
25.34877014
12.67437446
e. 33719146
3.30231580
2.53488687

I 1.25742357
' 0.63371965
!). 38023355
0.25349329

673927

THE UNCERTAINTY FIGURE IS .lN EXPTiESSION OF THE OVERAIX
"DnCEBTaINTY using three standard DEVIATIONS AS .i LIMIT TO THE EFFECT
OF RANDOB ERRORS OP ItEASUTiEUBNT, THE tL*GHITUDE OF SYSTElLiTIC EKllORS
FROli KNOWN SOURCES BEING NEGLIGIBLE.

Mass ^lnd volume section

Figure 61

Any report of calibration or report of test must
state a realistic uncertainty based on actual process

performance. All of the pertinent data must be
included so that the local processes can minimize
the introduction of additional systematic errors.

The random component of the uncertainty is a func-

tion of the measurement effort in the local process,

reflecting the actual performance of that particular

measurement process.

Figure 62

There is no substitute for the evidence provided
by the repeated calibration of the same object,

over an extended time period, in demonstrating
what the measurement process can do. These
measurements should be independent repetitions,

made under all the diversity of condition by which
the method is affected so as to represent the set of

conditions to which we wish our prediction to apply.

PROCESS IN CONTROL CHEC
3, ON A 200 g STANDARD

Figure 63

The routine calibration of one of the laboratory's

weights, used as check standard, tells us what the

process can do — it is not just a simulation of the

calibration process — it is the real thing— without the

need for any assumptions. It provides the basis for

the precision statement or gives us a check on any
internally based statement. We can say to our

clients: "If we calibrate your weight a large number
of times the results would look like those on the

chart. We did it only once so that your value is

like one of these points. Which one, we cannot say

but we are fairly certain that it is within the in-

dicated uncertainty."
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Calibration of instruments and standards is a refined form of measurement. Measure-
ment of some property of a tiling is an operation that yields as an end result a number that
indicates how much of the property the thing has. Measurement is ordinarily a repeatable
operation, so that it is appropriate to regard measurement as a production process, the
"product" being the numbers, i.e., the measurements, that it yields; and to apply to meas-
urement processes in the laboratory the concepts and techniques of statistical process control
that have proved so useful in the quality control of industrial production.

Viewed thus it becomes evident that a particular measurement operation cannot be
regarded as constituting a measurement process unless statistical stability of the type
known as a state of statistical control has been attained. In order to determine whether
a particular measurement operation is, or is not, in a state of statistical control it is neces-
sary to be definite on what variations of procedure, apparatus, environmental conditions,
observers, operators, etc., are allowable in "repeated applications" of what will be consid-
ered to be the same measurement process applied to the measurement of the same quantity
under the same conditions. To be realistic, the "allowable variations" must be of sufficient

scope to bracket the circumstances likely to be met in practice. Furthermore, any experi-
mental program that aims to determine the standard deviation of a measurement process
as an indication of its precision, must be based on appropriate random sampling of this

likely range of circumstances.
Ordinarily the accuracy of a measurement process may be characterized by giving (a)

the standard deviation of the process and (b) credible bounds to its likely overall system-
atic error. Determination of credible bounds to the combined effect of recognized poten-
tial sources of systematic error always involves some arbitrariness, not only in the placing
of reasonable bounds on the systematic error likely to be contributed by each particular
assignable cause, but also in the manner in which these individual contributions are com-
bined. Consequently, the "inaccuracy" of end results of measurement cannot be ex-
pressed by "confidence limits" corresponding to a definite numerical "confidence level,"

except in those rare instances in which the possible overall systematic error of a final result
is negligible in comparison with its imprecision.

1. Introduction

Calibration of instruments and standards is

basically a refined form of measurement. Measure-
ment is the assignment of numbers to material
things to represent the relations existing among
them with respect to particular properties. One
always measures properties of things, not the things
themselves. In practice, measurement of some
property of a thing ordinarily takes the form of a
sequence of steps or operations that yields as an end
result a number tliat indicates how much of this

property the thing has, for someone to use for a

specific purpose. The end result may be the out-
come of a single reading of an instrument. More
often it is some kind of average, e.g., the arithmetic
mean of a number of independent determinations of
the same magnitude, or the final result of a least
squares "reduction" of measurements of a number
of different quantities that bear known relations to

•Presented at the 1962 Standarcis Laboratory Conference, N'atioual Bureau of
Standards, Boulder, Colo., August 8-10, 1962.

Reprinted with corrections, September 1968. o -i

each other in accordance with a definite experimental
plan. In general, the purpose for which the answer
is needed determines the accuracy required and
ordinarily also the method of measurement employed.

Specification of the apparatus and auxiliary

equipment to be used, the operations to be performed,

the sequence in which they are to be executed, and
the conditions under which they are respectively to

be carried out—these instructions collectively serve

to define a method of measurement. A measure-
ment process is the realization of a method of

measurement in terms of particular apparatus and
equipment of the prescribed lands, particular condi-

tions that at best only approximate the conditions

prescribed, and particular persons as operators and
observers.

It has long been recognized that, in undertaking
to apply a particular method of measurement, a
degree of consistency among repeated measurements
of a single quantity needs to be attained before the

method of measurement concerned can be regarded
as meaningfully realized, i.e., before a measurement
process can be said to have been established that is
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a realization of the method of measurement con-
cerned. Indeed, consistency or statistical stability

of a very special kind is required: to qualify as a
measurement process a measurement operation must
have attained what is known in industrial quality

control language as a state of statistical control.

Until a measurement operation has been "debugged"
to the extent that it has attained a state of statistical

control it cannot be regarded in any logical sense as

measuring anything at all. And when it has attained

a state of statistical control there may still remain
the question of whether it is faithful to the method
of measurement of which it is intended to be a
realization.

The systematic error, or bias, of a measurement
process refers to its tendency to measure something
other than what was intended ; and is determined by
the magnitude of the difference tx-T between the

process average or limiting mean /x associated with
measurement of a particular quantity by the
measurement process concerned and the true value
T of the magnitude of this quantity. On first

thought, the "true value" of the magnitude of a
particular quantity appears to be a simple straight-

forward concept. On careful analysis, however, it

becomes evident that the "true value" of the magni-
tude of a quantity is intimately linked to the pur-
poses for which knowledge of the magnitude of this

quantity is needed, and cannot, in the final analysis,

be meaningfully and usefully defined in isolation

from these needs.

The precision of a measurement process refers to,

and is determined by the degree of mutual agree-
ment characteristic of independent measurements of

a single quantity yielded by repeated applications
of the process under specified conditions; and its

accuracy refers to, and is determined by, the degree
of agreement of such measurements with the true

value of the magnitude of the quantity concerned.
In brief "accuracy" has to do with closeness to the
truth; "precision," only with closeness together.

Systematic error, precision, and accuracy are in-

herent characteristics of a measurement process and
not of a particular measurement yielded by the
process. We may also speak of the systematic error,

precision, and accuracy of a particular method of

measurement that has the capability of statistical

control. But these terms are not defined for a meas-
urement operation that is not in a state of statistical

control.

The precision, or more correctly, the imprecision
of a measurement process is ordinarily summarized
by the standard deviation of the process, which ex-

presses the characteristic disagreement of repeated
measurements of a single quantity by the process
concerned, and thus serves to indicate by how much
a particular measurement is likely to differ from other
values that the same measurement process might
have provided in this instance, or might yield on re-

measurement of the same quantity on another occa-
sion. Unfortunately, there does not exist any single

comprehensive measure of the accuracy (or znaccu-
racy) of a measurement process analogous to the
standard deviation as a measure of its imprecision.

To characterize the accuracy of a measurement
process it is necessary, therefore, to indicate (a) its

systematic error or bias, (b) its precision (or impre-
cision)—and, strictly speaking, also, (c) the form of
the distribution of the individual measurements
about the process average. Such is the unavoidable
situation if one is to concern one's self with indi-

vidual measiu-ements yielded by any particular meas-
urement process. Fortunately, however, "final
results" are ordinarily some kind of average or ad-
justed value derived from a set of independent
measurements, and when four or more independent
measurements are involved, such adjusted values
tend to be normally distributed to a very good ap-
proximation, so that the accuracy of such final results

can ordinarily be characterized satisfactorily by in-

dicating (a) their imprecision as expressed by their
standard error, and (b) the systematic error of the
process by which they were obtained.
The error of any single measurement or adjusted

value of a particular quantity is, by definition, the
difference between the measurement or adjusted
value concerned and the true value of the magnitude
of this quantity. The error of any particular meas-
urement or adjusted value is, therefore, a fixed num-
ber; and this number will ordinarily be unknown and
unknowable, because the true value of the magnitude
of the quantity concerned is ordinarily unknown and
unknowable. Limits to the error of a single meas-
urement or adjusted value may, however, be in-

ferred from (a) the precision, and (b) bounds on the
systematic error of the measurement process by
which it was produced—but not without risk of being
incorrect, because, quite apart from the inexactness
with which bounds are commonly placed on a sys-

tematic error of a measurement process, such limits

are applicable to the error of the single measurement
or adjusted value, not as a unique individual out-
come, but only as a typical case of the errors charac-
teristic of such measurements of the same quantity
that might have been, or might be, yielded by the
same measurement process under the same condi-
tions.

Since the precision of a measurement process is de-
termined by the characteristic "closeness together"
of successive independent measiu"ements of a single

magnitude generated by repeated application of the
process under specified conditions, and its bias or

systematic error is determined by the direction and
amount by which such measurements tend to differ

from the true value of the magnitude of the quantity
concerned, it is necessary to be clear on what varia-

tions of procedure, apparatus, environmental con-

ditions, observers, etc., are allowable in "repeated
applications" or what will be considered to be the

same measurement process applied to the measure-
ment of the same quantity under the same conditions.

If whatever measures of the precision and bias of a
measurement process we may adopt are to provide
a realistic indication of the accuracy of this process in

practice, then the "allowable variations" must be of

sufficient scope to bracket the range of circumstances
conmionly met in practice. Furthermore, any ex-

perimental program that aims to determine the pre-
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cision, and thence the accuracy of a measurement
process, must be based on an appropriate random
sampHng of this "range of circumstances," if the

usual tools of statistical analysis are to be strictly

applicable.

When adequate random sampling of the appro-
priate "range of circumstances" is not feasible, or

even possible, then it is necessary (a) to compute, by
extrapolation from available data, a more or less

subjective estimate of the precision of the measure-
ment process concerned, to serve as a substitute for

a direct experimental measure of this characteristic,

and (b) to assign more or less subjective bounds to

the systematic error of the measurement process.

To the extent that such at least partially subjective

computations are involved, the resulting evaluation

of the overall accuracy of a measurement process

"is based on subject-matter knowledge and skill,

general information, and intuition—but not on sta-

tistical methodology" [Cocliran et al. 1953, p. 693].

Consequently, in such cases the statistically precise

concept of a family of "confidence intervals" asso-

ciated with a definite "confidence level" or "confidence
coefficient" is not applicable.

The foregoing points and certain other related

matters are discussed in greater detail in the suc-

ceeding sections, together with an indication of

procedures for the realistic evaluation of precision

and accuracy of established procedures for the
calibration of instruments and standards that mini-
mize as much as possible the subjective elements of

such an evaluation. To the extent that complete
elimination of the subjective element is not always
possible, the responsibility for an important and
sometimes the most difficult part of the evaluation
is shifted from the shoulders of the statistician to

the shoulders of the subject matter "expert."

2. Measurement

2.1. Nature and Object

Measurement is the assignment of numbers to

material things to represent the relations existing

among them with respect to particular properties.

The munber assigned to some particular property
serves to represent the relative amount of this prop-
erty associated with the object concerned.
Measurement always pertains to properties of

things, not to the things themselves. Thus we
cannot measure a meter bar, but can and usually
do, measure its length; and we could also measure its

mass, its density, and perhaps, also its hardness.
The object of measurement is twofold: first, sym-

bolic representation of properties of things as a
basis for conceptual analysis; and second, to effect

the representation in a form amenable to the power-
ful tools of mathematical analysis. The decisive
feature is s3Tnbolic representation of properties, for
which end numerals are not the only usable symbols.

In practice the assignment of a numerical magni-
tude to a particular property of a thing is ordinarily
accomplished by comparison with a set of standards,
or by comparison either of the quantity itself, or of

some transform of it, with a previously calibrated

scale. Thus, length measurements are usually made
by directly comparing the length concerned with a
calibrated bar or tape; and mass measurements, by
directly comparing the weight of a given mass with
the weight of a set of standard masses, by means of

a balance; but force measurements are usually

carried out in terms of some transform, such as by
reading on a calibrated scale the extension that the
force produces in a spring, or the deflection that it

produces in a proving ring; and temperature measure-
ments are usually performed in terms of some trans-

form, such as by reading on a calibrated scale the
expansion of a column of mercury, or the electrical

resistance of a platinum wire.

2.2. QuaHtatLve and Quantitative Aspects

As Walter A. Shewhart, father of statistical con-
trol charts, has remarked:

"It is important to realize . . . that there are two aspects
of an operation of measurement; one is quantitative and the
other qualitative. One consists of numbers or pointer read-
ings such as the observed lengths in n measurements of the
length of a line, and the other consists of the physical manipu-
lations of physical things by someone in accord with instruc-

tions that we shall assume to be describable in words con-
stituting a text." [Shewhart 1939, p. 130.]

More specifically, the qualitative factors involved
in the measurement of a quantity are: the apparatus
and auxiliary equipment (e.g., reagents, batteries or
other source of electrical energy, etc.) employed;
the operators and observers, if any, involved; the

operations performed, together with the sequence in

which, and the conditions under which, they are

respectively carried out.

2.3. Correction and Adjustment of Obsearvations

The numbers obtained as "readings" on a cali-

brated scale are ordinarily the end product of every-

day measurement in the trades and in the home.
In scientific work there are usually two important
additional quantitative aspects of measurement:
(1) correction of the readings, or their transforms, to

compensate for known deviations from ideal execu-
tion of the prescribed operations, and for non-
negligible effects of variations in uncontrolled vari-

ables; and (2) adjustment of "raw" or corrected
measurements of particular quantities to obtain
values of these quantities that conform to restric-

tions upon, or interrelations among, the magnitudes
of these quantities imposed by the nature of the

problem.
Thus, it may not be practicable or economically

feasible to take readings at exactly the prescribed

temperatures; but quite practicable and feasible to

bring and hold the temperature within narrow neigh-

borhoods of the prescribed values and to record the
actual temperatures to which the respective readings
correspond. In such cases, if the deviations from the

prescribed temperatures are not negligible, "temper-
ature corrections" based on appropriate theory are

usually applied to the respective readings to bring
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them to the values that presumably would have been
observed if the temperature in each instance had
been exactly as prescribed.

In practice, however, the objective just stated is

rarely, if ever, actually achieved. Any "temperature
corrections" applied could be expected to bring the
respective readings "to the values that presiunably
would have been observed if the temperature in each
instance had been exactly as prescribed" if and only
if these "temperature corrections" made appropriate
allowances for all of the effects of the deviations of

the actual temperatures from those prescribed.
"Temperature corrections" ordinarily correct only
for particular effects of the deviations of the actual
temperatures from their prescribed values; not for all

of the effects on the readings traceable to deviations
of the actual temperatures from those prescribed.
Thus Michelson utilized "temperature corrections" in

his 1879 investigation of the speed of light; but his

results exhibit a dependence on temperature after

"temperature correction." The "temperature cor-

rections" applied corrected only for the effects of

thermal expansion due to variations in temperature
and not also for changes in the index of refraction of

the air due to changes in the humidity of the air,

which in June and July at Annapolis is highly cor-

related with temperature. Corrections applied in
practice are usually of more limited scope than the

names that they are given appear to indicate.

Adjustment of observations is fundamentally
different from their "correction." When two or more
related quantities are measured individually, the
resulting measured values usually fail to satisfy the
constraints on their magnitudes implied by the given
interrelations among the quantities concerned. In
such cases these "raw" measured values are mutually
contradictory, and require adjustment in order to be
usable for the purpose intended. Thus, measured
values of the three cyclic differences (A— 13), (B—C),
and (C—A) between the lengths of three nominally
equivalent gage blocks are mutually contradictory,
and strictly speaking are not usable as values of

these differences, unless they sum to zero.

The primary goal of adjustment is to derive from
such inconsistent measurements, if possible, adjusted
values for the quantities concerned that do satisfy the
constraints on their magnitudes imposed by the
nature of the quantities themselves and by the
existing interrelations among them. A second objec-
tive is to select from all possible sets of adjusted
values the set that is the "best"—or, at least, a set

that is "good enough" for the intended purpose—in
some well-defined sense. Thus, in the above case of

the measured differences between the lengths of

three gage blocks, an adjustment could be effected

by ignoring the measured value of one of the differ-

ences entirely, say, the difference (C~A), and taking
the negative of the sum of the other two as its

adjusted value,

Adj{C-A)= -[{A-B)+ iB-C)].

This will certainly assure that the sum of all three
values, iA-B) + {B-'C)+Adj(C-A), is zero, as
required, and is clearly equivalent to ascribing all of

the excess or deficit to the replaced measurement,
(C—A). Alternatively, one might prefer to dis-

tribute the necessary total adjustment — [(A—B)

+ {B—C) + {C—A)] equally over the individual

measured differences, to obtain the following set of

adjusted values:

Adj (A-B)= iA--B)-'^ [(A-B)+ {B-C)+ (C-A)]

=1 [2(A-B)-{B~0-{C-A)]

Adj iB-C)=l [2 {B- 0-(A-B)-(C~A)]

Adj (C-A)=^[2{C-A)-{A-B)-iB-C)]

Clearly, the sum of these three adjusted values must
always be zero, as required, regardless of the values
of the original individual measured differences.

Furthermore, most persons, I believe, would con-
sider this latter adjustment the better; and under
certain conditions with respect to the "law of error"

governing the original measured differences, it is

indeed the "best."

Note that no adjustment problem existed at

the stage when only two of these differences had
been measured whichever they were, for then the
third could be obtained by subtraction. As a

general principle, when no more observations are

taken than are sufficient to provide one value of

each of the unknown quantities involved, then the
results so obtained are usable at least—they may
not be "best." On the other hand, when additional

observations are taken, leading to "over determina-
tion" and consequent contradiction of the funda-
mental properties of, or the basic relationships among
the quantities concerned, then the respective obser-

vations must be regarded as contradicting one
another. When this happens the observations
themselves, or values derived from them, niust be
replaced by adjusted values such that all contradic-

tion is removed. "This is a logical necessity, since

we cannot accept for truth that which is contradic-

tory or leads to contradictory results." [Chauvenet
1868, p. 472.]

2.4. Scheduling the Taking of Measurements

Having done what one can to remove extraneous
sources of error, and to make the basic measurements
as precise and as free from systematic error as pos-

sible, it is frequently possible not only to increase

the precision of the end results of major interest but
also to simultaneously decrease their sensitivity to

sources of possible systematic error, by careful

scheduling of the measurements required. An
instance is provided by the traditional procedure for

calibrating liquid-in-glass thermometers [Waidner
and Dickinson 1907, p. 702; NPL 1957, pp. 29-30;

Swindells 1959, pp. 11-12]: Instead of attempting to

hold the temperature of the comparison bath con-

I stant, a very difficult objective to achieve, the heat
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input to the bath is so adjusted that its temperature

is slowly increasing at a steady rate, and then read-

ings of, say, four test thermometers and two

standards are taken in accordance with the schedule

CI rji rp rp rii Q ci rp rri rp rp c<
Ol J 1 J 2 -t 3 -t 4»J2»J2 i4-t3-'2-tl*Jl

the readings being spaced uniformly in time so that

the arithmetic mean of the two readings of any one
thermometer will correspond to the temperature of

the comparison bath at the midpoint of the period.

Such scheduling of measurement taking operations so

that the effects of the specific types of departures

from perfect control of conditions and procedure will

have an opportunity to balance out is one of the

principal aims of the art and science of statistical

design of experiments. For additional physical

science examples, see, for instance, Youden [1951a;

and 1954-1959].

2.5. Measurement as a Production Process

We may summarize our discussion of measurement
up to this point, as follows: Measurement of some
property of a thing in practice always takes the form
of a sequence of steps or operations that yield as an
end result a number that serves to represent the

amount or quantity of some particular property of a

thing—a number that indicates how much of this

property the thing has, for someone to use for a

specific purpose. The end result may be the out-

come of a single reading of an instrument, with or

without corrections for departures from prescribed

conditions. More often it is some kind of average
or adjusted value, e.g., the arithmetic mean of a

number of independent determinations of the same
magnitude, or the final result of, say, a least squares
"reduction" of measurements of a number of different

quantities that have known relations to the quantity
of interest.

Measurement of some property of a thing is ordi-

narily a repeatable operation. This is certainly the

case for the types of measurement ordinarily met in

the calibration of standards and instrvmaents. It is

instructive, therefore, to regard measurement as a

production process, the "product" being the numbers,
that is. the measurements that it yields; and to com-

f)are and contrast measurement processes in the

aboratory with mass production processes in indus-

try. For the moment it will suffice to note (a) that

when successive amounts of units of "raw material"
are processed by a particular mass production
process, the output is a series of nominally identical

items of product—of the particular type produced
by the mass production operation, i.e., by the
method oj production concerned; and (b) that when
successive objects are measured by a particular

measurement process, the individual items of "prod-
uct" produced consist of the numbers assigned to

the respective objects to represent the relative

amovmts that they possess of the property deter-
mined by the method oj measurement involved.

2.6. Methods of Measurement and Measurement
Processes

Specification of the apparatus and auxiliary equip-

ment to be used, the operations to be performed, the

sequence in which they are to be carried out, and the

conditions under which they are respectively to be
carried out—these instructions collectively serve to

define a method oj measurement. To the extent that

corrections may be required they are an integral part

of measurement. The types of corrections that will

ordinarily need to be made, and specific procedures

for making them, should be included among "the

operations to be performed." Likewise, the essen-

tial adjustments required should be noted, and
specific procedures for making them incorporated in

the specification of a method of measurement.
A measurement process is the realization of a

method of measurement in terms of particular

apparatus and equipment of the prescribed kinds,

particular conditions that at best only approximate
the conditions prescribed, and particular persons as

operators and observers [ASTM 1961, p. 1758;

Murphy 1961, p. 264]. Of course, there will often

be a question whether a particular measurement
process is loyal to the method of measurement of

which it is intended to be a realization; or whether
two different measurement processes can be con-

sidered to be realizations of the same method of

measurement.
To begin with, written specifications of methods

of measurement often contain absolutely precise

instructions which, however, cannot be carried out
(repeatedly) with complete exactitude in practice;

for example, "move the two parallel cross hairs of the

micrometer of the microscope until the graduation

line of the standard is centered between them." The
accuracy with which such instructions can be carried

out in practice will always depend upon "the cir-

cumstances"; in the case cited, on the skill of the

operator, the quality of the graduation line of the

standard, the quality of the screw of the micrometer,

the parallelism of the cross hairs, etc. To the extent

that the written specification of a method of measure-
ment involves absolutely precise instructions that

cannot be carried out with complete exactitude in

practice there are certain to be discrepancies between
a method of measurement and its realization by a

particular measiirement process.

In addition, the specification of a method of

measurement often includes a number of imprecise

instructions, such as "raise the temperature slowly,"

"stir well before taking a reading," "make sure that

the tubing is clean," etc. Not only are such in-

structions inherently vague, but also in any given
instance they must be understood in terms of the

general level of refinement characteristic of the

context in which they occur. Thus, "make sure that

the tubing is clean" is not an absolutely definite in-

struction; to some people this would mean simply
that the tubing should be clean enough to drink
liquids through; in some laboratory work it might be
interpreted to mean mechanically washed and
scoured so as to be free from dirt and other ordinary
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solid matter (but not cleansed also with chemical
solvents to remove more stubborn contaminants)

;

to an advanced experimental physicist it may mean
not merely mechanically washed and chemically
cleansed, but also "out gassed" by being heated to

and held at a high temperature, near the softening

point, for an hour or so. All will agree, I believe,

that it would be exceedingly difficult to make such
instructions absolutely definite with a convenient
number of words. To the extent that the specifica-

tion of a method of measurement includes instruc-

tions that are not absolutely definite, there will be
room for differences between measurement processes

that are intended to be realization of the very same
method of measurement.

Recognition of the difficulty of achieving absolute
definiteness in the specification of a method of

measurement does not imply that "any old set" of

instructions will serve to define a method of measure-
ment. Quite the contrary. To qualify as a specifi-

cation of a method of measurement, a set of instruc-

tions must be sufficiently definite to insure statistical

stability of repeated measurements of a single

quantity, that is, derived measurement processes

must be capable of meeting the criteria of statistical

control [Shewhart 1939, p. 131
;
Murphy 1961, p. 265;

ASTM 1961, p. 1758]. To elucidation of the mean-
ing of, and need for this requirement we now turn.

3. Properties of Measurement Processes

3.1. Requirement of Statistical Control

The need for attaining a degree of consistency
among repeated measurements of a single quantity
before the method of measurement concerned can be
regarded as meaningful has certainly been recognized
for a long, long time. Thus Galileo, describing his

famous experiment on the acceleration of gravity
in which he allowed a ball to roll different distances

down an inclined plane wrote:

".
. . si lasciava (como dico) scendere per il detto canale

la palla, notando, nel modo che appresso diro, il temp che
consumava nello scorrerlo tutto, replicando il medesimo atto
molte volte per assicurarsi bene della quantita del temp, nel

quale non si trovava mai differenza ne anco della decima parte
d'una battuta di polso. Fatta e stabilita precisamente tale

operazione, facemmo scender la medisima palla solamente per
la quarta parte della lunghezza di esso canale . . .

" '

[Galileo 1638, Third Day; Nat'l. ed., p. 213.]

Something more than mere "consistency" is re-

quired, however, as Shewhart points out eloquently
in his very important chapter on "The Specification

of Accuracy and Precision" [Shewhart 1939, ch. IV].

He begins by noting that the description given by
R. A. MiUikan [1903, pp. 195-196] of a method for

determining the surface tension 2" of a liquid from
measurements of the force of tension F of a film of

' I am grateful to my coUeaeue Ugo Fano tor the followine literal translation:
"... we let, as I was sayin?, the ball descend through said channel, record-

ing, in a manner presently to be described, the time it took in traversing it all.

repeating the same action many times to make really sure of the magnitude of
time, in which one never found a difference of even a tenth of a pulsebeat. Hav-
ing done and established precisely such operation, we let the same ball descend
only for the fourth part of the length of the same channel; ..."

the liquid contains the following instruction with
regard to the basic readings from which measure-
ments of F are derived: "Continue this operation
until a number of consistent readings can be ob-
tained." Shewhart then comments on this as
follows:

"... the text describing the operation does not say to
carry out such and such physical operations and call the
result a measurement of T. Instead, it says in effect not to
call the result a measurement of T until one has attained a
certain degree of consistency among the observed values of
F and hence among those of T. Although this requirement is

not always explicitly stated in specifications of the operation
of measurements as it was here, I think it is always implied.
Likewise, I think it is always assumed that there can be too
much consistency or uniformity among the observed values
as, for example, it a large number of measurements of the
surface tension of a liquid were found to be identical. What
is wanted but not explicitly described is a specific kind and
degree of consistency.

".
. . it should be noted that the advice to repeat the

operation of measuring surface tension until a number of
consistent readings have been obtained is indefinite in that it

does not indicate how many readings shall be taken before
applying a test for consistency, nor what kind of test of

consistency is to be applied to the numbers or pointer read-
ings .... One of the objects of this chapter is to see how
far one can go toward improving this situation by providing
an operationally definite criterion that preliminary observa-
tions must meet before they are to be considered consistent
in the sense implied in the instruction cited above.

"Before doing this, however, we must give attention not
so much to the consistency of the n observed values already
obtained by n repetitions of the operation of measurement as
we do to tfie reproducibility of the operation as determined by
the numbers in the potentially infinite sequence corresponding
to an infinite number of repetitions of this operation. No
one would care very much how consistent the first n prelimi-
nary observations were if nothing could be validly inferred
from this as to what future observations would show. Hence,
it seems to me that the characteristics of the numerical as-

pects of an operation that is of greatest practical interest is

its reproducibility within tolerance limits throxighout the infinite

sequence. The limit to which we may go in this direction is

to attain a state of statistical control. The attempt to
attain a certain kind of consistency within the first n ob-
served values is merely a means of attaining reproducibility
within limits throughout the whole of the sequence."
[Shewhart 1939, pp. 131-132.]

The point that Shewhart makes forcefully, and
stresses repeatedly later in the same chapter, is that

the first n measurements of a given quantity gen-
erated by a particular measurement process provide
a logical basis for predicting the behavior of further

measurements of the same quantity hy the same
measurement process if and only if these n measure-
ments may be regarded as a random sample from a
"population" or "universe" of all conceivable

measurements of the given quantity by the measure-
ment process concerned; that is, in the language of

mathematical statistics, if an only if the n measure-
ments in hand may be regarded as "observed
values" of a sequence of random variables charac-

terized by a probability distribution identified with
the measurement process concerned, and related

through the values of one or more of its parameters
to the magnitude of the quantity measured.

It should be noted especially that nothing is said

about the mathematical form of the probability

distribution of these random variables. The im-
portant thing is that there be one. W. Edwards
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Deming has put this clearly and forcefully in these

words:

"In applying statistical theory, the main consideration

is not what the shape of the universe is, but whether there is

any universe at all. No universe can be assumed, nor . . .

statistical theory . . . applied unless the observations show
statistical control. In this state the samples when cumulated
over a suitable interval of time give a distribution of a par-

ticular shape, and this shape is reproduced hour after hour,

day after day, so long as the process remains in statistical

control—i.e., exhibits the properties of randomness. In a
state ot control, n observations may be regarded as a sample
from the universe of whatever shape it is. A big enough
sample, or enough small samples, enables the statistician to

make meaningful and useful predictions about future samples.
This is as much as statistical theory can do.

"... Very often the experimenter, instead of rushing in

to apply [statistical methods] should be more concerned
about attaining statistical control and asking himself whether
any predictions at all (the only purpose of his experiment),
by statistical theory or otherwise, can be made." [Deming
1950, pp. 502-503.]

Shewhart was well aware of the fact that from a
set of n measurements in hand it is not possible to

decide with absolute certainty whether they do or

do not constitute a random sample from some
definite statistical "population" characterized by a
probability distribution. He, therefore, proposed
[Shewhart 1939, pp. 146-147] that in any particular

instance one should "decide to act for the present as

if"^ the measurements in hand (and their unmediate
successors) were a simple random sample from a
definite statistical population—i.e., in the language
of mathematical statistics, were "observed values"
of independent identically distributed random vari-

ables—only if the measurements in hand met the
requirements of the small-samples version of Crite-
rion I of his previous book [Shewhart 1931, pp. 309-
318] and of certain additional tests of randomness
that he described explicitly for the first time in his

contribution to the University of Pennsylvania Bi-
centennial Conference in September 1940 [Shewhart,
1941]. In other words, Shewhart proposed that one
should consider a measurement process to be—i.e.,

should "decide to act for the present as if" the
process were—in a state oj {simple) statistical

control, only if the measurements in hand show no
evidence of lack of statistical control when analyzed
for randomness in the order in which they were taken
by the control chart techniques for averages and
standard deviations that he had found so valuable
in industrial process control and by certain addi-
tional tests for randomness based on "runs above
and below average" and "runs up and down."^

2 This very explicit phraseology is due to John W. Tukey [1960. p. 424].
3 Thomas Simpson , in his now famous letter [Simpson 1755] to the President of

the Royal Society ot London "on the Advantage of takin? the Meanof a Number
of Observations, in practical Astronomy.", was the first to consider repeated
measurements of a single quantity by a given measurement process as observed
values of independent random variables having the same probability distribu-
tion. His conclusion is of intere.st in itself:

"Upon the whole of which it appears, that the taking of the Mean ofanumber
of observations, greatly diminishes the chances for all the smaller errors, and cuts
off almost all possibility of any great ones: which last consideration, alone, seem
sufficient to recommend the u.se of the method, not only to astronomers, but
to all others concerned in making of experiments of any kind (to which the above
reasoning is equally applicable). And the more observations or experiments
there are made, the less will the conclusion be liable to err. provided they admit
of being repeated under the same circumstances."
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Simpson^ did not prove that taking of the Arith-
metic Mean was the best thing to do but merely
that it is good. However, in accomplishing this goal
he did something much more important: he took the
bold step of regarding errors of measurement, not as

unique unrelated magnitudes unamenable to mathe-
matical analysis, but as distributed in accordance
with a probability distribution that was an intrinsic

property of the measurement process itself. He
thus opened the way to a mathematical theory of

measurement based on the mathematical theory of

probability; and, in particular, to the formulation
and development of the Method of Least Squares in

essentially its present day form by Gauss (1809,

1821) and Laplace (1812).

"Student" (WilHam Sealy Gosset, 1876-1937),
pioneer statistical consultant and "father" of the
"theory of small samples," was certainly among the
first to stress the importance of randomness in

measurement and experimentation. Thus, he began
his revolutionary 1908 paper on "The probable error

of a mean" with these remarks:

"Any experiment may be regarded as forming an indi-

vidual of a 'population' of experiments which might be
performed under the same conditions. A series of experi-
ments is a sample drawn from this population.

"Now any series of experiments is only of value in so far

as it enables us to form a judgment as to the statistical

constants of the population to which the experiments be-
long." [Student 1908, p. 1.]

None of these writers, nor any of their contem-
poraries, however, provided "an operationally def-

inite criterion that preliminary observations must
meet" before we take it upon ourselves "to act for

the present as if" they and their immediate successors

were random samples from a "population" or "uni-
verse" of all conceivable measurements of the given
quantity by the measurement process concerned.
Provision of such a criterion is Shewhart's major
contribution.

Experience shows that in the case of measurement
processes the ideal of strict statistical control that
Shewhart prescribes is usually very difficult to

attain, just as in the case of industrial production
processes. Indeed, many measurement processes
simply do not and, it would seem, cannot be made
to conform to this ideal of producing successive
measurements of a single quantity that can be
considered to be "observed values" of independent
identically distributed random variables.* The na-
ture of the "trouble" was stated succinctly by
Student in 1917 when, speaking of physical and
chemical determinations, he wrote:

"After considerable experience I have not encountered
any determination which is not influenced by the date on
which it is made; from this it follows that a number of deter-
minations of the same thing made on the same day are likely

' Looking at the matter from a fundamental viewpoint, perhaps we should
.say, not that Shewhart's ideal of strict statistical control is unattainable in the
case of such measurement processes, but rather that the dcirrce of approximation
to this ideal can be made as close as one chooses , if one is willing to pay the pric«.

In other words , how close one chooses to bring a measurement process to the ideal
of strict statistical control is. in any given instance, basically an economic matter,
taking into account, of course, not only the immediate purpose(s) for which the
measurements are intended but also the other uses to which they may be put.
(Compare Simon [1946, p. 566] and Eisenhart [1952, p. 554)].
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to lie more closely together than if the repetitions had been
made on different days." [Student 1917, p. 415.]

In other words, production of measurements seems
to be like the production of paint; and just as in the

case of paint, if one must cover a large surface all of

which is visible simidtaneously, one will do well to

use paint all from the same batch, so in the case of

measurements, if a scientist or metrologist "wishes
to impress his clients" he will "arrange to do repeti-

tion analyses as nearly as possible at the same time."

[Student 1927, p. 155.]

Fortunately, just as one may blend paint from
several batches to obtain a more uniform color, and
one which is, presumably, closer to the "process
average," so also may a scientist or metrologist
"if he wishes to diminish his real error, . . . separate
[his measurements] by as wide an interval of time as

possible" [Student, loc. cit.] and then take an appropri-
ate average of them as his determination. Consequ-
ently, if we are to permit such averaging as an allow-

able step in a fully specified measurement process (see

sec. 2.6 above), then we are obliged to recognize both
within-day and between-day components of variation,

and accept such a complex measurement process as

being in a state of statistical control overall, or as

we shall say, in a state of COMPLEX statistical

control, when the components of within-day and
between-day variation are both in a state of statis-

tical control in Shewhart's strict sense, which we
shall term SIMPLE statistical control. In more
complex situations, one may be obliged to recognize
more than two "layers" of variation, and, some-
times, more than a single component of variation

within a given "layer."

Adopting this more general concept of statistical

control, R. B. Murphy of the Bell Telephone Labora-
tories in his essay "On the Meaning of Precision and
Accuracy" [Murphy 1961], published in advance of

the issuance by the American Society for Testing
and Materials of its Tentative Recommended
Practice with respect to the "Use of the Terms
Precision and Accuracy as Applied to Measurement
of a Property of a Material" [ASTM 1961], remarks:

"Following through with this line of thought borrowed
from quality control, we shall add a requirement that ah
effort to follow a test method ought not to be known as a
measurement process unless it is capable of statistical control.

Capability of control means that either the measurements
are the product of an identifiable statistical universe or an
orderly array of such universes or, if not, the physical causes
preventing such identification may themselves be identified

and, if desired, isolated and suppressed. Incapability of

control implies that the results of measurement are not to be
trusted as indications of the physical property at hand—in

short, we are not in any verifiable sense measuring any-
thing .... Without this limitation on the notion of

measurement process, one is unable to go on to give meaning
to those statistical measures which are basic to any discussion
of precision and accuracy." [Murphy 1961, pp. 264-265.]

3.2. Postulate of Measurement and the Concept of

a Limiting Mean

A conspicuous characteristic of measurement is

disagreement of repeated measurements of the same
quantity. Experience shows that, when high accu-

racy is sought, repeated measurements of the same
quantity by a particular measm-ement process does
not yield uniformly the same number.* We explain
these discordances by saying that the individual
measiu-ements are affected by errors, which we
interpret to be the manifestations of variations in

the execution of the process of measurement resulting

from "the imperfections of instruments, and of

organs of sense," and from the difficulty of achieving
(or even specifying with a convenient number of

words) the ideal of perfect control of conditions and
procedtu'e.

This "cussedness of measurements" brings us face

to face with a fundamental question: In what sense
can we say that the measurements yielded by a
particular measurement process serve to determine
a unique magnitude, when experience shows that
repeated measurement of a single quantity by this

process yields a sequence of nonidentical numbers.
What is the value thus determined?
The answer takes the form of a postulate about

measurement processes that has been expressed by
N. Ernest Dorsey, as follows:

"The mean of a family of measurements—^of a number
of measurements for a given quantity carried out by the
same apparatus, procedure and observer—approaches a defi-

nite value as the number of measurements is indefinitely

increased. Otherwise, they could not properly be called

measurements of a given quantity. In the theory of errors,

this limiting mean is frequently called the 'true' value, al-

though it bears no necessary relation to the true quaesitum,
to the actual value of the quantity that the observer desires

to measure. This has often confused the unwary. Let us
call it the limiting mean." [Dorsey 1944, p. 4, Dorsey and
Eisenhart 1953, p. 103.]

In my lectures at the National Bureau of Stand-
ards, and elsewhere, I have termed this—or rather

a slightly rephrased version of it—the Postulate of
Measurement. A mathematical basis for it is pro-

vided by the Strong Law of Large Numbers, a
theorem in the mathematical theory of probability

discovered during the present century. See, for

example. Feller [1957, pp. 243-245, 374], Gnedenko
[1962, pp. 241-249], or Parzen [1960, p. 420].

Needless to say, by a "family of measurements"
Dorsey means, not a succession of "raw" readings,

but rather a succession of adjusted or corrected

values which, by virtue of adjustment or correction,

can rightfully be considered to be determinations of

a single magnitude.

a. Mathematical Formulation

The foregoing can be expressed mathematically
as follows: on some particular occasion, say the ith,

we may take a number of successive measurements
of a single quantity by a given measurement process

under certain specified circumstances. Let

^n, ^a, • • • ) Xi)> • • (1)

5 The qualification "when high accuracy is sought" is essential; for if using an
ordinary two-pan chemical balance we measure and record the mass of a small
metallic object only to the nearest gram, then we would expect all of our measure-
ments to be the same—except in the equivocal case of a mass equal, or very nearl-

equal, to an odd multiple of 14 g, and such equivocal cases can be resolved easily

by adding a g mass to one pan. Full accordance of measurements clearly

cannot be taken as incontestable evidence of high accuracy; but rather should be
regarded as evidence of limited accuracy.
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denote the sequence of measurements so generated.

Conceptually at least, this sequence could be con-

tinued indefinitely. Likewise, on different occasions

we might start a new sequence, using the same
measurement procedure and applying it to measure-
ment of the same quantity under the same fixed

set of circumstances. Each such fresh "start"

would correspond to a different value of i. If, for

example, the measurement process concerned is sta-

tistically stable in the sense of being in a state oj

statistical control as defined by Shewhart [1939], then
the Strong Law of Large Numbers will be applica-

ble and we may expect the sequence of cumulative
arithmetic means on the ith occasion, namely,

Xin={xn-^Xi2+. . .^Xi„)/n, (n= l, 2, . . .), (2)

to converge to n, a number that constitutes the
limiting mean associated with the quantity meas-
ured by this measurement process under the cir-

cumstances concerned, but independent of the "occa-
sion," that is, independent of the value of "i."

The Strong Law of Large Numbers does not guar-
antee that the sequence (2) for a particular value
of "i" will converge to ix as the number of observa-
tions n on this occasion tends to infinity, but sim-
ply states that among the family of such sequences
corresponding to a large number of different starts,

{i=l, 2, . . .), the instances of nonconvergen^e to ix

will be rare exceptions. In other words, if the meas-
urement process with which one is concerned satis-

fies the conditions for validity of the Strong Law
of Large Numbers, then in practice one is almost
certain to be working with a "good" sequence—one
for which (2) would converge to m if the number of

observations were continued indefinitely—but "bad"
occasions can occur, though rarely. Thus, the Pos-
tulate of Measurement expresses something better
than an "on-the-average" property—it expresses an
"in-almost-all-cases" property. Furthermore, this

limiting mean /i, the value of which each individual
measurement x is trying to express, can be regarded
not only as the mean or "center of gravity" of the
infinite conceptual population of aU measurements
X that might conceivably be generated by the meas-
urement process concerned under the specified cir-

cumstances, but also as the value of the quantity
concerned as determined by this measurement
process.

b. Aim of the Postulate

The sole aim of the Postulate of Measurement is

axiomatic acceptance of the existence of a limit ap-
proached by the arithmetic mean of a finite number
n of measurements generated by any measurement
process as n->oo. It says nothing about how the
"best" estimate of this limiting mean is to be ob-
tained from a finite number of such observations.
The Postulate is an answer to the need of the prac-
tical man for a justification of his desire to consider
the sequence of nonidentical numbers that he obtains
when he attempts to measure a quantity "by the
same method under like circumstances" as pertaining
to a single magnitude, in spite of the evident dis-

cordance of its elements. The Postulate aims to

satisfy this need by telling him that if he were to

continue taking more and still more measurements on
this quantity "by the same method under like cir-

cumstances" ad infinitum, and were to calculate

their cumulative arithmetic means at successive

stages of this undertaking, then he would find that

the successive terms of this sequence of cumulative
arithmetic means would settle down to a narrower
and ever narrower neighborhood of some definite

number which he could then accept as the value of

the magnitude that his first few measurements were
striving to express.

c. Importance of Limiting Mean

The concept of a limiting mean associated with the
measurement of a given quantity by a particular

measurement process that is in a state of statistical

control is important because by means of statistical

methods based on the mathematical theory of prob-
ability we can make quantitative inferential state-

ments, with known chances of error, about the magni-
tude of this limiting mean from a set of measure-
ments of the given quantity by the measurement
process concerned. The magnitude of the limiting

mean associated with the measurement of a given
quantity by a particular measurement process must
be carefully distinguished from the true magnitude
of the quantity measured, about which we may be
tempted to make similar inferential statements.
Insofar as we make statistical inferences from a set

of measurements, we make them with respect to a
property of the measurement process involved under
the circumstances concerned. The step from quanti-
tative inferential statements about the limiting mean
associated with the measurement of a given quantity
by a particular measurement process, to quantitative
statements about the true magnitude of the quantity
concerned, may be based on subject matter knowl-
edge and skill, general information and intuition—
but not on statistical methodology. (Compare
Cochran, Mosteller, and Tukey [1953, pp. 692-693].)

3.3. Definition of the Error of a Measurement, and
of the Systematic Error, Precision, and Accuracy
of a Measurement Process

a. Error of a Single Measurement or Adjusted Value

The error of any measurement of a particular
quantity is, by definition, the difference between the
measurement concerned and the true value of the
magnitude of this quantity, taken positive or nega-
tive accordingly as the measmement is greater or
less than the true value. In other words, if x denotes
a single measurement of a quantity, or an adjusted
value derived from a specific set of individual measure-
ments, and r is the true value of the magnitude of

the quantity concerned, then, by definition,

the error of x as a measurement of t= x-t.

The error of any particular measurement or ad-
justed value, x, is, therefore, a fixed number. The
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numerical magnitude and sign of this number will

ordinarily be unknown and unknowable, because the
true value of the magnitude of the quantity con-
cerned is ordinarily unknown and unknowable.
Limits to the error of a single measurement or

adjusted value may, however, be inferred from (a)

the precision, and (b) bounds on the systematic

error, of the measurement process by which it was
produced—but not without risk of being incorrect,

because, quite apart from the inexactness with which
bounds are commonly placed on the systematic
error of a measurement process, such limits are

applicable to the error of a single measurement or

adjusted value, not as a unique individual outcome,
but only as a typical case of the errors cliaracteristic

of measurements of the same quantity that might
have been, or might be, yielded by the sanie measure-
ment process under the same conditions.

b. Systematic Error of a Measurement Process

When the limiting mean ix associated with measure-
ment of the magnitude of a quantity by a particular

measurement process does not agree with the true

value T of the magnitude concerned, the measurement
process is said to have a systematic error, or hias, of

magnitude ix-t.

The systematic error oi a measurement process
will ordinarily have both constant and variable

components. Consider, for example, measurement
of the distance between two points by means of a

graduated metal tape [Holman 1892, p. 9]. Possible
causes of systematic error that immediately come to

mind are:

(1) Mistakes in numbering the scale divisions of

the tape;

(2) irregular spacing of the divisions of the tape;

(3) sag of tape;

(4) stretch of tape;

(5) temperature not that for which the tape was
calibrated.

For any single distance, the effects of (1) and (2)

will be constant: and the effects of (3) and (4) will

undoubtedly each contain a constant component
characteristic of the distance concerned. Some of

these effects will be of one sign, some of the other, and
their algebraic sum will determine the constant error

of this measurement process with respect to the
particular distance concerned. Furthermore, the
"constant error" of this measurement process will

be different (at least, conceptually") for different

distances measured.
In the case of repeated measurement of a single

distance, the effect of (5), and at least portions of

the effects of (3) and (4), may be expected to vary
from one "occasion" to the next (e.g., from day to

day), thus contributing variable components to the
systematic error of the process.

A large fraction of the variable contributions of

(3) and (4) could, and in practice no doubt would,
be removed by stretching the tape by a spring balance
or other means so that it is always under the same
tension. The stretch corresponding to a particular

distance would then be nearly the same at all times.

and a fixed correction could be made for most of the
sag corresponding to this distance. Furthermore, the
effect of (5) could, and in practice probably would,
be reduced by determining the temperature of the
tape at various points along its length and applying a
temperature correction. By comparison of the tppe
with a standard, the error arising from (1) could be
eliminated entirely, and corrections determined as a
basis for eliminating, or at least, reducing the effect

of (2)._

As in the foregoing example there are usually
certain obvious sources of systematic error. Un-
fortunately, there are generally additional sources
of systematic error, the detection, diagnosis, and
eradication of which caU for much patience and
acumen on the part of the observer. The work
involved in their detection, diagnosis, and eradica-
tion often far exceeds that of taking the final

measurements, and is sometimes discouraging to
the experienced observer as well as to the beginner.
Fortunately, there are various statistical tools that
are helpful in this connection, and Olmstead [1952]
has found that of these the two most effective and
universally useful are the average {x) and range {R)
charts of industrial quality control. (For details

on the construction and use of x- and i?-charts,

see, for example, the ASTM Manual on Quality
Control of Materials [ASTM 1951, pp. 61-63 and
p. 83]; or American Standards Zl.2-1958 and
Zl.3-1958 [ASA 1958b, ASA 1958c].)

c. Concept of True Value

In the foregoing we have defined the error of a

measurement x to be the difference x-t between the
measurement and the true value t of the magnitude
of the quantity concerned; and the systematic error,

or hias, of a measurement process as the difference

n-T between the limiting mean ^ associated with the
measurement of a particular quantity by the meas-
urement process concerned, and the true value t of the
magnitude of this quantity. This immediately
raises the question: Just how is the "true value" of

the magnitude of a particular property of some thing
defined? In the final analysis, the "true value" of

the magnitude of a quantity is defined by agreement
among experts on an exemplar method for the measure-
ment of its magnitude—it is the limiting mean of a

conceptual exemplar process that is an ideal realiza-

tion of the agreed-upon exemplar method. And the
refinement to which one should go in specifying the
exemplar process will depend on the purposes for

which a determination of the magnitude of the quan-
tity concerned is needed—not just the immediate
purpose for which measurements are to be taken but
also the other uses to which these measurements, or a
final adjusted value derived therefrom, may possibly
be put.

Consider, for example, the "true value" of the
length of a particular gage block. In our minds we
envisage the gage block as a rectangular parallel-

epiped, and its length is, of com-se, the distance be-
tween its two "end" faces. But it is practically

certain that the particular gage block in question is

not an exact rectangular parallelepiped; and that
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its two end faces are not planes, nor even ab-

solutely smooth surfaces. Shall we define the "true

length" of this gage block to be the distance between
the "tops" of the highest "mountains" at each end,

i.e., the distance between the two "outermost points"

at each end? If so, is this distance to be measured
diagonally, if necessary, or pariillel to the "length-

wise axis" of the gage block? If the latter, then we
have the problem of how this "length-wise axis" is

to be defined, especially in the case of a thin gage
block whose length corresponds to what would
ordinarily be considered to be its thickness. Or
shall we be, perhaps, more sophisticated, and en-

visage a "mean plane" at each end, which in general

will not be parallel to each other, and define the

length of this gage block to be the distance between
two particular points on these planes. It we choose
the "outermost points" we again have the problem of

the direction in which the distance is to be measured.
Alternatively, we might define the length of this

gage block to be the distance between two strictly

parallel and conceptually perfect optical flats "just

touching" the gage block at each end. If so, then
is the "true distance" between these flats defined in

terms of wavelengths of light via the techniques of

optical interferometry the "true length" of the gage
block appropriate to the purposes for which the gage
block is to be used, namely, to calibrate gages and to

determine the lengths of other objects by mechanical
comparisons? Furthermore, it is clear, that the

intrinsic difficulty of defining the "true value" of the

length of a particular gage block is not eliminated if,

instead, we undertake to define the "true value" of

the difference in length of two particular gage blocks,

one of which is a standard, the accepted value of whose
length is, say, m microinches exactly, by industry,

national or international agreement.
Similar difficulties arise, of course, in the definition

of the "true value" of the mass of a mass standard,

one of which has been resolved by international

agreement. In defining the "true value" of the mass
of a particular metallic mass standard, shall the mass
of this particular standard be envisaged as the mass
of its metallic substance alone, relative to the

International Prototype Kilogram, or as the mass of

its metallic substance plus the mass of the air and
water vapor adsorbed upon its surface under stand-

ard conditions? The difference amounts to about
45 ng in the case of a platinum-iridium standard
kilogram, and becomes critical in the case of 500
mg standards. The mass of a mass standard is,

therefore, specified in measurement science to be the

mass of the metallic substance of the standard plus

the mass of the average volume of air adsorbed upon
its surface under standard conditions. Definition of

the "true value" of the mass of a mass standard, and
a fortiori, of the difference in mass of two mass
standards is, therefore, a very complex matter.

W. Edwards Deming uses the expression "pre-
ferred procedure" for what we have termed an
"exemplar method," and very sagely remarks that

"a preferred procedure is distinguished by the fact

that it supposedly gives or would give results nearest
to what are needed for a particular end; and also by

the fact that it is more expensive or more time
consuming, or even impossible to carry out," adding
that "as a preferred procedure is always subject to

modification or obsolescence, we are forced to

conclude that neither the accuracy nor the bias of any
procedure can ever be known in a logical sense."

[Deming 1950, pp. 15-17.]

It should be evident from the foregoing that the
"true value" of the magnitude of some property of

a thing or system cannot be defined with complete
absolute exactitude.

As Cassius J. Keyser has remarked, "Absolute
certainty is a privilege of uneducated minds—and
fanatics. It is, for scientific folk, an unattainable
ideal." [Keyser 1922, p. 120.] The degree of refine-

ment to which one wUl, or ought, to go in a particular

instance will depend on the uses for which knowledge
of the magnitude of the property concerned is needed.
The "true value" of the length of a piece of cloth in

everyday commerce is certainly a fuzzy concept.

"Certainly we are not going to specify that the
cloth shall be measured while suspended horizon-

tally under a tension of x pounds, at an ambient
temperature of y degrees and a relative humidity of

2 percent" [Simon 1946, p. 654]. On the other hand,
a moderate degree of refinement is necessary in

defining the "true length" and "true width" of the
recessed area in a window sash to which a pane of

glass is to be fitted. Considerably greater refinement
is needed in the definition of the "true value" of the
length of a gage block, of the mass of a mass standard
or of the frequency of a frequency standard—and in

the last mentioned case there is not today, I under-
stand, complete agreement among experts on the
matter.

Indeed, as is evident from the foregoing, the "true
value" of the magnitude of a particular quantity is

intimately linked to the purposes for which a value
of the magnitude of this quantity is needed, and its

"true value" cannot, in the final analysis, be defined
meaningfully and usefully in isolation from these
needs. Therefore, as this fact becomes more widely
recognized in science and engineering, I hope that
the traditional term "true value" will be discarded
in measurement theory and practice, and replaced
by some more appropriate term such as "target
value" ^ that conveys the idea of being the value
that one would like to obtain for the purpose in

hand, without any implication that it is some sort

of permanent constant preexisting and transcending
any use that we may have for it. I have retained
the traditional expression "true value" in the sequel
because of its greater familiarity, but shall always
mean by it the relevant "target value."

6 "We admit the existence of systematic error—of a difference between the
quantity measured (the measured quantity) and the quantity of interest (the
target quantity) . We ask the observations about the measured quantity. We
ask our subject matter knowledge, intuition, and general information about the
relation between the measured quantity and the target quantity." [Cochran,
et al. 1954. p. 33.]

" Some people prefer the term 'true value' , although others excoriate
it as philosophically unsound.

"We could also call the reference level a 'target value'. In a way this is a
bad term because It implies that it is something we want to find through the
measurement process rather than something we ought to find because, like Mt.
Everest, it is there. Unfortunately our desires can influence our notion of what
is true, and we can even unconsciously bring the latter into agreement with the
former; my use of the term 'target value' is not meant to imply that I think it

legitimate to equate what we would like to see with what is there." [Murphy
1961. p. 265.]
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d. Concepts of the Precision and Accuiacy of a Measuiement
Process

By the precision of a measurement process we
mean the degree of mutual agreement characteristic

of independent measurements of a single quantity
yielded by repeated applications of the process under
specified conditions; and by its accuracy the degree
of agreement of such measurements with the true

value of the magnitude of the quantity concerned.
In other words, the accuracy of a measurement proc-
ess refers to, and is determined by the degree of

conformity to the truth that is characteristic of inde-

pendent measurements of a single quantity produced
(or producible) by the repeated applications of the
process under specified conditions; whereas its preci-

sion refers solely to, and is determined solely by the
degree of conformity to each other characteristic of

such measvu-ements, irrespective of whether they
tend to be close or far from the truth. Thus, accu-
racy has to do with closeness to the truth; precision,

only with closeness toaether

This distinction between the meanings of the
terms "accuracy" and "precision" as applied to

measurement processes and measuring instruments
is consistent with the etymological roots of these

words. "Etymologically the term 'accurate' has
a Latin origin meaning 'to take pains with' and refers

to the care bestowed upon a human effort to make
such effort what it ought to be, and 'accuracy' in

common dictionary parlance implies freedom from
mistakes or exact conformity to truth. 'Precise,' on
the other hand, has its origin in a term meaning
'cutoff, brief, concise'; and 'precision' is supposed
to imply the property of determinate limitations

or being exactly and sharply defined." [Shewhart
1939, p. 124.] Thus one can properly speak of a
national, state, or local law as being "precise," but
not as being "accurate"—to what truth can it

conform? On the other hand, if one spoke of a

particular translation as being "accurate" this

would imply a high degree of fidelity to the original

"attained by the exercise of care." Whereas, to

speak of it as being "precise," would imply merely
that it is unambiguous, without indicating whether
it is or is not correct.''

In spite of the distinct difference between the
etymological meanings of the terms "accuracy"
and "precision," they are treated as synonyms in

many standard dictionaries; and Merriam-Webster
[1942], after drawing the helpful distinctions quoted
in the foregoing footnote, promptly topples the
structure so carefuUy built by adding "scrupulous
exactness" as an alternative meaning of "precise."

Consequently it is not surprising that "There are

probably few words as loosely used by scientists

as precision and accuracy.—It is not unusual to

find them used interchangeably in scientific writ-

ings." [Schrock 1950, p. 10.]

'It is sometimes helpful to distiriiiuish between "correct," "accurate." and
"exact"; "CORRECT, the most colorless term, implies scarcely more than
freedom from fault or error, as judped by some (usually) conventional or acknowl-
edged standard; . . . ACCURATE implies, more positively, fidelity to fact

or truth attained by the exercise of care; . . . EXACT emphasizes the strictness
or rigor of the agreement , which neither exceeds nor falls short of the fact , standard
or truth; . . . PRECISE stresses rather sharpness of definition or delimita-
tion . . ." [Merriam-Webster 1942 p. 203].
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On the other hand, as Shewhart has remarked

:

"Careful writers in the theory of errors, of course, have
always insisted that accuracy involves in some way or other
the difference between what is observed and what is true,
whereas precision involves the concept of reproducibility of
what is observed. Thus Laws, writing on electrical measure-
ments, says: ' 'Every experimenter must form his own
estimate of the accuracy, or approach to the absolute truth
obtained by the use of his instruments and processes of
measurement. He must remember that a high precision,
or agreement of the results among themselves, is no indication
that the quantity under measurement has been accurately
determined.' As another example we may take the following
comment from a recent and authoritative treatise on chemical
analysis: ' 'The analyst should form the habit of estimating
the probable accuracy of his work. It is a common mistake
to confuse accuracy and precision. Accuracy is a measure
of the degree of correctness. Precision is a measure of
reproducibility in the hands of a given operator.' " [Shewhart
1939, pp. 124-125.]

More recently, Lundell, Hoffman, and their associates

at the National Bureau of Standards have re-

emphasized the importance of the distinction between
"precision" and "accuracy":

"In discussions of chemical analysis, the terms precision
and accuracy are often used interchangeably and therefore
incorrectly, for precision is a measure of reproducibility,
whereas accuracy is a measure of correctness. The analyst
is vitally interested in both, for his results must be sufficiently

accurate for the purpose in mind, and he cannot achieve
accuracy without precision, especially since his reported
result is often based on one determination and rarely on more
than three determinations. The recipient of the analysis
is interested in accuracy alone, and only in accuracy suffi-

cient for his purposes." [Hillebrand et al., 1953, p. 3.]

It is most unfortunate that in everyday parlance
we often speak of "accuracy and precision," because
accuracy requires precision, but precision does not
necessarily imply accuracy.

"It is, in fact, interesting to compare the measurement
situation with that of a marksman aiming at a target. We
would call him a precise marksman if, in firing a sequence of
rounds, he were able to place all his shots in a rather small
circle on the target. Any other rifleman unable to group his

shots in such a small circle would naturally be regarded as
less precise. Most people would accept this characteriza-
tion whether either rifleman hits the bull's-eye or not.

"Surely all would agree that if our man hits or nearly
hits the bull's-eye on all occasions, he should be called an
accurate marksman. Unhappily, he may be a very precise
marksman, but if his rifle is out of adjustment, perhaps the
small circle of shots is centered at a point some distance from
the bull's-eye. In that case we might regard him as an in-

accurate marksman. Perhaps we should say that he is a
potentially accurate marksman firing with a faulty rifle,

but speaking categorically, we should have to say that the
results were inaccurate." [Murphy 1961, p. 265.]

It follows from what has been said thus far that
"if the precisions of two processes are the same but
the biases are different, the process of smaller bias

may be said to have higher accuracy while if the
biases are both negligible, the process of higher pre-

cision may be said to have higher accuracy." Un-
fortunately, "in other cases such a simple comparison
maybe impossible." [ASTIVl 1961, p. 1760.]

' Frank A. Laws, Electrical Measurements, p. 593 (McGraw-Hill, New York,
N.Y.. 1917).

« G. E. F. Lundell and J. I. Hoffman, Outlines of Methods of Chemical
Analysis, p. 220 (John Wiley and Sons. New York, N.Y.. 1938).
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To fully appreciate the preceding statement—and
especially the difficulty of comparing accuracies

in some cases—let us consider figures 1 and 2, in

which the origins of the scales correspond to the

true value of r of the quantity measured, so that

the curves shown may be regarded as depicting the

distributions of errors of the measurements yielded

by a selection of different measurement processes.

Cfonsider first the three symmetrical distributions

in the top half of figure 1. All three of these dis-

tributions are centered on zero, so that these meas-
urement processes have no bias. It is evident
that the process of highest precision, c, is also the

process of highest accuracy; and that the process of

least precision, a, is also the process of least accuracy.

Since curve b in the upper half of figure 1 and curve
d in the lower half have identical size and shape,

the corresponding processes have the same 'precision;

but process b is without bias, whereas process d
has a positive bias of two units, so that process b

is clearly the more accurate. (In particular we may
note that whereas it is practically certain that
process b will not yield a measurement deviating

1 1 1 1 1 1

-

j

j

i

a: = T, o- = 2.5 !

b: u = r, o- =^ = .72 I

.72 !

i

>'

/!
/ 1^

1 1 —i 1 1 J
1

: 1 1 1 1 1 1

i

i

i

j

i

i

j

i

-6 -5 -4 -3 -2 -1 C

e = )

) 1 2 3 4 5 6

- T

1 1 1 1 1 1

d: ^ = T + 2,cr = .72

e: IX = T + 2,a= =.2I
/i2

1 1 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

/
/

1

/ 1

/ 1

! 1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

le

i\

1 \
1
\<J

1 \

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

e = X- T

Figure 1. DisiribuHons of errors of some biased and unbiased
measurement processes of various precisions.

33

from the truth by more than two units, exactly
one-half of the measurements yielded by process d
will deviate from the truth by this much or more.)
Similar remarks clearly apply to processes c and e

corresponding to curve c in the upper half and curve
e in the lower half of figure 1, but in this instance the
superiority of process c relative to process e with
respect to accuracy is even more marked. (In

particular, we may note that whereas it is practically

certain that no measurement yielded by process c

will deviate from the truth by as much as one unit,

it is practically certain that every measurement
yielded by process e will deviate from the truth by
more than one unit.)

Figure 2, which is essentially the same as one given
by General Simon [1946, fig. 1], portrays three meas-
urement processes A, B, and C, differing from each
other with respect to both precision and bias.

Comparison of these three processes with respect to

accuracy is not quite so simple. First, it is evident
that, although process A has greater precision than
process B, process B is the more accurate of the two.
(In particular, it is practically certain that none of

the measurements yielded by process B will deviate
from the truth by more than 4 vmits, whereas 50
percent of the measurements from process A will

deviate from the truth by four units or more.)
Next, is process B more (or less) accurate than process
C which is unbiased, but has a very low precision?

Process B has a positive bias of two units, but has
sufficiently greater precision than process C to also

have greater accuracy than process C. (While
approximately 50 percent of the measurements

1 1 1 1 1 1 1 1 1

1 '

'

^=T + 4,(r=.2

A

1 1 1 1 1 1 , , ,/ V, ,

-6-5-4-3-2-1 0 I 2 3 4 5 6
e = X - r

1 1 1 1 1 1 i ^ 1 1 1 1

/i = r + 2, o- = .7
\ ^

1 1 1 1 1 1 1 1 \u 1 1-6-5-4-3-2-10
I 2 3 4 5 6

Figure 2. Three measurement processes differing from each
other with respect to both precision and accuracy.
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yielded by process C will deviate from the truth by
more than two units (in either direction), and ex-

actly 50 percent of the measurements yielded by
process B will deviate from the truth by two units

or more (in the positive direction only), it cannot
be ignored that about 10 percent of the measure-
ments yielded by process C will deviate from the
truth by four units or more whereas it is practically

certain that no measurement yielded by process B
wUl deviate from the truth by as much as four units.)

Similarly, it may be argued that process A, in spite

of its bias, has greater accuracy than process C
"since the range in measurements of C more than
covers the corresponding ranges oi A ov B." [Simon
1946, p. 654.] While this conclusion that of the
three , measurement processes depicted in figures 2,

process C has the least accuracy, may not be entirely

acceptable to some persons, it is consistent with
Gauss' dictum, in a letter to F. W. Bessel, to the
effect that maximizing the probability of a zero error

is less important than minimizing the "average"
injurious effects of errors in general. [C. F. Gauss,
1839, pp. 146-147.]

Before leaving figure 2, we must not fail to join

General Simon in remarking that "the average of a
large number of measurements from [process] C will

be more accurate than a similar average from either

A or B" [Simon 1946, p. 654]. This point is actually
illustrated in our figure 1 : the three curves in the top
half of figure 1 portray the distributions of errors of

single measurements (curve a) of averages of 12
measurements (curve b) and averages of 144 measure-
ments (curve c) from process C; and curves d and e

in the lower half show the distributions of errors of

individual measurements (curve d), and of averages

of 12 measurements (curve e) from process B,
respectively. It is evident that average's of 12
measurements from process C (curve h in upper
portion of fig. 1) have not only greater accuracy than
individual measurements from process B (curve d in

lower portion of the figure) , but also greater accuracy
than averages of 12 measvu-ements from process B
(curve e in lower portion)

.

On the other hand, it is obvious that, if our choice

is between individual measurements from process C
(curve a) and averages of 12 measurements from
process B (curve e), the latter will clearly provide
greater accuracy. In brief, a procedure with a small
bias and a high precision can be more accurate than an
unbiased procedure of low precision. It is important
to realize this, for in practical life it is often far better

to always be quite close to the true value than to

deviate all over the place in individual cases but
strictly correct "on the average," like the duck
hunter who put one swarm of shot ahead of the duck,
and one swarm behind, lost his quarry, but had the
dubious satisfaction of knowing that in theory he
had hit it "on the average." This we must remember

:

in practical life we rarely make a very large number
of measurements of a given type—we can't wait to

be right on the average—our measurements must
stand up in individual cases as often as possible.

Despite the foregoing, freedom from bias, that is,

freedom from "large" bias, is a desirable character-
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istic of a measurement process. After all we want
our measurements to yield us a determination that
we can use as a substitute for the unknown value of a
particular magnitude whose value we need for some
purpose—we don't want a determination of the
value of some other magnitude whose relation to the
one we need is indefinitely known.

In view of the difficulty of comparing with respect
to accuracy measurement processes that differ both
in 6ms and precision, some writers have elected to
take the easy way out by defining "accufacy" to be
equivalent to absence of bias, saying that of two
measurement processes having different biases, the
process of smaller bias is the more "accurate"
regardless of the relation of their respective precisiojis.

(See, for example. Beers [1953, p. 4], Ostle [1954, p. 4],

and Schenck [1961, p. 4, p. 14].) While the adoption
of this concept of "accuracy" certainly makes the
discussion of "accuracy" and "precision" simpler for
the authors concerned, this practice is contrary to
the principle of "conservation of linguistic resources,"
as R. B. Murphy puts it, adding: "It seems to me
that the terms 'bias' and 'systematic error' are
adequate to cover the situation with which they are
concerned. If, nevertheless, we add the term
'accuracy' to apply again in this restricted sense,
we are left wordless—at the moment at least—when
it comes to the idea of over-all error. From the
point of view of the need for a term it is hard to
defend the view that accuracy should concern itself

solely with bias. . . . [and] there is overwhelming
evidence that we need a term at least for the concept
of over-all error." [Murphy 1961, pp. 265-266.]

3.4. Mathematical Specification of the Precision of

a Measurement Process

a. Simple Statistical Control

Let us now consider the mathematical definition

of the precision of a measurement process under a
fixed set of circumstances. By definition, the pre-
cision of a measurement process has to do with the
"closeness together" that is typical of successive
measurements of a single quantity generated by
applications of the process under these fixed condi-
tions. Otherwise expressed, it has to do with the
typical "closeness together" of the two individual
measurements constituting an arbitrary pair. If the
expression "typical 'closeness together' "is to be
meaningful, the measurements generated by repeated
application of the process to the measurement of a
single quantity must be homogeneous in some sense.

Therefore, for the moment, let us assume that the
measurement process is in a state of simple statistical

control, so that the successive measuremets in each
of the sequences (1), (^=1, 2, 3, . . .), generated by
the process may all be regarded as "observed" values
of independent identically distributed random variables.

Just as we may regard each individual measure-
ment Xi} in a particular sequence (1) as striving to
express the value of the limiting mean n, so also we
may regard each individual difference Xij—Xn, jT^k,
as striving to express the characteristic spread
between an arbitrary pair of measurements, x' and
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x"
,
say. For this purpose tlie signs of these differ-

ences are clearly irrelevant. Therefore, by analogy

with our use of a sequence of cumulative arithmetic

means, (2), to achieve a mathematical formulation

of the concept of a limiting mean associated with

measurement of a given quantity by a particular

measurement process, let us adopt the sequence of

cumulative arithmetic means of the squares of the

1)/2 distinct differences among the first n
measurements of a particular sequence (1), for

example, the sequence

(n=2,3...), (3)

as the basis of a mathematical formulation of the

concept of the precision of a measurement process.

The necessary and sufficient condition for almost

sure convergence of the sequence (3) to a finite limit,

say A^, is that the Strong Law of Large Numbers be
applicable to the sequence.

^ily '^i2i • • •) "^i) • •! (4)

consisting of the squares of the corresponding terms

of the original sequence (1). (Boundedness of the

x's in addition to statistical control is, for example,

sufficient to ensure that the sequence (4) will also

obey the Strong Law of Large Numbers.) If the

Strong Law of Large Numbers is applicable to the

sequence of squares (4), and if the measurement
process is in a state of simple statistical control,

then the cumulative arithmetic means of the squares

of the measurements, that is, the sequence

{n=l,2, . . .), (5)

will almost surely tend to a limit, say S, the magni-
tude of which will depend on the quantity measured,

the measurement process involved, but not on the

"occasion" (identified by the subscript "i"). By
virtue of an algebraic identity that is well known
to students of mathematical inequalities, namely,

«z:«?-(i:«iY=^ si: («>2) (6)
j=l \j=l / ^ j=l k = l

and of the fact that the right-hand side of (6) is

always positive except when the a's are all equal,

it is easily seen, on dividing both sides of (6) by
n^, that S will always exceed n^, the square of the

(almost sure) limit of the sequence (2), so that we
may write <S'=M^+c^^ with <7^>0. Furthermore,
applying the algebraic identity (6) in reverse to

the right-hand side of (3) yields the following rela-

tionship between the corresponding terms of se-

quences (3), (5), and (1):

(^){ (n>2).

(7)

Hence, if a measurement process is in a state of

simple statistical control and the Strong Law of

Large Numbers is applicable to a sequence of squared

measurements (4), then the sequence {d^)i„, defined

by (3), will, in view of (7), tend almost surely to a

finite limit A^=2cr^ Thus we see that o-^, termed
the variance of the measurement process, is the mean
value of one-half of the squared difference between
two arbitrary measurements x' and x", that is,

a'=iix'-x"r, (8)

and provides an indication of the imprecision of the

process. The square root of the variance, a, is

termed the standard deviation of the process.

It is natural, therefore, on the basis of a single

sequence of n measurements of a single quantity,

to take

1

2^"'^ »(n-l),5*Si ^""^ n-1

S (.xj-xy

(9)

as the sample estimate of the underlying variance
a^; and the square root, s, as the sample estimate
Of(T.'0

From (9), since x^x„ tends (almost surely) to n
it is evident that is also the mean value of the

squared deviations of individual measurements from
the limiting mean ^ of the process, that is o-^==

(x—ixY, so that the standard deviation er may be
regarded, in the language of mechanics, as the
radius of gyration of the distribution of all possible

measurements x about n, the limiting mean of the
process.

Remark: Mathematically the foregoing discussion

can be carried out equally well in terms of the
absolute (unsigned) values of the differences instead
of in terms of their squares. Such an approach is,

mathematically speaking, somewhat more general

in that it requires for its validity merely that the
Strong Law of Large Nxmabers be applicable to the
sequence Ix ill, |a; ,2 1, . • ., \xij\, . . . oi absolute values

of the Xfj rather than to the sequence (4) of their

squares. From the practical viewpoint, however,
this greater generality is entirely illusory, and the
mathematics of absolute values of variables is

always more cmnbersome than the mathematics of

their squares. For example, the arithmetic mean
of the absolute values of the ri,(n— 1)/2 distinct

differences among n measurements, i.e..

r-r> 2
\dU^,

n—l n

n{n—l) pi ktjii
'Xk\ (10)

10 From the aljebraic identity (6) , it is evident that the practice in some circles

n
of dividing ^ '

(i—r)^ by n, instead of n—l, amounts to including each of the

7=1
distinct squared differences (li—XkP, jf^k, twice in the summation, together with
n identically zero terras (Xi—Xk)',j=k, each included once, and then dividing by
n the total number of terms (real and phantom) involved. Viewed in this
light it would seem that division by n—l is more reasonable . in that the inclusion
of identically zero terms in the formulation of a measure of variation is a bit un-
reasonable.
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is not expressible as a multiple of the sum of the

absolute deviations of the measurements from their

mean, a,nd for large values of n the

evaluation of (10) presents computational difficulties.

The approach in terms of the absolute values of

the differences also has the disadvantage from the

practical viewpoint that, as we shall see in a moment,
components of imprecision are additive in terms of

squared quantities such as cr^, so that in this sense

the variance (j^ is a more appropriate measure of the

dispersion of the x's about their limiting mean y.

than is a itself.

Ordinarily, the magnitude of (and, hence, of a),

unlike that of m, depends only on the measurement
process concerned and the circumstances under

which it is applied, and not also on the magnitude
of the quantity measured—otherwise we could not

speak of a measurement process having a variance,

or a standard deviation.

Since the precision of the process obviously

decreases as the value of a (or, of <s^) increases, and
vice versa, it is necessary to take some inverse func-

tion of o- as a measure of the precision of process.

To conform with traditional usage it is necessary

to regard the precision of a measurement process as

inversely proportional to its standard deviation a

which is, therefore, a measure of the imprecision of

the process. Thus, Gauss, writing in 1809, remarked
that his constant h= 1/(7^12 could properly be con-

sidered to be a measure of the precision of the

observations because if, for example h'^2h, that is,

if o-'= |o-, then "a double error can be committed
in the former system with the same facility as a

single error in the latter, in which case, according

to the common way of speaking, a double degree of

precision is attributed to the latter observations." "

The fact of the matter is, however, that:

". . . different fields have particularly favorite ways
of expressing precision. Most of these measures are multiples

of the standard deviation; it is not always clear which multi-

ple is meant. . . .

"Some consider it unfortunate that precision should be

stated as a multiple of standard deviation, since precision

should increase as standard deviation decreases. Indeed,

it would be more exact to say that standard deviation is a

measure of imprecision. However, sensitivity, as we have
previously indicated, suffers from this logical inversion

without hurt. Perhaps we can best avoid this by saying

that standard deviation is an index of precision. The habit

of saying 'The precision is ... ' is deeply rooted, and
there would be understandable impatience with the notion

that standard deviation should be numerically inverted

before being quoted in a statement of precision." [Murphy
1961, pp. 266-267.]

In consequence the ASTM has, at least tentatively,

taken the following position:

"The numerical value of any commonly used index of

precision will be smaller the more closely bunched are the

individual measurements of a process. As more causes are

added to the system, the greater the numerical value of

the index of precision will ordinarily become. If the same
index of precision is used on two different processes based

1' "Ceterum constans ft tamquam mcnsura praecisionis observationum con-

siderari poterit. . . . Quodsi igitur e.R.. h'=2h, aeque facile in systemate priori

error duplex committi poterit. ac simplex in po.steriori, in quo easu observationi

Ibus posterioribus secundum vulc;arem loquendi morem praccisio duplex tri-

buitur." [Qauss 1809, Art. 178; 1871. p. 233; English translation. 1857, pp. 259-260.)

on the same method or intended to measure the same physical
property, the process that has the smaller value of the index
of precision is said to have higher precision. Thus, although
the more usual indexes of precision are really direct measures
of imprecision, this inversion of reference has been firmly
established by custom. The value of the selected index of
precision of a process is referred to simply as its precision or
its stated precision." [ASTM 1961, p. 1759.]

As we have remarked previously, in practical work
the end residt of measuring some quantity or cali-

brating an instrument for a standard rarely consists

of a single measurement of the quantity of interest.

More often it is some kind of average or adjusted
value, for example, the arithmetic mean of a number
of independent measurements of the quantity of

interest. Let us, therefore, consider the statistical

properties of a sequence of arithmetic means of

successive nonoverlapping groups of n measurements
each from a sequence (1) of individual measurements
yielded by a measurement process on a particular

occasion. In other words, let us consider the
sequence

(11)

of distinct arithmetic means of n measurements each

_ 1

« j=(7n-l)n-|-l

(m= l,2, . . .), (12)

derived from a sequence (1) of individual measure-
ments of a single quantity produced, or at least

conceptually producible, by the measurement process
concerned on, say, the ith occasion. If the "under-
lying measurement process" giving rise to the indi-

vidual measurements Xtj is in a state of simple
statistical control, then the "extended measurement
process" giving rise to the averages Xtm will also be
in a state of simple statistical control. Conse-
quently, the mathematical analysis of section 3.2,

but with the averages in place of the individual
measurements Xa, wUl carry through without other
change. Let /xj denote the limiting mean thus
associated with the "extended measurement process"
giving rise to the averages x,m as its "individual"
measurements. Since the cimiulative arithmetic
mean of the first m terms of the sequence (11) is

the same as the cumulative arithmetic mean of the
first mn terms of the sequence (1) of individual

measurements, it is clear that the limiting mean
MI associated with the sequence of averages (11) is

the same as the limiting mean associated with the
original sequence (1) of individual measurements,
that is,

M-=Mi==M- (13)

Similarly, the mathematical analysis at the

beginning of the present section, but with the in-

dividual measurements Xij ra. (3) thru (9), replaced

by the averages Xi^, carries through essentially as

before. Let <t\ denote the variance thus associated

with the "extended measurement process" giving

rise to the sequence of averages (11). As in the

case of the variance of individual measurements,
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so also may a? be interpreted as the overall mean
value of the squared deviation of "individual"
averages x from the limiting mean /x_ of the "ex-

tended process," that is,

<r|=(5-M7)^-(5^ (14)

By virtue of the algebraic identity

=irs(x,-M)'+2s' i; (x,-ri(i.-M)1

(15)

it is readily seen that

(The mean value of a sum is always the sum of the
mean values of its individual terms, so that the
overall mean value of the first summation inside the
brackets in the last line of (15) is simply na\. Fur-
thermore, in the case of independent identically
distributed measurements, the overall mean value
of the term involving the double summation is 0.)

Since, from (16), a-=a\^, it is seen that the
precision of the arithmetic mean of n independent

measurements is proportional to ^[n. Hence the
arithmetic mean of 4 independent measurements
has double the precision of a single measurement;
the mean of 9 independent measurements, thrice the
precision of a single measurement; and 144 inde-
pendent measurements will be required if their
arithmetic mean is to have a 12-fold increase in
precision over a single measurement. (But to ask
for a 12-fold increase in precision is to ask for a very
considerable improvement indeed, as can be seen
from a comparison of curves a and c in the top half
of fig. 1.)

To serve as a reminder of the distinction between
the standard deviation of an individual measurement
and the standard deviation of a mean x, it is cus-
tomary to refer to tr as the "standard deviation" of
a single measurement x, and to o-j- as the "standard
error" of the (arithmetic) mean x.

h. Within-Occasions Control

In the foregoing it has been assumed that the
individual measurements comprising the sequences
(1) corresponding to the respective "occasions,"
(i=l,2, . . .), could all be regarded as "observed
values" of independent identically distributed ran-
dom variables, that is, that the measurement process
concerned was in a state of simple statistical control.
When such is the case then any subset of n measure-
ments is strictly comparable to any other subset of
n measurements, and any two such subsets can be
combined and regarded validly as a single set of 2n

measurements. Unfortunately, as Student's com-
ment quoted on page 167 above clearly implies,

such complete homogeneity of measurement is rarely
if ever met in practice. More often the situation is

as described by Sir George Biddell Airy, British

Astronomer Royal 1835-1881, in (to my knowledge)
the first elementary book on the theory of errors and
combination of observations in the English language
[Airy 1861, p. 92]:

"When successive series of observations are made, day
after day, of the same measurable quantity, which is either
invariable ... or admits of being reduced by calculation to
an invariable quantity . . .; and when every known instru-
mental correction has been applied . . .; still it will sometimes
be found that the result obtained on one day differs from the
result obtained on another day by a larger quantity than
could have been anticipated. The idea then presents itself,

that possibly there has been on some one day, or on every
day, some cause, special to the day, which has produced a
Constant Error in the measures of that day."

Sir George, however, cautions against jumping to

conclusions on the basis of only a few observations:

"The existence of a daily constant error . . . ought not
to be lightly assumed. When observations are made on
only two or three days, and the number of observations on
each day is not extremely great, the mere fact, of accordance
on each day and discordance from day to day, is not sufficient

to prove a constant error. [And we should interject here
that under such circumstances apparent over-all accordance
is not sufficient to prove the absence of dail_v constant errors
either.] The existence of an accordance analogous to a
'round of luck' in ordinary changes is sufficiently probable. . . .

More extensive experience, however, may give greater confi-

dence to the assumption of constant errors . . . first, it ought,
in general to be established that there is possibility of error,

constant on one day but varying from day to day. ..."
[Airy 1861, p. 93.]

The most useful statistical tools for this purpose
are the control-chart techniques of the industrial
quality control engineer. If in such a situation, a
series of measurements obtained by measurement of

a single quantity a number of times on each of sev-
eral different days or "occasions" by a particular
measurement process is plotted in the form of a
control chart for individuals [ASTM 1951, pp. 76-78,
and pp. 101, 105], the individual measurements so
plotted will be seen to consist of "sections" identi-

fiable with the subsequences (1) corresponding to the
respective "occasions," (i=],2, 3, . . .), with the
measurements within sections pair-wise closer to-

gether on the average than two measurements one
of which comes from one section and the other from
another. Such a series of measurements is clearly

"out of control." If now parallel x- and 7?-charts

are constructed from these data, based on a series of

samples of equal size from within the respective "oc-
casions" or "sections" onbj, i.e., excluding means
X and ranges R of any samples that "straddle" two
occasions, and the points on the resulting x-chart
are clearly "out of control," then we may infer the
existence of day-by-day comnonents of error, con-
stant, perhaps, on one day, but varying from day
to day.

If points on the i?-chart constructed as described
are "out of control" also, then the measurement
operation concerned is in a completely unstable con-
dition and cannot be described validly as a "measure-
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ment process" at all. On the other hand, if the

3-chart is "out of control," but the i?-chart is "in

control," then we may regard the measurement
process as being in a state of within-occasions control.

("It is usually not safe to conclude that a state of

control exists unless the plotted points for at least

25 successive subgroups fall within the 3-sigma con-
trol limits. In addition, if not more than 1 out of

35 successive points, or not more than 2 out of 100,

fall outside the 3-sigma control limits, a state of

control may ordinarily be assumed to exist." [ASA
1958c, p. 18.]) In such a situation we postulate the
existence of (at least, conceptually) different limiting

means /ii for the respective "occasions" (i=l, 2, . .),

and a common within-occasions variance (t%.

An unbiased estimate of the within-occasions stand-

ard deviation <jy, can be obtained, if desired, from the

average range R used in constructing the i?-chart,

by means of the formula

unbiased estimate of (TtD—Rld2 (17)

where d2 is the factor given in the d^ column of table

B2 of [ASTM 1951, p. 115] corresponding to the
sample or subgroup size n used in constructing the
i?-chart.

Alternatively, if desired, an unbiased estimate of

(T%, can be obtained directly from the measurements
involved by means of the formula

unbiased estimate of <T'i=s^— '~^t77,
—

'

where ar^j denotes the jth measurement and the
arithmetic mean of the n measurements of the A-th

subgroup, respectively, and k is the number of sub-
groups involved in constructing the i?-chart.

c. Complex or Multistage Control

When a measurement process is not in a state of

simple statistical control that satisfies the criteria of

within-occasions control, that is, when the x-chart

(and control chart for individuals) are clearly "out
of control," but the 25 or more subgroup ranges
plotted on the i?-chart exhibit control, then it is usu-
ally of importance to ascertain whether the meas-
urement process concerned is possibly in a state of

complex or multistage statistical control. For this

purpose four or more measurements from each of at

least 25 different occasions will be needed. Taking
one sample of n successive measurements, (4<ri,<

10), from the available measurements corresponding
to each of, say, k(>25) different "occasions," eval-

uate the arithmetic means Xt of these samples,

(i—1, 2, . . ., k), and treating these averages as IN-
DIVIDUAL measurements construct_a control chart
for these "individuals" and parallel x- and J?-charts

as described in [ASTM 1951, Example 22, p. 101].

If the points plotted on these three control charts

exhibit control, then we "act for the present as if"

the measurement process concerned is in a state of

complex or multistage statistical control and regard the
limiting means for the respective "occasions,"

(1=1, 2, . . .) as being in a state of simple statistical

control with a limiting mean n and variance al,

termed the between-occasions component of variance.
If in such a situation we were to form cumulative

arithmetic means such as (3) of the squares of all

distinct differences between arbitrary pairs of meas-
urements from within each of the respective "occa-
sions," then such cimiulative arithmetic means of

squares of differences would almost surely tend to

2al, in the limit as the number of pairs included tends
to infinity, where <7^ is the "within-occasions vari-

ance" mentioned above in connection with "within-
occasions control." If, on the other hand we were
to form similar cumulative arithmetic means of the
squares of differences between arbitrary pairs con-
sisting in each instance of one measurement from
each of two different sections, then such a ciunula-

tive arithmetic mean of squared differences would
tend almost certainly to 2{al,+ (xl) as the number
of "occasions" sampled tends to infinity, where crl is

the above mentioned "between-occasions variance,"

i.e., the variance of the limiting means /i< for the

respective "occasions" about their limiting mean /i.

If in utilizing measurements from a measurement
process that is in such a state of complex statistical

control, one forms an average x^ that is the arith-

metic mean of a total of N=kn measurements, com-
posed of n measurements from each of k different

"occasions," then the variance of x^f will be

crl,^(^;;^=i(.|+^^) (19)

From (19) it is clear that, if is at all ^sizable com-
pared to al, then, for fixed N=kn, x^ will have
greater precision as a determination oj /i when based

on a large number k of different occasions, with only

a small niunber n of measurements from each occa-

sion. Finally, setting k=\, we see that the mean
Xj, of n measurements all taken on the same occasion

considered as a determination oj the overall limiting

mean has an overall variance cr|= o-6+ (ai,/n) ; but

considered as a determination oj jxt, the limiting mean
for the ith occasion, its variance is only In

other words, the "standard error" of a mean such

as ii is not unique, but depends on the purpose for

which it is to be used.

An unbiased estimate of the overall standard

deviation of the arithmetic mean of n measure-

ments taken on a single "occasion" may be ob-

tained by the procedure of forrnula (17) above, if

desired, using the average range R employed in con-

structing the i?-chart corresponding to the groups of

averages x,„.

Alternatively, an unbiased estimate of the overall

variance (t| can be obtained directly from the means

Xi used in constructing the 5-chart, by using the

formula
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--^1 (20)

k-l

where Xt is the arithmetic mean of the n successive

observations from the ith "occasion," (i= 1, 2, . . ., k)

and X is the arithmetic mean of these k means.
The foregoing concept of a state of complex or

multistage statistical control can be extended readily

to more complex truly "multistage" situations in-

volving three or more "levels" of random variation.

Finally, it is evident from the foregoing that when
a measurement process is in a state of complex or

multistage statistical control, then the difference be-
tween two individual measurements (or the arith-

metic means of n measurements) corresponding to

two different "occasions" will include the difference

Hi— between the limiting means corresponding to

the two particular occasions involved. In so far as

such a comparison is regarded as a unique individual

case, the difference is a fixed constant and
hence a systematic error affecting this comparison.
On the other hand, if the difference between these
two individual measurements (or these two arith-

metic means) is regarded only as a typical instance
of the outcomes that might be yielded by the same
measurement process on other pairs of occasions, then
the difference Hi— Hi- may be regarded as a random
component having a zero mean and variance 2al.

It goes without saying, of course, that if a control-

chart analysis of the type described above is under-
taken for the purpose of ascertaining whether the
process is in a state of complex control, but the points

plotted on the J-chart are clearly "out of control,"

then the measurement process concerned cannot be
regarded as statistically stable from occasion to occa-
sion, and should be used only for comparative measure-
ment within-occasions. Even when such a measure-
ment process is used solely for comparative meas-
urement within "occasions," it needs to be shown
that comparative measurements or Jixed differences

are in a state of (simple or complex) statistical con-
trol, if this measurement process is to be generally
valid in any absolute sense. Thus in the case of the
thermometer calibration procedure mentioned in sec-

tion 2.4 above, one needs to examine the results of

repeated measurement, occasion after occasion, of

the difference between two standard thermometers
Si and S2 of proven stability in order to determine
whether the process is or is not in a state of simple
or complex statistical control.

3.5. Difficulty of Characterizing the Accuracy of a
Measurement Process

Unfortunately, there does not exist any single com-
prehensive measure of the accuracy (or inaccuracy)
of a measurement process (analogous to the standard
deviation as a measure of its imprecision) that is

really satisfactory. This difficulty stems from the
fact that "accuracy," like "true value," seems to be
a reasonably definite concept on first thought, but

as soon as one attempts to specify exactly what one
means by "accuracy" in a particular situation, the

concept becomes illusive; and in attempting to re-

solve the matter one comes face to face, sooner or

later, with the question: "Accurate" for what
purpose?

Gauss, in his second development (1821-1823) of

the Method of Least Squares clearly recognized the

difficulty of characterizing sharply the "accuracy"
of any particular procedure:

"Quippe quaestio haec per rei naturam aliquid vagi
implicat, quod limitibus circumscribi nisi per principium
aliquatenus arbitrarium nequit . . . neque demonstrationi-
bus mathematicis decidenda, sed libero tantum arbitrio

remittenda." [Gauss 1823, Part I, Art. 6.]

Gauss himself proposed [loc. cit.] that the mean
square error of a procedure—that is, o-^+(ju— r)^,

where a is its standard deviation; and /x— r, its bias—be
used to characterize its accuracy. While mean square

error is a useful criterion for comparing the relative

accuracies of measurement processes differing widely
in both precision and bias, it clearly does not "tell

the whole story." For example, if one were to

adopt the principle that measurement processes

having the same mean square error were equally

"accurate," then one would be obliged to consider

the measurement processes corresponding to the

three curves shown in figure 3 as being of equal

" I am grateful to my colleague Franz Alt for the following literal translation
of these phrases:

"For this question implies, by the very nature of the matter, something
vague which cannot be clearly delimited except by somewhat arbitrary principle
. . . nor can it be decided by mathematical demonstrations, but must be left to
mere arbitrary judgment."

1 1 1
1

\ 1 1
1 1 1 1

fj.
= T,a -

1 / \

— 1 1 1
1^

—

O" = 1/4

-3 -2 -1 0 1 2 3

1 1 1

fj.
=T + v'3/4,cr = l/2

1 1 1

1 1^ 1
1 \J 1

B -3 -2 -1012 3 -1012 3 C

Figure 3. Three distributions differing with respect to both

precision and accuracy but with the same mean square error.
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accuracy, whereas for many purposes one would
regard process C (portrayed to the right) as the
"most accurate," in spite of the fact that the chances
of scoring a "bull's eye" or "near miss" are greater

in the case of process A shown in the upper left.

Alternatively, if one were to say that two measure-
ment processes were equally accurate when exactly

the same proportion P of the measurements of each
lay within ±5 units from the true value, then for

P=0.5 one would be obliged to say that the measure-
ment processes corresponding to curves e and d
in the lower half of figure 1 were equally accurate,

and that the measurement process corresponding to

curve a in the upper half of the same figure was
slightly more accurate than either e or d. Or,
taking P=0.95, one would be obliged to say that

the measurement processes corresponding to the

three curves shown in figure 4 were equally accurate.

From these, and other cases easily constructed, it is

readily seen that it is unsatisfactory to regard two
measurement processes as being equally accurate if

the same specified fraction P of the measurements
produced by each lie within the same distance from
the true value.

Thus one is led by the force of necessity to the

inescapable conclusion that ordinarily (at least)

two numbers are needed to adequately characterize

the accuracy of a measurement process. And this

has been recognized by the American Society for

Testing and Materials in their recent recommenda-
tions [ASTM 1961, pp. 1759-1760]:
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GURE 4. Three measuremeni processes differing in bias and
precision but having 95 percent of their individual measure-
ments within ±4.9 units from the true value t.

"Generally the index of accuracy will consist of two or
more different numbers. Since the concept of accuracy
embraces not only the concept of precision but also the idea
of more or less consistent deviation from the reference level
(systematic error or bias), it is preferable to describe accuracy
by separate values indicating precision and bias."

The fact of the matter is that two numbers ordinarily
suffice only because the "end results" of measurement
and calibration programs are usually averages or
adjusted values based on a number of independent
' primary measurements," and such averages and
adjusted values tend to be normally distributed to

a very good approximation when four or more "pri-

mary measurements" are involved. This is illus-

trated by figure 5, which shows the distributions of

individual measurements of two unbiased measure-
ment processes with identical standard deviations
but having uniform and normal "laws of error,"

respectively, together with the corresponding distri-

butions "of arithmetic means of 4 independent
measurements from these respective processes^

—

these latter two distributions are depicted by a single

curve because the differences between the two
distributions concerned are far less than can be
resolved on a chart drawn to this scale. Since both
of the processes concerned are unbiased, "accuracy"
thus becomes only a matter of "precision"^—or does
it?-—both curves for n=l have the same standard
deviation, do they reflect equal "accuracy"? Would
not the answer depend on the advantages to be
gained from small errors balanced against the serious-

ness of large errors, in relation to the purpose for

which a single measurement from one or the other
is needed? But "the problem" disappears nicely

if averages of 4 measurements are to be used.

1 I I i I I

I

I 1 I I—1—

r

Figure 5. Uniform and normal distributions of individual

measurements having the same mean and standard deviation,

and the corresponding distribution(s) of arithmetic means
of four independent measurements.
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4. Evaluation of the Precision, and of Cred-
ible Bounds to the Systematic Error of a
Measurement Process

As we have just seen, two numbers are ordinarily

needed to characterize the accuracy of a measure-
ment process, the one indicating its precision, and
the other its bias. In practice, however, the bias of

a measurement process is unknown and unknowable
because the "true values" of quantities measured are

almost always unknown and unknowable. The
principle exception is when one is measuring a
difference that is by hypothesis identically zero.

If the bias of a measurement process could be, and
were known exactly, then one would of course

subtract it off as a "correction" and thus dispose of

it entirely. Since ordinarily we cannot expect to

know the exact magnitude of the bias of a measure-
ment process, we are forced in practice to settle

for credible bounds to its likely magnitude— much
as did Steyning and the thief in chapterVI of Kipling's

story, Captains Courageous: "Steyning tuk him for

the reason that the thief tuk the hot stove—bekaze
for there was nothing else that season". Conse-
quently, neither the bias nor the accuracy of any
measurement process, or method of measurement,
can ever be known in a logical sense. The precision

of a measurement process, however, can be measured
and known. (Compare Deming [1950, p. 17].)

4.1. Evaluation of the Precision of a Measurement
Process

In the foregoing we have stressed that a measure-
ment operation to qualify as a measurement process

must have attained a state of statistical control ; and
that until a measurement operation has been
"debugged" to the extent that it has attained a

state of statistical control, it cannot be regarded in

any logical sense as measuring anything at all. It

is also clear, from our discussion of the control-chart

techniques for determining whether in any given
instance one is entitled to "act for the present as if"

a state of statistical control has been attained, that
a fairly large amount of experience with a particular
measurement process is needed before one can
resolve the question in the affirmative. Once a
measurement process has attained a state of sta-

tistical control, and so long as it remains in this

state, then an estimate of the standard deviation of

the process can be obtained from the data employed
in establishing control, as we have indicated above.

Since the precision of a measiu-ement process
refers to, and is determined by the characteristic

"closeness together" of successive independent meas-
urements of a single magnitude generated by repeated
application of the process under specified conditions,
it is clearly necessary in determining whether a
measurement operation is or is not in a state of

statistical control, and in evaluating its precision to

be reasonably definite on what variations of procedure,
apparatus, environmental conditions, observers,

operators, etc., are allowable in "repeated appli-

cations" of what will be considered to be the same
measurement process applied to the measurement of

the same quantity under the same conditions. If

whatever measure of the precision and bounds to

the bias of the measurement process we may adopt
are to provide a realistic indication of the accuracy
of this process in practice, then the "allowable varia-

tions" must be of sufficient scope to bracket the
range of circumstances commonly met in practice.

Scientists and engineers commonly append "probable
errors" or "standard errors" to the results of their

experiments and tests. These measures of impreci-
sion are supposed to indicate the extent of the

reproducibility of these experiments or tests under
"essentially the same conditions," but there are

great doubts whether the "probable errors" and
"standard errors" generally presented actually have
this meaning. The fault in most cases is not with
the statistical formulas and procedures used to com-
pute such probable errors or standard errors from
the measurements in hand, but rather with the
limited scope of the "conditions" sampled in taking
the measurements.

a. Concept of a "Repetition" of a Measurement

As a very minimum, a "repetition" of a measure-
ment by the same measurement process should "leave

the door open" to, and in no way inhibit changes of

the sort that would occur if, on termination of a
given series of measurements, the data sheets were
stolen and the experimenter were to repeat the

series as closely as possible with the same apparatus
and auxiliary equipment following the same instruc-

tions. In contrast, a "repetition" by the same
method of measurement should permit and in no way
inhibit the natural occurrence of such changes as

will occur if the experimenter were to mail to a

friend complete details of the apparatus, auxiliary

equipment, and experimental procedure employed—

•

i.e., the written text specification that defines the

"method of measurement" concerned—and the

friend, using apparatus and auxiliary equipment of

the same kind, and following the procedural instuc-

tions received to the best of his ability, were then,

after a little practice, to attempt a repetition of the

measurement of the same quantity. Such are the

extremes, but there is a "gray region" between in

which there is not to be found a sharp line of de-

marcation between the "areas" corresponding to

"repetition" by the same measurement process, and
and to "repetition" by the same method of measure-

ment.
Let us consider "repetitions" by the same meas-

urement process more fully. Such repetitions will

undoubtedly be carried out in the same place, i.e.,

in the same laboratory, because if it is to be the

same measurement process, the very same apparatus

must be used. But a "repetition" cannot be carried

out at the same time. How great a lapse of time

should be allowed, nay required, between "repeti-

tions"? This is a crucial question. Student
gives an answer in a passage from which we quoted
above [Student 1917, p. 415]:
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"Perhaps I may be permitted to restate my opinion as to
the best way of judging the accuracy of physical or chemical
determinations.

"After considerable experience I have not encountered
any determination which is not influenced by the date on
which it is made; from this it follows that a number of

determinations of the same thing made on the same day are
likely to lie more closely together than if the repetitions had
been made on different days.

"It also follows that if the probable error is calculated
from a number of observations made close together in point
of time, much of the secular error will be left out and for

general use the probable error will be too small.

"Where then the materials are sufficiently stable it is

well to run a number of determinations on the same material
through any series of routine determinations which have to be
made, spreading them over the whole period."

Another important question is: Are "repetitions"

by the same measm'ement process, to be limited to

repetitions by the same observers and operators,

using the same auxiliary equipment (bottles of

reagents, etc.) ; or enlarged to include repetitions

with nominally equivalent auxiliary equipment, by
various but equivalently trained observers and
operators? I believe that everyone will agree that
substitution, and certainly replacement, of bottles

of reagents, of batteries as sources of electrical

energy, etc., by "nominally equivalent materials"
must be allowed. And any calibration laboratory
having a large amount of "business" will certainly,

in the long run at any rate, have to face up to allow-
ing changes, even replacement of observers and
operators—and, idtimately, even of apparatus.
A very crucial question, not alwa^^s faced squarely,

is: in complete "repetitions" by the same measure-
ment process, are such "repetitions" to be limited to

those intervals of time over which the apparatus is

used "as is" and "undisturbed," or extended to

include the additional variations that almost always
manifest themselves when the apparatus is dis-

assembled, cleaned, reassembled, and readjusted?
Unless such disassembly, cleaning, reassembly, and
readjustment of apparatus is permitted among the
allowable variations affecting a "repetition" by the
same measurement process, then there is very little

hope of achieving satisfactory agreement between
two or more measurement processes in the same
laboratory that differ only in their identification with
different pieces of apparatus of the same kind. In
practice it is found that statistical control can be
attained and maintained under such a broad concept
of "repetition" only through the use of reference
standards of proven stability. Furthermore, by
thus more squarely facing the issue of the scope of

variations allowable with respect to "repetitions"

by the same measurement process, we shall go a
long way toward narrowing the gap between a
"repetition" by the same measurement process and
by the same method of measurement.
As we have said before, if whatever measm-es of

the precision and bias of a measurement process we
may adopt are to provide a realistic indication of the
accuracy of this process in practice, then the "allow-
able variations" must be of sufficient scope to bracket
the range of circumstances commonly met in prac-
tice. Furthermore, any experimental program that
aims to determine the precision and systematic error.

and thence the accuracy of a measurement process,
must be based on an appropriate random sampling
of this "range of circumstances," if the usual tools

of statistical analysis are to be strictly applicable.
Or as Student put it, "the experiments must be
capable of being considered to be a random sample
of the population to which the conclusions are to be
applied. Neglect of this rule has led to the estimate
of the value of statistics which is expressed in the
crescendo 'lies, damned lies, statistics'." [Student
1926, p. 711.]

When adequate random sampling of the appro-
priate "range of circumstances" is not feasible, or
even possible, then it is necessary to compute, by
extrapolation from available data, a more or less

subjective estimate of the "precision" of the end
results of a measurement operation, to serve as a
substitute for a direct experimental measure of their

"reproducibihty." Youden fl962d] calls this "ap-
proach the 'paper way' of obtaining an estimate of

the [precision]." Its validity, if any, "is based on
subject-matter knowledge and skill, general informa-
tion, and intuition—but not on statistical method-
ology" [Cochran et al. 1953, p. 693].

b. Some Examples of Realistic "Repetitions"

As Student remarked [1917, p. 415], "The best way
of judging the accuracy of physical or chemical
determination . . . [when] the materials are suffi-

ciently stable ... is ... to run a number of

determinations on the same material thru any series

of routine determinations which have to be made,
spreading them over the whole period." To this

end, as well as to provide an overall check on pro-

cedure, on the stability of reference standards, and
to guard against mistakes, it is common practice in

many calibration procedtu'es, to utilize two or more
reference standards as part of the regular calibration

procedure.
The calibration procedure for liquid-in-glass therm-

ometers, referred to in section 2.4 above, is a case in

point. A measurement of the difference between the

two standards Si and S2 is obtained as by-product
of the calibration of the four test thermometers
Ti, 1*2, Ta, and in terms of the (corrected) readings

of the two standards. It is such remeasurements of

the difference between a pair of standard thermom-
eters from "occasion" to "occasion" that constitutes

realistic "repetitions" of the calibration procedure.

The data yielded by these "repetitions" are of

exactly the type needed (a) to ascertain whether or

not the process is in a state of statistical control ; and
if so, (b) to determine its overall standard deviation.

Similarly, in the calibration of laboratory standards

oj mass at the National Bureau of Standards,

"known standard weights are calibrated side-by-side

with [the] unknown weights" [Aimer et al., 1962,

p. 33]. Indeed, weights whose values are otherwise

determined "are not said to have been 'calibrated'.

That term is reserved for measurements based on at

least two mass standards." [loc. cit., p. 43.] In the

specimen work sheets exhibited by Aimer et al., the

auxiliary standards involved are those from the

Bureau's "NH series" of reference standards known
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by the designations NH50, NH20, and NHlOi
respectively. It is the measurements obtained in

routine calibrations of the differences between the

values of these standards and their accepted values

that not only provide valuable checks on day-to-day
procedure, but also serve as the basis for determina-
tion of the overall standard deviation of tliis calibra-

tion process.

A third example is provided by the method
followed at the National Bureau of Standards for

testing alternating-current watthour meters, which has
been described in some detail by Spinks and Zapf
[1954]. Four reference watthour meters are involved.

One of these, termed "the Standard Watthour
Meter," is located in the device portrayed in figure

1 of the paper by Spinks and Zapf. The other three

are located in a temperature-controlled cabinet.

A "test" of a watthour meter sent to the Bureau
involves not only a comparison of this watthour
meter with the Standard Watthour Meter, but also

comparisons of each of the Comparison Standard
Watthour Meters with the Standard Watthour
Meter. It is from the data yielded by these inter-

comparisons of the Standard Watthour Meter and
the Comparision Standard Watthour Meters that
the standard deviation of this test procedure is

evaluated. Spinks and Zapf's section on "Precision
and Accuracy Attainable" is notable for its ex-

ceptional lucidity as well as for its completeness
with respect to relevant details.

Some additional examples of realistic "repetitions"
are discussed by Youden [1962c].

4.2. Treatment of Inaccuracy Due to Systematic
Errors of Assignable Origins but of Unknown
Magnitudes

As we remarked in section 3.3b above, the sys-

tematic error of a measurement process will ordinarily

have both constant and variable components. For
convenience of exposition, it is customary to regard
tlie individual components of the overall systematic
error of a measurement or calibration process as
elemental or constituent "systematic errors" and to
refer to them simply as "systematic errors," for

short. Included among such "systematic errors"
affecting a particular measurement or calibration
process are: ".

. . all those errors which cannot be
regarded as fortuitous, as partaking of the nature
of chance. They are characteristic of the system
involved in the work; they may arise from errors in

theory or in standards, from imperfections in the
apparatus or in the observer, from false assumptions,
etc. To them, the statistical theory of error does not
apply." [Dorsey 1944, p. 6; Dorsey and Eisenhart
1953, p. 104.1

The overall systematic error of a measurement
process ordinarily consists of elemental "systematic
errors" due to both assignable and unassignable
causes. Those of unknown (not thought of, not
yet identified, or as yet undiscovered) origin are
always to be feared; allowances can be made only
for those of recognized origin.

Since the "known" systematic errors affecting a
measurement process ascribable to specific origins

are ordinarily determinate in origin only, their
individual values ordinarily being unknown both
with respect to sign and magnitude, it is not possible
to evaluate their algebraic sum and thereby arrive
at a value for the overall systematic error of the
measm-ement process concerned. In consequence, it

is necessary to arrive at bounds for each of the
individual components of systematic error that may
be expected to yield nonnegligible contributions,
and then from these bounds arrive at credible bounds
to their combined effect on the measurement process
concerned. Both of these steps are fraught with
difficulties.

Determination of reasonable bounds to the
systematic error likely to be contributed by a
particular origin or assignable cause necessarily
involves an element of judgment, and the limits can-
not be set in exactitude. By assigning ridiculously
wide limits, one could be practically certain thatj
the actual error due to a particular cause would never
lie outside of these limits. But such limits are not
likely to be very helpful. The narrower the range
between the assigned limits, the greater the uneasi-
ness one feels that the assigned limits will not
include whatever systematic error is contributed
by the cause in question. But a decision has to
be made; and on the basis of theory, other related
measurements, a careful study of the situation in

hand, especially its sensitivity to small changes in

the factor concerned, and so forth, "the experi-
menter presently will feel justified in saying that
he feels, or believes, or is of the opinion," that the
systematic error due to the particular source in

question does not exceed such and such limits,

"meaning thereby, since he makes no claim to
omniscience, that he has found no reason for

believing" that it exceeds these limits. In other
words, ' nothing has come to light in the course
of the work to indicate" that the systematic error
concerned lies outside the stated range. [Dorsey
1944, pp. 9-10; Dorsey and Eisenhart, 1953. pp.
105-107.]

This being done to each of the recognized potential
sources of systematic error, the problem remains
how to determine credible bounds to their combined
effect. Before considering this problem in detail,

it will be helpful to digress for a moment, to consider

an instructive example relating to the combined
effect of constant errors in an everyday situation.

a. An Instructive Example

Consider the hypothetical situation of an indi-

vidual who is comparing his checkbook balance with
his bank statement. To this end he needs to know
the total value of his checks outstanding. Loathing
addition, or perhaps, simply to save time, he adds
up only the dollars, neglecting the cents, and thus
arrives at a total of, say, $312, for 20 checks out-
standing. Adding a correction of 50 cents per check,
or $10 in all, he takes $322 as his estimate. Within
what limits should he consider the error of this

estimate to lie?

The round-off error cannot exceed ±50 cents per
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check, so that barring mistakes in addition, he can
be absolutely certain that the total error of his

estimate does not exceed ±$10. But these are
extremely pessimistic limits: they correspond to

every check being in error by the maximum possible

amount and all in the same direction. (Actually

the maximum possible positive error is 49 cents per
check or +$9.80 in all.)

To be conservative, but not so pessimistic, one

might "allow" a maximum error of ± 50 cents per
check, but consider it reasonable to regard their signs

as being equally likely to be plus or minus. In this

way one would be led to conclude "with probability
0.95" that the total error lies between ± $4.00; or
"with probability 0.99," between ± $6.00, as sho^vn

in the column headed "binomial" in table 1, for

n= 20.

Table 1. Limits of error of a sum of n items indicated by various methods of evaluation

Binomial* Uniform Triangular Normal, 2<r-0.5 Normal, a»-OA
n Absolute

±
0.95 ± 0.99 ± 0.95 ± 0.99 ± 0.95 ± 0.99 ± 0.95 ± 0.99 ± 0.95 ± 0.99 db

1 0.50 0.50 0.50 0.48 0.50 0.39 0.45 0.49 0.64 0.33 0.43
2 L'OO 1.00 1.00 0.78 0.90 0.56 0.71 0.69 0.91 0.46 0. 61

3 1.50 1.50 1.50 0.97 1. 19 0.69 0.88 0 85 1. 12 0.57 0.74
4 2.00 2.00 2 00 1.12 1.41 0.80 1.03 0.98 1.29 0.65 0.86
5 2.50 2.50 2.50 1.25 1.60 0.89 1. 15 1.10 1.44 0.73 0.96
6 3.00 2 00 3.00 1.38 1.76 0.98 1.29 1.20 1.58 0.80 1.05
7 3.50 2.50 3.50 1.49 1.91 1.06 1.39 1.30 1.70 0.86 1. 14

8 4.00 3.00 3.00 1.59 2.05 1. 13 1.49 1.39 1.82 0.92 1.21

9 4.50 2.50 3.50 1.69 2.18 1.20 1.68 1.47 1.93 0.98 1.20

10 S.OO 3.00 4.00 1.78 2.31 1.27 1.66 1.55 2.04 1.03 1.36

IS 7.50 3.50 4.60 2.19 2.88 1.55 2.04 1.90 2 49 1.27 1.66
20 10.00 4.00 6.00 2.53 3.33 1.79 2.35 2.19 2 88 1.46 1.92
25 12.60 4.50 6.50 2.83 3. 72 2 00 2 63 2 45 3.22 1.63 2.15
30 15.00 5.00 7.00 3.10 4.07 2. 19 2.88 2.68 3.53 1.79 2.35
40 20.00 6.00 8.00 3.58 4.70 2.53 3.33 3.10 4.07 2.07 2.72
SO 25.00 7.00 9. 00 4.00 5.26 2.83 3.72 3.46 4.SS 2.31 3.04
60 30.00 8.00 10.00 4.38 5.76 3.10 4.07 3.80 4.99 ZS3 3.33

*The result* are not mono-
tonic due to the dlserete-

neB8 of the dUtrlbation.

Alternatively, one might consider it to be more
"realistic" to regard the individual errors as inde-

pendently and uniformly distributed between —50
cents and +50 cents, concluding "with probability
0.95" that the total error does not exceed ±$2.53;
or "with probability 0.99," is not greater then
±$3.33—as shown in the columns under the heading
"uniform" in table 1. It is clear that a considerable

reduction in the estimate of the total error is achieved
by this approach.

Strictly speaking, the foregoing analyses via the

theory of probability are both inapplicable to the

problem at hand: each round-off error is a fixed

number between ±50 cents, and their sum is a fixed

number between ±$10. If it were true that round-
off errors in such cases were uniformly distributed

between ±50 cents, then, if one made a habit of

evaluating limits of error according to this procedure,
one could expect the limits of error so calculated to

include the true total error in 95 percent, or 99 per-

cent of the instances in which this procedure was
used in the long run . Round-off errors in such cases are

almost certainly not uniformly distributed between
±50 cents. (Many items are priced these days at

$2.98 etc., and this will distort the distribution of the
cents-portion of one's bills but added sales taxes no
doubt have a "smoothing" effect.)

Nevertheless, I believe that you wiU agree that if,

in the hypothetical case under discussion, the
checkbook balance, with an allowance of $322 for

checks outstanding, failed to agree with the bank
statement to within $2.53 (or $3.33), our "friend"
would do well to check into the matter more thor-

oughly. And, alternatively, if his checkbook balance
so adjusted, and the bank statement, agreed to

within $2.53 (or $3.33), it would be reasonably

"safe" for him to "act for the present as if" his

balance and the bank statement were in agreement.

(See Eisenhart [1947a, p. 218] for discussion of a
similar example relating to computation with
logarithms.)

b. Combination of Allowances for Systematic Errors

The foregoing example suggests that a similar

procedure be used for arriving at credible limits to

the likely overall effect of systematic errors due to a

number of different origins. A number of additional

difficulties confront us, however, in this case. To
begin with, in view of the inexactness with which
bounds can ordinarily be placed on each of the indi-

vidual components of systematic error, it is not

possible to say with absolute certainty that their

combined effect lies between the sum of the positive

bounds and the sum of the negative bounds.
Second, even if it were possible to scale the situa-

tion so that the bounds for each of the components
of systematic error was the same, say, ±A, there

would still remain the problem of translation into an
appropriate probability calculus. Most persons

would, I believe, regard the "binomial" approach
(corresponding to equal probabiHty of maximum
error in either direction), as too pessimistic; and the

approach via a uniform distribution of error, as a bit

conservative, on the grounds that one intuitively

feels that the individual errors are somewhat more
likely to lie near the centers than near the ends of

their respective ranges. Therefore, one might at-

tempt to simulate this "feeling" by assuming the

"law of error" to be an isosceles triangle centered at

zero and ends at ± A; or, more daringly, by assuming

the "law of error" to be approximately normal with

A corresponding to 2 "a" or even 3 "a."
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Unfortunately whatever "probability limits" may
be placed upon the combined effects of several inde-

pendent systematic errors by these procedures are

quite sensitive to the assumption made at this stage,

as is evident from table 1. Therefore, anyone who
uses one of these methods for the "combination of

errors" should indicate explicitly which of these (or

an alternative method) he has used. When (a) the

number of systematic errors to be combined is large,

(b) the respective ranges are approximately equal in

size, and (c) one feels "fairly sure" that the indi-

vidual errors do not fall outside of their respective

ranges, then my personal feeling is that the "uni-

form" method is probably a wee bit conservative

but "safe"; the triangular method is a bit "too
daring"; the normal method with "cr"= A/3 ordi-

narily "much too daring"; but the normal method
with "(r"= A/2, probably "not too daring." When
(b) and (c) hold but n is small, then it will probably
be safe to use the "uniform" method with "A" taken
equal to the average of the individual ranges.

Other cases, e.g., when n is large but, say, one or two
of the ranges is (are) much larger than the others

and tend(s) to dominate the situation, requires

special consideration which is beyond the scope of

the present paper.

4.3. Expression of the Inaccuracy of a Measurement
Process

By whatever means credible bounds to the likely

overall systematic error of the measurement process

are obtained they should not be combined (by simple
addition, by "quadrature," or otherwise) with an ex-

perimentally determined measure of its standard de-

viation to obtain an overall index of its accuracy (or,

more correctly, of its inaccuracy). Rather (a) the

standard deviation of the process and (b) credible

bounds to its systematic error should be stated sepa-

rately, because, as we showed in figure 3, a meas-
urement process having standard deviation ff— 0.25

and a bias A= Vl5/16=0.97 is for most purposes
"more accurate" than a measurement process having
zero bias and standard deviation a=\, so that a proc-

ess with <r=0.25 and a bias less than ±0.97 will a
Jortiori be "more accurate."

Finally, if the uncertainties in the assigned value
of a national standard or of some fundamental con-
stant of nature (e.g., in the volt as maintained at the

National Bureau of Standards, or in the speed of light

c, or in the acceleration of gravity g on the Potsdam
basis) is an important potential source of systematic
error affecting the measurement process, no allowance
for possible systematic error from this source should
be included ordinarily in evaluating overall bounds
to the systematic error of the measurement process.

Since the error concerned, what ever it is, affects all

results obtained by the method of measurerrtent in-

volved, to include an allowance for this error would
be to make everybody's results appear unduly in-

accurate relative to each other. Instead, in such in-

stances one should state (a) that results obtained by
the measurement process concerned are in terms of

the volt (or the watthour, or the kilogram, etc.)

"as maintained at the National Bureau of Stand-
ards" [McNish and Cameron 1960, p. 102], or
"correspond to the speed of light c=2.997925X 10'"

cm/sec. exactly," say; and (b) that the indicated
bounds to the systematic error of the process are

exclusive of whatever errors may be present from
this (or these) source (s). Given such information,
experts can make such additional allowances, as may
be needed, in fundamental scientific work; and com-
parative measurements within science and industry
within the United States will not appear to be less

accurate than they very likely are for the purposes
for which they are to be used.

It is a pleasure to acknowledge the technical assist-

ance of Janace A. Speckman in several phases of the
preparation of this paper.
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BY an absolute measurement of a physical

quantity, such as the velocity of light, is

meant the determination of the value of that

quantity in terms of the significant fundamental

units of length, mass, time, etc., and of those con-

stant parameters that characterize the accepted

system of theoretical equations that connect the

several pertinent quantities, (p. 9.)

Theory of Errors

The mean of a family of measurements—of a

number of measurements of a given quantity car-

ried out by the same apparatus, procedure, and
observer—approaches a definite value as the num-
ber of measurements is indefinitely increased.

Otherwise, they could not properly be called meas-
urements of a given quantity. In the theory of

errors, this limiting mean is frequently called the

"true" value, although it bears no necessary rela-

tion to the true quaesitum, to the actual value of

the quantity that the observer desires to measure.
This has often confused the unwary. Let us call it

the limiting mean.
Let e denote the amount by which a given mem-

ber of the family departs from the limiting mean,
and let eg denote that value which in the indefi-

nitely extended family is surpassed by half of the

* Excerpts from introductory "Remarks" of N. Ernest
Dorsey's "The Velocity of Light" (Transactions of the
American Philosophical Society, Vol. 34, pp. 1-110,
1944), selected and arranged by Churchill Eisenhart.

t Physicist (retired). National Bureau of Standards.
Associate editor. Iritemotional Critical Tables, 1922-1929.

t Chief, Statistical Engineering Laboratory, National
Bureau of Standards.

g's; that is, it is an even chance that a given mem-
ber of such an extended family departs from the

limiting mean by as much as Cq.

The quantity eq, the quartile error, commonly
called the probable error of a single observation,

will in this study be called the technical probable

error of a single member of such a family, (p. 4.)

It should be noticed that the technical probable

error either of a single measurement or of the mean
of a group of n measurements indicates mereiv

the closeness with which that measurement or mean
probably approaches the limiting mean. It tells

nothing whatevei about the actual quaesitum, and
so it is of very minor interest to the experimental

physicist engaged in absolute measurements.

To him its main interest is threefold: [a) It

tells him when it has become profitless to take

additional routine observations; but in most cases

other and more important considerations set an-

other limit, {b) It may enable him to state posi-

tively that a systematic error affects one or both of

two rival families of measurements, (c) It, as ap-

plied to a relatively small number of observations,

enables him to state positively that systematic errors

smaller than a certain amount cannot with cer-

tainty be detected experimentally with the appa-

ratus and procedures employed in obtaining those

measurements.

The last is, for him, by far the most valuable

property of the technical probable error. But in

practice he seldom thinks of it in that connection.

By what seems to be a kind of intuition, he recog-

nizes rough numerical relations between the mini-
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mum delectable error and the mean deviation of

tlie several determinations from their mean. Ami
he studies those deviations without thinking about

the technical probable error. Actually, the rela-

tions he uses are practically those that may be de-

rived in the following manner from the technical

probable error.

The argument runs as follows: If the means of

two groups of measurements do not differ by at

least the sum of their technical probable errors,

then the existing difTerence is not sufficient to

justify the assumption that they do not belong to

the same statistical family. Consequently, if the

only basic difference between the groups were the*

presence in one of a systematic error that was ab-

sent from the other, then the presence of that error

could not be certainly established from the differ-

ence, unless it amounted to at least the sum of the

two technical probable errors. Conversely, it can-

not be proved that the measurements are not

affected by such an error, (pp. 5 and 6.)

. . . the term "systematic error" is used to cover

all those errors which cannot be regarded as for-

tuitous, as partaking of the nature of chance. They
are characteristics of the sy.^tem involved in the

work; they may arise from errors in theory or in

standards, from imperfections in the apparatus or

in the observer, from false assumptions, etc. To
them, the statistical theory of errors does not

apply. They are frequently called "constant errors,"

and \er)- often they are constant throughout a
given set of determinations, but such constancy

need not obtain. For example, if the value found
by a certain measurement depends upon the hu-
midity of the air, which the experimenter fails to

record, thinking that it is of no consequence, then
the measures will be affected by a systematic error

which will, in general, vary throughout the day
and especially from day to day. (p. 6.)

Averaging

Any set of numbers may be weighted as desired,

and summed and averaged, and the result can be

carried out to as many digits as one may wish.

The procedures are simple, exact, and not open
to any question or criticism. They are purely

arithmetical.

But if the numbers represent 'physical quantities,

then questions arise concerning both the validity

of averaging and the number of digits that have a
physical significance.

1) It is sometimes forgotten that the averaging
of a set of values, even of the same kind, may be
a physically invalid procedure. That is, that the

average may not deserve greater (:f)nfidfnce as an

estimate of tli(! cjuaesitum than do the individual

values.

For example, consider a series of sets of deter-

minations, each set being affected by a systematic

error peculiar to it; that error being constant

throughout any given set, but varying from set to

set. Superposed on that error arc fluctuating errors

of various kinds. These last are minimized, set by

set, by averaging the determinations composing a

set. This averaging is entirely proper. But it leaves

one with a series of values that differ, one from

another, on account of the presence of systematic

errors peculiar to each. In general, the averaging

of such a series of values will be quite invalid; in

general, the average will not deserve more con-

fidence than do the individual values. The only

cases in which it will be justifiable when the values

differ by more than can be accounted for by the

irregularities inherent in each of the several sets,

are three : those in which it is definitely known—or

perhaps is ver)' highly probable—that the variation

in the systematic error from one value to another

either is {a) strictly fortuitous, in which case the

fluctuating part of the error is minimized by the

averaging, or (b) arises from the error fluctuating

between equal and fixed positive and negative

values, the number of positive values being es-

sentially equal to the number of negative ones, or

{
c ) arises from the error varying progressively from

a positive value to a negative one as certain un-

controlled conditions change, and those conditions

are known to vary in such a way that each negative

error will in the long run be matched by an equal

positive one.

Only when one knows a great deal about the

systematic error can one be sure that any of these

conditions are satisfied. And when he knows that

much, he can often arrange to eliminate, or to

evaluate, the error; and he should do so.

The cases that most frequently give trouble are

those in which the data give evidence of the pres-

ence of a systematic error, but the experimenter

does not know its source, and those in which an-

other studying the data finds evidence of a sys-

tematic error that was overlooked by the experi-

menter. In such cases one may not know how the

error varies with the conditions. If it makes all the

values too great, then the smaller ones will be better

than the average. Or the reverse may be true. Or
the error may be present in some and absent from

others; then averaging will not improve things.

Under such conditions it is quite improper to

present the average as being superior to the in-

dividual values.
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One is never justified in merely guessing that

averaging will minimize or eliminate the eflect of

a systematic error. He must know it, must know
that under the actually existing conditions the

error is so minimized or eliminated.

In the absence of such knowledge, the proper

brief summation of the work would seem to con-

sist in a giving of the extreme values with a state-

ment that at least some of the values seem to be

affected by a systematic error of unknown origin.

To this might well be added the experimenter's

opinion, and if he wishes, the arithmetical average,

with a clear statement of its questionable value.

To give merely the average tends to mislead the

reader, to blind him to the presence of systematic

errors. The reader must always be on guard, as it

is not very uncommon for a writer to average his

results quite invalidiy, either because he has not

awaked to the fact that averaging may be invalid

or because he has failed to recognize the evidence

for the existence of systematic error.

2) The number of digits that are of physical

significance in the sum and in the average must be

carefully considered, (pp. 6 and 7.)

Quaesitum

The quaesitum of the investigation is the actual

value of the quantity. The particular value yielded

by a given apparatus, procedure, and observer is

of no interest in itself, but only in connection with

such a study as will enable one to say with some
certainty that the value so found does not depart

from the quaesitum by more than a certain stated

amount. No investigation can establish a unique

value for the quaesitum, but merely a range of

values centered upon a unique value. The quae-

situm may lie anywhere within that range, but the

wiser and more careful the experimenter's search

for systematic errors, and the more completely he

has eliminated them, the less likely is it to lie near

the limits of the range. The wider the range, the

less becomes the physical significance of the par-

ticular value on which the range is centered, (p. 9.)

Definitive Value

The term "definitive value" is used in two dis-

tinct, though related, senses, (a) In a narrower,

particular sense, it denotes the value that is be-

lieved to lie as near the quaesitum as any that can
be legitimately derived from the observations taken

in the course of the work being reported. It is the

ultimate or definitive value to which that work
itself leads. It is often called the "final" value of

the work, (b) In a broader, general sense, it de-

notes the value that is believed to lie as near the

quaesitum as any that can be derived from a con-

sideration of all the determinations that have been

made, and of all other available pertinent informa-

tion. Whenever not otherwise indicated by the

context or a modifier, it is in this broader sense

that the term is to be understood.

Every report of measurements of a physical

quantity should state clearly the particular defini-

tive value to which those measurements lead. It

may also give the broader definitive value based on

everything that is known. But the two should not

be confused, as unfortunately they often are. (p. 9.)

Dubiety

The determination of the range is of an im-

portance that is secondary only to that of its center.

No absolute measurement has been completed until

values have been established for both of those

quantities. The determination of the range neces-

sarily involves an element of judgment, and the

limits cannot be set with precision. Nevertheless,

it is possible to assign a lower limit; and although

no fixed upper limit can be assigned, it is possible

to say that if suitable care and diligence had been

employed, it is not likely that the range exceeds a

certain specified value.

In order to distinguish this range from the nu-

merous kinds of "errors" that abound, its half will

in this study be called the "dubiety" of the value

found. If that value be denoted by V, and the

dubiety by D, then the quaesitum will likely lie

within the range {V - D) to {V + D) . By this, one

means that nothing has come to light in the course

of the work to indicate that ihe q. aesiturn lies out-

side that range.

The dubiety is made up of three distinct addi-

tive terms to which it is convenient to give descrip-

tive names. They are as follows:

Mensural dubiety arises from the uncertainties

in the several primary measurements and in the

elimination of known systematic errors. It is com-

mon practice tp take the arithmetical sum of the

effects of these individual uncertainties as an upper

limit for the mensural dubiety.

Discordance dubiety arises from the fact that the

discordance in the individual determinations limits

the smallness of a systematic error that can be ex-

perimentally detected. The result cannot be less

dubious than the size of the largest systematic error

that can escape detection. This term of the dubiety

is generally the most important by far, and the

least understood and least appreciated by those

who are not experimentalists.

Deficiency dubiety arises from the determinations
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being too few; in particular, finite in number. It is

equal to the technical probable error of the result.

This term, much honored by those not skilled in

e.xperimentation, is always smaller than the dis-

cordance dubiety and frequently is negligible in

comparison therewith.

Of these three terms, the second alone needs to

be especially considered here. In searching for sys-

tematic errors, the logical procedure is to make a

series of measurements, then to change something

and to make another series, and to compare the

means of the two groups. This will be repeated as

often as may seem necessary. None of the series

can be long, for an extended delay offers oppor-

tunity for unanticipated changes to occur. If the

two means being compared do not differ by more

than the sum of their technical probable errors,

their difference is of no physical significance—it

proves nothing. Hence, the presence of a systematic

error that does not exceed the sum of the technical

probable errors of the two groups of observations

used in the search cannot be established without

great difnculty, if at all. That sets a minimum limit

for the discordance dubiety, (pp. 9 and 10.)

Obviously, no one should claim a discordance

dubiety that is smaller than the smallest systematic

error that he might certainly have detected by the

tests he made. But there may be reasons that seem
to him sound for believing that the actual dubiety

is smaller than that. In such case he may, and
generally should, state his belief and the reasons

therefor; but the statement should never be of such

a kind as to lead the reader to confuse the writer's

Cbtimate with the minimum discordance dubiety as

just defined, (p. 10.)

But on comparing a series of determinations
made by different persons with significantly differ-

ent apparatus and procedures, it may be found that

the several members of the series agree more closely

than their individual dubieties would lead one to

expect. Then if the differences in apparatus and
procedure are sufficiently fundamental, one might
be justified in thinking it very improbable that the
quaesitum lies far outside the range of the means
of the several members of the series. And from the

whole he might infer a smaller range of possible

values than that demanded by the dubieties of the

several determinations, (p. 10.)

No one is really interested in how near the
quaesitum the definitive value may possibly lie, for

he knows that by chance the two may coincide even
though the work be very poorly done. But one does

keenly desire to know how far the two are likely to

differ—how dubious the definitive value may be.

And it is the plain duty of the experimenter not

merely to show that his definitive value may be

that of the quaesitum, but to prove that it is un-

likely to depart from the quaesitum by more than a

certain stated amount. In order to obtain the in-

formation needed to meet that demand, the careful

experienced investigator will proceed somewhat as

follows, (p. 10.)

Procedure

Before one undertakes an absolute measurement

in physics, he will make a careful theoretical study

of the problem, including, among other things,

methods of attack, sources of errors and how they

can be avoided or eliminated, and types of com-

putation. On the basis of that study, the apparatus

will be constructed and set up. Only then does the

mvestigation itself begin.

Working standards of the absolute units required

must be carefully compared with primary stand-

ards. This will ordinarily be done at some stand-

ardizing laboratory, which will certify those work-

ing standards as being correct under certain speci-

fied conditions to within, say, a in 10". That value

is accepted by the experimenter and sets the top

limit to the known accuracy attainable in the work.

If, for example, the absolute measurement at-

tempted were simply a length, and the working

standard were certified as correct to 3 in 10^, then

the absolute measurement (which determines

merely the ratio of the measured length to that of

the working standard) could under no condition

give the value of the quaesitum to a known ac-

curacy that exceeds 3 in 10^. No matter how small

the technical probable error of the measurements

might be, the dubiety of the result cannot be less

than 3 in 10\ Indeed, the dubiety of the value

found for the quaesitum will in general be dis-

tinctly greater than that, on account of errors in-

herent in the absolute measurement itself.

The experimenter will measure each of the in-

volved quantities in terms of the appropriate work-

ing standard, taking pains to observe as well as may
be the conditions laid down by the standardizing

laboratory, and to determine carefully whatever is

necessary to correct for the actual deviations from

those conditions. He will do this repeatedly, and he

will also measure them under deliberately different

conditions, so as to obtain a check on the accuracy

with which he can correct for departures from the

specified conditions.

Having found that the apparatus seems to be
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working properly, he will change, one by one, and

by known amounts, each of the adjustments, and

will note how each change affects his observations.

If possible, he will carry each maladjustment to a

point where it produces an easily measurable

change in his observations; and if maladjustments

in both directions (positive and negative) are pos-

sible, he will similarly study each. Thus he will

find how important the several adjustments are,

the accuracy with which they must be made, and
perhaps how to detect each maladjustment ex-

perimentally and to correct for the error that it

produces.

Readjusting the apparatus, he will proceed to

change, one by one, every condition he can think

of that seems by any chance likely to affect his

result, and some that do not, in every case pushing

the change well beyond any that seems at all likely

to occur accidentally.

There still remains the possibility of systematic

errors arising from unsuspected causes, from secular

variation in laboratory conditions (temperature,

humidity, light, vibration, etc.), possibly from solar,

lunar, or atmospheric effects, etc. So the observer

will take long series of observations, extending over

weeks, months, or years, noting carefully every-

thing that seems either pertinent in itself or of

assistance in fixing the attendant conditions. These
will be worked up, day by day, carefully compared
with one another, and probably plotted in such a

way as to show clearly any change that might
appear. From time to time changes will appear,

and will be studied.

Thus the experimenter presently will feel justi-

fied in saying that he feels, or believes, or is of the

opinion, that his own work indicates tjiat the

quaesitum does not depart from his own definitive

value by more than so-and-so, meaning thereby,

since he makes no claim to omniscience, that he
has found no reason for believing that the de-

parture exceeds that amount.

That is exactly what he means. He does not
mean as some have suggested, that he is of the

opinion that the chances are only one in a hundred,
or in a thousand, or in some other number n, that

the quaesitum's departure from his definitive value
exceeds that amount. He, differing from those

others, feels that it would be foolish for him to

make such a statement, that it could be nothing
more than a gambler's guess. For how can one say,

without stultifying himself, that the chance is one in

n that the error produced in his result by an en-
tirely unknown, and possibly non-existent, cause
exceeds so-and-so, n being a definite specified

number? And what can the word "chance" mean

in that connection? Quantitative "chance" has

significance only in relation to a family of events,

and its value for a given event depends upon the

characteristics of the family as well as upon that

of the event itself. But as regards the uneliminated

systematic errors, his observations define no family.

He has nothing from which to compute a chance.

All he can validly do is to express an opinion ; and
that opinion can validly relate only to certain

theoretical considerations and to the magnitude of

the errors that might have escaped his attention,

not to any chance that his result might be in error

by a given amount.

In every report, such an opinion of the limits

within which the quaesitum is believed to lie, based

solely on the work being reported, should be given.

But in addition to that, previous measurements of

the same quantity, when available, will usually be

compared with those being reported, for one or

more of the following purposes: supporting the

author's value; setting other limits for the rang-

within which the author thinks the quaesitum lies,

deriving a general definitive value. But even in

these cases only the same kind of opinion can be ex-

pressed, the number of absolute determinations that

have been made of any given physical quantity

being far too small to define a statistical family,

(pp. 10 and 11.)

The experimenter's opinion must rest on evi-

dence, if it is to have any weight. And the only

evidence available comes from theory, the series of

observations made in the course of the work, and
the diligence with which errors were sought. These,

and in particular the discordance of the observa-

tions and the diligence of the search, are what

must be depended upon. Dependence on theory

is weak, for the actual conditions never accord

exactly with those assumed in the theoretical work.

He knows that it is impossible to avoid sys-

tematic errors, that even when he has done his

best, his result is still haunted by the ghosts of such

errors. His whole problem has been to seek such

errors out, and to eliminate them when found;

and he believes that in his long search any existing

combination of them that would have produced an

effect greater than the limit he sets would have

been found. But he would be the first to admit that

he may be wrong, that his result might be affected

by a much larger error arising in such a way that,

in spite of the many changes made in the course of

the work, it remained essentially unchanged; but

he thinks that contingency is highly unlikely. How-
ever, he is not entitled to that opinion unless he has

carried out the indicated search, for in no other
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way can a foundation be found on which to base

an opinion.

In the absence of such a search, the worker can

do no more than hope that all is going well. The
fact that he sees no reason for suspecting the pres-

ence of an unknown systematic error is of no im-

portance at all, no matter who the observer is.

The really troublesome errors are exactly those that

are not suspected. The suspected ones can usually

be to some extent eliminated, (p. 12.)

Report

The work should be fully reported, so that the

reader may know what was done, may have the

means for forming an independent judgment of

the work and for checking possible errors and
omissions, and may have the worker's experience

to build upon in case he himself should undertake

a similar piece of work. The last is certainly a very

important function of such a report, and should

never be ignored.

The report should, of course, give a clear in-

dication of the care with which search was made
for sources of error, and of the thought that was
given to it. Otherwise, one has no choice but to

conclude either that no search was made, or that

the author attached no special importance to it.

In either case, the work is of little if any, objective

value; its acceptance can rest only on authority,

on subjective grounds.

Data should be reported as fully as may be. But

in every series of observations some are erratic

especially at the start. How should they be treated?

Those that occur in the body of the work should

certainly be reported as fully as if they were not

erratic, and if the cause of the trouble is known,
that should be explained.

Those that occur peculiarly at the beginning of

the series, arising mainly from maladjustment and
inexperience, furnish very valuable information re-

garding details of adjustment and manipulation
that had escaped the foresight of the worker, and
that might, therefore, readily escape the attention

of the reader and of subsequent workers. In cer-

tain cases they give valuable information about

unsuspected sources of error. For such reasons,

they should never be completely omitted. They
need not always be given in full, but they should

be given to such an extent and in such detail as

will show the reader what they'were like and how
they were related to the pertinent conditions, and
should be accompanied by such explanatory text

as will show him how they were regarded by the

worker, and how he contrived to remove the dis-

turbing conditions.

In brief, the report should give the reader a

perfectly candid account of the work, with such

descriptions and explanations as may be necessary

to convey the worker's own understanding and
interpretation of it. Anything short of that is unfair

to the writer as well as to the reader. Every in-

dication that significant information has been

omitted reduces the reader's confidence in the

work.

It is the unquestioned privilege of the worker to

say where the boundary lies between preliminary

or trial determinations, made primarily for study-

ing and adjusting the apparatus and procedures,

and those that were expected to be correct. But he

should give good reasons for placing that boundary

where he does; and those preliminary determina-

tions should be reported to the extent already in-

dicated.

Furthermore, it is scarcely fair, to anyone con-

cerned, to describe a series of determinations as

"preliminary," thus implying, in accordance with

common usage, that they are open to question, that

they are merely preparatory for something better,

and then, later on, to include that same series in

the list of good, acceptable determinations. To do
so, both confuses the reader and suggests to him
that the use of the adjective "preliminary" may
have been merely a face-saving device intended to

justify the ignoring of that series in case it should

be found to disagree uncomfortably with later

ones. (pp. 12 and 13.)

Miscellaneous

To say that an observer's results are influenced

by his preconceived opinion does not in the least

imply that those results were not obtained and

published in entire good faith. It is merely a recog-

nition of the fact that it seems more profitable to

seek for error when a result seems to be erroneous,

than when it seems to be approximately correct.

Thus reasons are found for discarding or modifying

results that do violence to the preconceived opinion,

while those that accord with it go untested. An
observer who thinks that he knows approximately

what he should find labors under a severe handicap.

His result is almost certain to err in such a direc-

tion as to approach the expected value.

The size of this unconsciously introduced error

is, obviously, severely limited by the experimenter's

data, by the spread of his values. The smaller the

spread, the smaller, in general, will be this error.

The size will be much affected also by the cir-

cumstances of the work, and by the strength of the

bias. If the work is strictly exploratory, its primary
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purpose being to find whether the procedure fol-

lowed is at all workable, then only a low accuracy

will be expected, and there will be no serious at-

tempt to explain departures from the expected,

even though the departures be great. Consequently,

this error of bias may be entirely absent from such

results. But if the worker is striving for accuracy,

then departures from the expected will appear to

him serious; and the stronger the bias, the more
serious will they seem. He will seek to explain them

;

and that seeking will tend, in the manner already

stated, to introduce an error. An error arising in

this way will seldom be negligible, but in no case

should one expect it to be great, the work being

done in good faith, (p. 2.)

. . . published definitive values, with their ac-

companying limits of uncertainty, are not experi-

mental data, but merely the authors* inferences

from such data. Inferences are always subject to

question; they may be criticized, reexamined, and
revised at any time. (p. 3.)

... it is every author's duty to publish amply
sufficient primary data and information to enable

a reader to form a just and independent estimate

of the confidence that may be placed in the in-

ferences that the author has drawn therefrom. If

he does not, he is false to both his reader and him-

self, and his inferences should carry little weight,

no matter how great his reputation may be; ... .

Indeed, values reported without such satisfac-

torily supporting evidence have no objective value

whatever, no matter how accurate they may hap-

pen to be. They rest solely on the authority of the

reporter, who is never infallible, (p. 3.)

Made in the United State.t of America
Reprinted from The Scientific Monthly

Vol. LXXVII, No. 2, August, 1953
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SYSTEMATIC ERRORS
The author is a consultant to the National Bureau

of Standards on the statistical and mathemati-

cal design of experiments in physics, chemistry,

and engineering. Dr. Youden joined NBS in 1948.
in PHYSICAL

By W. J. Youden

PHYSICISTS today make very little use of statis-

tical techniques. There was good reason for the

minor role so long accorded the statistical eval-

uation of the errors in physical constants. When two

laboratories make independent determinations, each

may attach to its "best" value a ± sign followed by

an estimate s of the error. This estimate of the error

is often based upon a series of observations made under

carefully controlled conditions. Experimenters soon dis-

covered that if laboratories A and B reported values

and Cg for the same constant, the difference A be-

tween and Cj3 was almost always a large multiple

of the estimated error s^, (or 55). Obviously these cal-

culated errors had no more to do with the real errors

than the neatness of the laboratory or the promptness

with which the investigator answered his mail.

Statisticians in turn sensed that all the observations

made in one laboratory, with one piece of equipment,

were afflicted with some fairly constant and unknown
increment that was a resultant of biases associated with

the method of measurement, with the particular as-

sembly of apparatus, and perhaps with some more or

less persistent characteristics of the environment. The
statistician saw no way either to detect or to assess

these "constant" errors. Consequently, statisticians con-

centrated on other activities where random errors were

all that really mattered. The comparison of the yields

obtained from two or more varieties of wheat involves

only comparisons. Similarly the chemist, seeking to find

for an industrial process a set of operating conditions

that will give maximum yield, or maximum profit, can

compare runs and not worry much that all the results

may be half a percent high. That may be discovered

later, when the annual inventory is taken.

Both physicists and statisticians apparently agreed to

part company. There remained the custom of calculat-

ing and reporting the precision of the measurements,
partly to establish that very precise habits of work
were maintained, and partly in the hope that more
weight would be given to a determination if a very

small precision error was attached to the result. All

recognized that a small precision error was necessary

but gave no guarantee that the reported average was
close to the truth.

For decades there has been but little contact between
experimental physics and statistics, and I think that
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both parties have been the losers for giving up so easily.

Statisticians were not aware that many of the physical

measurements either approximate, almost exactly, cer-

tain ideal statistical models or else suggest the inven-

tion of statistical models that would extend statistical

theory. The physicist, in turn, relying on his experi-

mental skill, continued to track down the sources of

his errors by traditional methods and overlooked cer-

tain advantageous ways of combining his observations.

This paper discusses three main topics. First some

remarks will be made regarding the statistical confi-

dence limits that apply to two or three independent

determinations of a constant. The major section deals

with what appears to be a plausible explanation for the

unexpectedly large differences between the values ob-

.tained in different laboratories. The last portion pre-

sents some statistical aids for trackmg down the causes

for disagreement among laboratories.

Independent Determinations of a Constant

SUPPOSE laboratories A and B report the values Ca

and C(, for the same constant. Precision estimates

Sa and may or may not be given. Perhaps the investi-

gators have searched their souls and ventured to indi-

cate the likely maximum errors in the values reported.

These estimated errors generally do not determine the

opinions of other laboratories regarding these two re-

sults. Depending on the laboratory visited, you may
encounter one of four possible opinions:

1. The laboratory favors Ca and discounts d,

2. The laboratory favors Cb and discounts Ca

3. The laboratory believes C« and d are of about

equal merit

4. The laboratory is a sceptic and believes both Ca and

Ct, unreliable.

If the laboratories are approximately split between

the first two opinions and one of the determinations is

close to correct, then the obvious statistical conclusion

can be drawn that about half of the laboratories will

eventually be disappointed. Perhaps all will be dis-

appointed if neither determination is near the correct

value.

If most of the laboratories are of the fourth opinion,

clearly there is no statistical problem. But if a majority
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of the laboratories feel that both results are worthy

and that there is little to choose between the two

determinations, then some statistical remarks may be

made. We are going to suppose that the method of

measurement is a new one and consequently there is

no other information available than that contained in

the two results already in hand. That there will be

some difference between the two results is to be ex-

pected. Examination of the difference between the two

results tells us little because we have no way of know-

ing whether this difference is smaller or larger than

usual. Statistical tables show that if the average differ-

ence between duplicates is ten units, then individual

differences of from one to thirty units are not uncom-

mon. So a single difference may be very misleading.

Suppose a third laboratory is about to make a report.

If we assume that the three results are independent of

the order in which they were obtained, some simple

logic suggests that there is a one-third chance that the

last result reported will be intermediate in magnitude

between the first two results reported. Denote the

smallest, middle, and largest results by s, m, and /.

These three letters can be arranged in six orders: stnl,

slm, msl, mis, Ism, and Ims. For two of these six

sequences the middle result m is the last in the se-

quence. Consequently, without ever knowing the first

two results, it is a fair gamble to bet one to two that

the third result will lie between the first two results.

Notice, too, that this logic holds quite apart from

any knowledge as to how closely the first two agree.

Of course, if by chance the first two values are identical

or nearly so, one might argue that it would be less

likely to get a third result between them than if the

first two did not agree closely. But just what other

standards can one produce to say, in any particular

case, what would be close agreement, or what would

constitute poor agreement, if these two results consti-

tute all the information available?

A closely similar question, given two equally es-

teemed results, is: What is the chance that the two
values Cq and bracket the correct value? The an-

swer is one half. After all, the correct result does not

go gallivanting around the way a third independent

result might and contributes no error. It is quite re-

markable that this conclusion rests on a very modest
assumption about the underlying distribution, of which

these two constitute our sole information. We have
only to concede that if a goodly number of qualified

laboratories undertook to make determinations, that

about half the determinations would be smaller and the

remainder larger than the correct value. Symmetry is

all that is required. So it is a coin-tossing problem with

two coins where heads refer to plus deviations and tails

to minus deviations. A quarter of the time we get two
heads (both results high), a quarter of the time two
tails (both results low), and half the time a head and
a tail, or deviations of unlike sign which means that

the results bracket the correct value.

I hasten to admit it is conceivable, through some de-

fect in theory, that all the results are afflicted with a

component error of the same sign and this will spoil

our coin-tossing game. But this is speculation and
tantamount to saying that it is useless ever to venture

an opinion about the confidence to be placed in the

determinations. It does seem appropriate to be aware
of the probabilities that I have given even if one
cautiously states the assumptions upon which the prob-

abilities are calculated.

Now a probabihty of one half is not a very comfort-
ing figure and it is a natural thing to wonder how we
might extend our thinking to limits outside the two
reported values in order to attain a greater confidence

that the correct value lies within these limits. Let
C(j — Cj = A, where C„ > Cj, and suppose we consider

limits of the following kind:

Upper limit = Q + ^A, Lower limit = Cj, — /feA.

It now becomes necessary to examine how sensitive our

confidence is to the kind of distribution that would fit

a collection of such determinations. Suppose we assume
first the traditional normal distribution. Then for k

equal to one, the probability is about 0.8; that is, add-

ing the difference between two results to the larger one,

and subtracting it from the smaller, gives limits that

four times out of five should bracket the correct value.

If instead of the normal distribution, we imagine that a

determination is equally likely to fall anywhere within

some finite, but unknown, interval centered on the un-

known correct value, the probability drops from 0.80

to 0.75. And there is a vast difference between the bell-

shaped normal distribution and the "rectangular" dis-

tribution of equal probability for all values over a

finite range.

Table 1 shows, for the normal distribution, how the

probability of bracketing the correct value between

Ca + kA. and — kA increases with k. Remember that

A is the difference between two determinations that are

accorded equal weight.

Table 1. Probability, P, that Ca+kA and Cb-kA bracket the

correct value. Normal distribution assumed. Equal
weight accorded Ca and Cs; A = Co— Ct.

k 0 1234567
P 0.5000 0.795 0.874 0.910 0.930 0.942 0.951 0.958
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Sad to say, it takes an over-all spread between the

upper and lower limits of 13 times the difference be-

tween the two determinations to attain the traditional

95-percent confidence limits. You may reply: "Non-

sense. Things are not that bad." But you should be

prepared to justify your comment. After all, in the

light of the peripatetic wanderings of the "accepted"

value of some of our constants, how can you, from just

two determinations, form a better judgment about the

correct value?

The real explanation of the wide limits required in

Table 1 is the small amount of information we have

on A. One pair may give a A considerably smaller or

considerably larger than the average A if many such

pairs were available. The way to improve matters is to

get additional, truly independent determinations.

The gain in assurance that comes from a third inde-

pendent determination at first seems disproportionately

large. The narrowing of the confidence limits comes not

so much from being able to average three raiher than

two, but from having a firmer grip on the extent of

agreement that may be expected among independent

determinations. The chance that the three results

bracket the correct value rises from one half to three

quarters. That is, the chance that both a tail and a

head will be obtained when three coins are tossed is

six out of eight. If the difference between the largest

and smallest of the three values is added to the largest

value and subtracted from the smallest value, we ob-

tain confidence limits that have slightly better than a

twenty to one chance of bracketing the correct value.

Of course the same assumptions discussed above for

two determinations are made here, too. Even if there

are grave reservations about these assumptions, one can

say that the chances are no better than those indicated.

A bound has been set to our optimism.

In spite of the difiiculties that arise in estimating the

error in a constant most scientists agree that the effort

should be made. Professor Bridgeman in his talk at the

1960 Gordon Conference on "Information Processing

for Critical Tables of Scientific Data",^ emphasized

that critical tables should endeavor to present the

"best" value and to make some estimate of the "prob-

able" error of the value selected.

Composite Character of Systematic Errors

CjOMETIMES successive measurements may be made
in a time interval so short that it is reasonable

to regard the measurements as being made with no

changes in environment, apparatus, or any other condi-

tion that might affect the measurement. Given adequate

precision a reasonable number of measurements serve

to establish an average that very closely characterizes

the measuring system during this interval. This average

will differ more or less from the correct value. This

departure from the correct value is plainly the algebraic

sum of several small effects. For example, the diameter

of a diaphram, the resistance of a coil, the temperature

and volume of a chamber, and similar quantities will

all be assigned values that depart in some degree from
the actual values that existed while the measurements

were made. These deviations from the actual values

influence the outcome—and each may either add or

subtract some small increment to the measurements.

The experimenter has surely tried to keep these various

increments somewhat the same in size and usually he

would say it was a toss up as to the sign of each

increment.

As an example, a recent determination of g presents

two sets of 32 measurements—one set made with one

rule, the other set with a second rule.^ Fig. 1, taken

from this paper, shows the distribution of the measure-

ments for each set. No elaborate statistical test is re-

quired to make convincing the reality of the difference

between the means of the two sets. Doubtless there

were other components or conditions that had similar

increments.

Imagine ten such increments of about equal mag-
nitude but unpredictable in sign. Now the experimenter

is surely at the mercy of the laws of chance. There are

six different algebraic sums (each either plus or minus)

depending on how fate has grouped the signs of these

increments.

Division of
the signs

5 and 5

4 and 6
3 and 7

2 and 8
1 and 9
0 and 10

Algebraic sum

0
± 2

±4
± 6

± 8

± 10

Frequency

252T
420 ^ 912

240j

112

1024

The foregoing tabulation shows that about once out

of nine times the increments gang up on the helpless

experimenter and introduce a composite systematic

error at least six times as large as the small "uncer-

tainty" he has achieved in his values for the compo-
nents in his apparatus. There is a chance in three of a

net sum of four or more increments. If the experiment

is repealed in another laboratory, the same situation

holds and half the time the two composite net sums
will be of opposite sign. We now see how the difference

between the results from the two laboratories may be

an order of magnitude greater than the standard of ac-

curacy set for the individual components.

The individual increments are taken as equal in size

to simplify the presentation. If the increments vary

from small to large, the effect is very nearly the same

if their average magnitude equals the "standard" incre-

ment used above. While there is a certain amount of

cancellation because there may be both plus and minus

increments, it is the net sum that matters. There is no

averaging out here. So the distribution of these "sums"

depends on the average size and the number of con-

tributing increments. Experimenters properly enough
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Mean = 980.6124 - cm. sec"^

Standard deviation = ±0.6 mgals.

Maximum spread = 2.9 mgals.

Mean = 980.6139 - cm.sec"^

Standard deviation = ±0.9 mgals.

Maximum spread = 4.1 mgals.

Mean = 980.6136 - cm. sec"^
Standard deviation = ±2.2 mgals.

Maximum spread = 10.0 mgals.
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Fig. 1. Measurement of gravity constant

direct their best efforts to the detection and reduction

of the larger increments because this is the most effec-

tive way to reduce the average size of the increments.

Detection of Increments of Systematic Errors

WE have seen that an aggregate of systematic

errors, all of them individually relatively small,

can nevertheless sum up in such a fashion as to pro-

duce a substantial net displacement from the correct

result. The detection of small systematic errors, and by
that I mean errors comparable to the precision error,

requires a considerable number of repeat measure-

ments. Fig. 1 shows 32 repeat measurements of the

gravitation constant g with each of two different rules.

The repeat measurements with a rule cluster around a

central value for that rule and offer convincing evi-

dence that there is a real difference between the av-

erages for these two rules. The shape of the scatter of

the measurements around their average is what would
be expected on the basis of the normal distribution of

errors. Suppose the difference A between the averages

for the two rules is equal to s, the standard deviation

of the repeat measurements. Then, reference to tables

for the normal distribution shows that it is necessary

to make at least eight repeat measurements on each

rule before we can conclude, with 95% confidence

limits, that the rules differ at all in their mean values.

The important thing here is, that within one labora-

tory, the precisiojt measure of error is the proper meas-

ure to use in evaluating differential effects of such

substitutions of components of the apparatus, or in

evaluating effects of changing environmental conditions.

Dorsey, in a lengthy paper published in 1944,^ gives on

pages 10 and 11 some pointed remarks on the necessity

of examining the effect of changing the adjustments of

the apparatus. I quote one sentence.

Readjusting the apparatus, he (the experimenter) will

proceed to change, one by one, every condition he can

think of that seems by any chance likely to affect his

result, and some that do not, in every case pushing the

change well beyond any that seems at all likely to

occur accidentally.

Excerpts from Dorsey's 110-page article are given in a

paper by Dorsey and Eisenhart.*

The single sentence quoted above is particularly in-

teresting because Dorsey saw the direction in which

progress was to be made. In the nearly twenty years

since Dorsey prepared his remarks we have made con-

siderable progress in the direction he indicated. We see

that not only should the adjustments be changed, but

whenever possible there should be at least duplicate

components for certain vital parts of the apparatus.

The use of two rules, as exhibited in Fig. 1, shows how
much the results are at the mercy of a single rule.

Clearly the only thing to do is to take the average for
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the two rules, and there are only two rules. The predic-

tion as to what might happen with more rules throws

us right back to the discussion in the first part of this

paper. Incidentally, Dorsey's recommendation that sub-

stantial changes be introduced in the conditions indi-

cates that he found it difi&cult to detect the effects of

small changes.

The previously-quoted sentence contains the phrase,

"one by one". Change the adjustments "one by one" is

the way we all learned to experiment. The interpreta-

tion is easy then because, for example, if we merely

substitute one rule for another, any effect is obviously

to be credited to the substitution of one rule for the

other. In the intervening years since Dorsey wrote

there has been a good deal of activity in the devising

of more efficient programs for evaluating the effect of

just such changes in adjustments or substitutions of

components in the apparatus.

If there are a number of possible adjustments and

components to investigate, the total number of meas-

urements may become very large because a consider-

able number of repeat measurements must be made for

each assembly and each adjustment. There are really

two parts to this problem. If, for example, the experi-

menter winnows his choices down to seven alternatives

(including both adjustments and substitutions for com-
ponents) does that mean that he need try all 2^, or 128,

possible combinations? Experimenters have already an-

swered this question. They designate some standard

initial assembly and set of adjustments and then pro-

ceed to change, one by one, the seven items under

consideration. Some measurements are made under the

initial state; an item is changed, and another set of

measurements made. Whatever was changed is put

back to the initial state and a second item changed.

There will be eight such sets and a goodly number of

measurements are required in each set.

Today, as a result of some purely theoretical in-

quiries into what statisticians term weighing designs,

we know that seven variables could have been equally

well evaluated with one fourth the usual number of

measurements. Or, and the prospect is enticing, we
could have detected, and perhaps corrected, systematic

effects only half as large as those just detectable under

the "one by one" approach. I say that these were the-

oretical statistical inquiries because statisticians were

mainly concerned with biological and chemical prob-

lems that involved major changes in the variables. In

such investigations there are mutual interactions of the

variables that pose quite different problems. Here the

changes in the variables are minute. The differential

effect of substituting one rule for another almost iden-

tical rule (as in Fig. 1) would be virtually unaltered

even if some other set of initial conditions had been

chosen.

Statisticians were unaware of the extremely impor-

tant problems posed in the evaluation of physical con-

stants. Yates was the first statistician to suggest and

name "weighing designs" in an incidental paragraph in

a paper ^ in 1935. In fact, Yates belittled the designs

because he deemed it most unlikely that any problems

appropriate for such designs really existed. It is inter-

esting that other statisticians,^-^" in a purely theoretical

way, embellished the idea advanced by Yates. None
saw the possibilities that exist for application in very

precise physical measurements. And we lack, even now,

an adequate exploration of the programs that might

serve the needs of those who determine physical con-

stants.

Once it is recognized that the effect of a very small

change in a variable does not depend on the other

variables, provided that these other variables also are

held within very close limits, the way is open to change

more than one variable at a time. I illustrate this prin-

ciple first for the case of three variables x, y, and z,

which may be assigned other nearby values x', y', and

z'. Let us designate the standard initial condition by

X, y, and z and let these serve as the coordinates of the

origin in the three-dimensional graph shown in Fig. 2.

Fig. 2. Diagram for three variables

The customary way to explore this situation is to

change one variable at a time. The three choices are to

move to x' on the x axis, to y' on the y axis, and to z'

on the z axis. These are poor choices by comparison

with the choices x'y', x'z', and y'z'—marked with circles

in the diagram.

The usual procedure for detecting . the effect of

changing x to x' makes use of the data obtained at the

two points x,yfi and x'yz. The more efficient method for

detecting the effect of changing x to x' makes use of

the data obtained at all four points, x,y,z; x,y'z' ; x'y'z

and x'yz' . Two of these sets involve x and two involve

x' so the data are grouped accordingly.

xyz x'y'z

xy'z' x'yz'

The two sets with x include y and z and y' and z'.

So the average value for x incorporates the effects asso-

ciated with y, y', z and z'. This is also visibly true for

the two sets with x'. Therefore, the effect of changing

X to x' will be given by comparing the average of all
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the data taken at x with the average of all the data

taken at x' . Inspection discloses that the four sets may
be partitioned into appropriate pairs to detect the effect

of changing y to y' , or z to z'

.

xyz xy'z' xyz xy'z'

x'yz' x'y'z x'y'z x'yz'

The basic idea here is so important that I illustrate

it again for the case of just two variables. Recall the

32 measurements made with rule 1 (r) and the addi-

tional 32 measurements made with rule 2 (i?). Group

them in opposing groups as next shown.

rrrr RRRR
rrrr RRRR
rrrr RRRR
rrrr RRRR
rrrr RRRR
rrrr RRRR
rrrr RRRR
rrrr RRRR

If half of the measurements in each group were made
with another variable at ^ and the remainder at S, the

measurements may be segregated into four sets.

Set 1 Set 2 Set 3 Set 4

rs rs rS rS RS RS Rs Rs
rs rs rS rS RS RS Rs Rs
rs rs rS rS RS RS Rs Rs
rs rs rS rS RS RS Rs Rs
rs rs rS rS RS RS Rs Rs
rs rs rS rS RS RS Rs Rs
rs rs rS rS RS RS Rs Rs

rs rs rS rS RS
'

RS Rs Rs

the changes. It will still be necessary to work with

eight different combinations. Similarly, in a paper by

Plackett and Burman schemes for 12, 16, and more
variables are given. Variables may be ignored here, too,

but the number of combinations is not reduced.

The minimum number of combinations required is

one more than the number of variables, if just two

alternatives are used for each variable. The substitution

of a component is sometimes a tedious affair so there

is sure to be interest in programs involving a minimum
number of combinations. I have tried my hand at this

game and offer the program shown in Table 3 for

studying five variables with six combinations. Each

effect is measured using the results of four of the six

combinations, divided two against two.

Table 2. Program for seven variables with eight sets.

1 2 3 4 5 6 7 8

t t t t T T T T
u u U U u u U U
V V V V V V V V
w w W W W W w w
X X X X X X X X

y Y Y y y Y Y y
z Z Z z z z z z

Table 3. Five variables in six sets.

1 2 3 4 5 6 V--V = (l+5)/2- (2+6)/2
V V V V V V w--W = (l+2)/2- (5+6)/2
w w W W W W X--X = (l+4)/2- (2+3)/2
X X X X X X y--Y = (3+6)/2- (4+5)/2

y Y y Y Y y z -z = (5+6)/2- (3+4)/2
z z z Z z z av = (l+2+3+4)/4

Rule r is present in sets 1 and 2 and rule R in sets 3

and 4. The other variable is put at 5 in sets 1 and 4 and

at S in sets 2 and 3. We may now play both ends

against the middle pairs of sets and evaluate the effects

of s and 5. The data are used twice over. If the set size

is reduced from 16 to 8, 7 variables may be studied

with these same 64 measurements.

That is, all the data taken are used to evaluate the

effect of changing each variable. Either fewer repeat

measurements are required at each combination, or

more variables' may be investigated with the same num-
ber of measurements. Indeed, the more variables that

are investigated in this manner, the more efficient this

method becomes. Seven variables lend themselves to an

especially elegant sequence of seven partitions of eight

sets into contrasting sets of four sets against four sets.

This example, shown in Table 2, I am glad to report, is

the one first mentioned by Yates twenty-five years ago.

You may note that four of the initial conditions are

changed each time.

It would be a pleasure indeed if I could include here

a small catalog of programs extensive enough to meet
the situations likely to occur in practice. I can point

out that the program shown in Table 2 can be used for

fewer than seven variables by ignoring one or more of

Table 4. Program for three variables, two with
three choices, one with two choices.

Variables

X
Y
Z

Six sets

3 4 5

X % X

y Y y

Z z z

6

X
Y

Z

X X X

z Z

2 -2

Z z

1 -1

2 Z

-1 1

Above coefficients are weighing
factors to estimate x-x

There will be times when more than two choices are

possible and of interest for some of the variables. I re-

gret to say that the enumeration of efi&cient designs for

such mixtures of two and three choices has hardly

begun. Let me illustrate with a simple case of three

choices for each of two variables and two choices for a

third variable. There are 2X3X3 possible combina-

tions, and a minimum of six sets are necessary to sepa-
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rate the individual effects of these variables. The prob-

lem is to pick that subset of six from the eighteen

available sets that will lead to the most efficient evalua-

tion of the effects of the variables. I suspect that the

program shown in Table 4 is as good as any, just on

the basis of the appealing symmetry.

In the squares are indicated certain factors and these

are the factors to be used in evaluating the effect of

changing x to x. Notice that the estimation of the

effect of a change in the variable involves a weighted

average of the six set results. The best average for the

constant gives equal weight to all six sets. Similar sets

of constants apply for evaluating x — X, y — Y, etc.

The essential point regarding these illustrative pro-

grams is that certain combinations lend themselves to

an efficient use of the data, that is, to a more sensitive

scrutiny of the possible sources of error. The one-at-a-

time technique is one of the least efficient programs.

The small individual contributions to error that are

associated with uncertainties in values assigned to com-

ponent quantities are not easy to detect. A planned set

of combinations will rank the various sources of error

in order of magnitude and reveal where the program is

weakest. Statistical techniques will not remove errors

but they can help in isolating the important sources

of error.

Enduring Values

THERE is more in this discussion than the matter

of efficiency. The several variables, chosen by the

experimenter because they may influence the result, are

actually put to the test. At present the investigator has

two ways to arrive at an opinion or guess as to the

error introduced by any one of the quantities which

he would like to know exactly when he introduces it

into his computations. He may, on his judgment, hazard

a guess as to the maximum uncertainty in each of

the relevant quantities. Alternatively, he may accept

the estimates of others—e.g., the estimate of the man
who measured the length of the rules used in the

determination of g. Thermometers, weights, resistances,

purities, standard cells—the list is endless—they may
all be obtained with some sort of statement from the

calibrating source. It is easy to push responsibility off

this way. And we go on getting determinations from

different laboratories that disagree much more than

anticipated even when the claimed uncertainties in the

components are included. Maybe it is time to check

these indispensable bits of information. If the Coast

and Geodetic Survey measures the distance employed

in a determination of the velocity of light—ask them

to measure two or three distances. The above schemes

will soon put these measurements to the test. A choice

of resistances, diaphragm diameters, thermometers—all

should be made to run the gauntlet.

Yes, I know, all the resistances may be subject to

the same bias. The two rules used in the determination

of g may share a common increment that will not be

revealed by the data. But there is a difference between

the two rules and now our estimate of the limits of

error can allow for this difference. We must use more
than one rule, or we will not have the data to estimate

this source of error.

I return to the summation of the systematic errors

associated with the individual components. The use of

two or more choices creates the possibility that the

choices differ in the signs of their systematic errors.

The final value reported will be an average of the re-

sults obtained with the several sets—each set a unique

combination of components and conditions The in-

dividual summations of the separate sets now enter

into an average with all the advantages that come from

taking an average. Furthermore, the spread of the re-

sults for the several sets will surely give a more rea-

listic idea of the uncertainty in the final result than

that obtained from hopeful guesses.

There is' another matter that cannot be glossed over.

Suppose the measurements are made according to some

carefully thought out program similar to the suggested

weighing designs. Admittedly this limits the freedom of

the investigator. The experimenter likes to be free to

follow some inspired hunch. He often wants to try

some alteration in the apparatus, or in the conditions,

on the chance that his spontaneous idea has merit. This

might be regarded as the art rather than the science of

experimentation. The investigator should consider how
often such ideas pay off and also the large number of

measurements required to detect small effects, when

tempted by such ideas.

I personally hold that allowance should be made for

"shots in the dark". If the planned program is allotted,

say, around three quarters of the measurement time,

there would still be opportunity for imaginative excur-

sions. Even if these isolated shots lack the power that

they would have if incorporated in the planned pro-

gram, they add a lot of zest to experimentation.

We all know that a serious effort to determine a

physical constant is not undertaken lightly. The dom-

inating thought in the mind of the investigator is to

arrive at an enduring value. What is an enduring value?

I suggest that it is a result coupled with a stated zone

of uncertainty that includes the value that future work-

ers will converge upon.
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Uncertainties in Calibration

W. J. YOUDENf

Summary—This paper presents some methods for making com-

parisons between standards and items undergoing calibration. These

methods may be used in a variety of measurements. The purpose is

to accumulate data that provide objective estimates of the precision

and that are also useful in detecting sources of systematic errors.

This purpose is achieved in using some standard statistical designs

in the scheduling of the work program.

The problems of stating the uncertainty and of combining the im-

certainties in a chain of calibrations are discussed.

Introduction

ALABORATORY that provides a calibration

service soon seeks the answers to three questions.

These questions all concern the uncertainty in

the value assigned to an item that has been calibrated.

The first question is usually directed to the magnitude of

the uncertainty. Another question deals with the kind of

data needed to support any claim made regarding the

uncertainty. Finally the laboratory seeks some way of

stating the uncertainty which will convey useful infor-

mation to those who will make use of the calibration

service.

One of the important points to be clear about is that

any statement of the uncertainty applies to a class of

closely similar items that are calibrated by a specified

procedure with a particular assembly of apparatus. No
one can say, for any individual item, whether the ran-

dom error in the calibration is smaller or larger than the

average error for the class of items. It is possible to

evaluate the average error (or some other measure) for

the calibration procedure as used on a group of similar

items. If a systematic error has to be provided for, this

error will also be carried over to all the items in the class.

This paper is primarily directed to those laboratories

that undertake calibrations that involve comparisons of

the test items with a "standard." The standard is an

item that has a certificate from a national or other recog-

nized laboratory. The certificate states the correction to

be applied to the nominal value of the item. The stand-

ard item should be as nearly as possible the same mag-
nitude as the test items. The game is simply one of com-
paring each test item in turn with the standard item
using a suitable assembly of apparatus. This shows very
clearly that the calibration is a comparison procedure.

Very often, by one or another ingenious technique, com-
parisons can be made virtually bias-free. For example, if

the standard weight is balanced against a dummy
weight on the other pan of the balance, and then the test

item substituted for the standard weight, the effect of

inequaHty of balance arms is automatically eliminated.

* Received August 15, 1962. Presented at the 1962 International
Conference on Precision Electromagnetic Measurements as Paper
No. 3.1.

t National Bureau of Standards, Washington, D. C.
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Also an appropriate alternation of repeated weights will

cancel out drifts that may arise from environmental

shifts. Success in devising a bias-free comparison makes
the observed difference between the standard and test

item subject to random errors only. The task then is to

determine the error in the comparison procedure as used

over a sequence of test items from the same class.

Although the discussion is intended for laboratories

providing calibration services, some of it is directly ap-

plicable to the work of national laboratories that are the

source of the standards used by calibrating laboratories.

In some instances, as for example the kilogram, where

an object is arbitrarily assigned a nominal value, the

standards laboratory need consider only comparison

errors. Many standards require "absolute" determina-

tions—problems that challenge every resource of the

experimental scientist.''^ Even here, once a value has

been established, and an uncertainty assigned, the

standard laboratory accepts this value for comparison

activities. At this stage again, the comparison error

becomes a matter of interest.

Determination of the Uncertainty Associated
WITH A Specified Comparison Procedure

There are many ways of obtaining an estimate of the

error in the difference, or in the ratio, of the two magni-

tudes associated with the comparison of two items. The
direct repetition of measurements is the simple approach

that involves the least computation. Simple repetition is

vulnerable to "memory" on the part of the operator.

Also there is often a failure to provide the opportunity

for errors to manifest themselves. For example, the

differences in EMF between two Weston cells may be

determined with a potentiometer. Even if the potenti-

ometer is considerably offset from the null point and a

new null point found, this does not constitute a real

repetition. Surely the cells should be disconnected and
the connections remade, and the adjustment for the

standard cell offset and reset. In fact all the operations

should be repeated anew. Generally there is a tempta-

tion to slur over such tedious and time-consuming opera-

tions, perhaps to omit them entirely. Quite plainly if

some of these operations do contribute to the error of a

comparison, no mere repeating of the null point can

possibly disclose the presence of such contributions to

the error of a comparison. Yet such contributions do
matter because they are present in the steps involved in

using the apparatus.

^
A. G. McNish and J. M. Cameron, "Propagation of error in a

chain of standards," IRE Trans, on Instrumentation, vol. 1-9,

pp. 101-104; September, 1960.
^ W. J. Youden, "Comparative tests in a single laboratory,"

ASTMBulL, pp. 48-52; May, 1950.
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Generally it is much better to devise some indirect

way of measuring the error of a comparison. Preferably

the indirect way should make it impossible or quite

difficult for the operator to have any idea what his error

is as he makes his reading. Again it is emphatically bet-

ter to base the estimate of the error on data accumulated

in small sets over a number of test items and over a

considerable period of time—possibly months. An esti-

mate of error based on many readings on one test item

and over a short time interval may fail to provide a

representative sample of the conditions that do prevail

over long periods and with many items. Some gage

blocks may be more perfectly faced than others. The
bore of a capillary will vary from item to item and vari-

ous other characteristics may make some items better

performers than others. Ascertaining the errors individ-

ually for each test item is quite impossible because of the

vast amount of work this would require.

The endless variety of combinations of apparatus

used for making comparisons between items means that

the situation largely determines the type of indirect

approach to the measurement of the error appropriate

for the comparison. For this reason only some tech-

niques of fairly general application will be discussed.

The examples will serve to illustrate the indirect ap-

proach. Many comparisons may be best studied using an

arrangement of the measurements specially devised for

each individual problem.

One recurrent type of situation is characterized by the

direct pairings of the items. The difference, or ratio, of

the compared items is the quantity actually measured.

Typical of this situation is the connecting of two Weston

cells in opposition and the measurement of the net volt-

age provided by the two cells when so connected. The
"pairing" of the cells is a physical, not a paper, trans-

action. Similarly the difference between two gage blocks

may be measured when the blocks are adjacent to each

other.

The basis for an indirect estimate is, in this case,

the three pairings that can be made among three items.

The usual trio would be made up of a standard and two

test items. Even more desirable is a trio made up of

two standards and one test item. In the latter case, two

important advantages accrue. First, the value for the

test item is tied to the average of two standards with

the reduction of the error ascribable to um^ertainty in

the value for the standard. Second, evidence gradually

accumulates on the experimental difference betw^sen the

two standards. This quantity, when compared with the

difference expected on the basis of the entries entered on

the certificates for the standards provides a useful check

on the national laboratory that issued the certificates.

This information would be valuable to the national

laboratory as a measure of its own performance to be set

against whatever claims were made on their certificates.

Suppose then that the three items are Si, Ti and Tj.

No change in the argument is needed if the items are Si,
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^2 and Ti. The three available comparisons are

Si — Ti = di

Ti — Ti =

Ti — Si = dz

[Si + Ti + T2) - {Si +Ti+T2) = di^-d2 + d-,= A ->0.

The three observed quantities, di, di and dz, will all be

different because no two items are alike. The operator,

therefore, is under no compulsion to get "checks" on
repeat readings. Once the three differences are in hand,

the tabulation just listed shows that the thi*ee differ-

ences, with properly chosen signs, should sum to zero if

the measurements were without error. The sum will

differ from zero because there are errors in the three

measurements. The conclusion is, in consequence, that

A, the amount by which the sum of the d's differs from
zero, is a measure of the error of the comparisons.

Given a collection of A's from a sequence of trios,

it is easy to calculate the experimental error of these

comparisons. Let k trios be measured and let the re-

sulting A's be Ai, A2, • • •
,
A*. The estimate of the

standard deviation for an observation di is given by
Sd- V(2^^/3k). The number of degrees of freedom for

this estimate, Sd, is k.

Consider the first choice—one standard and two test

items. Let us see how to calculate an estimate of the

difference between Ti and Si. We have the direct com-
parison which gives Ti — Si=—di. There is also the

indirect, and independent estimate obtained by adding di

and dz. When the last two comparisons are added, T2

drops out of the sum. So another estimate for Ti— Si is

di-\-dz. This additional information should not be ig-

nored. What is the proper weight to give to each esti-

mate? Double weight is given to the direct estimate,

— di, and single weight to (di+dz) because it is the sum
of two measurements.

— 2di + di-^-dz

The weighted estimate for Ti — Si = •

. . . 2dz — di — di

The weighted estimate for Ti — Si = •

3

Idi — di — dz

The weighted estimate for Ti — T2 = — — •

The standard deviation for the above estimates is given

by \/273 Sd.

One of the happy consequences of these improved

estimates is that the new estimates are consistent.

Notice that the sum (T,-Si)+ {Si-Ti)+ {Ti-Ti)

equals zero as it should. The other important source of

information is A. Once a sequence of A's is available, a

very important channel of information has been opened.

In theory each A should be equally likely to be plus or

minus. The opportunity exists to incorporate in these

differences some interesting feature of the apparatus
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used for the comparison. Thus, if the symbols represent

standard ceils, then each cell may have been directly

connected once to the left terminal of the potentiometer

and once to the right terminal. If the symbols represent

meter bars, the arrangement would be made as follows:

Position in the comparison chamber

Right Left

end end

Si — Ti = di

Ti — Ti = di

Ti — Si = di

(Si+Ti+ Ti) - {Si+ Ti+ Ti)=di+di+d, = A

Now A includes the difference between the right and left

ends of the comparison chamber. Should there be an

undetected or uncorrected persistent temperature differ-

ence between the two ends of the chamber, the bars

would be longer when placed in the warmer end. This

would tend to make the A's for a succession of triad

comparisons, predominantly of one sign. Thus the A's

may be utilized to detect the presence of a systematic

error which ought not to be present in comparison pro-

cedures.

Even if there is an undue predominance of A's with

the same sign, the data are still informative about the

error of the comparison procedure. The average A gives

an estimate of three times the effect associated with

position in the chamber. Fortunately the arrangement

of the items has cancelled out this effect on the compari-

son because each test bar was once in each end of the

chamber. That is to say, the estimates of the differences

between the bars have not been biased. The A's that

would have been observed if there were no bias may be

obtained by subtracting from each A the average of the

A's. The corrected A's may be designated by A"s. These

A's should now split about evenly between plus and
minus. The standard deviation for the comparison

process, i.e., for any single measured difference di be-

tween two bars, is

with (k—l) degrees of freedom. The number of triads

available is given the symbol k. The question of whether

the average A differs enough from zero to constitute

important evidence for a bias may be judged by the

quantity

2A'2

k{k - 1)

"

If the average A exceeds a stated multiple (two or

somewhat more depending on the number of A's avail-

able) of this last expression, the evidence suggests a

bias. If the evidence for a bias is not substantial, the

standard deviation for a single measurement is calcu-
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lated from the A's by the previously given formula

Sd = V(^A^/3k). The number of degrees of freedom

should be twenty or more but preliminary estimates of

the standard deviation may be made with a few degrees

of freedom.

The device just illustrated may be generalized to

cope with comparisons involving quintets or more. Five

items make available ten pairings as follow:

Left Right Left Right

A B A C
B C C E
C D and E B
D E B D
E A D A

The pairs may be grouped in two sets each of which pro-

vides one estimate of a left vs right effect. Five degrees

of freedom are available per ten pairings for the estima-

tion of the standard deviation.

All of the above discussion may be recast if the com-

parison measur- ment gives the ratio of the values for

the two items, if A/B=x, B/C = y and C/A=z, the

product xyz of the three ratios would be exactly unity

if the measurements were made without error. The
amount by which the product xyz differs from unity is a

measure of the errors in the measurements. The argu-

ment follows the same line as before. The weighted esti-

mates are

A/B = \/xyyz, B/C = ^y^xz and C/A = -^Vjxy.

Another way to accumulate evidence of the errors in

calibrations may be illustrated by the calibration of

platinum resistance thermometers. If the calibrating

laboratory possess the facilities to set up the silver, gold

or other calibrating mediums, the appropriate equation

may be fatted to the data. An arbitrary bath tempera-

ture may then be set up and its temperature measured

with a thermometer calibrated by a national laboratory

and also measured by the test thermometer just cali-

brated. The difference. A, between these two readings is

a measure of the performance of the calibrating labora-

tory. Again a predominance of one sign among the A's

indicates a bias relative to the national laboratory. The
A's should be accumulated over a number of test ther-

mometers.

If the standard thermometer itself is used to establish

the temperatures used to calibrate the test thermometer

the above procedure is useless for the detection of bias

but still useful as a measure of the random errors. Every
care must be taken, for example, that the resistances

are accurately measured by checking the equipment

against known resistances of similar magnitude.

Another avenue of approach to the error of compari-

sons is illustrated by angle blocks. Here matters can

usually be arranged so that closure should result, i.e.,

the angles measured should sum up to 360°. Enough has
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been said to suggest that the general principle of in-

direct estimates of the errors of comparison may take

on many forms in actual practice. The important point

to note is that the error estimated in this manner is more
likely to approach the real error than an estimate based

on many repetitions of a simple comparison.

How Should the Uncertainty be Stated?

The discussion thus far has dealt with two questions

simultaneously: the estimate of the error and the evi-

dence to support the estimate. Oddly enough it seems

an even more difficult task to come to widespread agree-

ment on how to record the errors.

Return to the first problem considered. A calibrating

laboratory possesses a standard unit with a certificate

issued by a national laboratory. The laboratory also

possesses the necessary equipment for making compari-

sons. Furthermore a sufficient number of test items have

undergone comparison with the standard so that a good

estimate is available of the error of the comparison pro-

cedure. We assume a negligible systematic error. Let 5

be the estimate of the standard deviation for the com-
parison. What should the calibrating laboratory put on

any certificate it issues to its customers? Is it enough to

put some generally accepted multiple of 5 as an indica-

tion of the maximum error likely to have been made in

the comparison? Not quite it seems, because the certifi-

cate issued by the national laboratory also has on it a

statement about the uncertainty in the value entered

on its certificate.

Weight and length standards offer as simple a case

as possible. The uncertainty entered on the certificate

issued by the standard laboratory involves a sequence

of comparisons. The first comparison is that of its own
reference standard A with an object / that, by defini-

tion, is one kilogram or one meter. Succeeding steps

relate the reference standard A to subordinate or work-

ing standards.

Let us suppose that a national prototype meter bar A
is compared with the international standard, /. (Actu-

ally the standard for length is now based on the wave-

length of light, but for some purposes comparisons be-

tween bars are still made.) The object is to determine a

correction C to be applied to the nominal value of the

national standard. The work of comparison will also

provide an estimate s for the standard appropriate for

the correction based on the repeated readings. Let Ct

be the true value for the correction and Co be the ob-

served correction. If the comparison has been achieved

without introducing a bias, the expectation is that Co

does not differ from Ct by more than a small multiple of

s. The multiple for 5 is a personal choice and is usually

in the range from two to three.

At this point it is well to pause and consider meter

bar A. The observed correction Co is almost certainly

not equal to the true correction Ct. The difference

(Co — C() is not known but is a physical, unchanging
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magnitude.' No matter how many other bars are com-
pared with standard A, this unchanging error is carried

over into every calibration. This error (Co — Cj) is not

now a random quantity. It is fixed by two quantities.

The true difference between A and the international

standard I is Ct and we hope that this difference is con-

stant. The other quantity Co is the experimentally de-

termined estimate of Ct and this will not be changed
until the national standard A is again taken to France.

Both Co and Ct are constants and the difference between
them must therefore be a constant. To pretend that this

difference varies in successive uses of the standard for

calibration is sheer nonsense. True, out of two score

national standards each with a similar error (Co — C(),

there will be some where (Co — CJ is nearly zero, and
perhaps two countries whose (Co — Ci) exceeds 2s. Any
one country takes a substantial risk if it assumes that

it possesses a correction that is very close to the true

correction. In the absence of any guide, the safe thing is

to guard against the worst that may reasonably happen

to the estimate of the correction for meter bar A.

There is a redeeming feature about this situation. In

practice, a series of intermediate standards such as /,

A, B, C, is interposed between / and some item D sent

in for calibration. We may argue that, for each step, we
can envisage an unknown error (Co — Ct).

Thus,

comparison ^4 — / is in error by (Co— C()a,

comparison B—A is in error by (Co— C()b,

comparison C—B is in error by (Co— C()c,

comparison D — C is in error by (Co— C()o.

Now each of these errors is a constant but the signs

of the errors are as likely to be plus as minus. To the ex-

tent that the signs are not all the same, there will be

compensation and reduction in the over-all sum of these

errors. With four errors, there is a one-in-eight chance

that all the errors have the same sign. Even if these er-

rors all have the same sign, there is only a very remote

chance that every one of them is large.

^

We wish to establish for item D a maximum error

that has some specified small chance of being exceeded.

The four errors were obtained by drawing one random
error from each of four populations with standard devia-

tions sr, Sa, Sb and sc- The error in D is therefore found

by the usual quadrature formula

sd = VS[^ + Sa^ + Sb'^ + sc^

The uncertainty which the national laboratory records

on the certificate for D will be some multiple of sd-^

The calibrating laboratory that gets item D and its

certificate has a different problem. Suppose this labora-

tory could make its comparisons without any error. The

' Co — Ct is practically a constant for the best meter bars. Elec-

trical meters, bridges, resistances, etc., may undergo some slow drift

with time or continued use.
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laboratory would then copy onto the certificates that it

issues the uncertainty given on the certificate for D. In

fact, this laboratory, when it calibrates items £i, £2,

£3, • • •
, does have a comparison error Sb- One possibil-

ity is to combine Sd and se by quadrature obtaining

V^d'+^b^ as the combined standard deviation. This

distribution will be centered on Co and is shown as the

dotted curve in Fig. 1. Unfortunately the actual situa-

tion is different. The random errors are in fact distrib-

uted with standard deviations se around the unknown

true value Ct for the standard D. The solid curve in Fig.

1 shows this situation where C^ — Ct is, in the illustra-

tion, 1.6 5d. The vertical dashed line has been drawn at

2 V5z)^+5fi^ to the right of Co. This leads to the expecta-

tion that 2.5 per cent of the errors will be in the area

to the right of the vertical line. The actual distribution

for the chosen value of Co— C( puts 15 per cent of the

area to the right of the dashed line. Of course if the

calibrating laboratory has a standard deviation, three

or four times as large as (Co — C() is ever likely to be,

then the effect of the off-center positioning becomes

negligible.

Fig. 1—Comparison of distribution centered on true value (solid line)

with distribution centered on experimental value (dotted line).

The important conclusion from the above remarks is

that the actual error in the value on a certificate may be

a random error from the viewpoint of the national labo-

ratory but it is a systematic error for the calibrating lab-

oratory. The calibrating laboratory can use only the

value ascribed to its standard by the national labora-

tory. The value is used over and over. A lucky calibrat-

ing laboratory will get a standard with a small random
error and, in consequence, a small systematic error is

introduced in its comparisons. Other laboratories not so

fortunate will have a much larger error. But who is

lucky and who is unlucky is not known so the safe

thing to do is for all calibrating laboratories to act as

though they had the maximum possible systematic error

that might arise from the uncertainty in the value en-

tered on the certificate that applies to their standard.

How shall such a systematic error be merged with the

random error associated with the calibrations it under-

takes? The answer depends on the use that will be made
of these calibrated items. If they go to lower echelons to

serve as "standards" the argument used for the sequence
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of meter bars appears appropriate and the two errors

are merged by quadrature. If the calibrated item is to

be put to work making measurements routinely, the

quadrature combination seems inappropriate. Here the

systematic error may be added to the maximum likely

random error in order to give an upper bound to the pos-

sible error in the measurements.

Most of the standards possessed by a national labora-

tory are known to have a systematic as well as a random
component of error. It is a fair h; zard that in most

cases the systematic component is he dominant com-
ponent. In that event, the unce- tai ity entered on the

certificates issued by the standards laboratory may be

only slightly larger than the systematic error. Regard-

less of the relative contribution of the two components,

the calibrating laboratory must view the stated uncer-

tainty as a systematic error. To gamble and attempt to

view even a part of the uncertainty as a random com-
ponent may be quite misleading. If the standard in the

possession of a laboratory happened to have one of the

larger random errors, then it may result that practically

all of the certificates it issues will have an error in excess

of the claimed error. Of course some other calibrating

laboratory that happened to have a standard that in

fact had a very small error will issue certificates that are

all well within the claimed error. Over the whole country

things will average out. But the customers of the un-

lucky calibrating laboratory will all be unlucky as a

group.

The foregoing shows that if any one calibrating labo-

ratory combines errors on the presumption of a random
component in the uncertainty on its certificate, it forces

upon all of its customers the effect of one random error.

The laboratory has probably no intention of doing this.

The laboratory does intend to make a statement that

actually protects nearly all of its customers, and even

the exceptions should be borderline.

Discussion

Consider the chain of comparisons starting with a

national standard and continuing on down to some piece

of equipment that will be used routinely. It appears

usual to form an estimate of the error by studying each

link in the chain. It does seem likely that in the later

links of the chain, the equipment and the environment

used for the comparisons will be definitely inferior to the

facilities available for the initial comparisons. Thus, at

some stage, the comparison uncertainty may be large

in comparison with preceding uncertainties. It is easy

to demand incredibly small uncertainties but evidence

should be presented that these small uncertainties are

really needed.

The author is of the opinion that the ultimate users

of calibrated items often have an optimistic notion of

the quality of the measurements they make. It is most

unlikely that adequate studies have been made of the

errors in the measurements made by ultimate users. It
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was pointed out earlier that readings repeated in rapid

sequence with little or no disturbance of the equipment
cannot be expected to reveal the real errors. For exam-
ple, a gage block may be used to "set" a very sensitive

gaging device. The user compares two items and is im-

pressed by the sensitivity of the device. A demand is

then made for better standards.

What is called for is a little ingenuity to devise means
that will disclose the real magnitude of the errors in the

measurements. Closely similar test blocks should be

periodically resubmitted for measurement. Near equal-

ity of the test blocks is needed to make identification

difficult. The schedule of tests should be prepared in

some artful or random sequence.

The following example^ illustrates the point that

operators calibrating clinical thermometers could "re-

peat" their readings extremely well even when the

repeat reading followed the reading of 23 other ther-

mometers. The average difference between repeat read-

ings was 0.0102°—one twentieth of a scale division. The
average of 24 readings should have an error of about

0.01/V^i or 0.002. The holder and the 24 thermometers

were set aside for a few days and then reread. Again the

superb agreement between closely repeated readings was
observed. Unfortunately the average of the readings

shifted by more than 0.02°, i.e., an order of magnitude

greater than the expected error. This phenomenon was
demonstrated over and over again with different op-

erators and different sets of thermometers. Operators

shifted relative to one another as much as 0.04° when
their averages on the same thermometers were com-

pared. There is little doubt that even more startling

contrasts between real and apparent errors would ap-

pear when the environment itself has to be carefully

controlled to minimize errors. Some investigations

should be made in order to ascertain whether some of the

demands made for better standards are really justified.

Conclusion

At every stage in the hierarchy of calibrating labora-

tories, there is a laboratory that has on a bench three

objects of interest:

1) A standard item from the echelon above with a

certificate,

2) An assembly of equipment appropriate for com-
paring items, and

3) A collection of items awaiting calibration for the

echelon below.

One safe procedure for all calibrating laboratories would
be to quote the uncertainty in its standard, to state the

uncertainty in its comparison process, and to tell its

customers that the simple sum of these two components
is the only safe measure of the possible error in the

value assigned to the item just calibrated.

It should not be overlooked that the uncertainty

stated on the certificate accompaning the standard

sometimes includes a "stability" allowance. On the

basis of broad experience a reasonable estimate of the

drift effects can be made. When the uncertainty as-

signed to the standard includes such an allowance, this

information should also be given.
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Expression of the Uncertainties

of Final Results

Clear statements of the uncertainties of reported

values are needed for their critical evaluation.

Churchill Eisenhart

Measurement of some property of a

thing in practice always takes the form

of a sequence of steps or operations

that yield as an end result a number

that serves to represent the amount or

quantity of some particular property of

a thing—a number that indicates how
much of this property the thing has,

for someone to use for a specific pur-

pose. The end result may be the out-

come of a single reading of an instru-

ment, with or without corrections for

departures from prescribed conditions.

More often it is some kind of average,

for example, the arithmetic mean of a

number of independent determinations

of the same magnitude, or the final

result of a least squares "reduction" of

measurements of a number of different

magnitudes that bear known relations

with one another in accordance with a

definite experimental plan. In general,

the purpose for which the answer is

needed determines the precision or ac-

curacy required and ordinarily also the

method of measurement employed.

Although the accuracy required of a

reported value depends primarily on

the intended use, or uses, of the value,

one should not ignore the requirements

of other uses to which it is likely to

be put. A reported value whose accu-

racy is entirely unknown is worthless.

Strictly speaking, the actual error of

a reported value, that is the magnitude

and sign of its deviation from the truth

(/), is usually unknowable. Limits to

this error, however, can usually be in-

ferred—with some risk of being incor-

rect—from the precision of the mea-

surement process by which the reported

value was obtained, and from rea-

sonable limits to the possible bias of

the measurement process. The bias, or

systematic error, of a measurement proc-
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ess is the magnitude and direction of

its tendency to measure something

other than what was intended; its preci-

sion refers to the typical closeness to-

gether of successive independent mea-

surements of a single magnitude gen-

erated by repeated applications of the

process under specified conditions; and

its accuracy is determined by the

closeness to the true value characteris-

tic of such measurements.

Precision and accuracy are inherent

characteristics of the measurement proc-

ess employed and not of the particular

end result obtained. From experience

with a particular measurement process

and knowledge of its sensitivity to un-

controlled factors, one can often place

reasonable bounds on its likely system-

atic error (bias). It is also necessary to

know how well the particular value in

hand is likely to agree with other

values that the same measurement proc-

ess might have provided in this in-

stance, or might yield on remeasure-

ment of the same magnitude on another

occasion. Such information is provided

by the estimated standard error

(2) of the reported value, which mea-

sures (or is an index of) the charac-

teristic disagreement of repeated deter-

minations of the same quantity by the

sami^ rr:cthod, and thus serves to indi-

cate the precision (strictly, the impreci-

sion) of the reported value (i).

Four Distinct Forms of

Expression Needed

The uncertainty of a reported value

is indicated by stating credible limits

to its likely inaccuracy. No single

form of expression for these limits is

universally satisfactory. In fact, differ-
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ent forms of expression are recom-

mended, which will depend on the rela-

tive magnitudes of the imprecision and

likely bias, and their relative impor-

tance in relation to the intended use of

the reported value, as well as to other

possible uses to which it may be put

(4).

Four distinct cases need to be recog-

nized: (i) both systematic error and im-

precision negligible, in relation to the

requirements of the intended and likely

uses of the result; (ii) systematic error

not negligible, imprecision negligible;

(iii) neither systematic error nor im-

precision negligible; and (iv) systematic

error negligible, imprecision not negli-

gible.

Specific recommendations with re-

spect to each of these cases are made
below. General guidelines upon which

these specific recommendations are

based are discussed in the following

paragraphs.

Perils of Shorthand Expressions

Final results and their respective un-

certainties should be reported in sen-

tence form whenever possible. The
shorthand form "a ± b" should be

avoided in abstracts and summaries; and

never used without explicit explana-

tion of its connotation. If no explana-

tion is given, many persons will take

±6 to signify bounds to the inaccuracy

of a. Others may assume that b is the

"standard error," or the "probable er-

ror," of a, and hence the uncertainty

of a is at least ±2>b, or ±46, respectively.

Still others may take b to be an indica-

tion merely of the imprecision of the in-

dividual measurements, that is, to toe the

"standard deviation," or the "average

deviation," or the "probable error" of

a single observation. Each of these in-

terpretations reflects a practice of which

instances can be found in current

scientific literature. As a step in the

direction of reducing this current con-

fusion, it is recommended that the use

of "a ± b" in presenting results be

limited to that sanctioned for the case

of tabular results in the fourth recom-

mendation of the section below headed

"Systematic error not negligible, im-

precision negligible."

The author is a senior research fellow and
former chief of the Statistical Engineering Labora-
tory at the National Bureau of Standards, Wash-
ington, D.C. 20234. The recommendations pre-
sented in this paper hare evolved at the Bureau
ov?r a period of many years and are made
public here for general information, and to educe
comments and suggestions.
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Imprecision and Systematic Error

Require Separate Treatment

Since imprecision and systematic

error are distinctly different components

of inaccuracy, and are subject to dif-

ferent treatments and interpretations in

usage, two numerics respectively ex-

pressing tlie imprecision and bounds

to the systematic error of the reported

result should be used whenever both

of these errors are factors requiring

consideration. Such instances are dis-

cussed in the section below for the case

of "Neither systematic error nor im-

precision negligible."

In quoting a reported value and its

associated uncertainty from the litera-

ture, the interpretation of the uncer-

tainty quoted should be stated if given

by the author. If the interpretation is

not known, a remark to this effect

is in order. This practice may induce

authors to use more explicit formula-

tions of their statements of uncertainty.

Standard Deviation and Standard Error

The terms standard deviation and

standard error should be reserved to

denote the canonical values for the

measurement process, based on consid-

erable recent experience with the mea-

surement process or processes involved.

When there is insufficient recent ex-

perience, an estimate of the standard

error (standard deviation) must of ne-

cessity be computed by recognized sta-

tistical procedures from the same mea-

surements as the reported value itself.

To avoid possible misunderstanding, in

such cases, the term "computed (or

estimated) standard error" ("computed

standard deviation") should be used. A
formula for calculating this computed

standard error is given in the section

below for the case of "Neither system-

atic error nor imprecision negligible."

Uncertainties of Accepted Values of

Fundamental Constants or

Primary Standards

If the uncertainty in the accepted

value of a national primary standard or

of some fundamental constant of na-

ture (for example, in the volt as main-

tained at the National Bureau of Stan-

dards, or in the acceleration of gravity

g on the Potsdam basis) is an important

source of systematic error affecting the

measurement process, no allowance for

possible systematic error from this

source should be included ordinarily

in evaluating overall bounds to the sys-

tematic error of the measurement proc-

ess. Since the error concerned, what-

ever it is, affects all results obtained

by the method of measurement in-

volved, to include an allowance for this

error would be to make everybody's

results appear unduly inaccurate rela-

tive to each other. In such instances

one should state: (i) that measurements

obtained by the process concerned are

expressed in terms of the volt (or the

kilogram, or other unit) "as maintained

at the National Bureau of Standards,"

or (ii) that the indicated bounds to the

systematic error of the process are ex-

clusive of the uncertainty of the stated

value adopted for some particular con-

stant or quantity. An example of the

latter form of statement is:

. . . neglecting the uncertainty of the value

6.6256 X 10"" joule seconds adopted for

Planck's constant.

Systematic Error and Imprecision

Both Negligible

In this case the reported result

should be given, after rounding, to the

number of significant figures consist-

ent with the accuracy requirements of

the situation, together with an explicit

statement of its accuracy. An example

is:

. . . the wavelengths of the principal visible

lines of mercury-198 have been measured
relative to the 6057.802106 A (angstrom

units) line of krypton-98, and their values

in vacuum are

5792.2685 A
5771.1984 A
5462.2706 A
4359.5625 A
4047.7146 A

correct to eight significant figures.

It needs to be emphasized that if no

statement of accuracy or precision ac-

companies a reported number, then, in

accordance with the usual conventions

governing rounding, this number will

ordinarily be interpreted as being ac-

curate within ±V2 unit in the last signif-

icant figure given; that is, it will be

understood that its inaccuracy before

rounding was less than ± 5 units in the

next place. The statement "correct to

eight significant figures" is included ex-

plicitly in the foregoing example, rather

than left to be understood in order to

forestall any concern that an explicit

statement of lesser accuracy was in-

advertently omitted.

Systematic Error Not Negligible,

Imprecision Negligible

When the imprecision of a result is

negligible, but the inherent systematic

error of the measurement process con-

cerned is not negligible, then the fol-

lowing rules are recommended:

1) Qualification of a reported result

should be limited to a single quasi-

absolute type of statement that places

bounds on its inaccuracy.

2) These bounds should be stated to

no more than two significant figures.

3) The reported result itself should

be given (that is, rounded) to the last

place affected by the stated bounds

(unless it is desired to indicate and

preserve such relative accuracy or pre-

cision of a higher order that it may
possess for certain particular uses).

4) Accuracy statements should be

given in sentence form in all cases,

except when a number of results of

different accuracies are presented, for

example, in tabular arrangement. If it

is necessary or desirable to indicate

the respective accuracies of a number
of results, the results should be given

in the form a± b {or a ij, if neces-

sary) with an appropriate explanatory

remark (as a footnote to the table,

or incorporated in the accompanying

text) to the effect that the ±b, or t!'c>

signify bounds to the systematic errors

to which the a's may be subject.

5) The fact that the imprecision is

negligible should be stated explicitly.

The particular form of the quasi-

absolute type of statement employed

in a given instance will depend ordi-

narily on personal taste, experience,

current and past practice in the field

of activity concerned, and so forth.

Some examples of good practice are:

. . . is (are) not in error by more than 1

part in (at).

. . . is (are) accurate within ± (x units)

[or ± (x) percent].

. . . is (are) believed accurate within

( ).

Positive wording, as in the first two

of these quasi-absolute statements, is

appropriate only when the stated

bounds to the possible inaccuracy of

the reported value are themselves relia-

bly established. However, when the in-

dicated bounds are somewhat conjec-

tural, it is desirable to signify this

fact (and put the reader on guard) by

inclusion of some modifying expres-

sion such as "believed," "considered,"

"estimated to be," "thought to be," and
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so forth, as exemplified by the third of

the foregoing examples.

The term uncertainty may sometimes

be used effectively to achieve a concise-

ness of expression otherwise difficult or

impossible to attain. Thus, one might

make a statement such as:

The uncertainties in the above values

are not more than ± 0.5 °C in the range

0°C to 1100°C, and then increase to ±
2°C at 1450°C,

or

The uncertainty in this value does not

exceed . . . excluding (or, including) the

uncertainty of ... in the value . . . adopted
for the (reference standard involved).

A statement giving numerical limits

of uncertainty as in the above should

be followed by a brief discussion tell-

ing how the limits were derived.

Finally, the following forms of quasi-

absolute statements are considered poor

practice, and are to be avoided:

The accuracy of ... is 5 percent.

The accuracy of ... is ± 2 percent.

These are presumably intended to

mean that the result concerned is not

inaccurate, that is, not in error, by

more than 5 percent or 2 percent, re-

spectively, but they explicitly state the

opposite.

Neither Systematic Error Nor

Imprecision Negligible

When neither the imprecision nor the

systematic error of a result are negligi-

ble, then the following rules are rec-

ommended:

1) A reported result should be quali-

fied by a quasi-absolute type of state-

ment that places bounds on its sys-

tematic error, and a separate statement

of its standard error or its probable

error, or of an upper bound thereto,

whenever a reliable determination of

such value or bound is available. Other-

wise a computed value of the standard

error, or, probable error, so designated,

should be given together with a state-

ment of the number of degrees of

freedom on which it is based.

2) The bounds to its systematic error

and the measure of its imprecision

should be stated to no more than two

significant figures.

3) The reported result itself should

be stated at most to the last place af-

fected by the finer of the two qualify-

ing statements (unless it is desired to

indicate and preserve such relative ac-

curacy or precision of a higher order

that it may possess for certain particu-

lar uses).

4) The qualification of a reported

result with respect to its imprecision

and systematic error should be given

in sentence form, except when results

of different precision or with different

bounds to their systematic errors are

presented in tabular arrangement. If

it is necessary or desirable to indicate

their respective imprecisions oi bounds

to their respective systematic errors,

such information may be given in a

parallel column or columns, with ap-

propriate identification.

Here, and in the next section, the

term standard error is to be under-

stood as signifying the standard devia-

tion of the reported value itself, not as

signifying the standard deviation of the

single determination (unless, of course,

the reported value is simply the result

of a single determination).

The above recommendations should

not be construed to exclude the pres-

entation of a quasi-abolute type of state-

ment placing bounds on the inaccuracy,

that is, on the overall uncertainty, of a

reported value, provided that separate

statements of its imprecision and its

possible systematic error are included

also. To be in good taste, the bounds

indicating the overall uncertainty

should not be numerically less than the

corresponding bounds placed on the

systematic error outwardly increased by

at least three times the standard error.

The fourth of the following examples

of good practice is an instance at

point:

The standard errors of these values do
not exceed 0.000004 inch, and their sys-

tematic errors are not in excess of 0.00002

inch.

The standard errors of these values are

less than {x units), and their systematic er-

rors are thought to be less than ± {y

units). No additional uncertainty is as-

signed for the conversion to the chemical
scale since the adonted conversion factor

is taken as 1.000275 exactly.

. . . with a standard error of (jr units),

and a systematic error of not more than
± (y units).

. . . with an overall uncertainty of ± 3

percent based on a standard error of 0.5

percent and an allowance of ± 1.5 percent
for systematic error.

When a reliably established value for

the relevant standard error is available,

and the dispersion of the present mea-
surements is in keeping with this ex-

perience,, then this canonical value of

the standard error should be used (5).

If such experience indicates that the

standard error is subject to fluctuations

greater than the intrinsic variation of

such a measure, then an appropriate

upper bound should be given, for ex-

ample, as in the first two of the above

examples, or by changing "a standard

error . . ."in the third and fourth

examples to "an upper bound to the

standard error . .
."

When there is insufficient recent

experience with the measurement proc-

esses involved, an estimate of the

standard error must of necessity be

computed by recognized statistical pro-

cedures from the same measurements

as the reported value itself. It is

essential that such computations be

carried out according to an agreed-

upon standard procedure, and the results

thereof presented in sufficient detail to

enable the reader to form his own judg-

ment, and make his own allowances

for their inherent uncertainties. To
avoid possible misunderstanding, in such

cases, first, the term computed standard

error should be used; second, the esti-

mate of the standard error employed

should be that obtained from

estimate of standard error =

(

sum of squared residuals \^
nv )

where n is the (effective) number of

completely independent determinations

of which a is the arithmetic mean (or

other appropriate least-squares adjusted

value) and v is the number of degrees

of freedom involved in the sum of

squared residuals (that is, the number
of residuals minus the number of fitted

constants or other independent con-

straints on the residuals); and third, the

number of degrees of freedom should

be explicitly stated. If the reported

value a is the arithmetic mean, then:

estimate of standard error = (T/n)%

where

j= = 2 (jc, — af/{n — 1)

and n is the number of completely in-

dependent determinations of which a is

the arithmetic mean. For example:

. . . which is the arithmetic mean of {ri)

independent determinations and has a stan-

dard error of . . .

. . . with an overall uncertainty of

± 5.2 km/sec based on a standard error

of 1.5 km/sec and estimated bounds of

± 0.7 km/sec on the systematic error.

(The figure 5.2 is equal to 0.7 plus 3

times 1.5.)

or, if based on a computed standard

error.

The computed probable error (or, stan-
dard error) of these values is {x units).
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based on (i') degrees of freedom, and the

systematic error is estimated to be less than

± (y units).

. . . with an overall uncertainty of ± 7
km/sec derived from bounds of ± 0.7

km/ sec on the systematic error and a com-
puted standard error of 1.5 km/sec based
on 9 degrees of freedom. [The number
7 is approximately equal to 0.7 + (4.3 X
1.5), where 4.3 is the value of Student's /

for 9 degrees of freedom exceeded in ab-

solute value with 0.002 probability. As
c-* 00, /.KB (i-)-* 3.090.]

When the reported value is the result

of a complex measurement process

and is obtained as a function of sev-

eral quantities whose standard errors

have been computed, these several

quantities and their standard errors

should usually be reported, together

with a description of the method of

computation by which the standard

errors were combined to provide an

overall estimate of imprecision for the

reported value.

Systematic Error Negligible,

Imprecision Not Negligible

When the systematic error of a result

is negligible but its imprecision is not,

the following rules are recommended:

1) Qualification of a reported value

should be limited to a statement of its

standard error or of an upper bound

thereto, whenever a reliable determina-

tion of such value or bound is avail-

able. Otherwise a computed value of

the standard error, so designated,

should be given together with a state-

ment of the number of degrees of

freedom on which it is based.

2) The standard error or upper

bound thereto, should be stated to not

more than two significant figures.

3) The reported result itself should

be stated at most to the last place af-

fected by the stated value or bound

to its imprecision (unless it is desired

to indicate and preserve such relative

precision of a higher order that it may
possess for certain particular uses).

4) The qualification of a reported

result with respect to its imprecision

should be given in sentence form, ex-

cept when results of different precision

are presented in tabular arrangement

and it is necessary or desirable to indi-

cate their respective imprecisions in

which event such information may be

given in a parallel column or columns,

with appropriate identification.

5) The fact that the systematic er-

ror is negligible should be stated ex-

plicitly.

The above recommendations should

not be construed to exclude the pres-

entation of a quasi-absolute type of

statement placing bounds on its possible

inaccuracy, provided that a separate

statement of its imprecision is included

also. To be in good taste, such bounds

to its inaccuracy should be numeri-

cally equal to at least three times the

stated standard error. The fourth of

the following examples of good practice

is an instance at point.

The standard errors of these values are

less than (x units).

. . . with a standard error of (x units).

. . . with a computed standard error of

(jT units) based on (») degrees of freedom.

. . . with an overall uncertainty of ± 4.5

km/sec derivef* from a standard error of

1.5 km/sec. (The figure 4.5 is equal to

3 X 1.5.)

or, if based on a computed standard

error,

. . . with an overall uncertainty of ± 6.5

km/sec derived from a computed standard

error of 1.5 km/sec (based on 9 degrees

of freedom). (The number 6.5 is equal to

4.3 X 1.5, where 4.3 is the value of Stu-

dent's t for 9 degrees of freedom ex-

ceeded in absolute value with 0.002 prob-

ability. As 00, /.002(f) 3.090.)

The remarks with regard to a com-

puted standard error in the preceding

section apply with equal force to the

last two examples above.

Conclusion

The foregoing recommendations call

for fuller and sharper detail than is

general in comrnon practice. They
should be regarded as minimum stan-

dards of good practice. Of course, many
instances require fuller treatment than

that recommended here.

Thus, in the case of determinations

of the "fundamental physical con-

stants" and other basic properties of

nature, the author or authors should

give a detailed account of the various

components of imprecision and sys-

tematic error, and list their respective

individual magnitudes in tabular form,

so that (i) the state of the art will be

more clearly revealed, (ii) each individ-

ual user of the final result may decide

for himself which of the indicated com-

ponents of imprecision or systematic

error are, or are not, relevant to his

use of the final result, and (iii)—most

important—the final result itself or its

uncertainty can be modified appropri-

ately in the light of later advances. This

is, and has long been, the practice fol-

lowed in the best reports of funda-

mental studies, but current efforts to

prepare critically evaluated standard

reference data have revealed that far

too great a fraction of the data in the

scientific literature "cannot be criti-

cally evaluated because the minimum
of essential information is not present"

(6).
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EXPRESSIONS OF IMPRECISION,
SYSTEMATIC ERROR,

AND
UNCERTAINTY ASSOCIATED
WITH A REPORTED VALUE

HARRY H. KU, National Bureau of Standards

Reprinted with corrections, November 1968.

The work of a CEilibration laboratory

may be thought of as a sequence of

operations that result in the collection, stor-

age, and transmittal of information. In mak-
ing a statement of uncertainty of the result

of calibration, the calibration laboratory

transmits information to its clients on the

particular item calibrated.

It is logical, then, to require the trans-

mitted information to be meaningful and
unambiguous, and to contain all the rele-

vant information in the possession of the

laboratory. The information content of the

statement of uncertainty determines, to a
large' extent, the worth of the calibrated

value.

A common deficiency in many statements
of uncertainty is that they do not convey
all the information a calibration laboratory

has to offer, information acquired through
much ingenuity and hard work. This defi-

ciency usually originates in two ways:

1. Loss of information through oversim-

plification, and

2. loss of information through the inability

of the laboratory to take into account in-

formation accumulated from its past ex-

perience.

With the increasingly stringent demands
for improved precision and accuracy of cali-

bration work, calibration laboratories as a
whole just cannot afford such luxury.

Traceability to the national standards,

accuracy ratios, and class tolerance require-

ments are simplified concepts that aim to

achieve different degrees of accuracy re-

quirements. These concepts and the result-

ing statements are useful on certain occa-

sions, but fail whenever the demand is

exacting. The general practice of obliterat-

ing all the identifiable components of un-

certainty, by combining them into an over-

all uncertainty, just for the sake of simplicity,

is another case in point. After all, if the

calibration laboratory reports all the per-

tinent information in separate components,
the user can always combine them or use
them individually, as he sees fit. On the

other hand, if the user is given only one
number, he can never disentangle this num-
ber into its vEirious components. Since the

information buried under these oversimpli-

fied statements is available, and may well

be useful to sophisticated customers, such

practices result in substantial waste of ef-

fort and resources.

In calibrating an item by repeating the

same calibration procedure, the calibration

laboratory gains increments of information

about its calibration system. These incre-

ments of information are quantified and ac-

cumulated for the benefit of the calibration

laboratory. If the precision of the calibra-

tion process remains unchanged, the sta-

tistical measure of dispersion (s) - i.e.,

the standard deviations computed from these

sets of data - can be pooled together,

weighted by their respective degrees of

freedom. When many such increments of

information are combined, an accepted or

canonical value of standard deviation ( f

)

is established. This established (canonical)

value of standard deviation characterizes

the precision of the calibration process, and
is treasured information in any calibration

laboratory.
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Hence, the canonical value of standard
deviation is the quantification of informa-

tion accumulated from past experiences of

the calibration laboratory, and is an essen-

tial element of the statement of uncertainty.

The standard deviation (s) computed from
the current cahbration is used to check the

precision of current work, and to add to the

pool of information on the process, but cer-

tainly does not represent all the informa-

tion available in the possession of an es-

tablished cahbration laboratory. Only by
passing its accumulated information to the

users is the calibration laboratory perform-

ing a complete service.

STATEMENT OF UNCERTAINTY

Hence, in the preparation of a statement
of uncertainty, it is helpful to bear in mind
that:

1. The derivation of a statement of un-

certainty has as its foundation the work
done in the laboratory, and is based on
information accvunulated from past experi-

ence, and

2. In general, information is lost through

oversimplification, and demands for im-

proved precision and accuracy cannot be
met with simplified statements of uncer-

tainty.

Unless a statement of uncertainty is well

formulated and supported, it is difficult to

say what is meant by the statement, a dif-

ficulty frequently encountered. Since the

evaluation of uncertainty is part and par-

cel of the high standard of work of a cali-

bration laboratory, the statement of uncer-

tainty deserves £dl the attention required

to make the statement both reahstic and
useful. To this end, Tables 1, 2 and 3 give

terms and expressions compiled as a ready
reference for those who are searching for

some appropriate format or wording, to cary-

ry out the thoughts expressed. They sum-
marize the recommended practices on
expression of uncertainties as given in

Chapter 23 of NBS Handbook 91. A re-

vised version of this chapter with the title

"Expression of Uncertainties of Final Re-

sults" by Churchill Eisenhart may be found
in Science, 160, June 14, 1968. Figure 1

gives a condensed summary of this mater-
ial. Tables 1, 2 and 3 give details on the

following:

IMPRECISION
Standard deviation

Standard error

Confidence interv8il

Probable error

Mean deviation

Arithmetic mean
Weighted mean
Fitted equation

SYSTEMATIC ERROR
Uncertainty in constants

Uncertainty in calibrated values

Bias in computation

UNCERTAINTY

Bounds to inaccuracy
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TABLE 1 - IMPRECISION STATEMENTS

Value

reported Index or Measure of Error Remarks

Precision of a mea-

surement (calibra-

tion) process

(a). Standard deviation (cr) of

a single determination (ob-

servation)

(T (or s with the associated degrees of freedom') is of

main interest as an index of precision of the mea-

surement process. If the average of n such measure-

ments is also reported, see (b) below.

Arithmetic mean
(xn) of n numbers

(b). Standard error (c/ -y/ n) of the

reported value

in is of main interest; the number n is also essential

information; cassumed known. '

(c) . 2 sigma limits

(d) . 3 Sigma limits

Commonly used bounds of imprecisions; usually used

when a known, or when n large.

(e). Confidence interval (indicate

one- or two-sided)

Data points assumed to be normally distributed; report

confidence coefficient (level) 100 (1 - a)% .

^

(f). Half-width of confidence inter-

val (or confidence limits)

Same as (e) above; for symmetrical two-sided intervals;

an index to bounds of imprecision. ^

(g). Probable error of the reported

value

cr

Probable error = .6745 for normally distributed

data points when cr known. Use of (7"/'\/n preferred.

Incorrect if cr not known.

(h). Mean deviation, or average

deviation, of a measurementfrom

the mean calculated from the

sample

Limiting mean of mean deviation = -^/^^ 'v/^F"'

normally distributed data points when cr known.

Use of cr usually preferred.

(i). Any of the above expressed

in percent, or ppm of j^.

State what is being expressed in percent, eg., {(^/-yyn)

(1 00/ .If, ), .in being a fairly constant value.

m means each com-

puted from n mea-

surements

(i). (b), (c), (d) and (f) above If the measurements ore of equal precision and cr un-

known, use

s _^ — —1— 2 S". as estimate of (t^ • The no. of de-
P m . ,

1= 1

grees of freedom associated with sp is m(n-l).

(k). Sample coefficient of variation

(v = J-)
*^n

or relative percent

(v X 100)

Appropriate when the m means cover a wide range

and where the v's computed for the m sets are about

the same magnitude. Give range of v's for the m
sets. The means must be positive and bounded away
from zero.

Weighted mean
W|X| +WjX,

^ W, + Wj

(1). Standard error (<7j^) of the

weighted mean
If w, = ]/cr~ ' and w, =

\ /cr ^ ^, then cr^^= —~-

Not recommended when the cr's ore not known and

are estimated by s computed from small number of

measurements.

An equation (theo-

retical or empirical)

fitted to data points

by the method of

least squares

(m). Standard deviation computed

from the deviations (residuals) of

data points from the fitted curve

Report n, the number of data points, and k, the num-

ber of constants fitted,

(y, -9.)V(n-k),
i=l

where y| is the value on the fitted curve for the

particular x,.' Value of s usually given In computer

print-out.

Constants (coeffi-

cients) in the equa-

tion fitted to the

data points by the

method of least

squares

(n). Standard errors of the coeffi-

cients based on the standard de-

viation computed udder (m)

Standard errors usually given In computer print-out.

Report n and k as above. ^.
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TABLE 1 - IMPRECISION STATEMENTS - (Confinued)

Value

reported Index or Measure of Error Remarks

A predicted point on

the curve y for a

particular Xq

(o). Standard error (s* ) of thepre-

dicted point

For the straight line case, the computer print-out gives

the variance-covariance matrix (

^"
).

^ S,2 S22 '

Sy — S11+ 2 SnXo + S22Xo^ .

^

Report n and k.

A predicted observ-

ed value for a par-

ticular Xo

(p). Standard error of the predict-

ed value of y

For the straight line case, Sy' = Sy^ + s^ v/here Sy^

and s^ are that given in (0) and (m) respectively.'

Report n and k

Value of function of

the arithmetic
means of several

measured variables

(q). Standard error calculated by

the use of propagation of error

formulas

Appropriate when errors of measurements are small

compared to the values of variables measured. Use

standard error of the means of the variables in the

formulas. ' Report number of measurements from

which these standard errors are computed.

rciLciiiuyc vl (Jl U

portion (r/ n), r and

n being counts

Irl C r\ni \n e^nr limits r\t inf^ trilf^111. V_ UllliLl<?lll.C> 11111119 \yi iiicr IIU^

proportion P

Procedures for obtaining exact and approximate confi-

dence limits are discussed in Chapter 7, NBS Hand-

book 91 . State one-sided or two-sided.

TABLE 2 -SYSTEMATIC ERROR ^ (BIAS) STATEMENTS

Value

reported Index or Measure of Error Remarks

Numerical value re-

sulting from a mea-

surement process

Reasonable bounds ascribed to

the value originating from:

(i). systematic error reliably es-

tablished

Detailed discussions of systematic errors ore always

helpful.

Positive wording is appropriate:

".
. . is not in error by more than . .

."

".
. . is accurate within ± . .

."

(ii). systematic error estimated

from experience or by judgment

Use modifier such as "believed", "estimated", "consider-

ed", to signify the conjectural nature of the statement.

(iii). combination of a number of

elemental systematic errors

State explicitly the method of combination such as

"the simple sum of the bounds" or "the square root of

the sum of squares".

(iv). uncertainty in some funda-

mental constant

Give reference to the value of constant used.

(v). uncertainty in calibrated

values

Ascertain the meaning of the systematic and random

components of the uncertainty from the calibration

laboratory so that decisions on the uses of these com-

ponents con be made from the correct Interpretations.

(vi). bias in the method of com-

putation

Correct if feasible, or give the magnitude; an example

Is ratio of the averages versus average of the ratios.
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TABLE 3 - UNCERTAINTY STATEMENTS

Value

reported Index or Measure of error Remarks

Numerical value re-

sulting from 0 mea-

surement process

Bounds to inoccuracy:

(1). Systematic error and impre-

cision both negligible

Explicit expression of correctness to the last significant

figure, interpreted as being accurate within ± '/z units

in the last significant figure given.

(2). Imprecision negligible. Bounds

on Inaccuracy given to no more

than two significant figures.

Sentence form preferred such as given under remark

for (i) and (ii). Footnote needed if bounds are given

in tabular form.

(3). Systematic error negligible.

Index of precision (b), (g), (h), (i),

(k), or (n) stated to no more than

two significant figures

State explicitly the index used and give essential in-

formation associated with the index. Qualify index cal-

culated by the word "computed". Avoid using expressions

of the form a ± b unless the meaning of b is explained

fully immediately following or in footnote.

(3'). Systematic error negligible.

Bounds to imprecision (c), (d), (e),

or (f) stated to no more than two

significant figures.

Same as under (3).

(4). Neither systematic error nor

imprecision negligible. Two nu-

merics indicating bounds to sys-

tematic error and index of i-Ti-

precision respectively

(2) and (3) above separately stated.

(4'). Bounds to systematic error

and imprecision combined, indi-

cating the likely inaccuracy of the

value

(2) and (3') above where the two components either

have been previously described, or explained im-

mediately following (or in footnote).

(5). Quoted from literature State reference and give author's interpretation of the

uncertainty; add remark if meaning unknown or

ambiguous.

If 0" is not known, use the computed standard deviation s based on k measurements as an estimate of <T, where

s^ —L 2 (^i -Xl)^. The number (k-1 ) is the degrees of freedom associated with s.

\-]

For interpretation see Chapter I, NBS Handbook 91, Experimental Statistics, by M. G. Natrella, 1963.

For details see Chapter 5 (straight line), and Chapter 6 (multivariate and polynomial), NBS Handbook 91 .

For details see "Notes on the use of propagation of error formulas", by Harry H. Ku, NBS Journal of Research, Vol.

70C, No. 4, October-December, 1966.

See "Realistic Evaluation of the Precision and Accuracy of Instrument Calibration Systems" by Churchill Eisenhart,

NBS Journal of research. Vol. 67C, No. 2, April-June, 1963, and "Systematic Errors in Physical Constants" by W. J.

Youden, Physics Today 14, 1 961

.
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FIGURE 1 - SUMMARY OF RECOMMENDATIONS ON
EXPRESSIONS OF THE UNCERTAINTIES OF FINAL RESULTS

SYSTEMATIC ERROR AND
IMPRECISION BOTH NEGLIGIBLE
(CASE 1)

In this case, the reported result should

be given correct to the number of signifi-

cant figures consistent with the accuracy
requirements of the situation, together with

an explicit statement of its accuracy or

correctness.

SYSTEMATIC ERROR NOT
NEGLIGIBLE, IMPRECISION
NEGLIGIBLE (CASE 2)

(a) Qualification of a reported result

should be limited to a single quasi-absolute

type of statement that places bounds on its

inaccuracy;

(b) These bounds should be stated to no
more than two significant figures;

(c) The reported result itself should be
given (i.e., rounded) to the last place af-

fected by the stated bounds, unless it is

desired to indicate and preserve such rela-

tive accuracy or precision of a higher order

that the result may possess for certain par-

ticular uses;

(d) Accuracy statements should be given

in sentence form in all cases, except when
a number of results of different accuracies

are presented, e.g., in tabular arrangement.
If it is necessary or desirable to indicate

the respective accuracies of a number of

resiilts, the results should be given in the

form a ± b (or aj^ ^, if necessary) with an

appropriate explanatory remark (as a foot-

note to the table, or incorporated in the

accompanying test) to the effect that the

± b, or ^ ^ , signify bounds to the errors

which the a's may be subject.

(e) The fact that the imprecision is negli-

gible should be stated explicity.

NEITHER SYSTEMATIC ERROR NOR
IMPRECISION NEGLIGIBLE (CASE 3)

(a) A reported result should be qualified

by: (1) a quasi-absolute type of statement
that places bounds on its systematic error;

and, (2) a separate statement of its stan-

dard error or its probable error or of an
upper bound thereto, whenever a reliable

determination of such value or bound is

available - otherwise, a computed value of

the standard error or probable error so

designated should be given, together with

a statement of a number of degrees of free-

dom on which it is based;

(b) The bounds to its systematic error

and the measure of its imprecision should
be stated to no more than two significant

figures;

(c) The reported result itself should be
stated, at most, to the last place affected

by the finer of the two qualifying state-

ments, unless it is desired to indicate and
preserve such relative accuracy or preci-

sion of a higher order that the result may
possess for certain particular uses;

(d) The quedification of a reported result,

with respect to its imprecision and syste-

matic error, should be given in sentence
form, except when results of different preci-

sion or with different bounds to their sys-

tematic errors are presented in tabular ar-

rangement. If it is necessary or desirable

to indicate their respective imprecisions or

bounds to their respective systematic errors,

such information may be given in a parallel

column or columns, with appropriate iden-

tification.

SYSTEMATIC ERROR NEGLIGIBLE,
IMPRECISION NOT NEGLIGIBLE
(CASE 4)

(a) Qualification of a reported value should

be limited to a statement of its standaird

error or of an upper bound thereto, when-
ever a reliable determination of such value
or bound is available. Otherwise, a com-
puted value of the standard error so desig-

nated should be given, together with a state-

ment of the number of degrees of freedom
on which it is based;

(b) The standard error, or upper bound
thereto, should be stated to not more than
two significant figures;

(c) The reported result itself should be
stated, at most, to the last place affected

by the stated value or bound to its impre-

cision, unless it is desired to indicate and
preserve such relative precision of a higher

order that the result may possess for cer-

tain particular uses;

(d) The qualification of a reported result

with respect to its imprecision should be
given in sentence form, except when results

of different precision are presented in tabu-

lar arrangement and it is necessary or de-

sirable to indicate their respective impre-

cisions, in which event such information may
be given in a parallel column or columns,

with appropriate identification.

(e) The fact that the systematic error is

negligible should be stated explicitly.
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Foreword

Statistical design deals with the scheduling and the orderly arrange-

ment of the sequence of observations in an experiment. Since each experi-

ment is an individual undertaking, so is its design. Some basic cosidera-

tions, however, are applicable to almost all experiments. These principles

are summarized in Chapter 11 of Handbook 91, reprinted here as the first

paper (2.1) in this section.

In Physical Measurements and Experiment Design (2.6) , Youden high-

lighted the shift of emphasis from the classical designs for agricultural

experimentation to that for physical experimentation. He argues that the

designs should take advantage of the special features that are character-

istic of the class of prgblems in physical sciences, and gives several ex-

amples illustrating his point.

His other three papers (2.2, 2.3, 2.5) are coauthored with scientists in

various areas of the Bureau, and illustrate the need for tailoring the design

to the particular experiment. A variety of other examples are also given in

Statistical Design (Selected Reference D2), which is a collection of his

bimonthly articles from Industrial and Engineering Chemistry.

In calibration work, it is not uncommon for different laboratories to

use the same method of comparison for the same type of standards, and

hence to use the same type of design. Design for the comparison of groups

of standard cells are given in NBS Technical Note 430 (abstracted in 7.2).

Current designs used in the comparison of mass standards are illustrated

in Technical Note 288 (abstracted m 7.1). It is expected that more of this

"standard type" of calibration designs for physical quantities that are

routinely measured in Standards Laboratories will be published in the form

of Technical Notes. One such publication in preparation is that for the

series of mass standards.
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EXPERIMENTAL STATISTICS*

CHAPTER 11

GENERAL CONSIDERATIONS

IN PLANNING EXPERIMENTS

Mary G. Natrella

11-1 THE NATURE OF EXPERIMENTATION

An experiment has been defined, in the most

general sense, as "a considered course of action

aimed at answering one or more carefully

framed questions." Observational programs in

the natural sciences and sample surveys in the

social sciences are clearly included in this gen-

eral definition. In ordnance engineering, how-

ever, we are concerned with a more restricted

kind of experiment in which the experimenter

does something to at least some of the things

under study and then observes the effect of his

action.

The things under study which are being delib-

erately varied in a controlled fashion may be

called the factors. These factors may be quan-

titative factors such as temperature which can

be varied along a continuous scale (at least for

practical purposes the scale may be called con-

tinuous) or they may be qualitative factors

(such as different machines, different operators,

different composition of charge, etc.). The use

of the proper experimental pattern aids in the

evaluation of the factors. See Paragraph 11-2.

(1) possible effects due to background vari-

ables do not affect information obtained about

the factors of primary interest; and,

(2) some information about the effects of the

background variables can be obtained. See

Paragraph 11-3.

In addition, there may be variables of which

the experimenter is unaware which have an

effect on the outcome of the experiment. The
effects of these variables may be given an oppor-

tunity to "balance out" by the introduction of

randomization into the experimental pattern.

See Paragraph 11-4.

Many books have been written on the general

principles of experimentation, and the book by
Wilson<i> is especially recommended. There

are certain characteristics an experiment ob-

viously must have in order to accomplish any-

thing at all. We might call these requisites of a

good experiment, and we give as a partial listing

of requisites:

(1) There must be a clearly defined objective.

In addition to the factors, which are varied in

a controlled fashion, the experimenter may be

aware of certain background variables which
might affect the outcome of the experiment.

For one reason or another, these background
variables will not be or cannot be included as

factors in the experiment, but it is often possible

to plan the experiment so that:

* KBS Handbook 91, 1966. oi _

(2) As far as possible, the effects of the

factors should not be obscured by other vari-

ables.

(3) As far as possible, the results should not

be influenced by conscious or unconscious bias

in the experiment or on the part of the experi-

menter.

I-l
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(4) The experiment should provide some
measure of precision.*

(5) The experiment must have sufficient pre-

cision to accomplish its purpose.

* This requisite can be relaxed in some situations, i.e.,

when there is a well-known history of the measurement
process, and consequently good a priori estimates of

precision.

To aid in achieving these requisites, statistical

design of experiments can provide some tools for

sound experimentation, which are listed in Table

11-1.

The tools given include: experimental pattern,

planned grouping, randomization, and replica-

tion. Their functions in experimentation are

shown in Table 11-1, and are amplified in Para-

graphs 11-2 through 11-5.

TABLE 11-1. SOME REQUiSITES AND TOOLS FOR SOUND EXPERIMENTATION

Requisites Tools

1. The experiment should have carefully de-

fined objectives.

1. The definition of objectives requires all of

the specialized subject-matter knowledge of

the experimenter, and results in such things

as:

(a) Choice of factors, including their range;

(b) Choice of experimental materials, pro-

cedure, and equipment;

(c) Knowledge of what the results are

applicable to.

2. As far as possible, effects of factors should

not be obscured by other variables.

The use of an appropriate EXPERIMEN-
TAL PATTERN** (see Par. 11-2) helps to

free the comparisons of interest from the

effects of uncontrolled variables, and sim-

plifies the analysis of the results.

As far as possible, the experiment should be

free from bias (conscious or unconscious).

Some variables may be taken into account

by PLANNED GROUPING (see Par.

11-3). For variables not so taken care of,

use RANDOMIZATION (Par. 11-4). The
use of REPLICATION aids RANDOM-
IZATION to do a better job.

4. Experiment should provide a measure of

precision (experimental error).*

4. REPLICATION (Par. 11-5) provides the

measure of precision; RANDOMIZATION
assures validity of the measure of precision.

5. Precision of experiment should be sufficient

to meet objectives set forth in requisite 1.

Greater precision may be achieved by:

Refinements of technique

EXPERIMENTAL PATTERN (including

PLANNED GROUPING)
REPLICATION.

* Except where there is a well-known history of the
measurement process.

** Capitalized words are discussed in the following

. paragraphs.
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11-2 EXPERIMENTAL PATTERN

The term experimental pattern is a broad one

by which we mean the planned schedule of

taking the measurements. A particular pat-

tern may or may not include the succeeding

three tools {planned grouping, randomization,

and replication). Each of these three tools can

improve the experimental pattern in particular

situations. The proper pattern for the experi-

ment will aid in control of bias and in measure-

ment of precision, will simplify the requisite

calculations of the analysis, and will permit

clear estimation of the effects of the factors.

A common experimental pattern is the so-

called factorial design experiment, wherein we
control several factors and investigate their

effects at each of two or more levels. If two

levels of each factor are involved, the experi-

mental plan consists of taking an observation at

each of the 2" possible combinations. The fac-

torial design, with examples, is discussed in

greater detail in Chapter 12.

11-3 PLANNED GROUPING

An important class of experimental patterns

is characterized by planned grouping. This

class is often called block designs. The use of

planned grouping (blocking) arose in compara-

tive experiments in agricultural research, in

recognition of the fact that plots that were close

together in a field were usually more alike than

plots that were far apart. In industrial and

engineering research, the tool of planned group-

ing can be used to take advantage of naturally

homogeneous groupings in materials, machines,

time, etc., and so to take account of "back-

ground variables" which are not directly "fac-

tors" in the experiment.

Suppose we are required to compare the effect

of five different treatments of a plastic material.

Plastic properties vary considerably within a

given sheet. To get a good comparision of the

five treatment effects, we should divide the

plastic sheet into more or less homogeneous
areas, and subdivide each area into five parts.

The five treatments could then be allocated to

the five parts of a given area. Each set of five

parts may be termed a block. In this case, had
we had four or six treatments, we could as well

have had blocks of four or six units. This is

not always the case — the naturally homo-

geneous area (block) may not be large enough to

accommodate all the treatments of interest.

If we are interested in the wearing qualities of

automobile tires, the natural block is a block of

four, the four wheels of an automobile. Each
automobile may travel over different terrain or

have different drivers. However, the four tires

on any given automobile will undergo much the

same conditions, particularly if they are rotated

frequently.

In testing different types of plastic soles for

shoes, the natural block consists of two units,

the two feet of an individual.

The block may consist of observations taken

at nearly the same time or place. If a machine

can test four items at one time, then each run

may be regarded as a block of four units, each

item being a unit.

Statisticians have developed a variety of es-

pecially advantageous configurations of block

designs, named and classified by their structure

into randomized blocks, Latin squares, incom-

plete blocks, lattices, etc., with a number of sub-

categories of each. Some of these block designs

are discussed in detail in Chapter 13.
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11-4 RANDOMIZATION

Randomization is necessary to accomplish

Requisites 3 and 4 in Table 11-1. In order to

eliminate bias from the experiment (Requisite

3), experimental variables which are not spe-

cifically controlled as factors, or "blocked out"

by planned grouping, should be randomized —
e.g., the allocations of specimens to treatments

or methods should be made by some mechanical

method of randomization.

Randomization also assures valid estimates of

experimental error (Requisite 4), and makes pos-

sible the application of statistical tests of sig-

nificance and the construction of confidence

intervals.

There are many famous examples of experi-

ments where failure to randomize at a crucial

stage led to completely misleading results. As
always, however, the coin has another side; the

beneficial effects of randomization are obtained

in the long run, and not in a single isolated

experiment. Randomization may be thought

of as insurance, and, like insurance, may some-

times be too expensive. If a variable is thought

unlikely to have an effect, and if it is very diffi-

cult to randomize with respect to the variable,

we may choose not to randomize.

In general, we should try to think of all vari-

ables that could possibly affect the results, select

as factors as many variables as can reasonably

be studied, and use planned grouping where

possible. Ideally, then, we randomize with

respect to everything else — but it must be

recognized that the ideal cannot always be

realized in practice.

The word randomization has been used rather

than randomness to emphasize the fact that

experimental material rarely, if ever, has a ran-

dom distribution in itself, that we are never

really safe in assuming that it has, and that con-

sequently randomness has to be assured by for-

mal or mechanical randomization.

11-5 REPLICATION

In order to evaluate the effects of factors, a

measure of precision (experimental error) must
be available. In some kinds of experiments,

notably in biological or agricultural research,

this measure must be obtained from the experi-

ment itself, since no other source would provide

an appropriate measure. In some industrial

and engineering experimentation, however,

records may be available on a relatively stable

measurement process, and this data may pro-

vide an appropriate measure. Where the meas-

ure of precision must be obtained from the ex-

periment itself, replication provides the meas-

ure. In addition to providing the measure of

precision, replication provides an opportunity

for the effects of uncontrolled factors to balance

out, and thus aids randomization as a bias-

decreasing tool. (In successive replications,

the randomization features must be independ-

ent.) Replication will also help to spot gi-oss

errors in the measurements.
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11-6 THE LANGUAGE OF EXPERIMENTAL DESIGN

In discussing applications of statistical de-

sign of experiments in the field of physical

sciences and engineering, we are extremely

handicapped by the classical language of experi-

mental design. The early developments and

applications were in the field of agriculture,

where the terms used in describing the designs

had real physical meaning. The experimental

area was an area — a piece of ground. A block

was a smaller piece of ground, small enough to

be fairly uniform in soil and topography, and

thus was expected to give results within a block

that would be more alike than those from differ-

ent blocks. A plot was an even smaller piece of

ground, the basic unit of the design. As a unit,

the plot was planted, fertilized, and harvested,

and it could be split just by drawing a line. A
treatment was actually a treatment (e.g., an

application of fertilizer) and a treatment combi-

nation was a combination of treatments. A
yield was a yield, a quantity harvested and

weighed or measured.

Unfortunately for our purposes, these are the

terms commonly used. Since there is no par-

ticular future in inventing a new descriptive

language for a single book, we must use these

terms, and we must ask the engineer or scientist

to stretch his imagination to make the terms fit

his experimental situation.

Experimental area can be thought of as the

scope of the planned experiment. For us, a

block can be a group of results from a particular

operator, or from a particular machine, or on a

particular day — any planned natural grouping

which should serve to make results from one

block more alike than results from different

blocks. For us, a treatment is the factor being

investigated (material, environmental condi-

tion, etc.) in a single factor experiment. In

factorial experiments (where several variables

are being investigated at the same time) we
speak of a treatment combination and we mean
the prescribed levels of the factors to be applied

to an experimental unit. For us, a yield is a

measured result and, happily enough, in chem-
istry it will sometimes be a yield.

Many good books on experimental design are

available. See the following list of References

and Recommended Textbooks.
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New Experimental Designs for Paired Observations

W. J. Youden and William S. Connor

There are many experimental situations in which observations naturally occur m pairs.
From V quantities to be compared, 1)/2 distinct pairs can be formed, so that for even
moderately large v, the accompanying number of observations may be prohibitively large.
Or, even if the work can be done, the precision of the estimates of the effects of the quantities
and the experimental error may be greater than is needed. In either event, a subset of the
pairs should be used. If the arithmetic is to be manageable, this subset must be chosen
with care. Such a subset is described and its analysis is given in detail.

1. Introduction

In many experimental situations only two quan-
tities can be observed at a time under comparable
conditions, so that observations on a set of quantities
naturally divide into pairs. If each quantity is

compared with every other quantity of the set, the
statistical analysis of the observations is simple.
However, if the number of quantities is large, the
amount of work required to make observations on
all of the pairs may be prohibitive. Even if the
work can be done, the results of the experiment may
be more precise than is needed. In either event, it

is desuable to obesrve only part of the pairs. The
selection of this subset of pairs must be made with
care if the statistical analysis is to remain relatively
simple.

An example wUl help to clarify the problem.
Suppose that 36 quantities are to be studied, two at
a time. From them there are 630 distinct pairs
that can be formed. In this paper consideration
will be given to particularly attractive subsets
called two-group arrangements, which require from
324 down to 35 of these pairs.

To illustrate the statistical analysis of such an
arrangement, a typical subset for the case of eight
quantities is analyzed, using data on thermometer
calibrations.

2. The Two-Group Arrangement

It is common scientific practice to compare new
objects under study with one or more standards.
An important function of the National Bureau of
Standards is the cahbration of thermometers, meter
bars, and other devices for industrial and other uses.

These cahbrations are made by comparing the new
objects with established standards.

Perhaps the most usual situation is that in which
there is a single standard, which may be designated
by S. If there are six new objects to be calibrated,

then a common practice is to pair each new object
with S. Thus, denoting the new objects by num-
bers, the pairs are as follows:

Si vS3 S5

82 S4 86

This traditional experimental procedure suggests
the two-group arrangement, which consists of divid-

ing the V objects under study into two groups of m
and n objects, respectively, (w=m+n), and of pairing

every object from one group with every object from
the other group. ^ No other pairs are formed.

In the situation just considered the standard is

the only object in one group so that m= l and n=6.
This arrangement provides information about the

standard, the new objects, and the pairs, but gives

no information about the experimexital error. To
obtain such information it is natural to run each pair

again, so that there are 24 observations altogether.

Among these observations the standard occurs 12

times and the new objects twice each. This lays

heavy emphasis on comparisons between the new
objects and the standard but less emphasis on com-
parisons among the new objects. Thus if o- is the

true standard deviation of an observation, then the

standard deviation of a comparison of the first kind
is a and of the second kind is lAc.
Another two-group arrangement results from as-

signing the standard and new objects 1 and 2 to

one group and new objects 3, 4, 5, and 6 to the

other. In this case to= 3, 71=4 and the pairs are

the following.

83 84 85 86

13 14 15 16

23 24 25 26

There are 24 observations and as much information

about the experimental error as in the preceding

arrangement. The standard is put on the same
footing as the new objects because it is observed 4

times and the new objects either 3 or 4 times. This

is reflected among the comparisons, for the standard
deviation of the comparison between any two objects

in the first group is cr, in the second group is 1.15o-,

and between an object in the first group and one in

the second is <x. Thus there is no loss in the preci-

sion of comparisons that involve the standard, and
there is a substantial gain in the precision of other

comparisons.

I When m=7i, the arrangement has been called Group Divisible. See, R. C.

Bose and T. Shimamoto, Classification and analysis of partially balanced
incomplete block designs with two associate classes, J. Am. Statistical Assoc. 47
151 (1952).
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The problem posed in the introduction can now
be resolved in many ways. If the 36 quantities are

divided into two groups of 18 each, 324 pairs wUl
be formed. At the other extreme is the division

into 1 and 35, which results in only 35 pairs.

3. Application to Thermometer Calibration

The authors asked the Thermometry Section of

the National Bureau of Standards to intercompare
eight thermometers, using the two-group arrange-
ment. The usual practice of the section is to read
the thermometers in sequence in a bath with slowly
rising temperature and then to read them in reverse

order. This device effectively compensates for

changes in the bath temperature, provided that the
temperature changes at a constant rate. The
effectiveness of the two-group arrangement, however,

does not depend on a constant rate of change in

temperature.

The thermometers were partly immersed in a bath
of distilled water, and were read through a telescope

mounted a short distance away. The temperature
of the bath was at approximately 40° C at the start

of the readings, but rose gradually throughout the
experiment. There were short pauses of irregular

length between parrs of readings.

The eight thermometers were divided into 2

groups of 4 each, containing therm.ometers 1, 2, 3,

and 4 and 5, 6, 7, and 8, respectively. The read-
ings are given in table 1 Ln the order in which they
were obtained.''

The computations can be simplified by subtract-
ing some convenient number from each observation.
Accordingly, all subsequent calculations are based
on the observations in table 1 after subtracting 40
from each of them.

3 The thermometers were randomized within the pairs and the pairs within
the runs.

The mathematical model underlying the statistical

analysis is based on the following considerations.

Let M be a reference temperature in the range of

temperatures of the bath during the experiment.
At the time of measurement of the jth pair of ther-

mometers, the temperature of the bath will be
M-\-pj, where pj is defined by this condition.

Next, suppose that the ith thermom.eter belongs
to the jth. pair, and let Xtj denote the observed tem-
perature for this thermometer when the jth pair is

read. Then the difference between the observed
temperature Xij and the true bath temperature M+p^
will consist of two parts: a systematic error tt, pe-

culiar to the ith thermometer, and a random reading
error d}, i. e.,

x,j—(M+pj) = ti-\-e,j

or

Xtj=M+tt+pj+eij.

By imposing the restrictions y^,<<— y^P)=0. Mis

uniquely defined.

The constants M, tt, and Pj and the error Cij are

unknown but can be estimated from the data. It

is assumed that the errors associated with different

readings are independent and' come from the same
population of errors. This population is assumed to

have mean zero and standard deviation o-, which
may or may not be known.
The following calculations wUl show how to esti-

mate the constants and the standard deviation.'

Estimates of the t's are of especial interest, since

they may be used to calibrate a new thermometer in

terms of a standard. Estimates are denoted by

' Derivations of formulas are given in the appendix.

Table 1. Temperature readings in order of time

Run

Pair

1

2

3

4

Ther-
mometer Reading

°C
1 40. 00
7 39. 99

5 40. 08
3 40. 13

8 40. 15
2 40. 17

6 40. 13
4 40. 05

Pair

5

6

7

8

Ther-
mometer Reading

°C
3 40. 18
8 40. 18

7 40. 07
2 40. 19

1 40. 10
6 40. 18

5 40. 17
4 40. 13

Pair

9_

10

11

12

Ther-
mometer Reading

°C
2 40. 23
6 40. 22

8 40. 24
4 40. 15

7 40. 12
3 40. 20

5 40. 23
1 40. 16

Pair

13

14

15

16

Ther-
mometer

°C
6 40. 26
3 40. 28

7 40. 15
4 40. 20

5 40. 27
2 40. 30

1 40. 21
8 40. 31
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carets. For example, tt is the estimate of ti.

To analyze the coded data it is convenient to

compute an auxiliary quantity, D, for each thermom-
eter. Thus Di, the I) for the ith. thermometer, is

computed as follows. For each pair that contains

the ith thermometer the difference between the

reading for the ith thermometer and the reading for

the other thermometer of the pair is computed.
The sum of these differences is Z><. For example,

Z)i= [0-(-.01)]+ (.10-.18) + (.16-.23)

+ (.21-.31) = -.24.

Let the group that contains m thermometers be
called group 1, and the group that contains n ther-

mometers be called group 2. Let the sum of the

Z)'s for the thermometers in group 1 be denoted by
Si, and in group 2 by 82. Then the D's may be used
to estimate the correction for the ith thermometer
by the following formulas: *

A
ti= ivDi—Si)im

if i is in group 1, and

* It sometimes happens that the temperatures or other quantities are not
observed directly, but instead the differences between the quantities in the pairs

are recorded. Although in this case M and the p's cannot be estimated, the

''s still are estimable by these formulas.

ti= {vDi—S2)lvm

if i is in group 2. For example, for the first thermom-
eter

li= (8Z>i-'Si)/32=(-1.92+ .07)/32= -.05781.

If IT is unknown from past experience, it may be
calculated from the data. This calculation is made
quite simply by working with the differences between
the readings within a pair. Let the difference

without regard to sign for the jib. pair be designated
by dj. Then a is estimated from the formula °

mn » A

j=i .=1

The computations may be systematized by use of
f A

table 2, in which the estimates of the t's and ?^,t,D,
1=1

are found.

' When just the differences are observed, it is convenient to do the analysis in
terms of the standard deviation of the differences, which may conveniently be
denoted by "d. This formula and others below apply in this case, too, provided
<r is replaced by <'j/2.

Toble 2. Calculation of the ttiermometer effects

Group 2 In)

thermometer
Calculotions

5 6 7 8 0 80
A

32 ^ t

1

.16
.23

.10
.18

0
-.01

.21
.31

M
.71 -.21+ -1.92 -1.85 -.05781 .01388

imetei 2 .30
.27

.23
.22

.19
.07

.17
.15

.89

.71 .18 1.U4 1.51 .OI1719 .0081+9

Group
thermc

3
.08

.28
.26

.20
.12

.18
.18 M .15 1.20 1.27 .03969 .00595

4 .13
.17

.05
.13

.20
.15 .2k .&9 -.16 -1.28 -1.21 -.03781 .00605

S .75 .72 .79 .66 .33 .59 .88 .71

D .03 .13 -.26 .17
-.07

.07

otions eo .21^ l.oH- -2.08 1.36
-.56

.56

:alcul

32r .17 .97 -2.15 1.29
-.28

.28

.00531 .03031 -.06719 .04031
-,00871+

.00871+

.00016 .oo39^^ . 017^^7 .00685
.031+37

.02842
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The coded readings are entered in the upper
left-hand part of the table, where every cell corre-

sponds to some pair. For example, the first pair is

put into the cell in row 1 and column 7, with the

reading for thermometer 1 recorded in the upper
right-hand comer and for thermometer 7 in the

lower left-hand corner. By so recording the read-

ings, each row and column is divided into subrows
aad subcolumns.
The remaining rows and columns are for calcula-

tions, which it Ls believed are self-evident. In
A A

general, row 8D is replaced by vD and 32 1 by (vm) t.

Likewise, column 8D is replaced by vD and 32i by

(m)t. Several checks are available: (1) the sum of

the entries in row S must equal the sum of the

entries in colunan 2, and (2) the sums of the other

corresponding rows and colimans, except the last,

must be of different sign but of the same absolute

value. In the table these quantities appear along

the diagonal.

The standard deviation is estimated from the

formula given above. The differences d may easily
V

be calcxilated from table 1, and 2 tiDt from
!= 1

table 2. The differences and calculations on them
are given in table 3.

Table 3. Calculation of the standard deviation

Pair (j) di "1 Pair (j) di

1 0.01
.05
.02
.08
.00
.12
.08
.04

0.0001
.0025
.0004
.0064
.0000
.0144
.0064
.0016

9 0.01
.09
.08
.07
.02
.05
.03
.10

0.0001
.0081
.0064
.0049
.0004
.0025
.0009
.0100

2... 10.

3 - 11

4 .- 12

5 13

6 14 -

7 15

8 16

Z <i'= .0651, 2 <,-i)i= .03437+.02842= .0628,

i= l i=.l

18S2=.0651-.0628=.0023. ff=.0114.

Two thermometers can be compared by finding

the difference between their estimated effects. To
judge the significance of such a difference, it is de-
sirable to know the standard deviation of the differ-

ence. If i and i' both are in group 1, then the

square of the standard deviation of the difference is

if both are in group 2, then

'i-'i'

and if i is in group 1 but i' is in group 2, then

ffJ^A =2(«;— l)cr^/mn;

If (j^ is not known, then its estimate is used.
As an example, consider thermometers 1 and 2.

The appropriate formula is the first one above, so

that

^ =.0114.
'l-«2

Just as it has been possible to intercompare the
thermometers even though in some cases a particular
pair of thermometers were never at the same tem-
perature, so also it is possible to determine the rela-

tive temperatures of the bath when each of the mn
pairs of thermometers were read even though the
temperatures were read with different thermometers
with unknown corrections. It may sometimes be
important to ascertain the character of the drift or
changes taking place in the experimental system.
In the example given, matters were arranged so that
there was an approximately linear drift upward in

the bath temperature. Table 4 reflects this condi-
tion, the values being computed as is indicated
below.

Tabee 4. Average temperatures of the pairs referred to 40° C

Pair
Uncor-
rected
average

Cor-
rected
average

Pair
Uncor-
rected
average

Cor-
rected
average

1

°C
-0. 005

. 105

. 160

.090

. 180

. 130

.140

. 150

°C
0.058
.082
. 116
.094
.140
.140
.154
.166

9
°C

0.225
.195
. 160
.195
.270
.175
.285
.260

"C
0. 186

. 194

. 174

.221

.235

.228

.259

.269

2 10- -

3 11

4 12
5 13
6 14

7 15
8-_ 16

The averages after correction for thermometers
exhibit the upward trend much more clearly than do
the crude, imcorrected averages.
The uncorrected averages for the ^'th pair is

simply the arithmetic average of the two readings in

the pair. The corrected average is the imcorrected
average adjusted for the systematic errors of the
thermometers that occur in the jth pair. In symbols

A ^
it is M-]-pj.
The estimate of M is

A P ">« ™ A
2mnM=X) 1Z Xij+im—n)S U,

<=i j=i 1=1

which, in the case at hand, reduces to

A / 8 16 \
M=(SZ;a:u)/32,

\i=l j=l /

A
the grand mean of the readings. Thus M= 5.43/32
= .16969. These formulas should be used with the
understanding that Xts=0 if the ith thermometer
does not occur in the jih pair.
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Thus far all values have been given in coded form
and the adjusted thermometer readings in terras of
systematic deviations from the reference temperature
M. It may be of interest to estimate readings for

all thermometers at temperature M. These decoded
estimated readings, calculated by the formula
^ A
M+40+ <i, are as follows:

Thermom- Temper- Thermom- Temper-
eter ature eter ature

» C. ° C.
1 40.11 5 40.18
2 40.22 6 40.20
3 40.21 7 40. 10
4 40.13 8 40.21

The estimate of is obtained by a simple adjust-
ment of the observations in the jih. pair. If i and i'

are the thermometers in the jth. pair, then

2'Pj=Xt}+Xi-j—2M— tf—tf.

For example, for j=2, i=5, i'= 3, and

2^2= .08+ . 13- 2 (. 1 6969) - .0053 1- .03969,

so that ^2= — .08719.

It now is possible to exhibit the decomposition of

2:52 into its parts. Thus

A A A
X52=M+<5+2'2+ e62

.08= . 16969+ .0053 1+ (- .08719) + (- .00781)

.

It is iaterestiag to note that the estimated error in

this particular reading is of about the same magni-

tude as ff.

The fundamental importance of the arrangement
is that it makes it possible to intercompare the
thermometers and to limit the error arising from
fluctuations in the bath temperature to those tem-
perature changes that take place in the very short

interval reqiiired to read two thermometers. Tem-
perature changes from one pair to another do not
contribute to the error of measurement. This
technique is applicable ia all cases where either the
apparatus or the environment may drift or undergo
unpredictable changes.

4. Appendix

4.1, Derivation of Estimates

Let the group that contains m objects be denoted
by 61, and the group that contains n objects be
denoted by 62. Then the reduced normal equations

for estimating the treatment (thermometer) eflFects

are

nti- J2 K=Dt (1)
u=7n-l-l

for i in Oi and
A ™ A

mU-J^t^=Di (2)

for i in G2.

Summing over the treatments in Oi, eq (l)^becomes

m A " A "»

riX)i„-m <„=SZ>„. (3)
a=l tt=7n-|-l it=l

Then imposing the restriction

Z;<«=0, (4)
u=l

it is clear that

(n-Fm)S^u=S£>«. (5)
lt=l u=l

Similarly, using eq (2), summing over the treatments
in O2, and applying eq (4), obtain

{n^m) ±, t= (6)
u=7n-|-l u=7n-fl

From eq (1) and (6) it foUows for i m Gi that

A 1

n{n-{-m)ti={n+m)Di-{- 21 Du

V

or since Z?„=0.
u = \

A rn

vnti=vDi—^D^. (7)
u=l

Similarly, for i in G2,

vmU=vDi- iz Du. (8)

4.2 Derivation of Variance

For random variables x and y let V{x) and Cov(x,y)

denote, respectively, the variance of x and the
covariance of x and y. Then for i and i' in Gi,

V{Dt)=2mo^, Cov{Dt,Dt.)==0. (9)

From eq (7) and (9),

n(%-%.)^(Di-DiO,

ViU-ti.)=^4<r'/n. (10)

Similarly, for i and i' both in G2,

V{tt-ti>)=4:<rym. (11)
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For i in Gi and i' in it is convenient to use the

formula

V(C-X.)={Cu+Ci','-2Cu'W, (12)

where Or, is the element in the rth row and sth

coliunn of the inverse of the coefficient matrix of

the reduced normal equations. From eq (7) and (8),

C„=2(v—l)/vn, CiU'=2{v—\)lwn, C„.=0.

Hence eq (12) becomes

V{ti-%)=2{v-\)<^lmn. (13)

4.3 Derivation of Estimate of a

The differences d) form a basis for the space,
which consists of the error space and the space of

the ^'s. Therefore, the sum of squares due to the
c?'s can be partitioned into two orthogonal parts,

one due to error and one due to treatments. Since

the sum of squares due to treatments is tj)^

j

2,

twice the sum of squares due to error is

2(mn-m-n+l)?'=S cP-S UBu
j-i i-i

Washington, September 25, 1954.
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changeability of stations and run differences using the same data obtained in comparisons of the

sources, is described in detail.
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1. Design and Performance of an Automatic
Gamma-Ray Point-Source Calibrator

Recently, in response to a need for standards for

workers in the field of gamma-ray spectrometry, a

gamma-ray "kit" for point-source radioactivity stand-

ards has been developed [Hutchinson, I960]. These
sources are prepared from solutions which are standard-

ized either by coincidence counting or, as in the case

of cesium-barium-137, by measurements using the NBS
calibrated 47ry-ionization chamber.
The sources are prepared by depositing either 0.05

or 0.1 ml of the calibrated radioactive solution onto

mounts consisting of a 0.006-centimeter-thick poly-

ester tape which is supported by an aluminum annulus

(3.8 cm I.D., and 5.4 cm O.D.), as shown in figure 1.

As it is desirable for all of these sources to be nominally
the same strength and the same size, the solution is

dispensed with an ultramicroburet [NBS Circ. 594,

Mann and Seliger, 1958]. After drying, the sources

are covered with another layer of the same kind of

polyester tape. The sources are then intercompared
with several accurately standardized sources, for the

purpose of individual calibration.

For several years these calibrations were performed
manually; that is, the sources were placed, one at a

time, in a jig which was held in a fixed position relative

to a scintillation counter, and the count rates were
intercompared. As part of the program to increase

the accuracy of the standards, it was decided to design

and construct an automatic sample changer with the

goal of attaining source intercomparisons with a pre-

cision of the order of 0.1 percent.

Imm

Figure 1. Source mount.

The changer is a round turn-table of l/4-in.-thick

aluminum alloy having a diameter of 24 in., with source

positions spaced at 18° intervals on the circumference

of a circle 20 in. in diameter (fig. 2). These positions

have 1-in. -diameter holes in which rigid plastic sample
carriers rest. The gamma-ray point sources are held

firmly in place on top of the carriers by the pressure of

phosphor-bronze springs. There are 20 indexing holes

equally spaced around the table as shown in figure 2,

the center of each one radially in line with the center of

a sample carrier and the center of the table, and 3/8-in.

in from the edge of the table. These holes, in con-

junction with a solenoid-plunger pin, are used for

positioning the sources above the detector.

A shaft which is affixed to the underside center of

the table, rests on a steel ball bearing which lies in a

conical depression inside a supporting cylinder.
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Figure 2. Sample changer.

The table is rotated by a 1/100-HP motor and two
gears, one of which is fixed on the motor shaft, and
coupled to the other gear which is mounted on a con-

centric spring-loaded friction clutch on the table shaft.

The motor is turned on and off by a miniature switch

(Si), which is actuated by the plunger of a solenoid,

in the following manner:
At the conclusion of a measurement, while the data

are being printed out onto a paper tape, a relay, Ki
(fig. 3) in the recording system is held closed. Capaci-

tor Ci, which had been charged up during the measure-
ment period now discharges through the coil or relay

K2, thereby closing it for about 1.5 sec, thus energizing

the solenoid. The solenoid-operated plunger is lifted

from the indexing hole in the table for this brief period,

and mechanically closes the miniature switch (Si),

thereby starting the motor, and the table starts to

rotate. As it takes about 5 sec for the table to rotate

18°, relay K2 opens before the next source position is

reached, the solenoid is de-energized and the plunger

falls back and rests on the surface of the turn table.

Figure 3. Diagram of motor-control circuit.

but as this is not far enough to allow switch (Si) to

open, the motor continues to rotate the table. When
the next source "arrives" into the counting position,

the solenoid plunger falls into the indexing hole, thus

stopping table rotation and opening the motor circuit.

The purpose of the friction clutch is to allow the motor
to slow down gradually after the table has stopped.

The time for the sample changing is about 5.0 sec,

while the printout takes 20 sec. Thus all changing
operations (including the stopping of motor) stop at

least 10 sec before the next measurement starts.

Originally, in order to obtain reproducible source-

to-detector distance, the table was supported under-
neath the plunger pin by a roller bearing, and it was
assumed that the combination of the spring-loaded

plunger pin and the slightly loose fit of the table shaft

would ensure this. However, after several series of

measurements, it became apparent that sources on
some positions of the table were yielding consistently

erroneous values. The final design eliminated the

effects of any defects in the table which would con-

tribute to errors as a function of vertical displacement.
A lucite block with ramps at each end was affixed to

the top of the lead shield, and its dimensions are such
that when a source and carrier come into position, they
"ride" up the ramp approximately 1.5 mm, so that the

carrier is actually free of the table insofar as vertical

positioning is concerned (fig. 4). The plastic sample
carriers are 0.425-in. thick with a tolerance of ±0.002
in. Thus, the source-to-detector distance is inde-

FlGURE 4. Ramp detail.
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pendent of variations in the table thickness, and any
deviations of flatness of the table. The only function

of the table is to bring the sources into position above
the detector, the vertical positioning being determined
by the phosphor-bronze spring holding the source

firmly against its carrier and the latter against the

ramp. To get some idea of the reproducibility re-

quired in positioning, it should be pointed out that

the source is approximately 6 in. from the detector;

thus, a change in vertical position of 0.006-in. produces

a change of 0.2 percent in the count rate (n °c

^n a:
-2 Ad

2. Description of Auxiliary Instrumentation

The gamma-ray detector consists of a 3-in. by 3-in.

thallium-activated sodium iodide crystal, coupled to a

3-in. electron-multiplier phototube. The associated

electronics consist of an amplifier, and gain-stabiliza-

tion circuit [DeWaard, 1955], which compensates
for shift in gain in either the phototube, amplifier, or

high voltage supply (this latter being part of the stabi-

lizer). The detector is situated in a lead pig, with

walls lV2-in. thick (fig. 5). The aperture at the top of

the shield was made small to lessen detection of

unscattered gamma radiation from sources adjacent to

the source being measured but large enough so that

when the table rotates, the detector never "loses direct

sight" of a source. Thus, the photopeak is always

"present" for continuous operation of the gain-

stabilizing circuit. The output from a single-channel

3X3 Nairn)
CRYSTAL
DETECTOR

\ 7

ELECTRONIC
PREAMPLIFIER

,LEAO

-LEAD

PHOTOTUBE

Figure 5. Lead pig, showing ramp and detector assembly.

analyzer (which is also part of the stabilizer system)
whose window is set on the photopeak is fed into a
commercial automatic scaler-timer-printer system.
At the end of each source measurement, and after

the data are printed, the scaler and timer are auto-

matically reset, and started for the next measurement.

3. Background Considerations

The activity of these sources is of the order of 5 X 10'*

disintegrations per second, and they are measured
at a distance of about 6 in. from the 3x3-in. detector.

No correction is made for the cosmic-ray background,
which is of the order of 0.1 percent (or less), as varia-

tions in the background affect the ratios of nearly

equal sources negligibly.

In the case of the 662-keV gamma-ray of barium-
137 m, there is, for example, a relatively large back-
ground contribution (~ 4%) to the photopeak count
rate arising from the detection of unscattered gamma
rays from the other 19 sources. If, then, there

were 19 identical sources, and the twentieth were,
say, 1 percent high or low, then, the relative activity

of this odd one would be in error by 0.04 percent, if,

as the case is, no background corrections are made.

4. Performance

In order to assess the stability and reproducibility

of the system, two experiments were performed.
A cesium-137 source was put onto one of the sample
carriers, and over 100 five-minute consecutive read-

ings were taken (with no table rotation), each one con-

sisting of some 200,000 counts. The distribution of

the results fitted the expected distribution quite well.

The second investigation involved the placement of

20 sources on the table and determining (a) the relative

gamma-ray emission rates of these 20 sources, as well

as the bias, if any, of the 20 positions of the table.

The statistical design and analyses of these experi-

mental results are given in considerable detail. The
interest centers not so much in this particular ap-

paratus as in this type of equipment. There is in-

creasing use of automatic equipment in the routine

comparison of specimens.

5. Statistical Analysis

Industrial control laboratories and laboratories doing
clinical tests are turning increasingly to mechanization
of the routine operations involved in the test procedure.
Sometimes these operations require the addition of

reagents, mixing, and the transfer of material. The
last step consists in bringing the prepared material

before a testing point where a suitable device eval-

uates the color, pH, or other property of the specimen.
Generally this last stage consists of a device with a

number of stations which successively present their

specimens to the test point.
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For many tests the equivalence of the various sta-

tions is clearly satisfactory, provided only that the

mechanical clearances are adequate. Should the

position of the specimen, as determined by the station,

be at all critical it v^rill be necessary to demonstrate

that the stations are in fact interchangeable. That is,

the particular station occupied by a specimen should

not contribute materially to the error in the evaluation

of the specimen. Satisfactory interchangeabiUty is

desirable — the alternative being to determine suitable

corrective factors for the individual stations.

There are three ways to explore experimentally the

performance of the individual stations.

One procedure is to transfer the same specimen to

every station in turn and record the reading for each

station. This procedure will run into difficulty if the

specimen has to be evaluated immediately, e.g., a

color might fade. If the time spent at each station is

fairly long, the problem of keeping the evaluating

apparatus free from drift has also to be considered.

A second procedure requires the availability of as

many identical specimens as there are stations, or

of specimens which are accurately related to each

other.

The above two procedures are classical and straight-

forward. The third procedure has the interesting

feature that the stations can be evaluated while evaluat-

ing the regular sequence of specimens encountered in

the work of the laboratory. The major requirement is

that the specimens be stable. In brief, each specimen
is evaluated at a limited number of stations, as few as

three or even two stations. Each station will have

been occupied by two or three or more different speci-

mens. The values recorded will reflect the net result

of the specimen plus the station characteristic. In

order to obtain both the specimen values and the

station corrections, there must be at least as many
observations as the total of specimens and stations.

Each observation can be expressed as a function of the

unknown values for the specimen and station and the

set of equations can be solved. Usually additional

observations are made and a least-squares solution

obtained. The surplus equations afford an estimate of

the experimental error in the observations. This

makes it possible to test whether or not the observed
differences between the stations exceed experimental

errors and to attach an appropriate error to the values

calculated for the specimens.
If a special symmetry is used in the assignment of

specimens to stations, then improved precision and
ease in solving the equations results. There are cer-

tain advantageous numbers of stations to place on a

wheel because of the combinatorial properties of

numbers. A simple case of a wheel with seven sta-

tions and seven specimens, A through G, will illustrate

the principle involved:

Station Number

1 2 3 4 5 6 7
Run No. a A B C D E F G
Run No. b B c D E F G A
Run No. c D E F G A B C

Thus station 1 is occupied in turn by specimens A,
B, and D and specimen A occupies stations 1, 7, and 5
in turn. Inspection shows certain relations have
been achieved. The three stations that are occupied
by A also encounter the six other members of the com-
plete set B, D, C, G, E, F, of the other specimens.
Thus A can always be compared with any other speci-

men occupying the same station.

Similarly station 1 which encounters the specimens
A, B, and D can, by means of these specimens, be
directly compared with all the other six stations.

Specimen A permits station 1 to be compared with

5 and 7; specimen B compared station 1 with 2 and 6;

and specimen D compared station 1 with 3 and 4.

Suppose we wish to evaluate station 1 in terms of

the average performance of all seven stations. Let

Ala, Bib, etc., represent the observation made on the

specimen. A, B, C, etc., in the designated stations and
runs. Consider the three observations on specimen A.

These observations permit the comparison of station

1 with the average of stations 5 and 7. It is more con-
venient to multiply by 2 and write:

2A, a -A7b Asc — A,

Similarly 2B,b ~B2a ~ Bfic
= A

and 2Dic -D36 -D4«= A,

Each equation is free of any specimen contribution.

What about run effects? The run effects, if present,

are designated by the letters a, b, and c. Observe
that the sum of these three equations involves the

subscripts a, b, and c each twice with a negative sign

and twice with a positive sign. That is the run effects,

if any, neatly cancel out, provided that conditions in

each run are constant. We may, therefore, drop the

a, b, and c subscripts and treat the differences as

differences between stations, i.e.,

6 [1]- [2]- [3] - [4]- [5] - [6] - [7]= 2A

where the station numbers are given in the brackets.
We may add to this equation the equation

[1]-[1] = 0

which simply says that station 1 is equal to station 1

(with no error of measurement).

7[l]-{[l] + [2]+ . . . + [7]} = SA.

Dividing by 7

[1]— mean of all stations = S A/7

or

[l]=^mean of all stations + 2 A/7.
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Customarily the "mean of all stations" is a number
which is the average of all 21 observations. This gives

equal weight to every station, every specimen and each
run. The A's are obtained directly from the obser-

vations so that it is a simple matter to calculate a

value for each station. These values are completely
comparable because the specimen and run effects have
been neatly removed making use of the special prop-

erties associated with the above triads of letters.

An exactly parallel procedure leads to estimates

for each of the seven specimens, estimates that are

corrected for any station differences. The simple

.-um of the seven observations for each run contains

the contributions of all specimens and all stations so

these sums may be compared directly to detect dif-

ferences between runs.

If this procedure shows the stations to be satisfac-

torily equivedent there will be no need to follow any

particular schedule in assigning specimens to stations
and no need to make any adjustments. If there are
important differences among the stations there is a
choice of getting a better wheel or following a suitable
scheme of specimen placement that will permit adjust-
ment for station differences.

Clearly, if there are as many specimens as stations,
making two runs leads to a unique solution for the
differences, but without providing an estimate of the
experimental error. In most instances it will be de-
sired to hold the number of runs to three or four be-
cause the specimens have to be moved to new stations
after each run. Several possible schemes using 3 or
4 runs are hsted in table 1. An extensive collection
of designs is available in a Bulletin [Bose, Clatworthy,
and Shrikhande, 1954].

The example with seven stations just discussed is

particularly simple in that any given specimen is

Table 1. Examples of designs useful for intercomparing positions in apparatus

8 Stations 9 Stations

R5, p. 185

ABCDEFGH
BCDEFGHA
DEFGHABC

SR12, p. 143

ABCDEFGHI
ECDBI HFGA
FAEI GDBCH

10 Stations 13 Stations

T6. p. 231

ABCDEFGHI J

BHJ AFCEI DG
ECDGHAI J BF

CI. p. 250

ABCDEFGHI J KLM
CDEFGHI.J KLMAB
I J KLMABCDEFGH

15 Stations 16 Stations

T28, p. 237

ABCDEFGHI J KLMNO
J OKGFNELDHAMI BC
OGI LMDKGJ ENABHF

LS 14, p. 245

ABCDEFGHI J KLMNOP
OPMNKLI J FGHCDABC
LI J KBCDAOPMNFGHE

19 Stations

Sl.l, p. 218

ABCDEFGHI J KLMNOPQRS
CNI AKLFJ QSBMGPHEROD
BQLERNAI GFHKPODJ SCM

12 Stations 14 Stations

R15, p. 188 R24. p. 192

A B C D E F G H I J K L A B C D E F G H I J K L M N

B C D E F G H I J K L A L M N H I J K E F G A B C D

E F G H I J K L A B C D J K L M N H I C D E F G A B

G H I J K L A B C D E F I J K L M N H B C D E F G A

Page numbers and design identification refer to: Bose. R. C, Clatworthy, W. H., and Shrikhande, S. S., Tables of Partially Balanced
Designs with Two Associate Classes. North Carohna Agricultural Experiment Station Technical Bulletin No. 107 (1954).
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paired just once with all the other specimens. By
"paired" is meant "meets on the same station."

This it not true for all the other designs listed in table

1. The arithmetical procedure for computing the esti-

mates for specimens and stations for these designs

is given in the above mentioned Bulletin. Above
each design in table 1 is given the identification num-
ber and page reference where the design is listed in

the Bulletin.

Certain of the designs show a simple cychc displace-

ment of the specimens for the successive runs. The
order of the columns (stations) in the designs may be
randomized and the rows run in any order without

changing the properties of the design.

The apparatus described in this paper uses a wheel
with 20 stations. We might use the design for 19

stations and leave one station on the wheel unfilled.

An alternative was chosen by using a design for 10

stations and using this design twice. In effect this

means two separate and independent sets of data and
it was necessary to achieve some way to tie together

all 20 stations, which was accomplished by interlacing

the stations. First a pair from one design, then a pair

from the second design and so on. This spread the

two designs evenly over the whole wheel. The as

sumption was made that the 10 stations assigned to one
design would have very closely the same average as the

10 stations, assigned to the other design. When
each station is rated as a ratio to the average for the

set to which it belongs, the 20 ratios would fairly

reflect the differences among all the stations.

A wheel with 25 stations could be filled with designs
for 10 and 15 stations. By combining designs a wheel
of any given number of stations may be accommodated.
The general availability of computers will probably

mean that the matrix of equations will be solved with
their help. The particular merit of these designs is

that the solution can be obtained by inspection; thus
consider the design for 10 stations given below:

Station Number

1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J

B H J A F C E I D G

E C D G H A I J B F

The assignment of the specimens to stations makes
it possible to intercompare the specimens without
introducing the differences between stations should
these be present. Consider specimen A which
appears in stations 1, 4, and 6 along with specimens
B, E: D, G: F, C. Direct comparisons of A with these
six specimens (two at a time) is therefore possible
staying within a station. Three other specimens,
H, I, and J never share a station with specimen A.
The object is to effect comparisons of A with H, I,

and J without introducing station differences. We

observe that stations 2 and 5 permit the comparison
of H with B, C; E and F. Similarly stations 7 and 9
are used to compare I with B, D; E and G. Finally

stations 3 and 10 provide the comparison for J with C,
D; F and G. We may combine these three sets of

comparisons and obtain the result that H, I, and
J as a group may be contrasted with B, C, D, E, F, and
G as a group.

It was shown above that stations 1, 4, and 6 provided
the station-free comparison of A with B, C, D, E, F,

and G as a group. We also have just obtained the

station-free contrast of B, C, D, E, F, and G as a group
with the group H, I, and J.

Therefore A can be compared with H, I, and J

using the group, B, C, D, E, F, G, as an intermediary.

Evidently A may be compared with all other specimens
using only comparisons made within stations.

We have, therefore, the following comparisons:

2A-B-E

2A-D-G

2A-C-F

and

B + C-2H

E+F-2H

G + E-2I

B + D-2I

C+D-2J

F + G-2J

Note that by multiplying the first three comparisons
by 6 and then summing them with the last six com-
parisons, we have as a result

36A-4(B + C + D + E + F + G + H+I+J).

Adding and subtracting 4A gives

40A — 4 (total of all sources).

Dividing by 40 gives A— (average of all 10 sources) in

terms of the differences. These operations are shown,
for both sources and stations using actual counts,
in tables 3 and 4.

Imagine for a moment a perfect wheel, all stations

identical, also identical specimens, and identical

runs. The 30 observations would then be identic£il

except for experimental error. In an actual experi-

ment each observation may be regarded as undergoing
three displacements. The specimen, the station,

and the run £ill combine to effect a net displacement.
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The preceding paragraph indicates how to obtain the

displacement contributed by specimen A. Using
these predicted quantities, i.e., the least square esti-

mates, a matching set of predicted expected values

can be obtained for comparison with the actual

observations. In fact, the sum of the squares of the

30 discrepancies between observed and predicted

values is a measure of the experimental error.

The sum of the squares of the deviations must be
divided by (30-1-9-9-2) or 9 to obtain the mean square

error. The deductions from 30 refer to the mean,
the nine independent specimen constants, the nine

independent station constants and two independent

run constants. The standard deviation of a single

observation is obtained by taking the square root of

the mean square error.

In the present experiment a wheel with 20 stations

was being used to intercompare sources used as radio-

activity standards. There is no suitable standard de-

sign for 20 stations with a limited number of inter-

changes for the sources. Consequently the design for

10 items with three interchanges was used twice. The
20 stations were interlaced by assigning stations 1, 2,

5, 6, 9, 10, 13, 14, 17, 18 to one design and the remain-
ing 10 stations to the other design. This assumes that

the averages for the two sets of 10 stations will each
be representative of the wheel as a whole. This
assumption can be verified when the data become
available. AU 20 stations can be put on a comparable
footing by expressing each station as a percent of the

average for the group of 10 to which it belongs; this

assumes that the averages of the two groups of 10
stations are the same.

Table 2. Counts minus one million for each of the three stations

occupied by each source

Station

nutnber
Run I Run II Run III

Source Count

"

Source Count

"

Source Count **

1 K 42558 B 35323 o 42911

2 L 50654 R 40375 E 42384

5 0 42711 A 37296 L 49092

5 P 37720 K 44580 K 39822

9 A 40622 0 35730 K 43096
10 B 36471 (•• 40506 R 41525
13 E 41432 P 40623 A 39875
H F 39051 E 42361 0 36443
17 0 36856 L 49803 B 38637
18 R 41535 0 464.38 P 41311

Tutal exp't 1 409610 413035 415097

3 M 38417 D 37985 T 36523

4 N 35271 M 38203 J 35817

7 T 35910 N 38137 C 38110

8 U 43440 T 39107 G 37974

11 c 38773 J 37635 D 40225

12 D 37316 U 42288 H 37859

15 G 35733 1 36176 N 38121

16 H 37663 c 379% M 35500

19 I 35491 c 38815 U 42263

20 J 37916 H 40813 I 34940

Total exp't 2 376930 387155 377332

"Actual counts diminished by one million.

Twenty sources, identified by letters, were assigned

to the 20 stations as shown in table 2. Once the

sources were assigned to the stations for the first

run, the wheel was started and 5 min counts made at

each station giving a count somewhat over 200,000.

Five revolutions of the wheel were made wjthout dis-

turbing the sources. The five revolutions with short-

stops makes for a more equitable sampling of the back-
ground and machine performance during the time
required for a run.

At the conclusion of the first run, the sources
were transferred to new assigned stations and another
five revolutions made. The sources were again shifted

for the third run. The station assignments are such
as to make possible the intercomparison of any station

with the other nine stations in its group without intro-

ducing differences between the sources. Counts were
recorded for each 5 min period. The five counts were
summed and diminished by one million and the re-

mainders entered in table 2. These coded values
are all that is needed because the calculations involve

differences between the entries in table 2. Naturally
the raw data reflect the combined effects of sources
and positions. Thus the simple average of the three
A counts involves any effects associated with station

9, 5, and 13. Similarly the average of the three counts
recorded for station 6 depends on the values for

sources P, K, and F. The merit of the design rests

in the ease with which the effects associated with
individual station and sources can be disentangled.

Tables 3 and 4 show specimen computations for

source A and station No. 6 in the first group of 10.

The adjustment for a source is made up of quantities

obtained by taking differences between sources within
the same station. Station effects are therefore not
present. Similarly, stations are evaluated by taking

differences between stations using the same source,
and source effects are thereby eliminated. As a
datum, or reference point, the average of all 30 counts
is used. The computed adjustments are added or

subtracted from this grand average. This gives,

on the one hand, adjusted estimates for sources as

though there were no differences between wheel sta-

tions; and equally adjusted values for stations as

though 10 identical sources had been available to

compare the stations.

Table 3. Calculation of adjustments to observed values for source,

using source A as an example

Station

2A-0-K = 81244- 3S730- 430%= 2418

2A-L -0 = 74592 - 49092 - 42711=- 17211

2A-E-P = 797.52 - 41432 - 406i3= -2.303

Total =-17096

Multiply total by six =

K -I-O - 2B= 42558 + 429 1 1 - 70646 =

0 + L - 2B = 36856 + 49803 - 77274 =
E + Q - 2K = 4236 1 + 36443 - 78 1 02 =

P+K-2K =37720 + 44580 - 79644 =

0 + P-2R = 46438 + 4l31l - a3070 =

L + E-2R =50654 + 42384 - 807.50 =

Total below double line =

Divide by 40= Adjustment =

Add grand average of 30

counts =

Adjusted value for A =

-102576

14823

9385
702

2556
4679
12288

-.58043
- 1451

41258
.39807

" The factor "six" is obtained by inspection to insure that each letter occurs equally often

with a minus sign when the summation is made.
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Table 4. CcUculation of adjustments to observed values for stations

using station No. 6 as an example

Source Stations

2r61-[I3l-[18] = 75440- 40623 - 41311= -6494
2(6l-[ IJ-I 91 = 89160- 42558 - 43096 = 3506

216] -[14] -[10] = 79644- 39051 -40506 = 87

= -2901

Multiply total by six

18 + 10 -2[ 2] = 41535 + 41525- 80750 = 2310

13 + 14 -2[ 2] = 41432 + 42361- 84768 = -975
18 + l' -2 5 = 46438 + 42911- 85422 = 3927

' 9 + 13 -2 5 = 40622 + 39876- 74592= 5906

9 + 14 -2[l7 = 35730 + 36443- 73712= - 1539

10 + 1 -21 17 J
= 36471+35323- 77274= -5480

Total below double line =- 13257

Divide by 40= Adjustment = — 33

1

Add grand average of 30 counts = 41258
Adjusted value for station No. 6 = 40927

Table 5. Adjustments to station and source values and comparison
with unadjusted values

Station Station Adjusted Unadj. * Source Source Adjusted Unadj. "

number adjustment value value number adjustment value value

Experiment I

1 -1608 39650 40264 A -1451 39807" 39265
2 + 461 41719 44471 B -4341 36917 36810
5 -1774 39484 43033 E + 499 41756 42059

6 -331 40927' 40707 F -1570 39688 39793
9 -208 41050 39816 K + 2869 44127 43411

10 + 555 41813 39501 L + 8785 50043 49850
13 + 355 41613 40644 O + 3314 44572 44020
14 + 91 41349 39285 P -1957 39301 39885
17 + 733 41991 41765 Q -5120 36138 36343
18 + 1727 42985 43095 R -1027 40231 41145

Averages. 41258 41258 41258 41258

Experiment 11

3 -371 37676 37642 C + 33 38080 38566
4 -1104 36943 36430 D + 557 38604 38509
7 + 142 38189 37719 G -860 37187 37234
8 + 1228 39275 40174 H + 1161 39208 38778
11 + 1024 39071 38878 I -2906 35141 35536
12 -940 37107 39154 J -1169 36878 37123
15 + 77 38124 36677 M + 205 38252 37373
16 -1163 36884 37053 N -576 37471 37176
19 + 293 38340 38856 T -867 37180 37513
20 + 814 38861 37890 U + 4423 42470 42664

Averages. 38047 38047 38047 38047

' The unadjusted value is the average of the three observed counts (table 2) for the

station.
^ The unadjusted value is the average of the three observed counts (table 2) on the source.
' Taken from table 4.

^ Taken from table 3.

No adjustments are required for the run totals

because the effects of all 10 sources and all 10 sta-

tions are present in every run. Unavoidably every one
of the 30 counts is subject to the counting error and
any unequalized drifts in background or counting
electronics. The adjusted values shown in table 5
are the best estimates of source and station charac-
teristics. We can use these adjusted values, together
with the run averages, to compute an ideal table. In
table 6 every actual count is replaced by an "ideal"
value.

Table 6. "Ideal" values calculated using best estimates for
stations and sources

Run number Run number
Station Station

No. No.
I II III I II III

1 42222 35355 43216 3 37527 38902 36495

2 50207 40738 42469 4 36013 37817 35460

5 42501 38079 48521 7 36968 38282 37908
6 38673 43842 39609 8 43344 39077 38101

9 39302 35976 44171 11 38750 38571 39314
10 37175 40289 41038 12 37310 42199 37954

13 41814 39702 40414 15 36910 35887 37234

14 39482 41893 36481 16 37691 36693 36775

17 36574 50822 37902 19 35080 390*2 42449
18 41661 46345 41280 20 37338 40691 35641

The "ideeil" values are obtained by combining the

calculated adjustment for the station, the source

and the run and adding the result to the grand average.

The "ideal" value for the count obtained for source

K in station 1 in run 1 is obtained by taking from table

5 the station adjustment (— 1608); the source adjust-

ment (+2869); the run adjustment (—297). The run
adjustment is the difference between the grand average

(table 5) and the run 1 average (table 2). The net

adjustment, (2869-1608- 297) or 964 when added to

the grand average, 41258, gives the "ideal" value

of 42222 for this observation. The discrepancies

between the actual counts and these "ideal" values

computed from the best estimates are a measure of

the errors involved.

Table 7 hsts the differences between the observed
counts and the "ideal" values computed using the

best estimates for sources, stations and runs. These
best estimates impose 21 constraints on the data
leaving nine degrees of freedom available for the esti-

mation of error. The two error variances should be
compared with the error variances listed in table 8
which were obtained by the computer using unrounded
numerical values. The average count is about
1 040 000. Assuming the Poisson distribution the

error variance should equal the mean count. Both
estimates of error slightly exceed theory but are well

within the limits that can be expected for estimates

based on just nine degrees of freedom. Evidently

the plan of work and equipment gave data which were
close to the theoretical Poisson error.

The mean squares shown in table 8 provide the

means for judging whether the data provide convincing
evidence of differences among the wheel stations.

The ratio of the mean square for adjusted positions

to the error mean square is the familiar statistic F.

This ratio is 2.24 for experiment 1 and 1.44 for experi-

ment 2. Both ratios are less than the 90 percent value

(2.44) tables for nine degrees of freedom for both
numerator and denominator. The fact that both mean
squares do exceed the error mean square does suggest

there may be small differences among the stations too

small to be conclusively detected in these experiments.
If these possible station differences are ignored, there

would result some small increase in the error variance

associated with the source averages.
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Table 7. Differences between observed counts and calculated values

shown in table 6

Experiment 1 Experiment 2

Run number Run number
Station Station

No. No.

I II III I II III

I — 336 32 305 3 — 890 917 — 28

2 — 447 363 85 4 742 -386 -357
5 -210 783 -571 7 .58 145 -202
6 953 -738 -213 8 -96 -30 127

9 -1320 246 1075 H — 23 936 -911

10 704 -217 -487 12 -6 -89
13 382 -921 538 15 1177 -289 -887
14 431 -468 38 16 28 — 1303 1275

17 -282 1019 -735 19 -411 227 186

18 126 -93 -31 20 -578 -122 701

Sum of

squared 10 139 049 10 951 000

diflferences

Divide by S

Error 1 126 561 1 216 778

variance

Table 8. Mean squares from analysis of variance

Variance

source

Degrees of

freedom

Mean square

Experiment 1 Experiment 2

Runs 2 768 160 3 353 392

Unadj. stations 9 9 277 905 4 290 006

Adjuct. stations 9 2 526 719 1 754 738

Unadj. sources 9 46 227 069 10 549 753

Adjust, sources 9 39 475 883 8 014 484

Error variance 9 1 126 560 1 216 778

Table 9. Analysis of variance ignoring stations

hem Degrees freedom
Mean square

Experiment I Experiment II

Runs 2 768 160 3 352 392
Sources 9 46 227 069 10 549 753
Error 18 I 826 640 1 485 758

In fact if it be assumed that the sources were as-

signed at random to the stations, the analysis of

variance would appear as shown in table 9. The
small increase in the error variance results from not

correcting for the very small differences between
stations.

Another way to make clear the minor contribution

to error made by stations is to look at the amount by
which the adjusted count for a station differs from the

average count for all stations. The "adjusted"

counts are adjusted to allow for the fact that different

sources were usually in different stations. The dif-

ferences are shown as percentages in table 10 and
plotted in figure 6. The differences are of the order

of one tenth of a percent which is quite reasonable

for the counts available. The graph gives just a hint

of a region of high values and a region of low values.

Table 10. Percent by which stations differ from average station

.Station and percent Station and percent

0.1.54 II) -0.0.53 3 0.0.45 12 0.091

-.044 1.) - .0.(4 4 .106 15 - .007

5 .170 14 - .(HW 7 -.014 16 .112

6 .031 17 - .070 8 -.1 18 19 - .028

9 .(120 18 -.166 II - Am 20 - .078

Further study of the mean squares in table 8 reveals
a much larger mean square for sources in experiment I

than in experiment 11. Source L, which is 0.844 per-

cent above the average of all sources is largely respon-
sible. No other source differs as much as half a
percent from the average source. The three largest

deviations in experiment I are 0.844, 0.492, and
0.417. In experiment II the three largest deviations
are 0.426, 0.279, and 0.113. Apparently experiment I

happened to get the sources that deviated most from
the average, whereas experiment II got sources that,

on the whole, gave somewhat lower counts than those
forming experiment I. This state of affairs is plainly

revealed in figure 7. This is not to imply great varia-

tion among the sources. All but one of the 20 sources
feU in the range of 1 035 000 to 1 045 000 for their

counts. The unadjusted counts are very similar to

the adjusted counts because there was so little dif-

ference among the stations. In no case is the dif-

ference between observed and adjusted count as much
as 1000.

There remains a remark about the mean squares
found for runs. If the total exposure time remained
the same for each run and the counting apparatus
maintained performance, then the mean square for

runs should approximate the mean square for error.

^ Q20 1 1 1
1 I I

1 1 1
1

1 1 1 1
1

1 1 1 1

z -0.05 - " \ / V^^^ / \

Q -Q20l 1 1 1 I I I I I I
' i I , . . ,

O S to IS 20
STATION

Figure 6. Difference of each wheel station from wheel average,

expressed in percent.
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o ooo ooo o o EXPERIMENT H

I I I I I I
I

' I I I
'

' ' _
1,035,000 1,040,000 I,045p00 1,050,000

ADJUSTED COUNTS

Figure 7. Adjusted counts for sources.
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The somewhat larger mean square for runs in experi-

ment II is without significance. The mean square

would have to exceed the error mean square by a

factor larger than four to suggest a real difference

between runs.

The use of these "incomplete block" designs is

not without a certain price. The original appHcation

of these designs was in agricultural field trials. If a

large number of varieties of wheat are under com-
parison it is clear that a block of 20 plots requires

a large area of ground. Some of the plots will be at

considerable distances from each other and may en-

counter substantial differences in the soil. Experience
showed that comparisons between widely separated

plots are subject to greater errors than comparisons
between nearby plots. The basic idea back of the

incomplete block scheme was to take advantage of

the very substantial reduction in experimental error

that came from using small blocks. The reduction

in error far outweighed the additional mathematics.
The indirect comparisons are not as effective as direct

comparisons, and therefore result in a lower efficiency.

The efficiency of the design used in this work is ap-

proximately 70 percent. This may be translated into

the following terms. The standard error for the

average of three counts with the block design is about

that which would be associated with the average of

two counts without this design.

In agriculture the sizable reductions in error which

resulted from using small blocks outweighed the loss

in efficiency. The present experiment affords an

interesting example where the reduction in error

achieved by ehminating position contributions is

relatively slight. On the basis of the error variances

given in tables 8 and 9 the variance is increased from

1.17 to 1.66 million when the position effect is left in.

Dividing 1.17 by two and 1.66 by three gives 0.586 X 10^

and 0.552X10^, respectively, as the variance for the

source averages. All this effort would appear to

have been to no avail.

One important consequence did come from the use

of the design. The design made it possible to evalu-

ate the station effects using the same data that were
collected to cahbrate the sources. Evidence was
obtained that the wheel stations are very closely

identical. Actually there is no need to take account
of wheel stations unless considerably greater counts

are taken. In that event the contribution arising from
station differences will be relatively more important.

It should be pointed out that if the stations had dif-

fered by about as much as the source, the precision

gained by correcting for station effects would have
been impressive. Obviously if stations differed as

much as sources, discrimination between the sources
becomes impossible. In this event the adjustment
for source effects would save the day provided a

design was used that makes such an adjustment
possible.

An exacting test was made of the effectiveness of

the numerical adjustments by purposely introducing
substantial biases into the wheel stations. Single
cardboard shims were placed under the sources (fig. 4)

on five of the 20 stations, so as to increase the source-

to-detector distance. Two shims were placed on five

other stations, three shims on still another five stations

and the remaining five stations were left without shims.

The stations were picked at random in allocating the

shims. The shims stayed on the stations throughout
the experiment.

Twenty sources were placed on the wheel and the

same procedure used as before. In this case three

revolutions of the wheel constituted a run. The
average count per source (and station) per run (sources

remaining in their stations) was 318391. The average

total count per source (and station) for three runs

was three times 318391, or 955173.

Table 11. Comparison of sources using biased wheel
Each source and station expressed as a ratio to the average source and station.

Section A Section B

2 3 4 5 6 7 8 9

Source Biased stations
Dili

Biased stations
No bias Station Diff.

'Percent No. Percent

Exp't I Exp't 11 Exp't 1 Exp't II

K 1.0006 1.0000 1.0024 -0.24 1 1.0198 1.0219 -0.21
L 1.0016 0.9998 1.0030 -.32 2 0.9827 0.9810 .17

0 1.0005 1.0002 0.9964 .38 5 1.0081 1.0087 -.06
P 0.9997 1.0012 .9986 .26 6 1.0087 1.0055 .32

A 1.0029 1.0073 1.0065 .08 9 0.9795 0.9818 -.23

B 0.9989 1.0000 0.9987 .13 10 1.0064 1.0084 -.20
E 1.0015 0.9996 1.0020 -.24 13 0.9928 0.9905 .23

F 0.9980 .9972 0.9992 -.20 14 1.0064 1.0070 -.06

Q 1.0005 .9984 .9981 .03 17 1.0210 1.0190 .20

R 1.0014 1.0014 1.0011 .03 18 0.9797 0.9821 -.24

M 0.9987 0.9990 1.0005 -0.15 3 1.0182 1.0173 0.09
N .9986 .9995 0.9987 .08 4 0.9923 0.9927 -.04
T 1.0029 1.0059 1.0043 .16 7 .9806 .9812 -.06
U 0.9966 0.9970 0.9966 .04 8 1.0184 1 0155 .19

c .9964 .9977 .9983 -.06 11 0.9952 0.9942 .10

D 1.0011 1.0016 .9978 .38 12 .9919 .9924 -.05
G 0.9992 1.0007 .9993 .14 15 1.0173 1.0154 .19

H .9968 0.9956 .9965 - .09 16 1.0055 1.0076 - .21

I 1.0041 1.0020 1.0035 -.15 19 0.9815 0.9848 -.33
J 1.0000 0.9957 0.9985 -.28 20 .9940 .9920 .20

The above experiment was repeated and the rela-

tive values of sources and stations computed. Table 11

lists the results of these computations. The entries in

section A of the table show each source as a ratio to

the average source and in section B show each station

as a ratio to the average station. The difference be-

tween the stations with no shims and those with three
shims is nearly 4 percent. In spite of these biases

introduced into the wheel the adjusted values of the

sources (col. 3 and 4) agree with the ratios obtained
in another trial using the wheel without shims (col. 2).

No adjustments were made for the ratios in column 2.

the wheel stations being assumed to be without bias.

In fact very slight biases do exist as shown in the

preceding study.

The average magnitude of the twenty differences

between the paired estimates for the sources is 0.172

percent and for the stations is 0.169 percent. Each
estimate is based on about 950 000 counts. As stated

earher. the price of using the experimental design
that makes possible the adjustment for the effect of

stations, is a certain loss in efficiency. In this case
the efficiency is about 70 percent so that the effective

101-62



count is 950 000 X 0.70 or 665 000. The square root

of 665 000 is 816, therefore the expected standard

deviation of an estimate of a source is 816/665 000 or

0.123 percent. The expected average difference be-

tween two measurements each with standard deviation

0.123 is obtained by multiplying by 'Ij^/rr or 1.128.

The theoretical average difference, 0.123X1.128=0.14
is only slightly less than the experimental average
difference.

The good concordance between experiments I and II

confirms the error as calculated from the statistical

analysis on the separate experiments. These errors

were 0.15 and 0.14 percent, respectively. The evalua-

tion of the sources is confirmed by the two experiments
and the evaluation of the experimental error is also

confirmed by the paired comparisons.

Because sources are compared by taking ratios of

counts, the whole statistical analysis was repeated

using the logarithms of the observed counts. The
analysis of variance and the adjustments in the first

analysis were made using differences rather than
ratios, because of the near identities of both sources
and stations. The analysis using logarithms did not
alter any of the conclusions. Fortunately the counts
were large and varied over a very small range. Over
this range the logarithms are acceptably proportional
to the counts so that the effect of using logarithms was
just that of changing units.
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Instrumental Drift*

W.
J.
Youden

National Bureau of Standards, Washington 23, D.C.

THE developments in instrumentation and

control devices in recent years are manifest

in most laboratories. These advances have

brought better measurements and have eased

the labor of obtaining and recording them. Further-

more, improved instrumentation often has made it

feasible to take more measurements. There is another

consequence, one that many experimenters will con-

sider an advantage, to be credited to better instru-

ments. Better measurements, and more of them, have

made it possible to interpret most data without re-

course to statistical techniques.

Experimenters habitually try to select instruments

and to control measurement procedures in order to

get reproducible measurements that are good enough

for their immediate purposes. These purposes gen-

erally fall into two classes : either the experimenter

wants to keep the uncertainty in the result below some

specified value, or else he wants to be able to distin-

guish between objects if these differ by some minimum
amount in the measured property. If the worker suc-

ceeds in these respects, the interpretation of the data

is simplified, because the uncertainties in the measure-

ments can be, and usually are, ignored.

Apparently it is easier for many people to obtain

elaborate and expensive control devices than it is to

delve into the subject of the statistical design of ex-

perimen|;s. Or they may be unaware that statistical

design can bring the same kind of improvement in

the data that comes from providing a uniform en-

vironment and will do this with little or no expense.

The ideal measurement procedure should give results

that the experimenter can accept without worrying

about their reliability. The experimenter is then free

for the task of studying the relationships that are in-

volved in his scientific problem. In most cases the

measurements are subject to random and other un-

known sources of error that may either obscure rela-

tionships or even give the appearance of relationships

when in fact there are none.

A good place to introduce statistics is in the pre-

liminary trials an experimenter makes to assure him-

self that his apparatus and instruments are in a satis-

factory operating condition. Consider the question of

whether or not the instrument is subject to drift.

Drift is usually explored by making a series of re-

peated measurements on the same object. Another

question then plagues the worker. How can these re-

peated measurements be made independent of one an-

other? How can the operator "forget" previous read-

ings so that subsequent readings will not be influenced

by earlier ones? These matters will be considered

later.

Suppose the experimenter has made a series of

measurements on the same object and has plotted the

values as ordinates against the serial numbers of the

measurements. A line drawn parallel to the a;-axis

with y equal to the average of all the readings will

provide a visual test to detect trends in the sequence

of readings. The experimenter would like to have the

measurements indiscriminately scattered about the line

and confined between two bracketing parallel lines as

close as possible to the average line. If there is a pro-

nounced trend, the visual test will reveal it. On the

other hand, the experimenter may not be sure. Here,

then, is the opportunity to use an objective statistical

criterion to bolster his own judgment.

Table 1 lists measurements y^, y2, . . . , yn the

order in which they were obtained. Two quantities,

S"^ and D^, may be computed from the observations

in Table 1. The ratio of to should fall within

predictable limits about the integer 2 if the results

are free from trends. The quantity is the sum of

the squares of the deviations of the plotted points

from the horizontal line through the average. The
formula

where y is the average value, is a convenient way to

obtain this sum of squares. Incidentally, the estimate

of the standard deviation for these measurements is

The quantity is the sum of the squares of the dif-

ferences between successive measurements : = Sd^^^

It will be noted that the interval between two succes-

sive measurements gives only slight opportunity for

the trend to operate. The cfs are nearly what they

would be if there were no trend at all. In contrast, the

deviations between the individual y's and y are sus-

ceptible to the trend, and will be larger than it

would otherwise be. The value of the ratio D^/S'^ will

then fall below 2.0.

It remains to set up some criterions for the allow-

able ratio of D^/S'^. In any set of observations, the

Table 1. Successive differences between measurements.

Order of

measurement
Measurement

Successive

difference

1 = 2/i - 2/2
2

3

2/2

3/3

m-1 3/n-i
dn-i = Vn-i - Vnn 3/n
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errors of uieasurement may, by chance, fall into sus-

picious configurations even when there is no trend.

This is more likely to happen if the series is a short

one so the limits for the ratio D'^/S^ will depend on

the number n of measurements.

Bennett {1, 2) has adapted some tables, published

by Hart {3), that list limits of D'^/S'^, each of which
will be exceeded on the average in 1 out of 20 sequences

(or 1 in 100) for sequences that are not afflicted by
any trend whatsoever. Thus, if a particular sequence

does transgress these boundaries, it is usual to con-

sider this as evidence of a trend rather than as a very

improbable occurrence. Table 2 shows some specimen

values of the limits taken from Bennett's table.

Sufficiently low values of the ratio D'^/S'^ are evi-

dence of a trend. Overly large values of D^/S'^ also

indicate that the data depart from the expected ran-

dom scatter. One way that the ratio may be inflated

is by changing the zero setting or making other ad-

justments between successive readings. In general

these adjustments will lead to a succession of large

differences between successive readings and therefore

will inflate D^.

The following 20 determinations of the percentage

of nickel were made on 20 successive segments of a rod

of alloy by a spectroehemical procedure: 42.4, 40.8,

41.0, 41.8, 40.3, 40.8, 40.8, 39.6, 41.5, 41.5, 40.2, 40.4,

41.0, 42.2, 39.4, 41.0, 41.4, 40.6, 42.4, 40.8. It was im-

portant to know whether there was a trend along the

rod. The computation for D^/S^ gave 31.32/12.99, or

2.41. The quotient is well within the listed limits for

the ratio with n equal to 20, and there is no convincing

evidence for a trend. The scatter of the data about the

average line is shown in Fig. 1.

One obvious way to avoid the effect of remembering

previous readings, referred to earlier, is to change the

object being measured. At first thought, this would

appear to make it impossible to detect any trend or

drift in the measuring equipment. Certainly each read-

ing will now depend on which object is measured and,

if there is a drift, where the measurement is in the

series. Such entanglement of effects can, however, be

readily resolved if the objects are measured in an ap-

propriate sequence. The devising of these sequences

is one of the activities in the field of statistical design.

43.0 n

o o
o

42.0 —
o

i OO o
z
^41.0 O O O

40.0 -

5 10 15 ZO

SEGMENT NUMBER

Fig. 1. Percentage of nickel in successive segments of an

alloy rod.

Five objects, A, B, C, D, and E, may be available,

and each could be measured four times in a sequence

of 20 measurements. The problem is to set up a sched-

ule that will still make it possible to detect the trend.

Obviously nothing will be gained if four measurements
are made on A, then four measurements on B, and
so on. The memory difficulty is still present, and the

values obtained for each object are inseparably com-
bined with the drift, if any, in the instrument.

An alternative arrangement that begins to get into

the problem is one that divides the sequence into four

parts, each part containing all five objects. Thus,

BAEBC
I

BEDAC
\
EDCBA

|
CAEDB

The order of the objects within each part should be

random. Now the average for the five objects in a

particular block should be the same as the average in

any other block except insofar as a trend happens to

be present. In a coarse way, these averages, when
plotted opposite 3, 8, 13, and 18, begin to reveal any
instrument trend. The actual trend in any block that

would be revealed by five ordinates is replaced by the

average of these ordinates and centered in the middle
of the block.

A modification of the afore-mentioned procedure
will delineate the presumably rather smooth curve

that corresponds to the true trend line during the

measurements. The curve can be approximated by
drawing short horizontal lines in a stepwise fashion
along the curve. Each short horizontal line replaces

the slant and slightly curved line in its vicinity. This
horizontal line is located at a height equal to the

average ordinate of the curve in the narrow band cov-

ered by the curved short line. If there were some way
to determine the position of these short horizontal

lines, the curve, or trend line, would stand revealed.

It is better to have as many short lines as possible and
to have them as short as possible. Ten short lines, each
covering two measurements, afford a better approxi-
mation to the trend curve than four lines, each cover-

ing five measurements.

A difficulty then arises in the fact that the pair of

objects used in any part will not be the same as the

pair used in some other part of the curve. This would
appear to make the averages for each pair useless for

comparison, because the objects are different. If the

pairs are formed in an appropriate manner, there is a

simple procedure for comparing the parts, despite the

fact that different objects occur in the different parts.

Five objects can be used to form 10 different pairs,

each object appearing in four of the pairs.

Part abcdefghi j
Object AB

\
DE

\
BC

\
EA

\
CD

\
EB

\
AC

\
BD

\
CE

\
DA

These pairs break the trend curve into 10 parts. The
order of the pairs is immaterial. The purpose is to

determine the average values of the ordinates for each

of the 10 parts, just as if all the measurements had
been made on one object.

First use is made of the fact that the objects in any
part, say A and B in part a, appear in six other parts.

Thus, by using object A, the differences between part
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Table 2. Limits for the ratio DV-S^

1 in 20 1 in 100

series n Lower Upper Lower Upper

5 0.82 3.18 0.54 3.46

10 1.06 2.94 0.75 3.25

15 1.21 2.79 0.92 3.08

20 1.30 2.70 1.04 2.96

Table 3. Determination of average value of ordinate a.

Using
object

Difference between ordinates

A 3(>a-d)

A 3(a~g) = Xs

A 3(a-i) = Xs

B 3(a-c)
B 3(a-/) = «5

B 3{a-h) = «6

C (c + g) - (e + i) = x.

D (h+j) - (b + e) = Xa

E (d + f)
- = Xb

Sum 18a -2(6 +ei-d + . + = 2a;i

Equivalently 20a- 2 (a + 1) + c + . . . + j) = '2xi

And a- (average ordinate over all parts

^

= 2a;i/20

Table 4. Comparison of actual and calculated instru-

ment drift.

Instru-

num-
'"^"t

ber
drift

Ob-
ject

and
its

value

Ob-
served
read-

ing

Calcu-

lated
devi- Calcu-

Part ation lated
from drift*

mean
drift

1

2

0

4
A
B

75
85

75
89

- 2.9 2.1

3 7 D 55 62
3.7 8.7

4 10 E 45 65 \
*

5

6

13

15
B
C

85

65

98
80

8.5 13.5

7

8

17

17

E
A

45
75

62
92 j d 12.0 17.0

9

10
16
15

C
D

65
55

81
70 I

* 10.7 15.7

11 13 E 45 58
]f 6.0 11.012 10 B 85 95

13
14

7

4
A
C

75
65

82
69 Iff 0.5 5.5

15

16
0

- 3

B
D

85.

55
85
52

I h - 6.2 - 1.2

17

18

- 7

-10
C
E

65
45

58
35 1

* -14.1 - 9.1

19
20

-13
- 15

D
A

55
75

42
60

- 18.2 - 13.2

* It Is possible to determine this calculated drift only when
the mean value of drift is known or determinable. In this
example, the value 5.0 is used for the average of all ordinates
from the curve of Fig. 2.

a and parts d, g, and j can be estimated; by using

object B, the differences between part a and parts c, f,

and h can be estimated. This leaves parts b, e, and i to

be considered. Notice that, by using object C, parts c

and g can be compared with parts e and i; by usiiig

object D, parts h and j can be compared with parts

h and e ; and finally E gives parts h and i in terms of

parts d and /. The lower-case letters are used to rep-

resent the average ordinates of the parts. These differ-

ences are shown in Table 3.

When a result located in a part, say d, is subtracted

from a result in another part, say a, using the same
object {A), the value of A, whatever it may be, drops

out. The first six differences tabulated are multiplied

by 3 to bring the sum to the form shown in Table 3.

All letters other than a have the coefiScient - 2. The
ordinate for part a, multiplied by 18, has twice the

sum of the ordinates for all other parts subtracted

from it, and '^x^ is the result. The difference is un-

changed if twice ordinate a, or 2a, is added and sub-

tracted. Division by 20 then gives the ordinate for a

when added to the average ordinate over all parts.

A constructed example illustrates how well the

scheme works. Suppose an instrument drifts as shown
in Fig. 2. The curve shows the drift expressed in units

of the terminal figure recorded. The instrument starts

out and drifts so that after a time the readings are

too high by about 17 units in the last place; then the

trend reverses and drops until at the end readings are

too low by about 15 units.

Imagine that five objects, A, B, C, D, and E, are

available and that these, when measured, should give

the values 75, 85, 65, 55, and 45, respectively. By read-

ing from the drift curve and by assigning the values

for the objects, one obtains a sequence of 20 readings,

as shown in the fourth column of Table 4.

The only information that is assumed available for

the statistical analysis is the column of observed read-

ings together with the identities of the objects. It is

assumed that the objects themselves do not change in

value during the observations. The calculation of the

average drift corresponding to part a, using the data

of Table 4 and the equations of Table 3, is shown in

Table 5.

Table 5. Calculation of average drift corresponding to

part a.

Using
object

Difference between ordinates

A 3(75 -92) -51
A 3(75 -82) -21
A 3(75 -60) 45

B 3(89-98) -27
B 3(89-95) - 18

B 3(89-85) 12

C (80-1-69) - (81 + 58) 10

D (52 + 42) - (62 + 70) -38
E (62 + 58) - (55 + 35) 30

Sum 18a-2(6 + c + d + ...+i) -58
Equivalently 20a - 2(a + & + C + . . . + j) -58
And a - (average ordinate over all parts) - 58/20
Therefore calculated deviation from mean drift -2.9
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Table 6. Determination of average value of ordinate b.

Differences between ordinates

object
In symbols Using data of Table 4

D 3(6 - e) = x^ 3(62 - 70) = -24
D 3{b - h) = x^ 3(62 - 52) = 30

D 3(6 -j) = Xs 3(62 -42) = 60
E 3(6 -d) = Xi 3(55 - 62) = - 21

E 3(b-f) = !e5 3(55 -58) = - 9
E 3(6 - i) = Xa 3(55 - 35) = 60
A (d + j) - (a + g) -x^ (92 + 60) - (75 + 82) = - 5

B (f + h)- (a + c) = Xs (95 + 85) - (89 + 98) = - 7

C (e + i) - (e + g) = a;9 (81 +58) - (80 + 69) = -10
Sum 186 - 2(a + c + d + . . . + j) = 2a;i 74

Equivalently 206-2(a + 6 + c + ... + j) — 22*1 74

And 6 - (average ordinate over all parts) = 2a;i/20 74/20

Calculated deviation from mean drift = 3.7

To calculate the ordinate for b, we must set up an-

other series of differences similar to the series used

for the calculation of a (Table 3). These new differ-

ences are given in Table 6.

In setting up the series, note that the objects ap-

pearing in part b are objects D and E. Therefore the

first 3 differences (iCi, x^) are obtained by taking

the value of object D in part b and subtracting from
it the respective values of object D in the other three

parts in which it appears. The next three differences

) are obtained using the values of E in simi-

lar fashion. The difference x^ is obtained by taking the

sum of the values of A in the two parts where A ap-

pears with D and E and subtracting the sum of the

two values of A that appear with B and C.

Similar sets of differences must be set up for all 10

parts in order to calculate the ordinates. In each in-

stance the sum of all nine equations will be of the

form shown in the sets given for a and b and, there-

fore, will provide a check that the proper differences

have been set up. As a further check, when all 10

values of deviation from mean drift have been calcu-

lated, their sum should equal 0.

The numerical procedure outlined in the preceding

paragraphs, leads to the estimates shown in the last

column of Table 4. These, unavoidably, apply to both

observations in the pair to which they are attached.

Inspection reveals that the calculated drift is in excel-

lent agreement with the averages of the two drifts

recorded for each pair in the second column. Further-

more, by the pattern of deviations from mean drift

(Fig. 2), the drift of the instrument stands revealed

through the overlay of the different objects measured.

The drift curve was plotted on the assumption that

the 20 observations were taken at equal intervals of

time. This restriction may be relaxed, provided that

the two observations forming any pair are taken in

close succession and provided that the times are re-

corded. The a;-axis becomes a time scale and the aver-

age ordinate for each part is located at the average

time for the two observations.

One of the merits of using different objects is the

fact that the observer cannot anticipate the next read-

ing and this assists in the attainment of objectivity in

the readings. This objectivity is particularly desirable

in the matter of estimating the precision of the read-

ings. Precision is usually estimated from immediately

successive readings on the same object, and it is diffi-

cult to avoid forming an optimistic appraisal of the

precision. The present scheme also makes possible an

estimate of the precision. The numerical details are

available {4-7).

So far all the emphasis has been placed on the per-

formance of the instrument. The instrument will be

used to measure objects, and it is reasonable to inquire

whether the 20 observed readings in Table 4 can also

be used to estimate the values of the five objects.

The pairs were formed in all possible ways from the

five objects. Consequently, any given object has been

matched with the four others in some four of the 10

parts. And, most important, in any part made up of

two readings it can be assumed that the instrument

drift error is approximately the same for each read-

ing. In taking the difference between the readings for

two objects in a part, the instrument drift, whatever

in may be at that time, virtually drops out. The dif-

ference obtained is just about what it would be if there

were no drift at all.

20

READING NUMBER

Pig. 2. Instrument drift in units of the terminal figure

recorded.
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Table 7. Comparison of correct and calculated values

for the objects measured.

Object
Correct

value

Calculated

value

Calculated

value

less 5.0

A 75.0 79.4 74.4

B 85.0 90.4 85.4

C 65.0 70.6 65.6

D 55.0 59.0 54.0

E 45.0 50.6 45.6

The arithmetic for evaluating the objects is less in-

volved than that used for the drift. To calculate an

average for A, form the following differences:

Using part a, A--B = -14
Using part g, A -C = 13

Using part j, A--D = 18

Using part d. A--E = 30

Sum, 4^- (B + (7+D + E) = 47;

Equivalently, 5A - (4 +£ + C + Z) + E) = 47;
And A - average of all = 9.4;

Average of all 20 readings = 70.0 ; 4 = 70.0 + 9.4 = 79.4.

Table 7 shows the calculated averages for the ob-

jects alongside the correct values. There is evidently

a marked discrepancy between the correct and calcu-

lated values. The fourth column shows the calculated

values all diminished by 5.0, and now the two sets

show good agreement. The correction, 5.0, cannot be

evaluated in any actual case. It is, in fact, the average

value of the drift introduced by the instrument. There
is no way, short of the good fortune in having one of

the objects a known standard, to separate out the aver-

age drift from the average of all the objects.

In much experimental work the difference between

test items is all that is important to establish. Where

absolute values are required, a standard object is in-

dispensable. If the absolute value of one object is

known, all other objects can then be determined.

Many choices are available in the construction of

the sequence used. The parts or blocks may be of any
size. For example, seven objects can be arranged in

seven triads, or 10 objects in 10 triads.

ABD
I

BCE
I
CDF

\
DEC

|
EFA

\
FGB \

GAC
ABE

I

HU
I

BHC
\
GEI

\
IDB

|
EFH

\
CJD

\
JGF [

DAG
\
FCA

The first of these sequences is an example of a class

of designs called balanced incomplete blocks. The sec-

ond sequence is a partially balanced incomplete block

design. Various discussions of these designs are avail-

able {4, 5, 7).

There is a final important comment to make. Com-
parisons of objects can be made even with a drifting

instrument. Even when the instrument has been operat-

ing satisfactorily, the experimenter perforce usually

has had to assume that this state was maintained while

making the critical measurements. Statistical design

makes it possible to show that the instrument did stay

in adjustment and, if not, to introduce appropriate

adjustments.

References and Notes

* Based on a talk given at the Gordon Research Conference
on Instrumentation in 1954.

1. C. A. Bennett, Ind. Eng. Chem. 43, 2063 (1951).
2. and N. L. Franklin, Statistical Analysis in Chem-

istry and the Chemical Industry (Wiley, New York, 1954),
p. 677.

3. B. I. Hart, Ann. Math. Statistics 13, 445 (1942).
4. R. C. Bose and T. Shlmamoto, J. Am. Statistical Assoc.

47, 151 (1952).
5. W. G. Cochran and G. M. Cox, Experimental Designs

(Wiley, New York, 1950).
6. W. S. Connor and W. J. Youden, J. Research Natl. Bur.

Standards 53, R. P. 2532 (1954).
7. O. Kempthorne, The Design and Analysis of Experiments

(Wiley, New York, 1952).

107-5



Journal of Research of the National Bureau of Standards Vol. S3, No. 5, November 1954 Research Paper 2544

Comparison of Four National Radium Standards
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Part 2. Statistical Procedures and Survey

W. S. Connor and W. J. Youden

Part 1

The two United States primary radium standards nave been compared with the British
primary radium standard and the Canadian national radium standard (1) by an ionization
method, using the NBS standard electroscope, (2) calorimetrically, using the Peltier-cooling
radiation balance, (3) by means of a Geiger-MtiUer counter, and (4) using a scintillation

counter. Where there is little or no difference in gamma-ray source self-absorption, the four
methods should, and in fact do, give good agreement. In the case of the Canadian national
radium standard the difference in the results obtained is an indication of a difference in
source self-absorption.

1. Introduction

During January and February 1954 the British

primary radium standard and the Canadian national

radium standard were at the National Bureau of

Standards for the purpose of comparing these

standards with the two United States primary
radium standards at the Bureau. The intercom-
parisons were conducted over a period of 12 days
and were made as exhaustive as possible, using the

NBS electroscope, a Peltier, radiation balance, and
Geiger-M tiller and scintillation counters.

2. Historical Background

In August 1911 Mme. Pierre Curie prepared^ in

Paris, a primary radium standard consisting of

21.99 mg of the piu-e anhydrous radium chloride that
had been used .to determine the atomic weight of

radium as 226.0. This 21.99 mg of radium chloride

was sealed into a glass tube 32 mm long, having an
internal diameter of 1.45 mm and a wall thickness

of 0.27 mm.
At the same time Professor Otto Honigschmid, in

Vienna, made three radium-standard preparations
from very pure radium chloride consisting of 10.11,

31.17, and 40.43 mg of radium chloride sealed in

glass tubes about 32 mm long, having internal

diameters of 3.0 mm and wall thicknesses of 0.27

mm, each tube having a platinum wire sealed in one
end. This wire was presumably to prevent the
accumulation of static charge within the tubes.

The purity of the radium chloride was defined by a
radium atomic-weight determination, resulting in a
value of 225.97. Of these the 3 1.17-mg preparation
was chosen as a secondary standard. Mme. Curie's

21.99-mg primary standard and Professor Honig-
schmid 's secondary standard are generally and re-

spectively referred to as the 1911 Paris and Vienna
radium standards.

In 1934, after 23 years had elapsed, some concern
was felt lest the Paris primary standard, together
with a number of secondary radium standards,
might explode on accoimt of the accumulation of
helium and chlorine and possible devitrification of the
containing tubes. Honigschmid was at that time
canying out, in Munich, a further determination of
the atomic weight of radium, and accordingly the
International Radium Standards Commission asked
him to prepare new standards, using the same salt as

for the atomic-weight determination.

For his atomic-weight determination, which was
carried out in the early part of 1934, HSnigschmid
used approximately 4 g of radium chloride, containing
3 g of radium element, that had been placed at his

disposal by the Union Mini^re du Haut Katanga.
This salt was purified by Honigschmid to a point
where spectroscopic analysis by Gerlach showed a
maximum of 0.002 to 0.003 percent of barium atoms.
A value was obtained for the atomic weight of radium
equal to 226.05, which is currently accepted.

Honigschmid then used some 817 mg of this highly
purified anhydrous radiimi chloride to prepare 20
new standards of radimn. Exactly who asked him
to do this is not now quite clear. According to Mile.
Chami6 [1],' the International Radium Standards
Commission, at the suggestion of Stefan Meyer,
"entrusted Mr. O. Honigschmid with the prepara-
tion of 20 standards, using the salt he had purified

and used in measuring the atomic weight of radium."
According to Honigschmid himself, however, in a
paper [2] presented after his death by Stefan Meyer,
the 20 standards were prepared "at the wish of the
Belgian radium company." These two versions are,

however, not irreconcilible if one assumes that the
suggestion of the Belgian company was made known
to the International Radium Standards Commission,
which then gave it its official sanction.

Figures In brackets indicate the llteiBture references on page 272
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The 20 new Honigschmid standards were sealed

into glass tubes on June 2, 1934, the glass tubing

being similar to that used to seal the 1911 Vienna
standard and having an internal diameter of 3.0 mm
and a wall thickness of 0.27 mm. A platinum wire

was sealed into the end of each standard.

One of the new Honigschmid standards that was
42 mm long and contained 22.23 mg of radium chlo-

ride was selected as the new international standard,

and its value was carefully compared with the 1911

Paris standard by gamma-ray measurements over a

period of 4 years [1]. The Honigschmid reference

number for this standard is 5430. Honigschmid
states [2] that the error of a single weighing was not
more than 0.02 mg. The gamma-ray comparison
with the 1911 Paris standard showed a discrepancy,

however, of 0.2 percent, corresponding to a weight
of 22.27 mg as of June 2, 1934.

The first United States radium standard was
brought to America in 1913 by Mme. Curie. This
source contained 20.28 mg of radium chloride and
was designated by the International Radium Stand-
ards Commission number IV (Vienna No. 6).

In 1936 two of the twenty Honigschmid prepara-

tions were acquired as the United States primary
radium standards. They are each designated by two
numbers, namely, 5437, XIV and 5440, XV. The
arabic numerals are those given by Honigschmid,
and the roman numerals are those assigned by the

International Radium Standards Commission and
imply that the standards have undergone gamma-ray
comparison with the 1911 Paris and Vienna stand-

ards. The lengths of these two United States

standards are 36 and 37 mm, and they contained
50.22 and 26.86 mg, respectively, of radium chloride

as weighed by Honigschmid on June 2, 1934. These
weights correspond to 38.23 and 20.45 mg of radium
element. The weights derived from a comparison
with the Paris and Vienna 1911 standards corre-

sponded, however, to only 38.13 and 20.38 mg, re-

spectively, of radium element, as of June 1934.

The British primary radiiim standard is designated
by one number only, namely, 5432. It is solely a

standard by weight and was not compared with the

1911 Paris and Vienna standards. It is, however,
one of the original Honigschmid preparations sealed
on June 2, 1934. Its length is 38.8 mm, and its salt

content corresponds to 15.60 mg of radium element,
as of that date. This standard replaced the first

British radium standard, which had been in the
custody of the National Physical Laboratory since
1913. This earlier standard was designated by the
International Radium Standards Commission num-
ber III (Vienna No. 3).

The United States and British primary radium
standards, as can be seen from figure 1, tiave low
ratios of volume of salt to volume of tube. It is

therefore to be expected that with the standards in

a horizontal position and the grains of radium chlo-
ride distributed evenly along the tube their gamma-
ray source self-absorption would be very nearly the
same.
The Canadian national radium standard is however

shorter and of smaller diameter than the Honig-
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schmid preparations, and it is tightly packed (fig. 1).

It was sealed in June 1930 by the Union Mini^re du
Haut Katanga, its contents, and that of six other
sources in the custody of the National Research
Council, having been taken from two tubes of radium
cliloride that had been prepared by the Union
Mini^re in June 1924. Its weight was derived by
gamma-ray comparison in 1933, in Paris and Vienna,
with the 1911 standards, and it is designated by the
number XIII. It is understood that no corrections
for possible differences in self-absorption were made
in these gamma-ray comparisons. Its length is 10.5

mm, its internal diameter 1.5 mm, and its salt content
corresponds, according to the gamma-ray comparison
with the 1911 radium standards, to 24.23 mg of

radium element, as of June 1934. Information on
all four national standards is summarized in table 1.

Table 1. Description of four national radium standards

A ' B C D

U. S. British Canadian
'

U. S.

primary primary national primary
radium radium radium radium
standard standard standard standard

Reference numbers 54.37, XIV 5432 XIII 5440, XV
Radium content as

given by:
1. Honigschmid's 38.23 mg 15.60 mg 20.45 mg

weighings.
2. Comparison with

Paris and Vi-
enna 1911 stand-
ards, as of June
1934 38. 13 24.23 mg 20.38 mg

Length of glass tube. .

.

86 mm 38.8 mm 10.5 mm 37 mm
Internal diameter of

tube - -.- 3 mm 3 mm 1.5 mm 3 mm
Tube wall thickness. 0.27 mm 0.27 mm 0.25 mm 0.27 mm

' For convenience. A, B, C, and D are used here and elsewhere in lliis paper to

identify these radium standards.

f 4

FiouKE 1. Four national radium standards.

A, American; B, British; C, Canadian; and D, American.

268



In view of the uncertainties that exist and the
differences between the Honigschmid weights and
their weights as derived by comparison with the

1911 Paris and Vienna standards [3], it has recently

been suggested that new radium standards be pre-

pared from about 1 g remaining of Honigschmid's
original "atomic-weight" material. Another possi-

bility lay in a recheck of the present standards.

With this end in view, United States primary radium
standard 5440, XV was taken to the United Kingdom
in the summer of 1952 and to Canada in the autumn
of the same year. At the National Physical Labora-
tory, in Teddington, and at the National Research
Council Laboratories, in Ottawa, it was compared,
by gamma radiation, with the British primary
radium standard, 5432 [4] and the Canadian national

radium standard, XIII [5]. The results obtained by
these laboratories are discussed later in connection
with the data given in table 3.

The question also arises as to what is desired in a
radium standard. In order to derive the mass of

any radium preparation in terms of the standard by
gamma-ray measurements it is necessary to know
both the absorption of the containers of the prepara-
tion and standard and also the self-absorption of

the radium salts themselves. In NBS certificates the
results are stated in terms of milligrams of radium
when contained in a Thiiringen glass tube having a
wall thickness of 0.27 mm, together with an empirical
absorption correction for the container in question.
Only calorimetric measurements can give the ratios

of the true radium contents, irrespective of absorp-
tion but in this case it is necessary to know the date
of sealing of the preparation in order that correction
may be made for the growth of polonium. A small
fraction of the gamma-ray energy is absorbed and
measured by the calorimeter, but any difference in

absorption between two sources will represent only
a small correction to the already small contribution
of gamma-ray energy emission (about 7%) to the
total energy emission.

3. Measurements With the NBS Standard
Electroscope

The NBS standard electroscope [6] and measuring
syst?m were used, without modification, for this
comparison of four national radium standards. The
ionization chamber consists of a 10-cm cube free-air
volume, with walls made of 1 cm of lead and a
^2-cm aluminum inner lining. A gold leaf is sus-
pended near th3 center of the chamber. A 10-fi
quartz fiber at the free end of the leaf provides a
fine line for projection. The fiber image is magnified
approximately 100 times and projected onto a
metric scale. The discharge of the electroscope is

measured by timing tlie transit of the image between
two fixed points on the scale 6 cm apart.
The source indexing system consists of a V-shaped

trough of /32-in. Lucite on an aluminum stand.
The stand can be moved along a line perpendicular
to the face of the ionization chamber or rotated
about its own vertical axis. Preparations are
centered in the trough opposite the center of the

chamber, so that measurements are made perpen-
dicular to the axes of symmetry of the preparations.
The four standards were measured relative to each

other by comparison of each of the six possible com-
binations of pairs. Independent measurements were
made on each pair by each of three different observers
at source distances of 66.5 cm and 74.1 cm from the
chamber. The entire series of measurements was
repeated twice.

The following procedure was adopted for compar-
ing each pair of standards:

1. The trough was placed at the distance selected

and parallel to the chamber face.

2. A standard was held horizontally and tapped
lightly untU the salt was distributed uniformly along
the length of the capsule, as in figwe 2.

3. The standard was placed in the trough and cen-
tered.

4. Three observations of the discharge time were
made and recorded.

5. The trough was rotated 180 degrees, and three

more observations were made.
6. Procedures 1 to 5 were repeated with the second

standard of the pair.

7. Procedures 1 to 6 were repeated for both mem-
bers of the pair at the second distance from the
electroscope.

j;; A B G 0

Fir.uRE 2. Four national raaium standards, with the grains
of salt in the three Honigschmid standards distributed along
the length of the tubes.

A, American; B, British; C. Canadian; and D, .\merican.

4. Comparison by Geiger-Miiller Counter

The Geiger-Miiller counter used for this compari-
son was a neon-halogen-filled tube. The tube itself

was surrounded by a sheath of lead % inch thick so
that the soft gamma rajs, the spectrum of which
might be varied by source absorption to a greater
extent than that of the higher-energy gamma rays,
would not be counted. The resolving time of the
counter was determined by the two-source method
to be 211 /usee ±5 percent. The correction for re-
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solving time applied to the data ranged from 1.1 to

2.7 percent.

The source holder of the NBS standard electro-

scope was used to position each standard in turn in

these measurements, and the standards were tapped
so that, in the case of the more loosely packed
Honigschmid standards, the grains would be dis-

tributed uniformly along the tube.

In order to eliminate any possible effects due to

drift a series of measurements was carried out on each
pair of international standards. Thus, in the com-
parison of A and B, measurements were carried out
with A and B arranged in "packages" in the following
order: A, B, B, A; B, A, A, B; A, B, B, A; and
finally, B, A, A, B. Similar package measurements
were made on each of the other five pairings of the
four international standards.

A total of about 80,000 counts was taken on each
of the 16 members 6f the 4 packages comprising a
pair comparison. Thus in the comparison of A and
li a total of some 640,000 counts were made with A
in position and 640,000 with B.

5. Comparison by Scintillfttion Counter
The scintillation counter consisted of a thallium-

activated sodium-iodide crystal mounted on the face

of a photomultiplier tube. The resolving time of the

counter and amplifier was 5 Msec ±10 percent, and
the corrections applied to the data varied from 0.3

to 0.8 percent. The discriminator was set to accept
pulses corresponding to gamma-ray energies greater

than 1 Mev. Thus, as for the NBS standard elec-

troscope and the Geiger-Mtiller counter, the effect of

source self-absorption of the lower-energy gamma
rays should not be apparent. The sodium-iodide
crystal and photomultiplier were mounted adjacent
to the Geiger- Mtiller counter so that counts on each
source could proceed concurrently with both counting
systems. Exactly the same pairing and packaging
order of sources as was used for the Geiger-Mtiller

counter comparison was, ipso facto, also used in the

scintillation-counter measurements. The counts for

each source in position were of the order of 400,000
compared with 80,000 in the case of the Geiger-

Muller counter.

6. Measurements With the Padiation
Balance

A modification of the radio-balance originally

designed by Callendar [7] for the measurement pri-

marily of radiant energy has recently been described

[8], which is suitable for the measurement of the

energy emission from radioactive materials. This
modification of the radio-balance has been renamed
the radiation balance, its most important feature

being the ability to balance the energy emission from
a radioactive source either against Peltier cooling or

the energy emission from another radioactive source,

or both.
None of the radiation balances constructed pre-

viously was large enough to accommodate the large

Honigschmid standards, and, accordingly, a new one
was constructed for this purpose. This balance is

described in detail separately in this issue [9]. It

differed essentially from the first one, however, in
that its larger cups were made from gold instead of
copper.

7. Radiations Measured
The radiation from radium in equiUbrium with all

its products consists of five energetic alpha-particle
groups, including that of polonium; three main*
groups of beta particles, the most energetic being
that from the transition of radium "E to radium F
with a maximum energy of 1.17 Mev; and a com-
plexity of gamma rays, the most energetic being
from the excited levels of radium C.

Three of the methods described here and used to

compare the radium contents of the four national
radium standards were essentially gamma-ray com-
parisons. With the thicknesses of lead used, or the
discriminator setting, the chief contribution to the
jamma-ray effect would be from the energetic
radium C gamma rays (above 0.6 Mev in the case of
the electroscope and Geiger-MtiUer counter and
above 1 Mev in the case of the scintillation counter).
In contrast, the radiation balance measures pri-

marily the energy emitted in corpuscular form.
Some 93 percent of the energy produced by radium
and its daughters down to radium D is associated
with particulate emission, the remaining 7 percent
of the energy produced being associated with the
gamma radiation. The wall thickness of the gold
cups was such as to absorb completely the most
energetic beta particles from radium E. Some 12
percent of the energy associated with the gamma
rays is also absorbed. Of the 7 percent of the total

energy produced that is associated with the gamma-
ray emission, another 1 percent (for the Canadian
standard) or 1.5 percent (for the Honigschmid stand-
ards), corresponding, respectively, to 0.07 and 0.1

percent of the total energy produced, will be absorbed
in the sources themselves. The difference of 0.5

percent between the source self-absorption of the
Canadian and Honigschmid standards corresponds
therefore to a difference of only 0.035 percent of the
total energy produced, which is negligible. Any
smaller differences in gamma-ray source self-ab-

sorption of the three Honigschmid standards are also

therefore negligible so far as the measurements in

the radiation balance are concerned. The alpha-
particle and beta-particle absorption is complete;
a correction must be made, however, for the growth
of radium E and polonium, which will not be ii:

equilibrium with the radium.

8. Results

The results obtained with the radiation balance,

measuring the sources singly and in every combina-
tion of pairs, are summarized in table 2. In this

table the order of measurement is represented by
reading from left to right and down the table.

From the results in table 2 the following best esti-

mates for the energy absorbed (in microwatts) from
sources A, B, C, and D have been deduced:

A B C D
6293.4 2569.8 4131.0 3360.7
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Table 2. Energy absorption, in microwatts

Source
Energy

ab-
sorbed

Source
Energy
ab-

sorbed
Source

Energy
ab-

sorbed
Source Energy

absorbed

B 2571.

0

A-B . 3727.

1

D-B-. 788.6 C-B.. 1561.2
C 4127.

1

C-D.. 776.0
D 3371.6 A-D.. 2935. 6
A 6285. 2 A-C. 2164.2

In table 3 are shown the complete res\ilts for the
six pairs of standards, using the NBS standard
electroscope, Geiger-Miiller counter, scintillation

counter, and radiation balance. In the last line of

the table are shown the weight ratios for the same
six pairs. The weight of the Canadian standard
(C) is, however, only a derived weight, an<J for this

reason, any ratio involving this derived weight is

shown in quotation marks. The ratios AjB, A/D,
and B/D are, however, the ratios of Honigschmid's
own weighings.

Table 3. Adjusted results for the ratios of the four interna-
tional standards

Method A/B AlC A/D BjC BID CID

NBS standard
electroscope 2. 441 1. 570 1. 870 0.6429 0.7661 1. 192

Gclger-M flller
counter... . 2. 461 1.582 1.885 .6430 .7659 1. Ifll

Scintillation
counter. 2. 478 1.579 1.889 .6370 .7624 1. 197

Radiation Balance 2.449 1.523 1.873 .6220 .7647 1. 229

Weighing .. 2.451 "1.578" 1.869 "0. 6438" .7628 "1. 185"

For comparison with these values the ratios ob-
tained by Perry [4], using the NPL standard ioniza-

tion chamber with gold-leaf electroscope, an ioniza-

tion chamber with a Lindemann electrometer, and a
Geiger-Miiller counter for B/D were, respectively,

0.7669, 0.7657, and 0.7669. The result obtained for

the gamma-ray ratio C/D by Michel [5], using the

NRC precision ion chamber and Lindemann elec-

trometer was 1.192. Michel, from geometrical
considerations, then calculated the source absorp-
tion of each standard and corrected the gamma-ray
ratio to give a weight, or content, ratio of C/D equal to

1.185. The direct gamma-ray ratios obtained both
by Perry and Michel are in excellent agreement with
the results shown in table 3.

A check on the internal consistency of the results

shown in table 3 can be provided by assuming that
A, B, and D are so much alike that there are negli-

gible differences in source absorption for high-energy
gamma rays, and none at all in the case of the calo-

rimeter, where 93 percent of the energy absorbed is

particulate, so that any change due to absorption
of the 7 percent of gamma rays and secondary
electrons would be even more negligible. A check
can then be run on the results for A, B, and D bv
dividing the quantity characteristic of each in eacli

determination by the Honigschmid weight of each
standard. This characteristic quantity is scale divi-

sions per second for the NBS standard electroscope,

co.unts per second for the counters, and microwatts

for the radiation balance. In each case the char-
acteristic quantity is as of February 1954, and the
mass of radium element is as of June 1934. It is not
necessary for this check to correct for the 20-year
decay of radium as this is the same constant for each
standard.
The results of this internal precision check are

shown in table 4, in which the figures quoted are the
characteristic quantity, divisions, or counts per
second or microwatts, divided by the mass of radium
element present and normalized to make the "best
average" equal to 100.00 in each case. This best
average is obtained by dividing the sum of all the
three radioactive effects by the sum of all three

masses.
Table 4. Radioactive effect per milligram of radium element

(Normaliicd to make the best average equal to 100.00)

Method A B D Best
average

Standard
deviation
o( the Indi-

vidual
results

NBS standard electroscope.. 99.93 100. 31 99.88 100.00 0.23

Qeiger-MOller counter 100. 31 99.90 99.51 100.00 .40

Scintillation counter 100.52 99.42 99. 47 100.00 .62

Radiation balance 100.03 100. 10 99.86 100.00 . 13

The values of the best average should, in turn,

enable one to .form an estimate of the precision of

Honigschmid's weight determinations, in which,
according to Honigschmid himself [2], the error of

a single weighing was not more than 0.02 mg. A
statistical survey of the results was carried out with
the cooperation of W. S. Connor and W. J. Youden,
and resulted in the best estimates of the mass of

radium element in A, B, and D given in table 5.

The methods adopted to arrive at these best esti-

mates, and also the best estimates given in table 3

for the ratios of pairs of standards, are described by
Connor and Youden in part 2 of this paper.

Table 5. Best estimates, in milligrams, of the masses of the

Honigschmid radium standards, as of June 2, 19S4

Standard A B D

Honigschmid's mass 3& 23 15. 60 20. 45

Mass derived from NBS
standard electroscope 38. 227 15. 611 20. 446

Mass derived from Geiger-
Miiller counter 3& 235 15. 598 20. 443

Mass derived from scintil-

lation counter — 38. 235 15. 595 20. 444
Mass derived from the

radiation balance 38. 235 15. 608 20. 435

9. Mass of Radium Element in the Canadian
National Standard

By comparing the calorimetric ratios given in

table 3 with the "weight" ratios, it is clear that the

derived weight of the Canadian national radium
standard ((7) is low by about 3 percent. However,
this does not allow for the difference in sealing date.
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which involves a compensating polonium-growth
correction of about 1.8 percent. By comparison of

the "weight" ratios with the NBS standard electro-

scope ratios, it is also confirmed that no source
self-absorption correction could have been made in

deriving the certified weight of radium in the

Canadian standard. However, from the data avail-

able it is possible to derive a value for this mass of

radium.
The experimentally determined ratios of the energy

absorbed in the radiation-balance cups per unit

mass of radium element for A, B, and D are 164.62,

164.73, and 164.34 juw/mg, respectively. Taking
the best average value of 164.58 itw/mg of radium
element, the mass of the radium in the Canadian
national radium standard is found to be equal to

25.10 mg, as of June 1934, uncorrected for the growth
of polonium or of radium E.
Using the Curie-Yovanovitch equation, as cor-

rected for new values of the decay constants by
Jordan [8, 10], the energy increments due to growth
of polonium-210 in A, B, and D, on the one hand,
and in C, on the other, are found to be equal, re-

spectively, to 12.2 and 16.2 cal g~' hr~' inclusive, of

nuclear recoil energy, the separation and sealing

dates being, respectively. May 25, 1934, and June
2, 1934, for the Honigschmid standards, and June
1924 and June 1930 for the Canadian national

standard. The growth of radium E will contribute,

in proportion, another 0.8 and 1.0 cal g~' hr~'. Sub-
tracting the contributions of polomum-210 and
nuclear recoils and of radium E from the energy
absorbed from A, B, and D in the radiation-balance
cups gives a total energy absorption for all three

sources equal to 11103.0 instead of 12223.9 nw (as

of February 1954).

In the case of the Canadian national standard, an
energy production of 17.2 cal g~' hr~' by polonium-
210 and radium E corresponds to 20.0 juw/mg of

radium element, which, by a second approximation,
is found to be equivalent to 489.7 /*w/24.485 mg of

radium element (the mass of radium as of June
1924). The corrected energy absorption from the
Canadian national radium standard is therefore

3641.3 instead of 4131.0 fiw, as of February 1954.

The radium content of the Canadian national
radium standard, as of June 1934, is then obtained
by multiplying the total weight of the HonigscMmid
standards (76.28 mg as of June 1934) by the ratio

of the corrected energy absorptions of February
1954. This gives the result that there were 24*36
mg of radium element in the Canadian national
standard, as of June 1934. This value will, if any-
thing, be on the low side, however, as some^ radium
D on the walls of the original two tubes may have
been lost on transfer when the Canadian standard
was resealed in June 1930. In this event, the
polonium-210 correction will have been too great.

10. Summary of Results
As a result of this intercomparison of national

radium standards, the ratios of the weights ascribed
to three of them by Honigschmid have been con-
firmed. It would appear that the weights derived

from the comparison of the two United States stand-
ards with the 1911 Paris and Vienna standards are,

therefore, too low; unless it were assumed that all of

Honigschmid 's mass determinations were low in the
same ratio. However, this is to be discounted be-
cause the Berlin standard was, by comparison with
the 1911 standards, found to have a greater weight
than that determined by Honigschmid [1].

Relative to the Honigschmid weights, the Cana-
dian national radium standard is found to have a
mass of radium element equal to 24.36 mg, which
indicates that no correction for difference in source
self-absorption was made in its comparison with the
1911 Paris and Vienna standards. The difference

between this value and that obtained by comparison
with the 1911 Paris and Vienna standards (24.23

mg as of June 1934) would indicate a self-absorption

correction of 0.53 percent. The absorption correc-

tion determined by Michel [4] was 0.94 percent; the
difference between these two values could be a
measure of the loss of radium D and polonium-210
in the transfer of June 1930.
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Part 2. Statistical Procedures and Survey

W. S. Connor and W. J. Youden

The statistical analysis of the observations on the four national radium standards is

discussed. The readings made with the electroscope, Geiger-Mtiller counter, and scintillation
counter were adjusted by one formula, and the readings made with the radiation balance by
a different formula. In each ease the adjusted values of the standards satisfy a consistency
criterion. Finally, the adjusted values were improved by making use of the proportional
relationship between the masses and the radioactive effects of the standards.

1. Introduction

Four national radium standards were recently com-
pared at the National Bureau of Standards, as

described in part 1 of this paper. The unusual
opportunity associated with the presence of four

standards in one laboratory directed attention

to certain statistical aspects of the intercompari-
son. The experimental procedures and results are

described in part 1. Part 2 discusses the statistical

analysis.

When two standards are compared, careful meas-
urements provide an estimate for the value of one
standard in terms of the other. A standard error

may be calculated for this estimate. A third standard
makes possible the additional experimental evalua-

tion of each of the first two standards in terms of the

third.

Suppose that three standards A, B, and C are

available. The experimental ratios a/6, b/c, c/a may
each be determined by using exactly the procedure
that would have been employed if just two standards
had been available. None of the measurements made
on A in estimating a/b are used in the estimation of

c/a. Additional data for A are taken to determine
c/a. There is a considerable advantage in this method
because the precision of the comparison is improved
by alternating the readings on the two standards
under comparison. This alternation reduces the

effects of drift in the instruments and changes in the

environment. As soon as the ratios a/b, b/c, c/a have
been determined there is a simple test for the con-

sistency of the three ratios. The product of the three

ratios should be unity. The discrepancy between
this product and unity provides a measure of the

errors in these ratios.

A similar consistency criterioh was applied to the

six ratios determined by the electroscope, Geiger-

Miiller counter, and scintillation counter. Because a

different statistical treatment was required for the

measurements made with the radiation balance,

those measurements are discussed separately.

The last section describes how the masses of the

standards were used further to improve the estimates

of the standards.

2. Comparison of the Standards by Means
of Electroscope, Geiger-Miiller Counter,

and Scintillation Counter

Using these methods, environmental conditions

common to paired measurements introduce a common
multiplicative error in the measurements. It is ad-

vantageous to express the results of paired measure-
ments as ratios to eliminate this error.

There were four standards, A, B, C, and D. There-
fore, the following six ratios could be determined
experimentally:

a/b a/c a/d b/c b/d c/d.

These provide opportunities to test the consistency
of the data. For example, the products

a/bXb/cXc/a

a/bXb/dXd/a

a/cXc/dXd/a

b/cXc/dXd/b

should all be equal to unity. The discrepancies

between these products and 1.0000 reveal the errors

of the measurements. It is proper to make use of

the information that the products should be exactly

equal to one. The measured ratios may be adjusted

by a least-squares technique to obtain new ratios
A A A A

1 • 1

A/B, A/c, etc., which do m fact multiply out to

unity for all combinations that should give unity.

This includes not only three factor combinations
such as

A A A A A A

A/BXB/CXC/A

but also four factor products

AA AA AA AA
A/BXB/CXC/DXD/A.

The adjustment formula used on the data shown
in table I is of the form

where the lower case letters indicate the measured
ratios.' The adjusted values (see table 3 in part 1)

1 ThisadjustmentformuLi Is related to the adjustment formula for the difference

between the estimates of two treatment effects in a balanced Incomplete block

(BIB) design, see R. L. Anderson and T. A. Bancroft, Statistical theory in re-

search, p. 252 (McGraw-Hill Book Co., Inc., New York, N. Y., 1952). Since the

two measuremen ts in a pair, as o and 6 or c and d, are subject to a common multi-

plicative error, the logarithms of the two measurements In the pair are subject to

a common additive error. Hence, the BIB design formula applies for the differ-

ence between the logarithms of the adjusted values, as log w4—log B, and by
taking antilogarithms, the above formula is obtained.
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have the property that

A A A A A

B C B D B

The observed values do not meet this consistency
requirement. The reconciUation among the results

effected by the above least-squares technique intro-

duces each standard symmetrically in the computa-
tion pattern and does not single out any one standard
as a superstandard. After the relative values have
been established, one standard may be given an
agreed value, whereupon all other standards are

determined without changing the relative values.

Table 1. Experimental results for the ratios of four standards

Method 0/6 ale aid bic bid cid

Electroscope 2. 4438 1, 5675 1. 8703 0. 64246 0. 76650 1. 1918
Qeiger-Milller counter. 2. 4746 1.5785 1.8784 .04489 . 76789 1. 1920
Scintillation 2. 4847 1.5710 1.8930 .63921 . 76186 1. 1953

The above least-squares adjustment has long been
used for other comparisons. Recently, it has been
found that certain subsets of pairs selected from all

possible pairs lead to convenient least-squares esti-

mates.^ Given that a reasonably small number of

pairs will suffice to interrelate all the standards,
there would appear to be some chance of success for

an international program of comparison. Once a
properly selected subset of pairings was obtained,
the various national standards could be tied together
with values that would give consistent comparisons
among the stan(fards.

3. Radiation-Balance Measurements

The radiation balance used in this work was suit-

able for measuring either a proportion of the energy
emitted by one standard or the same proportion of

the difference in energies emitted from two standards.
This difference is determined by one measurement.
The schedule of measurements included separate
measurement on the four standards as well as the
si.K possible differences between them. The pre-
cision of measurement of a difference was the same
as the precision of measurement of a single standard.

Typical formulas for the least-squares estimates ^

for the 10 quantities follow:

A=ia+U((i-f>)+b]+i[(a-c)+c]-\-U(a-d)+d]

(A~B)=|(a- h) +i[(a-c)+ {c- h)]

+\[{a-d)+ {d-h)]-^ia-\h.

2 W. J. Youden and W. S. Connor, Making one measurement do the work of
two, Chem. Eng. Progr. 49 , 549 (1053); and W. J. Youden and W. S. Connor,
New experimental designs for paired observations, J. Research NBS 53,
(1954) RP2532.

' For a discussion of the method of least squares, see R. L, Anderson and T, A.
Bancroft, Statistical theory in research! p. 155 (McOraw-Hill Book Co., Inc.,
New York, N. Y., 1952).

The quantities a, b, (a—b), etc., are measured
A A

quantities. The value for (A—B) given by-the above
formula will agree exactly with the result obtained

A

by subtracting the adjusted estimate B from the

adjusted estimate A. This was not true for the re-

corded values. The total amount of energy measured
for the standards is left unaltered by the adjustment.
Slight shifts take place in a, b, c, d, (a—b), etc., to

achieve consistency among the results. The dis-

crepancies between the measured quantities and the

corresponding adjusted values afford a measure of the

precision of the measurements. The calculation is

shown in table 2. It should be noted that no quan-

tity was measured twice. The replication is con-

cealed. There are, of course, only four standards;

that is, four quantities to be determined from the

ten observations. This leaves six contrasts, i. e.,

six degrees of freedom, available for estimating the

standard deviation.

Tablk 2. Calculation of standard deviation, in microwatts,

for radiation balance

Standard Observed Adjusted
Differ-

ence
(Differ-

ence) '

liW tiw

A 6285. 2 6293. 4 8. 2 67. 24

B 2571. 0 2569. 8 1.2 1. 44

C 4127. 1 4131. 0 3. 9 15. 21

D 3371. 6 3360. 7 10. 9 118. 81

A-B 3727. 1 3723. 6 3. 5 12 25

A-C 2164. 2 2162. 4 1. 8 3. 24
A-D 2935. 6 2932. 7 2. 9 8. 41

C-B 1561. 2 1561. 2 0. 0 0. 00
C-D 776. 0 770. 3 5. 7 32. 49
D-B 788. 6 790. 9 2. 3 5. 29

J J • /264.38 „ „
Standard deviation=Y g

=6.6mw.

4. Masses of the Radium Standards

Standards A, B, and D were made from the same
supply of radium salt. The weighings were made in

the same day by Honigschmid and are considered to

have a maximum error of 0.02 mg. The various

properties of the three Honigschmid standards

measured by the several methods used in this inter-

comparison are believed to be directly proportional

to the masses of the standards. All the methods
give relative values for the standards. In addition,

the radiation balance measures the difference between
any two standards directly. Standard D was
arbitrarily given the value of unity and the values for

A and B expressed relative to it. Table 3 contains

some of the adjusted ratios from .table 3 of part 1,

including the ratios derived from Honigschmid's
weighings.
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Table 3. Value of standard, when D equals 1.000

Method A B D

Scintillation counter. _ 1. 889 0. 7624 1. 000
Geiger-MUller counter. 1. 885 . 7659 1. 000
JN isb standard elec-

troscope 1. 870 . 7661 1. 000
Radiation balance 1. 873 . 7647 1. 000
Weighing 1. 869 . 7628 1. 000

For each method of measurement a plot may be
made of the values of the standards against the
corresponding masses. The resulting points should lie

along a straight line that passes through the origin.

Let m denote the mass and r the radioactive effect

given by any one method of measurement in the
relative units of table 3. If the error In r is A: times
as large as the error in m (as measured by the
standard deviations), the slope b may be computed
from the quadratic

where m, and rj {i=A, B, D) are the masses and the
corresponding radioactive effects for standards A, B,
and D from table 3.* This method of determining
b has the property that the sum of the squares of

the perpendicular distances of the points (A:mi,r<)

from the line r=b{km) is minimized.

' For a discassion of this method, see W. Edwards Demlng, Statistical adjust-
ment of data, Exercise 6, 184 (John Wiley & Sons, Inc., New York, N. Y„ Nov.
1944).

In general, any particular plotted point will not be
located exactly on the fitted line. The plotted
points are subject to errors of observation. The
"best" estimates of the coordinates for the point are
taken to be the coordinates of the point on the line

nearest to the plotted point. These coordinates,

m'i and r,', are

, mt+brt , .rtit+brt= «nd n=h^^-

This procedure for fitting lines was followed for

each of the lines relating the measured radioactive

property to the mass. For the electroscope, Geiger-
Miiller counter, scintillation counter, and radiation

balance, k was taken as 2, 4, 5, and 1, respectively.

These values correspond to the errors given by
table 4 of part 1 ,

except for the scintillation counter,

for which 5 was used mstead of 6.

To obtain estimates for the masses, each value of

m'i was multiplied by Honigschmid's value for D,
i. e., 20.4r mg. These estimates are recorded in

table 5 of part 1. In every case the result agreed
with the assigned mass within the claimed weighing
error. It is- particularly interesting to observe that

the estimates obtained from the line, using the

radiation balance results, confirm the assigned masses.

For this line the errors in m and r were taken to be
the same, and therefore any displacement of the

point to bring it on the line required equal changes
in the experimental values for mass and energy.

Washington, May 27, 1954,
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PHYSICAL MEASUREMENTS AND EXPERIMENT DESIGN

W. J. YOUDEN

National Bureau of Standard Washington, D. C.

ABSTRACT

Each field of experimental inquiry poses problems that are charac-
teristic of the field. Research programs are, in general, planned to take

advantage of the special features that broad classes of problems present

.

One broad class of problems deals with the determination of physical

constants and the calibration of instruments. This paper discusses the

statistical aspects of physical measurements and suggests some experi-
mental programs that may be useful to those concerned with the deter-
mination of physical constants and with calibration procedures.
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INTRODUCTION

The remarkable success of experimental design in agricultural field
trials was aided by the spectacular diminishment of the experimental error
that came about through grouping the plots with different treatments into
compact blocks. Replication and randomization insured the calidity of the
estimate of error and made possible the unambiguous interpretation of the
data. Agricultural experiments prompted statisticians to devise various
way of grouping the experimental plots into blocks. The extension of
statistical design into chemical research stimulated the further deve-
lopment of new designs. It appears that every major field of research
has problems which invite the invention of new designs or the adaptation
of old designs. This paper examines the special opportunities for expe-
riment design in measurements of physical properties.

EXPERIMENTATION IN THE LABORATORY

Agricultural field trials were characterized by a number features

such as :

a) Large experimental errors

b) Extensive replication

c) Ease of randomization

d) Considerable freedom in the number of plots per block

e) Frequently a large number of experimental items

f ) All the data obtained at once at the end of the experimen-
tal period

g) Interactions between factors

h) Interest centered on comparisons, not absolute values.

In contrast to the above, experimentation in the laboratory brings

a controlled environment, much smaller errors, often very little repli-

cation. The land blocks of the agricultural experimenter usually became
identified with instruments, or days, or operators. The plots may become
the "heads" or different positions on a test machine. One run with the

machine may constitute a block, and thus the size of the block is deter-

mined by the structure of the machine. Usually the number of items under
comparison is smaller than in field trials and sometimes randomization
is an expensive or difficult condition to meet. More important, the data

are obtained sequentially so that the experimenter may examine the re-

sults of the last run before beginning the next test. This sequential

process of gathering the data generally makes the experimenter unwilling

to commit himself to a large rigid program of work.
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THE MEASUREMENT OF PHYSICAL QUANTITIES

Physical measurements are continually being made to improve the

accuracy of important physical constants. Periodically there are repeat

determinations of the gravitation constant, g, the velocity of light, the

astronomical unit of distance (distance from the earth to the sun), and ma-
ny other fundamental constants of nature. Usually the results of these in-

vestigations lead physicists to regard statistics as unable to make a

worthwhile contribution to their problems. Whatever the physical cons-

tant the story is the same. A careful study is made in a given laboratory

using the utmost care to construct an assembly of equipment for making
the measurements. A considerable number of repeat measurements are
made and from these data an average and a standard deviation is obtained .

When the results from different laboratories are compared, the differences

among them are invariably very much greater than would be expected on

the basis of the estimates of the standard deviations.

Physicists correctly concluded that these standard deviations mea-
sured only the local precisions and threw no light whatever on the pre-

sence of systematic errors associated with particular assemblies of

apparatus. The investigators were concerned with absolute values and
statistical designs were used for comparisons. The efforts of investiga-

tors were therefore concentrated upon greater care in the calibration of

equipment and upon ingenious arrangements to compensate automatically

for some of the possible sources of errors.

The very notion of a physical constant carries with it the implica-
tion that the value of the constant should be independent of the particular

assembly of equipment used to determine the constant. Of course, there
are many components of the equipment whose properties such as diame-
ters of orifices, lengths and resistances, together with operating condi-

tions such as temperatures, pressures and voltages which have an in-

fluence on the observed result. The essence of the matter is, that if

these various properties and operating conditions are known and entered
into the proper formulas, the outcome should be the value desired. It

is traditional in careful work to vary the operating conditions one at a

time and to collect evidence that, when due allowance is made for the

change, the determinations made before and after the change show ac-
ceptable agreement. Less often actual substitution of a component of the

apparatus Avill be made. One resistance coil may be replaced by another .

It will not matter that there is a difference between the two resistances .

What does matter is that the resistance of each coil be known so that

determinations using first one coil and then the other coil will show
acceptable agreement.

The experimental problem just discussed in connection with the

determination of fundamental physical constants also arises in the eva-
luation of the properties of substances. Density, viscosity, boiling points

,

conductivity ; the list of properties is very long. A great amount of

effort goes into the revision of old values and into the determination of

properties for the unending production of new substances. The preparation
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of reference samples with stated properties and the calibration of ins-

truments both involve the use of apparatus and procedures. The cor-
rection to be applied at a particular scale point on an electrical instrument
is a quantity that the calibrating laboratory undertakes to establish. The
calibration laboratory must satisfy itself that the correction reported is

only to a small degree influenced by the particular equipment and technique
used in the calibration process.

STATISTICAL CHARACTERISTICS OF PHYSICAL MEASUREMENTS

If a laboratory does have the means to put together different as-

semblies of equipment and to vary some of the operating conditions ,

the collection of results obtained correspond to what the agricultural

experimenter terms a "uniformity trial". Sometimes all the plots in a

large area are given the same treatment. The observations from these
plots should agree except for the experimental errors. In the same way,
if the substitution of components has been without effect and any deliberate

changes in the operating conditions properly allowed for, the experimental
results should show only the variation of random errors. Ideally there

should be no greater variation among such results than in a series of

repeat measurements where no changes in apparatus or operating con-
ditions are introduced. The precision error is therefore the appropriate

criterion for judging whether or not deliberately introduced changes do

have an effect.

There are always enough repeat measurements to furnish a good
estimate of the standard deviation. The skill of the experimenter insures
that any "effects" that are associated with substitutions of components or

other changes are of the order of magnitude of the precision standard

deviation. If the investigator is to have a reasonable chance of detecting

an effect equal to sigma, he will need to make arovmd 15 repeat measu-
rements before after making the change. Such checking of a number of

aspects of the equipment and procedure soon multiplies the number of

measurements especially under the traditional procedure of changing just

one item at a time. Actually it is not enough to reduce such individual

effects due to substitutions to about the magnitude of a. The signs of

these effects may be either positive or negative. The observed result is

the net sum of such effects and this is undoubtedly one of the main rea-

sons for the disagreement between reports from different laboratories .

Consequently there is an acute need for more efficient experimental de-

signs than the "change one factor at a time" procedure.

There is one important encouraging element in these experimental

programs. The possible effects that are under study can be taken as

purely additive. In other words, there is no reason to fear the presence
of interactions between the factors. The simplification in experiment
design that results is so marked that it is necessary to indicate the ar-

gument for the absence of interactions. Condider two similar rods cali-

brated for length, either of which may be used in the apparatus for ma-
king the measurement. If no other factor is changed, a series of mea-
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surements with each rod may reveal a small effect associated with the

substitution. Probably the calibrations of the rods are slightly in error .

Now suppose the two series of measurements are repeated with the ap-

paratus at a slightly higher temperature than was maintained during the

first trials with the rods. The higher temperature causes the rods to

expand in length and the experimenter allows for this expansion in his

calculations. The difference in results with the two rods, as revealed

in the first trials, will be very small, possibly near the limit of detec-

tion. Certainly the temperature change has a substantial effect on the

lengths of the rods but the chanie in the difference between results with the

two rods will be completely undetectable. The whole difference between

results with the two rods is difficult enough to establish. Consequently

we may take the difference in results with the two rods to be independent

of the temperature.

Experimenters supply ample evidence of the fact that interactions

can be ignored. Work starts with some initial assembly of equipment

and specified conditions. Subsequently changes are made, one by one,

to ascertain whether or not the measurement is acceptably immune to

such changes. The experimenter has no misgivings at all that he will

overlook some effect solely because of the particular assembly and con-

ditions that happen to constitute the reference set. If the effects did

depend on the choice of the reference set, the research would be vastly

more complicated, the very concept of a physical constsmt would lose

sharpness, and tables of critical constants would have to specify the

experimental details.

REQUIREMENTS FOR EXPERIMENT DESIGNS FOR
PHYSICAL MEASUREMENTS

The discussion thus far has covered in some detail the special

characteristics of experimentation directed to the evaluation of physical

constants. Statisticians can propose experimental designs that combine
high efficiency in the detection of very small effects together with a
satisfactory estimate of the physical constant. It is the latter requirement
of an unbiased estimate of the mean that has special importance.

Long ago Yates [1] pointed out that a 1/16 fraction of a 2^ factorial

provided mutually orthogonal estimates of the seven main effects. The
fact that these estimates were confoimded with interactions of the factors

led Yates to warn his readers that it would rarely be wise to assume
the absence of interactions. The point has been made above that, in phy-
sical measurements, the interactions, if present at all, are of negligible

magnitude in comparison with the main effects. Table 1 shows this design
where zero and one denote the alternative choices for each of the seven
factors A, B, C, D, E, F and G.
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Table 1. Seven factors with two choices designated by zero and one .

^ , . Factor
Combi- Observed

A "DD Hi
T71r

(~*

1 0 0 0 0 0 0 0 s

2 0 0 1 0 1 1 1 t

3 0 1 0 1 0 1 1 u

4 0 1 1 1 1 0 0 V

5 1 0 0 1 1 0 1 w

6 1 0 1 1 0 1 0 X

7 1 1 0 0 1 1 0 y

8 1 1 1 0 0 0 1 z

The above eight combinations of choices provide for high efficiency

in that differences between the two choices for each factor are evaluated

by contrasting four of the results against the remaining four. Futhermore ,

the average of all aight results introduces each choice just four times
into the average and gives equal weight to all the alternatives.

The importance of giving equal weight is easily recognized by the

experimenter in simple situations but apparently overlooked in more com-
plicated settings. The experimenter may have investigated the effect of

substituting one calibrated rod, R^,, for another rod, R^, no other factor

being explored. Sufficient repetitions with each rod discloses an unmista-
kable small difference between the averages for each rod. At this point

the investigator, lacking any reason to favor one rod over the other ,

has no hesitation in giving equal weight to the two sets of results and
takes as his best value the mean of the two sets.

Suppose the above work has been conducted at temperature T^. The
two series of measurements may be identified by the labels R^T^ and
R^Tq. Let the investigator now undertake a third series of measurements
using rod R^ at another temperature Ti. Denote this series by RgT^^

.

Clearly the temperature effect (if any remains after proper allowance)
is estimated by taking the differences between the averages for RgT^ and
RqTj^ . Suppose that after due allowance has been made in the computation ,

the small difference between the results at the two temperatures in also

greater than would be expected considering the precision of the work .

The investigator should give equal weight to the results at the two tem-
peratures just as he would to the results with each rod. If the mean is

taken of the three averages associated with R^Tj,, RiT^ and B.^^, clearly

twice as much weight is given rod R^ as rod B.^ and twice as much weight

to the results at temperature T^ as to the result at temperature T^

.

Indeed, in this awkward combination of choices, equal weight can only

be achieved by discarding the average for RoTq and taking the mean of

the remaining pair of averages.
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Few experimenters are aware that if they were willing to run just

one more series of measurements they could not only double the data

back of each comparison but also include a third factor on the same
terms. Perhaps, in addition to the rod and temperature changes, the

work might be extended to examining the effect of changing the voltage

from to another voltage, V^^. The combinations :

To Vo

Ro Tx Vx

Ri To Vx

Ri Tx Vo

visibly permit the evaluation of the effect of changing rods by contrasting

the last two with the first two. In each pair both temperatures and both

voltages have been used so contributions from these factors cancel out

.

Similar considerations apply to the evaluation of the temperature and
voltage effects. Finally the mean of the four series gives equal weight

to all alternatives. Unless this is done, another worker using the iden-

tical choices in some other combinations cannot expect to converge upon
the value reported by the first worker.

The design just given for three factors is particulary neat. Suppose
instead of three there are four factors. The statistician will immediately
recall the Yates design with seven factors and propose that three of the

seven factors be treated as dummy factors. There is, however, the di-

sadvantage of requiring eight series of measurements ; three more than

necessary to provide for the unique evaluation of the effects of changing

four factors. This enlargement of the experimental program should be
avoided, if possible, because the alteration of the equipment may involve

considerable time and effort. A change in the apparatus may require much
care, as in levelling or making sure there are no leaks in a vacuum
system. The restriction of all the factors to just two choices will also

be an imdesirable limitation. As matters stand, statisticians do not have
a collection of designs to meet these requirements.

EXAMPLE WITH THREE EXPERIMENTAL FACTORS

Imagine that an investigator can easily provide three choices, 0
,

1 and 2, for each of two factors, and two choices, 0 and 1, for a third

factor. The zero choice for each factor is taken as a reference set. An
experimenter will usually investigate each factor in turn by conducting
the six trials shown in Table 2.

First factor A is explored holding all other factors constant. Then
factor B is tried at two new levels and finally the second choice for C is

investigated. The effect of changing a factor is looked for by comparing
the appropriate average with the average obtained for the reference set

A^BgC,,. Note that the difference between the two averages will have VT
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times the error associated with a single average. The ability to detect

small effects will increase with the number of measurements on which
each average is based. If there are as many as 15 measurements for

each average, the investigator can be reasonably sure of detecting an
effect that is as large as the standard deviation of a single measurement

.

A large number of degrees of freedom (14x6 = 84) are available for

estimating this standard deviation.

Table 2. Conventional three factor program .

Factor
Trial Observed
No. ~ ~ ~ average

1 0 0 0 u

2 1 0 0 V

3 2 0 0 w

4 0 1 0 X

5 0 2 0 y

6 0 0 1 z

There are two comments to be made regarding the program outlined

in Table 2. First a different selection of the six combinations would give

the same chance of detecting an effect using ten in place of 15 repeat
measurements for each combination. This holds for the three choice
factors. There is an additional gain for the C factor. Or, alternatively ,

if the 15 measurements are retained, still smaller effects will become
detectable. The second comment concerns the "best value" or concensus
for the final result. Obviously if the mean of the six averages is taken
the initial conditions of the reference will be very heavily weighted. In

order to give every choice an equal voice in the final result a weighted
mean of the six averages must be secured. The proper weighted mean ,

to give all choices equal representation, is to take one sixth of :

-5u +2v +2w +2x +2y +3z.

The above weights introduce the different choices for the factors

into the weighted mean in the manner shown in Table 3.

The tabulation in Table 3 shows that when the six averages, u
,

V, w, X, y and z, are weighted as shown, the final result gives equal

weight to the three choices for the A factor, the three choices for the

B factor and the two choices for the C factor. Unfortunately much of the

advantage of the repeat measurements is lost. This particular weighted
mean has a precision error V 1 . 39 times as large as the average for a

single combination '. A different program would give results in which the

weighting factor for each average is unity. The unweighted mean of the
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six averages has a precision error of V 1/6 as large as the average for a

single combination. This better selection of combinations gives nearly a

three fold improvement. Of course the experimenter can simply average

his six "change one thing at a time" results and obtain a precise estimate

of a biased result and this does happen.

Table 3. Weighting factors to obtain unbiased estimate

for program in Table 2.

A B C

Weight 0 1 2 0 1 2 0 1

-5u -5 0 0 -5 0 0 -5 0

2v 0 2 0 2 0 0 2 0

2 w 0 0 2 2 0 0 2 0

2x 2 0 0 0 2 0 2 0

2y 2 0 0 0 0 2 2 0

3z 3 0 0 3 0 0 0 3

Total 2 2 2 2 2 2 3 3

The selection of six combinations that is more sensitive to detecting

effects is shown in Table 4.

Table 4. Statistical design for three factor program.

Trial
Factor

Observed
No. A B C

average

1 0 0 0 u

2 0 1 1 V

3 1 0 1 w

4 1 2 0 x

5 2 1 0 y

6 2 2 1 z

Inspection shows that an unweighted mean gives equal weight to all the

factor choices. The two diagrams in Figure 1 show the conventional

"change one thing at a time" selection in Panel 1 and the statistical design

in Panel 2. If there is hesitancy on the part of the experimenter in

changing two factors at once, the hesitancy may be partially overcome
by observing how much better the design in Panel 2 samples the expe-

125-123



PANEL 1 PANEL 2

Figure 1 - The circles show selections of six combinations from the 18 combi-
nations provided by three choices for both ^ and P and two choices for C . Panel 1

shows the conventional selection ; Panel 2 an alternative selection.

rimental region. Those who question whether the effect of changing from
A^to is virtually independent of the choices for B and C should study

Panel 1 carefully and answer the question as to what sort of information

the conventional program would give if the effect of changing A did depend
on the choices for B and C

.

There remains the task of estimating the effects of the various
choices using the statistical design. The estimate of the effects of the

various choices for A , B , and C involves a weighted mean of the six

observed results. The sums of the results, weighted as indicated in

Table 5, should be divided by three in every case. The variance of the

comparisons, for the three choice factors, is two thirds that of the

"change one factor at a time" procedure, and for the two choice factors

the variance is reduced to one third.

Table 5. Estimating effects for design given in Table 4

Observed Weighting factors for comparisons

result Aq-A]^ Ag-Aj Bq-B^ Bg-Bj Cg-Ci

u 2 12 1

V 12-2-1
w -2-112
X -11-1 -2

y -1 -2 -1 1

z 1-11-1
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SOME EXAMPLES OF EXPERIMENT DESIGNS

In this section six proposed designs are listed that may find im-
mediate use. Under ordinary circumstances not more than ten different

combinations will be studied. The number of choices for a factor will

generally be two or three and rarely four. The total number of designs

needed is consequently rather small. In any particular case there exists a

large number of selections of subsets from the complete factorial. It is

not always easy to determine whether the best possible choice among
these subsests has been made. The selections listed here may not be
the best but they do represent a marked improvement over the usual

programs. The addition of one or two extra combinations will, in some
cases, provide a much better design with a marked improvement in

efficiency.

In the following tabulation the factor choices are denoted by 0, 1 ,

or 2, The usual convention for indicating the number of factors and
choices is used. Thus 2'* 3 indicates that there are four factors each
with two choices and one factor with three choices. Two designs are
listed for 2*3, one of them with an extra combination.

2 in 5 (combinations 2* in 6 combinations

A B C D A B C D E

0 n 0 0 n nu 0 0 u

0 1 1 1 0 1 1 1 0

1 0 1 1 1 1 0 0 0

1 1 0 1 1 0 1 1 0

1 1 1 0 0 0 1 0 1

1 0 0 1 1

2^3 in 6 combinations 2*3 in 7 combinations

A B C D A B C D E

0 0 0 0 0 0 0 0 0

1 1 0 1 1 1 1 1 0

0 1 0 2 0 1 0 1 1

1 0 1 2 1 0 1 0 1

0 0 1 1 0 0 1 1 1

1 1 1 0 0 1 1 0 2

1 0 0 1 2
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2** 3 in 8 combinations 2** 3^ in 9 combinations

A B c D E A B c E F

0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 1 1 0 0 1 0

1 1 0 0 1 0 0 1 1 2 0

0 1 1 0 1 0 1 0 1 0 1

1 0 0 1 1 0 0 1 0 1 1

0 0 1 1 1 1 0 0 0 2 1

0 1 0 1 2 1 0 1 0 0 2

1 0 1 0 2 0 0 0 1 1 2

0 1 0 0 2 2

DISCUSSION OF PHYSICAL MEASUREMENTS

It would not be altogether surprising should two laboratories de-
termine a physical constant by two entirely different methods based on
different principles, if the results obtained showed a disagreement con-
siderably beyond that anticipated from the internal precision within each
laboratory. Either or both of the methods may have a systematic error
through some defect in theory. It is more surprising to find substantial

disagreement when two laboratories use the same procedure and use
equipment that differs only in minor ways, for example, dimensions.
The only plausible explanation appears to lie in the uncertainties in the

calibration of various component parts of the apparatus and in the ins-

truments used to record the relevant operating conditions. Inevitably the

investigator has to depend on other workers to provide these indispensable

calibrations and to accept, along with the calibration, some statement
regarding the accuracy of the calibration. If only one of each of the

component parts is available and only one specimen of each necessary
instrument at hand, the investigator has no check on the claimed ac-

curacies. Even if a choice does exist, the detection of discrepancies

requires a considerable number of measurements with each choice. The
individual discrepancies must be kept small because the final result re-

ports the net sum of the systematic errors associated with the various

components.

If only single choices are available, the experimenter can do no
more than estimate the error in the final result from the information

available to him regarding the uncertainties in the individual components .

If there are two or more choices, the consistency of the results with

the two choices furnishes a check on the claimed accuracies. Further-

more, the most troublesome components will be established on the basis

of experimental evidence. If the state of the art stands in the way of any

immediate improvement of a particular troublesome component, at least
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the opportunity exists to procure several choices for such a component
and obtain the benefit of an average.

The most important return to the experimenter from the use of a

number of different combinations lies in the more realistic estimate of

the error in the final result. The 2'*3^ design allows six components to

be studied, four with two choices and two with three choices. There are

altogether 144 possible experimental combinations given these choices .

If no choices had been available, the investigator would base his report

on some one of these 144. With each of these 144 combinations there is

associated a net systematic error which is the algebraic sum of the

systematic errors in the six choices actually employed. There is an 0.5
chance that two laboratories will differ even in the signs of these sums .

And, of course, sums of n errors have a wider dispersion than the in-

dividual errors. If the experimenter elects to try nine of the 144 possible

combinations, he has an opportunity to see for himself the discrepancy
that could happen when he compares his result with the result from
another laboratory. In another laboratory, perforce, different choices

for all the components will be used. A realistic estimate of the xmcer-
tainty in the final value can be obtained from the dispersion exhibited

by the nine results associated with the nine combinations. (It is assumed
here that no one component has an uncertainty that dominates all others)

.

This design makes it possible to detect considerably smaller dif-

ferences between components for the same number of measurements .

Most important, this particular selection of nine from the 144 possible
combinations will provide a final average of high efficiency that gives

equal weight to all the choices available for the six components. The
net errors associated with the nine results also undergo an averaging
out in the mean so that the systematic error in the final result should
be substantially reduced. Certainly this program is no less novel to the
statistician than to the experimenter because the appropriate estimate of

error is, in fact, based on the mean squares associated with the main
effects of the several factors.
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DISCUSSION

J. NEYMAN : As Dr. Youden has indicated, there are still a great many
domains of scientific research in which the statistical principles of experi-

mentation are not yet generally accepted.

Astronomy, meteorology and, partly, medicine are good examples.
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In these circumstances, a publication of a collection of examples of

studies in which unreasonable results were obtained because of the neglect

of some detail might be useful.

M. W. J. YOUDEN : In reply to Professor Deming .

Dr. Youden admitted that the progress of science sometimes reveals

that a "constant" is not a constant.

Example : some atomic weights depended on the geographical source
of the element. The old "constant" was replaced by the atomic weights of the

elements.

In reply to Professor Mahal.
Agreed that laboratory "effects" were important and mentioned that

national laboratories now cooperated by intercomparing the same objects first

in one country and then in another country.

Mr. FINNEY : I want to mention the Plackett-Burman designs for estimating main
effects when all interactions are zero. By contrast. Dr. Youden wants to

estimate the general mean, when interactions are zero and the main effects

are not of intrinsic interest.

The design in Table 4 is of course a simple 1/3 replicate of 3^ x 2,
or one block of Yates's confounding schem. On page 11, the designs proposed
are not all perfectly balanced over levels, so that the simple mean would be

biased relative to permutations of symbols for levels. Is Dr. Youden aiming
simply at minimum bias for a limited number of assemblies, or is he pre-

pared to demand unequal weighting of means ?

M. BOSE : Designs for determining main effects and means in the case when
there are no interactions, and when different factors are at different levels

are being worked out at the Research Triangle Institute, North Carolina,
U.S.A.

Beprinted from: Colloques Internatloneux da Centre
National de la Becherche SclentifIcpie No» 110,

le Plan d'Bxperiences, I961, pp. 115-128,
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Foreword

In conducting an interlaboratory test, we usually have one of three

purposes in mind

:

A. troubleshooting, or audit of the comparability of measurements,

B. evaluation of a test method, or

C. extension of a measurement process from a primary laboratory to

other standards laboratories.

According to the purpose to be emphasized in a particular round of tests,

the approaches to the problem are necessarily different.

Youden's several papers on graphical analysis (3.1, 3.2) and his rank-

ing scores procedures (3.3, 3.4, 3.6) are designed to locate and identify

sources of trouble through graphical representation which is easily inter-

pretable. In addition, he suggested that a test procedure must be checked

out for "ruggedness" to disclose factors that may change from laboratory

to laboratory. Indeed the procedure described in paper (3.4) has come to

be called "Youden's ruggedness test." Youden's main emphasis is on trou-

bleshooting through experimental design. The applications of his method
are extremely effective once the procedures and methods of measurement
are well defined.

Mandel and Lashof (3.7) approached the problem from a somewhat
different point of view. Given an established test method, they aim to

interpret the results through a "linear" model. The analysis segregates the

total variability into three components: one due to replication, one due to

scale (e.g., calibration of instruments), and one due to variability between

laboratories. The emphasis is on the evaluation of a test method and on

the quantitative estimation of the effect of these components.

But why should there be any between-laboratory differences? Why
can't we eliminate this source of variability altogether? This question must
be answered before we can use the Cameron-Pontius philosophy for mass
measurement (1.1, 7.1) to demonstrate that accuracy levels attained at

NBS can be realized by other primary laboratories throughout the nation.

This goal is still far away. Current studies deal with mass and volt calibra-

tion and the results are encouraging. As time goes on, procedures will be

developed for assuring that a measurement process is not only independent

of time and conditions at a single laboratory, but also independent of loca-

tion. The design and analysis of interlaboratory test procedures will play

an important role in providing standards of constancy and compatibility.
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(Reprinted from INDUSTRIAL QUALITY CONTROL, Vol. XV, No. 11, May J959)

Graphical Diagnosis

of Interlaboratory

Test Results

W. J. YOUDEN
National Bureau of Standards, Washington, D. C.

Introduction

Interlaboratory or round robin programs to evaluate

the performance of test procedures will always be with

us. New materials require new tests. New, and hope-

fully better, test procedures are developed for old prod-

ucts. Test procedures are used to ascertain whether a

product meets the specification set down for the prod-

uct. A double problem confronts the producer. There is

boimd to be a certain amount of variation in his prod-

uct. And there is bound to be variation in the test re-

sults made on a given sample of the product. The im-

pact of the errors of measurement associated with the

test procedure is obvious because half the tests made on
a product that just meets specification wUl rate the

product below specification.

Test Procedures and Production Costs

It is customary to manufacture purposely a product

that exceeds specification in order to allow for testing

errors. The larger these testing errors, the greater the

excess quality that must be buUt into the product to in-

sure the acceptance of nearly all lots that are in fact

equal to or better than the specification. The manu-
facturer already has to contend with variation in the

process. Considerable saving in manufacturing costs

can be affected by reducing the margin between the

quality level set for production and that called for in the

specification. The savings attainable with improved test

procedures are a strong inducement for the improve-
ment of test procedures. Interlaboratory test programs
of varying degrees of thoroughness are frequently used
to establish the performance of existing procedures.

Missed Opportunities in Interlaboratory

Test Programs

Strangely enough modem statistical tests such as the

analysis of multifactor studies and the isolation of com-
ponents of variance have not made the contribution ex-
pected of them. Part of this no doubt comes about be-
cause these more sophisticated statistical techniques are

not too well understood by some of those in the labora-

tories that run the tests. It is all very well for someone
with statistical skill to set up an Intricate interlaboratory

test program and analyse the data but this still leaves

the problem of interpreting the statistical jargon to those

directly concerned. Even when this interpretation is

undertaken the report is apt to read somewhat along

these lines. "Duplicates run by the same operator in the
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same laboratory show excellent agreement. Agreement
between different operators in the same laboratories is

not quite so good, and very poor between results from
different laboratories. Results on different days do not

agree as well as those obtained on the same day." This

is a brief summary of the interpretation that is made
after the statistical analysis shows that practically all

the F-tests are significant. Unhappily almost all con-

cerned were already aware of the state of affairs just

described and want to know what can be done to im-

prove matters. It is just here that statisticisins have not

risen to the opportunities presented by interlaboratory

test programs.

When all is said and done, what we want is rather

simple. We want to know whether the test procedure as

set forth is capable of yielding acceptable agreement

among results from different laboratories. If the results

are not acceptable, we would like some specific indica-

tion of what is wrong with the procedure. If the pro-

cedure appears to be reasonably good but there are

some disturbing discrepancies, we would like to know
which laboratories are having trouble and if possible

why they are having trouble. And most important we
should be able to get this information back to the labo-

ratories concerned in such a form that the diagnosis is

believed. For only so wOl these laboratories take any
action to correct the difficulties.

Graphical Representation of Results

The graphical procedure is based upon a very simple

interlaboratory program. Samples of two different ma-
terials, A and B, are sent to a number of laboratories

which are asked to make one test on each material. The
two materials should be similar and be reasonably close

in the magnitude of the property evaluated. This will

avoid complications that may arise from differential be-

havior of the two test materials. A second pair of sam-
ples are circulated at a later time if there are only a few
participating laboratories. The pairs of results that are

reported by the laboratories are used to prepare a graph.

The graph is prepared by drawing the customary x-

axis at the bottom of the paper and laying off on this

axis a scale that covers the range of results for material

A. At the left the y-axis is provided with a scale in the

same units that includes the range of results reported

for material B. The pair of results reported by a labo-

ratory are then used to plot a point. There will be as

many points as there are reporting laboratories. After

the points are plotted a horizontal median line is drawn
parallel to the x-axis so that there are as many points

above the line as there are below it. A second median
line is drawn parallel to the y-axis and so placed that

there are as many points on the left as there are on the

right of this line. Figure 1 shows the seven-day tensile

strengths reported by 25 laboratories on two cement
samples. Two of the laboratories are so patently sepa-

rated from the other 23 that they are not used in deter-

mining the position of the median lines.

Diagnosis of the Configuration of Points

The two median lines divide the graph paper into four
quadrants. In the ideal situation where only random
errors of precision operate the points are expected to be
equally numerous in all quadrants. This follows because
plus and minus errors should be equally likely. In any
existing test procedure that has come to my attention

the points tend to concentrate in the upper right and
lower left quadrants. This means that laboratories tend
to get high results on both materials or low results on
both materials. Here is evidence of individual laboratory
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Figure 1—Tensile Strength

450

biases. There is evidence of this state of affairs in Fig.

1. The more pronounced this tendency to individual

bias the greater the departure from the expected circular

distribution of points about the intersection of the

median lines.

Figure 2 shows 15 points plotted from phthalic

anhydride determinations on two paint samples. The
points tend to scatter more or less closely along a line

approximately bisecting the upper right and lower left

quadrants. There is reason to expect the line to make a

45 degree angle with the axes when the same scale is

used for both axes and the two materials are sufficiently

similar so that the dispersion of the results is about the

same for each material.

A test procedure that yields results like those in Fig.

2 is probably in need of more careful description. In its

present form the procedure apparently is open to indi-

vidual modifications that do have an effect upon the

results. The procedure rather than the laboratories

should be considered as a possible source of the diffi-

culty even though the difficulty is exhibited by a large

scatter among the results from the different laboratories.

When the points lie closely along the 45 degree line the

conclusion may be drawn that many of the laboratories

7 -

5 -

6 7 8

Figure 2—Percent Phthalic Anhydride
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are following rather carefully their own versions of the

test procedure.

Checking on Sample Variation

There is no possibility of the distribution of points in

Fig. 2 arising from lack of uniformity among the sam-
ples distributed from each material. If the stock is

heterogeneous, some samples will be high, some low,

and this will be true for both materials. The pairs of

samples distributed to the laboratories will be of four

kinds:

high in A, high in B
high in A, low in B
low in A, high in B
low in A, low in B

The four possible combinations have the same proba-
bility of occurrence and would result in the test results

being nearly equally divided among the four quadrants.

Concentration of the points in two quadrants rules out

questions of sampling heterogeneity.

On the other hand if there is a roughly circular dis-

tribution of points but with a disappointingly wide-
spread scatter, the diagram does not reveal whether this

arises from sampling difficulties or poor precision of the

test results. If sampling is considered a possible source

of difficulty the following modification in the assignment
of samples should be tried. If there are 2N laboratories,

prepare N double-size samples for each material. Care-
fully mix and divide each double-size sample into two
usual size samples.

Double size

sample

2

N

Laboratory

1

2

3

4

I2N-1
|2N

Samples
A B
lA IB
lA' IB'

2A 2B
2A' 2B'

NA NB
NA' NB'

The samples are assigned to laboratories as shown
above. It should be possible to mix and divide each

double-size sample into two closely matching regular

samples. These samples are assigned to a pair of lab-

oratories. If there are sampling difficulties the plotted

points should tend to occur in doublets. Two labora-

tories getting the two carefully mixed halves should

check each other and have their points close together.

This involves a little extra work in getting out the

samples and no extra work for the participating lab-

oratories. If the points corresponding to the two halves

of a double-size sample are separated as much, on the

average, as points from different double samples, the

dispersion cannot be ascribed to sampling. In addition

to noting the spacial distribution the projections of the

points on the axes may also be used to see whether just

one of the materials was heterogeneous.

Interpretation of Out-of-Line Results

So far the Isirge aspects of the diagram have been
examined. The individual points can now be consid-

ered and in particular those points most distant from
the intersection of the median lines. Almost always one
or more points are so far out of the picture that it is

better not to compress the scale in order to show them.
Such points should be ignored in locating the median
lines. (See Fig. 1.) The more distant points tend to fall

into one or the other of two categories. Either the point
is far out and remote from both axes or far out and

fairly close to one or the other axis. In the latter case,

the result is fairly good on one material and very bad
on the other. Examples of such points are found in Fig-

ures 2 and 3. Often the explanation is simple—a mis-

take in typing, or calculation, or some simple blimder
that sometimes can be corrected by going back to the

records. If the same laboratory shows up in such a

manner on succeeding pairs of materials, this impHes
carelessness on the part of the laboratory. The labora-

tory can do good work but often does not. Occasionally

a laboratory has difficulty with one material and not

with the other but this is not likely to occur with sim-
ilar materials.

Points in the upper right or lower left quadrants that

are far removed from the intersection of the median
lines and that are not near either axis reflect a tendency
to get either high results on both materials or low re-

sults on both materials. There are examples in all the

figures. The more consistent a laboratory is in its work
the more likely its point will lie in the proximity of the

45 degree line. A point far out along this line suggests

the possibiUty that the laboratory concerned has intro-

duced some modification into the test procedure. A labo-
ratory finding itself in this situation should check care-

fully the prescribed procedure for performing the test

and endeavor to locate the cause of the large bias.

All of the above interpretation can be made while
keeping anonymous the identity of the plotted points.

When circulating a report of the interlaboratory test it

might be helpful to circle in red the point belonging to

the laboratory in the copy going to that laboratory.

That would save the laboratory from consulting its files

to locate itself and would display prominently just

where the laboratory stood in reference to the whole
group. This vivid picturing of a laboratory's position

should stimulate the laboratory to some self examina-
tion that could hardly avoid having beneficial results.

Estimating the Precision of the Test Procedure

The above discussion does not exhaust the informa-
tion to be gleaned from this graphical representation.
Assuming that the two materials are similar in type and
nearly equal in magnitude for the property the disper-
sion among the results reported for A should be about
the same as the dispersion of the B results. In that
event the 45 degree line through the intersection of the
medians makes possible an estimate of the precision of

the data. Often an interlaboratory test undertakes to dif-

ferentiate among the laboratories in respect to precision.

Not only does this require large numbers of measure-
ments from each laboratory but differences in precision
usually turn out to be unimportant in comparison with
bias errors and careless errors. No violence at this stage
seems to be done by assuming about the same precision
for all the laboratories.

The perpendicular distance from each point to the 45
degree line can be used to form an estimate of the pre-
cision. The estimate of the standard deviation of a single

result is obtained by multiplying the average length of

the perpendiculars by VV^ or 1-2533. These perpendic-
ulars need not be measured on the graph paper. In-
stead, write down for each laboratory the difference
(A—B) keeping track of the signs. Call these differ-

ences di, da, ... d„. Calculate d, the algebraic average

difference. Subtract d from each difference and obtain
a set of corrected differences dj', da', . . . dn'. The aver-
age of the absolute values of these differences when
multiplied by y/7t/2 or 0.886 gives an estimate of the

standard deviation.
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TABLE I—Data and Calculations on Percent Insoluble Residue

in Cement Reported by 29 Laboratories

Percent Residue A —

B

(A—B) — 0.095
atory A B

1 0.31 0.22 0.09 —0.005

2 0.08 0.12 —0.04 —0.135

3 0.24 0.14 0.10 0.005
4 0.14 0.07 0.07 —0.025
5 0.52 0.37

6 0.38 0.19 0.19 0.095
7 0.22 0.14 0.08 —0.015

8 0.46 0.23
9 0.26 0.05 0.21 0.115

10 0.28 0.14 0.14 0.045

11 0.10 0.18 —0.08 —0.175

12 0.20 0.09 0.11 0.015

13 0.26 0.10 0.16 0.065

14 0.28 0.14 0.14 0.045

15 0.25 0.13 0.12 0.025

16 0.25 0.11 0.14

17 0.26 0.17 0.09 —0.005

18 0.26 0.18 0.08 —0.015

19 0.12 0.05 0.07 —0.025
20 0.29 0.14 0.15 0.055

21 0.22 0.11 0.11 0.015

22 0.13 0.10 0.03 —0.065

23 0.56 0 42
24 0.30 o!30 0.00 —0.095
25 0.24 0.06 0.18 0.085

26 0.25 0.35

27 0.24 0.09 0.15 0.055

28 0.28 0.23 0.05 —0.045
29 0.14 0.10 0.04 —0.055

Average 0.229 0.134 0.095 0.053

The data on percent insoluble residues reported by 29

laboratories are given in Table I and plotted in Fig. 3.

There are three points far out along the 45 degree line

and one far out on the y-axis. These laboratories were
excluded from the calculations shown in Table I. The last

column shows the differences between the two results

diminished by the difference between the two sample

averages. The average, 0.053, shown at the bottom of

this column is the average of the absolute values, i.e.,

ignoring the signs. Multiplying 0.053 by 0.886 gives 0.047

as the estimate for the standard deviation of a single

result. Probably this is inflated by leaving in the two
laboratories turning in the very low results for sam-
ple A.

This estimate of the standard deviation for precision

leads to the construction of circles (centered on the in-

tersection of the median lines) within which any given

percentage of the points can be expected to fall should

the laboratories be able to eliminate aU bias or constant

errors. The multiples of the standard deviation that

include various percents of the points are given in

Table II.

Thus a circle whose radius is about 2.5 to 3.0 times

the standard deviation gives a fair idea of the smallest

circle that could be expected to contain nearly all points

after the elimination of the constant errors that are

causing the points to congregate in the upper left and
lower right quadrants. Generally a fair number of points

will lie outside such a circle. The laboratories respon-

TABLE II—Probability Table for Circular Normal Distribution

Percent of the Points
Witliin Circle

Multiple b of tiie

Standard Deviation

10 0.459
20 0.668
25 0.759
30 0.845
40 1.011
50 1.177
60 1.350
70 1.552
75 1.665
80 1.794
90 2.146
95 2.448
99 3.035

0.1 0.2 0.3 0.4 0.5

Figure 3—Percent of Insoluble Residue

sible for these points almost certainly have somehow got

substantial systematic errors incorporated in their tech-

niques. Multiplying the standard deviation obtained

above by 2.45 gives the radius of the circle that should
include 95 percent of the laboratories if individual con-
stant errors could be eliminated. This circle is drawn
in Fig. 3. Seven further laboratories are outside the

circle including the two who got the benefit of the

doubt and were retained in the computation. This ex-
amination has directed attention to at least six of the

laboratories that might well go over their method of

making this determination of insoluble residue.

If the number of laboratories in the program is rather

small, the way to accumulate more points is to send the

laboratories additional pairs of samples from different

materials. A chart is prepared for each pair of mate-
rials and the median lines drawn in. The charts are

now superimposed so that the points of intersection of

the median lines coincide and, of course, the median
lines also. All points are then transferred to one sheet

of paper with one pair of median lines. As there are

only a few laboratories each can be assigned an identi-

fying symbol.
Figure 4 shows the reports made by eight labora-

tories determining CaO in cement. The laboratories are

Note: Percent — 100(1 — exp(—bV2)l
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identified by symbols. The hollow symbols show the

results for the first pair of samples. The corresponding

solid symbols show the work of these same laboratories

on a second pair of samples. Few as these data are they

serve to indicate the things that we want to know about

the test procedure and about the laboratories. Clearly

this procedure is one that is vulnerable to individual

bias. Two of the eight laboratories appear in the same

region for both pairs. The circle laboratory is very con-

sistent—and gets the highest results. The square lab-

oratory gets very low results and is not very precise as

shown by the fact that the two squares are separated

by a much greater distance than any of the other seven

pairs. Using this chart some possibly helpful sugges-

tions could be passed along.

Discussion

The two materials used in this double-sample pro-

gram were specified to be similar in type and in the

magnitude of the property measured. Sometimes the

measurement errors are proportional to the magnitude

under measurement and this will show up in a greater

.scatter of the points along one of the axes. Particular

types of samples may give trouble in just some of the

laboratories. The thorough study of a test method must
include consideration of these possible complications.

Naturally a more comprehensive interlaboratory test

program will be required to explore these aspects of

the test procedure. A thorough study in one laboratory

usually reveals these complications.

Summary of Advantages of Graphical Diagnosis

The double-sample, graphic analysis scheme described

in this article offers a number of advantages.

(1) An unusually light burden is imposed on each lab-

oratory

(2) The graphical procedure greatly facilitates presen-

tation of the results in a convincing manner

(3) No statistical background is required to follow the

reasoning and no computations are required to dem-
onstrate the general presence of constant errors

and the gross deviations of individual laboratories

(4) A minimum of computation is imposed upon the in-

dividual collating the results

(5) The use of a circle of 2.5 or 3.0 o radius shows the

individucd laboratories whether or not their method
of carrying out the test has in some way become
saddled with a substantial constant error

(6) Most important the direction for improvement is

clearly indicated

a. A long, narrow ellipse directs attention to a more
careful description of the procedure or even to the

need for modification

b. Wild points far out near either axis indicate er-

ratic work

c. Wild points far out along the 45 degree line are

strong evidence of substantial deviations from the

specified procedure

d. General prevalence of constant errors is indicat-

ed by a substantial proportion of the points lying

outside the 2.5 o circle

Experience has already indicated that a certain

few laboratories are found too frequently in the

most distant positions from the intersection of the

median. Improved performance from these few lab-

oratories may go far to restore confidence in a test

procedure. There is no substitute for careful work
in the laboratory.
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REPORT FOR ANALYTICAL CHEMISTS

The Sample, The Procedure, and The Laboratory

W. J. Youden

National Bureau of Standards, Washington 25, D. C.

FN THIS paper the viewpoint is

^ taken that an analytical proce-

dure has an inherent accuracy and

precision. True enough, there must

be an analyst in a laboratory to put

the jii'ocedure to work and this im-

plies to some analysts that an in-

separable association exists between

jirocedure and operator. A sample

is also indispensable, yet there is no

hesitation in sometimes attributing

the variation in analytical results to

a lack of homogeneity in the mate-
rial furnishing the samples. At
other times, often when a reason-

able volume of a liquid is sampled,

tiie aliquots used as samples can be

considered identical in composition

and any differences among the re-

sults cannot be charged to the

samples.

The role of the analyst, or labora-

tory, may be revealed when two or

more laboratories undertake deter-

minations on samples drawn from
tlie same stock of uniform material.

In extreme cases the repeat deter-

minations made by a laboratory

cluster closely about the laboratory

average without any intermingling

of the results from one laboratory

with the results from another lab-

oratory. Figure 1 illustrates this

point. The open circles represent

the results from one laboratory and
the solid circles the results reported

by a second laboratory. Separation

of the results from different labora-

tories is practically always present

to some extent—that is, the separa-
tion between results from different

laboratories is greater than would
be anticipated, considering the

agreement among the results ob-

tained within a single laboratory.

Tlie reduction, or, if possible, the

elimination of these interlaboratory

differences is an everyday problem.

Here is a major reason why busy

analytical chemists turn to statisti-

cal techniques for help in resolving

the complex of circumstances that

.surround analytical determinations.

Wrong Operations on Data

Often a study makes available a

collection of analytical results ob-

tained under a variety of circum-

stances. One wrong operation is to

take the grand average of all the

data and obtain the individual devi-

ations from this average. It mat-

tei's not whether the simple arith-

metic average of these deviations

(of course ignoring signs) is re-

ported, or some more sophisticated

quantity, such as the standard devi-

ation, is computed. The quantity

so reported is almost surely useless,

if not downright misleading. Nor
will matters be helped if the analyst

happens to have available the theo-

retical or assumed true composition

of the material and is able to meas-

uie his deviations from the true

value. In fact, this usually makes
matters worse. I am fully aware

that these computations are very

generally made, but they are made
in the mistaken belief that the

simplicity of tlie calculations en-

sures a meaningful result.

An illustrative example will clear

the ground of erroneous operations

on the data. Tlie example is taken

from some long ago microanalytical

determinations of carbon reported

by Powei' (1). Analyst H reported

six determinations on pure ephed-

rine hydrochloride as follows:

59.09, 59 17, 59.27, 59.13, 59.10, 59.14

Av. 59.15

If the deviations are obtained by
subtracting from these results the

theoretical j)er cent of carbon,

59.55, tlie deviations are

-0.46, -0.38, -0.28, -0.42, -0.45, -0.41
Av. -0.40

We ai e immediately struck by the

unvarying minus sign and the rela-

tive constancy of these large nega-

tive deviations. By accident, in

this example, because all the devia-

tions have the same sign, the aver-

age of these deviations (—0.40) is

informative. It is, in fact, an esti-

mate of tile bias or systematic error

in the results, and if the sign is re-

tained, we have the direction of the

bias. Tiie average deviation is not

always so kind as to furnish an esti-

mate of tiie bias. When the signs of

the deviations are not all the same,

Average True Average

I I I
oo oo o o • •• <

I I I I I I I

59.1 59.4 % C. 59.7

Figure 1
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MICROCARBON DETERMINATION

Average

I

59.50 59.55 59.60 59.65 59.70 59.75

Inclusion of extreme values may displace average unduly

the average of the absolute devia-

tions no longer measures the bias

—

or anything else. Probability state-

ments cannot be made about the

above deviations because they all

have the same sign. One could state

that no matter how many determi-

nations had been made, they would

all have given negative deviations

from the true composition.

Power listed four of his own de-

terminations that he considered ac-

ceptable. His results were 59.51,

59.75, 59.61, and 59.60, with an

average of 59.62. Apparently

Power avoided whatever circum-

stances led analyst H to his low re-

sults. The ten deviations that

would be obtained by taking differ-

ences from the average of all ten re-

sults tell nothing useful. The devi-

ations reflect a confused mixture of

random errors and systematic

errors. Even the average used

clearly depends upon the relative

numbers of determinations provided

by the two analysts. If the theo-

retical composition is used, the de-

viations visibly consist of two
groups with no intermingling. Sta-

tistical statements for such hetero-

geneous deviations are meaningless.

It is more informative to state for

each analyst the departure of his

average from the theoretical com-
position, for each to give an esti-

mate of his precision using the devi-

ations from his own average.

When the magnitude of the sys-

tematic error is comparable to the

random errors associated with pre-

cision, a predominance of the devia-

tions from the true value will have
the same sign. When a random
error of opposite sign and some-
what larger than the systematic

error comes along, the net result is

to give a sign opposite to that shown

by the majority. The best evalua-

tion of the random errors exhibited

by the above six results is obtained

by using the deviations of the indi-

vidual determinations from the

average of all the results. The de-

viations, —0.06, 0.02, 0.12, —0.02,

—0.05, and —0.01, must sum to zero

and should show a reasonably equal

partition between plus and minus

signs.

The estimate of the standard de-

viations associated with the labora-

tory in which analyst H made his

determinations is given by s =
\/5(dev)V(n-l) or 0.065. The
estimate of the bias, —0.40, is about

six times as large as s. A random
deviation (either plus or minus) of

this magnitude is extremely un-

likely. Hence all the signs of the

deviations are the same. As the

ratio of the bias to the standard

deviations gets smaller, there is

more likelihood of a mixture of

signs. Table I shows for various

values of this ratio the expected

division of the signs of the devia-

tions from the true value.

This particular example was
chosen to bring out clearly the two
concepts of a systematic component
of error and a random component of

error. It may be, that in as clear

cut a situation as this one, few

would go astray. But it must be

remembered that there is a con-

tinuum extending from very large

obvious biases down to very small

biases. The values computed from
the data should correspond to mean-
ingful chemical quantities. The
separation of bias from random
errors is indispensable to an efficient

approach to the improvement of

analytical procedures.

Statisticians have unwittingly

contributed to the confusion when
they remark that the divisor for the

sum of the squared deviations must
be one less than the number of

measurements, because the devia-

tions are measured from the average

rather than the true value. The
statistician and the chemist refer to

quite different things when they

speak of the true value. The chem-
ist has in mind the actual correct

composition. The statistician

means the value that the average of

the results would approach with an

indefinite increase in the number of

determinations made under the

same conditions. In other words,

the statistician's true value includes

the systematic error, if any.

True Composition Unknown

If the true composition is not

known, the estimation of the mag-
nitude of a systematic error in the

results is not so easy but in some
situations not impossible. If the

systematic error in the determina-

tions is the same over a considerable

range of sample weight (or volume)

,

the systematic error may be esti-

mated by plotting the actual meas-
ured quantity against the sample
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weight. Tlie measured quantity

may be the weight of a dried pre-

cipitate or the milliliters used in the

titration. Clearly if one sample

weight is twice the weight of an-

other sample, there should be twice

as much precipitate or twice as

many milliliters of reagent used. If

there is a systematic error that is

independent of the sample weight,

all the results should be high (or

low) by the same amount. A
straight line fitted to the points will

not go through the origin, as it ought

to, but will intercept the y-axis.

The intercept is an estimate of the

systematic error. This device fails

if the systematic error is propor-

tional to the amount taken for

analysis.

While it may be difficult to esti-

mate the magnitude and sign of the

systematic error, the demonstration

that systematic errors are present

is all too easy. If two laboratories

report a number of analyses on the

same material, any difference that

can be established between the lab-

oratory averages is evidence that

one or the other or both sets of re-

sults are afflicted with a systematic

error. It was shown above that any
attempt to describe such joint col-

lections of data by a single statisti-

cal unit is bound to be misleading.

The evaluation of analytical data

is greatly simplified if it is assumed
that the participating laboratories

have the same precision. The basis

for this assumption is that appara-

tus, equipment, and analyst train-

ing are highly standardized and of

high quality. Weighings, titrations,

instrument readings, and the like

are likely to be made with about the

same reproducibility. Usually if

there are differences in apparatus or

technique, these concern matters

that do not contribute appreciably

to the precision. Weighing errors,

for example, are usually a minor
consideration, so that little conse-

quence comes from one laboratory

using a balance with twice the sensi-

tivity of the balance used in the

other laboratory. Thoughtful con-

sideration of the steps in an analyti-

cal procedure soon leads to the con-

clusion that differences between
laboratories in regard to equipment,

reagents, or in procedures are more
likely to lead to systematic errors

than to changes in precision.

The most obvious source of a

systematic error is a deliberate or

unwitting departure from the pre-

scribed manner of carrying out the

procedure. Chemists are individ-

uals; they have their favorite pre-

cautions, short cuts, and prejudices.

Table I. Division of Plus and Minus
Signs of Deviations from True Value

Depends on Ratio of Systematic Error

to Statistical Deviation

Systematic Error Division of signs

Standard Deviation of Deviations, %
2.0 97.7 2.3

1.5 93.3 6.7

1.2 88.5 11.5

1.0 84.1 15.9

0.8 78.8 21.2

0.6 72.6 27.4

0.4 65.5 34.5

0.2 57.9 42.1

0.0 50.0 50.0

If a chemist faithfully follows his

own routine, his own analyses check

each other extremely well. The
same will be true for a chemist in

another laboratory. His internal

checks are no doubt just as good as

those obtained in the first labora-

tory (same precision) but the re-

sults, as a group, may reflect the

established practice of the labora-

tory. Similarly reagents in the two

laboratories may be from different

sources, or lots, or of different ages.

All determinations run with a given

set of reagents may show excellent

internal agreement but average out

at a value removed from the aver-
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age of determinations made with

another set of reagents. Pieces of

equipment may. differ in their zero

settings and introduce different

biases without in any way altering

the precision of the readings. Geo-
graphical location sometimes in-

volves fairly persistent humidity

differences between laboratories and
this may be a reason for the differ-

ence between laboratory results.

Finally there is an abundance of

evidence that different laboratories

have different systematic errors for

a given procedure. Little convinc-

ing evidence exists of differences in

precision. Of course each labora-

tory likes to believe that it does

particularly precise work. Some-
times this belief is bolstered by a

too enthusiastic culling of results

and running of extra repetitions

until a "satisfactory" agreement is

obtained. Leaving aside any spuri-

ous apparent differences in precision

generated in this manner, it seems
fair to conclude that laboratories

with equivalent equipment and per-
sonnel achieve about the same pre-
cision.

In any event, it takes a lot of de-
terminations to make a convincing
case for differences in precision.

Suppose two laboratories each make
ten determinations and an estimate
is made of tlie standard deviation
for each laboratory. One of the es-

timates of the standard deviations
must be at least twice the other
estimate to provide reasonable
grounds for the suspicion that there
is a real difference in the quality of
the work. Suppose that one labora-
tory does regularly turn out work
that has a standard deviation one
half as large as that associated with
the regular work of another labora-
tory. If each laboratory submits
20 repeat runs, there is only about a
four out of five chance that this ac-
tual difference will be reflected con-
vincingly enough in the data to war-
rant the conclusion that the labora-
tories differ in precision.

A more vivid illustration of the

difficulties in the way of discrimi-

nating among laboratories is

afforded by the following comments.
We assume that six laboratories all

have identical i)recision. The labo-

ratories leport five determinations

apiece and the standard deviations

are calculated. Then we should not

be surprised if the ratio of the larg-

est estimate to the smallest estimate

of the standard deviation is as much
as 5.4. Even if the estimates are

based upon ten repeat determina-

tions, the ratio may reach 2.8 purely

from the chance distribution of the

deviations. If ten, instead of six,

laboratories participate, the ratios

are 6.7 and 3.L The nature of

measurement is such that, even

under the ideal conditions of as-

sumed normality and absence of

gross errors, any measure of preci-

sion is subject to large sampling
variation. Unless there is clear evi-

dence to the contrary, the best pro-

cedure is to combine, in the proper

way, the several estimates of preci-

sion and award this value to all

participating.

The combination of the" estimates

is easily effected by adding together

the sums of the squared deviations

available from the several sets of

results and dividing by the sum of

the divisors previously employed.

The deviations for each set must be

measured from the average of the

laboratory (or group) from which
the data originate. The six results

by analyst H and the four results by
Power give the following pooled

estimate of the standard deviation:

Tlie remarks about apparent and

not real differences in precision also

apply to different sets of data accu-

mulated within one laboratory.

Suppose that there are two sets of

measurements, each made up of

three repetitions. Perhaps these

sets were made on different days.

If the range, or spread, for one set is

twice that of the other, one cannot

conclude on this evidence alone that

one set of ineasurements is more
precise than the other or that more
confidence may be placed in the

average of the set with the smaller

range. Assuming that, as far as the

analyst knows, there was no change
in the circumstances, there is no
reason to expect a sudden real

change in precision. The analyst

should take the view that a given

l)rocedure, in competent hands, has

an inherent precision which can be

ascertained. Individual small sets

of data will inevitably give esti-

mates of the standard deviation

that show considerable variation.

This variation in the individual

estimates of the standard deviation

is natural, however surprising it

may seem. Once sufficient repeti-

tions have been accumulated, say 30
or more pairs of duplicates on
samples not too widely spread in

content of the element, an estimate

of the standard deviation can be

obtained that should be used in

place of any estimate based on some
small set of data. Of course, some-
thing can go wrong and sometimes
does. There are statistical criteria

for suspecting out of line results. If

the difference between a pair of

duplicates is exceptionally large,

this is taken as evidence of a mis-
hap. In that event additional de-

terminations are in order.

Once it is accepted that differ-

ences in precision between labora-

tories can be forgotten because, if

present, they ^are probably minor
differences anyway, the way is open
for a revealing examination of the

data. In any event the evidence is

conclusive that differences in the
systematic errors are the major
source of disagreement among labo-

ratories. Certainly, if this were not
the case, the whole edifice of stand-
ard samples would be without value.

Obviously the use of a standard
sample to check out a procedure can
in no wise alter the precision of the
analytical work. A standard
sample may direct the attention of
the analyst to the need to go over
his procedure. Rarely will the
measures taken make any difference

in the agreement of check determi-
nations. If poor agreement between
duplicates were the real trouble,

the analyst could use improved
agreement between duplicates as a
criterion of satisfactory results and
dispense with standard samples.
This is only saying what every
analyst knows: Good agreement
between duplicates is a necessary
but not a sufficient condition for a
good procedure.

Systematic Errors

Just as a given analytical proce-

dure may have a certain precision

associated with it as a property of

the over-all ensemble of operations
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involved, so may the procedure it-

self be thought of as having a

built-in systematic error. It is a

common remark that this, or that,

method tends to give high (or low)

results. Obviously gravimetric pro-

cedures are vulnerable to low re-

sults if the precipitates are too

soluble. Very often, in analytical

procedures, a blank is specified and

clearly this is intended to correct for

a systematic error that would other-

wise be present. The chemist's goal

is to devise procedures that are in-

herently without any built-in sys-

tematic error or bias. It is usually

considered sufficient to reduce the

systematic error to the point where

it is small relative to the precision

error.

The systematic error of a proce-

dure is a property of the procedure

when performed as specified. De-
partures from the specified proce-

dure may substantially modify the

original bias. Sometimes a labora-

tory with the best intention of cor-

recting a suspected bias may over-

shoot ani even change the sign of

the systematic error. In any event

there is no question but that the

procedure modifications and the

equipment and reagents associated

with each laboratory do result in a

corresponding gamut of laboratory

systematic errors that modify the

basic systematic error of the proce-

dure. Considerable advantage fol-

lows from accepting this picture of

the structure of the systematic

error. In the first place the true

chemical composition may not be

known. All that can be done then

is to take as a working reference

point the consensus of the partici-

pating laboratories. Individual

laboratory systematic errors can,

in fact, be measured only from this

consensus reference point. A par-

ticular laboratory that is far out of

line may be presumed to have de-

parted from the accepted procedure

in a'unique way. In the absence of

any other guide, the consensus of a

reasonable number of laboratories

may be taken to characterize the

analytical procedure. After all, the

laboratories are expected to follow

the procedure. At a later date, an

opportunity may arise to try the

procedure on materials of known

composition. Any discrepancy be-

tween the true composition and the

consensus of the laboratories must
be considered a defect in the proce-

dure.

The essential point is that when
this way of looking at the system-

atic error is "simplified" by concen-

trating attention directly on the

difference between each labora-

tory's own average and the known
composition, useful information is

lost. Suppose that the systematic

error for the procedure is positive

and that one laboratory departs

from the consensus by a nearly

equal negative systematic error.

This particular laboratory then has
a practically perfect check with the

true composition and therefore

swears by the procedure. There are

some omitted words here. The lab-

oratory swears by the procedure as

carried out by that laboratory.

That does not advance matters at

all unless we know, or can find out,

in what respects this laboratory de-

parted from the specified procedure.

This may be a significant deliberate

departure and ascertainable or it

may be a chance departure depend-
ent upon the reagents, apparatus,
etc., that were used by this labora-

tory. In all fairness, each labora-

tory should be judged by its close-

ness to the consensus, if we have
any confidence that the participat-

ing laboratories conscientiously

tried to follow the procedure in

every detail. The discrepancy be-

tween the consensus and the true

value ought to be charged to the

procedure.

The consequence of this point of

view is that laboratories close to the

consensus deserve pats on their

backs. A laboratory whose result

departs from the consensus should

be called to account even when it

happens to check the true composi-
tion. If the laboratory deliberately

departed from the procedure it

should share this knowledge, and
also simultaneously admit that it

did not adhere to the agreement to

test the procedure as given. If

every laboratory departs capri-

ciously from the procedure as speci-

fied, then the whole business of in-

terlaboratory testing might as well

be forgotten because no single ver-

sion of the procedure can be tried
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Persistence of systematic errors is shown in two series of analyses run

by the same 8 laboratories. Each laboratory is shown by a different

symbol. The solid symbols refer to the first series and the open symbols

the second series
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out. If the laboratory has no rea-

sonable explanation to offer for the

good check it got, when the con-

sensus of all was clearly not a

check, there seems no more reason

to congratulate this laboratory than

a laboratory that had an equally

large deviation from the consensus

but in the opposite direction. After

all, if chance is operating in the

events that introduce laboratory

systematic errors, maybe the

chances of a plus or negative sys-

tematic error are not too different.

So one laboratory, judged by the

true composition, looks very good,

another very bad when perhaps

both laboratories have substantial

defects in their reagents or appa-

ratus.

When all, or nearly all, the re-

sults from a particular laboratory

deviate in the same direction from

the known composition, the evi-

dence of a systematic error in the

results is unmistakable. The ad-

vantage of remembering the possi-

ble, and likely, composite character

of the systematic error, lies in the

steps that may be taken to achieve

better results. The procedure may
require modification. Certain lab-

oratories may need to mend their

ways. The desired end is one where

all the laboratories cluster closely

about their consensus combined

with close agreement of the con-

sensus with the known composi-

tion. In fact, it can hardly be

maintained that an agreed upon
procedure exists unless the labora-

tories can achieve good agreement

among themselves around some
value. Once this stage has been

reached, it will improve the chances

of successfully locating the cause

and remedy for a discrepancy be-

tween consensus and true value.

Separation of Systematic and
Random Errors

Very few data sufTice to demon-
strate the presence of individual

systematic errors for laboratories

and to provide an estimate of their

common precision {2-Jt). Two
fairly similar materials, not very

different in percentage of the ele-

ment to be determined, will be re-

quired. These conditions are stipu-

lated because the precision as well

as the systematic error may depend

on the per cent of element present

and possibly be changed if interfer-

ing substances are present. Only
one determination is necessary on

each material by each of a number
of laboratories. If duplicates are

run, the averages will be used. Let

the materials be designated X and
Y. The laboratories are numbered
1 to n, and the results symbolized

as Xi, yi; X2, 2/2; . . .; x„, i/„. A
pair of coordinate axes should be

drawn on a piece of graph paper. A
scale of values is laid off on the

X-axis covering the range from the

lowest value reported for X to the

largest result. Using exactly the

same unit, the scale of values on the

y-axis must cover the range from
the lowest value for Y to the highest

result. Usually the scale is so en-

larged that the smallest divisipn on
the graph paper corresponds to one
unit in the last place of the values

reported.

The pair of values furnished by a

laboratory determines the location

of a point on the graph paper.

There will be as many points as

there are participating laboratories.

A horizontal line is located through
the average (consensus) of the

values reported for Y and a vertical

line drawn through the average of

the values reported for X. These
two lines divide the graph paper
into four quadrants. The pair of

deviations from the averages, asso-

ciated with a laboratory, must be
either ++, -\— , —|-, or

,

and these correspond to the four

quadrants just formed. If plus and
minus deviations from the average

of each material are equally likely,

then the four combinations, -f-|-,

H— ,
—|-, and —— , are equally

probable so that, in theory, equal

numbers of points should fall in the

four quadrants. This distribution

of the points would not be changed
even if the laboratories did have
different precision, because the

signs, and not the magnitudes, of

the deviations determine the quad-
rant getting the point.

Examination of scores of such

charts has shown in almost every

chart an unequal division of points

among the quadrants. Two of the

quadrants, the upper right corre-

sponding to -f and the lower left,

corresponding to ,
contain a

majority of the points. The ex-

planation for such a departure from

theory is immediate. If a labora-

tory does have a systematic error,

this error, by definition, appears in

both the result for.X and the result

for Y. While the random errors

may be of opposite sign, the devia-

tions will be converted to the same
sign if a large enough systematic

error is added to, or subtracted

from, each random error. The re-

sults reported by the laboratories

show only the net remaining after

random and systematic errors have

been combined. The signs give the

show away and the surplus of points

in the -|—|- and quadrants is

graphic testimony of the presence of

systematic errors.

Analysts like to dream of a world

in which only random errors exist,

and small ones at that. Consider

the contrary world where perfect

precision exists but each laboratory

has persistent individual systematic

errors. This would mean that if a

laboratory's result for X is higher

by 0.10% than the consensus for

material X, then on material Y it

will be exactly 0.10% higher than

the consensus for Y—exactly the

same amount higher on both mate-
rials because of perfect precision

(sampling errors assumed not pres-

ent) . In this contrary world all the

points would lie precisely on a 45°

line passing through the point where
the horizontal and vertical lines in-

tersect. Perfect location of all

points on such a line has not been

observed, but some distressingly

near approximations have been en-

countered.

Most interlaboratory studies

yield plots that are intermediate in

character between the two extreme?

of equal numbers of points in the

four quadrants and all the points in

the H—|- and quadrants. The
points scatter in an approximate

ellipse whose long axis is the 45°

line through the point correspond-

ing to the averages for X and Y.

The larger the systematic errors,

relative to the precision error, the

more elongated and thinner the

ellipse will be. When the points do
straggle more or less closely along

the 45° line, the evidence for an

un.satisfactory procedure is conclu-

sive. Possibly the procedure is in-
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adequately described and is so vul-

nerable to individual interpretation

that, as a group, the laboratories are

having trouble. On the other hand,

if a substantial majority of the

points are clustered in a fairly

broad ellipse with only a few

points far out along the 45° line

(either in the -\—|- or quad-

rants) , there is a strong suspicion

that the more remote laboratories

have their own unique way of mak-
ing the determinations.

An excuse often advanced by a

laboratory with an out of line re-

sult is the claim that it got a non-

representative sample. This claim

is considerably weakened when the

laboratory's point is far out and

near the line, because now the lab-

oratory has to claim nonrepresenta-

tive sample for both materials, and,

furthermore, departing in the same
way. An even stronger objection

can be put forward against this

claim. If the materials sampled are

not uniform, then, in taking the

samples of X, half of the samples

will be high and half low. This is

also true for material Y. The two
samples sent, quite blind, to a lab-

oratory may be high in both (-|—j-)

;

high in X, low in Y (-)— ) ; low in

X, high in Y (—|-) ; or low in both

( ). All combinations are

equally likely, so that if tJie lack of

uniformity of the stocks is sufficient

to dominate over the systematic

errors, then the points should be

equally distributed among the

quadrants. The argument is now
turned in reverse and a lack of

equal distribution among the quad-

rants considered evidence that

sample variation is not the problem.

There is a possible ambiguity.

Either very poor precision or non-

uniform material may lead to an

equal distribution among the quad-

rants. The allocation of samples

may be modified to resolve this am-
biguity if desired, but the event has

not been observed, so means to dis-

tinguish between these causes will

not be given.

Earlier mention was made that in

the event of perfect precision the

points would lie exactly on the 45°

line. Random errors displace the

points from the line. The perpen-

diculars from each plotted point to

the 45° line are a means of estimat-

ing the precision of the procedure

as revealed by the combined results

from the participating laboratories.

Designate the lengths of the perpen-

diculars by pi, p2, ., Pn- Then

an estimate of the common standard

deviation is given by

Some readers may be interested to

show that this formula is equivalent

to

\ 2(n-l)

Here each d is the difference be-

tween the result reported for X by

a laboratory and the result reported

for Y by the same laboratory. The
algebraic average of these differ-

ences gives d.

Each laboratory provides a per-

pendicular. Measure the distance

along the 45° line from the foot of

the perpendicular to the point cor-

responding to the averages for the

two materials. This distance, di-

vided by the \/2^ gives the best

estimate of the systematic error of

the laboratory measured relative to

the consensus of all the laboratories.

If the true compositions of the

materials are known, they may be

used to plot a point. The distance

along the 45° line to the true point

divided by \/2 gives an estimate of

the systematic error of the proce-

dure as used by the participating

laboratories.

2 —

—
I I I il I I I I I I

S ie 7 8 9
(0.4)

The extensive range of systematic er-

rors noted in results by a large num-^

ber of laboratories all analyzing the

same sample of phthalic anhydride

indicates the possibility of a faulty

procedure
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Number of Laboratories Required

The small amount of work called

for from each laboratory should

make it easier to enlarge the num-
ber of participating laboratories

over the usual handful. Much can

be said in favor of a large number
of participating laboratories- In-

formation regarding the prevalence

of systematic errors can be obtained

only by having enough laboratories

to reveal them and to estimate

fairly, by their consensus, the sys-

tematic error of the procedure.

There is another easy way to en-

large the number of points. An
additional pair of different mate-

rials, still rather similar to the first

pair, are sent to the same labora-

tories. The results are used to pre-

pare a second graph. The second

graph is placed on the top of the

first graph, so that the horizontal

and vertical lines are coincident and
all the points transferred to one

graph. This merely gives a com-
mon consensus point. As the true

compositions have not been used,

the absolute values are not in-

volved. If the true compositions

are known, the common graph is

prepared by plotting the true point

on each graph and superimposing

these points. The axes are kept

parallel. Laboratory numbers
should be attached to the points.

If a laboratory has both its points

far out along the 45° line, the con-

clusion is obvious to all concerned.

The whole process should be re-

peated with materials having very

different per cent values of the ele-

ment to be determined. A separate

estimate of the precision is proper

and should be made. Indeed the

systematic error of the procedure

may change and possibly that of

individual laboratories. The range

of per cent and types of materials

that require study depend on the

analytical chemistry involved.

Discussion

The economy of effort achieved

by the elimination of duplicates and

other ramifications such as an

elaborate schedule of operators,

days, etc., is considerable. More
important, the rather spurious yard-

stick of parallel duplicates by the



same operator is discarded. Par-

allel duplicates are favored indeed.

Whatever the attendant circum-

stances, these duplicates have
everythi^ng in their favor as far as

showing agreement is concerned.

Just what use can be made of such

a yardstick? Nearly every prac-

tical comparison involves deter-

minations carried out under less

uniform conditions than a pair of

parallel duplicates. Even the single

analyses on the two materials are

likely to be run together, so that

there is the same criticism to be di-

rected against using these to esti-

mate precision. The two mate-
rials would be better run at least on
different days. Figure 2 shows a

plot of potassium determinations by
14 laboratories on two samples of

fertilizer. The two samples were
run a month apart, so that the esti-

mate of precision is realistic. The
clear evidence of individual sys-

tematic errors in materials run a

month apart shows the persistence

of systematic errors.

The estimate of precision pro-

posed here is usually optimistic. A
laboratory runs two materials, no
doubt under parallel conditions.

The two results provide an estimate

of the difference between the two
materials. When the difference is

taken between the two results, any
common effects drop out, so that

the difference is in large measure
freed of any consequences of the

particular set of circumstances
existing when this pair of determi-

nations was made. Every labora-

tory provides an estimate of the

difference and the estimate of the

V
/

/
••
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Percent K^O in March Sample

Figure 2

precision is based upon the con-

cordance of these several estimates

of the difference between the two
compounds. The most that can be

said in support of this scheme is

that, unlike duplicates on one ma-
terial, the laboratories do not know
the difference between the two ma-
terials. There is no protection

against a laboratory that runs two

or more determinations on each ma-
terial and reports the averages of

these under the label that they are

single determinations. Eventually,

if over a number of times, a given

laboratory always has a point

unusually close to the 45° line, it

might reasonably be asked to dis-

close how it consistently achieves

a precision so much better than

other laboratories.

Very careful efforts on analytical

work are associated with atomic

weight determinations and with the

work on standard samples or refer-

ence materials. The approach here

is chemical rather than statistical.

Using every iota of available chemi-

cal information elaborate precau-

tions are taken to eliminate, or cor-

rect for, every possible source of

systematic error. Comparatively
little dependence is placed upon re-

peat determinations. Here the

chemist supplies his own testimony

to support the position taken in this

paper. Systematic errors are the

real headache. If enough care is

taken, or alternative procedures are

employed, the systematic error can

be greatly reduced. By such means
atomic weights and standard

samples gain acceptance. In the

ordinary work of analytical chem-
istry, most of these precautions are

not feasible. Nevertheless the goal

of general agreement among lab-

oratories, using a procedure with a

very small bias, is the task of the

analytical laboratories. To achieve

their goal, the laboratories must get

the right kind of data and interpret

them properly.
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The best source of information on the measurement errors in comparisons is found in the

records of the comparisons regularly carried out by a laboratory. This requires that some of the

comparisons must be repeated, either directly or indirectly. An item. A, may be compared with a

standard, S, and the comparison repeated. Generally it is better to plan the work so that the operator

is not directly aware of how well his results check. If two items, A and B, are each compared with

S, and then A and B compared directly, the additional measurement provides a check on the measure-
ment process. Thus in addition to the direct comparison of A with S there is the indirect comparison
obtained by adding (A-B) to(B-S). The sum of these two comparisons would check the direct result

exactly If the measurements could be made without error. The discrepancy bery/een(ASJ and (A-B)i(B-S)

must arise from measurement error. Information collected over a sequence of such triads soon

provides a sound basis for evaluating measurement error. This example and similar ones will be

discussed in some detail in the paper.

1. Introduction

A calibrating laboratory must have in its pos-
session appropriate standards with values certified
by a competent authority. The calibrating labora-
tory must also possess adequate facilities for
comparing its standards with items brought to it

for calibration. The first thing the calibrating
laboratory must attend to is to determine the
accuracy of these comparisons. There are other
problems such as the appropriate way to combine

the comparison error with the uncertainty in the

value assigned to the standard. This problem,
incidentally, is only important when the com-
parison error is nearly as small as the uncertainty
in the standard. This discussion is concerned
with methods for ascertaining the accuracy of the

comparisons, and also with getting the most
information out of the measurements actually
made.

2. Determination of the Accuracy of a Comparison Procedure

2.1. Two Independent Systems
for Comparisons

It is not generally possible to attain absolute
accuracy. Even if the calibrating laboratory has
two similar certified standards and two completely
independent assemblies for making comparisons,
it is practically certain that, if enough items are
calibrated with each of the two independent sys-
tems, a difference between the two systems can

•Consultant, Applied Mathematics Division, National Bureau

of Standards, Washington, D.C.

be demonstrated. This difference may be of

negligible importance but once shown to exist,

this difference is a component in the absolute
error. Even when the calibrating laboratory shows
this difference to be extremely small, there is the

troublesome thought that the source certifying the

two standards may have had some unknown error
which was carried over into both certifica-

tions.

Such a series of duplicate tests with two inde-
pendent systems on a succession of items furnishes
the data for determining the accuracy of the

comparison procedure.
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Table 1. Data from two independent
calibration systems

Item No, A B C N

System 1 h
System 2

"z C2 . . "2

Difference ^1 ^2 ^3 . .

Examination of data tabulated as above should
reveal whether the D's tend to be predominantly
of one sign. The signs of the D's should, if the

systems are equivalent, alternate in a random
manner. The variance of the comparison process
is estimated by calculating

2 ( n-1)

The square root of gives the standard deviation.
This standard deviation (a measure of the preci-
sion) applies to any difference. A, found between a

standard and a test item. It is this difference that

applied to the certified value of the standard gives
the value entered in table 1.

If the algebraic average for D is unacceptably
large, this implies some persistent difference in

the two systems. The obvious thing to do is to

interchange the two standards with the two sets of
comparison equipment. A further series of results
will establish whether the discrepancy between the
two systems arises from an inconsistency of the
two standards or some lack of equivalence in

the two sets of comparison equipment. Should the
latter be the case, a suitable swapping back and
forth of components of the systems will track
down the source of inaccuracy in the comparison
procedure [l ].

•

2.2 One System With One Standard

The usual technique for ascertaining the error
in a comparison procedure is to repeat some of
the measurements. This technique has the virtue
of simplicity but it may not be the best way of
obtaining data to determine the error in the
comparison procedure. Direct repetition is vulner-
able to repeating the same misreading of a scale.
It is also vulnerable to "memory" or operator
efforts to secure good checks. Few can resist the
temptation, if a pair of results differs rather more
than usual, to do one of two things--(a) To reject
the pair of results and repeat the readings, or
(b) To take a third reading and pair it with the
closer of the first two readings. Many operators
are unaware that if the average absolute difference
between duplicate readings is R then about 11 per-
cent of the individual differences legitimately ex-
ceed 2R, If differences are rejected solely because
they slightly exceed twice the average difference,
the 'average' difference gradually becomes
smaller. More stringent rejection will further
reduce the average of the survivors. The logical
end of this process is apparent ^eduction of the
error to zero but at the price of rejecting all of
the measurements. Another shortcoming of direct

'Figures in brackets indicate the literature references at

the end of this paper.

repetition is that there are alternatives that are
slightly more efficient in estimating 4, the differ-

ence between the standard and the item to be
calibrated. More important, these alternatives
reduce the number of times the standard is used
and thus cut down on any wear or other conse-
quences that follow from repeated use of a standard.

Quite commonly meter bar calibrations included
not only comparisons of the standard with each bar
but all possible comparisons among the bars in the

group. Recently [2] the use of selected subsets of

the' pairings have been found satisfactory. On the
other hand studies with standard cells tend to

repetitive comparisons of a standard with the

other cells and to make little if any use of inter-
comparisons among the cells. It seems likely that

use would be found for schemes that replace most,
if not all, of the repeat measurements by inter-
comparisons among a group of items only some of

which are ever directly matched against the stand-
ard. This technique assumes that the test items
are similar to and of comparable quality to the

standard and also that the environmental control
for the test items is equivalent to that maintained
for the standard.

The principle of such schemes is shown by the

example of comparing two items, A and B, with a

standard S. We will suppose that the comparisons
(S-A) and (S-B) are each repeated three times as is

often done. Each set of three results provides an
estimate of the variance with two degrees of
freedom so the work provides a total of four
degrees of freedom. A series of such sets of data
will build up the number of degrees of freedom to

give a better estimate of the variance. Note that

the average of the three measurements of the dif-

ference between standard and test item has one
third the variance of a single measurement.
A suggested scheme compares S with /I , S with fi,

and A with B. Each comparison is repeated once.
Observe that even if S and B were not directly
compared, an estimate of (S-B) is available by
adding to (S-A) the result for M-6j. This information
on (S-B) can be averaged with the direct comparison
of S and B. More weight is given the direct com-
parison. In this case the theory of least squares
gives the direct comparison twice the weight of
the indirect comparison. Denote (S-A) by o , (S-B)hy
b and (A-B) by c. The weighted average for (S-B) is

given by (26+a + c)/3. Similarly the weighted average
for (S-A) is given by (2a + 6-c)/3. The variance for
the average difference between standard and item
when each of the three comparisons has been
measured twice is again one third of the variance
of a single measurement. Three degrees of free-
dom for error come from the three pairs and a
fourth degree of freedom from the fact that

(S-A)+ (A- B) + ( B - S ) should be zero in the absence
of error of measurement. Consequently (a+c- 6

) 2/

3

should be added to the sum of the squared differ-

ences of the duplicate readings. The square root of

one fourth of this total gives s . If (a+c- 4)^/3 tends
to be generally larger than the squared differ-

ences from duplicates, there is evidence of a
certain amount of "forced" agreement between the
duplicates. The scheme cuts the use of the standard
by one third, retains the same variance for com-
parisons, and provides a check on the technique
of measurement.
A scheme for three items (fig. 1, Scheme II)

avoids the repetition of any measurement and cuts
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the use of the standard in half. All possible six

pairs of S , A, B, and C are compared. The average
for (S-A ) is computed by combining five of the

measured differences as follows

1/4 [Z(S-A)^(S-B)+(S-C)-^(B-A)^(C-A)].

From symmetry, averages for all six compari-
sons are easily obtained. The six discrepancies
between these calculated averages and the matching
direct measurements reveal the measurement
error. These discrepancies tend to be smaller
than the differences between duplicates. The six
discrepancies are squared. One third the sum of
the six squares gives the variance of a single
comparison. The variance of the average difference
between standard and item is half that of a single
comparison- -just what the duplicate readings would
give.

When there are four test items Scheme III,

instead of duplicating the comparisons fS-/!^ , fS- 6;,
(S-C) . (S-D), calls for comparisons M-S;, (B-C). (C-D),

aLnd(D - A) . Now the calculated average for (5-^4^ has
a variance of 7/15 of a single comparison which
is a small improvement over the 1/2 that simple
duplication would give.

Scheme IV (fig. 1) reduces the use of the
standard over Scheme III and provides for more
information on some test items than on others.
There are times when this discrimination among
items is convenient. Scheme V reduces both the
use of the standard and the number of measure-
ments and hence reduces the degrees of freedom
available for the variance estimate. In a continuing
program this reduction in the amount of duplication
may be acceptable if duplication is used largely
to maintain a check on operations. Scheme V,

interestingly enough, provides equal information,
on all four test items in spite of the corner position
for the standard.
Schemes II, III, and VI are the first three of a

series formed in a particular way. Beginning with
Scheme III the comparison between standard and
item has a smaller variance (about 7%) than
straight duplicates would provide. The feedback
through the comparison links brings about this

improvement in efficiency.
Schemes VII, VIII, and IX show some additional

patterns that may be extended to larger numbers
of items. The tenth pattern illustrates a scheme
making use of two standards. Clearly a wide
variety of schemes can be devised. This permits
the laboratory to select schemes appropriate for

its particular program.
Two illustrative numerical examples are

included. Formulas are not given for each scheme
shown because they may be obtained from a statis-

tician or a least square fit made to the data. A
short cut for determining the weighting coefficients
for the observed quantities is based upon an analogy
with an electric circuit. The lines in the diagrams
may be considered as one ohm resistances. If a
potential is maintained between any two points the

resulting equilibrium currents in the network give
the relative weighing coefficients for the observa-
tions used to estimate the measurement compari-
son between the quantities represented by the two
points to which the potential has been applied.

Thus, in Scheme VII, if a potential of 3 v is applied
between the standard and the midpoint of any side

the current flow in the various resistances are
exactly those shown in the first three lines of the

illustrative example. A more detailed discussionis
under preparation.

3. Interlaboratory Comparisons

It is common practice to send a "package" of
several similar items on a circuit of several
laboratories. The data should be examined to see
if there is evidence that a particular laboratory
tends to report consistently higher (or lower ) values
than the other participating laboratories.
One method of statistical analysis consists in

taking the data for one of the items and assigning
the rank of one to the laboratory with the highest
value, the rank two to the laboratory with the next
highest value, and so on. If there are L laboratories,
the laboratory with the lowest value receives the
rank L. This ranking procedure is carried out for
each of the M items included in the package. A

"score" for each laboratory is obtained by adding
up the M ranks assigned to each laboratory. If a
laboratory tends to get high values, its score will

be low, but not lower than M. Low values lead to a
high score with a maximum possible score oi ML,
If only random errors are responsible for the as-
signed ranks, the expected score is midway be-
tween W and ML or L(M+l)/2. Scores that depart
sufficiently from the expected score constitute

evidence of the presence of systematic errors. The
attached table 2 shows scores which, if attained,

constitute evidence of a systematic error. A detailed

account of this new technique is available in

Materials Research & Standards. [3]
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Table 2

Let L laboratories test each of M materials. Assign ranks
1 to L for each material. Sum the ranks to get the score for
each laboratory. The mean score is M(Iri-l)/2. The entries are
lower and upper limits that are included in the approximate
5 percent critical region.

Approximate 5 percent two-tail limits for ranking scores

No. of
Number of materials

Labs,
3 4 5 6 7 8 9 10 11 12 13 14 15

3
4

12

5

15

7

17

ao

20 22 24 27
15

29
17

31
19

33
20
36

22

38

4

16
6

19

8

22

lU

25 28
14

31
16

34
18

37

20
40

22
43

24
46

26
49

5
5

19

7

23

9

27
11

31
13

35

16

38
18

42
21
45

23

49
26
52

28
56

31
59

6
3

18

5

23

7

28
10

32

12

37
15

41
18

45
21
49

23

54

26
58

29
62

32

66
35
70

7
3

21
5

27
8

32
11

37

14

42
17

47
20
52

23
57

26
62

29
67

32

72

36
76

39
81

8
3

24
6

30
9

36
12

42
15

48
18

54
22
59

25

65

29
70

32
76

36
81

39
87

43
92

9
3

27
6

34
9

41
13

47
16

53
20
60

24
66

27
73

31
79

35

85

39
91

43
97

47
103

10
4

29
7

37
10
45

14

52

17
60

21
67

26
73

30
80

34
87

38
94

43
100

47
107

51
114

11
4

32

7

41
11

49
15

57
19

65

23

73

27
81

32
88

36
96

41
103

46
110

51
117

55

125

12
;<+

35
1

45
11
54

15

63

20
71

24

80

29
88

34

96
39
104

44
112

49
120

54

128
59
136

13
4

38
8

48
12

58
16

68

21
77

26
86

31
95

36
104

42
112

47
121

52

130
58

138
63

147

14
4

41
8

52

12

63

17

73

22

83

27
93

33
102

38
112

44
121

50
130

56
139

61
149

67
158

15
4

44
8

56
13

67
18

78
23

89

29
99

35

109

41
119

47
129

53

139
59

149

65

159
71
169
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4. Summary

Calibration requires measuring the difference
between a standard and a test item. Systematic
errors can, with care, be practically eliminated
from comparisons. Repeat measurements are gen-
erally used to estimate the precision of the com-
parisons. Repeat measurements may not be as
independent as they should be. This paper lists

various schemes that replace repeat determina-
tions by comparisons among the test items. The

advantages are (i) reduced use and wear on the
standard; (ii) a more valid estimate of the pre-
cision; (iii) a slight improvement in the informa-
tion obtained from a givennumber of measurements;
and (iv) a flexible program adaptable to various
programs.
A brief description of a new ranking procedure

useful in interlaboratory tests is given together
with a table.

5. References

[l] Youden, W. J., Experimental design andASTM
Committees, Mater. Res. Std. 1, 862-867
(1961).

[2] Page, B. L., Calibration of meter line stand-
ards of length at the National Bureau of

Standards, J. Research 54, 1-14 (1955),
RP2559.

3] Youden, W. J., Ranking Laboratories by Round-
Robin Tests, Mater. Res. Std. 3, No. 1,9-13
(1963).

^ A
VI VII VIII IX

Figure 1. Calibration schemes. Circles identify the standard, solid dots
represent test items, and connecting lines shov the comparisons that are
measured.

Illustrative examples:
Scheme I with data obtained in transposition of 10 gram weights.

Measured: S-A=-.011j S-B=.068; A-C=-.023; B-C=^.105 (mg.)

Calculatec!; S-A= 5 [3(S-A)+(S-B)-(A-C)+(B-C)] = -.01175
A-C=-.02375j B-C = -.10425

S-C = S[(S-A)+(A-C)+(S-B)+(B-C)] ' -.0355
Z (diff. between measured and cal. )2

s

S-B = .06875

Variance . 00000225
= .0015

Scheme VII using data taken vlth meter bars. See reference 2.

Nine pairings taken from a ten bar study using all 45 pairings.
Bar identifications: S=27; A=h; B-21; C-39; D=153Rj E-752j F=8i4b

Pair Measured Multiplying coefficients Divide Cal. Obs.-
observed value a b c d e f h 1 by value cal.

S-A a= 4.33 3 1 1 -1 1 0 0 1 -1 5 4.272 .053
S-B b= -5.11 1 3 1 1 -1 -1 1 0 0 5 -5.090 -.020
S-C c=177.13 1 1 3 0 0 1 -1 -1 1 5 177.168 -.038
A-D d= 19.50 -2 2 0 7 3 -1 1 -1 1 10 19.469 .031
B-D e= 23.80 2 -2 0 3 7 1 -1 1 -1 10 28.831 -.031
b-e f=184. 94 0 -2 2 -1 1 7 3 -1 1 10 184,929 .on
C-E g= 2.66 0 2 -2 1 -1 3 7 1 -1 10 2.671 -.011
C-F h= -6.96 2 0 -2 -1 1 -1 1 7 3 10 -6.933 -.027
A-F 1=165.99 -2 0 2 1 -1 1 -1 3 7 10 165.963 .027
S-D (23.70)* 4 4 2 5 5 -1 1 1 -1 10 23.7^1
S-E (179.80)* 2 4 4 1 -1 5 5 -1 1 10 179.839
S-F (170.34)* 4 2 4 -1 1 1 -1 5 5 10 170.235

Z(0b6. -cal.)^ = 0.008830; Stand. Dev. = J .o6B3'3673 = 0.054

*Measured by Page. Not used in these calculations to estimate S-D, S-E, and S-F.
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The Collaborative Test*

By W. J. YOUDEN (National Bureau of Standards, Washington, D.C.)

This paper discusses (a) the plan-

ning of collaborative tests, (b) a

technique to establish that a pro-

cedure is ready for a collaborative

test, and (c) the interpretation of

the results of a collaborative test.

Introduction

The collaborative, or interlaboratory, test

is an indispensable scrutiny of an analytical

procedure to insure (a) that the description

of the procedure is clear and complete and

(b) that the procedure does give results

that are in accord with any accuracy claims

made for the procedure. A collaborative

test should be a kind of final inspection. If

the procedure has been properly studied

before submitting it to a collaborative test,

then the collaborative test has as its proper

role the task of verifying any claims made

for the procedure.

Planning a Collaborative Test

There are three matters to settle in plan-

ning a collaborative test. These are the

number of collaborators, the number of

materials sent to each collaborator, and the

number of measurements made by each col-

laborator on each material. Inevitably cer-

tain compromises have to be made. A large

number of collaborators is desirable because

this will give confidence that analysts will

not misinterpret the instructions and that

the procedure has been tried under a wide

range of environments. Increasing the num-

ber of materials provides evidence that the

procedure is satisfactory over a wide range

of amounts present and types of material.

Repeat analyses on each material would

provide information on the agreement of

* Presented at the Referees' Meetinj?, Seventy-
sixth Annual Meeting of the Association of Offi-

cial Agricultural Chemists, Oct. 16, 1962, at
Washington, D.C.

parallel analyses made under as nearly

identical conditions as possible.

Increasing the number of materials and

the number of analyses on each material

adds considerably to the burden of work

imposed on each collaborator. Often this

has the unfortunate consequence of reducing

the number of laboratories willing to par-

ticipate as collaborators. Therefore it is

important to hold to a minimum the work

imposed on each collaborator. One only has

to consider two extreme situations to see

the importance of having an adequate num-
ber of collaborators. If you want to learn

about a procedure, which would you rather

have: Ten repeat analyses from one labora-

tory or ,a single analysis from each of ten

laboratories? True, the information given

by these alternatives is quite different, but

the really useful information is given by the

single results from the ten laboratories.

The best way to reduce the workload per

laboratory is to reduce the number of repeat

analyses made on each material (1). In

spite of the long tradition to require at

least duplicate determinations on each mate-

rial, a strong case can be made for requiring

just single determination per material, unless

repetitions are actually needed. There are

several reasons behind this suggestion. First,

the agreement of parallel determinations

should be about as good in one laboratory

as in another. After all, the equipment is

specified and there is the presumption of

qualified analysts. Certainly the laboratory

environment will vary from laboratory to

laboratory and the procedure may not be

immune to these changes in environment.

But within any one laboratory, parallel

determinations will be exposed to the same

environment and the agreement between the

duphcates normally will not be impaired by

reason of any local environmental pecuHar-

ity. For this reason it is not surprising that
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the precision, as revealed by repeat runs, is

indistinguishably the same for all participat-

ing laboratories.

A second reason for not requiring repeat

determinations is that rarely are enough data

available to detect a two-fold difference in

precision (standard deviation) between two

laboratories. TripUcate determinations on

each of seven materials will give a four out

of five chance of catching a two-fold differ-

ence in precision. It would take the equiv-

alent of five repeat determinatiens on each

of ten materials to have the same probabil-

ity of detecting that one laboratory has a

standard deviation 1.5 times that of another

laboratory. Clearly this is a lot of extra

work for each laboratory. On the other

hand, the initiating laboratory should have

ample records to establish the precision of

the procedure. The precision, in any event,

is usually of minor importance as compared

with the larger error inevitably associated

with the comparison of results from different

laboratories.

One might also mention that many labo-

ratories will not report a pair of duplicates

that happen to show rather poor agreement.

The temptation to run a third determina-

tion, or even another pair, is strong. The

consequences of any such censoring of the

data is to produce an estimate of the preci-

sion that is biased in the direction of making

the precision appear to be better than it

really is. Finally the precision can be esti-

mated even if only single determinations

are made, and such an estimate is immune

from any replacements of the results first

obtained. It is merely necessary that two

materials, A and B, similar in composition

and content, be included in the work. Let

the results from n laboratories be as follows

:

Material Laboratory Number Av.

1 2 3 n

A ai a2 as a

B bi b2 bs b„ H

Difference

(A - B) d, d2 ds d„ d

Compute s
1 2(n

— nd^

- 1)

standard deviation

You will observe that whatever local or

systematic error a laboratory has drops out

of the differences, dj, 6.^, ....
,
d„. These

differences should all be the same except for

precision errors. So it is the variation among
these differences that provides an estimate

of the precision. The above formula is

equivalent to deducting the mean difference,

d, from each of the n differences and calling

the remainders d'. Thus d^ — d = d^'.

These remainders are squared and divided

by 2{n — 1), and the square root is taken.

s = -\/s(d')V2(n - 1)

An estimate of the precision by this ap-

proach is more realistic in that it is pro-

tected against any selection of the data

by replacement of repeat determinations

that show larger than usual disagreement

and the estimate is a consensus taken over

all the participating laboratories.

We arrive, then, at the suggestion that

the collaborative test include as many labo-

ratories as possible, using as many mate-

rials as circumstances suggest, and that only

single determinations be required. Some
have raised the question that certain labo-

ratories might run duplicates but report

the averages as single determinations. A
laboratory that does this is ill advised. First,

the averages of two would give this labora-

tory an apparent standard deviation of only

0.707 that of laboratories running single

determinations. But the data will not visibly

reveal this if only because of the difficulty

of showing small differences in precision.

Rather less pleasing to such a laboratory is

that this average reveals only the more

clearly any systematic error the laboratory

has in comparison with the consensus of all

the laboratories. And it is on just this point

that attention is going to be focused with

the idea of asking such laboratories for ex-

planations.

The Responsibility of the Initiating

Laboratory

By no means an unusual occurrence is a

collaborative test whose results obviously

fall short of expectations based on data ob-

tained by the initiating laboratory. The

explanation is usually found in the fact that
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the initiating laboratory has a set of opera-

tions and equipment that is never varied.

In fact, care is taiten not to vary the routine

in any particular. Naturally no light is shed

on what may happen when the procedure

on trial is used by a number of laboratories

each of which estabhshes its own particular

routine. Such things as the source and age

of reagents and the concentrations of these

reagents, the rate of heating, thermometer

errors, humidity, and many other factors

may be involved. One laboratory makes up

a supply of nominally IM acid and in fact

achieves a concentration of 0.95. Another

laboratory's solution may be 1.03M. Each

laboratory gets good checks, of course, be-

cause it always uses the same solution, just

as the initiating laboratory did.

The only protection against such sources

of trouble which are disconcerting and diffi-

cult to discover is for the initiating labora-

tory deliberately to introduce minor reason-

able variations in the procedure and observe

what happens. These departures should be

of the magnitude that a chemist might well

expect to find among laboratories. At first

this appears to throw much extra work on

the initiating laboratory, but if the program

is carefully laid out, a surprisingly small

amount of work suffices.

We will suppose that as many as seven

factors are selected for scrutiny. Perhaps

the volume of solution is fixed at 100 and

110 ml; the time of waiting at some stage

is tried at 30 and at 40 minutes. Different

lots of reagent, shghtly different concentra-

tions, different times to bring solutions to

boiling may also be tried. Now, if the pro-

cedure is "rugged" and therefore immune to

modest (and inevitable) departures from

some habitual routine, the results obtained

should not be altered by these minor de-

partures. If the results are altered, we

should by all means know about it and warn

the prospective user not to depart by more

than some stated amount from the specified

condition. Presumably most of these minor

departures will show neghgible effects, but

if just one sensitive condition is spotted, we

may save the very considerable effort that

would have been expended in a disappoint-

ing collaborative test—particularly disap-

pointing because it is all but impossible to

track down the responsible conditions, since

all the laboratories quite sincerely report

that they followed the procedure.

What is needed is a scheme of attack that

will conserve labor yet be sensitive enough

to pick up fairly small effects if they should

occur when some condition has been slightly

altered. Negligible effects will be found for

most changes. There is a program for mak-
uig slight modifications in the procedure that

has a very high efficiency in identifying those

changes that do produce effects. The basic

idea is not to study one alteration at a time

but to introduce several changes at once,

in such a manner that the effects of indi-

vidual changes can be ascertained. Let A,

B, C, D, E, F, and G denote the nominal

values for seven different factors that might

influence the result if their nominal values

are slightly changed. Let their alternative

values be denoted by the corresponding

lower case letters a, b, c, d, e, f, and g.

Now the conditions for running a determina-

tion will be completely specified by writing

down these seven letters, each letter being

either a capital or lower case. There are 2''

or 128 different combinations that might be

written out. Fortunately it is possible to

choose a subset of eight of these combina-

tions that have an elegant balance between

capital and lower case letters.

The particular set of combinations is

shown in Table 1. The table specifies the

values for the seven factors to be used

while running eight determinations. The re-

sults for the analyses are designated by the

letters s through z. Let us see how to extri-

cate the separate effects of the factor

changes, even though four factors are always

altered from the initial combination of all

capitals. To find whether changing factor

A to a had an effect, we compare the aver-

age {s + t + u + v)/4: with the average

(w + X + ij + z)/4:. The table shows that

determinations 1, 2, 3, and 4 were run with

the factor at level A and determinations

5, 6, 7, and 8 with the factor at level a. Ob-

serve that this partition gives two groups

of four determinations and that each group

contains the other six factors twice at the

capital level and twice at the lower case
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Table 1. Eight combinations of seven factors used to test the ruggedness
of an analytical procedure

Combination or Determination Number

Factor Value
1 2 3 4 5 Q Qa

A or a A A
1 A.

A A
Sb & a>

B or b B B b b B B b b

C or c C c C c C c C c

D or d D D d d d d D D
E or e E e E e e E e E
F orf F f f F F f f F
G or g G g g G g G G g

Observed result s t u V w X y z

level. The effects of these factors, if pres-

ent, consequently cancel out, leaving only

the effect of changing A to a.

Inspection of Table 1 shows that whenever

the eight determinations are spht into two

groups of four on the basis of one of the

letters, all the other factors cancel out within

each group. Every one of the factors is

evaluated by all eight determinations. The

effect of altering G to g, for example, is

examined by comparing the average {s + v

+ X + y)/A with the average oi {t + u +
w + z)/4:. Suppose only six factors are

explored. In that event, associate with g

some meaningless operation such as solemnly

picking up the beaker, looking at it intently,

and setting it down again. Omit this mean-

ingless operation for the determinations that

involve G. (Be sure to look at the average

difference between the G's and g's, because

if they are large an explanation should be

sought
!

)

Collect the seven differences for A — a,

B — b, . . . , G — g, and list them in order

of size. If one or two factors are having

an effect, their differences will be substan-

tially larger than the group of differences

associated with the other factors. Indeed,

this ranking is a direct guide to the proce-

dure's sensitivity to modest alterations in

the factors. Obviously a useful procedure

should not be affected by changes that will

almost certainly be encountered between

laboratories. If there is no outstanding dif-

ference, the most realistic measure of the

analytical error is given by the seven differ-

ences obtained from the averages for capi-

tals minus the averages for corresponding

lower-case letters. Denote these seven differ-

ences by Da, Db, . . .
,
Dg. To estimate the

standard deviation, square the differences

and take the square root of 2/7 the sum of

their squares. This estimate of the ana-

lytical error is reahstic in that the sort of

variation in operating conditions that will be

encountered among several laboratories has

been purposely created within the initiating

laboratory. If the standard deviation so

found is unsatisfactorily large, it is a fore-

gone conclusion that the collaborative test

wiU also give disappointing results. The col-

laborative test should never be undertaken

until a procedure has been subjected to the

abuse described above and satisfactory re-

sults obtained in spite of the abuse.

The schedule shown in Table 1 can be

modified in various ways. An interesting

variant is to replace the capitals with lower-

case letters and vice versa. This creates

eight new combinations. If all sixteen com-

binations are tried, smaller effects will be

detected as well as possible mutual inter-

ferences of the factors. At this point a

statistician will likely be of considerable

assistance. There will be some who may see

in this scheme a means of studying a pro-

cedure in its formative stage. Generally this

is inadvisable, because substantial changes

in the factors seldom act, independently

and a more complex schedule of factor val-

ues is appropriate. There are also schedules

for eleven and fifteen factors which may be

found useful (2-5).

If only those procedures that survive this
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planned introduction of minor modifications

in the procedure were submitted to a col-

laborative test, then the latter would really

take on the role of confirming that a good

procedure has in fact been devised. Much
disappointment would be avoided and

sources of difficulty would be tracked down

by this planned work within one laboratory.

It should not be necessary to involve several

laboratories in order to discover serious

shortcomings in a procedure. Fewer col-

laborative tests would be needed and par-

ticipation would be encouraged because the

chance of a successful outcome would be

very high.

The Interpretation of the Data

After the cooperating laboratories have

made their reports, the results may be tabu-

lated as shown in Table 2. Generally one

would hope for a table with about forty or

more entries, and every effort should be

made to avoid missing entries.

It is useful to consider Table 2 as a whole

and try to place the table in one of four

categories. The hoped-for category is that

the standard deviation as calculated for each

column in the above table is acceptably

small.

If .r, the results tabulated

in a column for any one material, the esti-

mate for the standard deviation for that

column is given by

s = V(Sx2 - nx^)/{n - 1).

where x is the mean for the column.

The standard deviation may, of course, vary

with the amount present and it would be

informative to prepare a graph plotting the

standard deviation as ordinate against the

amount present as abscissa. Some irregu-

larity is to be expected, particularly if fewer

than ten laboratories participate. A. smooth

curve should be drawn in with no attempt

to follow the individual ups and downs.

Values of the standard deviation read from

this curve are very likely closer to the mark
than the individual points. If the curve is

approximately a straight line going near

the origin, then the error is proportional to

the amount present. Very often, in such an

event, the error is expressed as per cent of

the amount present and labeled the "Coeffi-

cient of Variation."

If the standard deviation when plotted

against the amount present gives a series

of points that show no trend, then the best

fit is a horizontal line Y = s"". That is, the

standard deviation is the same over the

range of amount present used in the work.

The best value to use for s* is not the aver-

age of the standard deviations found for the

"M" columns. The squares of the standard

deviations should be summed and divided

by M, and the square root taken to get the

best estimate of the standard deviation that

will be appropriate for all the materials.

This estimate of the standard deviation has

M(n — 1) degrees of freedom. There should

be at least 20 degrees of freedom to provide

a reasonably good estimate of the standard

deviation.

If the standard deviation as calculated for

all, or most, of the columns is unacceptably

large, the table of data may usually be

classed in one of three categories. In order

Table 2. Tabulation of results

Laboratory No.

Material Number

M

155-59



to determine the category, a convenient de-

vice is to prepare another table that better

reveals certain features of the data, as fol-

lows: Scan the entries in the first column

of Table 2 and assign the rank of 1 to the

highest result, the rank of 2 to the next

highest result and so on, until the rank of n

is given to the lowest result in that column.

Enter these ranks opposite the appropriate

laboratories in the first column of the new

table. If two laboratories are tied for fourth

place, assign to each the rank of 4.5. If

three are tied for second place, assign all

three the rank of 3. This keeps the sum of

the ranks, n{n+ l)/2, the same for each

column. Repeat this process for each col-

umn, and then sum the ranks assigned to

the first laboratory and enter it as a labo-

ratory score at the right of the row. Sum
the ranks in each row. When the scores

achieved by all the laboratories are added,

the total should be Mn{n+ l)/2, and this

provides a convenient check on the work.

Should a laboratory turn in the highest

result for each of the "M" materials, its score

would be M, the lowest possible. The high-

est possible score is nM and the average

score is M(n-|-l)/2. The scores obtained

by the n laboratories afford certain clues as

to the reason why an unsatisfactory standard

deviation was obtained from the reported

results. The interpretation depends on the

fact that for each combination of n labora-

tories and M materials, it is possible to

compute a lower and an upper hmiting

score. Scores as low as or lower, or as

large as or larger than these limiting scores

are an indication of trouble. They mean

that a laboratory with such an extreme score

has a definite tendency to get persistently

high or low results.

Now it is possible for the standard devia-

tion to be unacceptably large and yet for no

laboratory to turn up with an extremely

low or high score. This would happen if the

precision of the method is very poor. It

may also happen if a laboratory tends to

get high or low results for materials with

low percentages and opposite results with

materials of high percentages. If this hap-

pens with several laboratories, scores tend

to cluster near the average score. Whatever

the explanation, the evidence points to some

defect in the procedure.

Another category arises when one or per-

haps two laboratories have quite extreme

scores. This laboratory (or both, if there are

two) is the one chiefly responsible for the

large standard deviations found for the indi-

vidual columns. If the results from this

laboratory are set aside, the standard devia-

tion calculated by using the remaining labo-

ratories may be acceptable. The basis for

setting aside these results is that the limiting

scores have been so chosen that only one

collaborative test in twenty can be expected

to include an extreme score by chance. An
extreme score is, in consequence, a strong

hint that the laboratory concerned has a

pronounced bias, probably as a result of

Table 3. Water-insoluble nitrogen results

Results, % Ranked Results

Coll.

No. Sample
1

Sample
2

Sample
3

Sample
4

Sample
5

Sample
1

Sample Sample Sample
2 3 4

Sample
5

CoU.
Score

7 4.59 1.46 5.64 2.19 27.32 9 5.5 6 4 3 27.5

8 4.94 1.52 5.68 2.28 26.44 1 1 3 2 10 17

9 4.80 1.40 5.62 2.12 26.89 3.5 8.5 7.5 6.5 8 34

10 4.73 1.46 5.65 2.09 27.17 5 5.5 5 8 4 27.5

11 4.72 1.51 5.62 2.12 27.00 6.5 2.5 7.5 6.5 6 29

12 4.80 1.51 5.80 3.29 27.48 3.5 2.5 1 1 1 9"

13 4.45 1.40 5.45 2.07 27.02 10 8.5 10 9 5 42.5

15 4.72 1.50 5.58 2.27 26.76 6.5 4 9 3 9 31.5

16 4.63 1.32 5.69 2.04 26.92 8 10 2 10 7 37

17 4.88 1.42 5.67 2.16 27.39 2 7 4 5 2 20

" Designates unusually low score.
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Let n laboratories test each of M materials. Assign ranks 1 to n for each mate-
rial. Sum the ranks to get the score for each laboratory. The mean score is

M{n+ l)/2. The entries are lower and upper limits that are included in the

approximate 5% critical region.

Table 4. Approximate 5% two-tail limits for ranking scores

No. of

Labs.

10

11

12

13

14

15

Number of Materials

8 9

3

18

3

21

3

24

3

27

4

29

4

32

4

35

4

38

4

41

4

44

4

12

4

16

5

19

5

23

5

27

6

30

6

34

7

37

7

41

7

45

8

48

52

56

5

15

6

19

7

23

7

28

32

9

36

9

41

10

45

11

49

11

54

12

58

12

63

13

67

7

17

22

9

27

10

32

11

37

12

42

13

47

14

52

15

57

15

63

16

68

17

73

18

78

8

20

10

25

11

31

12

37

14

42

15

48

16

54

17

60

19

65

20

71

21

77

22

83

23

89

10

22

12

28

13

35

15

41

17

47

18

54

20

60

21

67

23

73

24

80

26

86

27

93

29

99

12

24

14

31

16

38

18

45

20

52

22

59

24

66

26

73

27

81

29

31

95

33

102

35

109

10

13

27

16

34

18

42

21

49

23

57

25

65

27

73

30

80

32

34

96

36

104

38

112

41

119

11

15

29

18

37

21

45

23

54

26

62

29

70

31

79

34

87

36

96

39

104

42

112

44

121

47

129

12

17

31

20

40

23

49

26

58

29

67

32

76

35

85

38

94

41

103

44

112

47

121

50

130

53

139

13

19

33

22

43

26

52

29

62

32

72

36

81

39

91

43

100

46

110

49

120

52

130

56

139

59

149

14

20

36

24

46

28

56

32

66

36

76

39

87

43

97

47

107

51

117

54

128

58

138

61

149

65

159

15

22

38

26

49

31

59

35

70

39

81

43

92

47

103

51

114

55

125

59

136

63

147

67

158

71

169

some deviation, unintentional or otherwise,

from the procedure.

At this point it appears proper to query

the laboratory with an extreme score to

ascertain if the laboratory can offer any

explanation for its results being consistently

higher (or lower) than the results of the

other participants.

In a very real sense a collaborative test

reveals not only the performance of the pro-

cedure under test but also the performance

of the laboratories doing the testing. The
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intent of this ranking device is to prevent a

procedure from being unjustly rated poor

when one or two laboratories are in fact

responsible for the large scatter of the re-

sults.

Finally, the last category of unsatisfactory

collaborative tests contains clearly unsatis-

factory procedures. Sometimes the table of

ranks shows little or no change in the as-

signed ranks as the eye moves from column

to column in the table. In other words, a

laboratory tends to hold its same rank for

aU materials. Usually there will be at least

one very high and one very low score. What
this tells is that each laboratory is doing

the same thing very carefuUy every time.

Some minor departure from a specified fac-

tor value, or even an arbitrarily chosen value

for a factor because none was specified, is

seriously influencing the analytical results.

Obviously each laboratory is carefully fol-

lowing whatever routine it adopted. Now it

is ridiculous to say that all the laboratories

are inadequate. It makes better sense to

conclude that here is a procedure so very

vulnerable that it should never have been

submitted to a collaborative test.

Illustrative Example of Ranking Technique

Table 3 shows a portion of a rather ex-

tensive collaborative test on nitrogen in

fertilizers (6). The data for the water in-

soluble nitrogen are shown in the left half

of Table 3 for ten of the participating labo-

ratories. The right half of the table shows

the ranks assigned to the collaborators; the

rank of one is given to the highest result

and the rank of ten to the lowest result on

each sample. It happens that the data are,

in fact, averages of duplicates but this does

not disturb the ranking technique. The re-

sult for Sample 4 by Collaborator 12 looks

pecuhar but even if the 3 is a misprint for

2 the ranking would not be altered.

The last column of the table shows the

scores obtained for each collaborator by

adding up the 5 ranks obtained with the 5

samples. The critical 5% probability scores

for 10 laboratories and 5 samples are 10 and

45. Collaborator 12 runs persistently high

and has a score of 9, which is in the critical

region. The evidence indicates that Collabo-

rator 12 has some individual manner of mak-
ing the determination. Critical scores for as

many as 15 collaborators and 15 samples are

listed in Table 4 (5).

Discussion and Summary

This paper has considered several impor-

tant aspects of collaborative test programs.

The question of the distribution of the

analytical effort is of prime importance. A
broad basis for judgment requires enough

laboratories and materials to be representa-

tive of the users and the materials Hkely to

be submitted for analysis. In order to pre-

vent unduly burdensome programs it is rec-

ommended that duplicates be eliminated

and rehance placed on the initiating labo-

ratory for information as to the precision of

the procedure.

Another very important question concerns

the need to make sure that the procedure

is really ready for a collaborative test and

that it will almost surely pass this final in-

spection. To that end an efficient and sys-

tematic way of disclosing possible weak-

nesses in the procedure has been presented

in detail. The initiating laboratory should

present evidence of the performance of the

procedure when minor and seemingly incon-

sequential changes are made.

Finally a method has been described for

evaluating unsatisfactory collaborative test

results which should be valuable as a guide

to determining the probable cause of the

unsatisfactory results.
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Experimental Design and ASTM Committees

This paper considers the subject of experimental design from the view-

point of ASTM committee members concerned with devising and evaluating

test procedures. Simple designs are described that make for an efficient

approach to the identification of defects in a test procedure. Suggestions

are made regarding the supporting evidence that should be offered by an

initiating laboratory before conducting an interlaboratory test. A pre-

liminary type of interlaboratory test is advanced as a means of checking on

the claims made in behalf of a test procedixre.

By W. J. YOUDEN

There are numerous

textbooks available that present a

systematic account of the various types

of experimental design and the analysis

of variance appropriate for each type of

design. Why then should anyone under-

take to write on experimental design for

ASTM committees? The answer ap-

pears to lie in the fact that statistical

texts organize the material on experi-

mental design from the viewpoint of

statistics. There is a need for exposi-

tions that emphasize the objectives

and problems that confront ASTM com-

mittee members. This paper discusses

certain problems that arise in the prog-

ress of a test procedure from its incep-

tion to the status of a standard pro-

cedure. It offers an approach to those

recurring statistical problems of general

concern regardless of the particular

material involved.

The Inception of a Test Procedure

A new test procedure, or a modi-

fication of an old procedure, begins

in a laboratory. The research involved

in devising a test procedure calls for ex-

pert knowledge of the material to which

the procedure will be applied. The test

procedure must serve a useful purpose.

Usually it evaluates some property of

the material that must be known
within certain limits. Satisfactory esti-

mates of the properties of material are

required for the safe and economical use

of materials and for the setting of fair

values in the exchange of materials.

The initiating laboratory should be able

to supply certain information before

requesting that a group of laboratories

participate in a round-robin evaluation.

There are defects Ln a test procedure that

are best ascertained by work within one

laboratory, and only confusion results

if the detection of these defects is at-

tempted using the less sensitive compari-

sons associated with interlaboratory

tests.

Many test procedures are used to

predict the performance in use of the

material undergoing test. The labora-

tory or agency proposing a test must
bear in mind that the test will be used

for prediction purposes. Devising an
adequate test procedure is often a major

NOTE—DISCUSSION OF THIS PAPER
IS INVITED, either for publication or for
the attention of the author or authors. Ad-
dress all communications to ASTM Head
quarters, 1916 Race St., Philadelphia 3, Pa.

research problem. A rotmd robin re-

veals the agreement or lack of agree-

ment among the test results obtained

by different laboratories. Agreement
among the laboratories does not estab-

lish that the test procedure provides a

satisfactory measure of the performance

of the material. Agreement among
laboratories is a necessary even though

not a sufficient criterion of a good test

procedure. This paper takes up the

question of attaining agreement among
laboratories.

A test is made on a sample or speci-

men. The initiating laboratory should,

based on its expert familiarity with the

material, undertake to specify what
sort of a sample, or samples, composite

or otherwise will be needed. Good
tests are simply wasted when used on

poor samples. A quick and simple test

may suffice for a heterogeneous material

represented by one or two samples.

We will suppose that the laboratory

has a procedure that appears to be

satisfactory. What supporting evi-

dence does the committee have a right

to expect from the initiating laboratory?

It is useless to exhibit an array of corre-

sponding results obtained on aliquots of

a sample or by one operator doing his

very best to "hold everything constant."

What is needed is positive evidence that

the results check acceptably when
deliberate variations are made in the

test conditions. These variations

should be of the size likely to be en-

countered when several laboratories are

presumably following the procedure.

As an example, suppose that the

samples have to be placed in an environ-

ment of specified humidity and tem-

perature for a certain period of time.

The initiating laboratory may subject

a dozen samples to this conditioning and
obtain excellent checks. A dozen sam-

ples sent one each to twelve laboratories

yield twelve results with considerable

scatter. The explanation is simple.

Let the required temperature be 80 C,

the relative humidity 60 per cent, and
the time 1 hr. Suppose the Initiating

laboratory for its test sets 78 C, 55 per

cent humidity and takes them out after

56 min. Of course, the twelve results

still check each other nicely—and this

proves nothing at all except that the

sampling is adequate. Twelve labora-

tories will set up various temperatures

and humidities, all nominally asspecified,

and be variously inexact about the time,

and this may explain the scatter of the

results.

The initiating laboratory has the

responsibility to vary the test conditions

from the nominal specified values to find

out what happens. The initiating re-

search often makes use of better equip-

ment and controls than are available

routinely. The initiating laboratory

should be able to set 80 C, or 78 C, or

some other nearby value and hold it

there. Likewise with the other condi-

tions. If the laboratory finds it neces-

sary to set and hold the relevant condi-

tions within very narrow limits in order

to achieve good checks this may
seriously limit the usefulness of the pro-
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TABLE I—EIGHT COMBINATIONS OF TEST CONDITIONS AND DUPLICATE
TEST RESULTS ON 2-IN. CUBES OF CEMENT.

Combination of Test Conditions12345678
Cement A A
Sand B B
Hours in mold C c
Age at test D D
Initial loading E e

Loading rate F f
Operator G g
Duplicate test results, lb / 8200 8680

\ 8100 8220

Average 8150 8450
Difference 100 460

cedure. Therefore, the initiating lab-

oratory should present evidence to

demonstrate that the test procedure

results wiU not be altered by departures

from specified values of the test condi-

tions that are likely to be encountered

when using routine equipment. To use

a round-robin test and hope that all will

be well is a misuse of the time of other

laboratories. Furthermore, the identi-

fication of the particular conditions to

which the test results are sensitive is

impossible using the round-robin data

because naturally all the laboratories re-

port that they followed the specified

conditions.

Simple Design for Within-Laboratory

Study

The committee should be furnished

with actual evidence that the test pro-

cediu-e tolerates departures from speci-

fied conditions to the extent that may be

expected in practice. Simple and sensi-

tive experimental designs are available

for the use of a laboratory undertaking

to supply this sort of evidence. Clearly,

the selection of the conditions to be

explored wUl depend on the material and

on the test procedure. This experi-

mental design is so economical and

efficient that the laboratory can include

conditions which it might ordinarily

feel could safely be assumed not to be a

source of trouble. The larger the num-
ber of conditions explored the more con-

vincing will be the evidence submitted

to the committee.

The principle of the experimental de-

sign will be developed in a simple ex-

ample involving a test of just three con-

ditions. Let the specified values for the

conditions he A, B, and C and the alter-

native values, slightly different from the

specified values, be o, b, and c. The
standard experimental procedure would

be to conduct four trials as follows

:

Observed

Trial Condition Result

No. 1 ABC t

No. 2 a B C u
No. 3 Ab C V

No. 4 A B c w

' The boldface numbers in parentheses
refer to the list of references appended to this

paper.

A A a a a a
b b B B b b
C c C c C c

d d d d D D
E e e E e E
f F F f f F
a G 0 G G g

9100 8620 9620 9540 9160 9320
9240 8980 9480 9600 9100 9360

9170 8800 9550 9570 9130 9340
140 360 140 60 60 40

The thought here is that, by varying one

condition at a time, the effect of chang-

ing a condition wUl be directly revealed.

This is true, but there is a more efficient

way to conduct the investigation. The
four trials listed below are more efficient

in detecting possible effects of changing

a condition.

Trial Condition

Observed
Result

No. 1 ABC t

No. 5 a h C X
No. 6 a Be y
No. 7.... Ah c z

Notice that two conditions have been

changed each time from the initial set of

conditions A, B, and C. The effect of

changing condition A to a is given by
taking the difference between the aver-

ages of two results.

Average result with A

Average result with a

The two trials with condition A in-

volve B, b, C, and c. This is also

true for the two trials at condition a.

Thus, the effects associated with B, b,

C, and c are present in both averages,

although in the combinations BC and be

for A, and bC and Be for a. The effect

of changing from 5 to 6 is taken to be

independent of the value set for condi-

tion C. The justification rests on the

expectation that the changes, yl to a,

B tob, and C to c, have been made quite

small, and therefore the changes are not

expected to have an appreciable effect

on the test result if the test procedure

is acceptable for routine work where such

small changes in the conditions are likely

to be encountered. If the effect on the

test result of changing any capital condi-

tion to its lower-case counterpart is

substantial, the test procedure is in

trouble anyway. If we were trjdng to

establish how a test result changes when
some test condition, say temperature,

is varied over a very large range, then

the interdependence with other condi-

tions would be very important and the

proposed design would not be suitable.

The fact is that a good test procedure

must not be too sensitive to inadvertent

small departures from the specified test

conditions. Presumably, there will be
small consequences of such departures,

consequences not much larger than the

experimental error and therefore difficult

to detect. The use of the averages, in-

stead of the difference between single

tests, gives the investigator a better

chance to pick up the effects of depar-

tures from the specified conditions.

Furthermore, it is altogether reasonable

to use as a means of estimating the

"error" of the test procedure the varia-

tion among the four results t, x, y, and
2. Not only is it reasonable but more
realistic, because surely the performance

of the test procedure is given by results

of setting up the conditions several

times and not from several specimens

all exposed to exactly the same condi-

tioning, whatever it happened to be.

Indeed, two or more specimens should

be included in each of the four trials and
the error within trials (pooled for all

trials) compared with that found between

trials. The committee can, as a mini-

mum, expect to be furnished the be-

tween-trial figure for the error, because

the results from different laboratories

will not be any better than this error and
more than likely will be worse.

Illustrative Study of a Test Procedure

Twenty-five years ago Yates (3)'

proposed such "weighing designs" but

considered them of merely academic

interest because the agricultural in-

vestigations that he was familiar with

generally involved large effects on the

crop yields. The following example

using actual data is based on the design

he proposed for seven experimental fac-

tors or conditions (8). This investiga-

tion concerned the study of seven condi-

tions that might influence the compres-

sive strength of 2-in. cubes of portland-

cement mortar. The conditions were;

choice of cements, choice of sand, choice

of hours in mold, choice of age at test,

choice of initial loading versus no initial

loading, choice of fast or slow loading

rate, and choice of operators. These

seven conditions were assigned values

and identifying letters as follows

:

Cement A or o

Sand B or 6

Hours in mold ( 16 or 24) C or c

Age at test (65 or 72 hr) D or d

Initial loading (yes or no) E or e

Loading rate (fast or slow) .... F or /
Operator (Joe or Jack) G or g

Eight combinations of test conditions

are shown in Table I together with the

breaking strengths of the dupUcate speci-

mens tested for each of the eight com-
binations. This table shows that com-
binations 2 through 8 all differ from the
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standard combination 1 in that four

conditions are changed simultaneously.

The changes are made in such a way
that the four capital-A combinations

contain two capital and two lower-case

letters for each of the other six letters.

The four lower-case-a combinations also

contain two capital and two lower-case

combinations of the other six letters.

Thus, the effects of these other letters

are balanced off against one another

when the average of the four combina-

tions containing A is compared with

the average of the four combinations

containing a. This state of affairs

holds no matter which letter is selected

to determine the division into two

groups.

For example, to compare the strengths

of the specimens tested after 65 hr with

the specimens tested after 72 hr tab-

ulate the four results for D and the four

results for d.

D(65hr) d (72 hr)

8 150 9 170

8 450 8 800

9 130 9 550

9 340 9 570

Total 35 070 37 090

Average 8 768 9 272

Difference 504

It is not surprising to find that speci-

mens tested after 72 hr are stronger

than specimens tested after 65 hr.

The inclusion of variables that would

be expected to have little or no effect

will provide direct assurance that differ-

ences on the order of 500 are meaningful.

Thus, the hours in the mold were either

16 or 24.

C(16hr) c (24 hr)

8 150 8 450

9 170 8 800
9 550 9 570
9 130 9 340

Total 36 000 36 160

Average 9 000 9 040
Difference 40

In spite of the use of different cements,

sands, and testing ages all of which

influence the strength, the two aver-

ages representing different times in the

mold show excellent agreement. The
above results and those for the other

five factors are shown in Table II.

This example is a severe test of this

method of studying a test procedure.

The 10 per cent change in age is greatly

in excess of any expected departure from

the test conditions. Indeed, two
cements might gain strength at differ-

ent rates. This complication would
usually not be present if only one cement
were used. The two cements and the

excessively different ages were used to

make sure that the example would have

TABLE II.^COMPARISON OF RESULTS OBTAINED WITH CHANGED TEST
CONDITIONS. BREAKING STRENGTHS, LB.

Condition Average for Average for Difference Between
Changed Capital Letters Lower-Case Letters Averages

Cement 8642 9398 756
Sand 8930 9110 180
Hours in mold 9000 9040 40
Age at test 8768 9272 504
Initial loading 9058 8982 76
Loading rate 8960 9080 120
Operator 8912 9128 216

at least two sizable differences among the

comparisons. A satisfactory procedure

should give only insignificant differ-

ences when modest and reasonable varia-

tions are permitted in the test condi-

tions.

The problem confronting the investi-

gator is the evaluation of the differences

listed in the last column of Table II.

The differences between the duplicate

specimens (Table I) do provide a basis

for judgment for all the conditions

except cement and sand. The reason

for these two exceptions is that the

dupUcate test specimens always came
from the same batch. Comparisons

between hours in the mold, ages at test,

initial and no initial loading, between

loading rates, and between operators

use specimens from the same batch.

On the other hand, cements (or sands)

cannot be compared without making
different batches. Consequently, the

reproducibility of the batches is in-

volved, and this may make the com-

parison of sands and cements subject

to a larger error than the duplicate

specimen error.

The examination of an experimental

situation to identify the possible sources

of error applicable to any particular

comparison is an often overlooked step

in the examination of experimental re-

sults. If the effect of changing sands is

to be justly evaluated, then a number of

repeat batches with each sand should be

made. The difference found between

batches made with different sands can

only be judged by the difference found

between batches made using the same
sand. In the case at hand the change in

strength due to changing the sand is

small, indicating that both the change

in sand and the difference between

batches had small effects. The large

effect of changing the cement can there-

fore be judged to arise mainly from the

change in cement itself rather than the

nonreproducibility of batches.

The eight pairs of duphcate specimens

provide an estimate, s, of the standard

deviation of a result on a single test

specimen. This estimate is based on
only 8 degrees of freedom. Triplicate

specimens would provide 16 degrees of

freedom and, in general, 16 or more de-

grees of freedom are advisable. The
differences, 100, 460, . . ., 40 are

squared and divided by 2 X 8 = 16,

that is, twice the number of pairs.

s = VsdVie = ^399,200/16 = 158 lb

The estimated standard deviation of a
difference between two averages, when
each average is based on n results, is

sVVn. The averages hsted in Table

II are based on eight specimens because

dupUcate cubes were averaged to get

the result for each combination. The
standard deviation for the last five

differences listed in the last column of

Table II is IbsVVS, or 79 lb. The
multiple, t, of this standard deviation

that is taken to give a difference not

likely to be exceeded by chance de-

pends on the level of probabiUty

selected by the investigator and also

on the number of degrees of freedom

available for estimating the standard

deviation. At the 1 per cent level,

with 8 degrees of freedom for the esti-

mate, the value for t is 3.36. Conse-

quently, differences of the order of 3.36

X 79, or about 265 lb, suggest that

changing the condition did have an
effect. Changing the mold time, opera-

tors, the initial loading, and the load-

ing rate all produced smaller differ-

ences. With more specimens and firmer

averages these differences might be

established as something other than

fortuitous. The age at test is clearly

important at least for this early age.

Assuming a linear increase in strength

over the interval between the two ages

of test (65 and 72 hr), then the 504-lb

increase in 7 hr suggests that 1 hr would
make a difference of about 70 lb in

strength. Clearly the specific time

must be adhered to.

There are other factors that might
have been studied for their effect on the

strength of cubes. For instance, dur-

ing the tune "hours in mold" the speci-

mens in molds are stored in a moist

cabinet maintained at 73.4 ± 3 F and
not less than 90 per cent humidity.

Also the mixing must be done in a tem-

perature between 68 and 81.5 F and a

humidity of not less than 50 per cent.

The temperature of the mixing slab,

dry materials, mold,' and mixing bowl

are also supposed to be between the

latter limits, and the temperature of

the mixing water is specified the same

as that of the moist cabinet. After the

specimens are removed from the molds,

they are stored under water, also main-

tained at 73.4 ± 3 F. It is specified that
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the water in the storage tank should be

kept "clean by frequent changing."

Some people feel that too frequent

changing leeches the specimens and
changes the strength.

Additional Experimental Designs

Designs to study fewer than seven

conditions are easily constructed from

the schedule shown in Table I. If

only five conditions are to be studied,

simply note the identifying labels for F
and /, and G and g, but make no condi-

tion changes for these symbols. The
reason for retaining the symbols is that

the separation of the eight results into

two groups should still be made for each

of these letters. The two averages for

F and/ ought to agree, within the experi-

mental error, because no change in

condition was connected with the group-

ing. The averages for G and g should

also agree. This provides a desirable

check on the experimental error as

revealed by the duplicate (or more) re-

sults obtained for each of the eight com-
binations. Incidentally, interchanging

the capital and lower-case letters in

Table I gives a quite different selection

of eight combinations that possesses all

the properties of the set shown in Table I.

The conditions retain their assigned

letters. Should this second set also be

tried, a second set of differences which

estimate the effects associated with the

changed conditions becomes available.

This would provide additional confirma-

tion of any effects indicated by the first

eight combinations.

Any number up to eleven conditions,

A through K, can be studied by forming

twelve combinations using the schedule

shown in Table III. This schedule of

combinations is from a paper by Plackett

and Burman (2) that also lists schedules

for larger numbers of combinations.

Error of a Test Procedure

The sponsor of a test procedure should

make every possible effort to simulate,

in his own laboratory, the sources of

error, that is, the changes in condi-

tions that will be encountered in differ-

ent laboratories. In the cement ex-

ample, different laboratories unavoid-

ably use different batches, and it is,

therefore, the reproducibility of the

batch that is involved and not merely

the agreement shown by duphcate speci-

mens from the same batch. Of course,

in studjdng within one laboratory the

effect of changing certain conditons, such

as operator or loading rate, there is a real

advantage in making comparisons be-

tween specimens from the same batch.

This was true in the above example.

If the effects are negligible when judged

in terms of dupUcates from the same
batch, they will certainly not matter

when the error of different batches

is also involved, as it is in compari-

sons between laboratories.

There have been many attempts to

define precision and accuracy and the

newer terms, repeatability and repro-

ducibility. The case history just dis-

cussed shows how the appropriate

error term depends upon the actual

situation. It is an oversimplification to

talk about within laboratory error and
between-laboratory error. Men have
had little success in framing definitions

acceptable to a majority within a com-
mittee and even less success in framing

definitions acceptable to a majority of

ASTM committees. Perhaps we should

worry less about defining these terms

and concentrate more on devising some
set of operations that will readily reveal

the vicissitudes to which a test procedure

will be exposed. In addition, there is

needed a plain statement of the varia-

tion exhibited by the test results

—

say, the standard deviation—when test

conditions are purposely varied . At best

such an estimate of the performance of

the test jjrocedure is likely to be some-

what optimistic, because the initiating

laboratory may have neglected to vary

certain conditions or varied some of

them by too small amounts. It does

seem as though it might be relatively

easy to devise an acceptable routine for

getting data on a proposed test pro-

cedure that bears some relation to the

real world of testing. No difficulty

stands in the way of selecting a statistical

technique that will provide a concise rep-

resentation of the variation among
the results. It should be easier for com-
mittes to agree on the operations, both

laboratory and statistical, than to agree

on the meanings of the words, both old

and new, that have served as abstract

labels.

The two sands and the two cements in

"Reproducibility is

desirable, but it should not be

forgotten that it may be achieved

just as easily by insensitivity as

by an increase in precision."

Example: "All men are two
meters tall give or take a meter."

Anon.

the cement test forced the preparation

of four batches, and these were used for

the eight combinations. Given a batch

for each of the eight coinbinations the

eight batches would give more informa-

tion on variation arising from batch-

to-batch differences. (The cement con-

trast normally would be used for some
test condition.) The laboratory spon-

soring the test procedure implies that

the test results are not unduly altered

by small, unavoidable departures from

the specified test conditions. The lab-

oratory should explore such reasonable

and inevitable departures. If the spon-

soring laboratory believes that it has a

satisfactory test procedure, it should be

willing to list the eight averages (they

may be single results) for the eight com-
binations and claim no better perform-

ance than the standard deviation calcu-

lated from these eight results associated

with the eight combinations.

If this standard deviation is unaccept-

ably large, then the comparisons listed

in Table II should indicate the conditions

chiefly responsible. Impro\'ed means
for setting this condition at its standard

value must be devised, or at the very

least, the procedure must contain a warn-

ing that special, not routine, care is

necessary on this condition. All this

seems to be a minimum amount of in-

formation that should accompany a test

procedure under consideration for inter-

laboratory test. The sponsoring lab-

oratory may have all the fun it wants

within its own walls by using nested

factorials, components of variance,

or anything else that the workers be-

lieve will help in the fashioning of a test

procedure. At some time the chosen

procedure should undergo the sort of

mutilation that results from the de-

partures from the specified procedure

that occur in other laboratories. The
extent of these departures must be

based upon expert knowledge of the

available equipment and how it is used

in routine practice. If the procedure

passes this test, it is ready to undergo

an interlaboratory test. The inter-

laboratory test should be a confifrjmation

of the claims made for the procedure.

The disappointing results so often ob-

tained in round robins are disappointing

only in terms of false hopes that were

based on unrealistic claims made for the

procedure by the sponsoring laboratory.

TABLE III.-^SCHEDULE FOR TWELVE COMBINATIONS OF ANY
NUMBER UP TO ELEVEN CONDITIONS.

1 2 3 4 5 6 7 8 9 10 11 12

A A a A A A a a a A a a
B b B B B b b b B b b B
C C C C c c c C c c C c

D D D d d d D d d D d D
E E e e e E e e E e E E
F S f f F f f F f F F F
G a g G g 0 G g G G G g
H h H h h H h H H H h h
I I i i I i I 1 I i i i

J i i J i J J J J J j J
K k K k K K K k k k K k
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The Interlaboratory Test

A vast amount of testing time has

been wasted upon over-elaborate inter-

laboratory test programs on procedures

whose shortcomings would have been

revealed by a modest round robin.

This section will present briefly a com-
pact program that will quickly assay the

claims made for the test procedure.

Should the procedure survive this phase,

a more searching and necessarily more
elaborate interlaboratory program may
be undertaken if considered necessary

by the committee.

The proposed interlaboratory test

requires two samples of about the same
nature and value of the property to be

tested. These are sent to a dozen or

more cooperating laboratories with the

request for one test on each sample ac-

cording to the test procedure. It is

recommended that a second pair of

samples quite different in value of the

property from the first pair also be

circulated. Even then each participat-

ing laboratory is asked for only four test

results.

The very modest assignment per

laboratory should make it feasible to

increase the number of participating

laboratories and improve the basis for

judging the performance obtained by
different laboratories.

The elimination of duplicates, the

restricted number of materials, and the

avoidance of the usual falderal of opera-

tors, days, etc., introduces an immense
simphfication. The committee would

be very pleased if the reports from a

dozen or more laboratories showed
excellent agreement with perhaps one

or two exceptions. Automatically the

results have sampled equipment, days,

operators, etc. If the results show
acceptable agreement, that is good.

If the agreement among the results is not

acceptable the method is unsatisfactory

and the claims of the sponsoring

laboratory have not been confirmed.

In other words, the initiating laboratory

hasnot i ully explored the possible sources

of variation in the place where such

effects are most easy to uncover, namely,

in its own laboratory.

Much can be learned from a graph

prepared using the pairs of results re-

ported for two closely similar samples.

Call these samples X and Y. Lay off

X and y axes on a graph using a scale

so that the lowest and highest values

can be plotted for each sample. The
same unit of scale must be used for both

axes. Now take the pair of results

reported by laboratory A for samples X
and Y, and using these two results as

coordinates plot a point marked A
on the graph, paper. Do this for each

laboratory until a pattern of points

appears on the paper, one point for each

laboratory.

Plot another point using the average
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Fig. 1.—Each graph shows two materials

tested by several laboratories.

{Top) Results for tension tests (psi) . (Bottom)
Results of tests for fineness of cement (sq cm
per g). The pair of results reported by a
laboratory are used to plot a point. The i
axis is used for the result reported on one
material, the y axis for the result reported for
the other material. In each case one or two
laboratories are clearly apart from the main
cluster of points.

values for X and Y as coordinates.

Draw through this point horizontal and
vertical lines dividing the area into four

quadrants. If chance errors alone

were present in the results, the combina-
tions plus-plus, plus-minus, minus-plus,

and minus-minus of random errors would
all have the same chance of occurring,

and the points would be distributed in a

circular pattern around the center with

approximately equal numbers of points

in each quadrant. The radius of this

circular pattern is related to the over-all

standard deviation of the test results,

sometimes designated as the "reproduci-

bihty" of the test.

Usually, however, the points do not

form a circle, but a majority of them,
and not infrequently nearly all of them,
fall in the upper right and lower left

quadrants, and more or less close to a
line through the center making a 45-deg

angle with the X axis. The excess of

the plus-plus and minus-minus combina-
tions reflects the presence of some de-

parture from the prescribed conditions

for performing the test that carries the

same effect over into both results. If

this effect is large enough when super-

imposed upon the small random errors of

duplicates, the two results will both be

high (or both low) with respect to the

grand averages for the two samples.

The points may form a broad oval

cluster with only a small excess of points
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in the plus-plus and minus-minus
quadrants. If there are one or two
points definitely apart from the cluster

and near the 45-deg line, the conclusion

may be drawn that these outlyiag lab-

oratories have failed in some important
respect to achieve the specified test

conditions. The points are sometimes
spread along the 45-deg line in a long

narrow oval indicating that nearly all

the laboratories were departing from the

prescribed conditions. This may come
about because the prescribed conditions

have not been clearly set forth in the

procedure, particularly in the matter of

of how closely the standard conditions

must be achieved. The procedure may
be so vulnerable to even the smallest

departures for some of the conditions as

to make it impractical for routine use.

The second pair of samples is used for

a second graph. Comparison of the two
graphs will reveal whether the perform-

ance of the procedure changes markedly
with the value of the property. If the

same laboratory occupies the same ex-

treme position along the 45-deg line on
both graphs, this confirms the departure

from the specified procedure. A lab-

oratory with points well removed from
the clusters but not near the 45-deg line

is presumably not even maintaining con-

trol of some important conditions. Ex-

amples of these two sample graphs are

shown in Fig. 1 . The reader may make
his own interpretation based on the two
preceding paragraphs. Detailed ac-

counts of this technique of presenting the

results of interlaboratory tests have been
published (4-7) and applied to a wide
variety of tests.

Evaluating the Quedity of the Test
Procedure

The scatter of the points plotted in the

two sample diagrams directs attention

to a responsibility all too often shirked

by those entrusted with the evaluation

of test procedures. The diagrams in

Fig. 1 and other diagrams in the cited

papers have one or more points clearly

apart from the main cluster. What dis-

position is to be made of the results that

are responsible for these outlying points?

If the between-laboratory error is

calculated using the data from all the

laboratories the error is considerably

inflated by the retention of the results

associated with these points. One
answer to the above question is to use

all the data to establish the performance
of the method on the ground, that,

among the laboratories not participating,

there may be a few more like the one or

two responsible for the outl3dng points

appearing in the diagram. This would
appear to put the emphasis on the per-

formance of the laboratories rather than
on the inherent quality of the procedure

when properly used. The other answer
will require directing the attention of all

concerned to ' those laboratories whose



pronounced individuality sets them
apart from the overwhebning majority.

These laboratories would have the alter-

natives of justifying their values, or dis-

covering the causes of their troubles and
removing them, or of being quietly

omitted from the group used to evaluate

the procedure. No amount of discus-

sion about accuracy, however prolonged,

and no statistical techniques, however

complicated, can be substituted for a

straightforward facing up to the prob-

lem of these outlying laboratories.

The problem of outlying results con-

fronts aU those concerned with the im-

provement of test procedures and all

who use these procedures. The statis-

tician can assist the engineers after they

have settled in their minds what it is

they want. If the decision is made to

retain all the data, except clearly

bizarre results, the setting of confidence

limits may be relatively meaningless.

To ask the statistician to make some

prediction about a new laboratory is to

invite the reply "Is it a good laboratory

or a bad one?" And we are right back

where we have always been. If the

decision is made to set aside some of the

results, should it appear necessary, then

the statistician can be of considerable

assistance in respect to the rules for

eliminating results. Confidence limits

for points in the main cluster can be set

with some assurance that they apply to

laboratories of the same competence as

those in the main cluster.

It is interesting that in other activities,

such as passing a college examination, a

standard is set that a large majority of

the students can meet successfully. No
one is disturbed that some fail for

lack of application or equipment. In a

very real sense the situation is closely

parallel to the performance of the lab-

oratories with a test procedure. Assign

a large standard deviation and all the

laboratories get in. But an examina-

tion that everybody can pass does not

do justice to the course nor does it reveal

its actual merit. The committees must

come to grips with this problem—no one

else will.
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Ranking Laboratories by Round-Robin Tests

By W. J. YOUDEN

This paper presents a method for scoring laboratories participating in

round-robin tests. For each material the laboratory with the highest

numerical result is given the rank of one, the laboratory with the next

highest result is given the rank of two, and so on until the lowest result is

given the lowest rank (L). A laboratory is scored by summing its ranks for

all the materials. The paper includes a new statistical table that gives

lower and upper limits for scores that correspond to 5 per cent probability.

Because systematic errors produce extreme scores, the table should be

useful in singling out laboratories with pronoimced systematic errors.

Round robins are under-

taken for a variety of motives: (1) to

accumulate data that may be used to

determine the precision and accuracy of

a new or modified test procedure, (2) to

recheck an established procedure to as-

certain whether there has been a deteri-

oration in the accuracy arising from

departures from the prescribed routine,

(3) to test the applicability of an estab -

lished procedure to new materials, and

(4) to maintain a periodic check on the

performance of a group of laboratories.

The questions to be answered by a

round robin depend on the information

already in hand. The procedure may be

a new test worked out in one laboratory.

Usually this laboratory has data that

should provide a fair estimate of the

agreement that can be obtained between

measurements made under the same
conditions. This laboratory has the

exacting task of preparing an adequate

description of the apparatus, environ-

ment, and technique for making the

measurements. Failure to include rel-

evant items can be quite disastrous,

particularly if the items are fixed and
unchanging in the originating labora-

tory. There is the risk of wasting

much effort if a full-scale round robin

reveals a diversity among the results

that can only be explained by short-

comings and ambiguities in the instruc-

tions for performing the test. The
originating laboratory can and should

check the homogeneity of the samples so

that any unsatisfactory results cannot

be ascribed to sample difficulties.

The only positive way to check the

adequacy of the instructions is to ask

other laboratories to try the procedure.

Single results on two rather similar

materials by seven or more laboratories

should catch any major shortcomings in

the instructions. If the between-lab-

oratory error is several times as large

as the precision established by the

NOTE—DISCUSSION OF THIS PAPER
IS INVITED, either for publication or for
the attention of the author or authors. Ad-
dress all communications to ASTM Head-
quarters, 1916 Race St., Philadelphia 3. Pa.

' W. J. Youden, "Experimental Design
and ASTM Committees." Materials Re-
search & Standards, Vol. 1, No. 11, Nov.,
1961, pp. 862-867.

originating laboratory, some of the

laboratories are probably unintention-

ally deviating from the routine followed

in the originating laboratory. This con-

clusion may be further checked by list-

ing the difference between the results

for the two materials as reported by
each laboratory. If the seven differ-

ences show much better agreement

among themselves than do the seven

values reported for the first material,

some, or all, of the laboratories prob-

ably have individual interpretations of

the procedure. Usually such individual

interpretations have the same effect on

the results for both the materials.

Since systematic effects drop out when
the differences are taken, the differences

will show better agreement than the

actual values. This examination of the

data may show that it is necessary to

rewrite the instructions before collecting

a large mass of data.'

The originating laboratory also should

establish the range of materials for

which the procedure gives satisfactory

results. Once it has been shown that

the procedure is stated properly, a more
limited number of laboratories, even as

few as two, may test perhaps a dozen

or more materials for which the property

under test varies widely. Now the re-

sults obtained by one laboratory should

be subtracted from the corresponding

results obtained by the other laboratory.

These differences, if almost all of one

sign, indicate that one laboratory is

biased relative to the other. Each
difference (taking account of sign) may
be plotted against the corresponding

average of the two results. One should

look for some pattern, such as differ-

ences that tend to increase in size

with increases in the magnitude of the

average. If the procedure passes this

check on the claims of the originating

laboratory, a more comprehensive pro-

gram may be undertaken.

Sometimes the purpose of a round

robin is to determine whether it is neces-

sary to maintain a stock of standard or

reference samples so that laboratories

may check their equipment and tech-

nique. The results with reference sam-
ples form the basis for adjustments to

the equipment or for making arbitrary

corrections to routine test results.

Procedures that require this prop are

usually troublesome and expensive.

Interpretation of Data

Comprehensive round robins involv-

ing a considerable number of laboratories

often yield collections of data that pose

problems in evaluation. If trouble

turns up with carefully selected labora-

tories, the procedure or the adequacy of

its description is already suspect. If the

procedure still shows promise after these

preliminaries, it remains to be shown

W. J. YOUDEN is a chemical engineer by training. After 20 years of

laboratory research at the Boyce Thompson Institute for Plant Research,

Inc., he joined the staff of the National Bureau of Standards. His special

interest lies in the design of experiments. His latest book, Experimenta-

tion and Measurement, is the second in a series published by the National

Science Teachers Assn. Mr. Youden has been active on several ASTM
committees. His experiences with these committees has made him aware

of the need for the statistical technique described in this paper.
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that good results can be obtained with a

random selection of laboratories.

A round robin that takes in a cross-

section of typical laboratories goes be-

yond an evaluation of the procedure.

The data that will be collected reflect

the merits of the procedure and also re-

flect the performance of the partici-

pating laboratories. Poor results may
be caused by deficiencies in the pro-

cedure or failures to follow the procedure

faithfully. Judgment of the procedure

will be made on the data remaining

after deleting absurd results. It will

be shown that one deviant laboratory

can easily account for a considerable

fraction of the sum of the squared

deviations used in evaluating the error.

Rejection of Results

There has long been needed some
guide or aid to the judgment in those

difficult situations that accompany the

rejection of results submitted by a lab-

oratory. What is needed is some under-

standable criterion that is convincing

even to the laboratory concerned. For

example, suppose a round robin involves

nine laboratories testing seven materials.

All the laboratories measure the same
property on all the materials. Imagine

that one of the laboratories turns in the

highest (or lowest) result for every one

of the seven materials. This event

cannot be ascribed to chance. If the

ace and all diamonds up to and including

the nine spot are removed from a deck

of cards and shuffled, the laboratory

concerned may be challenged to pick the

ace when the nine cards are spread

face down. All the laboratory has to do
is succeed in this effort seven times in

succession, the cards being reshuffled

each time. It is not necessary to

mention the odds against achieving this

performance. Even if the laboratory

representative succeeded two or three

times in succession, many would suspect

that the cards were marked on their

backs. That is, everyone would soon

conclude that there was something to be

explained. And that is just the point.

The laboratory should explain why it

gets such extreme results. Short con-

sideration can be given the suggestion

that these extreme results may be cor-

rect and the other eight laboratories

share a common error. Conceivably

that may happen but why go against

the majority? It seems only reasonable

to put the burden of proof on the single

laboratory rather than on the other

eight.

A general criterion for rejection of

results could consist of assigning the

ranks one to nine to the nine results re-

ported by the nine laboratories on the

first of seven materials. If multiple

tests have been made on the same
material, the average of the results is

used to represent the laboratory. The
rank of one goes to the laboratory with

the highest result, the rank of nine

to the laboratory with the lowest

result. If a tie exists, say two labora-

tories are tied for fifth place, assign the

rank of 5.5 to the tied laboratories.

If three are tied for fourth place, assign

the middle rank of five to all three.

This maintains the total of the ranks at

45 for each material. The average

rank is 45/9 or 5.

When the laboratories have ranks

assigned for all seven materials, a score

is given each laboratory by adding up
its ranks. A score of seven is the mini-

mum possible (highest every time),

and a score of 63 is the maximum possi-

ble (meaning that the laboratory re-

ported the lowest result on every mate-

rial). The average score is 7 X 5,

or 35, just midway between the mini-

mum and maximum. If only random
errors were involved, the rank a labora-

tory got on each material would be sim-

ply a matter of chance. To get an idea

of the scores that turn up, shuffle nine

cards (ace through nine of diamonds) to

get them in random order, and then

write the numbers opposite the letters

A to I that identify the nine laboratories.

Repeat this process until seven ranks

have been entered against each letter.

Sum the ranks and observe the scores.

The outcome of such a simulated round
robin is shown in Table I.

This game was tried 1000 times

with the aid of a computer. Exami-
nation of all 9000 scores shows that

there were 22 scores of 16 or less and

TABLE I.—RANDOM ARRANGEMENTS OF NINE CARDS.

Laboratory 1

A 4
B 6
C. .. 3
D 1

E 7
F 9
G 2
H 5
I 8

Trial No.

Score

Sum of squares of differences from average score.

4
6
5
7
1

3
2
8
9

Average

.

31
34
40
29
44
28
31
41
37

35
264

TABLE IL—SCORES FROM 20 SIMULATED ROUND ROBINS WITH 9
LABORATORIES AND 7 MATERIALS.

29 28 32 49 36 40 38 44 38 21 39 24 35 29 39 26 38 34 43 29
37 40 39 41 30 37 26 35 33 30 40 54 22 38 31 26 32 35 35 44
37 31 34 45 55 37 29 35 29 30 28 36 39 40 40 30 37 32 29 45
35 32 37 27 28 42 51 32 36 37 38 33 26 41 33 34 31 36 42 37
29 37 36 25 33 31 38 27 43 38 43 35 31 24 36 39 23 29 48 25
42 54 37 31 35 31 31 46 29 41 23 34 32 32 36 44 43 41 26 38
23 31 26 27 36 33 34 38 37 34 38 36 44 41 26 39 47 41 25 34
45 27 43 36 28 20 28 29 32 45 34 23 48 26 27 28 33 29 26 28
38 35 31 34 34 44 40 29 38 39 32 40 38 44 47 49 31 38 41 35

TABLE III.—APPROXIMATE 5 PER CENT PROBABILITY LIMITS FOR RANKING
SCORES.

Number of Number of Materials
jjauorauoriea
Participating 3 4 6 6 7 8 9 10 11 12 13 14 15

3 4 5 7 8 10 12 13 15 17 19 20 22
12 15 17 20 22 24 27 29 31 33 36 38

4 4 6 8 10 12 14 16 18 20 22 24 26
16 19 22 25 28 31 34 37 40 43 46 49

5 5 7 9 11 13 16 18 21 23 26 28 31
19 23 27 31 35 38 42 46 49 52 56 69

6 3 5 7 10 12 15 18 21 23 26 29 32 36
18 23 28 32 37 41 46 49 54 58 62 66 70

7 3 5 8 11 14 17 20 23 26 29 32 36 39
21 27 32 37 42 47 52 67 62 67 72 76 81

8 3 6 9 12 15 18 22 25 29 32 36 39 43
24 30 36 42 48 54 59 65 70 76 81 87 92

9 3 6 9 13 16 20 24 27 31 35 39 43 47
27 34 41 47 54 60 66 73 79 86 91 97 103

10 4 7 10 14 17 21 26 30 34 38 43 47 51

29 37 45 52 60 67 73 80 87 94 100 107 114

11 4 7 11 15 19 23 27 32 36 41 46 51 55
32 41 49 57 65 73 81 88 96 103 110 117 126

12. . . . 4 7 11 16 20 24 29 34 39 44 49 54 59
35 45 64 63 71 80 88 96 104 112 120 128 136

13 4 8 12 16 21 26 31 36 42 47 52 58 63

38 48 58 68 77 86 95 104 112 121 130 138 147

14 4 8 12 17 22 27 33 38 44 60 56 61 67
41 52 63 73 83 93 102 112 121 130 139 149 158

15 4 8 13 18 23 29 36 41 47 53 59 65 71

44 66 67 78 89 99 109 119 129 139 149 159 169

Note.—Let L laboratories test each of M materials. Assign ranks 1 to L for each material.

Sum the ranks to get the score for each laboratory. The mean score is M{L + l)/2. The
entries are lower and upper limits that are included in the approximate 5 per cent critical

region.
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21 scores of 54 or more for a total of

43 outlying scores. Exact enumeration

gave 42.65 as the expected number of

such scores. This is just about | of

1 per cent of the 9000 scores. There

are nine scores per round robin, so the

chance of any given round robin having

one of these extreme scores is about

nine times this J of 1 per cent; or

about 5 per cent. Although doubling

up would reduce the chance of finding

a round robin with an extreme score,

no such doubling up was found at this

probability level.

Table II lists the scores for 20 of the

1000 simulated round robins. They
were picked by taking every fiftieth,

starting with number 50, of the 1000

computer-simulated round robins.

Note the three extreme scores (54, 54,

and 55) in three of the round robins, al-

though only one was expected. Since

there are only 45 of these 1000 round

robins with an extreme score, it was un-

usual to get three round robins with

extreme scores out of 20 selected in this

manner. However, for all other sets of

nine scores, the scores stay well within

the range from 16 to 54. The scores

cluster fairly closely around the average

score of 35.

Table III lists the corresponding 5 per

cent probability limits for various combi-

nations of number of laboratories and
number of materials.^ All of the results

were obtained by direct enumeration of

the actual probabilities of getting the in-

dicated lower limit or less and the in-

dicated upper limit or more. Because

the scores go by units, it is not possible

to have them correspond to the exact 5

per cent probability level. The tab-

ulated scores in some instances corre-

spond to a probability somewhat more
than 5 per cent and in other cases to a

smaller than 5 per cent limit. The
probability refers to the chance of ob-

taining a round robin with the indicated

extreme score.

Combinations for large numbers of

both laboratories and materials are

not given. The arithmetic became
heavy in this region, at least with a desk
calculator. More important, there is

the question as to how often one is justi-

fied In requesting such a large program.
If there does seem to be a need to have
many laboratories and many materials,

the data may be divided on some
reasonable basis. Thus many labora-

tories might be split into two or more
groups, say, geographically, or even
randomly. Materials could be split into

groups on the basis of the magnitude
of the property or some other distinctive

characteristic.

^ More extensive tables and further de-
tails about this method are contained in the
forthcoming paper "A Rank Test for Out-
liers," by W. A. Thompson, Jr., and T. A.
Willke, to be published.

Examples of Scoring Laboratories

The Plant Food Institute sends a

monthly sample to a large number of

laboratories. The ranks for nine labora-

tories for seven successive months are

shown in Table IV. The choice of nine

and seven was made to permit direct

comparison with the machine scores

shown in Table II. The scores appear

very similar to those shown in Table II.

Perhaps systematic errors do not persist

over several months so there is no
unusually low or high score. Even so,

laboratory 7 was obtaining low ranks

except for the first month, and labora-

tories 25 and 29 are generally credited

with high ranks.

Table V also shows the ranks for an-

other nine laboratories testing seven ma-
terials. Actually these laboratories

tested 14 materials, but these were split

into two groups of seven. The left-hand

group of materials are those with low

values of the property; the right-hand

group includes the materials with high

values for the property. The tabulated

limits of 16 and 54 are sharply exceeded

in both groups. Laboratory 6 comes
very close to a clean sweep for rank 9

every time. Laboratory 4 is almost al-

ways runner-up to laboratory 6. Lab-
oratories 1 and 2 competed for ranks 1

and 2 in the first group but are in good
positions in the second group. There

is a pronounced tendency for a lab-

oratory to maintain its position relative

to the other laboratories. If this state

of affairs cannot be remedied by individ-

ual corrective action, the situation may
call for the use of reference samples to

bring the laboratories into better agree-

ment.

The ranks for 15 laboratories all mak-
ing determinations of the per cent of

indigestible residues on the same seven

TABLE IV. -TOTAL NITROGEN DETERMINATION BY 9 LABORATORIES ON 7
SUCCESSIVE MONTHLY FERTILIZER SAMPLES.

Laboratory May June July Aug. Sept. Oct. Nov. Score"

No. 7. . . . 8 3 2 3 4 3 1 24
No. 8. . , . 9 6 1 4 2 5 1.5 3 27
No. 11. . . 6 4 9 6 7 6 4 42
No. 14. . . 1.5 7.5 7 5 5 15 2 29.5
No. 16. . . 3 1 6 2 1 7 9 29
No. 25. . . 1.5 9 8 8 6 8 5 45.5
No. 28. . . 7 2 4 9 2.5 5 7 36 5
No. 29. . . 5 5 3 7 8 9 8 45
No. 30. . . 4 7.5 5 1 9 4 6 36.5

Average. . . 35.0

Critical limits for scores are 16 and 54 (Table III).

TABLE v.—RANKING RESULTS OBTAINED BY 9 LABORATORIES TESTING 14
MATERIALS.-

Laboratory Ranking Score' Ranking Score'

No. 1 . . . 1 1 2 2 2 1 1 10 1 3 3 3 5 7 7 4 28.5
No. 2. . . 2 2 1 1 1 2 2 11 2 2 4 3.5 5 5 3 24.5
No. 3.. . 3 6 3 3 5 7 4 31 3 6 1 6 6 3 7 32
No. 4... 5 5 7 8 8 4 8 45 8 8 8 8 8 8 8 66
No. 5. . . 9 3.5 4 4 7 3 3 33.5 4 1 5 1 1 1 2 15
No. 6.. . 8 8 9 9 9 9 9 61 9 9 9 9 9 9 9 63
No. 7... 6 9 6 7 4 8 7 47 5 7 7 7 2 4 6 38
No. 8... 7 7 8 6 3 5.5 5 41.5 7 4 6 5 4 6 5 37
No. 9... 4 3.5 5 5 6 5.5 6 35 6 5 2 2 3 2 1 21

average

.

.35 average

.

.35

The materials have been grouped on the basis of the magnitude of the property.
Critical limits for scores are 16 and 54 (Table III).

TABLE VI.—RANKING OF 15 COLLABORATIVE RESULTS FOR THE AMOUNT
OF INDIGESTIBLE RESIDUES IN 7 PROTEIN MATERIALS."

Materials Analyzed

iboratory SG MS PB BM DT MO MH Score'

No. 1.

.

8 4 11 5 12 1.5 1 13.5 51.5
No. 2.

.

15 15 1 4 15 15 1 66
No. 3.

.

7 9 15 6 5 10 2 54
No. 4.

.

14 13 14 15 13 14 9 92
No. 6. . 11.5 8 8.5 3 5 8 3 47
No. 7.

.

6 2.5 6.5 13.5 9.5 11 10 59
No. 8. . 3 5.5 13 1 7 13 12 54.5
No. 9.

.

11.5 10 11.5 13.5 14 12 5 77.5
No. 10. . 4.5 7 4.5 8.5 5 5 13.5 48
No. 11. . 2 2.5 8.5 2 3 6.5 11 35.5
No. 12. . 4.5 11.5 3 10 1.5 2 15 47.5
No. 13.

.

1 1 2 6 9.5 3 7 29.5
No. 14. . 9 5.5 4.5 11 8 4 6 48
No. 15.

.

115 14 10 8.5 11 6.5 4 65.5
No. 16.

.

11.5 11.5 6.5 6 12 9 8 64.5
Average 56

" Taken from Table I, Journal, Assn. of Official Agricultiital Chemists, Vol. 42, p. 232, 1959.
' Critical limits for scores are 23 and 89 (Table III).
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protein materials are shown in Table VI.

The scores that are beyond the 5 per

cent point are 23 and less, and 89 and
more.

The lowest of 15 results reported by
the 15 laboratories is given the rank

15. If a laboratory obtained the lowest

result on every one of seven materials,

its score would be 105. The score for

laboratory 4 is 92. The individual

ranks are 14, 13, 14, 15, 13, 14, and 9.

Evidently this laboratory has a tendency

to get lower results than most of the

other laboratories. Except for the last

material, this laboratory maintains a

consistent position in the ranking scale.

Evidently this laboratory follows some
individual practice Ln a careful manner.

The scores given in Table III should

convince laboratory 4 that its string of

low values cannot be ascribed to chance.

It may be more appropriate to ask

laboratory 4 to review its technique

rather than to report adversely on the

procedure.

The ranks listed in Table VII are

interesting because in the left-hand

group the collaborators used the method
of their own preference in making the

determinations. Not all the labora-

tories participated in both programs,

but the same samples were used for

both programs. One might have antici-

pated that some laboratories would
maintain their positions relative to the

others when the laboratories were in-

vited to use any method they preferred.

Laboratory 2 does reach the critical score

of 9, and laboratories 4 and 12 approach

the other limit of 41. It is more sur-

prising to find that the laboratories show
definite individuality when all were

presumably following the same tenta-

tive procedure. The tentative pro-

cedure may be charged with an inflated

error that is actually caused by labora-

tories that are highly individualistic

in the way they conduct the test. The
lessons to be drawn from a round

robin might be immensely helpful to

these collaborator laboratories. The
author has encountered round-robin

data in which the scores were nearly

the worst possible : M, 2M, 3M, . . .,

LM. The conclusion here is that the

description of the procedure does not

specify properly some of the test condi-

tions and equipment that influence the

test result.

Exceptionally low or high scores sup-

port the supposition that the laboratory

concerned is doing something uniquely

different from the rest. It hardly seems

just to the procedure under scrutiny to

allow such uniquely different results to

inflate the calculated error for the pro-

cedure. Extreme scores should prompt
the laboratory concerned to review the

' Milton Friedman, "A Comparison of
Alternative Tests of Significance for the
Problem of m Rankings," AmuiU of Mathe-
malical Statistics, Vol. 11, pp. 86-92, 1940.

TABLE VII.- -RANKS AND SCORES OF LABORATORIES REPORTING PERCENT-
AGE OF TOTAL ALKALOIDS AS NICOTINE. •

Collaborator's Choice of Method

Sample

Tentative Recommended Method

Sample

Laboratory A B C D E Score' A B C D E Score*

No. 1 6 5 7 10 2.5 30.6
No. 2 1 1 2 2 3 9 2 3 1 6 6 17
No. 3 9 9 7 7 8 40 7 8 4 7 10 36
No. 4 7.5 8 9 6 7 37.5 8 6.6 5.5 8 4 32
No. 5 3 1.6 5.6 3.5 1 14.5
No. 6 6 2 4.5 1 1.5 15 4 6.5 9 1 7.5 28
No. 9 4 4 4.5 4 5 21.5 10 10 10 9 9 48
No. 10 2 3 1 3 1.5 10.5
No. 11 5 6 6 8 5 30

'

1 1.'5 2
'

2
'

2.

5

9
No. 12 7.5 6 8 9 9 39.5
No. 13a

'

9 9
'

8
'

3.5 7.5 37
'

No. 13b 5 4 3 5 6 23
No. 15. . . . 3 6 3 5 6 22

Average. . .25.0 Average 27^5

" See Journal, Assn. of Official Agricultural Chemists, Vol. 4i. p 305, 1959.
* Critical scores are 9 and 41.
' Critical scores are 10 and 45.

interpretation given the instructions

and check possible sources of error.

Discussion

There are fields ol work where judges

undertake to rank materials in order of

merit. Often the judges do not agree

among themselves in such subjective

tests. A statistical measure of the con-

cordance of the judges has long been in

the statistical literature. Fortunately

quantitative measurements usually do
manage to get the materials in the cor-

rect order no matter which laboratory

tests the materials. It is not this rank-

ing that has been the object of interest

in this paper. Rather the materials

may be regarded as ranking the labora-

tories. If only random errors are opera-

tive, the order of the laboratories should

not persist from material to material

and there should be no concordance

whatever.

The goal Ln the development of a test

procedure is to attain an absence of con-

cordance. The ranking scheme is a

simple arithmetical device to measure

progress toward that goal. If the ranks

depend only on chance, the expected sum
of squares associated with the scores

when L laboratories are ranked M times

is ML(L-1)(L-|-1)/12. Denote this

sum by S'. Systematic errors spread the

scores over a wider range and give a

larger sum of squares than S'. Denote
the sum of the squared deviations of the

observed individual scores from the

mean score, (L + l)M/2, by iS. The
ratio S/S' should be distributed approxi-

mately as xV/, where / is one less than

TABLE VIII.—PROBABILITY LIMITS
FOR THE RATIO OF THE CALCU-
LATED SUM OF SQUARES FOR SCORES
TO THE EXPECTED SUM OF SQUARES,

ML{L - 1){L + 1)/12.

Number of Limiting Ratio for
Laboratories
Participating 5% 1% 0.1%

3 3.00 4.60 6.91
4 2.60 3.78 5.42
5 2.37 3.32 4.62
6 2.21 3.02 4.10
7 2.10 2.80 3.74
8 2.01 2.64 3.47
9 1.94 2.51 3.27
10 1.88 2.41 3.10
11 1.83 2.32 2.96
12 1.79 2.25 2.84
13 1.75 2.18 2.74
14 1.72 2.13 2.66
15 1.69 2.08 2.58
16 1.67 2.04 2.51
17 1.64 2.00 2.45
18 1.62 1.97 2.40
19 1.60 1.93 2.36
20 1.59 1.90 2.31

Note.—The above entries were taken from
a table of x'//- Exact values for the ratio
for certain selected values of L and Af are
given in Friedman's paper'. Friedman's
values are almost always slightly smaller
than those given above.

the number of laboratories.' The maxi-

mum sum of squares is obtained from

the scores IM, 2M, 3M, . . ., LM which

indicate perfect concordance. This sum
of squares is equal to M'(L^ — L)/\2.

Dividing this quantity by the ex-

pected sum of squares, S', gives M as

the maximum value the ratio S/S' can

take.

A ratio in the neighborhood of

unity is desirable. Ratios less than

unity are purely chance occurrences.

Because the distribution of the scores is

closely approximated by the normal

distribution the tabulated values for

TABLE IX.- -RATIO OF OBSERVED SUM OF SQUARES S TO EXPECTED SUM OF
SQUARES S'.

Sum of Squares

Laboratories, Materials,
Table L M
No. 1 9 7
No. IV 9 7
No. V 9 7
No. V 9 7
No. VI 15 7
No. VI 14 7
No. VII 9 6
No. VII 10 5

Calculated,
5

Expected,
S'

Ratio,
S/S'

5 Per Cent
Limit

264
515

2181
1995.5
3030
1959.5
1204
1254

420
420
420
420
1960
1592.5
300

412.5

0.63
1.22
5.20
4.20
1.54
1 .23
4.01
3.04

.88

.88

.88

.88

.67

.69

.88

.83
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xV/ may be used to obtain the approxi-

mate upper 5 per cent limit for values of

the ratio. Values in excess of the tab-

ulated limits in Table VIII indicate that

systematic errors are producing some
undesired concordance among the rank-

ings.

The ratio has been calculated for the

scores given in the examples in the

tables. Thus the random ranks as-

signed by the playing cards shown in

Table I gave scores whose ratio is less

than one. The machine-generated

scores for the 20 round robins tabulated

in Table II gave the following ratios:

First ten: 0.91, 1.29, 0.47, 1.38, 1.26,

1.06, 1.15, 0.85, 0.41, 0.98.

Second ten: 0.78. 1.57, 1.31, 1.03,

0.84, 1.30, 0.98, 0.39, 1.47, 0.91. All of

these ratios fall below the upper 5 per

cent limit of 1 .94 for nine laboratories.

The nitrogen results in Table IV and
the data in Table VI gave acceptable

ratios (Table IX). Notice that labora-

tory 4, singled out by the limits given

in Table III as having a systematic

error, contributed about one third of <S.

The sum of squares is reduced from 3030
to 1959.5 when this laboratory is

dropped. With laboratory 4 included,

the probability level for the ratio 1.54

is under 10 per cent.

The data in Tables V and VII yielded

large values for all the ratios. Even
the smallest of these is close to the tab-

ulated value, 3.10, for a probability level

of 0.1 per cent. These large ratios

cannot be ascribed to one or two labora-

tories but are associated with a generally

unsatisfactory state of affairs. Perhaps
the test procedure is very sensitive to

quite minor departures from the speci-

fied techniques for performing the

test. Or perhaps the instructions are

not specific enough. Whatever the

reason, most of the laboratories are

involved. The remedy here is to give

the test procedure a thorough going over

by a good laboratory. The effect of

intentional deviations from stated con-

ditions for conducting the test should be

studied to discover if this accounts for

the scatter of the result.' Usually any
deviation is maintained over long pe-

riods, and this would account for a lab-

oratory obtaining about the same rank

on all the materials.

Summary

This method of ranking laboratories

has advantages besides those of sim-

plicity and ease of calculation. There is

no need to be concerned now that the

precision may vary from one laboratory

to another. Poor precision wUl tend

to invite low or high individual ranks but
in equal proportions so there is compensa-
tion. Differences in precision are for-

tunately rather small, or the usual anal-

ysis of variance that uses the actual

values would run into statistical diffi-

culties. Perhaps the most important

advantage of the ranking procedure is

that the variance of the scores is known
a priori. The variance is given by
M (L - 1) (L -f 1)/12. Indeed, the

complete theoretical distribution of the

ranks can be obtained if desired. When
laboratory averages, obtained from the

numerical values, are used to consider

the possible rejection of a laboratory, the

suspect laboratory average is part of the

data and may give such a large estimate

for the laboratory variance component
that the rejection level is rather generous.

With ranks, the rejection levels can be
set in advance of seeing any data.

Finally, the ranking criterion is intui-

tively meaningful quite apart from any
knowledge of advanced statistical tech-

niques.

Systematic errors that are largely

responsible for the disagreements that

arise among laboratories probably can-

not be completely eliminated. Thus
the ranking scores obtained for round

robins will tend to cover a wider range

than theory predicts. So, too, the ratio

S/S' will tend to reach large values.

Both the scores and the ratio S/S' pro-

vide a convenient measure for gaging

improvement. The ratio reflects the

general performance of all of the labora-

tories, whereas the limiting scores focus

attention on the laboratories with the

extreme scores.

Table III provides an objective cri-

terion for singling out laboratories that

have the most pronounced systematic

errors. Table VIII provides a quick

evaluation of the data as a whole.

Once laboratories become convinced

that they are deviating from the pro-

cedure, the resulting search for the

source of the deviation should produce

(1) a general improvement in the qual-

ity of testing, (2) a better estimate of

the inherent quality of the test procedure,

and (3) perhaps fewer procedures that

appear to require the prop of expensive

reference materials.
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The Interlaboratory Evaluation of Testing Methods
By JOHN MANDEL and T. W. LASHOF

Trained manpower and laboratory facilities can be used more

effectively if improvements can be made in interlaboratory evalu-

ation of testing methods. There are probably himdreds of these

cooperative programs going on all the time under the aegis of the

Society's 80 main technical committees. Too often the report of

an interlaboratory program indicates the results are not useful

because some variable was not adequately controlled or because

there was some flaw in planning the program.

Planning interlaboratory test programs has occupied the atten-

tion of most if not all of the technical committees ; in fact, two

—

D-U on Rubber and D-13 on Textiles—have prepared recom-

mended practices which have been published by ASTM (D 1421

and D 990, 1958 Book of ASTM Standards, Parts 9 and 10).

Committee E-U on Quality Control of Materials has the as-

signment to develop a general recommended practice for inter-

laboratory testing for use by all the committees. It is accordingly

quite interested in the present paper, as indicated by the following

statement by one who reviewed the paper for the committee:

"This paper gives a very complete treatment of the problem

which almost every ASTM committee is constantly trying to solve

. . .(it is) a more comprehensive approach to the problem of design-

ing and interpreting interlaboratory studies than has appeared in

the literature up to now. Their (the authors') ideas are complex

because the problem they are trying to solve is complex."

—

Ed.

The various sources of variability in test methods are examined, and a new
general scheme to account for them is proposed. The assumption is

made that systematic differences exist between sets of measurements made
by the same observer at different times or on different instruments or by

different observers in the same or different laboratories and that these

systematic differences are linear functions of the magnitude of the measure-

ments. Hence, the proposed scheme is called "the linear model." The
linear model leads to a simple design for roimd-robin tests but requires

a new method of statistical analysis, geared to the practical objectives of a

roimd robin. The design, analysis, and interpretation of a round robin

in accordance with the linear model are presented, and the procedure is illus-

trated in terms of the data obtained in an interlaboratory study of the

Bekk smoothness tester for paper. It is believed that this approach will

overcome the "frustrations" that are often associated with the interpre-

tation of round-robin test data.

|n this paper a new ap-

proach is presented for the analysis

of interlaboratory studies of test

methods. The various sources of vari-

ability in test methods are first re-

examined and a new general scheme to

account for them is proposed. This

scheme leads to a simple design for

round-robin tests but requires a new
method of statistical analysis, geared to

the practical objectives of a round robin.

The theoretical details are dealt with

in a companion paper (1).' In the pres-

ent article, the emphasis is on the ap-

plication of the new concepts to ASTM
committee studies of test methods. The
procedure is illustrated in terms of the

data obtained in an interlaboratory

study of the Bekk smoothness tester

for paper.

For much of the discussion in this

paper, the consideration of different

laboratories is not an absolute require-

ment. The word "laboratory" is used

here to denote a set of measurements

NOTE—DISCUSSION OF THIS PAPER
IS INVITED, either for publication or for

the attention of the authors. Address all

communications to ASTM Headquarters,
1916 Race St.. Philadelphia 3, Pa.

' The boldface numbers in parentheses
refer to the list of references appended to this

paper.

obtained under conditions controlled

within the set but such that systematic

differences may exist from one set to

another. For example, different op-

erators within the same laboratory may
also show systematic differences. The
same may be true for sets of measure-

ments obtained even by the same op-

erator at different times. Since the

use of different laboratories, in the

usual sense, is likely to result in the

greatest number and severity of system-

atic differences, the practice of con-

ducting interlaboratory round-robin

programs for the study of test methods
appears entirely justified.

A New Approach : The Linear Model

We will assume that an interlabora-

tory study of a particular test method
has been run in accordance with the

schematic diagram shown in Table I;

specifically, to each of a laboratories,

b materials have been sent for test and

each laboratory has run each material

n times. Let us suppose that the b

materials cover most of the useful

range of the test method under study

for the type of material examined.

The n determinations made by the ith

laboratory on the jth material consti-

tute what will be denoted henceforth

as the "ij cell" (see Table I). Our
reasons for using this scheme will be-

come apparent as we develop the linear

model.

JOHN MANDEL, Statistician with the Division of Organic

and Fibrous Materials, National Bureau of Standards, since

1947, has been engaged in research in statistical methodology,

with special reference to applications in physical and chemical

experimentation, and the development of test methods.

THEODORE W. LASHOF, Physicist in charge. Paper

Physical Laboratory, National Bureau of Standards since

1954. Chairman of the Sampling and Conditioning Sub-

committee of ASTM Committee D-6 on Paper and Paper

Products and Vice-Chairman of the Precision Committee of

the Technical Association of the Pulp and Paper Industry.
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TABLE I—INTERLABORATORY
STUDY INVOLVING o LABORATORIES,
b MATERIALS. AND n REPLICATIONS.

Moterials

No.l No.2 No.3 ... / ... A

No. I --- I-- --- --- --•

Na2 Ill III III II'

Na3 --

o
2

"'

I './Cell

Averages

In order to present the new basic

concepts, we assume that the materials

have been arranged in Table I in in-

creasing order of the magnitude of the

measurements for each material av-

eraged over all laboratories. Now
consider a graph in which the average

result obtained by each laboratory for

any given material is plotted against

the average result of all laboratories

for that material. Figure 1 shows
such a graph for one laboratory. In

this case, the laboratory in question

agrees exactly with the average of all

laboratories. Such an ideal occurrence

is highly unlikely.

It is often assumed that the differ-

ences in results obtained by different

laboratories are systematic in the

sense that a constant systematic dif-

ference is observed between two dif-

ferent laboratories. If this were the

case, the plot of the various laboratories

against the average of all laboratories

would consist of a family of parallel

straight hnes (Fig. 2). The fact is,

however, that there exist many test

methods for which the lines in question

are not parallel but show changes in

slope as well as vertical shifts with

respect to each other (Fig. 3). Figures

4 (a) and (6), like Fig. 2, show interest-

ing special cases of the general situation

shown in Fig. 3. The linear model is

based on the assumption that whereas

the response lines of the various labora-

tories are not necessarily identical or

even parallel, they nevertheless are

straight lines, differing in slope or in

intercept or both.

Thus, the Unear model constitutes a

' In reference (1) the interfering factors
themselves are called "/-factors." The
X-variability is then due both to scale-type
errors and to the differential response of the
laboratories to the /-factors.

^
AVCRAQC, ALL LABOHATOniES

Fig. 1—Data from an ideal laboratory.

generalization of the usual model of

constant differences between labora-

tories. It is of course conceivable

that the response lines of some of the

laboratories will show curvature, re-

quiring a second degree equation or

higher to represent them. In practice,

however, this situation will arise only

if a laboratory is discrepant by an order

of magnitude, indicating drastic de-

partures from the prescribed procedure.

When the data corresponding to such

a laboratory are omitted, the remaining

data conform to the linear model.

But even if such a laboratory is in-

advertently retained, the method of

analysis proposed in this paper provides

for the detection and elimination of

such discrepant data.

Up to this point we have considered

only the systematic differences between

laboratories. Actually the observed

material averages for a laboratory do
not fall exactly on the line for that

laboratory. This is because of within-

laboratory variabiUty. We will dis-

tinguish two tj'pes of within-laboratory

variability. The first type relates to

the fluctuations in results obtair\ed on
identical specimens, or if this be im-

possible, on specimens for which the

property under study has, as closely

as can be achieved, the same value.

If this type of fluctuation, which we will

call "rephcation error," w, was the only

type of within-laboratory variabihty,

the observed averages for each labora-

torj', Fig. 5, could be made to fit the

straight line as precisely as desired

solely by increasing the number of

rephcations.

The second type of within-laboratory

variabilitj^ the effect of which cannot

be reduced by merely increasing the

number of replications, is less obvious.

In order to illustrate its nature, let us

consider the process of weighing on an
analytical balance. Suppose that the

weights of two samples, A and B, are

to be determined, and suppose that

sample A weighs a little over 1 g

AVCKAftC, ALL LAflORATOAIKS

Fig. 2.—Constant systematic differences
between laboratories. "Observed" ma-
terial averages are shown only for the tth

laboratory.

while sample B weighs slightly more
than 5 g, thus requiring the use of two
different standard weights in weighing

the two samples. It is clear that the

relationship between the true weights

of samples A and B is known only to

the extent in which two standard

weights are correctly calibrated with

respect to each other. The precision

of this relationship cannot be improved

by repeated weighings of A and B
separately. Thus, consideration of more
than a single sample (material) leads

to a second type of within-laboratory

variabiUty, dependent on the correct

relationship of the various scales,

weights, or other items involved in

measuring quantities of different mag-
nitudes. This "scale-type" error can

also arise from the presence of inter-

fering substances, as in chemical anal-

ysis, or interfering properties, as in

a physical method. For indeed, apart

from a possible effect on the replication

error, the presence of an interfering

property may tend to either raise or

lower the measured value, just as an

improperly calibrated weight does. If

different laboratories respond differ-

ently to such interfering factors, their

apparent effect, in an interlaboratory

study of the type here considered, will

be an additional scatter of the experi-

mental points about the straight lines

corresponding to the various labora-

tories. This additional scatter or scale-

type error, which we will refer to here

as X-variability,^ cannot be reduced by
merely increasing the number of rep-

lications.

The linear model, which we have

developed here, is illustrated in Fig. 5.

This figure shows a much exaggerated

view of the linear systematic differences

between laboratories and the within-

laboratory variability of one of the

laboratories. A more complete dis-

cussion of the assumptions underlying

this model is given in reference (1).
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(o) (b)

Fig. 4—Special cases of the general case shown in Fig. 3.

Fig. 3.—Linear systematic differences
between laboratories.

The Design of an Interlaboratory

Rotind Robin

The linear model developed in the pre-

ceding section is based on the inter-

laboratory study schematically shown
in Table I. This is the design which we
propose. We must now fill in the de-

tails of the design.

First it is necessary to describe

precisely the test method to be studied.

It is surprising how vague even some
widely used test methods are as regards

essential details of procedure. These

details should be completed through

committee discussion, a survey of the

literature, and experimental work within

one laboratory. The draft of the de-

tailed procedure should be circulated

among all participating laboratories

possibly with trial specimens, for

comment and clarification.

The next question is how many
and what materials are to be included

in the round robin? This depends on

how wide a range of materials, both as

to type of material and magnitude of

the property being tested, is to be cov-

ered by the test method. Also it de-

pends on whether the instrument is a

single-scale instrument or a multiple-

scale instrument. Experience shows
that it is desirable to use no less than

five materials per scale, the five ma-
terials covering the useful range of the

scale. If the study includes materials

of widely different types, more ma-
terials will be needed, because in such

cases, the random error will be sub-

stantially increased through the effect

of X-variability.

How many laboratories should be

included? Here, a limiting factor is

the amount of work involved in pre-

paring the samples for distribution to

the participating laboratories and the

increase in sampling variabihty due

to the larger amount of material re-

quired. Subject to these limitations,

the number of laboratories should be

as large as practicable, say, not less

than 10 and preferably 20 or 30. As-

surance should be obtained that each

participating laboratory is properly

equipped to follow all the details of

procedure, and willing to assign the work
to competent personnel.

The final question to be answered

before the preparation of specimens is

begun is how many tests are to be run

by each laboratory for each material.

It is suggested that if the standard

(or usual) test procedure calls for r

replications, the round robin should

call for an integral multiple of this

number. Thus, n = mr where m is

an integer, preferably not less than 4.

The number of replications should be

as large as practicable consistent with

economic considerations of time and
material and statistical considerations

as to the homogeneity of each material.

In making the assignments of the

specimens of each material to the

participating laboratories, they should

be completely randomized. Of course,

wherever feasible, the total portion of

material used should be either selected

for maximum homogeneity or, if pos-

sible, subjected to a thorough mixing

prior to the assignment of specimens to

the various laboratories. Any attempt

to assign the specimens in such a way
as to minimize within-laboratory va-

riability at the expense of between-

laboratory variability or vice-versa will

only complicate the analysis. Expe-
rience has shown that the most satisfac-

tory method of assignment of speci-

mens is indeed the completely random
one.

All specimens should be properly

coded in such a way that .only the person

or persons conducting the round robin

can identify the specimens. Ideally,

the specimens should be thoroughly

mixed so that they will be tested in

random order. While this may be

feasible in some cases, it may result,

in many cases, in an excessive manip-

ulation of the equipment. It is sug-

gested, that in such cases the n speci-

mens assigned to a given laboratory,

for each material, be divided into groups

such that the specimens within each

group will be tested consecutively,

the groups themselves being tested

'd

I

AVERAGE, ALL LA80RATORIE6

Fig. 5.—The linear model of an inter-

laboratory study. The observed values,
including within laboratory error, are

shown for the ith laboratory.

Laborafory No- 1/

^Laboratory No.2

c
Material Averages for oil Laborotorles

Fig. 6.—Linear model, showing the four
components of variability for two labora-

tories. C = average of all materials and
all laboratories, M\P = jui = location

parameter of laboratory 1, MiC = =
location parameter of laboratory 2, ;3i

=
slope of line for laboratory 1, 02 = slope

of line for laboratory 2, PP' = n = depar-
ture of experimental point obtained by
laboratory 2 from its response line, tj

comprises a component due to replication

error and a component due to X-variability.

in a random order. For example, if 12

specimens of each of 10 materials are

tested by each laboratory, one might

divide the 12 specimens into 4 groups

of 3 each. Each laboratory would then

run the 40 groups in random order,

each group consisting of 3 replicates run

consecutively.
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Analysis of the Data

The purpose of the analysis is the

segregation of the total error into

components in accordance with the

sources discussed above. Thus, we
will obtain: (1) A component due to

replication error; (2) a component due

to \-variabihty ; and (3) a component

due to between-laboratory \ariability.

In accordance with the previous

discussion, the third source is expressed

in terms of differences between the

"response-lines" for the various lab-

oratories. Since a straight line is de-

termined by two parameters, the com-

ponent due to between-laboratory vari-

ability will comprise two terms, cor-

responding to the variability of the

response lines both in location and in

slope. Figure 6 shows the four com-

ponents of variability for two labora-

tories in graphical form. Each line is

characterized by its location parameter.

Hi, chosen as the ordinate of the cen-

troid and by its slope, /S^. The de-

parture of an experimental point from

the corresponding response line is com-

posed of two component parts—the rep-

lication error and X variability.

Analysis of the data is considered in

six steps:

Step 1.—Before proceeding to the

evaluation of the components of vari-

ability, it is necessary to examine the

relation between replication error and

the magnitude of the measurement.

Table II, which relates to the Bekk
smoothness data used as illustration in

this paper, shows the necessity of this

preliminary step. There are 14 labora-

tories and 14 materials, making a total

of 196 cells. For each cell, the average

(top figure) and the standard deviation

(bottom figure) of 8 repUcate measure-

ments are given. It is quite evident

that the standard deviation increases

with the average. Whenever this oc-

curs, the data are transformed into a

different scale (generally of a logarith-

mic type) before proceeding to the sub-

sequent steps in the analysis of the data.

In this paper, we will denote values ex-

pressed in the orginal scale by the sym-

bol y and values expressed in trans-

formed scale by z. As a result of the

transformation, the replication error w

is also transformed, and the standard

deviation of the transformed replication

error, which we wiU denote by «, be-

comes uniform for all cells.

The formulas for the scale transfor-

mation as well as for all subsequent

steps of the analysis are contained in

the Appendix, in order to preserve

continuity of presentation in the body
of the paper.

From this point on, it will be assumed

that if step 1 has indicated the need

for a transformation of scale, such a

transformation has been carried out on

all cell averages, and that all subse-

quent calculations, up to and including

step 5, are performed on these trans-

formed cell averages.

If no transformation is required, all

subsequent calculations are carried

out on the original cell averages.

Table III (a) is a schematic represen-

tation of the cell averages expressed in

the transformed scale, and of their row

and column averages ^j.- and x,. The
over-all average of all Z;, is denoted x.

The table also shows how the various

parameters discussed so far and in the

following steps are related by means

of the equations underlying the linear

TABLE II.—BEKK SMOOTHNESS, SHOWING AVERAGES AND STANDARD DEVIATIONS IN EACH CELL.
(The column averages of these quantities are also shown. Top figure of each pair is average, bottom is standard deviation.")

Materials

ratories
No. 2 No. 10 No. 3 No. 4 No. 9 No. 12 No. 13 No. 5 No. 1 No. 7 No. 8 No. 6 No. 11 No. 14

No. l....| 6.375
1.14

6.750
0.556

12.14
1.55

14.43
1.59

14.44
2.37

18.58
2.46

41 .98
9.25

45.71
5.70

86.75
5.99

110.4
20.1

154.2
8.83

143.7
24.7

164.8
17.3

191.4
17.8

No. 2....|
5.600
0.807

6.375
1.26

13.06
2.19

14.90
1.34

15.20
1.15

18.14
1.94

41.51
4.28

44.56
5.33

88.68
13.7

102.7
25.2

154.2
14.8

160.1
34.8

170.6
14.8

198.2
16.1

No. 3....|
5.250
0.754

5.350
1.39

11.95
6.23

13.70
1.33

13.43
1.53

15.10
4.31

37.90
7.46

43.55
4.74

78.65
11.2

114.9
23.2

137.3
7.49

151.2
25.3

178.1
13.2

173.5
23.7

No. 4....|
4.463
0.933

5.550
0.256

10.33
1.50

11.41
0.786

12.21
0.673

15.73
1.25

32.85
5.68

33.14
2.73

64.81
10.3

76.30
5.13

106.9
8.90

122.5
19.0

124.6
10.6

124.2
20.1

No. 5....|
4.013
0.681

5.875
0.167

11.73
1.94

13.41
1.04

12.70
1.61

16.16
1.54

40.63
8.51

41.68
2.30

91.28
18.5

100.4
17.0

167.0
14.7

207.1
34.7

207.0
25.1

201.0
28.0

No. 6....|
4.025
0.517

4.728
0.092

9.225
1.60

9.875
0.883

10.43
0.957

13.09
0.645

26.45
5.19

29.51
1.27

57.74
2.59

54.88
8.53

82.75
7.32

96.13
16.8

101.8
15.0

102.4
16.8

No. 7....|
4.363
0.709

4.674
0.301

10.53
1.75

11.55
1.31

13.79
1.48

14.59
1.70

32.93
4.61

41.19
4.26

78.44
10.2

99.41
17.0

129.9
8.75

179.3
29.7

173.7
11.4

173.6
24.3

No. 8..,.|
4.125
0.641

5.250
0.463

9.625
1.85

11.63
1.41

14.25
1.91

15.38
1.19

36.50
4.41

37.50
4.44

81.88
10.8

99.75
15.7

150.9
16.2

161.0
24.6

166.4
14.3

182.5
27.9

No. 9....|
4.500
0.535

5.875
0.354

11.25
l.(J4

12.63
0.744

13.00
1.51

15.38
1.41

35.63
7.13

40.38
4.14

80.63
8.63

112.4
17.9

155.3
12.6

165.6
15.4

186.3
13.8

205.6
19.6

No. 10...
.|

3.750
0.707

4.375
0.518

9.750
1.39

11.25
0.707

11.25
1.58

13.75
1.28

31.00
7.75

31.88
4.67

65.13
5.77

90.13
19.7

126.0
14.9

139.8
23.4

154.8
12.9

162.3
17.0

210.9
37.9

No. 11... .

j

4.450
0.737

6.163
0.457

13.01
1.88

13.75
0.750

15.09
1.93

17.01
1.81

34.98
8.04

44.08
4.52

90.11
9.88

105.3
18.8

148.1
13.5

187.0
10.4

198.7
20.2

No. 12....
1

4.425
0.623

5.588
0.954

12.75
1.66

13.35
1.50

14.66
2.67

17.08
2.10

43.00
5.22

47.49
7.41

91.99
14.6

115.1
36.9

172.4
22.8

201.5
31.5

213.6
11.0

217.7
28.4

No. 13....
\

3.975
0.434

4.738
0.250

9.925
1.51

11.70
1.80

11.25
1.43

14.74
0.955

35.58
4.61

37.23
3.17

78.96
9.74

91.88
1.68

131.8
16.6

150.1
25.0

171.2
20.2

186.2
20.3

No. 14.... (

3.550
0.460

4.288
0.203

9.250
1.26

11.56
1.32

12.50
1.11

15.10
1.31

37.91
8.38

37.55
3.51

75.80
9.18

95.85
18.1

129.2
9.61

149.4
15.2

172.8
14.8

174.9
15.2

Average . . <

4.490
0.691

5.399
0.516

11 .04
1.954

12.51
1.179

13.16
1.565

15.70
1.707

36.35
6.466

39.68
4.156

79.35
10.08

97.81
17.50

139.0
12.64

158.2
23.61

170.3
15.33

178.9
22.36

" The Bekk smoothness data in this paper are taken from an interlaboratory study of air-leak smoothness testers conducted by a TAPPI joint
Graphic Arts and Paper Testing task group.
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TABLE III (a).—NOTATION FOR
TRANSFORMED DATA."

" iij — cell average, iii — row average, Xj
= column average, and S = grand average.
The basic equation for the Unear model is zij
= in + ffiixj — *) + rii), where the slope $i
is further broken down according to ^< =
a(in — J) + Jj; and the error term riij ac-

n
cording to 7ii> = X« + Z ttjk/n.

No.l No.2 No.3 ... / ... t>

Average

Average

TABLE IV.—BEKK SMOOTHNESS,
SHOWING ESTIMATES OF THE PA-

RAMETERS OF THE STRAIGHT LINES
CORRESPONDING TO THE VARIOUS

LABORATORIES.

Laboratory 0" VM
No. 1 0 942 1601 1049
No. 2 0 962 1602 207
No. 3 0 986 1568 952
No. 4 0 912 1485 308
No. 6 1 057 1588 941
No. 6 0 883 1406 605
No. 7 1 028 1541 852
No. 8 1 028 1546 587
No. 9 1 028 1570 534
No. 10 1 020 1489 364
No. 11 1 016 1595 826
No. 12 1 055 1612 205
No. 13 1 036 1525 235
No. 14 1 048 1519 685
Average 1 000 1546 596

» 3 = slope, II = ordinate of centroid, V(ri)
= variance (fit) of points to straight Une.

TABLE V(a).—ANALYSIS OF VARI-
ANCE.

Sources of

Variation

Degrees
of

Free-
dom

Sums of
Squares

Mean
Squares

Laboratories . .

.

a - 1 Sl Ml
b - 1 Sm Mm

Interaction
(Laboratory
X Material)

.

(a - 1) X Slu Mlm
(f> - 1)

TABLE V(b).—BEKK SMOOTHNESS-
ANALYSIS OF VARIANCE.

Degrees
Sources of of Sums of Mean
Variation Free- Squares Squares

dom

Laboratories 13 607 616 46 740
Materials . . . 13 59 861 632 4604 741
Interaction. . 169 260 919 1 544

TABLE Ill(i)).—BEKK SMOOTHNESS, SHOWING CELL, ROW, AND COLUMN AVERAGES AFTER THE DATA HAVE BEEN
TRANSFORMED TO EQUALIZE THE WITHIN-CELL VARIANCES.

(The standard error of any value in the table is 19.7.)

Laboratories
Materials

No. 2 No. 10 No. 3 No. 4 No. 9 No. 12 No. 13 No. 5 No. 1 No. 7 No. 8 No. 6 No. 11 No. 14

No. 1 804 829 1084 1159 1160 1269 1623 1660 1938 2043 2188 2157 2217 2282 1601
No. 2 748 804 1116 1173 1182 1259 1618 1649 1948 2012 2188 2204 2232 2297 1602
No. 3 720 728 1077 1137 1128 1179 1579 1639 1896 2060 2138 2180 2251 2239 1568
No. 4 650 744 1014 1057 1087 1197 1517 1520 1812 1882 2029 2088 2096 2094 1485

603 769 1069 1127 1104 1208 1609 1620 1960 2002 2223 2316 2316 2301 1588
No. 6 605 675 965 995 1018 1117 1422 1470 1762 1739 1918 1983 2008 2010 1406
No. 7 640 670 1022 1063 1140 1164 1518 1615 1894 1997 2114 2250 2240 2240 1541
No. 8 615 720 983 1066 1154 1187 1562 1574 1913 1999 2179 2207 2221 2261 1546
No. 9 653 769 1051 1101 1114 1187 1552 1606 1906 2051 2191 2219 2270 2313 1570
No. 10 574 641 989 1051 1051 1138 1491 1503 1814 1955 2100 2146 2190 2210 1489
No. 11 648 790 1114 1138 1179 1231 1544 1644 1955 2022 2171 22''2 2298 2324 1595
No. 12 646 747 1106 1126 1166 1232 1634 1677 1964 20G1 2237 2304 2330 2338 1612
No. 13 599 676 997 1068 1051 1168 1551 1571 1897 1963 2120 2179 2234 2270 1525
No. 14 550 632 966 1063 1097 1179 1579 1575 1880 1982 2113 2174 2238 2243 1519
Average 647 728 1039 1095 1116 1194 1557 1594 1896 1983 2136 2192 2224 2244 1546

Average

model. Table 111(6) is the correspond-

ing tablf for the Bekk smoothness

data.

Step 2.—The second step in the

analysis of the data consists in locating

the straight line corresponding to each

laboratory in the linear model. Mathe-
matically, a straight line is defined by
two parameters. Statistically, how-
ever, a third quantity is of interest,

namely, the variance characterizing

the discrepancies of the experimental

points from the line representing them.

Thus, for each line three quantities are

of interest: the ordinate of the center

of gravity of the line, ijl; the slope 0;

and the variance V{ri), where rj is the

departure of an experimental point

from the corresponding line. These

values are computed by the usual least

squares formulas for Unear regression:

the 2 values for the I'th laboratory con-

stitute the dependent variable ahd the

averages of all laboratories for the

various samples (in the transformed

' For most purposes this procedure, which
is really an approximation, will be entirely
satisfactory. The reader who is interested
in a more rigorous analysis will find the per-
tinent formulas in reference (1).

scale) constitute the independent vari-

able.^ All formulas are given in the

Appendix. Table IV shows the esti-

mated values of /j, /3, and y(?7'>/for each

laboratory calculated from the data

of Table 111(6). Note that the average

of the calculated j3 values is, as it should

be, equal to unity. The average of the

II values should be x, the grand average

of all values. The average of the cal-

culated V{ri) values is an unbiased

estimate of V{ti) which is needed in the

next two steps.

Step 3.—At this point of the analysis,

the values of V(rj) for the various lab-

oratories should be carefully examined.

If any one of these values is excessively

large in comparison with the others, it

is advisable to calculate the individual

estimates of rj, that is, the "residuals"

from the regression line for the labora-

tory in question, in order to detect the

possible presence of a completely dis-

crepant individual point. A plot may
sometimes be useful in detecting the

cause of an abnormally large estimate

of V{ri). In some cases, the laboratory

in question may have to be omitted

from the computations and a search

instituted for the physical reasons of

its abnormal behavior. If it is decided

to omit the data for such a laboratory,

the values of /3, and ^(77) must be re-

calculated for all other laboratories.

The values of li for the remaining lab-

oratories are, of course, unaffected by
the omission, but the over-all average x
must be recomputed (see Table 111(a)).

When the estimates of V{ri) for the

individual laboratories are considered

to be in satisfactory agreement, they

are averaged to give an over-all estimate

of V{ti). This parameter estimates the

scatter of the experimental points cor-

responding to any given laboratory

about the line for that laboratory. Part

of the variabihty expressed by V(ri) is

due to the replication error e, while the

remainder is precisely the X-variability

discussed in an earlier section. The
partition of V(t]) into these two parts

is shown in the Appendix.

Step 4-—The fourth step in the anal-

ysis of the data consists in a segrega-

tion of between-laboratory variability

into two parts: the variability of the

location parameter, /j., and the variabil-

ity of the slope j3. First, an ordinary

analysis of variance is made, as indi-

cated in Table V(a) and illustrated for
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tlie Bekk smoothness data in Table Y(b).

The two variances V(fi) and F(/3) are

derived from the mean-squares by
formulas given in the Appendix.

The slopes and centroids of the lab-

oratory lines may be correlated. Com-
plete correlation occurs when all of

the lines pass through a single point as

in Fig. 4. In general, the correlation

is not complete and V{0) is composed
of two parts, the first accounting for

the correlation between /x and /3, and the

second for that portion of the variability

of ^ that is unrelated to fi. This second

part is denoted F(5). The appendix

gives the appropriate formulas for

the partition of V(p) into these two
parts.

Step 5.—In this step the various

sources of variability are considered

simultaneously and the relative contri-

bution of each source to the total vari-

ance is evaluated. In the case of non-

parallel response lines for the various

laboratories, the laboratory-to-labora-

tory component will differ with the

value of the measurement (see Figs.

3 and 4). Therefore, the breakdown
of variability must be evaluated sepa-

rately for each region in the range

over which the method is studied. In

practice, it will suffice to select a few

values, perhaps six in number, such

that they are approximately evenly

spaced over the entire range of z-values.

The components of interest are:

the repHcation error, e; the X-variabil-

ity; and the between-laboratory vari-

ability characterized by n and /3.

Actually, since |8 is partly related to

M, the between-laboratory variability

is expressible in terms of yu and S, the

latter being that part of /3 that is inde-

pendent of n. Therefore, a table is

prepared showing, for the few selected

values of z, the relative contributions of

t, X, 11, and S to the total variance of z.

The first six columns of Table VI il-

lustrate this step in the analysis of the

Bekk smoothness data. Formulas for

this step are given in the Appendix.
Step 6.—-Finally, in case a transfor-

mation of scale was required, the total

variance V{z), or rather its square root,

the standard deviation of z, is converted

back into the original scale, giving a^.

It is also useful, in this case, to convert

the values of z chosen for the calcula-

tions in Table VI, into corresponding

y values, that is, into the original scale.

The last two columns in Table VI il-

lustrate this step for the Bekk smooth-
ness data.

Interpretation of the Analysis

In interpreting the " results of the

analysis, the points of major interest are

(a) the relative importance of the vari-

ous sources of error, (b) the steps re-

TABLE VI.—BEKK SMOOTHNESS, SHOWING RELATIVE IMPORTANCE OF THE
VARIOUS SOURCES OF VARIABILITY.

z-Scale Sources of Variability y-Scale

Average
Total
Vari-
ance

Within
Laboratory Between Laboratory Average, Standard

atioa

ay
z

Viz)

F(X) [1 a(z - (2 - *)^F(J) V

V{z) Viz)

2224 10 on 0.31 0.02 0.57 0.10 170.3 39.2
1896 8 028 0.38 0.03 0.56 0.03 79.4 16.4
1557 6 636 0.47 0.03 0.50 0.00 36.4 6.8
1116 5 814 0.53 0.04 0.36 0.07 13.16 2.3
647 6 169 0.50 0.03 0.18 0.28 4.49 0.81

quired to improve precision, if neces-

sary, and (c) the need for standard

samples. For these purposes, the fol-

lowing procedure is recommended.
1. Compare y(X) and the

relation between these two quantities

will reveal how much can be expected

from mere replication of measurements.

If y(X) is large with respect to

replication is generally a waste of time.

Even if F(X) is smaller than F(e),

replication is useful only to the point

of making Y{i)/n small with respect

to F(X). Thus, in the case of the

Bekk smoothness data (Table VI) the

repUcation error exceeding F(X) by a

factor of ten, approximately, an effec-

tive increase in precision will result

from ten replications. But a number
of replications considerably larger than

ten would be wasteful since the limiting

factor, at that point, is 'F(X) which is

unaffected by rephcation.

2. Study the table of values of &
and M for the various laboratories.

Occasionally, a single laboratory (or

a small group of laboratories) is dis-

crepant in one or both these parameters,

while all others are in close agreement.

An investigation of the causes of such

discrepancies is then indicated, and the

analysis of variance carried out by
omitting the discrepant laboratory (or

laboratories) may be more meaningful

than that based on its inclusion.

In Table IV, two of the laboratories

show much smaller values for both /3

and /i than the other laboratories.

These two were foreign laboratories

where the standard relative humidity

is appreciably higher than in the Ameri-

can laboratories. However, even this

appreciable difference in procedure does

not require the omission of these lab-

oratories when the analysis is made
using the linear model.

3. Compare the total between-labo-

ratory variabihty for various values

of z with the within-laboratory vari-

abihty (Table VI) keeping in mind that

the effect of Y{t) will depend on the

number of rephcations which is called

for, by the standard method. If the

total between-laboratory variabihty is

small compared with the within-labora-

tory variabUity throughout the table.

all of the laboratories are essentially

in agreement and only refinement of the

procedure to reduce 7(X) can improve

the precision of the method.

If F(X) is so large that the method is

not sufficiently precise to be useful, the

possible cause of a large F(X) should be

investigated. Perhaps types of ma-
terials were included in the round robin

for which the method was not designed.

Perhaps the method as written fails to

caU for the control of important inter-

fering conditions or fails to correct for

significant interfering properties.

If the between-laboratory variability

is not negligible, examine its two terms

separately. If the term in F(6) may
be neglected, the lines wiU form a

simple pattern: they will either con-

verge to a point (or a small region) or

be, for all practical purposes, parallel.

In either case, the calibration of the

method at a single point other than the

point of convergence will suffice to ob-

tain the maximum possible agreement
among the laboratories. On the other

hand, if the term in F(6) becomes
appreciable anywhere in the table, the

lines for the different laboratories will

tend to criss-cross at random and the

method will require calibration at two
points. (This is the situation for the

Bekk smoothness data of Table VI.)

There is one exception: if the term in

F(/j) is neghgible but not the term in

F(5), the lines just happen to converge

at the centroid, and caUbration will be

required at a single point as far away
from the centroid as is practical.

In general, the term in F(m) will not

be neghgible throughout the table.

If the variation in this term is small,

the place of the required caUbration

point or points in the range of the

measured quantity is immaterial, except

that when two points are required

they should be located as far apart as

practical. If the variation in the F((u)

term is appreciable (as for the Bekk
smoothness data shown in Table VI),

the fines will partially or completely

converge and the cafibration point or

points should be located to avoid the

area of convergence.

In summary, if between-laboratory

variabihty is greater than within-lab-
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Bekk Smoothness Data, sec

Material Averoges for all Loboratones

Fig. 7.—Bekk smoothness data, showing
nonparallelism of the laboratory lines.

The scale on both coordinate axes i?

logarithmic, but the vertical deviation of

each point from the 45 deg line has been
doubled in order to clearly show the dif-

ferences between the laboratories. The
broken lines correspond to deviations
of plus or minus 30 per cent from the
average (45 deg line). A few of the lab-
oratories close to the 45 deg line have
been omitted for clarity. The material
averages are shown for one laboratory for

which the fit of the points to the line is

typical.

oratory variability and greater than

can be tolerated for practical application

of the method, the method must have
better standardization. This can be

done by using one or two standard

samples to calibrate the method at

appropriately chosen values of the

measured quantity.

Comparison with Other Models

In the previous sections we have de-

veloped the linear model for the meas-
uring process and discussed the design,

analysis, and interpretation of an inter-

laboratory study in accordance with

this model. The question naturally

arises as to how this model compares
with the models underlying the more
conventional statistical designs and
analyses.

The simplest interlaboratory study

is one in which a random sample of a

particular material is sent to each of

two or more laboratories and they are

asked to report the value of some
property of the material. If the lab-

oratories turn in values that are in

satisfactory agreement with each other,

the methods used by the laboratories

are considered to be satisfactory and
everyone is happy. If the values do
not agree within the hoped-for limits,

this simple study is unable to furnish

even the slightest hint as to the cause or

causes of the unsatisfactory results.

Had each laboratory been asked to

* Tentative Recommended Practice for
Interlaboratory Testing of Textile Materials
(D 990 - 54 T), 1958 Book of ASTM Stand-
ards, Part 10.

0 4 8 12 t6

Laboratory No 2, percent pentosans

make duplicate or replicate measure-

ments on the sample it received, the

differences found between laboratories

might be found to be entirely accounted

for by the inability of each laboratory

to duplicate its own results. While

the simple study fails to distinguish

between the variability within and
between laboratories, the second type

is generally interpreted in terms of a

model that allows for random variability

between laboratories beyond the within-

laboratory fluctuation. This is the

model which, with some ramifications,

is very frequently used in interlabora-

tory studies of test methods.

A typical ramification is to have

several analysts in each laboratory.

Also each analyst may repeat the test

on each of several days. The result is

an hierarchical or nested design (2, p.

884f) which provides information on

the relative importance of the various

possible sources of within-laboratory

variability. Very often each analyst is

also asked to make determinations by
each of two or more methods. This

gives a two-way or cross design which
may or may not be nested each way.

Obviously three- or more-way crosses

could be (and undoubtedly have been)

used.

Interlaboratory studies sometimes use

two or three materials. Even in the

case where each laboratory makes only

one determination per material, the use

of more than one material per laboratory

provides information on laboratory

"biases." The analysis of data of this

type is usually made in accordance

with conventional two-way analysis of

variance procedures (2, p. 888f; 3),

but an ingenious graphical method has

recently been developed (4). Both of

these methods require that the within-

laboratory test error be the same
for all laboratories and materials. If

this is not the- case, the analysis of the

20 -

0 12 4 6 8 12 16 20

Laboratory No 2, per cent pentosans

data has often been carried out sepa-

rately for each material, in accordance

with the usual "between-within" type

of analysis of variance (3, 5).* How-
ever, in cases in which the standard

deviation of the within-laboratory error

is a known function of the magnitude

of the measurement, an appropriate

transformation of the data prior to

analysis will ensure a homogeneous
error term and permit a two-way
analysis of variance. In particular, the

simple logarithmic transformation is

often used (6, pp. 116, 137); it is based

on the assumption of a constant coeffi-

cient of variation (error proportional

to magnitude) for within-laboratory test

error. The study which we report in

this paper, Bekk smoothness, is an ex-

ample of a proportional type of error.

In many cases a straight-line relation-

ship with nonzero intercept, rather

than a simple proportionality, is found

(see Eq 1) and, hence, the transforma-

tion given in Eq 2 is required.

If an interlaboratory test has been

run in accordance with a two-way classi-

fication with replications within cells,

such as shown in Table I, it is usually

interpreted on the basis of a model

allowing for constant laboratory differ-

ences ("biases") and, in the case of a

significant interaction term, for an

additional random "variable bias" (6,

p. 124). According to such a model,

the response lines of all laboratories are

necessarily parallel to each other, except

for random scatter, and a plot of the

results of one laboratory versus those

of another is a straight line of 45

deg slope. This follows from the as-

sumption that the "variable bias" is a

random effect. It appears, therefore,

merely as additional scatter about the

45-deg line.

There is, however, considerable evi-

dence for the existence of nonconstant,

nonrandom differences between labora-

Fig. 8—Pentosans, by orcinol, showing comparison for two laboratories. The slope of

the line is distinctly different from unity in either scale. Therefore, these two laborato-
ries will show nonparallelism in a graph of the type shown in Fig. 3. (These data are
from an interlaboratory study of orcinol, aniline acetate and bromination methods for

the determination of pentosans in pulps. This study was under the direction of a joint

ACS-ASTM-TAPPI-ICCA task group.)
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tories. The Bekk smoothness data of

Table II are shown graphically in Fig. 7.

The nonparallelism of the lines is quite

evident. The Bekk smoothness test

is a physical test. However, the same
type of results has been obtained with

chemical tests. Figure 8 shows the

relationship between the results ob-

tained by two laboratories in the de-

termination of pentosans in a series of

pulp samples using a colorimetric

method. Despite the fact that each

laboratory prepared a calibration curve

of the intensity of the color in terms of

samples of known composition, the

relation between the results of the two
laboratories is definitely not the ex-

pected straight line of slope one and
passing through the origin. Nor does

a constant bias for each laboratory

explain their relationship. It is seen

that while a straight line is an adequate

representation of this relation, this line

has a slope distinctly different from

unity, in addition to a nonzero intercept.

The conventional model for two-way
classification data has a further dis-

advantage when appUed to interlabora-

tory data. It is extremely sensitive to

"outlying" data. Even a single outlier

may result in a considerably enlarged

interaction term. The practice of ehm-
inating outhers on the basis of control-

chart procedures has often led to the dis-

carding of a substantial proportion of

the participating laboratories. It is

probably for these reasons that inter-

laboratory studies have been considered

to be so "frustrating" (7).

The model presented in this paper

allows for nonconstant, nonrandom
differences between laboratories, by
allowing their response lines to have

slopes different from 45 deg, in addition

to nonzero intercepts. It safeguards

against the effect of outhers in two
ways: by a preliminary analysis of the

relation between within-cell variabiUty

and cell average, and by a separate

calculation, for each individual labora-

tory, of the scatter of its points about

its response line. It is beUeved that

this model provides an adequate basis

for the general description of the pre-

cision of measuring processes and a

satisfactory procedure for analyzing and
interpreting interlaboratory studies.
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The computations are set forth in steps

which are numbered identically as in the

body of the paper.

Step 1. Scale Transformation

Compute, for each cell of Table I, its

average and its standard deviation. De-
note the average of the i,jth cell by yij

and its standard deviation by sjy. Then
for each material (that is, column) com-
pute the average yj of the cell averages

ytj and the average sj of the standard

deviations stj. The results are shown in

Table II for the Bekk smoothness data.

Prepare a graph plotting the standard
deviation Sj versus the average yj, as in

Fig. 9, and fit a simple curve to the

points thus obtained. For the data of

Fig. 9, a straight line through the origin

is a good fit. In general, a straight line,

not necessarily passing through the origin,

will be sufficient, as only an approximate,

order-of-magnitude relationship is re-

quired. Determine the intercept A and
the slope B of this straight line, in ac-

cordance with the equation:

sj — A + Byj + (random fluctuation) (1)

For the Bekk smoothness data, this

equation is given by A = 0 and B —
0.128.

If the slope B is appreciably different

from zero, use the transformation

' The numerical factor 2.3 is due to the use
of logarithms to the base 10 and equals loge
10.

APPENDIX

COMPUTATIONS

2 = A:iog(A -H By) - C. ...(2)

where K and C are arbitrary constants,

the values of which are chosen on the

basis of convenience. Theoretically, the

transformation should be applied to each

of the n observations in each cell. In

most cases, however, it is sufficient to

apply the transformation to the cell av-

erages. Table Ill(a) shows schematically

the transformed averages for each

cell, and Table 111(6) shows the trans-

formed averages for the Bekk smoothness
data. Since, for these data, we found A
= 0, Eq 2 becomes, in this case,

z = iir log 2/
- (C - if log B)

It was convenient to make K = 1000 and
C — K log B = 0. Thus, the transforma-

tion, here, is simply z = 1000 log y.

As a result of the transformation, the

error w has been transformed into a dif-

ferent error, denoted by «, the variance

of which is constant for all cells in Table
III. Its value is given by the following

expression :'

= my
For the Bekk smoothness data we find

= (
1000 X^0.128 y ^ 3,g,

Since each cell contained 8 replicates,

the standard error of a cell average is

V'3097/8 = 19.7.

50 100 150

^,Average Bekk, Smoothness. sec

Fig. 9.—Bekk smoothness data, showing
approximate linear relationship between
standard deviation and magnitude of the

smoothness value. The straight line is:

Sj = 0.128 yj. Thus A = 0 and B =
0.128.

If the slope B is not appreciably differ-

ent from zero, no transformation of scale

is required and all subsequent steps are

carried out on the original cell averages.

In this case, y = z and u = «.

Step 2. Determination of and Fi(7;)

First compute the row and column
averages in Table Ill(a) as follows:

''' =
S

f4)

X, = i Zii and x = j S x,. . .(5)
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Then compute the quantities below in

the indicated order:

X = - bx' (6)

Z> = E^.y' - W (7)

i

Pi = 'Z - (8)

J

^' = ?

The last formula constitutes a slight

departure from the ordinary calculations

in linear regression: the correction factor

a/(a — 1) is due to the fact that the

errors of za and xj are slightly correlated.

The results of these computations for

the Bekk smoothness data are shown
in Table IV.

Determination of F(/i) and V{X)

To obtain V(ri), average all values of

Vt (v) (see Table IV). ^(X) is given by
the following equation:

F(X) = VM - (1/n) F(e)..(ll)

where y(e) is given by Eq 3. Should the

estimate of V(ri) be less than that of

(1/n) F(<), then F(X) must be considered

to equal zero. For the Bekk smoothness

data, we obtain F(X) = 596 - (3097/8)
= 209.

Step 3. Determination of Variances

Table V(a) is constructed in the usual

manner, using the transformed cell av-

erages. Note that Sm = aX where X
is given by Eq 6, and that

Slm = (T,^'^ - Si, = (TJ^'^
-

...(12)

The variances V{ii) and V(0) may now
be obtained from the previously obtained

value of V(ri) and from Table V(a).

FW=M-^ (13)

vm = A [Ml VM]
Mm - VM .(14)

If either of these equations yields a

negative value, the corresponding vari-

ance is taken to be zero.

The quantity F(S) is obtained from the

following equation:

F(«) = V{0) - (15)

where F(/3) is given by Eq 14 and a by
the equation:

.(16)

For the Bekk smoothness data, these

computations yield:

V{n) = 3296 F(^) = 0.002881
a = 0.0004661

V(S) = 0.002881 - 0.000716 =
0.002165

Step 4. Breakdown of Total Variance

The total variance of z, for any value

of z, is given by the equation:

V(z) = F(e) + F(X) + [1 + a(z - x)]'

VM + (z - *)^F(S)..(17)

From this equation we derive, by divid-

ing by V{z)i the breakdown of the total

variance into its fractional parts:

1 =
V(z) ^ V(z)

[1 + cjz - x)VVM ^ (z-xyV(S)
^^g^

V(z) V(z)

This information is tabulated in Table
VI for the Bekk data, for values of z

corresponding to some selected values of

y covering the range of interest.

Step 5 . Conversion to Original Scale

The total variance of z is converted

back to the ?/-scale by means of the

equation:

V(y) = [^(^ -t-!/)]V(z).(19)

It is generally desirable to add two
more columns to the table showing the

breakdown of F(z): a column of the

selected values for which the breakdown
was made and a column of (ry, obtained

by taking the square root of Eq 19 (see

Table VI).
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Sensitivity—A Criterion for the Comparison of

Methods of Test

J. Mandel and R. D. Stiehler

In the evaluation of many methods of test, the two usual criteria—precision and accu-
racy—are insufficient. Accuracy is only applicable where comparisons with a standard can
be made. Precision, when interpreted as degree of reproducibility, is not necessarily a
measure of merit, because a method may be highly reproducible merely because it Is too
crude to detect small variations.

To obtain a quantitative measure of merit of test methods, a new concept—sensi-
tivity—is introduced. If M is a measure of some property Q, and om its standard deviation,
the sensitivity of M, denoted ^a/, is defined by the relation yj/ii=(dMldQ)l<TM. It fol-

lows from this definition that the sensitivity of a test method may or may not be constant
for all values of the property Q. A statistical test of significance is derived for the ratio of
sensitivities of alternative methods of test. Unlike the standard deviation and the co-
efficient of variation, sensitivity is a measure of merit that is invariant with respect to any
functional transformation of the measurement, and is therefore independent of the scale in

which the measurement is expressed.

1. Introductibn

In the physical sciences, there frequently is a
choice between several methods for the determina-
tion of a particular characteristic. In such cases
means are necessary to compare the relative merits
of the various methods. The customary procedure
for evaluating a test method, particularly in analyt-
ical chemistry, is to determine accuracy by com-
paring the values found on known samples with the
theoretical values, and to express precision by the
reproducibility of the experimental values as meas-
ured by the standard deviation. Alternative meth-
ods can then be compared on the basis of both
precision and accuracy. In the evaluation of many
methods of test, particularly those for polymeric
materials, these criteria are insufficient. This paper
presents a single criterion by which the relative
merit of methods of test can be evaluated. The
main advantage of the new criterion—referred to as
sensitivity—is that it takes into account, not only
the reproducibility of the testing procedure, but
also its ability to detect small variations in the
characteristic to be measured.
The need for such a criterion has been felt by

various workers. Newton [1]^ discusses the fallacy
of comparing alternative test methods on the sole
basis of their respective standard deviations of error.
According to Throdahl [2], Mooney considers a
coefficient of discrimination, defined as the ratio of
the difference between the average values obtained
from two sets of samples to the standard deviation
within samples. Dillon [3] compares two plastom-
eters on the basis of their selectivities, the concept
of selectivity being defined by him as the "percentage
difference between two observations on different
mixtures divided by the average maximum per-

' Figures in brackets indicate the literature references at the end of this paper.

centage enor'." Roth and Stiehler [4], in comparing
the precisions of strain and stress measurements,
convert the standard deviation of strain into stress

units and then consider the ratio of this converted
standard deviation to that of stress; alternatively,

they consider the ratio of the variance "between
batches" to that "within batches" as a criterion

for the sensitivity of either method. The latter

criterion is also applied by Buist and Davies [5] and
by Newton, Scott, and Whorlow [6], who refer to it

as the discriminating power. Reichel [7] introduces
the concept of "technische Giite" to characterize the
merit of methods of chemical analysis.

In this paper, a general mathematical definition

is proposed for the sensitivity concept, which is an
intrinsic measure of merit, of particular value for the
comparison of two or more alternative test methods.

2. Sensitivity in the Case of Proportionality

In most analytical methods in chemistry the

desired material is not determined directly but is

calculated from measurements of a proportional

quantity of some related material. For example,
in the determination of zinc, the amount of this

metal is calculated from the quantity of zinc oxide,

zinc sulfate, or other zinc compound actually

measured. In comparing the relative merits of the

use of these alternative compounds, a pertinent

consideration, besides the magnitude of experimental
error, is the ratio of the equivalent weight of the

zinc compound to that of zinc. It is recognized

that a larger ratio is preferable, provided that the
experimental error is not increased in the same
proportion. A correct evaluation of alternative

methods, involving zinc compounds of different

equivalent weight, can be obtained from the following-

considerations:
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The percentage of zinc in the unknown is given by
the equation

W ^[Zn compound]'

where P is the weight of the Zn compound measured;
W is the weight of the sample

;
[Zn] is the equivalent

weight of zinc; and [Zn compound] is the equivalent
weight of the zinc compound measured.
Let Q equal the percentage of zinc, R the ratio of the
equivalent weights of zinc and the zinc compound
measured, and M the weight of zinc compound per
gram of sample. Then

Q^IOOMR. (2)

From this relation it foUows [8] that the standard
deviation for the determination of zinc is given by
the equation

<7q=100R<tm. (3)

Equation (3) shows that the precision of the zinc

•determination is improved when (1) the quantity
lOOR is small, and (2) the error of measurement of

the zinc compound {<tm) is small.

If the weight of zinc compound per gram of sample
is plotted against the percentage of zinc, a straight

line is obtained, as shown in figure 1. The line passes
through the origin and has a slope equal to the re-

ciprocal of IOOjB. Let the slope be designated asK.
Equation (3) can now be written

Thus, high precision in the determination of Q
(i. e., a small value for o-g) reduces to the require-

ment that the quantity K/o-m be large. The absolute
value of the quantity K/(Tm is defined as the sensi-

tivity of the measurement of M for the determina-
tion of Q and is denoted by }}/. Thus

Sensitivity=iA=— (5)
Cm

0, PERCENTAGE OF ZINC

Figure 1. Sensitivity for proportional relationship.

It is obvious that the m.6rit of the method is de-
pendent on more than the reproducibility of measure-
ment of M. It also depends on the rate of change
inM with a change in Q or the ability to discriminate
between small changes in Q.

3. Sensitivity in the General Case

In many methods, particularly when dealing vnth.

polymeric materials, the measured quantity M and
the desired quantity Q are not linearly related. An
example is the measurement of refractive index to

determine the percentage of bound styrene in GR-S
synthetic rubber. Additional difficulties arise when
it becomes impossible to define a single criterion Q
for the characterization of the properties in which
one is interested. In these cases it is necessary to

consider a measurable quantity M that is in some
sense related to these properties. An example of

this type is given by vulcanization tests on rubbers,
where stress-strain measurements are used as an in-

dex or measure of the degree of vulcanization.

Whether or not a quantity Q can be defined, and
whatever the relation may be between a character-
istic Q and the measured quantity M, the criterion

defined as sensitivity can effectively be used for

evaluating and comparing methods of test.

Figure 2 illustrates a case in which Q is susceptible

of exact definition and the relation between M and
Q is curvilinear. If it is desired to differentiate

between the two close values, Qi and Q2, by means
of the corresponding measurements Mi and M2, it

is again apparent that the success of the operation
will depend on two circumstances: (1) the magnitude
of the difference M2—M1, for a given difference

Q2—Q1; i- e., the magnitude of the slope {M2—M1)/
{Q2—Q1)', and (2) the precision of measurement;
i. e., the smaUness of the standard deviation. Indeed,
if an is too large, the regions of uncertainty of

Ml and M2 may overlap, and the discrimination faU.

As before, these two desiderata can be combined in

a single criterion, the sensitivity, defined according

0, 02

0, DESIRED QUANTITY

Figure 2. Sensitivity for curvilinear relationship.
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to eq (5) as the absolute value of the ratio of the

slope K=(M2—Mi)/(Q2—Qi) to the standard devia-

tion of M, (T.w. The larger the sensitivity, the more
useful will be the test method M for the characteri-

zation of Q. It should be noted, however, that in

the general case, K is no longer constant but varies

with the value of Q. Thus, even in cases in which
the experimental error (measured by <xm) remains
constant, the sensitivity may vary with the value
of Q. Only when the error is proportional to K \s

the sensitivity constant.

If the properties under consideration cannot be
expressed by means of a single criterion Q, it is not
possible to determine the absolute sensitivity of a
method of test. It is possible, however, to determine
the relative sensitivities of two or more methods used
to characterize these properties. This important
application of the sensitivity concept can best be
shown by first considering a case in which a single

criterion Q exists, and two alternative measuring
methods M and N, both related to Q, are to be
compared. For example, density and refractive-

index methods for determining the bound styrene in

GR-S may be compared without knowing the actual
percentage of bound styrene. Let i'u and ^at be
the sensitivities corresponding to the two methods.
From eq (5) it follows that the ratio of the sensi-

tivities is given by

4^^JKm/K^\_ \K'\

The meaning of K' is found as follows:

(6)

(7)

Thus K' is the slope of a curve of M plotted as a
function of A'^. From eq (5) it follows that the
dimension of sensitivity is that of l/Q, since (Tm has
the dimension of M, and K is of dimension M/Q.
On the other hand, the ratio of the sensitivities of
alternative test methods given in eq (6) is dimension-
less. This fact, as well as eq (7), shows that the
comparison of two methods, by means of the ratio
of their sensitivities, does not necessitate a knowledge
of their relation to the theoretical Q. All that is

required is a knowledge of their mutual relationship.
In the case of bound styrene, the relation between

density and refractive index can be established from
a series of samples of different bound styrene con-
tents without a knowledge of bound styrene in any
sample. Of course, the bound styrene content could
be determined by some absolute method, and the
absolute sensitivities of the refractive index and
density methods for measuring this property could
be estabUshed.
In the case of stress-strain measurements, on the

other hand, the characteristic—degree of vulcaniza-
tion—cannot be represented by a single quantity Q
and consequently no absolute sensitivities for either
method can be calculated. Nevertheless, relation

(6), with K' given by (7), can be applied, since it

does not involve the quantity Q, and the sensitivity

ratio can be used to compare the measurement of
tensile stress [9] and the measurement of strain [4].

The relationship between these two methods of
measurement for a GR-S synthetic rubber com-
pound, according to Roth and Stiehler [4], is given by
the equation:

SE''=--C (8)

where S represents tensile stress, E represents

strain, and n and C are constants for any particular

type of vulcanizates.

If the logarithmic derivative is taken, it follows

that

dS
--—n

dE
E' (9)

As n is of the order of 1.5, it might be expected that
measurements of tensile stress would detect varia-

tions in the vulcanizates better than measurements
of strain. However, Roth and Stiehler [4] show that
the error of measurement of strain is much smaller
than that of the usual measurement of tensile stress;

hence, the sensitivity of strain measurements is

greater.

From eq (9) it follows that the slope of the strain

versus tensile-stress curve is

and consequently.

(10)

This expression is found to exceed unity, as shown
in table 1, which lists data pertinent for the calcu-

lation of the sensitivity ratio, for tensile-stress and
strain values obtained in three different plants and
for two cures [10]. It should be noted that the ratio

of the two sensitivities varies with the degree or
time of cure, since the factor EInS decreases as
vulcanization progresses. The advantages of the
strain test are therefore greatest for tests on vul-

canizates that are undercured. The d&ta also show
that the greater sensitivity of the strain test is due
to its better reproducibility.

Table 1. Comparison of tensile stress and strain measure-
ments of GR-S synthetic rubber

Standard deviation
Ratio of

Cure at 292° F Plant
K'

(Ell.6 S) •
Strain at
400 psi

Stress at
300% elon-

gation

sensitivities
(strain/

stress)

min

26

%/Psi
0.610
.542

%
1.6
3.1

psi

9.5
22.5

3.6
3.9

.362 2.1 15.4 2.6

100 li
.0706
.0703

0.83
1.84

14.8
35.8

1.3
1.4

.0641 1. 17 37.

1

2.0

• The value 1.6 taken lor n is an upper limit for GR-S sjTithetic rubber.
For values of n smaller than 1.0, the ratios in the last column will be larger.
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It should be noted that the application of the
sensitivity criterion in comparing: two test methods
implies that a definite functional relationship exists

between the properties measured by the two methods.
This restriction is not introduced by the sensitivity

concept, but rather a hmitation inherent in any valid

comparison. If a characteristic 0 can be adequately
measured by two different methods M and N, both
methods must be functions of Q and therefore

functionally related to each other. In many cases,

M and A'^, in addition to depending on Q, will also

depend on other factors not common to both. A
comparison ofM and A'^ for the determination of 0 is

then only valid under conditions in which the results

yielded by M and A'^ are solely governed by varia-

tions in (>, i. e., all noncommon factors must be held
constant for all samples involved in the comparison.
Failure to satisfy this condition will result in data of

M and A'^ that may well show significant correlation,

but not necessarily a definite functional relationship

either with each other or with the characteristic Q.

It is also important to note that the functional
relationship assumed to exist between the methods
M and A^ need not be known for the application of

the sensitivity criterion.

4. Test of Significance for the Sensitivity

Ratio

It has been shown that a measure of the relative

merit of a test method M with respect to an alter-

native method A'^ is given by the sensitivity ratio:

—

>

where K' is the slope of the curve of M versus A'^ in

the region of the curve at which the comparison is

made. If this ratio exceeds unity, M is supeiior to

A'^. Since, in general, both K' and the quantities

Cm and o-^r will be determined experimentally, the
ratio -^mI^n can only be approximated, and its esti-

mate will be subject to random fluctuations.
In practice it is fortunately quite often the case

that the two tests are carried out on the same sample
or in such a manner that their relationship is known
with much higher precision than either of the two
measurements. Thus, a comparison of the relative
merits of measuring the rate of tread wear of tires

by weight loss or by depth loss can be made by
measuring both losses on the same tire. While
either of these experimental quantities depends on
highly variable climatic and road conditions, the
relation between the two is practically free from
these effects because both are obtained under the
same identical conditions.

In such cases, the fluctuations in the sensitivity
ratio can be considered to be due entirely to the
uncertainty in the ratio s^^/Sm where s is a sample
estimate for the corresponding a.

To determine whether the ratio \K'\aNl<yM exceeds
unity, a statistical test is made of the hypothesis

K' affl(TM='i, against the alternative hypothesis

The quantity F—{s%/ajf)/(s'j^,/ai,) is known to be
distributed in accordance with the F-statistic [11].

Consequently,

and

fAT Sff 1

\K' \K (11)

If Fo is the tabulated value of the F-statistic at

the desired level of significance, the quantity

\K'\(s!f/s^f)\/^/'Fo represents a lower confidence limit

for the sensitivity ratio \K'\a^,/(TM. If this lower
limit exceeds unity, it may be concluded, at the

confidence level chosen, that M is more sensitive

than A^.

In the example shown in table 1, the numbers of

degrees of freedom used in the estimation of the

standard deviations ranged from 38 to 48. Examin-
ing the data of plant A and the 100-minute cure,

for which there were 48 degrees of freedom for each
standard deviation, Fo, at the 5 percent level of

significance, equals 1.61; and consequently, the

lower confidence limit of the sensitivity ratio equals

1.3
1

= 1.3
1

.=1.0.

From this value it can be concluded that strain,

even in the least favorable of the cases- examined,

is at least as sensitive as stress, and most likely

more sensitive.

If the experimental error in the estimate of the

slope K' is not negligible, the above test of signifi-

cance is not valid. In such cases, the correct statis-

tical procedure for testing the significance of the

sensitivity ratio depends on the type of relationship

between the two test methods (linear, quadratic,

logarithmic, etc.) as well as on the design of the

experiment used to establish the relationship. No
attempt is made in this paper to deal with the

statistical theory for these more complex situations.

5. Effect of Scale of Measurement

There exist many cases in which measurements of

physical or chemical properties can be expressed in

more than one scale. For example, in measuring
the light-absorption characteristics of materials, the

results can be expressed either in optical density or

in percentage transmittance. Another example is

the measurement of refractive indices: In many
instruments, a scale is provided that allows the

direct reading of the refractive index rather than the

angles of refraction and of incidence. In these cases

the different scales of measurement correspond to

functionally related quantities, but the functions
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relating them are not linear. An important ad-

vantage of the sensitivity concept is its nondepend-
«nce on the scale of measurement. The standard
deviation, being expressed in the same units as the

measurement, has a value that depends on the unit

and scale in which the m.easurement is expressed.

The coefficient of variation, which is defined as the

ratio of the standard deviation to the mean value, is

nondimensional, because both these quantities are

expressed in the same units. However, except for

scales that are proportional to each other, the co-

efficient of variation is dependent on the scale in

which the measurement is expressed.

Consider, for example, the logarithmic transfor-

mation of a measurement y:

z=ln y.

The standard deviation of z is then approximated

[8] by the expression

It is evident, from this formula, that the coefficient

of variation of z, a^jz, is in general different from,

that of y, <Ty/y. It can be shown that the only
transformation that leaves the coefficient of varia-

tion rigorously unaltered is a proportional transfor-

mation: z=ky, i. e., a simple change of units. (To
the extent that the approximate expression o-j=
\dz/dy\(Ty is applicable—[for detaUs see 12, sees. 27.7

and 28.4]—the coefficient of variation is also unal-
tered under the transformation z=k/y.)
On the other hand, the sensitivity of the trans-

formed variable z, for any transformation

z=f(y) (12)

is identical to that of tne original variable y, to the

extent that the following calculation of the ratio of
the two sensitivities is applicable:

dz

dy

dz

dy

dz

dy
(Tyl(Ty

It is evident from, eq (13) that sensitivity is not
affected by any transformation of the measurement,
and is therefore independent of the scale in which
the m.easurement is expressed.
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Foreword

In 1959, Forman S. Acton wrote a book of 267 pages on the Analysis

of Straight-line Data. In his preface he admitted that there are ".
. . impor-

tant problems for which, unfortunately, no adequate answers have been

found." Ten years later we have found new problems added to the unsolved

old problems. Apparently the subject of relationship between variables,

even for the seemingly simple straight line case, is far from being ex-

hausted.

Paper (4.1) in this section is an example taken from John Mandel's

doctoral dissertation, and illustrates how the same set of data can be

scrutinized on the basis of eight different assumed models.

Chapter 5 of NBS Handbook 91 presents a general picture (4.2) of the

physical situations which can be described by a linear relationship between

two variables, and gives the uses and interpretations of the resulting equa-

tion fitted under the different models assumed. Its table 5.1 is a summary
of the cases that are usually encountered by experimenters involved in

physical measurements.

Mandel's other paper (4.3) on calibration curves points out the diffi-

culty resulting "from the interdependence of multiple conclusions drawn
from the same data, especially when there is a strong correlation between
the parameters involved." He has treated this subject in further detail in

Statistical Analysis of Experimental Data (Selected References B6).

There are few papers available that deal with polynomial or other types

of curve fitting. Hockersmith and Ku (4.4) demonstrate the use of a quad-

ratic curve in interpreting data on proving rings. For further reading,

Chapter 6 of Handbook 91 (Selected Reference C2) and Draper and Smith
(Selected Reference B8) are recommended.

With the availability of canned computer programs, "least squares"

has become a magic term. Eisenhart's paper (4.5) gives a historical account

of the evolution of the meaning of "least" from the days of Laplace and

Gauss, and is interesting and pertinent reading.

One word of warning ! Be sure you use a computer program which has

been adequately tested for round-off errors when fitting a polynomial (or

multi-variable) equation to a set of data. Some popular programs using

naive matrix methods have been found to yield accuracies of only one sig-

nificant digit in the coefficients of a 5th degree equation fitted to 21 equally

spaced points, whereas more sophisticated routines would produce five sig-

nificant digits.
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A Statistical Study of

Physical Classroom Experiments

First Example: The Acceleration of Gravity, g

John Mandel

1, Principle and Method of MeasTirement

A pendulum Is constructed by suspending a metal sphere of about

3 cm. in diameter by means of a thread of negligible weight and

elongation. The length of the pendulum, from the point of sus-

pension of the thread to the center of gravity of the sphere, is

determined by means of a measuring tape. The pendulum is made to

swing with an amplitude not exceeding 10 percent of its length,

and the time for 50 oscillations is recorded three times in suc-

cession.

The measurements are ceurried out for 5 values of i (the length of

the pendulum), equal approximately to 175» 150, 125, 100 and 75 cm.

The students are instructed to plot T^ versus ^, T being the period

of the oscillation, and determine _g, the acceleration of gravity,

by using the relation

(la)

Thus, £ is calculated from the slope, equal to —^ , of the straight

line relating to / ,

2. The Data

Table 1 lists for each of 10 students, the five values of ^ with

the corresponding measured values for 50 T . Each value of 50 T la

actually the average of 3 replicate determinations, using the same

value of ^ • Student no. 6 made no measurements for £ = 150 cm.
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Table 1

Student

Basic Data for the Determination of £

(1)

I

50 T

Measurements

175.2

132.5

151.5

123. if

126.4

112.8

101.7

101.2

77.0

88.2

t\ 179.0

50 T I 133.7

150.0

122.3

125.0

111.3

100.0

99.8

75.0

85.8

i| 170.0 1'f9.3 124.8 100.4 76.4

50 T I 130.8 122.5 112.1 100.5 87.6

l\ 165.1

50 T I 129.0

149.8

122.8

125.0

112.2

100.0

100.0

75.0

86.8

i

50 T

171.5

131.1

150.0

122.6

124.9

111.9

100.0

100.1

75.0

86.8

t

50 T

175.8

132.8

125.0

112.0

99.7

100.1

75.0

86.8

50 T

172.0

131.6

150.0

122.8

125.0

112.0

100.0

100.2

75.0

86.8

50 T I 132.1

149.9

122.2

125.0

111.8

100.0

100,0

75.0

86.5

9 /
I

165.5 150.0 125.0 100.0 75.0

50 T I 128«9 122.7 112.0 100,2 86.9

10 I

50 T

175.8

132,8

150.7

123.0

125,8

112.3

100,8

100,7

74,6

86.7

(1)
^ Is expressed In cm. ; 50 T In seconds. Each value for 50 T

Is the average of triplicate determinations; the standard

deviation among triplicates is O.080 .
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3. Analysis of the Data; Part I

For each student,the value cf T* was calculated for each of his

i -values. Using the method of least squares for linear regression,

which is described in most textbooks of statistics (see for

example L'»«10j), a straight line was fitted to the (T*,i) points,

as follows

T* = a + pi. (1b)

The quantity a is the intercept of the line, p its slope. This

equation is slightly more general than Eq, (la), which it contains

as a special case, namely when a = 0* The reasons for using this

procedure will be explained below.

The results are summarized in Table 2, which lists the intercepts,

slopes, and residual standard deviations for all regression lines.

Also listed are, for reasons to be discussed later, the ordinates

of the fitted lines for i = 125 cm.

At this point an excellent opportunity arises for the students to

attempt to formulate questions that are pertinent in terms of the

physical theory (Equation (1)), underlying the experiment. The

instructor can then show how these questions are translated in

statistical terminology and explain the statistical methodology

used for their elucidation. We will illustrate this point by posing

the following questions :

(1) Are there systematic differences between the regression lines

for the different students 1

(2) If such differences are found, are they due uniquely to dif-

ferences between the intercepts, or are the slopes also dif-

ferent 7

(3) How do the slopes compare with the "theoretical" value, ,

where £ is given its known value for the Netherlands,

g = 981.3 ^— t thus making the theoretical slope equal to
sec*
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Table 2

Results for ReRression of T^ on i

>tudent Niunber of Intercept Slope Standso-d Deviation Height'

points (sec ^) (sec^/cm) of Residuals

(sec^)

(sec^)

1 5 0.0if5 3.9863 xlO"* 0,0067 5.0280

2 5 - 0.072 0,0165 if. 9711

3 5 - 0.006 4.0278 0,0050 5.0290

if 5 - 0.033 if. 0500 0,0120 5.029if

5 5 0,009 if.002if 0,0029 5.012if

6 if 0,011 if. 0065 0.002if 5.0167

7 5 - 0,016 i*.0333 0,006if 5.0256

8 5 0,02lf 3.9708 0.0099 if. 9876

9 5 0.013 if. 0065 0.0055 5.0207

10 5 0,022 3.9992 0.0057 5.0210

(1) Ordinate of fitted line for i = 125 cm.

(1)
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4.0231 X 10"2 (in ?
cm

(4) How do the results compare with the theoretical straight line

which, in addition to having a slope of 4,0231 x 10"* sec*/cm,

must also have a zero-intercept ?

The students can be shown at this point that the general statistical

theory for fitting linear models provides a powerful and elegant
(1

)

tool for answering these questions . The basic idea underlying

this procedure is to "embed" the model that is to be tested into

a more general linear model, i.e. one with a larger number of es-

timated parameters. An elementary exposition may be found in [10 ],

Denoting the length by x and the square of the period, T* , by ^,

Equation (la) can be written

E(y) = ^ X , (2)

where E(y) represents the "expected value" of y, i.e. the value of

the y freed of random experimental error.

If £ is given its theoretical value, g = 98l.3» model (2) involves

no unknown parameters and becomes

E(y) = (4.0231 X 10"*) X. (3)

This model can be embedded In the slightly more general model

E(y) = p X , (4)

It is assumed here that the students have a sufficient back-

ground in statistical theory to follow such an analysis. For

students with a lesser background, the instructor can proceed

at once with the control chart analysis (section 4).
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where p may differ from the theoretical value 'f.0231 x 10~*
,

Model (4) can in turn be embedded in one allowing for a non-zero

intercept

E(y) = a + p X . (5)

It is conceivable that either a , or p , or both, vary from student

to student, in which case we obtain the models

{E(y) = + px (6a)

E(y) = a + p X , (6b)

(where the subscript i refers to the ^th student) or the more general

model

E(y) = a + P ^ X . (7)

Equation (6a) contains the interesting sub-model

E(y) = + ('t.0231 X 10"") x (8)

and Equation (6b) similarly includes the case

E(y) = 0 + p^ X. (9)

Now, while a physicist would probably start by assuming that

Equation (3) holds, and only abandon this hypothesis if it is

definitely contradicted by the data, the statistician would

generally choose the inverse path. In other words, the statistician

would start with the most general (and therefore safest) assumption

expressed by Equation (7)f and then attempt to particulaurize it

gradually, i.e. reduce gradually the number of parameters to be

estimated, using the data slb a criterion for the validity of each

step in the reduction process. The process is schematically re-
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Table k

Basic Calculations

Student ITU W P

1 631.8 25.411 85,896.14 138.776639 3452.5794

2 629.0 25.017 85,791.00 136.016095 3415.9500

3 620.9 24,980 82,682.65 133.851690 3326.7410

k 614.9 24.738 80,948.05 131.132852 3258.0492

5 621. if 24,918 83,137.26 133.648110 3333.3366

6 ^^75.

5

19.094 62,095.73 100.087500 2492.9908

7 622.0 25.007 83,334.00 134.761129 3351.1440

8 625.2 24.946 84,450.10 134.355178 3368.4217

9 615.5 24.723 81,140.25 130.868821 3258.6380

10 627.7 25.213 85,167.57 137.320741 ' 3419.8318

Sum 6083.9 244,047 814,642.75 1310.818755 32,677.6825

M If uvlVU w u Sf

1 6061.89 9.632855 241,6454

2 6662.80 10.846037 268.8114

3 5579.29 9.051610 224.7246

if 5327.65 8.739124 215.7700

5 5909.67 9.466765 236.5276

6 5570.67 8.942291 223.1916

7 5957.20 9.691119 240.2732

8 6275.09 9.894595 249.1739

9 5372.20 8.623475 215.2367

10 6366.11 10.181667 254.5918

Sum 59,082.57 95.069538 2369.9462
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presented In Table 3» The statistical analysis consists in testing

each of the successive models against one in which It can be em-

bedded, starting from the top and proceeding gradually downward.

The basic numerical materieQ. consists of the quantities

£ X and Ex*, E y and E y*, E xy

,

which we denote respectively by the symbols

X=Ex, U=Ex*, Y=zy, W=Ey«, P= E xy (10)

and of the derived quantities

u = E (x - = E x« - = U - ^
n n

w = E (y - y)« = E y« - -^^^ = » " Vn n

p = E (x - ;)(y - y) = Exy - = p . H . J

where n is the number of experimental points in a regression line.

These quantities are tabulated in Table k for each of the ten students.

Table 3 also gives the degrees of freedom, sums of squares and mean
(•)

squares of the residuals for all of the models considered •

Using the latter as a guide one readily finds the model into which

each model to be tested is to be embedded. Thus it Is cleEur that

(B) emd (C) are both tested against (A); (B*) is tested against (B),

and (C») against (C), The model (D) can be embedded in (A), (B)

,

or (C)| which of these is chosen will depend on the outcome of the

tests for models (B) and (C). Model (G) can be embedded in (D), and

model (H) in (G).

The only model for which the computations are not directly

appEa*ent is (B). The appropriate formulas for this model are

given In Appendix A •
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In practic* it is unlikely that many of these tests will have to

be made, since any finding of significance will generally make sub-

sequent reduction steps of academic interest only. Thus, in the

case of our data, models (B) and (C) are both unacceptable and It

is therefore unnecessary to continue the statistical, testing process

to the more specialized models. In testing any hypothesis, such

as for example (C), one first calculates the reduction in the sum

of squares from (C) to" the more genersil model (A), divides this by

the corresponding reduction in the degrees of freedom and compares

this mean square, by means of the F test, to that corresponding to

the more general model (A), Thus, for testing (C) we have

with 9 and 29 degrees of freedom.

The conclusion of the statistical analysis is ^hat the data are not

consistent with the hypothesis that all the students obtained the

that they all obtaiined the same (incorrect) relationship. It is

also seen that both the slopes and the intercepts vary from student

to student. The only acceptable model is (A), which associates
2

with each student an individual relationship between T and / •

It is indispensible , before accepting this hypothesis, to examine

the residuals individually, and to verify that they do not display

striking patterns of non-randomness. Table 5» which lists the

residuals, throws no serious suspicion on the validity of model (A),

After performing the analysis based on the general linear hypothesis,

it is well to point out that while this method is elegant and power-

ful, it fails to provide detailed information about the results of

each individual student. An excellent way of obtaining the latter

consists in carrying out a control chsirt type of analysis*

2theoretical relation between T £ind / nor even with the hypothesis
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Table 5

Residuals from Model (A) ^

Student

Approx,i125^56789 10

175 -6022206-52 2

150 7 3-6-2-1 - -2 -3 -1 3

125 5-16 5 7 1-1 -8 12 -3 - 9

100 -2 22 2 -17 -33-15-3 5

75 -2 -9 -3 10 3 -2 5 -9 3 2

(1) ^All residuals were multiplied by 10"^ •
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4, Analysis of the Data; Part II

Table 2 is the steirting point of the second part of the analysis.

It may be observed that the situation is quite analogous to that

encountered in the evaluation of Interlaboratory test results [lO,1l] .

The central idea in such an evaluation is the setting up of a model

containing parameters that may vary from laboratory to laboratory

(in the present case : from student to student), and to display the

variation of the parameters by means of control charts [ 1 ],

Table 2, when viewed as a representation of model (A), contsdLns three

variable parameters : the Intercept, the slope, and the standard

deviation about the regression line. However, the intercept and the

slope are highly correlated, in a statistical sense. This means

that the types of information provided by these two parameters

largely overlap. For this reason it is advisable to replace one

of these peirameters, for example the intercept, by one that is in-

dependent of the other (the slope). In our case, the ordinate of

the regression line at / = 125 cm is, for all students except

student no. 6, very close to the ordinate of the centroid of the

line, and therefore essentiaO-ly independent of the slope. For these

reasons, the control charts shown in Figure 1 aire those of the or-

dinate at Jt = 125 cm (which we shall call the "height" of the line),

the slope, and the standard deviation about the regression line.

The control lines, which eire aill "two-sigma lines", sire based, for

fill three charts, on the average of the standard deviations for T :

a = 0,0071 sec*. The central lines for the height and the slope

were taken each at their theoretical value (i.e. the values required

by Eq, (I), assuming g = 98l.3)«

Control lines for standard deviations may be derived from the

chl-sqnare distribution, using the relation ns*/ o* = t'^ , where

n is the number of degrees of freedom and the chi-square

ariate with n degrees of freedom. From this relation it follows

that 95 percent control lines may be calculated from the double

inequality
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Fig. 1 • Control Chart Analysis for Deternniniation of g
Centroid

,
slope and std. dev. for regression lines of on I

5J06

5.04

502

4.98

496

Height at 125 cm. [in sec?)

1 1 1 1 1 1 1 1 1 1 1 I

•

•

Slope |unit = 10^(sec>4m]|

•

•

4.06

4.04

4.02

4.00

3.98

3.96

180

1.60

1.40

1.20

1.00

.80

.60

.40

.20

Stand. Dev. junit = 10^(sec'')j

-I 1 I I I L_

10
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where o may be approximated by the average value of the standard

deviations and and are respectively the 2,5 and the 97.5

percentiles of chi. These percentile-values may be found in the

Biometrika tables [ 3 ]• The number of degrees of freedom in our

case is 3» except for student 6, The calculations were made, using

n = 3« The standard errors for the height and the slope were com-

puted using the classical formulas ( o / \J~n and o\ /
^

)

Vs (X-5E)*

in which an average value was taken forE(x-x)* (omitting student

6 in the average).

The general picture emerging from these charts is one of considerable

skepticism about the work of the students in this test* The standard

deviation for one student is suspect. For the height, only four

students show values that are not significantly different from

theory, and for the slope only five students agree with theory to

within the residusJ. error. For only two students do the values for

both psirameters agree with theory.

The important question is of course to discover the physical causes

(shortcomings in the experiment) that led to this state of affairs.

The students should be encouraged to offer suggestions.

It is also interesting to compaure the average standard deviation,

•o = 0.0071 sec, with that expected from the known experimented

errors in measuring ^ and T. The estimate o is that obtained from

a regression of T* on i , The replication standard deviation for

50 T was found to be O.O8O sec, for an average (of 50 T) of about

112 sec. Thus the coefficient of variation (C.V.) is O.O8O/II2 =

= 7.1 X 10"*. Therefore, the C.V. for T* is I'f.2x10"*. The

average of T being about 5 sec , we therefore have an expected

o = 5 X 1^.2 X 10~* = 71 x 10~* sec*. Since averages of triplicates
T*

were used, the standard error of each plotted point (ass\iming _i

71 X 10"

*

to be free of error) is ' t= O.OO^fl sec*. Actually, I

v/T
was not free of error, and its error Is reflected in the scatter

about the. regression line. Assuming an uncertainly range of about

1.0 cm for i (the students reported ^ 0,2 to 0.5 cm), the
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standard deviation would be of the order of —~ - 0,2 cm. Since

the elope of T versus £ is about 0,0k sec /cm, this corresponds

to a standard deviation along the ordinate of O.O'f x 0,2 = 0,008,

Thus, the total standard deviation expected about the regression

line is about )/ (0,004l)* + (O.OO8O)* = 0,0090 sec*, which is

comparable to the observed average a = 0,0071 sec , Thus, the

observed scatter about the regression lines is consistent with the

estimated error, confirming once more the adequacy of model (A),

In conclusion, the analysis indicates the presence of unexplained

systematic errors for almost all students.

5, Critique of the Experimental Design

This experiment presents aji opportunity to raise the general

question of the relationship between design and analysis.

While the target values for £ are specifically given in the

instruction manual used by the students, nothing is said about

the desired closeness of the actual values selected by the student

to those values.

Two rather different experimental situations can arise:

1) the values of £ are fixed, and the student is instructed to

approach them as accurately aus he can; or

2) £ is set only roughly near the tsurget values, but measured

as accurately as possible.

In the first design, a regression analysis of T^ versus i^, using

the ordinary equations (x-variable free of error), is justified,

as was shown by Berkson [2,10]» In the second design, both T* and

I are subject to error (though their errors are uncorrelated)

,

In that case, the regression calculations are somewhat more complex,

and much of the simplicity and elegance of the statistical analysis
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is lost, unless the error of £ is made to be negligible in

comparison with that of T ,

Suppose that, in accordance with the instruction manual, ^ is

determined from the slope of the regression of on i , and that

i is either a controlled variable, in the Berksonian sense, or

is measured with negligible error. Then, in order to avoid the

complications of a weighted regression analysis, the variance of

T* should be the same for all i_ . Let t be the tim« required for

n complete oscillation of the pendulum. Then we have

t = n T , (12)

o^ = n , (13)

We require that

o = constant, (1^)

hence a = 2T a_ = constant, (15)

Introducing Eq.(l3) in Eq.d^f) we obtain

o = 2Ta„ = 2T — = constant. (l6)
rpS T n

We may assume that the standard deviation of the time-measurement,

a^, is a constant. Then, Eq,(l6) requires that n be taken propor-

tional to T. This is equivalent to requiring that t be proportional

to T*, i.e. to £. This result may seem surprising, inasmuch as,

for a determination of g in accordance with Eq.(l), the relative

error ^ is already more disturbing for small i , and this is now

aggravated by making the relative error for the time measurement

also larger for small / « The euiswer to this apparent paradox is

of course that in the present procedure, g is not determined

directly from Eq,(l), but rather from the slope of a regression

line of T' on / , The Instructor can use this opportunity to further
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stress the important relationship that always exists between the

design of an experiment and the msoiner in which the data will be

analyzed.

The preceding discussion shows that the number of oscillations for

which the total time was measured should have been different for the

different lengths of the pendulum : the^ should have been taken

proportunally to \f~T , in order to make the unweighted regression

analysis strictly valid.

Finally, it should be noted that the usual precautions of ran-

domization, to avoid systematic errors, were not observed in the

experiment here described. Thus, the five values of / should not

have been taken consistently in the order 175» 150, 125, 100 and

75 cm. The student should be shown that to do so may introduce

fictitious changes in the slope and the intercept of the regression

line, due to possible trends in the measuring technique.

Eeprlnted from: A Statistical Study of

Physical Classroom Escperiment Si Technische

Hogeschool Eindhoven, 17-33, 19^5
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EXPERIMENTAL STATISTICS*

CHAPTER 5
*

CHARACTERIZING LINEAR RELATIONSHIPS

BETWEEN TWO VARIABLES

Mary G-, Ifetrella

5-1 INTRODUCTION

In many situations it is desirable to know
something about the relationships between two
characteristics of a material, product, or proc-

ess. In some cases, it may be known from
theoretical considerations that two properties

are functionally related, and the problem is to

find out more about the structure of this rela-

tionship. In other cases, there is interest in

investigating whether there exists a degree of

association between two properties which could

be used to advantage. For example, in specify-

ing methods of test for a material, there may be

two tests available, both of which reflect per-

formance, but one of which is cheaper, simpler,

or quicker to run. If a high degree of associa-

tion exists between the two tests, we might wish

to run regularly only the simpler test.

In this chapter, we deal only with linear rela-

tionships. Curvilinear relationships are dis-

cussed in Chapter 6 (see Paragraph 6-5). It is

worth noting that many nonlinear relationships

may be expressed in linear form by a suitable

transformation (change of variable) . For exam-
ple, if the relationship is of the form Y = oZ*,

then log y = log a + 6 log X. Putting Yt =

log y, bo = log a, bi = b, Xt = log X, we have

the linear expression Yt = bo + biXr in terms

of the new (transformed) variables Xt and Yt.

A number of common linearizing transforma-

tions are summarized in Table 5-4 and are dis-

cussed in Paragraph 5-4.4.

5-2 PLOTTING THE DATA

Where only two characteristics are involved,

the natural first step in handling the experi-

mental results is to plot the points on graph

paper. Conventionally, the independent vari-

able X is plotted on the horizontal scale, and the

dependent variable Y is plotted on the vertical

scale.

There is no substitute for a plot of the data to

give some idea of the general spread and shape

of the results. A pictorial indication of the

probable form and sharpness of the relation-

ship, if any, is indispensable and sometimes may
save needless computing. When investigating

* NBS Handbook 91, 1966.
204

a structural relationship, the plotted data will

show whether a hypothetical linear relationship

is borne out; if not, we must consider whether

there is any theoretical basis for fitting a curve

of higher degree. When looking for an empiri-

cal association of two characteristics, a glance at

the plot will reveal whether such association is

likely or whether there is only a patternless

scatter of points.

In some cases, a plot will reveal unsuspected

difliculties in the experimental setup which

must be ironed out before fitting any kind of

relationship. An example of this occurred in
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measuring the time required for a drop of dye to

travel between marked distances along a water

channel. The channel was marked with dis-

tance markers spaced at equal distances, and an

observer recorded the time at which the dye

passed each marker. The device used for re-

cording time consisted of two clocks hooked up
so that when one was stopped, the other started:

Clock 1 recorded the times for Distance Mark-
ers 1, 3, 5, etc. ; and Clock 2 recorded times for

the even-numbered distance markers. When
the elapsed times were plotted, they looked

somewhat as shown in Figure 5-1. It is ob-

vious that there was a systematic time diflFer-

ence between odd and even markers (presuma-

bly a lag in the circuit connecting the two
clocks). One could easily have fitted a straight

line to the odd-numbered distances and a dif-

ferent line to the even-numbered distances, with

approximately constant difference between the

two lines. The effect was so consistent, how-

ever, that the experimenter quite properly

decided to find a better means of recording

travel times before fitting any line at all.

If no obvious difficulties are revealed by the

plot, and the relationship appears to be linear,

then a line Y = bo + hiX ordinarily should be

fitted to the data, according to the procedures

given in this Chapter. Fitting by eye usually is

inadequate for the following reasons:

(a) No two people would fit exactly the same
line, and, therefore, the procedure is not ob-

jective;

(b) We always need some measure of how
well the line does fit the data, and of the uncer-

tainties inherent in the fitted line as a repre-

sentation of the true underlying relationship

—

and these can be obtained only when a formal,

well-defined mathematical procedure of fitting

is employed.

5

H 4 +

UJ

? 3l

2

I-

DISTANCE

Figure 5-1 . Time required for a drop of dye to travel

between distance markers.

205— 5-2



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES ordp 20-no

5-3 TWO IMPORTANT SYSTEMS OF LINEAR RELATIONSHIPS

Before giving the detailed procedure for fit-

ting a straight line, we discuss different physical

situations which can be described by a linear

relationship between two variables. The meth-

ods of description and prediction may be differ-

ent, depending upon the underlying system.

In general, we recognize two different and im-

portant systems which we call Statistical and

Functional. It is not possible to decide which is

the appropriate system from looking at the

data. The distinction must be made before

fitting the line—indeed, before taking the

measurements.

5-3.1 FUNCTIONAL RELATIONSHIPS

In the case of a Functional Relationship,

there exists an exact mathematical formula {y as

a function of x) relating the two variables, and

the only reason that the observations do not fit

this equation exactly is because of disturbances

or errors of measurement in the observed values

of one or both variables. We discuss two cases

of this type:

FI—Errors of measurement affect only one

variable (7). (See Fig. 5-2).

FII—Both variables {X and Y) are subject to

errors of measurement. (See Fig. 5-3).

Common situations that may be described by
Functional Relationships include calibration

lines, comparisons of analytical procedures, and

relationships in which time is the X variable.

For instance, we may regard Figure 5-2 as

portraying the calibration of a straight-faced

spring balance in terms of a series of weights

whose masses are accurately known. By
Hooke's Law, the extension of the spring, and

hence the position y of the scale pointer, should

be determined exactly by the mass x upon the

pan through a linear functional relationship*

2/ = /3o + jSi X. In practice, however, if a weight

* Note on Notation for Functional Relationships:

We have used x and y to denote the true or accurately
known values of the variables, and X and Y to denote
their values measured with error. In the FI Relation-
ship, the independent variable is always without error,

and therefore in our discussions of the FI case and in the

paragraph headings we always use x. In the Worksheet,

of mass Xi is placed upon the pan repeatedly and

the position of the pointer is read in each

instance, it usually is found that the readings Yi

are not identical, due to variations in the per-

formance of the spring and to reading errors.

Thus, corresponding to the mass Xi there is a

distribution of pointer readings Y^; correspond-

ing to mass X2 , a distribution of pointer readings

and so forth—as indicated in Figure 5-2.

It is customary to assume that these distribu-

tions are normal (or, at least symmetrical and

all of the same form) and that the mean of the

distribution of y.'s coincides with the true value

yi = i3o + /3i Xi .

If, instead of calibrating the spring balance in

terms of a series of accurately known weights,

we were to calibrate it in terms of another

spring balance by recording the corresponding

pointer positions when a series of weights are

placed first on the pan of one balance and then

on the pan of the other, the resulting readings

{X and Y) would be related by a linear struc-

tural relationship FII, as shown in Figure 5-3,

inasmuch as both X and Y are affected by errors

of measurement. In this case, corresponding

to the repeated weighings of a single weight Wi

(whose true mass need not be known), there is a

joint distribution of the pointer readings

{Xi and Yi) on the two balances, represented by

the little transparent mountain centered over

the trite point (Xi, yi) in Figure 5-3; similarly at

points (Xi, yi) and (xs, 2/3), corresponding to re-

peated weighings of other weights W2 and W3,

respectively. Finally, it should be noticed that

this FII model is more general than the FI

model in that it does not require linearity of

response of each instrument to the independent

variable w, but merely that the response curves

and Procedures and Examples for the FI case, however,
we use X and Y because of the computational similarity

to other cases discussed in this Chapter (i.e., the computa-
tions for the Statistical Relationships).

In the FII case, both variables are subject to error, and
clearly we use X and Y everywhere for the observed
values.
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of the two instruments be linearly related, that

is, that X = a + b • f{w) and 7 = c + d • fiw),

where f{w) may be linear, quadratic, exponen-

tial, logarithmic, or whatever.

Table 5-1 provides a concise characterization

of FI and FII relationships. Detailed prob-

lems and procedures with numerical examples

for FI relationships are given in Paragraphs

5-4.1 and 5-4.2, and for FII relationships in

Paragraph 5-4.3.

DISTRIBUTION
OF Y,

\ /
\ /
\ /

i

Figure 5-2. Linear functional relationship of Type FI
(only Y affected by measurement errors).
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Figure 5-3. Linear functional relationship of Type FII
{both X and Y affected by measurement errors).

5-3.2 STATISTICAL RELATIONSHIPS

In the case of a Statistical Relationship, there

is no exact mathematical relationship between

X and Y; there is only a statistical association

between the two variables as characteristics of

individual items from some particular popula-

tion. If this statistical association is of bi-

variate normal type as shown in Figure 5-4,

then the average value of the Y's associated with

a particular value of X, say Yx, is found to de-

pend linearly on X, i.e., Yx ^ + Pi X; simi-

larly, the average value of the X's associated

with a particular value of Y, say Xy, depends

linearly on Y (Fig. 5-4) i.e., Xy = ^'^ + p[Y;

but—and this is important!—the two lines are

not the same, i.e., /SJ ?^ — and /S^ — 3^-
*

Pi Pi

* Strictly, we should write

mr.x = /So + /3i Z ,

and

mx.Y = 00 + P'lY

to conform to our notation of using m to signify a
population mean. But this more exact notation tends

to conceal the parallelism of the curve-fitting processes

in the FI and SI situations. Consequently, to preserve

appearances here and in the sequel, we use Yx in place

of my.x and Xy in place of rnx-y—and it should be
remembered that these signify population means.
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Figure S-U- A normal bivariatefrequency surface.

If a random sample of items is drawn from the

population, and the two characteristics X and Y
are measured on each item, then typically it is

found that errors of measurement are negligible

in comparison with the variation of each char-

acteristic over the individual items. This

general case is designated SI. A special case

(involving preselection or restriction of the

range of one of the variables) is denoted by SI I.

SI Relationships. In this case, a random
sample of items is drawn from some definite

population (material, product, process, or

people), and two characteristics are measured

on each item.

A classic example of this type is the relation-

ship between height and weight of men. Any
observant person knows that weight tends to

vary with height, but also that individuals of

the same height may vary widely in weight. It

is obvious that the errors made in measuring

height or weight are very small compared to

this inherent variation between individuals.

We surely would not expect to predict the exact

weight of one individual from his height, but we
might expect to be able to estimate the average

weight of all individuals of a given height.

The height-weight example is given as one

which is universally familiar. Such examples

also exist in the physical and engineering sci-

ences, particularly in cases involving the inter-

relation of two test methods. In many cases

there may be two tests that, strictly speaking,

measure two basically different properties of a

material, product, or process, but these proper-

ties are statistically related to each other in

some complicated way and both are related to

some performance characteristic of particular

interest, one usually more directly than the

other. Their interrelationship may be ob-

scured by inherent variations among sample

units (due to varying density, for example).

We would be very interested in knowing
whether the relationship between the two is

sufficient to enable us to predict with reasonable

accuracy, from a value given by one test, the

average value to be expected for the other

—

particularly if one test is considerably simpler

or cheaper than the other.

The choice of which variable to call X and

which variable to call Y is arbitrary—actually

there are two regression lines. If a statistical

association is found, ordinarily the variable

which is easier to measure is called X. Note
well that this is the only case of linear relation-

ship in which it may be appropriate to fit two

different lines, one for predicting Y from X and

a different one for predicting X from Y, and the

only case in which the sample correlation co-

efficient r is meaningful as an estimate of the

degree of association of X and Y in the popula-

tion as measured by the population coefficient

of correlation p = V/3i/3{ . The six sets of con-

tour ellipses shown in Figure 5-5 indicate the

manner in which the location, shape, and orien-

tation of the normal bivariate distribution

varies with changes of the population means

(w.Y and mr) and standard deviations {<tx and ay)

of X and Y and their coefficient of correlation in

the population (p_yy).

If p = ±1, all the points lie on a line and

Y = + 0iX and X = ^'^ + ^[Y coincide.

If p = the slope is positive, and if p = — 1,

the slope is negative. If p = 0, then X and Y
are said to be uncorrelated.
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Figure 5-5. Contour ellipses for normal bivariate distributions
having different values of the five parameters m^, viy, a^, ay, Pxr-

Adapted with permission from Statistical Inference by Helen M. Walker and Joseph Lev, copy-
right, 1953, Holt, Rinehart and Winston, Inc., NewYork, N. Y.
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Sll Relationships. The general case described

above (SI) is the most famiHar example of a

statistical relationship, but we also need to con-

sider a common case of Statistical Relationship

(SII) that must be treated a bit differently. In

SII, one of the two variables, although a ran-

dom variable in the population, is sampled only

within a limited range (or at selected preas-

signed values). In the height-weight example,

suppose that the group of men included only

those whose heights were between 5 '4" and
5 '8". We now are able to fit a line predicting

weight from height, but are unable to determine

the correct line for predicting height from
weight. A correlation coefficient computed
from such data is not a measure of the true

correlation among height and weight in the (un-

restricted) population.

The restriction of the range of X, when it is

considered as the independent variable, does
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not spoil the estimates of Yx when we fit the

line Fat = 60 + The restriction of the

range of the dependent variable (i.e., of Y in

fitting the foregoing line, or of X in fitting the

line Xy = 60 + KY), however, gives a seriously

distorted estimate of the true relationship.

This is evident from Figure 5-6, in which the

contour ellipses of the top diagram serve to

represent the bivariate distribution of X and Y
in the unrestricted population, and the "true"

regression lines of Yx on X and Xy on Y are

indicated. The central diagram portrays the

situation when consideration is restricted to

items in the population for which a < X < b.

It is clear that for any particular X in this in-

terval, the distribution and hence the mean
Yx of the corresponding Y's is the same as in

the unrestricted case (top diagram). Conse-

quently, a line of the form Yx = bo + biX fitted

to data involving either a random or selected set

of values of X between X = a and X = b, but

with no selection or restrictions on the corre-

sponding Y's, will furnish an unbiased estimate

of the true regression line Fx = /3o + 0iX in the

population at large. In contrast, if considera-

tion is restricted to items for which c < Y < d,

as indicated in the bottom diagram, then it is

clear that the mean value, say Y'x, of the

(restricted) Y's associated with any particular

value of X > rrix will be less than the corre-

sponding mean value Yx in the population as

a whole. Likewise, if X < nix, then the mean
Y'x of the corresponding (restricted) Y's will

be greater than Yx in the population as a whole.

Consequently, a Hne of the form Y'x = bo + biX
fitted to data involving selection or restriction

of y's will not furnish an unbiased estimate of

the true regression line Yx = 0o + ^\X in the

population as a whole, and the distortion may
be serious. In other words, introducing a re-

striction with regard to X does not bias infer-

ences with regard to Y, when Y is considered as

the dependent variable, but restricting Y will

distort the dependence of Yx on X so that the

relationship observed will not be representative

of the true underlying relationship in the popu-
lation as a whole. Obviously, there is an
equivalent statement in which the roles of X
and Y are reversed. For further discussion and
illustration of this point, and of the correspond-

ing distortion of the sample correlation coeffi-

Figure 5-6. Diagram showing effect of restrictions

of X or Y on the regression of Y on X.

cient r as a measure of the true coeflScient of

correlation p in the populations, when either X
or y is restricted, see Eisenhart**' and Ezekiel.")

As an engineering example of SII, consider a

study of watches to investigate whether there

was a relationship between the cost of a stop

watch and its temperature coefficient. It was
suggested that a correlation coefficient be com-

puted. This was not possible because the

watches had not been selected at random from

the total watch production, but a deliberate

effort had been made to obtain a fixed number
of low-priced, medium-priced, and high-priced

stop watches.

In any given case, consider carefully whether

one is measuring samples as they come (and

thereby accepting the values of both properties

that come with the sample) which is an SI Rela-

tionship, or whether one selects samples which
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are known to have a limited range of values of X
(which is an SII Relationship).

Table 5-1 gives a brief summary characteriza-

tion of SI and SII Relationships. Detailed

problems and procedures with numerical exam-

ples are given for SI relationships in Paragraph

5-5.1 and for SII relationships in Paragraph

5-5.2.

BASIC WORKSHEET FOR ALL TYPES OF LINEAR RELATIONSHIPS

X denotes

2X =

X =

(4) i:X^

(5) izxy/n

(6) 5„

(10) 6i = Szy

Y denotes

27 =

Y =

Number of points: n

Step (1) 2Zy =

(2) (2Z) {XY)/n =

(3)

= Step (4) - Step (5)

= Step (3) ^ Step (6)

(11) Y =

(12) biX =

(13) 6o = F - 6,Z = Step (11) - Step (12)

Equation of the line:

Y = bo + hX

Sbi =

Sb„ =

step (1) - Step (2)

(7) 272

(8) {ZYr/n

(9) S,, Step (7) - Step (8)

(14)

(15) (n - 2) sV

(16) sV

Sr

= Step (9) - Step (14)

= Step (15) ^ (w - 2)

Estimated variance of the slope:

= Step (16) ^ Step (6)
<;2 — q2

Estimated variance of intercept:

1
I

Note: The following are algebraically identical:

5„ = 2(X - Xy; S,, = 2(7 - Yr; = 2(Z - X) (7 - 7).

Ordinarily, in hand computation, it is preferable to compute as shown in the steps above. Carry
all decimal places obtainable—i.e., if data are recorded to two decimal places, carry four places in

Steps (1) through (9) in order to avoid losing significant figures in subtraction.
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5-4 PROBLEMS AND PROCEDURES FOR FUNCTIONAL RELATIONSHIPS

5-4.1 Fl RELATIONSHIPS (General Case)

There is an underljang mathematical (func-

tional) relationship between the two variables,

of the form y = + PiX. The variable x can

be measured relatively accurately. Measure-

ments Y of the value of y corresponding to a

given X follow a normal distribution with mean

00 + PiX and variance ay-x which is independent

of the value of x. Furthermore, we shall as-

sume that the deviations or errors of a series of

observed Y's, corresponding to the same or dif-

ferent x's, all are mutually independent. See

Paragraph 5-3.1 and Table 5-1.

The general case is discussed here, and the

special case where it is known that /3o = 0 (i.e.,

a line known to pass through the origin) is dis-

cussed in Paragraph 5-4.2. The procedure dis-

cussed here also will be valid if in fact jSo = 0

even though this fact is not known beforehand.

However, when it is known that /So = 0, the pro-

cedures of Paragraph 5-4.2 should be followed

because they are simpler and somewhat more

efficient.

It will be noted that SII, Paragraph 5-5.2, is

handled computationally in exactly the same

manner as FI, but both the underlying assump-

tions and the interpretation of the end results

are different.

Data Sample 5-4.1—Young's Modulus vs.

Temperature for Sapphire Rods

Observed values (Y) of Young's modulus (y)

for sapphire rods measured at different tempera-

tures (x) are given in the following table. There

is assumed to be a linear functional relationship

between the two variables x and y. (For the

purpose of computation, the observed Y values

were coded by subtracting 4000 from each. To
express the line in terms of the original units,

add 4000 to the computed intercept; the slope

will not be affected.) The observed data are

plotted in Figure 5-7.

X
= Temperature

°C

y
— Young's

Modulus

Coded y
= Young's

Modulus
minxis 4000

30 4642 642

100 4612 612

200 4565 565

300 4513 513

400 4476 476

500 4433 433

600 4389 389

700 4347 347

800 4303 303

900 4251 251

1000 4201 201

1100 4140 140

1200 4100 100

1300 4073 73

1400 4024 24

1500 3999 -1
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Figure 5-7. Young's modidv^ of sapphire rods as a function

of temperature—an FI relationship.

5-4.1.1 What is the Best Line to be Used for

Estimating / From Given Values of x?

CAUTION: Extrapolation, i.e., use of the

line for prediction outside the range of data

from which the line was computed, may
lead to highly erroneous conclusions.

Procedure

Using Worksheet (See Worksheet 5-4.1),

compute the line 7 = 6o + h^x. This is an

estimate of the true equation y = -\- PiX.

The method of fitting a line given here is a

particular application of the general method of

least squares. From Data Sample 5-4.1, the

equation of the fitted line (in original units) is:

Y = 4654.9846 - 0.44985482 x.

The equation in original units is obtained by
adding 4000 to the computed intercept 6o.

Since the Y's were coded by subtracting a con-

stant, the computed slope 6i was not affected.

In Figure 5-8, the line is drawn and confidence

limits for the line (computed as described in

Paragraph 5-4.1.2.1) also are shown.
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WORKSHEET 5-4.1

EXAMPLE OF Fl RELATIONSHIP
YOUNG'S MODULUS AS FUNCTION OF TEMPERATURE

X denotes

2Z = _
X =

Temperature, °C

12030

751.875

Y denotes

27= _
Y =

Young's Modulus - 4000

5068

316.75

Number of points: n = 16

(1) ZXY = 2,300,860

(2) (2Z) (2y)/n = 3,810,502.5

(3) = -1,509,642.5

(4) 2Z«

(5) (ZXr/n

(6) 5„

12,400,900

9,045,056.25

3,355,843.75

(7) 2 72

(8) {ZYy/n

(9) Sy,

= 2,285,614

1,605,289.

680,325.

(10) 6x = 1^

(11) Y

(12) biX

(13) 60 = F - biX

-.449,854,82

316.75

-338.2346

654.9846

(14)
5„

(15) (n - 2) s\

(16) sV

Sr

679,119.9614

1,205.0386

86.074 1857

9.277617

60 (in original units) = 4654.9846

Equation of the line:

(in original units)

bo + 61X

4654.9846 .449,854,82 X

Sh =

S6„ =
.005 064

4.458 638

Estimated variance of the slope:

= .000 025 649 0454 -

Estimated variance of intercept:
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S 4 300

1406

X TEMPERATURE °C

Figure 5-8. Young's modulus of sapphire rods as a function

of temperature—showing computed regression line

and confidence interval for the line.

Using the Regression Equation for Prediction.

The fitted regression equation may be used for

two kinds of predictions:

(a) To estimate the true value of y associated

with a particular value of x, e.g., given x = x' to

estimate the value of y' = 0o + ^ix'; or,

(b) To predict a single new observed value Y
corresponding to a particular value of x, e.g.,

given x = x' to predict the value of a single

measurement of y'.

Which prediction should be made? In some
cases, it is sufficient to say that the true value of

y (for given x) lies in a certain interval, and in

other cases we may need to know how large (or

how small) an individual observed Y value is

likely to be associated with a particular value of

X. The question of what to predict is similar to

the question of what to specify (e.g., whether to

specify average tensile strength or to specify

minimum tensile strength) and can be answered

only with respect to a particular situation. The
difference is that here we are concerned with

relationships between two variables and there-

fore must always talk about the value of y, or Y,

for fixed x.

The predicted y' or Y' value is obtained by
substituting the chosen value (z') of x in the

fitted equation. For a particular value of x,

either type of prediction ((a) or (b)) gives the

same numerical answer for y' or Y'. The un-

certainty associated with the prediction, how-

ever, does depend on whether we are estimating

the true value of y', or predicting the value Y'

of ,an individual measurement of y'. If the

experiment could be repeated many times, each

time obtaining n pairs of {x, Y) values, consider

the range of Y values which would be obtained

for a given x. Surely the individual Y values in

all the sets will spread over a larger range than

will the collection consisting of the average Y's

(one from each set).
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To estimate the true value of y associated

with the value x', use the equation

The variance of y'c as an estimate of the true

value y' = /3o + fta;' is

va..; = .v..[^^]
This variance is the variance of estimate of a

point on the fitted line.

For example, using the equation relating

Young's modulus to temperature, we predict a
value for y at x = 1200:

y', = 4654.9846 - .44985482 (1200)

y', = 4115.16

Va..; =83.074 [.0625 + <iM__M]
= 86.074 (.0625 + .0598)

= 86.074 (.1223)

Var y;, = 10.53

To predict a single observed value of Y corre-

sponding to a given value (x') of x, use the same
equation

y; = 6o + b,x'.

The variance of Y'c as an estimate of a single

new (additional, future) measurement of y' is

The equation for our example is

y = 4654.9846 - .44985482 x.

To predict the value of a single determination of

Young's modulus at x = 750, substitute in this

equation and obtain:

Y; = 4654.9846 - .44985482 (750)

= 4317.59

= 86.074 (1.0625)

= 91.45 .

5-4.1.2 What are the Confidence Interval Esti-

mates for: the Line as a Whole; a
Point on the Line; a Future Value of Y
Corresponding to a Given Value of x?

Once we have fitted the line, we want to make
predictions from it, and we want to know how
good our predictions are. Often, these pre-

dictions will be given in the form of an interval

together with a confidence coefficient associated

with the interval—i.e., confidence interval esti-

mates. Several kinds of confidence interval

estimates may be made:

(a) A confidence band for the line as a whole.

(b) A confidence interval for a point on the

line—i.e., a confidence interval for y' (the true

value of y and the mean value of Y) correspond-

ing to a single value of x = x'.

If the fitted line is, say, a calibration line

which will be used over and over again, we will

want to make the interval estimate described

in (a). In other cases, the line as such may not

be so important. The line may have been

fitted only to investigate or check the structure

of the relationship, and the interest of the

experimenter may be centered at one or two
values of the variables.

Another kind of interval estimate sometimes

is required:

(c) A single observed value {Y') of Y corre-

sponding to a new value of x = x'.

These three kinds of interval state-

ments have somewhat different interpretations.

The confidence interval for (b) is interpreted as

follows:

Suppose that we repeated our experiment a

large number of times. Each time, we obtain n
pairs of values (x, , y,), fit the Hne, and compute

a confidence interval estimate for = jSo + Pix',

the value of y corresponding to the particular

value X = x'. Such interval estimates of j/' are

expected to be correct (i.e., include the true

value of y') a proportion (1 — a) of the time.

If we were to make an interval estimate of y"

corresponding to another value of x = x", these

interval estimates also would be expected to

include y" the same proportion (1 — a) of the

time. However, taken together, these intervals

do not constitute a joint confidence statement

about y' and y" which would be expected to

be correct exactly a proportion (1 — a) of the
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time; nor is the effective level of confidence

(1 — aY, because the two statements are not

independent but are correlated in a manner
intimately dependent on the values x' and x" for

which the predictions are to be made.

The confidence band for the whole line (a)

implies the same sort of repetition of the experi-

ment except that our confidence statements are

not now limited to one x at a time, but we can

talk about any number of x values simultane-

ously—about the whole line. Our confidence

statement applies to the line as a whole, and

therefore the confidence intervals for y corre-

sponding to all the chosen x values will simulta-

neously be correct a proportion (1 — a) of the

time. It will be noted that the intervals in (a)

are larger than the intervals in (b) by the ratio

y/lFIt. This wider interval is the "price" we
pay for making joint statements about y for any
number of or for all of the x values, rather than

the y for a single x.

Another caution is in order. We cannot use

the same computed line in (b) and (c) to make a

large number of predictions, and claim that

100 (1 — a) % of the predictions will be correct.

The estimated line may be very close to the true

line, in which case nearly all of the interval

predictions may be correct; or the line may be

considerably different from the true line, in

which case very few may be correct. In prac-

tice, provided our situation is in control, we
should always revise our estimate of the line to

include additional information in the way of

new points.

5-4.1.2.1 What is the (1 — a) Confidence Band for the Line as a Whole?

Procedure Example

(1) Choose the desired confidence level, 1 — a

(2) Obtain Sy from Worksheet.

(1) Let: 1

(2)

a = .95

a = .05

Sy = 9.277617

from Worksheet 5-4.1

Look up for (2, n — 2) degrees of free- (3) (2, 14) = 3.74

dom in Table A-5.

Choose a number of values of X (within the (4) Let: X = 30

range of the data) at which to compute X = 400
points for drawing the confidence band. X = 800

X = 1200

X = 1500,

(5) At each selected value of X, compute:

Y,= Y + h{X-X)

(X-Xyli
and

W

(6) A (1 — a) confidence band for the whole
line is determined by

for example.

(5) See Table 5-2 for a convenient computa-

tional arrangement and the example cal-

culations.

(6) See Table 5-2.
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Procedure Example

(7) To draw the line and its confidence band,

plot Yc at two of the extreme selected

values of X. Connect the two points by
a straight line. At each selected value of

X. also plot y, + Wi and 7, - Wi. Con-

nect the upper series of points, and the

lower series of points, by smooth curves.

If more points are needed for drawing the

curves for the band, note that, because of sym-

metry, the calculation of Wi at n values of X
actually gives Wi at 2n values of X.

(7) See Figure 5-8.

For example: Wi (but not Ye) has the same
value at X = 400 (i.e., X - 351.875) as at

X = 1103.75 (i.e., X + 351.875).

TABLE 5-2. COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-4.1.2.1

X (X-X) Ye

1
1

(X-X)^
n Six Wi Yc - Wi

30 -721.875 4641.49 .21778 18.7452 4.3296 11.84 4653.33 4629.65

400 -351.875 4475.04 .09940 8.5558 2.9250 8.00 4483.04 4467.04

800 48.125 4295.10 .06319 5.4390 2.3322 6.38 4301.48 4288.72

1200 448.125 4115.16 .12234 10.5303 3.2450 8.88 4124.04 4106.28

1500 748.125 3980.20 .22928 19.7351 4.4424 12.15 3992.35 3968.05

X = 751.875

coded Y = 316.75

F (original units) = 4316.75

sV = 86.0741857

- = .0625

6i =

Sxx —

- .44985482

3,355,843.75

Ye = Y + h{X ~ X)

Wi = 2.735 Sk,

V2F = 2.735
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5-4.1.2.2 Give a (1 — a) Confidence interval Estimate for a Single Point on the Line (i.e., the Mean
Value of y Corresponding to a Chosen Value of x = x')

Procedure Example

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95

a = .05

(2) Obtain Sy from Worksheet. (2) Sy = 9.277617

from Worksheet 5-4.1

(3) Look up ti-a/2 for n — 2 degrees of freedom (3) ^.975 (14) = 2.145

in Table A-4.

(4) Choose X', the value of X at which we (4) Let X' = 1200

want to make an interval estimate of the

mean value of Y.

(5) Compute: (5)

H'. = ,.-,„.Ji+^^^^T H', - 2.145 (3.2461)

1^ J = 6.96

and

y« = f + 61 iX' - X) V = 4115.16

(6) A (1 — a) confidence interval estimate for (6) A 95% confidence interval estimate for the

the mean value of Y corresponding to mean value of Y corresponding toX = 1200

X = X' is given by is

y, ± W2. 4115.16 ± 6.96

= 4108.20 to 4122.12.

Note: An interval estimate of the intercept of the line (/3o) is obtained by setting X' = 0 in the

above procedure.
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5-4.1.2.3 Give a (1 - a) Interval Estimate for a Single (Future) Value (Y') of Y Corre-
sponding to a Chosen Value (x') of x.

Procedure Example

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95

a = .05

(2) Obtain Sy from Worksheet.

(3) Look up <i_a/2 for w — 2 degrees of freedom

in Table A-4.

(4) Choose X', the value of X at which we
want to make an interval estimate of a

single value of Y.

(5) Compute:

and

y« = f + 61 iX' - X)

(6) A (1 — a) confidence interval estimate for

y (the single value of Y corresponding to

X') is

Y,±W,.

(2) Sy = 9.277617

from Worksheet 5-4.1

(3) f.976 (14) = 2.145

(4) Let X' = 1200

(5)

Wi = 2.145 (9.8288)

= 21.08

Ye = 4115.16

(6) A 95% confidence interval estimate for

a single value of Y corresponding to

X' = 1200 is

4115.16 ± 21.08

= 4094.08 to 4136.24 .

5-4.1.3 What is the Confidence Interval Estimate

Procedure

(1) Choose the desired confidence level, 1 — a

(2) Look up U-ai2 for w — 2 degrees of freedom

in Table A-4.

(3) Obtain S4, from Worksheet.

(4) Compute

= ti^ii Si,

(5) A (1 — a) confidence interval estimate for

jSiis

222

for jSi , the Slope of the True Line / = j3o + /3i x?

Example

(1) Let: 1 - a = .95

a = .05

(2) <.»76 (14) = 2.145

(3) Sfc, = .005064

from Worksheet 5.4.1

(4)

W, = 2.145 (.005064)

= .010862

(5) 61 = - .449855

= .010862

A 95% confidence interval for jSi is the in-

terval -.449855 ± .010862, i.e., the inter-

val from -.460717 to -.438993 .
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5-4.1 .4 If We Observe n' New Values of Y (with Average Y'), How Can We Use the Fitted Regression

Line to Obtain an Interval Estimate of the Value of x that Produced These Values of Y?

Example: Suppose that we obtain 10 new measurements of Young's modulus (with

average, Y' = 4500) and we wish to use the regression Hne to make an interval estimate

of the temperature (x) at which the measurements were made.

Procedure Example

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95

a = .05

(2) Look up fi_a/2 for n — 2 degrees of freedom (2) t.nf, (14) = 2.145

in Table A-4.

(3) Obtain hi and s?, from Worksheet. (3) From Worksheet 5-4.1,

6i = -.449855

4 = .0000256490

(4) Compute

C = h\- {k-anYsl

(4)

C = .202370 - .000118

= .202252

(5) A (1 — a) confidence interval estimate for

the X corresponding to Y' is computed
from

X' = X + 6i (F' - Y)

U-anSy IjY' - fr . (1 1\

(5) A 95% confidence interval would be com-
puted as follows:

Y, r,.-, anr .449855 (4500 - 4316.75 )A -751.875
^^2252

2.145 (9.277617)

.202252

43.^3.75 + (-1^25) (.202252)

= 751.875 - 407.590

± 98.39452 V.0100066 + .0328660

= 344.285 db 98.39452 \/.0428726

= 344.285 ± 98.39452 (.20706)

= 344.285 ± 20.374

The interval from X = 323.911 to Z =
364.659 is a 95% confidence interval for the

value of temperature which produced the

10 measurements whose mean Young's
modulus was 4500.
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5-4.1.5 Using the Fitted Regression Line, How Can We Choose a Value (x') of x Which We May
Expect with Confidence (1 — a) Will Produce a Value of Y Not Less Than Some Specified

Value Q?

Example: What value (x') of temperature (x) can be expected to produce a value of

Young's modulus not less than 4300?

Procedure Example

(1) Choose the desired confidence level, 1 — «; (1) Let: 1 — a = .95

and choose Q a = .05

Q = 4300

(2) Look up ti-a for n — 2 degrees of freedom (2) ^.95 (14) = 1.761

in Table A-4.

(3) Obtain 61 and 4i from Worksheet. (3) From Worksheet 5-4.1,

b, = -.449855

4 = .0000256490

(4) Compute

C = bl- {tr-^r si

(4)

C = .202370 - .000080

= .202290

(5) Compute

4 +

where the sign before the last term is + if

61 is positive or — if 61 is negative. We
have confidence (1 — a) that a value of

X = X' will correspond to (produce) a

value of Y not less than Q. (See discussion

of "confidence" in straight-line prediction

in Paragraph 5-4.1.2).

(5) The value of X' is computed as follows:

X' = 751.875

+
-.449855 (4300 - 4316.75)

.202290

1.761 (9.277617)

.202290
X

/
(4300 -

\ 3,355,

- 4316.75)2

,843.75

751.875 + 37.249

+

- 80.764662 V.000084 -1- .214933

= 751.875 + 37.249

- 80.764662 a/.215017

751.875 + 37.249 - 37.450

224—
= 751.674
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5-4.1.6 Is the Assumption of Linear Regression Justified?

This involves a test of the assumption that the mean Y values {Y^) for given x values do lie on a

straight line (we assume that for any given value of x, the corresponding individual Y values are

normally distributed with variance al, which is independent of the value oi x). A simple test is

available provided that we have more than one observation on Y at one or more values of x.

Assume that there are n pairs of values {Xi ,
Y,), and that among these pairs there occur only k

values of x (where k is less than n).

For example, see the data recorded in Table 5-3 which shows measurements of Young's modulus

(coded) of sapphire rods as a function of temperature.

Each X is recorded in Column 1, and the corresponding Y values (varying in number from 1 to 3

in the example) are recorded opposite the appropriate x. The remaining columns in the table

are convenient for the required computations.

TABLE 5-3. COMPUTATIONAL ARRANGEMENT FOR TEST OF LINEARITY

X
= Tem-
per-

ature

y
= Young's
Modulus

Minus 3000
ZY (2Y)2 2Y2 riiXi 2XY

{2Y)2

Hi

500 328 328 107584 107584 1 500 250000 164000 107584

550 296 296 87616 87616 1 550 302500 162800 87616

600 266 266 70756 70756 1 600 360000 159600 70756

603 260 244 504 254016 127136 2 1206 727218 303912 127008

650 240 232 213 685 469225 156793 3 1950 1267500 445250 156408.3

700 204 203 184 591 349281 116681 3 2100 1470000 413700 116427

750 174 175 154 503 253009 84617 3 2250 1687500 377250 84336.3

800 152 146 124 422 178084 59796 3 2400 1920000 337600 59361.3

850 117 94 211 44521 22525 2 1700 1445000 179350 22260.5

900 97 61 158 24964 13130 2 1800 1620000 142200 12482

950 38 38 1444 1444 1 950 902500 36100 1444

1000 30 5 35 1225 925 2 2000 2000000 35000 612.5

TOTAL 4037

= Ti

849003
= T,

24

= n
18006

= T3

13952218

= T,

2756762
= T,

846296

= Te
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Procedure Example

(1) Choose a, the significance level of the test. (1) Let:

(2) Compute:

n

X = ^ , the weighted average of X.

(3) Compute

(4) Compute

T, -

(5) Compute

(2)

(3)

(4)

(5)

1 -

Y =

X =

(70 =

a = .05

a = .95

4037

24

168.21

18006

24

750.25

= 679057.04

5i = 846296 - 679057.04

= 167238.96

6 = 2756762 - 3028759.25

13952218 - 13509001.5

^ -271997.25

443216.5

= -0.6136894

52 = -0.6136894 (-271997.25)
= 166921.83

(6) Compute

Si = To —

(6)

^3 = 849003 - 679057.04

= 169945.96

(7) Look up for (k - 2,n - k) degrees of (7) n = 24
freedom in Table A-5. A: = 12

F.9B for (10, 12) degrees of freedom = 2.75

(8) Compute

\03 — Oi/ \/C — ^/

(9) If F > Fi_a , decide that the "array means"
do not lie on a straight line. If F < Fi_a

,

the hypothesis of linearity is not disproved.

(8)

^ /317.13\ /24 - 12\

V 2707 / \ 10 /

= (.11715) (1.2)

= 0.14

(9) Since F is less than , the hypothesis of

linearity is riot disproved.
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5-4.2 Fl RELATIONSHIPS WHEN THE INTERCEPT
IS KNOWN TO BE EQUAL TO ZERO (LINES

THROUGH THE ORIGIN)

In Paragraph 5-4.1, we assumed:

(a) that there is an underlying linear func-

tional relationship between x and y of the form

^/ = /3o + ^iX, with intercept /3o and slope /3i

both different from zero;

(b) that our data consist of observed values

Yi, Yi, . . . , Yn oi y, corresponding to accu-

rately-known values Xi, Xi, . . . , Xn oi x; and,

(c) that the Y's can be regarded as being

independently and normally distributed with

means equal to their respective true values (i.e,

mean of 7^ = 180 + /SiX, , i = 1, 2, . . . , n) and
constant variance ay.x = <t^ for all x.

Furthermore, we gave: a procedure (Para-

graph 5-4.1.2.2 with X' = 0) for determining

confidence limits for /So, and hence for testing

the hypothesis that (So = 0, in the absence of

prior knowledge of the value of /3i; and a proce-

dure that is independent of the value of /3o

(Paragraph 5-4.1.3) for determining confidence

Hmits for ^1 , and hence for testing the hypoth-

esis that |8i = 0.

We now consider the analysis of data corre-

sponding to an FI structural relationship when
it is known that y = 0 when a; = 0, so that the

line must pass through the origin, i.e., when it is

known that /3o = 0. To begin with, we assume

as in (b) and (c) above, that our data consist of

observed values Yi, Y2, . . . ,
Y„, of a dependent

variable y corresponding to accurately-known

values Xi , X2 , . .
. , x„ of the independent variable

X and that these Y's can be regarded as being

independently and normally distributed with

means ^iXi , ^1X2 , . . . , 0iXn , respectively, and
variances o-y-x that may depend on x. We
consider explicitly the cases of constant vari-

ance (cTK-z = 0-2), variance proportional to

X {ay-x = xo-^), and standard deviation propor-

tional to X {(Tvx = X(t). Finally, we consider

briefly the case of cumulative data where

Xi < X2 < . . . < Xn and the error in Yi is of the

form Ci + 62 + . . . + ei_i + e,- , that is, is the

sum of the errors of all preceding Y's plus a
"private error" of its own. Following

Mandel,"> we assume that the errors (ei) are

independently and normally distributed with
zero means and with variances proportional to

the length of their generation intervals, i.e..

(7% = (Xi — Xi_i)a^ Under these circumstances,

the y's will be normally distributed with means
181X1

, |3iX2 , . . . , |8iX„ ,
respectively, as before; and

with variances ayi = a;,(7^ respectively; but will

not be independent owing to the overlap among
their respective errors.

5-4.2.1 Line Through Origin, Variance of Y's

Independent of x. The slope of the

best-fitting line of the form Y = 6iX is given by

^1 = —
i=l

and the estimated variance of 61 is

^>>i
—

„

where

i: (y, - 61 x,)2

„2 _ i=l

(sx.y.)
s y? - -^^^^—

^

I]x?
_ 1 .

n - 1

Consequently, we may effect a simplification of

our Basic Worksheet—see Worksheet 5-4.2.1.

Using the values of 61 and St^ so obtained,

confidence limits for /3i , the slope of the true line

through the origin, y = /3iX, can be obtained by
following the procedure of Paragraph 5-4.1.3

using ii_a/2 for w — 1 degrees of freedom. Con-

fidence Hmits for the line as a whole then are

obtained simply by plotting the lines y = /3fx

and y = p^x, where 0^ and ^1' are the upper and

lower confidence limits for /3i obtained in the

manner just described. The limiting lines, in

this instance, also furnish confidence limits for

the value y' of y corresponding to a particular

point on the line, say for x = x', so that an

additional procedure is unnecessary. Confi-

dence limits for a single future observed Y corre-

sponding to X = x' are given by

6ix' ± ti^/2 VsV + (x')^ si ,

where Sy and Si, are from our modified work-

sheet and <i_a/2 corresponds to n — 1 degrees of

freedom.

227- 5-24



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES ordp 20-no

WORKSHEET 5-4.2.1

WORKSHEET FOR Fl RELATIONSHIPS WHEN THE INTERCEPT IS KNOWN TO BE ZERO
AND THE VARIANCES OF THE Ts IS INDEPENDENT OF x

X denotes

2Z =

X =

(2)

(3)

(4) 6i = 2X7
XX^

Y denotes

27 =

Y =

Number of points: n =

Step (1) 2Z7 =

Step (1) ^ Step (2)

Equation of the Line:

7 = biX

(5)
(2Z7)2
2Z2

(6) {n - 1) sV =

(7) sV

Sy

Step (3) - Step (5)

Step (6) ^ (n - 1)

Estimated variance of the slope:

^2 = Step (7) ^ Step (2)si

5-4.2.2 Line Through Origin, Variance Propor-

tional to X ((T^.z = x<T^). The slope of

the best-fitting line of form 7 = 6iX is given by

6i =

the ratio of the

variance of 6 1 is

where

averages, and the estimated

si =

in - 1) s'

t=l

Using the values of bi and s^i so obtained,

confidence limits for , the slope of the true line

through the origin, y = fiiX, can be obtained by
following the procedure of Paragraph 5-4.1.3

using <i_a/2 for w — 1 degrees of freedom. Con-

fidence limits for the line as a whole then are

obtained simply by plotting the lines y = /S^x

and y = ^^x where /3f and are the upper and

lower confidence limits for jSi obtained in the

manner just described. The limiting lines, in

this instance, also furnish confidence limits for

the value y' corresponding to a particular point

on the line, say for x = x'. Confidence limits

for a single future observed 7 corresponding to

X = x', are given by

bix' ± <i_„/2 Vx's' + {xTsl,

where St, is computed as shown above and ti-a/i

corresponds to n — 1 degrees of freedom.
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5-4.2.3 Line Through Origin, Standard Devia-

tion Proportional to x (trr-i = x<t). The
slope of the best-fitting fine of form Y — bixis

given by

the average of the ratios
>

and the estimated variance of b 1 IS

where

that is,

1r1 n

mm

n {n — 1)

for Ri =
Xi

Using the values of bi and Sb^ so obtained,

confidence limits for /3i , the slope of the true line

through the origin, y = (8iX, can be obtained by
following the procedure of Paragraph 5-4.1.3

using ti-a/2 for w — 1 degrees of freedom. Con-

fidence limits for the line as a whole are then

obtained simply by plotting the lines y = fi^x

and y = fi^x where 0^ and are the upper and

lower confidence limits for /3i obtained in the

manner just described. The limiting lines, in

this instance, also furnish confidence limits for

the value y' of y corresponding to a particular

point on the line, say for x = x'. Confidence

limits for a single future observed Y correspond-

ing to X = x', are given by

bix' ± fi_„/2 x' VsM^ ,

where is computed as shown above and ti^an

corresponds to n — 1 degrees of freedom.

5-4.2.4 Line Through Origin, Errors of

Cumulative (Cumulative Data). In

many engineering tests and laboratory experi-

ments the observed values Yi , 72 , . .
. , Y, , . .

.

,

of a dependent variable y represent the cumula-

tive magnitude of some effect at successive

values Xi < X2 < < . . . of the independent

variable x. Thus, Yi , , . . . , may denote: the

total weight loss of a tire under road test,

measured at successive mileages Xi , X2 , . . . ; or

the weight gain of some material due to water

absorption at successive times Xi , X2 , . . . ; or the

total deflection of a beam (or total compression

of a spring) under continually increasing load,

measured at loads Xi , X2 , . . . ; and so forth. In

such cases, even though the underlying func-

tional relationship takes the form of a line

through the origin, y = /Sx, none of the pro-

cedures that we have presented thus far will be

applicable, because of the cumulative effect of

errors of technique on the successive Y's; the

deviation of Y, from its true or expected value

yi will include the deviation (Y,_i — of

Y,_i from its true or expected value, plus an

individual "private deviation or error" e, of its

own. Hence, the total error of Y, will be the

sum («! + 62 + . . . + ^i-i + e.) of the indi-

vidual error contributions of Yi , Y2 , . . . , Y,_i

,

and its own additional deviation.

If the test or experiment starts at Xo = 0,

and the x's form an uninterrupted sequence

0 < Xi < X2 < . . . < x„ , and if we may regard

the individual error contributions ei , 62 , • • • , as

independently and normally distributed with

zero means and variances proportional to the

lengths of the x-intervals over which they ac-

crue, i.e., if o-e. = {Xi — x,_i) then the best

estimate of the slope of the underlying linear

functional relation y = /SiX is given by

and estimated variance of 61

= 1 if. {Yi - Yi-^y _ Yl\
(n - 1) x„ \H Xi - Xi_i x„/

in which Xo = 0 and Yo = 0 by hypothesis.

Using the values of 61 and Sb, so obtained,

confidence limits for , the slope of the true line

through the origin, y = /3iX, can be obtained by

following the procedure of Paragraph 5-4.1.3

using <i_a/2 for « — 1 degrees of freedom. Con-

fidence limits for the line as a whole then are

obtained simply by plotting the lines y = /3fx

and y = fi^x, where and fi^ are the upper and
lower confidence limits for obtained in the

manner just described. These limit lines also
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provide confidence limits for a particular point

on the line, say the value y' corresponding to

X = x'. For the fitting of lines of this sort to

cumulative data under more general conditions,

and for other related matters, see Mandel's

article.

5-4.3 Fll RELATIONSHIPS

Distinguishing Features. There is an under-

lying mathematical (functional) relationship be-

tween the two variables, of the form

y = po + 0ix.

Both X and Y are subject to errors of measure-

ment. Read Paragraph 5-3.1 and Table 5-1.

The full treatment of this case depends on the

assumptions we are willing to make about error

distributions. For complete discussion of the

problem, see Acton.

5-4.3.1 A Simple Method of Fitting the Line In

the General Case. There is a quick

and simple method of fitting a line of the form

Y = bo + biX which is generally applicable

when both X and Y are subject to errors of

measurement. This method is described in

Bartlett,<*> and is illustrated in this paragraph.

Similar methods had been used previously by
other authors.

(a) For the location of the fitted straight line,

use as the pivot point the center of gravity of

all n observed points {Xi, Yi), that is, the point

with the mean coordinates {X, Y). In conse-

quence, the fitted line will be of the form

Y = bo + biX with bo = Y — biX, just as in

the least-squares method in Paragraph 5-4.1.

(b) For the slope, divide the n plotted points

into three non-overlapping groups when con-

sidered in the X direction. There should be an

equal number of points, k, in each of the two

extreme groups, with k as close to ^ as possible.

Take, as the slope of the line,

h - ^3 - Fi

^'-x,-x^ '

where

Fs = average Y for 3rd group

Yi = average Y for 1st group

Xz = average X for 3rd group

Xi = average X for 1st group.

Data Sample 5-4.3.1—Relation of Two
Colorimetric Methods

The following data are coded results of two
colorimetric methods for the determination of a

chemical constituent. (The data have been

coded for a special purpose which has nothing

to do with this illustration). The interest here,

of course, is in the relationship between results

given by the two methods, and it is presumed
that there is a functional relationship with both

methods subject to errors of measurement.

Sample

Method I

X
Method II

Y

1 3720 5363

2 4328 6195

3 4655 6428

4 4818 6662

5 5545 7562

6 7278 9184

7 7880 10070

8 10085 12519

9 11707 13980

(a) The fitted line must pass through the

point (X, Y), where

X = 6668.4

Y = 8662.6 .

(b) To determine the slope, divide the points

into 3 groups. Since there are 9 points, exactly

3 equal groups are obtained.

?3 = 12190

Fi = 5995

Xs = 9891

Zi = 4234

Xs- X,

^ 12190 - 5995

9891 - 4234

= 6195

5657

= 1.0951

6o = F - biX

= 8662.6 - (6668.4)

= 1360.0 .
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The fitted line

Y = 1360.0 + 1.0951 X
is shown in Figure 5-9.

Procedures are given in Bartlett<*> for deter-

mining 100 (1 — a) % confidence limits for

the true slope and for determining a

100 (1 — a) % confidence ellipse for jSo and /8i

jointly, from which 100 (1 — a) % confidence

limits for the line as a whole can be derived.

For strict validity, they require that the meas-

urement errors affecting the observed X, be

sufficiently small in comparison with the spacing

of their true values x, that the allocation of the

observational points (X,
,
Y.) to the three groups

is unaffected. These procedures are formally

—I
1 1 1 1 1 1 1 1

4000 6000 8000 10000 12000

METHOD I

Figure 5-9. Relationship between two methods of determining
a chemical constituent—an FII relationship.
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similar to those appropriate to the least-squares

method in FI situations, but involve more com-
plex calculations. We do not consider them
further here.

5-4.3.2 An Important Exceptional Case. Until

comparatively recently it was not realized that

there is a broad class of controlled experimental

situations in which both X and Y are subject to

errors of measurement, yet all of the techniques

appropriate to the FI case (x's accurately

known, measurement errors affect the Y's only)

are strictly applicable without change.

As an example, let us consider the case of an

analytical chemist who, in order to obtain an

accurate determination of the concentration of

a potassium sulphate solution, decides to pro-

ceed as follows: From a burette he will draw
off 5, 10, 15, and 20 ml samples of the solution.

Volume of solution is his independent variable

X, and his target values are Xi = 5, X2 = 10,

X3 = 15, and X4 = 20, respectively. The vol-

umes of solution that he actually draws off

Xi, Xi, X3, and X^ will, of course, differ from

the nominal or target values as a result of

errors of technique, and he will not attempt to

measure their volumes accurately. These four

samples of the potassium sulphate solution then

will be treated with excess barium chloride, and
the precipitated barium sulphate dried and

weighed. Let Yi, Y2, Y3, and Yi denote the

corresponding yields of barium sulphate. These

yields actually will correspond, of course, to the

actual inputs Xi, X2, X3, and Xi ,
respectively;

and will differ from the true yields associated

with these inputs, say yi{Xi), ViiX^), ViiXs),

and 2/4 (X4), respectively, as a result of errors of

weighing and analytical technique. The sul-

phate concentration of the original potassium

sulphate solution then will be determined by
evaluating the slope 61 of the best fitting

straight line Y = bo + biX, relating the observed

barium sulphate yields (Yi, Y2, Y3, and Y^) to

the nominal or target volumes of solution

{xi ,
X2, X3, and Xi)—the intercept 60 of the line

making appropriate allowance for the possibiHty

of bias of the analytical procedure resulting in a

non-zero blank.

Without going into the merits of the foregoing

as an analytical procedure, let us note a number
of features that are common to controlled experi-

ments: First, the experimental program involves

a number of preassigned nominal or target

values (xi, X2, . . .) of the independent variable

X, to which the experimenter equates the inde-

pendent variable in his experiment as best he

can, and then observes the corresponding yields

(Yi, Y2, . . .) of the dependent variable y;

Second, the experimenter, in his notebook,

records the observed yields {Yi, Y2, . . .) as corre-

sponding to, and treats them as if they were

produced by, the nominal or target values

(xi , X2 , . . .) of the independent variable—where-

as, strictly they correspond to, and were pro-

duced by, the actual input values {Xi , X2, . . •),

which ordinarily will differ somewhat from the

nominal or target values (xi, X2, . . .) as a

result of errors of technique. Furthermore, the

effective values (Xi ,
X2, . . .) of the independent

variable actually realized in the experiment are

not recorded at all—nor even measured

!

It is surprising but nevertheless true that an

underlying linear structural relationship of the

form y = ^0 + can be estimated validly

from the results of such experiments, by fitting

a line of the form 7 = 60 -|- 6iX in accordance

with the procedures for FI situations (x's known
accurately, Y's only subject to error). This

fact was emphatically brought to the attention

of the scientific world by Joseph Berkson in a

paper'" published in 1950, and for its validity

requires only the usual assumptions regarding

the randomness and independence of the errors

of measurement and technique affecting both

of the variables (i.e., causing the deviations of

the actual inputs X^, X2, . . . , from their target

values Xi , X2 , . . . , and the deviations of the ob-

served outputs Yi, Y2, . . . , from their true

values of yi{Xi), y2{X2), . . .) The conclusion

also extends to the many-variable case con-

sidered in Chapter 6, provided that the relation-

ship is linear, i.e., that

y = ^0 + fiix + fi2U + + . . . .

If the underlying relationship is a polynomial

in X (e.g., y = fio + fiix + ^ix'' + /Ssx'), then

Geary"' has found that Berkson's conclusion

carries over to the extent that the usual least-

squares estimates (given in Chapter 6) of the

coefficients of the two highest powers of x (i.e.,

of /32 and ^3 here) retain their optimum proper-

ties of unbiasedness and minimum variance, but
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the confidence-interval and tests-of-significance

procedures require modification.

5-4.4 SOME LINEARIZING
TRANSFORMATIONS

If the form of a non-linear relationship be-

tween two variables is known, it is sometimes

possible to make a transformation of one or

both variables such that the relationship be-

tween the transformed variables can be ex-

pressed as a straight line. For example, we
might know that the relationship is of the form

Y = ab^. If we take logs of both sides of this

equation, we obtain

log Y = log a + X log b,

which will be recognized to be a straight line

whose intercept on the log Y scale is equal to

log a, and whose slope is equal to log b. The
procedure for fitting the relationship is given in

the following steps.

(1) Make the transformation Yt = log Y
(i.e., take logs of all the observed Y
values).

(2) Use the procedure of Paragraph 5-4.1.1

to fit the line Yt = bo + biX, substi-

tuting Yt everywhere for Y.

(3) Obtain the constants of the original

equation by substituting the calculated

values of bo and bi in the following

equations:

6o = log a

bi = log b,

and taking the required antilogs.

Some relationships between X and Y which

can easily be transformed into straight-line

form are shown in Table 5-4. This table gives

the appropriate change of variable for each rela-

tionship, and gives the formulas to convert the

constants of the resulting straight line to the

constants of the relationship in its original form.

In addition to the ones given in Table 5-4, some
more-complicated relationships can be handled

by using special tricks which are not described

here, but can be found in Lipka,<^' Rietz,<'> and
Scarborough.

It should be noted that the use of these trans-

formations is certain to accomplish one thing

only—i.e., to yield a relationship in straight-line

form. The transformed data will not neces-

sarily satisfy certain assumptions which are

theoretically necessary in order to apply the

procedures of Paragraph 5-4.1.1, for example,

the assumption that the variability of Y given

X is the same for all X. However, for practical

purposes and within the range of the data con-

sidered, the transformations often do help in

this regard.

Thus far, our discussion has centered on the

use of transformations to convert a known rela-

tionship to linear form. The existence of such

linearizing transformations also makes it pos-

sible to determine the form of a relationship em-

pirically. The following possibilities, adapted

from Scarborough, 'lo' are suggested in this

regard:

(1) Plot Y against ^ on ordinary graph

paper. If the points lie on a straight line, the

relationship is

y-a + l .

(2) Plot Y against X on ordinary graph

paper. If the points lie on a straight line, the

relationship is

Y
= a + bX .

(3) Plot X against Y on semilog paper {X on

the arithmetic scale, Y on the logarithmic scale).

If the points lie on a straight line, the variables

are related in the form

Y = ae*^, or

Y = ab^ .

(4) Plot Y against X on log-log paper. If

the points lie on a straight line, the variables are

related in the form
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TABLE 5-4. SOME LINEARIZING TRANSFORMATIONS

If the Relationship

Is of the Form:

Plot the Transformed
Variables

Fit the Straight Line

Yt = bo ~I~ biXr

Convert Straight Line

Constants (bo and bi)

To Original Constants:

Yt = Xt —
fao = fai =

b Y 1

X Use the procedures of

Paragraph 5-4.1.1.

In all formulas given

there, substitute values

of Yt for y and values

of Xt for X, as appro-

priate.

a 6

1

^-a + bX'
°^

1

Y = a + bX

1

Y
X a 6

Y- ^
a + bX

X
Y

X a 6

Y = a6^ logy X log 0 log 6

Y - ae^^ log Y X log a b log e

Y = aX" logy \ogX log a b

Y = a + bX\
where n is known

y X" a b

5-5 PROBLEMS AND PROCEDURES FOR STATISTICAL RELATIONSHIPS

5-5.1 SI RELATIONSHIPS

In this case, we are interested in an associa-

tion between two variables. See Paragraph

5-3.2 and Table 5-1.

We usually make the assumption that for

any fixed value of X, the corresponding values

of y form a normal distribution with means

Yx = 00 + 0\X and variance a\.x (read as

"variance of Y given X") which is constant for

all values of X. * Similarly, we usually assume

that for any fixed value of Y, the corresponding

values of X form a normal distribution with

meanXy = /S^ -f /3jy and variance <tx.y ,
(vari-

* Strictly, we should write

my.x = ^0 + filX

and

mx.y = -H is; y .

See Footnote in Paragraph 5-3.2.

ance of X given Y) which is constant for all

values of Y.* Taken together, these two sets

of assumptions imply that X and Y are jointly

distributed according to the bivariate normal

distribution. In practical situations, we usually

have only a sample from all the possible pairs

of values X and Y, and therefore we cannot

determine either of the true regression lines,

Yx = 00 + 0iX or = + 0[Y, exactly. If

we have a random sample of n pairs of values

(Xi, Y,), (X2, Y,), ...,iXn, Y„), we can esti-

mate either Hne, or both. Our method of fitting

the line gives us best predictions in the sense

that, for a given X = X' our estimate of the

corresponding value of y = y will:

(a) on the average equal Yx' the mean value

of y for Z = X' (i.e., it will be on the true line

Yx = 00 + 0iX); and

(b) have a smaller variance than had we used

any other method for fitting the line.
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4 00 -
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-

- 200 -

100 -

100 200 300 400 500

TREAO LIFE ( HUNDREDS OF MILES ) BY THE WEIGHT METHOD

Figure 5-10. Relationship between the weight method and the

center groove method of estimating tread life—
an SI relationship.
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Data Sample 5-5.1—Estimated Tread Wear of Tires

The data used for illustration are from a

study of two methods of estimating tread wear

of commercial tires (Stiehler and others"")-

The data are shown here and plotted in Figure

5-10. The variable which is taken as the inde-

pendent variable X is the estimated tread

life in hundreds of miles by the weight-loss

method. The associated variable Y is the esti-

mated tread life by the groove-depth method

(center grooves). The plot seems to indicate a

relationship between X and Y, but the relation-

ship is statistical rather than functional or

exact. The scatter of the points stems pri-

marily from product variability and variation

of tread wear under normal operating condi-

tions, rather than from errors of measurement

of weight loss or groove depth. Descriptions

and predictions are applicable only "on the

average."

X Y
= Tread Life = Tread Life

(Hundreds of Miles) (Hundreds of Miles)

Estimated By Estimated By
Weight Method Center Groove Method

459 357

419 392

375 311

334 281

240

305 287

309 259

319 233

304 231

273 237

204 209

245 161

209 199

189 152

137 115

114 112

5-5.1.1 What is the Best Line To Be Used for Estimating Yx for Given Values of X?

Procedure

The procedure is identical to that of Paragraph 5-4.1.1. Using Basic Worksheet (see

Worksheet 5-5.1), compute the line

y = 6o + b,X.

This is an estimate of the true regression line

Yx = Po + 0iX.

Using Data Sample 5-5.1, the equation of the fitted line is

y = 13.506 + 0.790212 X.

In Figure 5-11, the line is drawn, and confidence limits for the line (see Paragraph 5-5.1.2)

are shown.
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WORKSHEET 5-5.1

EXAMPLE OF SI RELATIONSHIP

X denotes Tread Life Estimated
by Weight Method

Y denotes Tread Life Estimated
by Center Groove Method

4505ZX =

X = 281.5625

27 =

Y =

3776

236

Number of points: n 16

Step (1) 2X7

(2) (2Z) (27)/n

(3) 5.,

1,170,731

1,063,180

107551

(4) ZX^

(5) {ZXy/n

(6) 5„

1,404,543

1,268,439.0625

136103.9375

(7) 272

(8) (27)Vn

(9) S,y

985740

891136

94604

(10) 6i =
f-"

(11) Y

(12) biX

(13) 6o = 7 - 6iZ =

.790212

236

222 A94:

13.506

(14)
iSxy)

Sx

(15) {n 2) s]

(16) Sy

Sy

84988.119

9615.881

686.849

26.21

Equation of the line:

7 = 6o + 6iX

= 13.506 + .790212 X

S6. =

St= 21.048

0.0710387

Estimated variance of the slope:

= .005046504St -
Sx

Estimated variance of intercept:

<f- + = 443.002Sy
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8X

lit

^ 300

* 200

100 -

Yjf- 13.51+0.790212 X
.

_L
100 200 300 400

TREAD LIFE ( HUNDREDS OF MILES) tV WEIGHT METHOD

500

Figure 5-11. Relationship between weight method and center

groove method—the line shown with its confidence

band is for estimating tread life by center groove

method from tread life by weight method.

Using the Regression Line for Prediction. The equation of the fitted Hne may be used to predict

Yx, the average value of Y associated with a value of X. For example, using the fitted line,

y = 13.506 + 0.790212 X, the following are some predicted values for Yx.

X

200

250

300

350

400

450

172

211

251

290

330

369
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5-5.1.2 What are the Confidence Interval Estimates for: the Line as a Whole; a Point on the Line;

a Single Y Corresponding to a New Value of X?

Read the discussion of the interpretation of three types of confidence intervals in Paragraph

5-4.1.2, in order to decide which is the appropriate kind of confidence interval.

The solutions are identical to those given in Paragraph 5-4.1.2, and are illustrated for the tread

wear of commercial tires example (Data Sample 5-5.1).

5-5.1.2.1 What Is the (1 - a) Confidence Band for the Line as a Whole?

Procedure

(1) Choose the desired confidence level, 1 — a

(2) Obtain Sy from Worksheet.

(3) Look up Fi_a for (2, n — 2) degrees of free-

dom in Table A-5.

(4) Choose a number of values ofX (within the

range of the data) at which to compute

points for drawing the confidence band.

(5) At each selected value of X, compute:

y. = f + 6i (z - z)

and

(6) A (1 — a) confidence band for the whole

line is determined by

(7) To draw the line and its confidence band,

plot Yc at two of the extreme selected

values of X. Connect the two points by a

straight line. At each selected value of X,
plot also Yc + Wi and Yc — Wi. Connect

the upper series of points, and the lower

series of points, by smooth curves.

If more points are needed for drawing the

curves, note that, because of symmetry, the cal-

culation of PFi at w values of X actually gives

W^i at 2w values of X.

(1) Let: 1 - a

a

(2)

Example

.95

.05

Sy = 26.21

(3) w = 16

(2, 14) = 3.74

(4) Let: X
X
X
X
X

200

250

300

350

400,

for example.

(5) See Table 5-5 for a convenient computa-

tional arrangement, and the example cal-

culations.

(6) See Table 5-5.

(7) See Figure 5-11.

For example: Wi (but not Y^) has the same
value at Z = 250 (i.e., X - 31.56) as at

X = 313.12 (i.e., X + 31.56).
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TABLE 5-5. COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-5.1.2.1

X (X-X)
1 (X — XV
n S„ Wi

200 -81.56 171 6 0.111375 76.50 8.746 23.9 195.5 147.7

250 -31.56 211 1 0.069818 47.95 6.925 18.9 230.0 192.2

300 + 18.44 250 6 0.064998 44.64 6.681 18.3 268.9 232.3

350 68.44 290 1 0.096915 66.57 8.159 22.3 312.4 267.8

400 118.44 329 6 0.165569 113.72 10.66 29.2 358.8 300.4

X = 281.5625

Y = 236

Sy = 686.849

- = .0625
n
61 = 0.790212

S„ = 136103.9375

= F + 61 (Z - Z)

{X - xy

V2F = VtAB
= 2.735

Wi = V2F Sy

5-5.1.2.2 Give a (1 — a) Confidence Interval Estimate For a Single Point On the Line, i.e., the Mean
Value of y Corresponding to X = X'.

Procedure Example

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — a = .95

a = .05

(2) Obtain sy from Worksheet. (2) Sy = 26.21

(3) Look up ti-a/2 for w — 2 degrees of freedom (3) n = 16

in Table A-4. i.975 for 14 d.f. = 2.145

(4) Choose X', the value of X at which we (4) Let X' = 250,

want to make an interval estimate of the for example.

mean value of Y

(5) Compute:

W2 = ti-a/2 Sy

and

+
{X' - xy

1

= ? + 61 {X' - X)

(6) A (1 — a) confidence interval estimate for

the mean value of Y corresponding to

X = X' is given by

Y,±W2 .

(5)

W2 = (2.145) (26.21) (.2642)

= 14.85

Y, = 211.1

(6) A 95% confidence interval estimate for the

mean value of Y corresponding toX = 250

is

211.1 ± 14.8 ,

the interval from 196.3 to 225.9 .

240 - 5-37



ORDP20-no ANALYSIS OF MEASUREMENT DATA

5-5.1.2.3 Give a (1 — a) Confidence Interval E<

to a Chosen Value of X = X'.

Procedure

(1) Choose the desired confidence level, 1 — a

(2) Obtain Sy from Worksheet.

(3) Look up for w — 2 degrees of freedom

in Table A-4.

(4) Choose X', the value of X at which we
want to make an interval estimate of a

single value of Y.

(5) Compute:

and

y. = f + 6i iX' - X)

(6) A (1 — a) confidence interval estimate for

Y' (the single value of Y corresponding to

X') is

For a Single (Future) Value of Y Corresponding

Example

(1) Let: 1 — a = .95

a = .05

(2) Sy = 26.21

(3) n = 16

i.976 for 14 d.f. = 2.145

(4) Let X' = 250,

for example.

(5)

Wz = (2.145) (26.21) (1.0343)

= 58.1

= 211.1 .

(6) A 95% confidence interval estimate for a

single value of Y corresponding to X' = 250

is 211 .1 d= 58.1, the interval from 153.0 to

269.2 .

5-5.1.3 Give a Confidence Interval Estimate For /3i , the Slope of the True Regression Line,

= /3o + /3iX.

The solution is identical to that of Paragraph 5-4.1.3 and is illustrated here for Data Sample 5-5.1

.

Procedure Example

(1) Choose the desired confidence level, 1 — a (1) Let: 1 — « = .95

a = .05

(2) Look up <i_a/2 for w — 2 degrees of freedom (2) n = 16

i.975 for 14 d.f. = 2.145in Table A-4.

(3) Obtain St^ from Worksheet.

(4) Compute

(3)

(4)

(5) A (1 — a) confidence interval estimate for (5)

/3i is

St, = 0.0710387

W, = (2.145) (.0710387)

= 0.152378

6i = 0.790212

W4 = 0.152378

A 95% confidence interval estimate for /3i

is the interval 0.790212 ± 0.152378, i.e.,

the interval from 0.637834 to 0.942590 .

241 - 5-3!



LINEAR RELATIONSHIPS BETWEEN TWO VARIABLES ordp 20-no

5-5.1.4 What Is the Best Line For Predicting Xy
From Given Values of Y?

For this problem, we fit a line X = h'^^ -\- h[Y
(an estimate of the true line Xy = ^'^^ + fi[ Y).

To fit this line we need to interchange the roles

of the X and Y variables in the computations
outlined in Worksheet 5-5.1 and proceed as in

Paragraph 5-5.1.1.

That is, the fitted line will be:

X = K + h[Y ,

where

h'^ = X - h[Y

and

6; = 281.5625 - (1.136855) (236)

= 13.26

The equation of the fitted line is:

X = 13.26 + 1.136855 Y
,

and this line is shown in Figure 5-12, along with
the line for predicting Y from X.

In order to obtain confidence intervals, we
need the following formulas:

b[ =
q2 _

From Data Sample 5-5.1:

107551
b[ =

94604
= 1.136855

^2 ^

o
o
V>

(T
UJ

400-

300-

UJ

200O
ma
111

z

t 100-

-

Xv = 13.26 + I .136855 Y-

.Y3j= 13,51 + 0.790212 X

-»- -4-

100 260 ' 500 ' 460

TREAD UFE ( HUNDREDS OF MILES) BY THE WEIGHT METHOD

-4- -I- -f-

Figure 5-12. Relationship between weight method and center

groove method—showing the two regression lines.
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5-5.1.5 What is the Degree of Relationship of the Two Variables X and Y as Measured by p, the

Correlation Coefficient?

Procedure

(1) Compute

(2) A 95% confidence interval for p can be ob-

tained from Table A-17, using the appro-

priate n and r. If the confidence interval

does not include p = 0, we may state that

the data give reason to believe that there is

a relationship (measured by p ?^ 0) be-

tween the two variables; otherwise, we may
state that the data are consistent with the

possibility that the two variables are un-

correlated (p = 0).

5-5.2 SI! RELATIONSHIPS

In this case, we are interested in an associa-

tion between two variables. This case differs

from SI in that one variable has been measured

at only preselected values of the other variable.

(See Paragraph 5-3.2 and Table 5-1.)

For any given value of X, the corresponding

values of Y have a normal distribution with

mean Fx = /8o + i^i-X", and variance a\.x which

is independent of the value of X. We have n
pairs of values (Xi , 70, (Xj

,
Y^), ...,{X„, Yn),

in which X is the independent variable. (The

X values are selected, and the Y values are

thereby determined.) We wish to describe the

line which will enable us to make the best esti-

mate of values of Y corresponding to given

values of X.

We have seen that for SI there are two lines,

one for predicting Y from X and one for pre-

dicting X from y. When we use only selected

values of X, however, the only appropriate line

to fit is y = 6o + biX.

It should be noted that SII is handled com-
putationally in the same manner as FI, but both

the underlying assumptions and the interpreta-

tion of the end results are different.

Example

(1) Using Worksheet 5-5.1,

^ 107551
^ \/l36103.94 \/94604

^ 107551

(368.92) (307.58)

= 0.95 .

(2) n = 16

r = 0.95

From Table A-17, the 95% confidence in-

terval estimate of p is the interval from

0.85 to 0.98 . Since this interval does not

include p = 0, we may state that the data

give reason to believe that there is a rela-

tionship between the two methods of esti-

mating tread wear of tires.

Data Sample 5-5.2—Estimated Tread Wear of Tires

For our example, we use part of the data used

in Data Sample 5-5.1 (the SI example). Sup-

pose that, due to some limitation, we were only

able to measure X values between X = 200 and

X = 400, or that we had taken but had lost the

data for X < 200 and X > 400. From Figure

5-10, we use only the 11 observations whose X
values are between these limits. The "se-

lected" data are recorded in the following table.

X y
= Tread Life = Tread Life

(Hundreds of Miles) (Hundreds of Miles)

Estimated By Estimated By
Weight Method Center Groove Method

375 311

334 281

310 240

305 287

309 259

319 233

304 231

273 237

204 209

245 161

209 199
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5-5.2.1 What Is the Best Line To Be Used for Using Data Sample 5-5.2, the fitted line is

Estimating Yx From Given Values

of X?

Procedure

y = 48.965 + 0.661873 X.

Using Basic Worksheet (see Worksheet The fitted line is shown in Figure 5-13, and the

5-5.2), compute the line 7 = 6o + hiX. This confidence band for the line (see the procedure

is an estimate of the true hne Yx = + 0iX. of Paragraph 5-5.2.2.1) also is shown.

WORKSHEET 5-5.2

EXAMPLE OF Sli RELATIONSHIP

X denotes Tread Life Estimated
by Weight Method

Y denotes Tread Life Estimated by
Center Groove Method

zx =

X =

3187

289.727

27 =

Y =

2648

240.727

Number of points: n = 11

(4)

(5) {ZXy/n

(6) 5..

(10) 6i = 1^

(11) Y

(12) biX

(13) bo = Y - biX

Step (1) ZXY

(2) iZX)(ZY)/n

(3) S,,

950815

923360.818

27454.182

0.661873

240.727

191.762

48.965

Equation of the line:

y = 6o + 6iX

= 48.965 + 0.661873 Z

\ =

0.159439

46.88

785369

767197.818

18171.182

(7)

(8) (27)Vw

(9)

(14)

(15) {n - 2) s\r

(16) sV

655754

637445.818

18308.182

12027.015

6281.167

697.9074

26.418

Estimated variance of the slope:

.0254208SL = Sy

Estimated variance of intercept:
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ao
X

^ 400-
oo
ft.

C9

ac
UJ

^ 300+

>
CD

CO
UJ

o 200-

a

o
z
X

X = 48.965 + 0.661873 X

100-

-

<
bJ
o:

-4- +- -1- +- 4- 4- 4- +-
100 z6o 300 400 500

TREAD LIFE (HUNDREDS OF MILES) BY THE WEIGHT METHOD

Figure 5-13. Relationship between weight method and center
groove method when the range of the weight method

has been restricted—an SII relationship.

5-5.2.2 What are the Confidence Interval Estimates for: the Line as a Whole; a Point on the Line;
a Single Y Corresponding to a New Value of X?

Read the discussion of the interpretation of these three types of confidence intervals in Paragraph
5-4.1.2 in order to decide which is the appropriate kind of confidence interval.
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5-5.2.2.1 What Is the (1 - a) Confidence Band For the Line as a Whole?

The solution is identical to that of Procedure 5-4.1.2.1 and is illustrated here for Data Sample
5-5.2.

Procedure

(1) Choose the desired confidence level, 1 — a

Example

(1) Let: 1 - a = .95

a = .05

(2) Obtain Sy from Worksheet. (2) From Worksheet 5-5.2

Sv = 26.418

(3) Look up for (2, n — 2) degrees of free-

dom in Table A-5.

(3) n = 11

F.96 (2, 9) = 4.26

(4) Choose a number of values of X (within the

range of the data) at which to compute
points for drawing the confidence band.

(4) Let: X
X

X
X

200

250

X = 300

350

400,

for example.

(5) At each selected value of X, compute:

Y,= Y + biiX-X)

and

{X - xy~
W^ = V2F sy\- +

ri (x - xrii

(5) See Table 5-6 for a convenient computa-

tional arrangement and the example cal-

culations.

(6) A (1 — a) confidence band for the whole
• line is determined by

(6) See Table 5-6.

(7) To draw the line and its confidence band,

plot Yc at two of the extreme selected

values of X. Connect the two points by a

straight line. At each selected value of X,

also plot Y, + Wi and Y, - Wi. Con-

nect the upper series of points, and the

lower series of points, by smooth curves.

If more points are needed for drawing the curves

for the band, note that, because of symmetry
the calculation of Wi at n values of X actually

gives Wi at 2n values of X.

(7) See Figure 5-13.

For example: Wi (but not Yc) has the same
value at Z = 250 (i.e., X - 39.73) as at

X = 329.5 (i.e., X + 39.73).
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TABLE 5-6. COMPUTATIONAL ARRANGEMENT FOR PROCEDURE 5-5.2.2.1

X (X-X)
1 ^ (X - xy
n Sxi Wi

200 -89.73 181.3 0.384179 268 . 12 16.37 47.8 229.1 133.5

250 -39.73 214.4 0.148404 103.57 10.18 29.7 244.1 184.7

300 + 10.27 247.5 0.094751 66 . 127 8.132 23.7 271.2 223.8

350 60.27 280.6 0.223219 155.79 12.48 36.4 317.0 244.2

400 110.27 313.7 0.533810 372.55 19.30 56.3 370.0 257.4

X = 289.727

Y = 240.727

s]r = 697.9074 = Y + b, {X - X)

= 0.0909091
Sy^ — Sy

bi = 0.661873

5„ = 27454.182

1 ,

(X - xr
n ^ 5..

^ = V8.52 = 2.919

5-5.2.2.2 Give a (1 — a) Confidence Interval For a Single Point On the Line, i.e., the Mean Value
of Y Corresponding To a Chosen Value of X (X').

Procedure

(1) Choose the desired confidence level, 1 — a

(2) Obtain Sy from Basic Worksheet.

(3) Look up <i_„/2 for w — 2 degrees of freedom
in Table A-4.

(4) Choose X', the value of X at which we want
to make an interval estimate of the mean
value of Y.

(5) Compute:

and

= Y + bi {X' - X)

(6) A (1 — a) confidence interval estimate for

the mean value of Y corresponding to

X = X' is given by

Y + b,iX - X) ±W2

Example

(1) Let: 1 - a = .95

a = .05

(2) From Worksheet 5-5.2

Sy = 26.418

(3) n = 11

<.976 for 9 d.f. = 2.262

(4) Let X' = 300,

for example.

(5)

Wi = (2.262) (26.418) (0.3078)

= 18.4

y, = 247.5

(6) A 95% confidence interval estimate for the

mean value of 7 at X = 300 is the interval

247.5 ± 18.4, i.e., the interval from 229.1

to 265.9 .
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5-5.2.2.3 Give a (1 — a) Confidence Interval Estimate For a Single (Future) Value of Y Corresponding
To a Chosen Value of X = X'.

Procedure

(1) Choose the desired confidence level, 1 — a

(2) Obtain Sy from Worksheet.

(3) Look up <i_a/2 for n — 2 degrees of freedom

in Table A-4.

(4) Choose X', the value of X at which we want
to make an interval estimate of a single

value of y.

(5) Compute:

and

+

Y,= Y + h, {X' - X)

(6) A (1 — a) confidence interval estimate for

Y' (the single value of Y corresponding to

X') is given by

F + 6i {X' - X) ±W,
= Y,±W, .

Example

(1) Let: 1 - a = .95

a = .05

(2) From Worksheet 5-5.2

Sy = 26.418

(3) i.976 for 9 d.f. = 2.262

(4) Let X' = 300,

for example.

(5)

= (2.262) (26.418) (1.0463)

= 62.5

Y, = 247.5

(6) A 95% confidence interval estimate for Y
at Z = 300 is the interval 247.5 ± 62.5,

i.e., the interval from 185.0 to 310.0 .

5-5.2.3 What Is the Confidence Interval Estimate

Procedure

(1) Choose the desired confidence level, 1 — a

(2) Look up <i_a/2 for n — 2 degrees of freedom

in Table A-4.

(3) Obtain s^i from Worksheet.

(4) Compute

(5) A (1 — a) confidence interval estimate for

/3i is

for )3i , the Slope of the True Line, Ya^ = ft + ;8iX?

Example

(1) Let: 1 - a = .95

a = .05

(2) n = 11

<.975 for 9 d.f. = 2.262

(3) From Worksheet 5-5.2

S6, = 0.159439

(4)

W, = 2.262 (0.159439)

= 0.360651

(5) 6i = 0.661873

W, = 0.360651

A 95% confidence interval estimate for pi

is the interval 0.661873 ± 0.360651, i.e.,

the interval from 0.301222 to 1.022524 .
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Study of Accuracy in Chemical Analysis Using

Linear Calibration Curves
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In situations characterized by linear

calibration curves such as the relation

between "found" and "added" in

studies of accuracy in chemical anal-

ysis, the usual method for deriving

confidence intervals for the slope and
the intercept of the fitted straight line

may lead to erroneous conclusions.

The difficulty results from the inter-

dependence of multiple conclusions

drawn from the same data, especially

when there is a strong correlation

between the parameters involved.

The method of joint confidence regions

eliminates these difficulties and has

the further advantage of allowing for

the evaluation of the uncertainty of

the calibration line as a whole, as well

as of any values or functions of values

derived from it.

THE STUDY of an analytical pro-

cedure generally starts with deter-

mining satisfactory operating condi-

tions. Once this has been done, the pre-

cision and accuracy of the method can be

effectively studied by analyzing a series

of prepared samples covering the range

of concentrations over which the method
is appUcable. This procedure, which in-

volves the statistical theory of fitting

straight lines based on the method of

least squares, has been described by
Youden (18, 19) and applied by Linnig,

Mandel, and Peterson {9) and by Lark

{8). Essentially, the slope of the fitted

straight line can be compared to a value

based on stoichiometric or other theoret-

ical considerations; the intercept, to

"blank" determinations; and the

"standard error of estimate," to a meas-

ure of precision obtained from replicate

determinations. Thus, the method gen-

erally involves tests of significance of the

slope and the iotercept of a fitted

straight line. Such tests can readily be

carried out in accordance with classical

theory {1, 2, IS, 19).

Lark {8) has pointed out that the

tests of significance on slope and inter-

cept can lead to erroneous conclusions,

because these tests, when carried out in-

dependently of each other, ignore the

strong coxrelation that exists between

the estimated slope and intercept of a

straight line obtained by least squares

calculations. In Table I, the values

labeled "found" differ from those de-

noted "added" merely by random
fluctuations. Thus, the "true" relation

between found and added is a straight

line passing through the origin with a

slope equal to unity. This line is de-

noted T in Figure 1. The line on the

other hand, which is the least squares fit
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added"

Figure 1. Effect of experimental errors on fitted

straight line

Data of Table I

T. Theoretical line

E. Fitted line

of the equation y = b + mx to these

data, has, as the result of the random

errors, an intercept different from zero

and a slope different from unity. It is

easily seen that if by the interplay of

chance effects, the fitted line has a slope

less than unity, it will tend to have a

positive intercept and vice versa. Thus,

if the error in the slope is negative, the

error in the intercept will tend to be

positive, and vice versa. The theory of

least squares shows this to be generally

true for any set of linear data, for which

the average of the x values (values "ad-

ded") is positive; in these cases, the er-

rors of slope and intercept are always

negatively correlated, regardless of the

precision of the data.

Table I. Illustrative Data

"Added" "Found"

15 25.4
30 26.8
45 43 .

6

60 62.8
75 82.5
90 84.0

In this paper a rational basis is pro-

vided for judging the reliability of slope,

intercept, and any value derived from

the calibration line. The concepts are

presented in terms of the data obtained

by the authors in the study of an analy-

tical method for which interesting chem-
ical interpretations were suggested for

some of the statistical conclusions (9).

However, reference wUl also be made to

the data of Table I to illustrate situa-

tions where the high reproducibility of

the analjrtical method just referred to

would produce effects too small to be
distinguished graphically. For greater

continuity of presentation, all mathe-
matical and computational matters are

relegated to a later section.

ACCURACY IN CHEMICAL ANALYSIS

Linnig, Mandel, and Peterson (9) ob-

tained the data given in Table II for the

determination of fatty acid in rubber.

Table II. Determination of Fatty Acid

in Rubber

Fatty Acid. Mg.
Titration Added Found

1 20.0 28.0
2 20.0 24,5
3 50.0 58.5
4 50.0 57.8
5 150.0 157.8
6 153.7 163.2
7 250.0 257.8
8 250.0 259.3
9 500.0 512.4
10 500.0 509.2

Solvent blank 0.0 7.40

From a chemical viewpoint the following

questions are pertinent:

1. Does this analytical procedure
require a blank correction?

2. Is the value for the blank that was
determined experimentally (6 = 7.40

mg.) an acceptable correction for the
removal of the constant type of error

suggested by the data?
3. Does the removal of the constant-

type error (by means of a blank correc-

tion) lead to an otherwise accurate
method? More specifically, is there,

in addition to a constant-type error,

also an error of a relative type—i.e.,

one that increases as the amount of

material to be titrated increases?

These questions relate to the values of

the intercept and the slope of a plot of

"found" vs. "added," similar to the one

shown in Figure 1 (9).

Now, if answers to these questions are

obtained by means of a statistical analy-

sis, these answers should be compatible

with the data, not only individually but
collectively. For example, it has been
suggested (9) that the existence of a rel-

ative type of error (slope different from
unity) in titration data of the type given

in Table II is related to the choice of an
indicator that does not change at the

equivalence point. Therefore, in order

to determine the adequacy of a par-

ticular indicator, one would test statis-

tically the significance of the departure

of the slope from unity. On the other

hand, one may wish to judge the ade-

quacy of a blank titration as a correction

for a constant error by testing the sig-

nificance of its difference from the ob-

served intercept. Chemically, these

may be entirely unrelated questions;

but from the viewpoint of experimental

evidence, they are related in that they

1.016 r
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Figure 2. Joint confidence ellipse for

slope and intercept

Data of Table II

<!), Least squares estimate of slope

Least squares estimate of intercept

are obtained from the same set of data.

This is especially so because, as has been

indicated, there exists a strong statis-

tical correlation between the errors in

the slope and the intercept. Conse-

quently, the answers to both questions

must be jointly compatible with the

data, and this requires the use of joint

confidence regions.

JOINT RELIABILITY OF SLOPE AND INTERCEPT

A joint confidence region for slope and

intercept is shown in Figure 2. On the

abscissa point $ represents the \'alue for

the intercept obtained by the method of

least squares. Similarly, m on the
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ordinate is the least squares estimate of

the slope. Point {S, rk) establishes,

therefore, the line of "best fit." How-
ever, even this line of best fit is prob-

ably in error, the magnitude of its dis-

crepancy from the true line depending

on the experimental errors in the meas-

urements to which the line was fitted.

Consequently, points other than {S, rh)

are admissible, and theory shows {12,

p. 296) that these points lie in an ellipse

having the point of best fit as center.

The boundary of the ellipse is deter-

mined by the magnitude of the experi-

mental errors and by the degree of con-

fidence, the "confidence coeflacient,"

with which one wishes to state that the

true point lies in the interior of the el-

lipse. The tilt of the elUpse with re-

spect to the axes is a consequence of the

negative correlation between the errors

in slope and intercept. As a result of the

tut, the eUipse favors points with a

higher slope and lower intercept than the

best fit (upper left area) and points with

a lower slope and higher intercept (lower

right area) ; while points corresponding

to lower slopes and lower intercepts

(lower left) or to higher slopes and higher

intercepts (upper right) tend to fall out-

side the admissible region.

is required is answered by determining
whether the ellipse contains points for

which 6 = 0. As all such points are on
a vertical line at 6 = 0, they are well

outside the ellipse, and it is at once
apparent that 6 = 0 is unacceptable.
Consequently, a blank is required to
correct for a constant-type error.

2. Is the experimental blank an
adequate correction for the constant-
type error? To answer this question,
draw a vertical line at 6 = 7.40 (the
value of the experimental blank).
This line intersects the ellipse and is, in

fact, close to its center. Consequently,
there is no reason to doubt the validity
of this blank as a means of correcting
for the constant-type error.

3. Is there a relative-type error?

Answering this question is equivalent to
deciding whether the value, m = 1,

is acceptable. Consider the horizontal
line, TO = 1. The points on this line

falling inside the eUipse are extremely
close to the boundary of the ellipse.

Therefore, the hypothesis, m = 1,

is of doubtful validity, and there exists

a strong likelihood that, in addition

to an error of the constant type, there

is a relative type of error. It has been
suggested in relation to these data {9)

that the reason for finding results

higher than the stoichiometric values
may be the opacity of the solution,

40 60
"ADDED"

Figure 3. Confidence band for calibration line

Data of Tablet. Straight line is least squares fit. The two branches
of hyperbola define the confidence band. Broken lir.e. are the

asymptotes

APPLICATION TO CHEMICAL EXAMPLE

Figure 2 represents the 95% joint

confidence ellipse corresponding to the
data in Table II. The three questions
that arose in connection with these data
can readily be answered by means of

this figure.

I. The question as to whether a blank

causing the change of color of the in-

dicator to be observed somewhat beyond
the equivalence point.

The selection of any particular value

for the intercept, even though accept-

able, restricts the range of acceptable

slope values. Thus, as seen in Figure 2,

if it is decided to use a blank correction

of 7.40 mg., the range of slope values

that are compatible with this blank ex-

tends approximately from 1.0013 to

1.0117—i.e., it is no longer equal to the

total range enclosing the entire ellipse

(approximately 1.000 to 1.016).

As the least-squares solution, m =
1.00765, is well within this restricted

range, the procedure which consists of

first correcting the data by means of the

experimental blank and then dividing

by 1.00765 is entirely acceptable. At
the same time it is apparent that merely

subtracting the experimental blank is

not satisfactory, because this amounts to

accepting the joint hypothesis, 6 =
7.40 and m = 1, which corresponds to a

point outside the elUpse.

If the acceptability of the blank had

been judged on the basis of a confidence

interval obtained by the usual method

—

i.e., not based on the joint confidence

region—then this judgment would, in a

sense, have exhausted the confidence co-

efficient. If now a judgment concerning

the true value of the slope were also at-

tempted, then the joint judgment, con-

cerning both intercept and slope, would

no longer be associated with the ini-

tially chosen confidence coefiicient. In

view of the strong correlation between

slope and intercept, any proposed value

for the intercept restricts the choice of

acceptable values for the slope and vice

versa. This fact is ignored in the usual

method of examining slope and inter-

cept separately.

RELIABILITY OF CALIBRATION LINE

The study of an analytical procedure

by the method of linear regression leads

to values for the slope and the intercept

of the calibration line, and by the

method described in the preceding sec-

tion specific questions regarding these

parameters can be satisfactorily an-

swered. This approach is particularly

useful when the values of the slope and

the intercept can be correlated with

chemical aspects of the problem such as

the need for, or adequacy of, a blank cor-

rection or the appropriateness of a par-

ticular indicator.

From the viewpoint of routine test-

ing, one may be interested in the cali-

bration line as such without a critical

study of specific values for the slope and

the intercept. This question of prac-

tical interest can be stated as follows:

How reliable is the calibration line over

its entire range of applicability? The

answer is obtained by the method illus-

trated in Figure 3, which is based on a

95% joint confidence region for the

slope and intercept of the data shown

in Figure 1. These data, being less pre-

cise than those of Table II, are more

suitable for graphical illustration of the

concepts here discussed. The two

branches of the hyperbola define the
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limits within which the calibration line

is known at any one of its points. The
line is most accurately known in the

middle region of the range in which it

was studied, the uncertainty of its posi-

tion increasing with increasing depar-

ture from the middle. Computational

details are relegated to the section on

formulas and computations.

However, it is important to note at

this point that the hyperbola, in addi-

tion to providing an uncertainty l)and

for the calibration line, also yields the

answer to two further classes of prob-

lems. Just as the estimated straight

line can be used for the estimation of the

"true" y corresponding to a given x as

well as for the estimation of the x cor-

responding to a given y, so the hyper-

bola can also be used to give the con-

fidence intervals corresponding to these

two situations. The first problem is

solved by drawing a vertical line through

the given x; the segment of this line

situated between the two branches of

the hyperbola is the desired confidence

interval for the "true" y corresponding

to the chosen value of x. The procedure

for solving the second problem is en-

tirely analogous, the confidence in-

terval being the segment bounded by

the two branches of the hyperbola on the

horizontal Une drawn through the given

y value. Incidentally, it is worth not-

ing that the uncertainty intervals for x,

given y, are asymmetrical with respect

to the value of x situated on the calibra-

tion line. Of course, there is no im-

pelling reason for an uncertainty interval

to be symmetrical, because the uncer-

tainty may well be greater in one direc-

tion than in the opposite one. This is

the case here, the caUbration line being

most precisely known in the center and
becoming gradually less well known at

increasing distances from the center.

Therefore, the uncertainty intervals for

X, given y, are shorter on the side toward

the center than on the other side. As
may be expected, in the case in which

the slope of the line is not significantly

different from zero, the confidence in-

terval for X, given y, becomes infinitely

long and, of course, meaningless.

The procedure just described can be

repeated for any number of given x

and/or y values, using the same calibra-

tion line with its associated hyperbola,

without ever causing the joint reliability

of all the confidence intervals thus ob-

tained to drop below the chosen con-

fidence coefficient.

RELIABILITY OF QUANTITIES DERIVED FROM
CALIBRATION LINE

The two classes of problems discussed

in the preceding section constitute

special cases of a wider class of interval

estimation problems that can be solved

by means of the joint confidence ellipse

of slope and intercept. As will be shown
in the final section, a confidence interval

can be derived for any arbitrary func-

tion, Unear or nonlinear, of slope and in-

tercept. Only the linear case appears to

have been considered in its most general

form in the literature (3). An example

of the nonlinear case is found in the

study of the viscosity of polymer solu-

tions.

The following equation is sometimes

used to relate viscosity and concentra-

tion for dilute solutions (11)

ri.p/c = M + k'M^e

where c is concentration, rj.p is specific

viscosity, and [v] is intrinsic viscosity.

The constant, k', which characterizes

the solute-solvent system, can be esti-

mated as the ratio of the slope, of

the straight line to the square of its inter-

cept, [?)]. The uncertainty of k' is,

therefore, influenced by that of both the

estimated slope and the estimated inter-

cept.

INTERCEPT, b [ij]

Figure 4. Confidence interval for non-

linear function of slope and intercept

in viscosity study

Parabolas represenf the equation m = Ic'b^'for

various values of Ic'. The confidence interval

for k' consists of all values of Ic' contained

between k'z and k\

The following method is proposed for

solving this problem. The relation

can be written m = k'b^ and represents,

for any given value of k', a parabola in

the b, m plane (Figure 4). Different

values of k' result in different parabolas

some of which intersect the ellipse, while

others do not. For a value of k' to be

acceptable, it must correspond to a para-

bola which contains acceptable combi-

nations of b and tn—i.e., points inside the

ellipse. Thus, the totality of acceptable

values of k' is that set of k' values for

which the corresponding parabolas inter-

sect the ellipse—i.e., the values con-

tained between k't and k't corresponding

to the tangent parabolas. Thus, A; 1 IS

unacceptable, while k'z is acceptable.

While the problem of determining the

limiting values k't and k't can be solved

mathematically, it may be simpler in

many cases, including the one under

discussion, to use graphical methods in-

volving trial and error on some values

of k'.

The function of interest in the present

example is the ratio of the slope to the

square of the intercept. Other functions

may also be of interest. If this is the

case, confidence intervals can be derived

for all such functions by the same gen-

eral method. It can then be stated that

the confidence intervals thus obtained

from a single set of straight line data are

all jointly valid with a probability at

least etiual to the selected confidence

coeflScient.

FORMULAS AND COMPUTATIONS

Equation of Joint Confidence

Ellipse. This equation for slope and
intercept can be written at once,

provided the usual least squares

calculations for slope and intercept

are carried out in a systematic way.

Suppose that A'' pairs of corresponding

values for x and y are given and that it is

required to fit a straight line

y = b + mx

to these data. The usual assumptions

are made —viz., that the x values are

known without error and that the errors

in the y measurements are independent

of each other and have a common vari-

ance. The usual least squares formulas

are then applicable and require the

computation of the following quantities

:

Given A'' pairs of x,y values, compute:

(a) From the x values:

S = 2x and 0 = Sz*

(b) From the y values:

y = 2?/ and L = Sy*

(c) From corresponding x and y

values

:

P = Sxy

It is useful to represent the quantity,

NQ — S^, which depends on the x values

only, by a separate symbol

A = NQ - S* (1)
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Then, the estimates of slope and inter-

cept, m and 6, are given by

NP - SY
A

QY - SP

(2)

(3)

The standard error of estimate, which

is a measure of the experimental error of

the y measurements, is the square root

of the quantity

= -J—Il-^"--^--,] (4)
* AT - 2L N AT'w'J ^

'

The equation of the ellipse is

Nib - 6)= + 2S(6 - 6) (m - m) +
Q(to - m)' = 2Fs' (5)

In this equation, F represents the

critical value of the "variance-ratio,"

with 2 andN — 2 degrees of freedom, cor-

responding to the desired "confidence

coefficient." For example, if the desired

confidence is 95% and is 10, the value

of F is obtained from the "variance

ratio" table at a level of significance

equal to 100 - 95 = 5%, for 2 and 8 de-

grees of freedom. This value is 4.46.

In practice, it is not necessary actually

to draw the ellipse, because it can be
closely approximated by three sets of

parallel tangents, as shown in the follow-

ing section.

In terms of the data of Table II, the

formulas just given lead to the follow-

ing quantities:

= 10
S = 1943
Q = 676,924
A = 2,991.267
m = 1.00765
b = 6.99
s' = 2.121
F = 4.46

The equation of the ellipse is, there-

fore

10(6 - 6.99)' -I- 3886(6 - 6.99) (m -

1.00765) + 676,924 (to - 1.00765)^

= 18.919

Practical Construction of Joint Con-
fidence Region. Referring to the
symbols defined in the preceding
section, the following additional quan-
tities are required.

= 2Fs* (6)

Vnqw =
s (7)

(8)

(9)

6 T 8 N' 10

INTERCEPT—

b

Figure 5. Graphical construction of

joint confidence region

Data of Table II

\0(1 + W) (10)

(11)

Construct a system of coordinate

axes (Figure 5) in which the abscissa rep-

resents the intercept and the ordinate

the slope. The scales need not be equal

for the two axes. They should be such

that a rectangle of sides 2L„ (in the ver-

tical direction) and 2Lb (in the hori-

zontal direction) covers most of the area

available for the graph. The center of

the rectangle is the point, C = {S,m).

After drawing the rectangle, locate the

points E and E' above and below C, at

distances ± dm from C; and the points

D and D' to the right and left of C, at

distances ± di, from C. Draw the sloping

lines ED and E'D' and extend them to

their points of intersection with the rec-

tangle. The sloping linee, as well as the

four sides of the rectangle, are all tan-

gent to the ellipse. The hexagon,

RNTR'N'T', enclosed between these

lines inside the rectangle is an excellent

approximation for the ellipse, as evi-

denced by Figure 5.

Formulas 6 through 11, when applied

to the data of Table II, give

= 18.919

W = 1.3391

L„ = 7.953 X 10-'

U = 2.0693
d„ = 5.655 X 10-«

di = 1.47

These values were used in construct-

ing Figure 5.

Confidence Band for Calibration

Line. The hyperbola shown in Figure

3 is obtained by adding to and sub-

tracting from the fitted value, y,

corresponding to any given x, a

quantity depending on the distance
of this X from the average, x. This
quantity is

K Jl h +
-

Thus, the equation of the upper
branch of the hyperbola is

y •=$ + mx +

1 + (x-DT
(12a)

and the equation of the lower branch
is

y = t + fiix —

The derivation of these formulas is out-

lined in the final section.

It is helpful to draw the asymptotes to

the hyperbola. The equations for the

two asymptotes are

y = b + mx + K

and

6 -I- ^

i)

i) (13)

hasThe quantity, =

already been calculated for the con-

struction of the ellipse.

If a confidence interval is desired for y
corresponding to any given value of x,

say xo, it may be determined by drawing

a vertical line through x = Xo. The de-

sired interval is the portion of that line

which falls between the two branches of

the hyperbola. Conversely, if a con-

fidence interval is desired for x corre-

sponding to any given value of y, say yo,

it is determined by drawing a horizontal

line through y = yo. The desired in-

terval is the portion of that line which

falls between the two branches of the

hyperbola. It has already been pointed

out that this procedure can be repeated

for any number of x and y values, with

the assurance that the probability that

all intervals will be jointly valid is never

less than the chosen confidence coef-

ficient. In many cases, the scale of the

graph will make it necessary to obtain

these intervals by computation rather

than graphically.

To judge the reliability of the calibra-

tion line over its entire range of ap-

plicability, it is useful to note that, for

the case of equally spaced values of x,

the length of the uncertainty interval for

y at both extremes of the calibration line

(extreme values for which measurements
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were made) is approximately twice its

length at an x value near the center.

Application to the data of Table II

gives the following equation for the con-

fidence hyperbola

y = 6.99 + 1.007651 ±

.0= /if,
,

(x - 194.3)n ,,,,
4.35 ^^[1+ ^

29.913 J
^^'^

To show how this equation yields in-

formation about the precision of the

calibration line

y = 6.99 + 1.007651

let us calculate the uncertainty of a

value X "read" from the line for a value

of y = 250 mg. Substituting this value

in the equation and squaring, we obtain

(250 - 0.99 - 1.00765i)2 =

This quadratic equation in x has the

roots X, = 239.83 and x^ = 242.48.

This interval of uncertainty reflects

only errors in the calibration curve and

does not include errors in the measure-

ment of y.

SOME THEORETICAL CONSIDERATIONS

While the basic theory of joint con-

fidence regions has been known for a

nuniber of years, its practical usefulness

seems to have been largely overlooked.

Textbooks on applied statistics either

ignore the issue entirely or treat it very

sketchily. The present discussion is an

attempt to fill this gap and to present

a concise outline of the theoretical ideas

and principles necessary to an under-

standing of the techniques already dis-

cussed in this paper. It is hoped that

this exposition will also throw some
light on the manner in which the various

principles are related to each other.

1. It is interesting to contrast prob-

lems involving two unknown param-
eters, such as intercept and slope, with

problems involving a single parameter.

In the latter case, there is essentially

only one possible confidence statement;

for example, if the parameter is the

slope, m, of a straight hue, y = mx, pass-

ing through the origin, then the con-

fidence interval for y corresponding to

X = To is the range of values extending

from xomi to Xonii, where TOi and m2 are

the confidence limits for m. If another

value Xo' had been considered, the cor-

responding confidence interval would be

proportional to the first, with a propor-

tionality factor, Xo'/xo. Thus, all such

intervals are uniquely determined by
values mi and mi or by each other. The
joint confidence for any number of in-

tervals thus obtained is therefore equal

to the confidence for each single one,

since any one interval determines all

others.

On the other hand, in the case of two or

more parameters, such as the slope and

intercept of the line, y = b + mx, a con-

fidence statement for y corresponding to

2o does not mathematically imply a con-

fidence statement corresponding to an-

other value Xo'. For example, if it is

stated that for a; = 2, 6 -|- vix lies be-

tween 5 and 15—i.e.,

5 < 6 4- 2m < 15

no statement can be inferred from these

inequalities for x = 3—i.e., for 6 -f- 3m.

Thus, if statements of uncertainty are

made both for a; = 2 and a; = 3, their

joint rehability will be less than that

corresponding to each statement taken

separately. If more values of x are con-

sidered, the joint reliability will further

decrease. The joint confidence elhpse

ensures that no matter how many indi-

vidual confidence intervals are derived

from it, the joint confidence of all these

intervals is never less than the selected

confidence coefficient, say 0.95.

2. The usefulness of the joint con-

fidence ellipse for slope and intercept in

the study of linear relationships was rec-

ognized by Working and HoteUing (17)

as early as 1929. Some aspects of their

paper appear to have been largely ig-

nored in subsequent writings. These

authors show that the totality of all

straight lines whose slopes and intercepts

correspond to points inside the ellipse

—

i.e., the admissible lines—are contained

between the branches of a hyperbola,

and they point out that this hyperbola is

wider than the one corresponding to the

sampling errors in y for any particular x.

They consider the wider hyperbola as

setting limits for the "sampling errors

of the trend line as a whole" (17). How-
ever, the ellipse discussed by Working
and Hotelling involves the population

standard deviation of the experimental

errors, a, and therefore, does not allow

for sampling errors in the estimation of

the standard error of estimate, s. Nei-

ther do these authors consider the prob-

lem of determining the uncertainty of an
X value "read" from the caUbration line

for a given y.

3. The latter problem is examined in

detail by Eisenhart (4). This author

summarizes the theory of confidence in-

tervals, based on Student's t, for the

parameters of a straight line and the

uses of hyperbolic uncertainty bands for

the interval estimation of x, given y, as

well as for y, given x. It will be shown
that some of these problems can also be

treated by the method of joint con-

fidence regions underlying Working and
Hotelling's "wider" hyperbola, leading

to more satisfactory solutions for some

types of applications than those based

on Student's t.

4. A further aspect of linear regres-

sion is that of evaluating the uncer-

tainty of some given function of the

slope and the intercept, such as in the

viscosity problem described in an earUer

section. For functions that are linear

with respect to 6 and m, a general solu-

tion based on the joint confidence ellipse

is given by Durand (S). For functions

that are of the form, Li{h,m)/Li(l),m),

where both Li and L2 are linear, a solu-

tion is available using a theorem by

Fieller (5, 7), the basic principle of

which is concisely presented by Finney

{6). However, this solution is not based

on the joint confidence elhpse and suf-

fers, therefore, from the restriction that

only one conclusion can be drawn from

a given set of data, using a preselected

confidence coefficient.

5. The method presented in this

paper and illustrated by the viscosity

problem constitutes an entirely general

procedure. It contains as special cases

the treatment of linear functions by the

method of Durand (S), as well as those

nonlinear functions that can be covered

by Fieller's theorem. Among the latter,

there is the interval estimation of x,

given y which, under the generalized

procedure leads also to the "wider"

hyperbola of Working and Hotelling

{17).

The principle of the general method

is as follows: Given a set of data for a

straight line and any arbitrary function

of slope m and intercept h, say 3 = /
{h,m), first determine the joint con-

fidence ellipse as described. Next,

consider any value of z, say Za. For this

value, function 2o = f{h,m) represents a

curve in the h,m plane. By varjong Zo,

a family of such curves is obtained. A
confidence interval for z is then obtained

by collecting all numerical values of z

for which the corresponding curves in-

tersect the ellipse.

This procedure can be repeated for

any arbitrary number of functions of h

and m, using the same elhpse. Provided

that the functions contain no random
errors other than those affecting esti-

mates h and m, the confidence intervals

obtained will all be jointly vaUd with a

probabiUty not less than the selected

confidence coefficient.

6. By the procedure that has just

been outlined, a single mathematical

operation yields the solution to both the

problem of determining a confidence

band for the regression line, as dealt

with by Working and HotelUng, and the

problem of determining confidence in-

tervals for y, given x, and for x, given

y-

Identify z with the expression,

iy ~ h)/m—i.e., x—for a fixed value of y

, — , - V
Z = X —

m
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This equation represents a straight line

in the b,m plane. The values of z for

which this line intersects the eUipse will

be contained between two values, say
Xi and X2, for which this line is tangent to

the eUipse given by Equation 5. By
means of elementary analytical geom-
etry it can be shown that Xi and X2 are

the solutions of the following equation in

X

{y - b - fhxy = K\Nx^ - 2Sx + Q)

(15)

The interval extending from xi to

is, of course, a confidence interval for x
for the fixed value of y considered. On
the other hand, Equation 15 also repre-

sents a hyperbola entirely analogous to

the "wider" hyperbola obtained by
Working and Hotelling, but allowing for

sampling errors in the estimate, s, of a.

If z had been identified with the ex-

pression, b + mx, the same identical

hyperbola would have been obtained.

Thus, Equation 15 also yields confi-

dence intervals for y, given x. By re-

placing the quantity, Nx'^ — 2Sx + Q,

by its equivalent, N(x — x)' + ^, it is

easUy verified that Equations 12a and
12b are merely a different way of writ-

ing Equation 15. Figure 3 is based on
these equations.

7. Fieller's theorem (5-7) could have
been used to derive confidence intervals

for X, given y, as the expression x =
(.y—b)/inisoi the form, Li{b,m)/LiQ),in),

with Li and linear. This technique

would have led to an equation entirely

similar to Equation 15, with the sole dif-

ference that quantity tH''- appears in the

place of K''. As A'^ = 2Fs^ the relation

between the solutions obtained by
Fieller's theorem and the use of the el-

Upse is that of the use of t vs. V2F-
This same relation applies also to the

comparison between the method de-

scribed by Eisenhart, based on Stu-

dent's t, and that derived from the joint

confidence ellipse for confidence in-

tervals of y, given x. In fact, it can be

shown that in all cases in which con-

fidence intervals can be derived on the

basis of Student's t, they bear a constant

relationship to corresponding intervals

based on the joint confidence ellipse for

the slope and the intercept—namely,

that the length of the latter intervals is

longer by the ratio, \/2F/t. For a con-

fidence coefficient of 0.95, this ratio

equals 1.295 for A'^ = 10 and it de-

creases slowly to the hmiting value,

1.247, as A'' increases indefinitely.

Against the disadvantage of the
method based on the joint confidence

ellipse to yield somewhat longer con-
fidence intervals, one must weigh two
important advantages. In the first

place, as mentioned before, it is possible

by this method to obtain confidence in-

tervals for any function, linear or non-
linear, of b and m. Secondly, the con-
fidence intervals derived from the el-

lipse are all jointly valid, regardless of

their number, with a joint confidence co-

efficient that is never less than the one
on which the ellipse is based.

8. While the general method de-

scribed above permits one to derive

from a single set of data an unlimited

number of jointly valid confidence in-

tervals for y, given x, and for x, given y,

it fails to solve a twofold problem dis-

cussed by others {1, 2, 4, 12, 16) in con-

nection with Unear regression: that of

predicting in what range a "future" y,

to be measured at a given x, will he;

and conversely, the problem of evaluat-

ing the uncertainty of x corresponding to

a "future" y measurement. In both
cases, an error is involved that is not

accounted for in the joint confidence el-

lipse of slope and intercept—namely, the

error of a future y measurement. The
former problem is strictly speaking, not

concerned with confidence intervals,

because it deals with the uncertainty of

a random variable, not a population

parameter. The relation of intervals of

this tjrpe to classical confidence intervals

and application to a chemical example
are described by Weiss {16).

The second problem, on the other

hand, is a genuine case of interval esti-

mation, and of particular interest to the

chemist. It can be solved by an exten-

sion of the method here described

through introduction. of a three-dimen-

sional ellipsoid in place of the plane el-

lipse {10). The solution thus obtained

does not allow for the treatment of more
than a single "future" measurement,

but it does permit the construction of an
unlimited number of jointly valid con-

fidence intervals involving the slope, the

intercept, and the "true" y correspond-

ing to the "future" measured y. The
method can be easily extended to in-

clude any finite number of "future"

measurements.

9. Durand {3) notes that the use of

joint confidence regions for the deter-

mination of confidence intervals for

linear combinations of regression coef-

ficients is closely related to a technique

recently developed by Scheffe {14) and
extended by Roy and Bose {IS) for ex-

amining SLmul*'"neously aU combinations

of a number of observed means. The
general result derived by these authors

consists essentially in replacing t

with N — k degrees of freedom by
VkFk.N - k, where is the total num-
ber of measurements and k is the

number of parameters. The case dis-

cussed in this paper involves two
parameters: the slope and the in-

tercept. Making ^; = 2 in the general

formula, we find \/2F2,N - 2 as the

quantity to be substituted for Student's

t in the construction of confidence in-

tervals. Since we have already found

this relationship in comparing the

technique based on the joint confidence

ellipse with that based on Fieller's

theorem in a nonlinear case, it appears

that the relationship is more general

than is implied in Durand's statement.
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ABSTRACT

A method of error analysis Is presented

using data obtained from dead-weight calibration

of various capacity proving rings. A breakdown
of the errors Into components by statistical

methods and their combination into a final un-

certainty statement is discussed in detail.

Graphical representations are used in several
places to help in the exposition.

Extension of the analysis and method of

handling calibration data for multiple proving
ring setups is discussed in an effort to show
that the same general method of analysis should
be adequate.

INTRODUCTION

A proving ring is a compact and dependable
force measurement device developed at the

National Bureau of Standards by H. L. Whlttemore
and S. N. Petrenko for the original purpose of

calibrating testing machines. A typical prov-
ing rin!T Is shown in Figure 1. It consists basi-
cally of the following components; an elastic
steel ring with diametrically opposed integral
loading bosses, a vibrating reed, and a micro-
mater dial and screw assembly. The reed and mi-
crometer screw assembly are mounted along the
diameter concentric with the bosses. When a load

is applied to the ring a deflection is measured
by turning the micrometer screw until positive
contact is made with the vibrating reed. This
deflection value is read in terms of the arbit-
rary scale inscribed in the face of the micro-
meter dial. For details on the design, use,
and calibration of proving rings, see Circular
of the National Bureau of Standards C 454 [1]*.

In recent years a significant increase in

the use of the proving ring as a secondary
transfer standard, in the field of force meas-
urement, has precipitated the need for informa-
tion dealing with accuracy of the calibration
process. The purpose of this paper is to dis-
cuss methods of extracting such information
from the calibration data and to present the
results in a useable form.

DMOERTAINTY

Calibration may be generally thought of as
the process of comparing an unknown with a stand-
ard and determining the value of the unknown from
the accepted value of the standard. The accuracy
of the reported values are usually given in terms
of bounds to inaccuracy, or limits of uncertainty.

In any calibration process there are three
possibilities available in dealing with the un-
certainties. These are:

1. Report only the values obtained and make
no statement about their uncertainty.

2. Make some statement of the uncertainties
affecting the calibration process based
on personal judgement and general ex-

perience.

3. Through the use of error analysis form
an objective estimate of the uncertain-
ties affecting the reported values.

The uncertainty of a measurement process may
be characterized by giving (1) the imprecision,
and (2) limits to the overall systematic error.

Imprecision means the degree of mutual disagree-
ment, characteristic of independent measurements
of a single quantity, yielded by repeated appli-
cations of the process under specified conditions.
The accepted unit for the imprecision of a cali-
bration process is the standard deviation, o",

which provides a measure of how close a particular
calibration result in hand is likely to agree with
the results that might have been (or might be) ob-

tained by the same calibration process in this
(or other) instance(s). The larger the value of
0", the more imprecise the method of measurement,
and the greater the disagreement to be anticipated
between strictly comparable calibrations.

The systematic error of a calibration pro-
cess refers to the more or less consistent de-
viations of the values observed, from the stand-
ard, or from the value intended to be measured.
If the direction and the magnitude of systematic
error were known with sufficient accuracy, a
correction could be applied to render the re-
ported values free from bias. Usually only
limits of systematic error can be given, e.g.,
resulting from the uncertainty in the deter-

The numbers in brackets refer to similarly-numbered references at the end of this paper.
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mlnatlon of the mass of weights In a dead-weight
load calibrating machine. Limits of systematic
error are generally based on knowledge and ex-
perience with similiar measurements, Information
available from special studies, and judgement.
In calibration the sources of systematic errors
are usually studied carefully, and their effect
on the final results minimized or eliminated if

possible.

The total uncertainty of a calibration
process places limits on its probable inaccuracy.
It includes both the imprecision and the system-
atic error. Accuracy requires precision but pre-
cision does not necessarily imply accuracy. For
example, a calibration process may be highly
precise and yet when applied to a standard yield
values consistently greater, or consistently less,

than the accepted value of the standard.

The present method of reporting proving
ring calibration employed by the NBS does not
give explicitly a single expression of the over-
all uncertainty involved, but instead, gives
estimates of the imprecision and systematic
error from which the total uncertainty can be

derived. This practice is in keeping with the

recommendations on "Expression on the Uncertain-
ties of Final Results" in Chapter 23 of NBS
Handbook 91 [2]. The estimate of imprecision
of the calibration process is given by the stand-

ard errors of the tabulated load values, which
measure the combined performance of the calibra-
tion process and the particular ring. Bounds
for the systematic errors are given in percent
error of applied load for both dead-weight loads,

and loads measured by means of a multiple ring
setup.

DEAD-WEIGHT CALIBRATION

A dead-weight calibration of a proving ring

consists of ten nearly equally spaced loads ap-

plied in either the 10,100-lb or the 111,000-lb
capacity testing machines presently in use at

the National Bureau of Standards.

Three runs of ten loads are taken on each

ring to make up a calibration. Before and after

each load reading a no-load reading is taken and

recorded. The average of the two no-load read-

ings is subtracted from the load reading to

yield a deflection value of the ring under that

load. This yields a total of thirty deflection

values, three values for each loa.d point from

ten-percent of capacity to capacity load. These

thirty deflections are punched on computer data

cards with their corresponding load values and

are fed into an electronic digital computer. A
second degree equation of the form

2
D = a + bL + c(L)

is fitted to the averages of the three deflec-

tion values for each load, where

D » average deflection value
L = load in pounds

and a, b, c, are coefficients. The computer pro-
gram performs the task of statistically analyzing
the data, fitting the data by the method of least
squares, and printing out a load versus deflection
table as well as the various statistical quanti-
ties included in the report. The thirty deflec-
tion values obtained during the calibration of a
100,000-lb capacity proving ring are given in
Table 1. A sample of the load versus deflection
table printed out as a result of the computer fit

of these data is found in Table 2.

The selection of a second degree equation in
terms of load was decided upon as a result of pre-
liminary investigation, both theoretical and ex-
perimental, to determine the proper degree of the
calibration curve to represent the characteristics
of the proving ring as evidenced by the raw data.
At the same time it was necessary to keep in mind
the many problems associated with applying an err-
or analysis to such data.

Figure 2 shows the three deflection values
at each of the ten load points for proving ring
A, with most of the linear trend removed from the
deflection values. The smooth curve represents
the plot of the computed deflection values derived
from the second degree fit with the same linear

trend removed. This figure shows how well the

second degree curve fits the observed deflections.

Several Interesting and useful comparisons
resulting from the error analysis and fitting
techniques employed are as follows. From the
dispersion of the three deflection values at each
load point about their average, the standard de-

viation of a deflection value can be computed with
two degrees of freedom. Since these standard de-

viations computed over the range of loads are

comparable in magnitude, the ten values may be

pooled together. This pooled value of the stand-

ard deviation, denoted as s^, can be compared to

its long run average value over many previous

calibrations to determine if the calibration pro-

cess is under control, i.e., stable with respect

to precision.

A standard deviation s associated with the

calibration of this particular ring can be com-

puted from the residuals of the ten average de-

flection values about the second degree curve.

This value of the standard deviation, s, can be

compared with the pooled standard deviation of

an average deflection value, s obtained from

the ten sets of triplicate deflection values (i.

e., the pooled estimate of the standard d^eviation

of an individual deflection divided by_\/3). If

the two standard deviations s and s 3 are of
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nearly the same magnitude then the ring Is In

good condition and the scatter of the points Is

due mainly to the Inability of the calibration
process as a whole to repeat. Conversely, if

the standard deviation s computed from the de-

viations of the ten average deflection values _
from the curve is considerably larger than s^'^3>

the estimated standard deviation of an average
deflection value, then the condition of the ring
is not good and reconditioning by the manufac-
turer is indicated. An example of this can be

seen in figure 2, This ring is apparently not

in good condition since the broken curve con-
necting the averages of the three deflection
values at each load point does not follow the
fitted curve closely. For rings in good condi-

tion, the two curves are practically indistin-
guishable on a graph to this scale. In the
future this type of reasoning may be used as a

basis for acceptance or rejection of a particular
device.

Previously a calibration graph was in-

cluded with the calibration certificate as shown
in figure 3. This graph was a plot of the cali-
bration factor for the ring in pounds per divi-
sion versus the deflection in divisions. The
straight line through the points was drawn for

"best fit". Because the calibration factors were
computed by dividing each deflection into its

corresponding load, the points of the plot near
the lower end of the load range, of the device,
show considerably more dispersion than the points
near the upper end. Therefore the upper points
were considered to be better indicators for the
drawing of the "best fit" line through the plot-
ted points. In the case of the second degree
fit of deflection versus load by the method of

least squares, the individual points are treated
with equal weight, a more accurate fit of the
calibration data is obtained, and no possibility
of personal bias is introduced.

The above can be illustrated as the by-

products of a simple test designed and suggested
by W. J. Youden of NBS. This test consisted of
several operators taking readings with a proving
ring under various known dead-weight loads.
These loads were then computed as if they were
unknown using first the table of load values
from the second degree fit and second the load
values derived from the "best fit" curve. Com-
parison showed that over the range of the ring,
the load values computed from the second degree
fit were closer to the actual known loads applied
to the ring. Therefore, if the ring is to be
used over its entire calibrated range the second
degree fit gives more accurate load values. The
same data were also used to check the computed
limits of uncertainty for the particular ring
and in no case did the difference between the
actual and computed load value exceed these
limits. > sample of the values determined dur-
ing this experiment can be found in Table 3.

In order to arrive at some measure of de-

pendability of the values given in the load table

the corresponding confidence interval is needed.

To determine such an interval, the standard err-

or of a deflection value for a given load Is

computed and some multiple of this value is used

as limits of uncertainty on the imprecision.

To predict a deflection value D. for a

particular given load L^^, the deflection value
can be expressed as D. = a + bL. + cL. „,^ 1 i 1 . Thus

is a linear combination of the coefficients
estimated, and its standard error s^ can be ex-

pressed in terms of the standard deviation s

(estimated from the residuals of the fit, with
seven degrees of freedonjl^ and the load L^, and

the var lance-covar lance matrix [C, ] of the

estimated coefficients a, b, and c, as follows:

where the vector L' = (1, L^, ).

(For details of the method of polynomial fitting
used and the calculation of the standard error
s^ the reader is referred to sections 6-3 and
6-5 of Chapter 6 of NBS Handbook 91 "Experimental
Statistics" [2].)

The dependence of s^ on the value of in-

dicates that values corresponding to L. values
at the two ends of the range of L have larger
prediction errors than do values corresponding
to L. in the center portion. For convenience,
the largest value of the standard error s^ com-

puted from the above expression is used for all
values of in a proving ring report, and for
ten equal increments of equally spaced loads L^,
the value of the largest standard error, s., is

approximately equal to 0.79s. This is converted
into load in pounds by multiplying 0.79s by the
maximum calibration factor, in pounds per divi-
sion, for the particular ring.

Using the t^ statistic and the computed stand-
ard error a confidence interval for the deflection
value on the curve for a single given load can be
calculated. In calibration work, however, we re-
quire not merely the calculation of a confidence
interval for the deflection value corresponding
to a single load, but the calculation of a confi-
dence band for the whole calibration curve.
Therefore, a wider interval will be required for
the same level of confidence. The confidence
band for a line as a whole is discussed on pages
5-15 to 5-17 of reference [2] and for entire
curves , in Chapter 28 of [3], where it is shown
that in the general case, the half width at L =

L, of the confidence band for the curve as a

whole Is:

•«/k F (k,v) X s^ ,

where k is the number of coefficients estimated,
V is the number of degrees of freedom in esti-
mating s , and F is an appropriate upper percent-
age point of the distribution of the F statistic
(as an illustration we are using the upper 5%
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point). Thus for k = 3, v = 7, and ten equal in-
crements of loads the half width of the 957. con-
fidence interval is 73 x 4.35 x 0.79s = 2.86s.
(Since the largest value of the computed stand-
ard error is used, the confidence level is at
least 95%. ) Therefore the over-all limits of
uncertainty for the calibration by this procedure
could be expressed as 2.86 x s, (s is the stand-
ard deviation given in the report), plus the
systematic error.

It may appear that the above procedure for
determining the limits of uncertainty in the
calibration of a proving ring by basing it on
the prediction of a deflection value for a given
load is a reverse procedure. However, for the
method of calibration described this seemingly
reverse procedure is the proper one. Figure 4

is a schematic diagram of the deflection - load
curve obtained from a calibration with the cor-
responding confidence band sketched about it.

For any given load, the true deflection value is

expected to be situated within the band. Con-
versely, if a deflection value d is given, a
horizontal line parallel to the load axis will
intercept the curve at the corresponding load
value L; in addition this line will also inter-
cept the band at two points and which give
the corresponding lower and upper confidence
limits for the load. This is true provided that
the deflection value is known without error. If

the uncertainty of the deflection value can be
represented by D. and D , then the corresponding
confidence interval for the load will be wider,
as given by and L^. In other words, the ac-
curacy with wnich the deflection readings are
obtained in using the ring must be taken into

account by the user of the ring.

Each load value given in the table of load
versus deflection is therefore the predicted
value of the load, given a deflection value, and
is expected to be within the uncertainty limits
given for the calibration.

CALIBRATION OF RINGS USING MULTIPLE RING SETUPS

The present practice for calibrating prov-

ing rings with nominal capacities in excess of

110,000 lb is as follows:

1. to divide the nominal capacity into ten
approximately equal increments,

2. to calibrate the ring by dead weights

for the increments of load less than

110,000 lb, and

3. to calibrate the ring by either a 3, 4,

or 5 proving ring setup for the re-

maining increments of load.

For a calibration using this procedure

there are a number of problems relating to the

analysis of data and interpretation of results.

Some of these problems cannot be solved without
considerable changes in the procedure of cali-
bration. Since such changes are Impractical, and
in the near future dead-weight calibration capa-
city will be extended to 1,000,000 lb, one solu-
tion is to fit multiple ring calibrations by the
same method as that for the dead-weight calibra-
tions. The following discussion is based on the
results of calibrations of rings fitted by this
method.

Examination of these results showed no evi-
dence of bias in the sense that residuals of the
fit at the two adjoining increments of load, i.e.

the last dead-weight and the first multiple ring
load, are not unusually large or consistently of
opposite sign. For this to remain true it is

necessary that the calibrations of the rings used
to determine the load in a multiple ring setup
be unbiased. To insure that this condition is

maintained the rings owned by the Bureau are
usually reconditioned yearly and are calibrated
frequently.

For dead-weight calibration the errors of

the applied loads were assumed to be negligible
in fitting the data; for multiple ring calibra-

tion, errors are introduced in the determination
of the loads applied. Thus a non-linear func-

tional relationship is to be estimated between
deflection and load where the measurements of

both are subject to error. There is no simple

solution to this problem except that experience
in this laboratory has shown that the least

square fitting procedure still gives satisfactory
estimates provided the errors are small compared

with the range covered. This requirement is

satisfied since each increment of load is more

than 700 times the magnitude of the error in-

volved.

Considering the above, and from a study of

numerous past calibrations, it was decided the

deflection should be fitted as a function of

load since the former is believed to have larger

errors than the latter.

Since the dead-weight calibration is pre-

sumably more precise than the multiple ring cali-

bration, the question of weighting the observa-

tions prior to least square fitting was consider-

ed. Results of the rings studied indicated that

the standard deviation of an average deflection

obtained from multiple ring calibrations was not

significantly larger than that for the dead

weights. Thus the inflation of this deviation

due to the errors in the loads does not increase

the total imprecision by any appreciable amount.

The use of weighting factors is therefore not of

practical importance.

Examination of the plot of residuals re-

sulting from fitting deflections to the loads,

both in dead weights and in multiple ring setups,

indicates that the deviations of the data points
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from the fitted curve contribute a large part of

the total error. In view of this It appears
reasonable that the averages of the deflection
readings should be used for fitting, similar
to the procedure used for dead-weight calibration.
Thus, the standard error Includes the imprecision
components of the calibration error for both the
ring being calibrated aad the rings being used
to mea, ure the applied load.

Bounds for systematic error of a multiple
ring setup can be estimated by summing (1) the
systematic error due to the dead weights (2) the
systematic difference due to change with time in

the calibrated values of the load measuring de-

vices, and (3) other sources of error due to the
Inherent difficulties in using and reading the
devices simultaneously. For example, such an
estimate can be given an percent error of applied
load for loads in excess of the dead weights.

CONCLUSION

In the above we have presented a procedure
for the determination of limits of uncertainty
for the calibration of proving rings. The
method of analysis includes; the fitting of this
type of data to an appropriate curve by the meth-
od of least squares, the use of confidence In-
tervals and bands as limits of imprecision, and
the estimate of bounds for systematic error.

Since many types of devices and instruments
are calibrated slmiliarly at selected points a-
long their ranges, it is believed that the pro-
cedures outlined above may be useful, when
properly modified, in yielding a realistic eval-
uation of the uncertainties associated with their
calibration.
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Table ] A Calibration of Proving Ring A

Applied
lo3.d.

Deflection
Run 1 Run 2 Kun J

lb div div div

10^ 000 00 • J3 68. 30

1 'if. -JQi JO* /

o

1 JO* DO 136*80

30 000 on ^ no 204, 98

AC] nnn d./ Jm 03 0 7 T Q t;d/ OD 0 7 "3 on

JHd. • D J

All "^n H i 1 • jj All OH

iCi nnn *-fOw • DU ^OU * Oj

80,000 549.85 549.85 549.83

90,000 619,00 619.02 619.10

100,000 688.70 688,62 688.58

Table 2 - Computed Load Table in lb for 70 Degrees F for Proving Ring A

Deflection 0 1 2 3 4 5 6 7 8 9

Div

60. 9952. 10099.

70. 10245. 10392. 10538. 10685. 10831. 10978. 11124. 11270. 11417. 11564.

80. 11710. 11856. 12003. 12149, 12295. 12442, 12588. 12735. 12881, 13027,

90, 13174. 13320. 13467. 13613. 13759. 13906. 14052. 14199. 14345. 14491.

100. 14638. 14784. 14930. 15077. 15223. 15369. 15516. 15662, 15808, 15954.

640. 93007, 93151. 93295. 93439. 93582. 93727, 93871. 94014. 94158. 94302,

650, 94446. 94590. 94734. 94878. 95021. 95165. 95309. 95453. 95597i 95741.

660. 95885. 96029. 96173. 96316. 96460. 96604. 96748. 96892, 97035, 97179.

670. 97323. 97467. 97611. 97754. 97898, 98042. 98186. 98330. 98473. 98617.

680, 98761. 98905. 99048. 99192. 99336. 99480. 99623. 99767, 99911. 100054.
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01 23456769 10
Figure 3 Calibration Graph for Proving ling A

L.oad in unit* of lO.OOO lb«

Figure ? Observed and Fitted Calibration Curves for Proving Ring A

Note: Deflection > Deflection value minus 68.00 x (the number of the load

Inc rement

)

Figure 4 Determination of Confidence Limits for a Load given a
Deflection Value
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Table 3 - Sample Results of Experiment Designed by W. J. Youden of MBS for
Proving Ring A

B

Computed load C
A using second Column A Computed load Column A

Load applied degree fitting minus using "best minus Ring
to rln^ method i^oxumn D xxu mcLnou Co lumn C

lb lb lb lb lb

10,070 10,077 - 7 10,090 -20 1

30,000 29,987 +13 29,994 + 6 1

40,050 40,059 - 9 40,064 -14 1

80,020 80,032 -12 80,036 -16 1

10,020 10,033 -13 10,046 -26 2

30,050 30,047 + 3 30,053 - 3 2

40,000 40,011 -11 40,016 -16 2

80,070 80,081 -11 80,082 -12 2

10,000 9,993 + 7 10,007 - 7 3

30,070 30,063 + 7 30,069 + 1 3

40,020 40,029 - 9 40,034 -14 3

80,050 80,061 -11 80,062 -12 3

10,050 10,058 - 8 10,068 -18 4

30,020 30,010 +10 30,013 + 7 4

40,070 40,087 -17 40,096 -26 4

80,000 80,025 -25 80,030 -30 4

NOTE: An edited version of this paper has been published in the ISA Journal,

Instrument Society of America, Vol. 12, No. 6, June, 1965.
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Reprinted from Journal of the Washington Academy of Sciences 54, 24-33 (1964).

The Meaning of "Least"

In Least Squares*

Churchill Eisenhart

National Bureau of Standards

I. Introduction

The present status of the Method of

Least Squares is this: Everyone uses it,

but not in exactly the same way, nor for

the same reasons. There is thus some sim-

ilarity to the present status of Probability,

with respect to which Bertrand Russell has

remarked (1) : "While interpretation in

this field is controversial, the mathematical

calculus itself commands the same measure

of agreement as any other branch of

mathematics." But the situation with re-

spect to the Method of Least Squares is

not exactly parallel: In the case of the

Method of Least Squares there is com-

plete agreement on the procedure for

forming the 'normal equations' from the

fundamental 'observational equations,' and
everyone comes up with the very same
numbers for the solutions of the normal

equations; but their reasons for employing

the Method of Least Squares, their under-

standing of its objectives and the condi-

tions under which these are achieved, and
their interpretations of end results of its

application, may be quite different. Fur-

thermore, in contrast to the situation in

Probability, individuals who utilize the

'Method of Least Squares' as a tool in

their own line of work are usually not

aware of the existence of alternative for-

mulations of this technique.

This somewhat extraordinary situation

results from the fact that the Method of

Least Squares was developed originally

* Extracts from a paper in preparation on
"The Background and Evolution of the Method
of Least Squares."

from three distinctly different points of

view: (1) Least Sum of Squared Residuals

(Legendre, 1805), (2) Maximum Prob-

ability of Zero Error of Estimation (Gauss,

1809), and (3) Least Mean Squared Error

of Estimation (Gauss, 1821). These differ

not only in their aims and in their initial

assumptions, but also in the meanings that

they attach to the numbers that all three

yield as a common answer to any given

problem. Unfortunately, the existence of

these three different formulations and con-

sequent different interpretations of the end

results of applying 'Least Squares' are

rarely mentioned in books on the practical

application of the Method of Least Squares.

The only exception in English of which I

am aware is Whittaker and Robinson's

The Calculus of Observations (2), first

published in 1924: chapter IX contains a

discussion of Legendre's original formula-

tion, in which no probability considerations

are involved; a full treatment of Gauss's

first "proof," in which what we now term

the 'normal distribution' plays a central

and indispensable role; and a brief sum-

mary of Gauss's second development, which

he showed to be independent of the func-

tional form of the law of error involved

whenever the 'best values' implied by the

techniques of Least Sum of Squared Resid-

uals are linear functions of the basic ob-

servations. Gauss himself decidedly pre-

ferred his second formulation, the existence

of which seems to be virtually unknown to

almost all American users of "Least

Squares," except students of advanced

mathematical statistics.
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n. Minimization of Residuals and
Legendre's "Methode des

Moindres Quarres"

The Method of Least Squares evolved

early in the 19th century in response to a

recognized need for a 'best' general pro-

cedure for the combination of observations

in astronomy and geodetic surveying.

When two or more related quantities are

measured individually, the resulting meas-

ured values usually fail to satisfy the con-

straints on their magnitudes implied by the

given interrelations among the quantities

concerned. In such cases these 'raw' meas-

ured values are mutually contradictory and

require 'adjustment' in order to be usable

for the purpose intended.

Inasmuch as the actual errors of individ-

ual observations are usually unknown and

forever unknowable, the early attempts to

achieve a good adjustment seem to have

concentrated on minimizing the apparent

inconsistency of a set of observations as

evidenced by some simple function of their

residuals.* The practical requirements of

unique solutions and computational sim-

plicity then led, in due course, to the tech-

nique of Least Sum of Squared Residuals.

This was the essence of Legendre's

"Methode des Moindres Quarres," pro-

claimed in 1805 (3). No probability con-

siderations were involved.

The successive stages of this evolution

of the Method of Least Squares were:

1. When several 'equally good' measure-

ments of a single quantity were available,

the Principle of the Arithmetic Mean stated

that the 'best' value to take was their arith-

metic mean. The arithmetic mean a of a set

of measurements Yi, Y2, . . .,3^n is the solu-

tion of the equation

* If Yi, Y2, . . ., I'll are observed values of a

magnitude a, then Yi—a=Ex, Y2 — a = E2,.

.

.,

Yn—«=£n are the errors of the respective ob-

servations. If, the value of a being unknown, one

adopts some particular value for it, say a, then

Yi—a=Ri, Y2—a=R2, Ya—<r=Ra are the

residuals of the observations corresponding to

the adjusted value a.

%{Yi— a)=0, (1)

1

that is, the value determined by the condi-

tion of zero sum of residuals.

This principle seems to have originated

in western Europe sometime in the latter

half of the 16th century A.D. and appears

to have evolved from the technique of tak-

ing measurements in pairs such that the

two members of a pair are affected by
systematic errors of (approximately) equal

magnitude but of opposite signs, in which

case the arithmetic mean of a pair is (at

least, more nearly) free from the effects of

these errors.

2. Roger Cotes (1682-1716), in his

Aestimatio errorum (4), suggested that,

when several determinations of a single

quantity were available that were subject

to unequal uncertainties, then the 'best'

value to take for the quantity in question

is the weighted arithmetic mean of the in-

dividual determinations weighted "inverse-

ly proportional to the lengths of the Devia-

tions over which one can spread [their]

Errors."

3. Application of Cotes's suggestion to

determining the slope ft of a line through

the origin, y= jSx, from observational

points (Yi, xi), {Y2, X2), . . ., {Yn,

affected by errors in the y-direction only,

leads to taking the value B determined by
the equation

X{Y,— Bxi)=0 (2)

t=l

as the 'best' value for j3, when the uncer-

tainties of the respective Yi are essentially

constant over the range of value of x in-

volved. If the Yi are regarded as observed

values of the respective quantities ^Xi, for

which the corresponding adjusted values

are Bxi, {i=l, 2, . . ., n), then (2)

clearly expresses the condition of zero sum

of residuals; and, when written in the form

^—Bx= 0, (3)
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where Y and x are the arithmetic means of

the Y- and a;-values respectively, shows

that "the Cotes line," y= Bx= {Y/x)x,

passes through the two-dimensional center-

of-gravity of the data, {x, Y)

.

4. In 174S, Leonard Euler (1707-1783)

and Tobias Mayer (1723-1762) independ-

ently devised and applied (5, 6) an exten-

sion of the condition of zero sum of resid-

uals to multi-parameter problems that is

today called the Method of Averages: this

consists of subdividing the observational

points into as many subsets as there are

coefficients to be determined, the subdivi-

sion being in terms of the values of (one

of) the independent variable (s), and then

applying the condition of zero sum of

residuals to the points of each subset, in

the manner of equation (2) above. Pro-

vided that one is thus able to form as

many distinct observational subsets as there

are unknown parameters to be determined,

the Method of Averages will always come

up with a value for each parameter. But

there is usually some arbitrariness and

room for subjective choice in the forma-

tion of the subsets, with consequent varia-

tion in the answers obtained.

5. As a means of overcoming such arbi-

trariness and subjectivity, Roger Joseph

Boscovich (1711-1787) proposed that, giv-

en more than two pairs of observed values

of variables x and y connected by a linear

functional relationship of the form y= a

-\- Px, then the values (a and b) that one

should adopt for a and ^ in order to

obtain the line {y— a + bx) that is most

nearly in accord with all of the observa-

tions should be those determined jointly by

the two conditions:

—

I. The sums of the positive and negative

residuals (in the y-direction) shall be

equal.

II. The sum of the absolute values of all

of the residuals shall be as small as

possible.

Condition I implies that the best fitting

line y==a-\- bx shall pass through the

centroid {x, y) of the observational points.

Condition II in conjunction with Condi-

tion I requires that the slope b shall satisfy

the equation

n — —
S

I
(jt

—

y)
—b{xi—x)

I

= minimum. (4)

i=l

Consequently, determination of a "Bosco-

vich line" reduces to determining its slope

6 from equation (3) and then evaluating a

from the relation a= y— bx.

Boscovich stated and applied his two

conditions for a line of best fit for the first

time in his 1757 summary and reevaluation

(7) of the measurement of a meridian arc

near Rome by Christopher Maire and him-

self, first published in 1755. In this first

pronouncement and application of his

method he does not give any indication of

how he solved equation (4) to obtain the

'best' value of the slope b. Three years

later (8), Boscovich restated his two con-

ditions and then gave a very useful algo-

rithm for solving equation (4), together

with a geometric proof of its validity, fol-

lowed by a step-by-step illustration of its

application. His algorithm and his proof,

in outline, may be found in my chapter in

the Boscovich Memorial Volume edited by

L. L. Whyte (9).

6. Pierre Simon, Marquis de Laplace

(1749-1827), in his first memoir on the

Figure of the Earth (10), proposed, as a

test of the adequacy of a linear relation

y ^= a -\- bx to describe a given set of

data, that the values of a and b be chosen

so as to minimize the absolute value of the

largest deviation and then a subjective

judgment made whether the resulting larg-

est residual is, or is not, explainable in

terms of the recognized uncertainties of

the data involved. He also outlined a pro-

cedure for determining the required values

of a and b. In his second memoir on the

Figure of the Earth (11), Laplace adopted

Boscovich's two criteria for a line of best

fit and gave an algebraic formulation and

derivation of Boscovich's algorithm for

solving equation (4) above. In Book III,

Chapter 5, of his Mecanique Celeste (12),
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Laplace described again (pp. 417-424) the

method that he had used in 1783 to de-

termine the line that minimizes the absolute

value of the maximum residual and then

gave (pp. 424-434) an alternative pro-

cedure for achieving the same end "when

the number of observations is consider-

able." He also extended (pp. 438-442) his

1789 algebraic formulation of Boscovich's

technique to the case of observational

points of unequal weight.

7. In 1795, at the age of eighteen, Carl

Friedrich Gauss (1777-1855), mathemat-

ical peer of Archimedes (287-212 B.C.)

and Sir Isaac Newton (1642-1727) and

unequaled in mathematical precocity, dis-

covered the algebraic and arithmetical ad-

vantages of the technique of Least Sum of

Squared Residuals for adjustment of ob-

servations in geodesy.

"Originally Gauss did not attach great im-

portance to the method of least squares; he felt

it was so natural that it must have been used

by many who were engaged in numerical calcu-

lations. Frequently he said that he would be will-

ing to bet that elder Tobias Mayer (1723-1762)

had used it in his calculations. Later he dis-

covered by examining Mayer's papers that he

would have lost the bet." (13. p.113).

This may serve to explain in part why
Gauss did not publish anything on the

Method of Least Squares for over a decade,

although he employed the Method almost

daily from 1801 onwards in a great variety

of astronomical calculations. (14, p. 98).

8. Adrien Marie Legendre (1752-1833)

introduced the world to the technique of

Least Sum of Squared Residuals in his

book on "New Methods for Determining

the Orbits of Comets" (3) published in

1805. In an Appendix "On the Method of

Least Squares," occupying pages 72-80, he

wrote

:

"Of all the principles which can be proposed

for [the combination of observations] I think

there none more general, more exact, and
more easy of application, than that of which we
have made use in the preceding researches, and
which consists of rendering the sum of the

squares of the errors as a minimum. By this

means there is established among the errors a

sort of equilibrium which, preventing the ex-

tremes from exerting an undue influence, is very

well fitted to reveal that state of the system

which most nearly approaches the truth."

Legendre then proceeded to deduce his

now well-known rules for forming the so-

called 'normal equations.' He then shows

that the Principle of the Arithmetic Mean
is a special case of his Principle of Least

Sum of Squared Residuals.

Unfortunately, throughout Legendre's

exposition of his "Methode des moindres

quarres," and his illustrations of its appli-

cation, he used the term "errors" for what
are more accurately termed residuals. This

has served to confuse the unwary and to

conceal the distinction between what he

merely asserted in 1805 and what Gauss

showed in 1821 to be a statistical property

of the procedure. The essence of what

Legendre said is this: If in the interest of

achieving an objective adjustment one

seeks to minimize the mutual inconsisten-

cies of the observations as measured by
some simple function of their residuals,

then the practical requirements of general

applicability, unique arithmetical solutions,

and ease of computation lead to the adop-

tion of the technique of Least Sum of

Squared Residuals. No probability consid-

erations were involved. And his "discovery"

simply marked the culmination of the at-

tempts by Euler, Mayer, Boscovich, La-

place, and others to develop a practicable

objective method of adjustment based

solely on consideration of residuals.

III. 'Laws of Error' and Gauss's First

'Proof of the Method of Least

Squares

The error of a measurement Y is, by

definition, the difference Y— t between

the measurement and the true value r of

the quantity measured. The error of a

particular measurement, y, is, therefore,

a fixed number, y— t. The numerical

magnitude and sign of this number are

ordinarily unknown and unknowable, be-

cause T, the true value of the quantity

concerned, is usually unknown and un-
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knowable. A mathematical theory of errors

is not possible so long as individual

measurements are regarded as unique en-

tities, that is, as fixed numbers yi, yi, . . . .

A mathematical theory of errors is possible

only when particular measurements yi, yi,

. . . are regarded as instances characteristic

of the measurements Yi, Y2, . • • that might

have been, or might be, yielded by the

same measurement process under the same

circumstances. This fundamental step was

taken on March 4, 1755, by Thomas Simp-

son (1710-1761), Professor of Mathematics

at the Woolwich Military Academy, in

"A Letter to the Right Honourable George

Earl of Macclesfield, President of the

Royal Society, on the advantage of taking

the mean of a number of observations, in

practical astronomy" (15). This remark-

able letter began as follows:

"My lord, it is well known to your lordship,

that the method practiced by astronomers, in

order to diminish the errors arising from the

imperfections of instruments, and of the organs

of sense, by taking the Mean of several observa-

tions, has not been so generally received, but

that some persons, of considerable note, have

been of opinion, and even publicly maintained,

that one single observation, taken with due

care, was as much to be relied on as the Mean

of a great number.

"As this appeared to be a matter of much
importance, I had a strong inclination to try

whether, by the application of mathematical

principles, it might not receive some new light;

from whence the utility and advantage of the

method in practice might appear with a greater

degree of evidence. In the prosecution of this

design (the result of which I have now the

honour to transmit to your Lordship) I have,

indeed, been obliged to make use of an hypoth-

esis, or to assume a series of numbers, to ex-

press the respective chances for the different

errors to which any single observation is sub-

ject . . .

"Should not the assumption, which I have

made use of, appear to your Lordship so well

chosen as some others might be, it will, how-

ever, be sufficient to answer the intended purpose:

and your Lordship will find, on calculation that,

whatever series is assumed for the chances of

the happening of the different errors, the result

will turn out greatly in favour of the method
now practised, by taking a mean value."

Simpson's first "hypothesis" was that

the errors of measurements of a single

quantity by a particular measurement

process be regarded as taking the values

—V, —y+l, . . ., 2, 1, 0, 1, 2, . . ., v—\,
V, with equal probabilities, i.e., a discrete

uniform distribution. Next, he assumed

that the errors be regarded as taking on

the above values with probabilities pro-

portional to 1, 2, . . ., V—1, V, v-{-l, V,

. . ., 2, 1, respectively, i.e., a discrete isos-

celes triangle distribution. Utilizing the

generating function techniques that had
been employed by Abraham DeMoivre
(1667-1754) for the solution of problems

relating to tosses of dice and other games
of chance (16), Simpson derived, for each

of these distributions, the probability dis-

tribution of the sum of n independent

errors from such a distribution, and then

from these the corresponding distributions

of the arithmetic mean of n independent

errors. He summed up his findings as fol-

lows:

"Upon the whole of which it appears, that the

taking of the Mean of a number of observations,

greatly diminishes the chances for all the smaller

errors, and cuts off almost all possibility of any
great ones: which last consideration, alone, seems
sufficient to recommend the use of the method,

not only to astronomers, but to all other? con-

cerned in making of experiments of any kind
(to which the above reasoning is equally appli-

cable). And the more observations or experiments

there are made, the less will the conclusion be
liable to err, provided they admit of being re-

peated under the same circumstances."

In a second paper on "the advantage

arising by taking the mean" (17), Simp-

son found the distribution of the mean of

n independent errors from a continuous

isosceles triangle distribution, by proceed-

ing to the limit as the spacing between the

error values in the fixed interval (—a,

+a) tends to zero.

It should be noted that Simpson did not

prove that "taking of the arithmetic

mean" was the best thing to do, but merely

that it is advantageous. However, in ac-

complishing this goal he did something
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much more important: he took the bold

step of regarding errors, not as individual

unrelated happenings, but as properties of

the measurement process itself and the ob-

server involved. He thus opened the way
to a mathematical theory of measurement

based on the mathematical theory of

probability.

Simpson's idea of probability distribu-

tions of error was taken up quickly on the

Continent. Joseph Louis, Comte de La-

grange (1736-1813), an Italian by birth,

a German by adoption, a Frenchman by

choice, and one of the greatest mathema-

ticians of all time, reproduced and elabo-

rated on Simpson's results—without men-

tion of Simpson—in a long memoir "on

the utility of taking the mean" (18).

Without a similar passage to the limit he deduced

the (subsequently oft rediscovered) dis-

tribution of the arithmetic mean of n in-

dependent errors from a continuous uni-

form distribution.

Daniel Bernoulli (1700-1782), nephew
of James Bernoulli (1654-1705) whose

Ars Conjectandi (1713) is one of the

great landmarks in the history of prob-

ability, published in 1778 a highly original

paper on "The most probable choice be-

tween several discrepant observations and
the formation therefrom of the most likely

induction" (19) that apparently existed in

manuscript as early as 1774 (20, p, 634).

In this paper Bernoulli proposed (1) a

semi-circular law of error,

2 _ _
iix) — y/a^— x^,—a<x< -|- a,

7ra2

where x= y— t is the error of y as an

observed value of the true value t, and
±: a are limits which an error will never

exceed; and (2) advocated maximization

of the product {{x\)i{x2) ... f(xn) =
(_)II [a2— (y— T)2]y2 with re-

\7ra2 /i=l
spect to T to obtain the "most likely

value" of T indicated by the observations

yu y2, •
. Jn- Today we would call this

"most likely value", T= T{y\, y^, . • .,

yn)i the maximum likelihood estimate of

T corresponding to the law of error i{x)

.

For 71 = 3, evaluation of T requires the

solution of an equation of the fifth degree

consisting of twenty terms; and for n > 3,

the algebra and arithmetic become un-

manageable. However, for yi ^ 72 ^ ys,

Bernoulli showed that his "most likely

value" T is greater than, equal to, or less

than the arithmetic mean of the three

values according as the middle value (y2)

is less than, equal to, or greater than the

midpoint ^(71 + 73 ) betv/een the ex-

tremes, respectively. His T thus assigns

greater weight to the more distant of the

two extreme observations. The actual mag-

nitude of the difference T — x depends,

however, on the choice of a, the limit an

error will never exceed in absolute value,

but tends to zero rapidly as a 00 , lead-

ing Bernoulli to remark: "Those who are

most shocked by our principles will have

nothing further to contradict if only they

make the field of possible deviations as

large as possible."

In 1774, Laplace, in his first discussion

of the problem of the 'best mean' (20),

proposed (1) a double-exponential law

of error,

m —m\x\
f(:x;) =— e ,

— 00 < :x; < + 00
;

2

and (2) adoption as the 'best mean' that

function T{Yi, Y2, Y3) of three observa-

tions for which the average value of

\T — t| is a minimum. Today we would

call his T the minimum mean absolute er-

ror estimator of t. For n= 3 and

Ji ^ 72 ^ yz, Laplace's 'best mean' T is

greater than, equal to, or less than 72, the

middle value (i.e., the median), according

as y2 is less than, equal to, or greater than

1/2(71 + 73)5 the midpoint between the

extremes, respectively. T is thus a 'cor-

rected median', the correction being in the

direction of the more distant of the two

extreme observations. Furthermore, T —> y2

as m 00 {i.e., very high precision) ; and

T y, the mean of the three values, as

m —> 0 (i.e., very poor precision).
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Thus, while Simpson's and Lagrange's

work had shown the arithmetic mean to be

increasingly 'good' as re—> oo, Bernoulli's

and Laplace's work implied that the arith-

metic mean was 'best' only in the limiting

case of infinitely poor precision.

As noted above, Gauss discovered the

great algebraic and arithmetical advantages

of the technique of Least Sum of Squared

Residuals in 1795. In 1797 he attempted to

justify this procedure via the calculus of

probabilities, concluding that determina-

tion of "most probable values" of unknown

quantities is impossible unless the law of

error is known explicitly. "When this is

not the case, nothing remains but to as-

sume such a function as an hypothesis. It

seemed to him most natural to proceed

first the other way around and to look for

that function on which the whole theory

should be based if for the simplest case

there is to result the rule generally accepted

as good, namely, that the arithmetic mean
of several values obtained for the same

unknown through observations of equal

reliability is to be considered as the most

probable value" (14, p. 98). By June

1798 (13, p. 113) he had completed his

now famous 'proof of the Method of

Least Squares, in which he (a) adopted

as a postulate the Principle of the Arith-

metic Mean, (b) utilized the concept that

repetition of a measurement process gen-

erates a probability distribution of errors,

and (c) applied Bayes's method of inverse

probability—without reference to Thomas
Hayes (1702-1761). Starting from these

premises he showed that if the arithmetic

mean of n independent measurements of

a single magnitude is to be the most prob-

able value of this magnitude a posteriori,

then the errors Xi= Yi—r of the in-

dividual measurements Yi must be distrib-

uted in accordance with the law of error

h —hH^
{{x) = e — oo<a;<4-°o-

(5) Then he showed that, if errors are

normally distributed, and if the unknown

values of the essential parameters have

uniform a priori distributions, then the

most probable values of the unknown im-

plied by a given set of observational data

are given identically by the application of

the technique of Least Sum of Squared

Residuals. He did not publish these re-

sults, however, until 1809, in Book II,

Section 3, of his Theory of the Motion of

Heavenly Bodies Moving about the Sun in

Sections (21).

Gauss was well aware that this deriva-

tion of his now famous law of error and

consequent justification of the technique

of Least Sum of Squared Residuals was

merely an extension of the Principles of

the Arithmetic Mean and stood or fell with

this Principle. Thus, he remarked that the

principle that "the most probable system

of values of the unknown quantities [is

that for which] the sum of the squares of

the differences between the observed and

computed values of the functions [ob-

served] is a minimum . . . must, every-

where be considered an axiom with the

same propriety as the arithmetical mean of

several observed values of the same quan-

tity is adopted as the most probable value"

(21, art. 179). But his analysis of the

Method of Least Squares remains notable

because he recognized that "the constant

h can be considered as a measure of the

precision [praecisionis] of the observa-

tions" and then went on to give (1) the

formula for the precision of a linear func-

tion independent observations of equal or

unequal precisions, and (2) the rule for

weighting results of unequal precision so

as to obtain the combined result of maxi-

mum attainable precision. These are ever-

lasting accomplishments of his first 'proof.

Laplace greatly strengthened Gauss's

first 'proof almost immediately after its

publication, by his discovery (22 pp. 383-

389) that, under certain very general con-

ditions (not considered in full generality

by Laplace) the distributions of linear

functions, and hence of the arithmetic

means, of n independent errors can be ap-

proximated (when properly scaled) by
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Gauss's law of error (5), with the error

of the approximation tending to zero as

n 00. From this it follows directly that

the Method of Least Squares as developed

by Gauss leads to 'most probable values'

(under "very general conditions") when
the number of independent observations

involved is large. The Method of Least

Squares was, therefore, regarded as

firmly established, not merely on grounds

of algebraic and arithmetical convenience,

but also via the calculus of probabilities

—

at least when the number of independent

observations is large!

rV. Minimum Errors of Estimation
and Gausses Second 'Proof

As noted above, Laplace suggested in

1774 (20) that the 'best mean' to take in

practical astronomy is that function of

the observations which has an equal prob-

ability of over- and under-estimating the

true value, showed that this is equivalent

to adopting the principle of Least Mean
Absolute Error of Estimation, and gave an

algorithm for finding this particular func-

tion of three observations in a one-para-

meter case. By this algorithm his 'best

mean' is given by the abscissa T{yi, y2, yz)

that divides the area under the curve

f(yi—T)f(y2

—

T)i{y3— t), considered as

a function of t, into two equal halves,

{{x) being the law of error involved. In

1778 (23), Laplace extended this agree-

ment to the case of n independent observa-

tions and termed this procedure "the most

advantageous method" of estimation. This

approach was invented anew and fully

explored by E. J. G. Pitman in 1939 (24)

.

Unfortunately, it usually leads to intract-

able equations for the "most advantageous"

estimates, except for very special choices

of the law of error. Thus, in 1811 (25),

Laplace found that, among all laws of

error of the form i{x) = Ke

where t{/{x^) is an arbitrary continuous

function of ac^ = (y

—

t)^, the Gaussian

law (5) is the only one for which the

arithmetic mean Y of n independent ob-

servations is the "most advantageous" esti-

mator of T.

By adopting instead the principle of

Least Mean Squared Error of Estimation

and the requirement that the resulting

"best mean" should yield the true values

of the quantities concerned if it should

happen that all of the observations were

entirely free from error. Gauss showed in

1821-23 (26, 27) that, when the resulting

'best values' are linear functions of the

observations, then they are identically the

same as those given by the technique of

Least Sum of Squared Residuals (which

provides the practical modus operandi for

obtaining them) , and that in this important

case the Least Mean Squared Error prop-

erty is completely independent of the law

of error involved. This fact, which mathe-

matical statisticians today express by say-

ing that the Method of Least Squares

yields minimum variance linear unbiased

estimators of the unknown magnitudes

concerned under "very general conditions",

is considered by many mathematical

statisticians today to be the real theoretical

basis of the Method of Least Squares.

Henri Poincare (1854-1912) remarked in

1893-94 (28, p. 168), "This approach

justifies the [Method of Least Squares]

independently of the law of errors . . . .

is, thus, a refutation of Gauss's [earlier]

reasoning [and] it is rather strange that

this refutation is due to Gauss himself".

And it is equally surprising that this best-

linear-unbiased-estimator property of Least

Squares seems to be unknown to many
users of the Method of Least Squares today.

v. Concluding Remarks

The robust survival of the Method of

Least Squares as a valuable tool of ap-

plied science no doubt stems in part from

the algebraic and arithmetical advantages

of Least Sum of Squared Residuals and in

part from the fact this procedure also

yields estimates of Least Mean Squared

Error in the important case when the end

results are linear functions of the basic

observations. This one-to-one correspond-
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ence between minimizing some function of

the residuals and minimizing the same

function of Errors of Estimation appears

to be a unique property of Least Squares.

And although the Method of Least Squares

does not lead to the best available estimates

of unknown parameters when the law of

error is other than the Gaussian, if the

number of independent observations avail-

able is much larger than the number of

parameters to be determined the Method

of Least Squares can be usually counted

on to yield nearly-best estimates.
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Foreword

Since there are available many excellent textbooks on statistical meth-

ods, we include in this section only those entries which are either (1)

addressed specifically to metrologists, or (2) topics not fully discussed in

other texts.

Two introductory treatments of statistical concepts and terminology

are provided. Some Basic Statistical Concepts and Preliminary Considera-

tions by Mary G. Natrella and Churchill Eisenhart (5.1) introduces the

fundamental ideas of populations, samples, and distributions that underlie all

statistical procedures. Then it discusses the interpretation of some important

types of procedures— estimation, confidence intervals, tolerance intervals,

and statistical tests of significance.

Statistical Concepts in Metrology by Harry H. Ku (5.2) deals with

basic statistical concepts as applied to the description and characterization

of a measurement process. A basic kit of tools for the manipulation of meas-

urement data is given, and their use for evaluation of precision is discussed.

The use of control chart techniques for monitoring stability is emphasized.

The excerpt. Randomization in Factorial and Other Experiments (5.4)

,

from E. B. Wilson's Introduction to Scientific Research contains two exam-
ples illustrating the importance of randomization in experiments. We have

included it to add emphasis to the point that the experimenter cannot take

for granted that his data conform to the conditions (expressed as assump-

tions) underlying proper use of statistical techniques.

The use of propagation of error formulas has had a long history; yet

the term does not appear often in the index of current statistical textbooks.

Ku's Notes (5.3) differentiates the two types of usage and outlines condi-

tions under which these formulas give good approximations.

Detection and rejection of outliers is a problem that forever plagues

the experimenter. Kruskal's remarks (5.5) gather together in one place

some nontechnical thoughts on this matter, whereas Proschan's paper (5.6)

lists several operational criteria. For further reading we suggest two
papers, one by F. J. Anscombe and one by C. Daniel, in Technometrics, vol.

2, no. 2, May, 1960.
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EXPERIMENTAL STATISTICS*

CHAPTER 1

*

SOME BASIC STATISTICAL CONCEPTS AND

PRELIMINARY CONSIDERATIONS

Mary G. Natrella and Churchill "Eisenhart

1-1 INTRODUCTION

Statistics deals with the collection, anal-

ysis, interpretation, and presentation of

numerical data. Statistical methods may be

divided into two classes—descriptive and in-

ductive. Descriptive statistical methods are

those which are used to summarize or de-

scribe data. They are the kind we see used

everyday in the newspapers and magazines.

Inductive statistical methods are used when

we wish to generalize from a small body of

data to a larger system of similar data. The

generalizations usually are in the form of

estimates or predictions. In this handbook

we are mainly concerned with inductive sta-

tistical methods.

1-2 POPULATIONS, SAMPLES, AND DISTRIBUTIONS

The concepts of a population and a sample
are basic to inductive statistical methods.

Equally important is the concept of a distri-

bution.

Any finite or infinite collection of individ-

ual things—objects or events—constitutes a

population. A population (also known as a

universe) is thought of not as just a heap of

things specified by enumerating them one

after another, but rather as an aggregate

determined by some property that distin-

guishes between things that do and things

that do not belong. Thus, the term popula-

tion carries with it the connotation of com-
pleteness. In contrast, a sample defined as

a portion of a population, has the connota-

tion of incompleteness.

Examples of populations are

:

(a) The corporals in the Marines on July

1, 1956.

* NBS Handbook 91, 1966.

(b) A production lot of fuzes.

(c) The rounds of ammunition produced

by a particular production process.

(d) Fridays the 13th.

(e) Repeated weighings of the powder
charge of a particular round of ammunition.

(f) Firings of rounds from a given pro-

duction lot.

In examples (a), (b), and (c), the "indi-

viduals" comprising the population are ma-
terial objects (corporals, fuzes, rounds) ; in

(d) they are periods of time of a very re-

stricted type; and in (e) and (f) they are

physical operations. Populations (a) and
(b) are clearly finite, and their constituents

are determined by the oflScial records of the

Marine Corps and the appropriate produc-

tion records, respectively. Populations (c),

(d), and (e) are conceptually infinite. Oflf-

hand, the population example (f) would
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seem to be finite, because firing is a destruc-

tive operation ; but in order to allow for vari-

ation in quality among "firings" performed

in accordance with the same general proce-

dure it is sometimes useful, by analogy with

repetitive weighings, to regard an actual

firing as a sample of size one from a con-

ceptually infinite population of "possible"

firings, any one of which might have been

associated with the particular round con-

ceived. In this connection, note that in exam-

ples (e) and (f) the populations involved

are not completely defined until the weighing

and firing procedures concerned have been

fully specified.

Attention to some characteristic of the

individuals of a population that is not the

same for every individual leads immediately

to recognition of the distribution of this

characteristic in the population. Thus, the

heights of the corporals in the Marines on

July 1, 1956, the burning times of a produc-

tion lot of fuzes, and the outcomes of succes-

sive weighings of a powder charge ("ob-

served weights" of the charge) are examples

of distributions. The presence or absence of

an attribute is a characteristic of an indi-

vidual in a population, such as "tatooed" or

"not tatooed" for the privates in the Marines.

This kind of characteristic has a particularly

simple type of distribution in the population.

Attention to one, two, three, or more

characteristics for each individual leads to

a univariate, bivariate, trivariate, or multi-

variate distribution in the population. The

examples of populations given previously

were examples of univariate distributions.

Simultaneous consideration of the muzzle

velocities and weights of powder charges of

rounds of ammunition from a given produc-

tion process determines a bivariate dis-

tribution of these characteristics in the

population. Simultaneous recognition of the

frequencies of each of a variety of different

types of accidents on Friday the 13th leads

to a multivariate distribution. In connection

with these examples, note that, as a general

principle, the distribution of a characteristic

or a group of characteristics in a population

is not completely defined until the method or

methods of measurement or enumeration in-

volved are fully specified.

The distribution of some particular prop-

erty of the individuals in a population is a

collective property of the population; and
so, also, are the average and other charac-

teristics of the distribution. The methods of

inductive statistics enable us to learn about

such population characteristics from a study

of samples.

An example will illustrate an important

class of derived distributions. Suppose we
select 10 rounds of ammunition from a given

lot and measure their muzzle velocities when
the rounds are fired in a given test weapon.

Let X be the average muzzle velocity of the

10 rounds. If the lot is large, there will be

many different sets of 10 rounds which could

have been obtained from the lot. For each

such sample of 10 rounds, there will corre-

spond an average muzzle velocity Xi. These

averages, from all possible samples of 10,

themselves form a distribution of sample

averages. This kind of distribution is called

the sampling distribution of X for samples of

size 10 from the population concerned. Sim-

ilarly, we may determine the range R of

muzzle velocities (i.e., the difference between

the largest and the smallest) for each of all

possible samples of 10 rounds each. These

ranges R, (i = 1, 2, . . .) collectively deter-

mine the sampling distribution of the range

of muzzle velocities in samples of size 10

from the population concerned. The methods

of inductive statistics are based upon the

mathematical properties of sampling distri-

butions of sample statistics such as X and R.

Let us summarize: A population in Sta-

tistics corresponds to what in Logic is termed

the "universe of discourse"—it's what we
are talking about. By the methods of in-

ductive statistics we can learn, from a study
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of samples, only about population character-

istics—only about collective properties of the

populations represented by the individuals

in the samples—not about characteristics

of specific individuals with unique idiosyn-

crasies. The population studied may be large

or small, but there must be a population ; and
it should be well defined. The characteristic

of interest must be a collective property of

the population.

1-3 STATISTICAL INFERENCES AND SAMPLING

1-3.1 STATISTICAL INFERENCES

If we were willing or able to examine an
entire population, our task would be merely

that of describing that population, using

whatever numbers, figures, or charts we
cared to use. Since it is ordinarily incon-

venient or impossible to observe every item

in the population, we take a sample—a por-

tion of the population. Our task is now to

generalize from our observations on this

portion (which usually is small) to the popu-

lation. Such generalizations about charac-

teristics of a population from a study of one

or more samples from the population are

termed statistical inferences.

Statistical inferences take two forms:
estimates of the magnitudes of population

characteristics, and tests of hypotheses re-

garding population characteristics. Both are

useful for determining which among two or

more courses of action to follow in practice

when the "correct" course is determined by
some particular but unknown characteristic

of the population.

Statistical inferences all involve reaching

conclusions about population characteristics

(or at least acting as if one had reached such

conclusions) from a study of samples which
are known or assumed to be portions of the

population concerned. Statistical inferences

are basically predictions of what would be

found to be the case if the parent populations

could be and were fully analyzed with respect

to the relevant characteristic or character-

istics.

A simple example will serve to bring out

a number of essential features of statistical

inferences and the methods of inductive sta-

tistics. Suppose that four cards have been

drawn from a deck of cards and have been
found to be the Ace of Hearts, the Five of

Diamonds, the Three of Clubs, and the Jack
of Clubs. The specific methods discussed in

the following paragraphs will be illustrated

from this example.

First of all, from the example, we can
clearly conclude at once that the deck con-

tained at least one Heart, at least one Dia-

mond, and at least two Clubs. We also can

conclude from the presence of the Five and
the Three that the deck is definitely not a

pinochle deck. These are perhaps trivial in-

ferences, but their validity is above question

and does not depend in any way on the

modus operandi of drawing the four cards.

In order to be able to make inferences of

a more substantial character, we must know
the nature of the sampling operation that

yielded the sample of four cards actually ob-

tained. Suppose, for example, that the sam-
pling procedure was as follows: The cards

were drawn in the order listed, each card

being selected at random from all the cards

present in the deck when the card was drawn.

This defines a hypothetical population of

drawings. By using an appropriate tech-

nique of inductive statistics—essentially, a

"catalog" of all possible samples of four,

showing for each sample the conclusion to

be adopted whenever that sample occurs

—

we can make statistical inferences about

properties of this population of drawings.

The statistical inferences made will be rig-

orous if, and only if, the inductive technique
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used is appropriate to the sampling proce-

dure actually employed.

Thus, by taking the observed proportion

of Clubs as an estimate of the proportion of

Clubs in the abstract population of drawings,

we may assert: the proportion of Clubs is

50%. Since random sampling of the type

assumed assures that the proportion of Clubs

in the population of drawings is the same
as the proportion of Clubs in the deck, we
may assert with equal validity: the propor-

tion of Clubs in the deck is 50%. If the deck

concerned actually was a standard bridge

deck, then in the present instance our esti-

mate is wrong in spite of being the best

single estimate available.

We know from experience that with sam-
ples of four we cannot expect to "hit the nail

on the head" every time. If instead of at-

tempting to make a single-number estimate

we had chosen to refer to a "catalog" of

interval estimates (see, for example, Table

A-22*), we would have concluded that the

proportion of Clubs is between 14% and

86% inclusive, with an expectation of being

correct 9 times out of 10. If the deck was
in fact a standard bridge deck, then our
conclusion is correct in this instance, but its

validity depends on whether the sampling

procedure employed in drawing the four

cards corresponds to the sampling procedure

assumed in the preparation of the "catalog"

of answers.

It is important to notice, moreover, that

strictly we have a right to make statistical

inferences only with respect to the hypo-

thetical population of drawings defined by
the sampling operation concerned. In the

present instance, as we shall see, the sam-

pling operation was so chosen that the pa-

rameters (i.e., the proportions of Hearts,

Clubs, and Diamonds) of the hypothetical

population of drawings coincide with the

corresponding parameters of the deck.

* The A-Tables referenced in this handbook are

contained in Section 5, ORDP 20-114.

Hence, in the present case, inferences about

the parameters of the population of draw-
ings may be interpreted as inferences about

the composition of the deck. This empha-
sizes the importance of selecting and em-
ploying a sampling procedure such that the

relevant parameters of the population of

drawings bear a known relation to the cor-

responding parameters of the real-life situ-

ation. Otherwise, statistical inferences with

respect to the population of drawings carried

over to the real-life population will be lack-

ing in rigor, even though by luck they may
sometimes be correct.

1-3.2 RANDOM SAMPLING

In order to make valid nontrivial gener-

alizations from samples about characteristics

of the populations from which they came,

the samples must have been obtained by a

sampling scheme which insures two condi-

tions :

(a) Relevant characteristics of the popu-

lations sampled must bear a known relation

to the corresponding characteristics of the

population of all possible samples associated

with the sampling scheme.

(b) Generalizations may be drawn from
such samples in accordance with a given

"book of rules" whose validity rests on the

mathematical theory of probability.

If a sampling scheme is to meet these two
requirements, it is necessary that the selec-

tion of the individuals to be included in a

sample involve some type of random selec-

tion, that is, each possible sample must have

a fixed and determinate probability of selec-

tion. (For a very readable expository dis-

cussion of the general principles of sampling,

with examples of some of the more common
procedures, see the article by Cochran, Hos-

teller, and Tukey'". For fuller details see,

for example, Cochran's book'^'.

The most widely useful type of random
selection is simple (or unrestricted) random
sampling. This type of sampling is defined

by the requirement that each individual in

the population has an equal chance of being

the first member of the sample; after the
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first member is selected, each of the remain-

ing individuals in the population has an

equal chance of being the second member
of the sample ; and so forth. For a sampling

scheme to qualify as simple random sam-

pling, it is not sufficient that "each individual

in the population have an equal chance of

appearing in the sample," as is sometimes

said, but it is sufficient that "each possible

sample have an equal chance of being se-

lected." Throughout this handbook, we shall

assume that all samples are random samples

in the sense of having been obtained by sim-

ple random sampling.

It cannot be overemphasized that the ran-

domness of a sample is inherent in the sam-

pling scheme employed to obtain the sample

and not an intrinsic property of the sample

itself. Experience teaches that it is not safe

to assume that a sample selected haphaz-

ardly, without any conscious plan, can be

regarded as if it had been obtained by simple

random sampling. Nor does it seem to be

possible to consciously draw a sample at

random. As stated by Cochran, Hosteller,

and Tukey<^>,

We insist on some semblance of mechanical (dice,

coins, random number tables, etc.) randomization

before we treat a sample from an existent popula-

tion as if it were random. We realize that if some-

one just "grabs a handful," the individuals in the

handful almost always resemble one another (on the

average) more than do the members of a simple

random sample. Even if the "grabs" are randomly

spread around so that every individual has an equal

chance of entering the sample, there are difficulties.

Since the individuals of grab samples resemble one

another more than do individuals of random sam-
ples, it follows (by a simple mathematical argu-

ment) that the means of grab samples resemble

one another less than the means of random samples

of the same size. From a grab sample, therefore,

we tend to Mwderestimate the variability in the

population, although we should have to overestimate

it in order to obtain valid estimates of variability

of grab sample means by substituting such an esti-

mate into the formula for the variability of means
of simple random samples. Thus, using simple ran-

dom sample formulas for grab sample means intro-

duces a double bias, both parts of which lead to an
unwarranted appearance of higher stability.

Instructions for formally drawing a sample
at random from a particular population are

given in Paragraph 1-4.

Finally, it needs to be noticed that a par-

ticular sample often qualifies as "a sample"

from any one of several populations. For ex-

ample, a sample of n rounds from a single

carton is a sample from that carton, from
the production lot of which the rounds in

that carton are a portion, and from the pro-

duction process concerned. By drawing these

rounds from the carton in accordance with

a simple random sampling scheme, we can

insure that they are a (simple) random sam-
ple from the carton, not from the produc-

tion lot or the production process. Only

if the production process is in a "state of

statistical control" may our sample also be

considered to be a simple random sample

from the production lot and the production

process. In a similar fashion, a sample of

repeated weighings can validly be consid-

ered to be a random sample from the con-

ceptually infinite population of repeated

weighings by the same procedure only if

the weighing procedure is in a state of sta-

tistical control (see Chapter 18, in Section 4,

ORDP 20-113).

It is therefore important in practice to

know from which of several possible "par-

ent" populations a sample was obtained by

simple random sampling. This population is

termed the sampled population, and may be

quite different from the population of inter-

est, termed the target population, to which
we would like our conclusions to be applica-

ble. In practice, they are rarely identical,

though the difference is often small. A sam-
ple from the target population of rounds of

ammunition produced by a particular pro-

duction process will actually be a sample

from one or more production lots (sampled

population), and the difference between sam-
pled and target populations will be smaller

if the sampled population comprises a larger

number of production lots., The further the

sampled population is removed from the

target population, the more the burden of

validity of conclusions is shifted from the

shoulders of the statistician to those of the

subject matter expert, who must place

greater and greater (and perhaps unwar-
ranted) reliance on "other considerations."
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1-4 SELECTION OF A RANDOM SAMPLE

As has been brought out previously, the

method of choosing a sample is an all-im-

portant factor in determining what use can

be made of it. In order for the techniques

described in this handbook to be valid as

bases for making statements from samples

about populations, we must have unrestricted

random samples from these populations. In

practice, it is not always easy to obtain a

random sample from a given population.

Unconscious selections and biases tend to

enter. For this reason, it is advisable to use

a table of random numbers as an aid in se-

lecting the sample. Two tables of random
numbers which are recommended are by
L. H. C. Tippett"> and The Rand Corpora-

tion'^'. These tables contain detailed instruc-

tions for their use. An excerpt from one of

these tables'*' is given in Table A-36. This

sample is included for illustration only; a

larger table should be used in any actual

problem. Repeated use of the same portion

of a table of random numbers will not

satisfy the requirements of randomness.

An illustration of the method of use of

tables of random numbers follows. Suppose

the population consists of 87 items, and we
wish to select a random sample of 10. Assign

to each individual a separate two-digit num-
ber between 00 and 86. In a table of ran-

dom numbers, pick an arbitrary starting

place and decide upon the direction of read-

ing the numbers. Any direction may be

used, provided the rule is fixed in advance
and is independent of the numbers occurring.

Read two-digit numbers from the table, and
select for the sample those individuals whose
numbers occur until 10 individuals have been

selected. For example, in Table A-36, start

with the second page of the Table (p. T-83),

column 20, line 6, and read down. The 10

items picked for the sample would thus be

numbers 38, 44, 13, 73, 39, 41, 35, 07, 14,

and 47.

The method described is applicable for

obtaining simple random samples from any
sampled population consisting of a finite set

of individuals. In the case of an infinite

sampled population, these procedures do not

apply. Thus, we might think of the sampled

population for the target population of

weighings as comprising all weighings which

might conceptually have been made during

the time while weighing was done. We can-

not by mechanical randomization draw a

random sample from this population, and so

must recognize that we have a random sam-

ple only by assumption. This assumption

will be warranted if previous data indicate

that the weighing procedure is in a state of

statistical control ; unwarranted if the con-

trary is indicated ; and a leap in the dark if

no previous data are available.

1-5 SOME PROPERTIES OF DISTRIBUTIONS

Although it is unusual to examine popula-

tions in their entirety, the examination of a

large sample or of many small samples from
a population can give us much information

about the general nature of the population's

characteristics.

One device for revealing the general na-

ture of a population distribution is a histo-

gram. Suppose we have a large number of

observed items and a numerical measure-

ment for each item, such as, for example, a

Rockwell hardness reading for each of 5,000

specimens. We first make a table showing

the numerical measurement and the num-

ber of times (i.e., frequency) this measure-

ment was recorded.
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Rockwell
Hardness
Number Frequency

55 1

56 17

57 135

58 503

59 1,110

60 1,470

61 1,120

62 490

63 125

64 26
65 3

Data taken, by permission, from Sampling Inspection by
Variables by A. H. Bowker and H. P. Goode, Copyright, 19B2.

McGraw-Hill Book Company, Inc.

1.2M -

^ 1.000 -

u
S
3 750 -

O
lU
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IL.

500 -

250

55 56 57 50 5t 50 el 62 63 64 65

ROCKWELL HARDNESS NUMBER

Figure 1-1. Histogram representing the dis-

tribution of 5,000 Rockwell hardness
readings.

From this frequency table we can make the

histogram as shown in Figure 1-1. The
height of the rectangle for any hardness

range is determined by the number of items

in that hardness range. The rectangle is

centered at the tabulated hardness value. If

we take the sum of all the rectangular areas

to be one square unit, then the area of an
irtdividual rectangle is equal to the propor-

tion of items in the sample that have hard-

ness values in the corresponding range.

When the sample is large, as in the present

instance, the histogram may be taken to

exemplify the general nature of the corre-

sponding distribution in the population.

If it were possible to measure hardness in

finer intervals, we would be able to draw a

larger number of rectangles, smaller in

width than before. For a sufficiently large

sample and a sufficiently fine "mesh," we
would be justified in blending the tops of the

rectangles into a continuous curve, such as

that shown in Figure 1-2, which we could

expect to more nearly represent the under-
lying population distribution.

Reproduced by permission from Sampling Inspection by Vari-

ables by A. H. Bowker and H. P. Goode, Copyright, 1962,

McGraw-Hill Book Company, Inc.

1.500 -

ROCKWELL HARDNESS NUMBER

Figure 1-2. Normal curve fitted to the dis-

tribution of 5,000 Rockwell hardness
readings.

Reproduced by permission from Sampling- Inspection by Vari-

ables by A. H. Bowker and H. P. Goode, Copyright, 1962,

McGraw-Hill Book Company, Inc.
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If we were to carry out this sort of scheme
on a large number of populations, we would
find that many different curves would arise,

as illustrated in Figure 1-3. Possibly, the

majority of them would resemble the class

of symmetrical bell-shaped curves called

"normal" or "Gaussian" distributions, an ex-

ample of which is shown in the center of

Figure 1-3. A normal distribution is uni-

modal, i.e., has only a single highest point

or mode, as also are the two asymmetrical

curves in the lower left and upper right of

Figure 1-3.

A "normal" distribution is completely de-

termined by two parameters: m, the arith-

metic mean (or simply "the mean") of the

distribution, and cr, the standard deviation

(often termed the "population mean" and
"population standard deviation"). The vari-

ance of the distribution is cr^. Since a nor-

mal curve is both unimodal and symmetrical,

REVERSE J SHAPED CURVE SKEW CURVE
EXTREME POSITIVE MODERATE POSITIVE

SKEWNESS SKEWNESS

SKEW CURVE

MODERATE NEGATIVE SKEWNESS U-SHAPED CURVE

Figure 1-3. Frequency distributions

of various shapes.

Adapted with permission from Elements of Statistical Reasoning

by A. E. Treloar, Copyright. 1939,

John Wiley & Sons, Inc.

Figure Three different normal
distributions.

m is also the mode and the value which di-

vides the area under the curve in half, i.e.,

the median. It is useful to remember that
cr is the distance from m to either of the two
inflection points on the curve. (The inflec-

tion point is the point at which the curve

changes from concave upward to concave

downward.) This is a special property of

the normal distribution. More generally, the

mean of a distribution m is the "center of

gravity" of the distribution ; cr is the "radius

of gyration" of the distribution about m, in

the language of mechanics; and cr^ is the

second moment about m.

The parameter m is the location param-
eter of a normal distribution, while <t is a

measure of its spread, scatter, or dispersion.

Thus, a change in m merely slides the curve

right or left without changing its profile,

while a change in cr widens or narrows the

curve without changing the location of its

center. Three different normal curves are

shown in Figure 1-4. (All normal curves in

this section are drawn so that the area un-

der the curve is equal to one, which is a

standard convention.)

Figure 1-5 shows the percentage of ele-

ments of the population contained in various

intervals of a normal distribution, z is the

distance from the population mean in units of

the standard deviation and is computed using

the formula z - (X-m) /cr, where X repre-

sents any value in the population. Using z

to enter Table A-1, we find P, the proportion
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of elements in the population which have

values of z smaller than any given z. Thus,

as shown in Fig. 1-5, 34.13% of the popula-

tion will have values of z between 0 and 1

(or between 0 and — 1) ; 13.59% of the popu-

lation, between 1 and 2 (or between —1 and

-2) ; 2.14% between 2 and 3 (or between -2

and —3) ; and .14% beyond 3 (or beyond —3).

Figure 1-5 shows these percentages of the

population in various intervals of z.

For example, suppose we know that the

chamber pressures of a lot of ammunition
may be represented by a normal distribu-

tion, with the average chamber pressure m =
50,000 psi and standard deviation cr = 5,000

. X-50,000 , ,

psi. Then z =

—

_ „
' — and we know (Fig.

P,UUU
1-5) that if we fired the lot of ammunition
in the prescribed manner we would expect

50% of the rounds to have a chamber pres-

sure above 50,000 psi, 15.9% to have pres-

sures above 55,000 psi, and 2.3% to have

pressures above 60,000 psi, etc.

Figure 1-5. Percentage of the population in
various intervals of a normal distribution.
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1-6 ESTIMATION OF m and a

In areas where a lot of experimental work
has been done, it often happens that we know
m or cr, or both, fairly accurately. However,
in the majority of cases it will be our task

to estimate them by means of a sample. Sup-

pose we have n observations, Zi, X^, . . ., X„
taken at random from a normal population.

From a sample, what are the best estimates

of m and cr? Actually, it is usual to com-

pute the best unbiased estimates of m and cr^,

and then take the square root of the estimate

of <T^ as the estimate of cr. These recom-

mended estimates of m and o-^ are :

*

= — z

n — 1

X and s" are the sample mean and sample

estimate of variance, respectively, (s is often

called "the sample standard deviation," but

this is not strictly correct and we shall avoid

the expression and simply refer to s.) For

computational purposes, the following for-

mula for s^ is more convenient

:

1

n (n — 1)

* The Greek symbol 2 is often used as shorthand

for "the sum of." For example,

4

i-l

E (X> + Y,) = (Z,+ y,) + {X,+ Y,) + (Z3+F3)
I-l

3

^X,Y,=X,Y, + X,Y, + X,Y,
i-l

3

c = c + c + c = Sc
i-l

Nearly every sample will contain differ-

ent individuals, and thus the estimates X
and S" of m and cr^ will differ from sample

to sample. However, these estimates are

such that "on the average" they tend to be

equal to m and o-^ respectively, and in this

sense are unbiased. If, for example, we have

a large number of random samples of size

n, the average of their respective estimates

of cr- will tend to be near cr^ Furthermore,

the amount of fluctuation of the respective

s^'s about (T^ (or of the X's about m, if we
are estimating m) will be smaller in a cer-

tain well-defined sense than the fluctuation

would be for any estimates other than the

recommended ones. For these reasons, X
and s^ are called the "best unbiased" esti-

mates of m and o-% respectively.*

As might be expected, the larger the sam-

ple size n, the more faith we can put in the

estimates X and s^. This is illustrated in

Figures 1-6 and 1-7. Figure 1-6 shows the

distribution of X (sample mean) for samples

of various sizes from the same normal dis-

tribution. The curve for n = 1 is the distri-

bution for individuals in the population. All

of the curves are centered at m, the popula-

* On the other hand, s is not an unbiased esti-

mator of a. Thus, in samples of size n from a nor-

mal distribution, the situation is:

s is an unbiased

Sample size, n estimator

2 0.797 a

3 0.886

4 0.921

5 0.940

6 0.952

7 0.959

8 0.965

9 0.969

10 0.973

20 0.987

30 0.991

40 0.994

60 0.996

120 0.998

00 1.000
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tion mean, but the scatter becomes less as n

gets larger. Figure 1-7 shows the distribu-

tion of (sample variance) for samples of

various sizes from the same normal distri-

bution.

Figure 1-6. Sampling distribution of X for

random samples of size n from a normal
population with mean m.

Figure 1-7. Sampling distribution of sj- for

sample size n from a normal population

with (1 = 1.

Reproduced by permission from The Methods of Statistics.

4th ed., by L. H. C. Tippett, Copyright, 1952, John Wiley &
Sons, Inc.

Adapted with permission from Some Theory of Sampling, by
W. Edwards Deming, Copyright, 1950, John Wiley & Sons, Inc.

1-7 CONFIDENCE INTERVALS

Inasmuch as estimates of m and cr vary

from sample to sample, interval estimates

of m and cr may sometimes be preferred to

"single-value" estimates. Provided we have

a random sample from a normal population,

we can make interval estimates of m or cr

with a chosen degree of confidence. The level

of confidence is not associated with a par-

ticular interval, but is associated with the

method of calculating the interval. The in-

terval obtained from a particular sample

either brackets the true parameter value

(m or cr, whichever we are estimating) or

does not. The confidence coefficient y is sim-

ply the proportion of samples of size n for

which intervals computed by the prescribed

method may be expected to bracket m (or

cr). Such intervals are known as confidence

intervals, and always are associated with a

prescribed confidence coefficient. As we
would expect, larger samples tend to give

narrower confidence intervals for the same
level of confidence.

Suppose we are given the lot of ammuni-
tion mentioned earlier (Par. 1-5) and wish
to make a confidence interval estimate of

the average chamber pressure of the rounds
in the lot. The true average is 50,000 psi,
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although this value is unknown to us. Let

us take a random sample of four rounds and
from this sample, using the given procedure,

calculate the upper and lower limits for our

confidence interval. Consider all the possi-

ble samples of size 4 that could have been

taken, and the resulting confidence intervals

computed from each. If we compute 50%
(90%) confidence intervals, then we expect

50% (90%) of the computed intervals to

cover the true value, 50,000 psi. See Fig-

ure 1-8.

60,000

5 0,000

40 000 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ^

CASE A,50 7o CONFIDENCE INTERVALS

70.000

60,000

50,00 0

40,000

30,000 J L. _i I I 1 1 I I L

10 20 30 40 50 60 70 80 90

CASE B, 90% CONFIDENCE INTERVALS
100

Figure 1-8. Computed confidence intervals for 100 samples of size | drawn at random from
a normal population with m = 50,000 psi, a - 5,000 psi. Case A shows 50% confidence

intervals; Case B shoivs 90% confidence intervals.

Adapted with permission from ASTM Manual on Quality Control of Materials, Copyright, 1951, American Society for Testing

Materials.
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In Case A of Figure 1-8, 51 of the 100

intervals actually include the true mean. For

50% confidence interval estimates, we would

expect in the long run that 50 fo of the inter-

vals would include the true mean. Fifty-one

out of 100 is a reasonable deviation from the

expected 50%. In Case B, 90 out of 100 of

the intervals contain the true mean. This is

precisely the expected number for 90% inter-

vals.

Note also (Fig. 1-8) that the successive

confidence intervals vary both in position

and width. This is because they were com-

puted (see Par. 2-1.4) from the sample

statistics X and s, both of which vary from
sample to sample. If, on the other hand,

the standard deviation of the population

distribution <r were known, and the con-

fidence intervals were computed from the

successive X's and cr (procedure given in

Par. 2-1.5), then the resulting confidence

intervals would all be the same width, and

would vary in position only.

Finally, as the sample size increases, con-

fidence intervals tend not only to vary less

in both position and width, but also to

"pinch in" ever closer to the true value of

the population parameter concerned, as illus-

trated in Figure 1-9.

m + 2a -1

m + Ict -

m — 1 CT
-

i" |i H.
lli n.'' -l l.

i

"' 'I'
l l

.,

I

,n

m - 2a -
n = 100 n = 1000

-~r-
20 40 £0 80

—I r-
100 0

-l

—

20

—
1 I 1

40 0 5

SAMPLE NUMBER

Figure 1-9. Computed 50% confidence intervals for the population mean m from 100
samples of U, W samples of 100, and i samples of 1000.

Adapted with permission from Statittieal Method from the Viewpoint of Quality Control by W. A. Shewhart (edited by W. Edwards
Deming), Copyright, 1939, Graduate School, U.S. Department of Agriculture, Washingrton, D. C.
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1-8 STATISTICAL TOLERANCE LIMITS

Sometimes what is wanted is not an esti-

mate of the mean and variance of the popu-

lation distribution but, instead, two outer

values or limits which contain nearly all of

the population values. For example, if ex-

tremely low chamber pressures or extremely

high chamber pressures might cause serious

problems, we may wish to know approxi-

mate limits to the range of chamber pres-

sures in a lot of ammunition. More spe-

cifically, we may wish to know within what
limits 99%, for example, of the chamber
pressures lie. If we knew the mean m and
standard deviation cr of chamber pressures

in the lot, and if we knew the distribution

of chamber pressures to be normal (or very

nearly normal), then we could take m — 3cr

and m + 3cr as our limits, and conclude that

approximately 99.7% of the chamber pres-

sures lie within these limits (see Fig. 1-5).

If we do not know m and o-, then we may
endeavor to approximate the limits with

statistical tolerance limits of the form

X — Ks and X + Ks, based on the sample

statistics X and s, with K chosen so that we
may expect these limits to include at least P
percent of the chamber pressures in the lot,

at some prescribed level of confidence a.

Three sets of such limits for P = 99.7%.,

corresponding to sample sizes n = 4, 100,

and 1,000, are shown by the bars in Figure

1-10. It should be noted that for samples of

size 4, the bars are very variable both in

location and width, but that for n = 100 and
n = 1,000, they are of nearly constant width

I T I
[ « * ' ' ? 1

•

0 20 40 60 80 100 0 20 40 0 5

SAMPLE NUMBER

Figure 1-10. Computed statistical tolerance limits for 99.7% of the population from 100

samples of size kO samples of size 100, and U samples of size 1000.

Adapted with permission from Statistical Method from the Viewpoint of Quality Control by W. A. Shewhart (edited by W. Edwards

Dcming), Copyright. 1939, Graduate School, U.S. Department of Agriculture, Washington, D. C.
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and position—and their end points approxi-

mate very closely to m — 3cr and m + 3cr. In

other words, statistical tolerance intervals

tend to a fixed size (which depends upon P)

as the sample size increases, whereas con-

fidence intervals shrink down towards zero

width with increasing sample size, as illus-

trated in Figure 1-9.

The difference in the meanings of the

terms confidence intervals, statistical toler-

ance limits, and engineering tolerance limits

should be noted. A confidence interval is an

interval within which we estimate a given

population parameter to lie (e.g., the popula-

tion mean m with respect to some character-

istic) . Statistical tolerance limits for a g^iven

population are limits within which we ex-

pect a stated proportion of the population

to lie with respect to some measurable char-

acteristic. Engineering tolerance limits are

specified outer limits of acceptability with

respect to some characteristic usually pre-

scribed by a design engineer.

1-9 USING STATISTICS TO MAKE DECISIONS

1-9.1 APPROACH TO A DECISION PROBLEM

Consider the following more-or-less typical

practical situation: Ten rounds of a new
type of shell are fired into a target, and the

depth of penetration is measured for each

round. The depths of penetration are 10.0,

11.1, 10.5, 10.5, 11.2, 10.8, 9.8, 12.2, 11.0,

and 9.9 cm. The average penetration depth

of the comparable standard shell is 10.0 cm.

We wish to know whether the new type shells

penetrate farther on the average than the

standard type shells.

If we compute the arithmetic mean of the

ten shells, we find it is 10.70 cm. Our first

impulse might be to state that on the aver-

age the new shell will penetrate 0.7 cm.

farther than the standard shell. This, in-

deed, is our best single guess, but how sure

can we be that this actually is close to the

truth ? One thing that might catch our notice

is the variability in the individual penetra-

tion depths of the new shells. They range

from 9.8 cm. to 12.2 cm. The standard devi-

ation as measured by s calculated from the

sample is 0.73 cm. Might not our sample of

ten shells have contained some atypical ones

of the new type which have unusually high

penetrating power? Could it be that the new
shell is, on the average, no better than the

standard one? If we were obliged to decide.

on the basis of the results obtained from
these ten shells alone, whether to keep on

making the standard shells or to convert

our equipment to making the new shell, how
can we make a valid choice?

A very worthwhile step toward a solution

in such situations is to compute, from the

data in hand, a confidence interval for the

unknown value of the population parameter
of interest. The procedure (given in Par.

2-1.4) applied to the foregoing depth-of-

penetration data for the new type of shell

yields the interval from 10.18 to 11.22 cm.

as a 95% confidence interval for the popu-

lation mean depth of penetration of shells

of the new type. Inasmuch as thi^ interval

lies entirely to the right of the mean for

the standard shell, 10.00 cm., we are jus-

tified in concluding that the new shell is,

on the average, better than the standard,

with only a 5% risk of being in error.

Nevertheless, taking other considerations

into account (e.g., cost of the new type, cost

of changing over, etc.), we may conclude

finally that the improvement—which may be

as little as 0.18 cm., and probably not more
than 1.22 cm.—is not sufficient to warrant
conversion to the new type. On the other

hand, the evidence that the new type is al-

most certainly better plus the prospect that
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the improvement may be as great as 1.22 cm.

may serve to recommend further develop-

mental activity in the direction "pioneered"

by the new type.

A somewhat different approach, which
provides a direct answer to our question

"Could it be that the new shell is on the

average no better than the standard?" but

not to the question of whether to convert to

the new type, is to carry out a so-called test

of significance (or test of a statistical hy-

pothesis). In the case of the foregoing ex-

ample, the formal procedure for the corre-

sponding test of significance (Par. 3-2.2.1)

turns out to be equivalent (as explained in

ORDP 20-113, Chapter 21) to noting whether

or not the confidence interval computed does

or does not include the population mean for

the standard shell (10.0 cm.). If, as in the

present instance, the population mean for

the standard shell is not included, this is

taken to be a negative answer to our ques-

tion. In other words, this is taken to be

conclusive evidence (at the 5% level of sig-

nificance) against the null hypothesis that

"the new shell is on the average no better

than the standard." Rejection of the null

hypothesis in this case is equivalent to ac-

cepting the indefinite alternative hypothesis

that "the new shell is better on the average

than the standard." If, on the other hand,

the population mean for the standard shell

is included in the confidence interval, this

is taken as an affirmative answer to our

question—not in the positive sense of defi-

nitely confirming the null hypothesis ("is

no better"), but in the more-or-less neutral

sense of the absence of conclusive evidence

to the contrary.

As the foregoing example illustrates, an
advantage of the confidence-interval ap-

proach to a decision problem is that the con-

fidence interval gives an indication of how
large the difference, if any, is likely to be,

and thus provides some of the additional

information usually needed to reach a final

decision on the action to be taken next. For
many purposes, this is a real advantage of

confidence intervals over tests of significance.

However, all statistical decision problems

are not amenable to solution via confidence

intervals. For instance, the question at issue

may be whether or not two particular char-

acteristics of shell performance are mutually

independent. In such a situation, any one

of a variety of tests of significance can be

used to test the null hypothesis of "no de-

pendence." Some of these may have a rea-

sonably good chance of rejecting the null

hypothesis, and thus "discovering" the ex-

istence of a dependence when a dependence

really exists—even though the exact nature

of the dependence, if any, is not understood

and a definitive measure of the extent of

the dependence in the population is lacking.

A precise test of significance will be possi-

ble if: (a) the sampling distribution of some
sample statistic is known (at least to a good

approximation) for the case of "no depend-

ence"; and (b) the effect of dependence on

this statistic is known (e.g., tends to make
it larger). For a confidence-interval ap-

proach to be possible, two conditions are

necessary: (a) there must be agreement on

what constitutes the proper measure (pa-

rameter) of dependence of the two charac-

teristics in the population; and, (b) there

must be a sample estimate of this depend-

ence parameter whose sampling distribution

is known, to a good approximation at least,

for all values of the parameter. Confidence

intervals tend to provide a more complete

answer to statistical decision problems when
they are available, but tests of significance

are of wider applicability.

1-9.2 CHOICE OF NULL AND ALTERNATIVE

HYPOTHESES

A statistical test always involves a null

hypothesis, which is considered to be the

hypothesis under test, as against a class of

alternative hypotheses. The null hypothesis

acts as a kind of "origin" or "base" (in the

sense of "base line"), from which the alter-

native hypotheses deviate in one way or an-

other to greater and lesser degrees. Thus,

in the case of the classical problem of the

tossing of a coin, the null or base hypothesis
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specifies that the probability of "heads" on

any single trial equals 1/2. If, in a par-

ticular situation, the occurrence of "heads"

were an advantage, then we might be par-

ticularly interested in the one-sided class of

alternative hypotheses that the probability

of "heads" on any single trial equals P,

where P is some (unknown) fraction ex-

ceeding 1/2. If neither "heads" nor 'tails"

were intrinsically advantageous, but a bias

in favor of either could be employed to ad-

vantage, then we could probably be inter-

ested in the more general two-sided class

of alternative hypotheses specifying that the

probability of "heads" on any single toss

equals P, where P is some fraction (less

than, or greater than, but) not equal to 1/2.

The important point is that the null hy-

pothesis ser\'es as an origin or base. In the

coin-tossing instance, it also happens to be

a favored, or traditional, hypothesis. This

is merely a characteristic of the example

selected. Indeed, the null hypothesis is often

the very antithesis of what we would really

like to be the case.

1-9.3 TWO KINDS OF ERRORS

In basing decisions on the outcomes of

statistical tests, we always run the risks of

making either one or the other of two types

of error. If we reject the null hypothesis

when it is true, e.g., announce a difference

which really does not exist, then we make an

Error of the First Kind. If we fail to reject

a null hypothesis when it is false, e.g., fail

to find an improvement in the new shell over

the old when an improvement exists, then

we make what is called an Error of the Sec-

ond Kind. Although we do not know in a

given instance whether we have made an

error of either kind, we can know the prob-

ability of making either type of error.

1-9.4 SIGNIFICANCE LEVEL AND OPERATING
CHARACTERISTIC (OC) CURVE OF
A STATISTICAL TEST

The risk of making an error of the first

kind, a, equals what is by tradition called

the level of significance of the test. The risk

of making an error of the second kind, fi,

varies, as one would expect, with the magni-

tude of the real difference, and is summa-
rized by the Operating Characteristic (OC)
Curve of the test. See, for example, Figure

3-5. Also, the risk /8 of making an error of

the second kind increases as the risk a of

making an error of the first kind decreases.

Compare Figure 3-5 with Figure 3-6. Only
with "large" samples can we "have our cake

and eat it too"—and then there is the cost

of the test to worry about.

1-9.5 CHOICE OF THE SIGNIFICANCE LEVEL

The significance level of a statistical test

is essentially an expression of our reluctance

to give up or "reject" the null hypothesis.

If we adopt a "stiff" significance level, 0.01

or even 0.001, say, this implies that we are

very unwilling to reject the null hypothesis

unjustly. A consequence of our ultracon-

servatism in this respect will usually be that

the probability of not rejecting the null hy-

pothesis when it is really false will be large

unless the actual deviation from the null

hypothesis is large. This is clearly an en-

tirely satisfactory state of affairs if we are

quite satisfied with the status quo and are

only interested in making a change if the

change represents a very substantial im-

provement. For example, we may be quite

satisfied with the performance of the stand-

ard type of shell in all respects, and not be

willing to consider changing to the new type

unless the mean depth of penetration of the

new type were at least, say, 20% better

(12.0 cm.).

On the other hand, the standard shell may
be unsatisfactory in a number of respects

and the question at issue may be whether

the new type shows promise of being able

to replace it, either "as is" or with further

development. Here "rejection" of the null

hypothesis would not imply necessary aban-

donment of the standard type and shifting

over to the new type, but merely that the

new type shows "promise" and warrants

further investigation. In such a situation,
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one could afford a somewhat higher risk of

rejecting the null hypothesis falsely, and

would take a — 0.05 or 0.10 (or even 0.20,

perhaps), in the interest of increasing the

chances of detecting a small but promising

improvement with a small-scale experiment.

In such exploratory work, it is often more

important to have a good chance of detecting

a small but promising improvement than to

protect oneself against crying "wolf, wolf"

occasionally—because the "wolf, wolf" will

be found out in due course, but a promising

approach to improvement could be lost for-

ever.

In summary, the significance level a of

a statistical test should be chosen in the

light of the attending circumstances, includ-

ing costs. We are sometimes limited in the

choice of significance level by the availability

of necessary tables for some statistical tests.

Two values of a, a = .05 and a = .01, have

been most frequently used in research and

development work; and are given in tabula-

tions of test statistics. We have adopted

these "standard" levels of significance for

the purposes of this handbook.

1-9.6 A WORD OF CAUTION

Many persons who regularly employ sta-

tistical tests in the interpretation of research

and development data do not seem to realize

that all probabilities associated with such

tests are calculated on the supposition that

some definite set of conditions prevails.

Thus, a, the level of significance (or proba-

bility of an error of the first kind), is com-

puted on the assumption that the null hy-

pothesis is strictly true in all respects; and

fi, the risk of an error of the second kind,

is computed on the assumption that a par-

ticular specific alternative to the null hypoth-

esis is true and that the statistical test con-

cerned is carried out at the a-level of signifi-

cance. Consequently, whatever may be the

actual outcome of a statistical test, it is

mathematically impossible to infer from the

2 94

outcome anything whatsoever about the odds

for or against some particular set of condi-

tions being the truth.

Indeed, it is astonishing how often errone-

ous statements of the type "since r exceeds

the 1% level of significance, the odds are 99

to 1 that there is a correlation between the

variables" occur in research literature. How
ridiculous this type of reasoning can be is

brought out by the following simple exam-
ple'^': The American Experience Mortality

Table gives .01008 as the probability of an

individual aged 41 dying within the year.

If we accept this table as being applicable to

living persons today (which is analogous to

accepting the published tables of the signif-

icance levels of tests which we apply to our

data), and if a man's age really is 41, then

the odds are 99 to 1 that he will live out the

year. On the other hand, if we accept the

table and happen to hear that some promi-

nent individual has just died, then we cannot

(and would not) conclude that the odds are

99 to 1 that his age was different from 41.

Suppose, on the other hand, that in some

official capacity it is our practice to check

the accuracy of age statements of all persons

who say they are 41 and then die within the

year. This practice (assuming the applica-

bility of the American Experience Mortality

Table) will lead us in the long run to suspect

unjustly the word of one person in 100 whose

age was 41, who told us so, and who then

was unfortunate enough to die within the

year. The level of significance of the test is

in fact 0.01008 (1 in 100). On the other

hand, this practice will also lead us to dis-

cover mis-statements of age of all persons

professing to be 41 who are really some other

age and who happen to die within the year.

The probabilities of our discovering such

mis-statements will depend on the actual

ages of the persons making them. We shall,

however, let slip by as correct all statements

"age 41" corresponding to individuals who
are not 41 but who do not happen to die

within the year.
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The moral of this is that all statistical

tests can and should be viewed in terms of

the consequences which may be expected to

ensue from their repeated use in suitable

circumstances. When viewed in this light,

the great risks involved in drawing conclu-

sions from exceedingly small samples be-

comes manifest to anyone who takes the

time to study the OC curves for the statis-

tical tests in common use.
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STATISTICAL CONCEPTS

IN METROLOGY*'

Harry H. Ku

STATISTICAL CONCEPTS OF

A MEASUREMENT PROCESS

Arithmetic Numbers and Measurement
Numbers

In metrological work, digital numbers are used for different purposes

and consequently these numbers have different interpretations. It is therefore

important to differentiate the two types of numbers which will be encountered.
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Arithmetic numbers are exact numbers. 3, v 2 , e, or tt are all exact

numbers by definition, although in expressing some of these numbers in

digital form, approximation may have to be used. Thus, it may be written

as 3.14 or 3.1416, depending on our judgment of which is the proper one to

use from the combined point of view of accuracy and convenience. By the

usual rules of rounding, the approximations do not differ from the exact

values by more than iO.5 units of the last recorded digit. The accuracy of

the result can always be extended if necessary.

Measurement numbers, on the other hand, are not approximations to

exact numbers, but numbers obtained by operation under approximately

the same conditions. For example, three measurements on the diameter of

a steel shaft with a micrometer may yield the following results

:

No. Diameter in cm General notation

1 0.396 .Yi

2 0.392 X2

3 0.401 X,

Sum 1.189
2 Xi
=1

1
"

Average 0.3963 x = — ^ x^
n 1

Range 0.009 R = x,„ax - x„,in

There is no rounding off here. The last digit in the measured value

depends on the instrument used and our ability to read it. If we had used

a coarser instrument, we might have obtained 0.4,0.4, and 0.4; if a finer

instrument, we might have been able to record to the fifth digit after the

decimal point. In all cases, however, the last digit given certainly does

not imply that the measured value differs from the diameter D by less than

±0.5 unit of the last digit.

Thus we see that measurement numbers differ by their very nature from

arithmetic numbers. In fact, the phrase "significant figures" has little meaning

in the manipulation of numbers resulting from measurements. Reflection on

the simple example above will help to convince one of this fact.

Computation and Reporting of Results. By experience, the metrologist

can usually select an instrument to give him resuhs adequate for his needs,

as illustrated in the example above. Unfortunately, in the process of com-

putation, both arithmetic numbers and measurement numbers are present,

and frequently confusion reigns over the number of digits to be kept in

successive arithmetic operations.

No general rule can be given for all types of arithmetic operations. If the

instrument is well-chosen, severe rounding would result in loss of infor-

mation. One suggestion, therefore, is to treat all measurement numbers as

exact numbers in the operations and to round off the final result only.
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Another recommended procedure is to carry two or three extra figures

throughout the computation, and then to round off the final reported value

to an appropriate number of digits.

The "appropriate" number of digits to be retained in the final result

depends on the "uncertainties" attached to this reported value. The term

"uncertainty" will be treated later under "Precision and Accuracy"; our

only concern here is the number of digits in the expression for uncertainty.

A recommended rule is that the uncertainty should be stated to no more

than two significant figures, and the reported value itself should be stated

to the last place affected by the qualification given by the uncertainty state-

ment. An example is:

"The apparent mass correction for the nominal 10 g weight is

+0.0420 mg with an overall uncertainty of ±0.0087 mg using three

standard deviations as a limit to the effect of random errors of

measurement, the magnitude of systematic errors from known sources

being negligible."

The sentence form is preferred since then the burden is on the reporter

to specify exactly the meaning of the term uncertainty, and to spell out its

components. Abbreviated forms such as a ±i b, where a is the reported

value and b a measure of uncertainty in some vague sense, should always

be avoided.

Properties of Measurement Numbers

The study of the properties of measurement numbers, or the Theory of

Errors, formally began with Thomas Simpson more than two hundred years

ago, and attained its full development in the hands of Laplace and Gauss.

In the next subsections some of the important properties of measurement

numbers will be discussed and summarized, thus providing a basis for the

statistical treatment and analysis of these numbers in the following major

section.

The Limiting Mean. As shown in the micrometer example above, the

results of repeated measurements of a single physical quantity under essentially

the same conditions yield a set of measurement numbers. Each member of

this set is an estimate of the quantity being measured, and has equal claims

on its value. By convention, the numerical values of these n measurements

are denoted by x,, Xg, . . . , x„, the arithmetic mean by x, and the range by

R, i.e., the difference between the largest value and the smallest value

obtained in the n measurements.

If the results of measurements are to make any sense for the purpose at

hand, we must require these numbers, though different, to behave as a

group in a certain predictable manner. Experience has shown that this is
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indeed the case under the conditions stated in italics above. In fact, let us

adopt as the postulate of measurement a statement due to N. Ernest

Dorsey (reference 2)*

"The mean of a family of measurements—of a number of measure-

ments for a given quantity carried out by the same apparatus, pro-

cedure, and observer—approaches a definite value as the number of

measurements is indefinitely increased. Otherwise, they could not

properly be called measurements of a given quantity. In the theory

of errors, this limiting mean is frequently called the 'true' value,

although it bears no necessary relation to the true quaesitum, to the

actual value of the quantity that the observer desires to measure.

This has often confused the unwary. Let us call it the limiting mean."

Thus, according to this postulate, there exists a limiting mean m to

which X approaches as the number of measurements increases indefinitely,

or, in symbols x —> m as n —> oo. Furthermore, if the true value is t, there

is usually a difference between m and t, or A — w — r, where A is defined

as the bias or systematic- error of the measurements.

In practice, however, we will run into difficulties. The value of m cannot

be obtained since one cannot make an infinite number of measurements.

Even for a large number of measurements, the conditions will not remain

constant, since changes occur from hour to hour, and from day to day.

The value of t is unknown and usually unknowable, hence also the bias.

Nevertheless, this seemingly simple postulate does provide a sound foun-

dation to build on toward a mathematical model, from which estimates can

be made and inference drawn, as will be seen later on.

Range, Varianee,andStandardDeviation. The range of« measurements,

on the other hand, does not enjoy this desirable property of the arithmetic

mean. With one more measurement, the range may increase but cannot

decrease. Since only the largest and the smallest numbers enter into its

calculation, obviously the additional information provided by the measure-

ments in between is lost. It will be desirable to look for another measure

of the dispersion (spread, or scattering) of our measurements which will

utilize each measurement made with equal weight, and which will approach

a definite number as the number of measurements is indefinitely increased.

A number of such measures can be constructed; the most frequently

used are the variance and the standard deviation. The choice of the variance

as the measure of dispersion is based upon its mathematical convenience

and maneuverability. Variance is defined as the value approached by the

average of the sum of squares of the deviations of individual measurements

from the limiting mean as the number of measurements is indefinitely

^References are listed at the end of this chapter.
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increased, or in symbols:

— 2 (^i — —
> a'^ = variance, as n —> oo

n i..

The positive square root of the variance, a, is called the standard deviation

(of a single measurement) ; the standard deviation is of the same dimension-

ality as the limiting mean.

There are other measures of dispersion, such as average deviation and

probable error. The relationships between these measures and the standard

deviation can be found in reference 1.

Population and the Frequency Curve. We shall call the limiting mean m
the location parameter and the standard deviation a the scale parameter of

the population of measurement numbers generated by a particular measure-

ment process. By population is meant the conceptually infinite number of

measurements that can be generated. The two numbers m and a describe

this population of measurements to a large extent, and specify it completely

in one important special case.

Our model of a measurement process consists then of a defined popu-

lation of measurement numbers with a limiting mean m and a standard

deviation a. The result of a single measurement X* can take randomly any

of the values belonging to this population. The probability that a particular

measurement yields a value of X which is less than or equal to x' is the

proportion of the population that is less than or equal to x', in symbols

P{X < x'] = proportion of population less than or equal to x'

Similar statements can be made for the probability that X will be greater

than or equal to x", or for X between x' and x" as follows: P{X> x"],

or F{x' <X< x"}.

For a measurement process that yields numbers on a continuous scale,

the distribution of values of X for the population can be represented by

a smooth curve, for example, curve C in Fig. 2-1. C is called a frequency

curve. The area between C and the abscissa bounded by any two values

{xi and X2) is the proportion of the population that takes values between

the two values, or the probability that X will assume values between Xi

and X2. For example, the probability that X < x', can be represented by

the shaded area to the left of a:'; the total area between the frequency curve

and the abscissa being one by definition.

Note that the shape of C is not determined by m and a alone. Any
curve C enclosing an area of unity with the abscissa defines the distribution

of a particular population. Two examples, the uniform distribution and

*Convention is followed in using the capital X to represent the value that might be

produced by employing the measurement process to obtain a measurement (i.e., a random

variable), and the lower case x to represent a particular value of X observed.
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Fig. 2-2. (A) The uniform distribution. (B) The log-normal

distribution.

the log-normal distribution are given in Figs. 2-2A and 2-2B. These and

other distributions are useful in describing certain populations.

The Normal Distribution. For data generated by a measurement process,

the following properties are usually observed:

1. The results spread roughly symmetrically about a central value.

2. Small deviations from this central value are more frequently found

than large deviations.
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A measurement process having these two properties would generate a fre-

quency curve similar to that shown in Fig. 2-1 which is symmetrical and

bunched together about m. The study of a particular theoretical represen-

tation of a frequency curve of this type leads to the celebrated bell-shaped

normal curve (Gauss error curve.). Measurements having such a normal

frequency curve are said to be normally distributed, or distributed in

accordance with the normal law of error.

The normal curve can be represented exactly by the mathematical

expression

1

(2-0)

where y is the ordinate and x the abscissa and e = 2.71828 is the base of

natural logarithms.

Some of the important features of the normal curve are:

1. It is symmetrical about m.

2. The area under the curve is one, as required.

3. If cr is used as unit on the abscissa, then the area under the curve

between constant multiples of a can be computed from tabulated

values of the normal distribution. In particular, areas under the curve

for some useful intervals between m — ka and m -\- ka are given in

Table 2-1. Thus about two-thirds of the area lies within one u of m,

more than 95 percent within la of m, and less than 0.3 percent beyond

3cr from m.

TABLE 2-1

Area under normal curve between m — ka and m -\- ka

k: 0.6745 1.00 1.96 2.00 2.58 3.00

Percent area under

curve (approx.): 50.0 68.3 95.0 95.5 99.0 99.7

4. From Eq. (2-0), it is evident that the frequency curve is completely

determined by the two parameters m and a.

The normal distribution has been studied intensively during the past

century. Consequently, if the measurements follow a normal distribution,

we can say a great deal about the measurement process. The question

remains: How do we know that this is so from the limited number of

repeated measurements on hand ?

The answer is that we don't! However, in most instances the metrologist

may be willing

1. to assume that the measurement process generates numbers that fol-

low a normal distribution approximately, and act as if this were so,

2. to rely on the so-called Central Limit Theorem, one version of which
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is the following* : "If a population has a finite variance and mean
m, then the distribution of the sample mean (of n independent

measurements) approaches the normal distribution with variance

(r'^jn and mean m as the sample size n increases." This remarkable

and powerful theorem is indeed tailored for measurement processes.

First, every measurement process must by definition have a finite

mean and variance. Second, the sample mean x is the quantity of

interest which, according to the theorem, will be approximately

normally distributed for large sample sizes. Third, the measure of

dispersion, i.e., the standard deviation of the sample mean, is reduced

by a factor of l/^/TT ! This last statement is true in general for all

measurement processes in which the measurements are "independent"

and for all n. It is therefore not a consequence of the Central Limit

Theorem. The theorem guarantees, however, that the distribution of

sample means of independent measurements will be approximately

normal with the specified limiting mean and standard deviation

al^/~n for large n.

In fact, for a measurement process with a frequency curve that is sym-

metrical about the mean, and with small deviations from the mean as

compared to the magnitude of the quantity measured, the normal approxi-

mation to the distribution of x becomes very good even for n as small as

3 or 4. Figure 2-3 shows the uniform and normal distribution having the

same mean and standard deviation. The peaked curve is actually two curves,

representing the distribution of arithmetic means of four independent

measurements from the respective distributions. These curves are indis-

tinguishable to this scale.

A formal definition of the concept of "independence" is out of the scope

here. Intuitively, we may say that n normally distributed measurements are

independent if these measurements are not correlated or associated in any

way. Thus, a sequence of measurements showing a trend or pattern are not

independent measurements.

There are many ways by which dependence or correlation creeps into

a set of measurement data; several of the common causes are the following:

1. Measurements are correlated through a factor that has not been

considered, or has been considered to be of no appreciable effect

on the results.

2. A standard correction constant has been used for a factor, e.g.,

temperature, but the constant may overcorrect or undercorrect for

particular samples.

3. Measurements are correlated through time of the day, between days,

weeks, or seasons.

*From Chapter 7, Introduction to the Theory of Statistics, by A. M. Mood, McGraw-
Hill Book Company, New York, 1950.
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Fig. 2-3. Uniform and normal distribution of individual meas-

urements having the same mean and standard deviation, and the

corresponding distribution(s) of arithmetic means of four inde-

pendent measurements.

4. Measurements are correlated through rejection of valid data, when

the rejection is based on the size of the number in relation to others

of the group.

The traditional way of plotting the data in the sequence they are taken,

or in some rational grouping, is perhaps still the most effective way of

detecting trends or correlation.

Estimates of Population Characteristics. In the above section it is shown

that the limiting mean m and the variance completely specify a measure-

ment process that follows the normal distribution. In practice, m and o-^

are not known and cannot be computed from a finite number of measure-

ments. This leads to the use of the sample mean x as an estimate of the

limiting mean m and s^, the square of the computed standard deviation of

the sample, as an estimate of the variance. The standard deviation of the

average of n measurements, aj^J^ , is sometimes referred to as the standard

error of the mean, and is estimated by sl\/~n .

We note that the making of n independent measurements is equivalent
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to drawing a sample of size n at random from the population of measure-

ments. Two concepts are of importance here:

1. The measurement process is established and under control, meaning

that the limiting mean and the standard deviation do possess definite

values which will not change over a reasonable period of time.

2. The measurements are randomly drawn from this population, implying

that the values are of equal weights, and there is no prejudice in the

method of selection. Suppose out of three measurements the one

which is far apart from the other two is rejected, then the result will

not be a random sample.

For a random sample we can say that Jc is an unbiased estimate of w,

and is an unbiased estimate of o•^ i.e., the limiting mean of x is equal to

m and of to o^ where

1
"

X ^ —'Z Xi
n i=i

and

1

2 (Xi - xf =
1 if,

(2

In addition, we define

s — = computed standard deviation

Examples of numerical calculations of x and and s are shown in

Tables 2-5 and 2-6.

Interpretation and Computation of

Confidence interval and Limits

By making k sets of n measurements each, we can compute and arrange

k, x's, and s's in a tabular form as follows:

Set Sample mean Sample standard deviation

1 jCi Ji

2 x^

k X/c S/c

In the array of x's, no two will be likely to have exactly the same value.

From the Central Limit Theorem it can be deduced that the x's will be
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approximately normally distributed with standard deviation crj^/li. The

frequency curve of x will be centered about the limiting mean m and will

have the scale factor a/^x/^. In other words, x — m will be centered about

zero, and the quantity

^ _ X — m

has the properties of a single observation from the "standardized" normal

distribution which has a mean of zero and a standard deviation of one.

From tabulated values of the standardized normal distribution it is known
that 95 percent of z values will be bounded between —1.96 and +1.96.

Hence the statement

-1.96 < ^~J^ < +1.96
(j/V n

or its equivalent,

X _ 1.96^^ <m<x+ 1.96-^
V « V «

will be correct 95 percent of the time in the long run. The interval

X — 1.96(o-/V^ ) to X + 1.96(o-/v^) is called a confidence interval for m.

The probability that the confidence interval will cover the limiting mean,

0.95 in this case, is called the confidence level or confidence coefl^icient. The

values of the end points of a confidence interval are called confidence limits.

It is to be borne in mind that Jc will fluctuate from set to set, and the interval

calculated for a particular Xj may or may not cover m.

In the above discussion we have selected a two-sided interval sym-

metrical about X. For such intervals the confidence coefficient is usually

denoted by 1 — o;, where is the percent of the area under the frequency

curve of z that is cut off from each tail.

In most cases, a is not known and an estimate of <r is computed from

the same set of measurements we use to calculate x. Nevertheless, let us

form a quantity similar to z, which is

^
_ X ~ m

and if we know the distribution of t, we could make the same type of state-

ment as before. In fact the distribution of / is known for the case of normally

distributed measurements.

The distribution of t was obtained mathematically by William S. Gosset

under the pen name of "Student," hence the distribution of / is called the

Student's distribution. In the expression for t, both x and s fluctuate from

set to set of measurements. Intuitively we will expect the value of t to be

larger than that of z for a statement with the same probability of being

correct. This is indeed the case. The values of t are listed in Table 2-2.
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TABLE 2-2. A BRIEF TABLE OF VALUES OF t*

Degrees of Confidence Level

:

1 - a
freedom

V 0.500 0.900 0.950 0.990

1 1.000 6.314 12.706 63.657

2 .816 2.920 4.303 9.925

3 .765 2.353 3.182 5.841

4 .741 2.132 2.776 4.604

5 .727 2.015 2.571 4.032

6 .718 1.943 2.447 3.707

7 .711 1.895 2.365 3.499

10 .700 1.812 2.228 3.169

15 .691 1.753 2.131 2.947

20 .687 1.725 2.086 2.845

30 .683 1.697 2.042 2.750

60 .679 1.671 2.000 2.660

oo .674 1.645 1.960 2.576

Adapted from Biometrika Tables for Statisticians, Vol. I, edited by E. S. Pearson

and H. O. Hartley, The University Press, Cambridge, 1958.

To find a value for /, we need to know the "degrees of freedom" iy)

associated with the computed standard deviation s. Since x is calculated

from the same n numbers and has a fixed value, the «th value of Xt is com-

pletely determined by x and the other {n — \)x values. Hence the degrees

of freedom here are « — 1

.

Having the table for the distribution of /, and using the same reasoning

as before, we can make the statement that

X — t I— < m < X -\- t
y

and our statement will be correct 100 (1 — o:) percent of the time in the long

run. The value of / depends on the degrees of freedom v and the proba-

bility level. From the table, we get for a confidence level of 0.95, the follow-

ing lower and upper confidence limits

:

V Li = X — t(s/Vn') Lu = X + t(s/'\/~n )

1 Jc - 1 2.706(5/v^) X + 1 2.706(5/

2 X- 4.303(5/v^) Jc + 4.303(s/V~n)

3 Jc - 3.1 82(5/v^) Jc + 3.1 82(5/V^)

The value of / for i; = oo is 1.96, the same as for the case of known a.

Notice that very little can be said about m with two measurements. However,

for n larger than 2, the interval predicted to contain m narrows down steadily,

due to both the smaller value of / and the divisor v^.
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It is probably worthwhile to emphasize again that each particular con-

fidence interval computed as a result of n measurements will either include

m or fail to include m. The probability statement refers to the fact that if

we make a long series of sets of n measurements, and if we compute a

confidence interval for m from each set by the prescribed method, we would

expect 95 percent of such intervals to include m.

Fig. 2-4. Computed 90% confidence intervals for 100 samples of

size 4 drawn at random from a normal population with m = 10,

a = \.

Figure 2-4 shows the 90 percent confidence intervals {P = 0.90) computed

from 100 samples of n = 4 from a normal population with m = \0, and

a — \. Three interesting features are to be noted:

1. The number of intervals that include m actually turns out to be 90,

the expected number.

2. The surprising variation of the sizes of these intervals.

3. The closeness of the mid-points of these intervals to the line for the

mean does not seem to be related to the spread. In samples No. 2

and No. 3, the four values must have been very close together, but

both of these intervals failed to include the line for the mean.

From the widths of computed confidence intervals, one may get an

intuitive feeling whether the number of measurements n is reasonable and

sufficient for the purpose on hand. It is true that, even for small n, the

confidence intervals will cover the limiting mean with the specified proba-

bility, yet the limits may be so far apart as to be of no practical significance.

For detecting a specified magnitude of interest, e.g., the difference between

two means, the approximate number of measurements required can be

solved by equating the half-width of the confidence interval to this difference

and solving for n, using a when known, or using 5 by trial and error if o- is

not known. Tables of sample sizes required for certain prescribed condi-

tions are given in reference 4.
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Precision and Accuracy

Index of Precision. Since o- is a measure of the spread of the frequency

curve about the Hmiting mean, a may be defined as an index of precision.

Thus a measurement process with a standard deviation cr, is said to be

more precise than another with a standard deviation o-j if o-j is smaller than

o-g. (In fact, a is really a measure of imprecision since the imprecision is

directly proportional to a.)

Consider the means of sets of n independent measurements as a new

derived measurement process. The standard deviation of the new process

is cr/v^. It is therefore possible to derive from a less precise measurement

process a new process which has a standard deviation equal to that of a

more precise process. This is accomplished by making more measurements.

Suppose m, = Ws, but o-j = 2o-2. Then for a derived process to have

a[ = (Tj, we need

or we need to use the average of four measurements as a single measurement.

Thus for a required degree of precision, the number of measurements, rii

and needed for measurement processes I and II is proportional to the

squares of their respective standard deviations (variances), or in symbols

rii _ <t\

rii
~

0-2

If a is not known, and the best estimate we have of o- is a computed

standard deviation s based on n measurements, then s could be used as an

estimate of the index of precision. The value of s, however, may vary con-

siderably from sample to sample in the case of a small number of measure-

ments as was shown in Fig. 2-4, where the lengths of the intervals are

constant multiples of s computed from the samples. The number n or the

degrees of freedom v must be considered along with s in indicating how
reliable an estimate s is of a. In what follows, whenever the terms standard

deviation about the limiting mean (cr), or standard error of the mean (o-j),

are used, the respective estimates s and sl^/~n may be substituted, by taking

into consideration the above reservation.

In metrology or calibration work, the precision of the reported value is

an integral part of the result. In fact, precision is the main criterion by which

the quality of the work is judged. Hence, the laboratory reporting the value

must be prepared to give evidence of the precision claimed. Obviously an

estimate of the standard deviation of the measurement process based only

on a small number of measurements cannot be considered as convincing

evidence. By the use of the control chart method for standard deviation

and by the calibration of one's own standard at frequent intervals, as
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subsequently described, the laboratory may eventually claim that the

standard deviation is in fact known and the measurement process is stable,

with readily available evidence to support these claims.

Interpretation of Precision. Since a measurement process generates

numbers as the results of repeated measurements of a single physical quantity

under essentially the same conditions, the method and procedure in obtaining

these numbers must be specified in detail. However, no amount of detail

would cover all the contingencies that may arise, or cover all the factors

that may affect the results of measurement. Thus a single operator in a

single day with a single instrument may generate a process with a precision

index measured by a. Many operators measuring the same quantity over

a period of time with a number of instruments will yield a precision index

measured by a'. Logically a' must be larger than a, and in practice it is

usually considerably larger. Consequently, modifiers of the words "precision"

are recommended by ASTM* to qualify in an unambiguous manner what

is meant. Examples are "single-operator-machine," "multi-laboratory,"

"single-operator-day," etc. The same publication warns against the use of

the terms "repeatability" and "reproducibility" if the interpretation of these

terms is not clear from the context.

The standard deviation a or the standard error cr/V n can be considered

as a yardstick with which we can gage the difference between two results

obtained as measurements of the same physical quantity. If our interest is

to compare the results of one operator against another, the single-operator

precision is probably appropriate, and if the two results differ by an amount

considered to be large as measured by the standard errors, we may conclude

that the evidence is predominantly against the two results being truly equal.

In comparing the results of two laboratories, the single-operator precision

is obviously an inadequate measure to use, since the precision of each

laboratory must include factors such as multi-operator-day-instruments.

Hence the selection of an index of precision depends strongly on the

purposes for which the results are to be used or might be used. It is common
experience that three measurements made within the hour are closer together

than three measurements made on, say, three separate days. However,

an index of precision based on the former is generally not a justifiable

indicator of the quality of the reported value. For a thorough discussion

on the realistic evaluation of precision see Section 4 of reference 2.

Accuracy. The term "accuracy" usually denotes in some sense the close-

ness of the measured values to the true value, taking into consideration

*"Use of the Terms Precision and Accuracy as Applied to the Measurement of a

Property of a Material," ASTM Designation, E177-61T, 1961.
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both precision and bias. Bias, defined as the difference between the Hmiting

mean and the true value, is a constant, and does not behave in the same

way as the index of precision, the standard deviation. In many instances,

the possible sources of biases are known but their magnitudes and directions

are not known. The overall bias is of necessity reported in terms of estimated

bounds that reasonably include the combined effect of all the elemental

biases. Since there are no accepted ways to estimate bounds for elemental

biases, or to combine them, these should be reported and discussed in

sufficient detail to enable others to use their own judgment on the matter.

It is recommended that an index of accuracy be expressed as a pair of

numbers, one the credible bounds for bias, and the other an index of pre-

cision, usually in the form of a multiple of the standard deviation (or

estimated standard deviation). The terms "uncertainty" and "limits of error"

are sometimes used to express the sum of these two components, and their

meanings are ambiguous unless the components are spelled out in detail.

STATISTICAL ANALYSIS

OF MEASUREMENT DATA

In the last section the basic concepts of a measurement process were

given in an expository manner. These concepts, necessary to the statistical

analysis to be presented in this section, are summarized and reviewed below.

By making a measurement we obtain a number intended to express quanti-

tatively a measure of "the property of a thing." Measurement numbers

differ from ordinary arithmetic numbers, and the usual "significant figure"

treatment is not appropriate. Repeated measurement of a single physical

quantity under essentially the same conditions generates a sequence of

numbers x,, x^, . . . , x„. A measurement process is established if this con-

ceptually infinite sequence has a limiting mean m and a standard deviation a.

For many measurement processes encountered in metrology, the sequence

of numbers generated follows approximately the normal distribution,

specified completely by the two quantities m and a. Moreover, averages of

n independent measurement numbers tend to be normally distributed with

the limiting mean m and the standard deviation cr/V n
,
regardless of the

distribution of the original numbers. Normally distributed measurements

are independent if they are not correlated or associated in any way. A
sequence of measurements showing a trend or pattern are not independent

measurements. Since m and a are usually not known, these quantities are

estimated by calculating x and s from n measurements, where
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1
"

and

s =

The distribution of the quantity t = (x — m)/(s/^>,/lt) (for x normally

distributed) is known. From the tabulated values of t (see Table 2-2), con-

fidence intervals can be constructed to bracket m for a given confidence

coeflRcient \ ~ a (probability of being correct in the long run).

The confidence limits are the end points of confidence intervals defined by

Li = X — t—^

Lu = X + t

where the value of t is determined by two parameters, namely, the degrees

of freedom v associated with s and the confidence coefficient 1 — a.

The width of a confidence interval gives an intuitive measure of the

uncertainty of the evidence given by the data. Too wide an interval may
merely indicate that more measurements need to be made for the objective

desired.

Algebra for the Manipulation of Limiting

Means and Variances

Basic Formulas. A number of basic formulas are extremely useful in

dealing with a quantity which is a combination of other measured quantities.

1. Let nix and rriy be the respective limiting means of two measured

quantities X and Y, and a, b be constants, then

m^.y = — nty \ (2-1)

max+by = arri:^ + bniy

2. If, in addition, X and Y are independent, then it is also true that

= m^my (2-2)

For paired values of X and Y, we can form the quantity Z, with

Z = (X - mx)(Y - my) (2-3)

Then by formula (2-2) for independent variables,

= (m^ — m^Xniy — niy) = 0

Thus = 0 when X and Y are independent.
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3. The limiting mean of Z in (2-3) is defined as the covariance of X
and Y and is usually denoted by cov (A', Y), or a^y. The covariance, similar

to the variance, is estimated by

•sxv = 2 - ^){yi - y) (2-4)

Thus if X and Y are correlated in such a way that paired values are likely

to be both higher or lower than their respective means, then s^y tends to be

positive. If a high x value is hkely to be paired with a low y value, and vice

versa, then s^y tends to be negative. If X and Y are not correlated, Sj,y tends

to zero (for large ri).

4. The correlation coefficient p is defined as:

^ xy
(2-5)

and is estimated by

SxSy V2 (X, - xy s (>', - yy

Both p and r lie between — 1 and + 1

.

5. Let al and al be the respective variances of X and Y, and cr^^ the

covariance of X and Y, then

(2-7)
o'x+y = o"^ + (Ty + la^y

<y\-V = 0-| + — 2o-^i;

If X and y are independent, (r^y = 0, then

o-|+j/ = o"x + o"v = 0-x-i/ (2-8)

Since the variance of a constant is zero, we have

9 9 9

(2-9)

In particular, if X and F are independent and normally distributed, then

aX + 6 F is normally distributed with limiting mean arri:^ + bniy and

variance a^o-\ +
For measurement situations in general, metrologists usually strive to

get measurements that are independent, or can be assumed to be inde-

pendent. The case when two quantities are dependent because both are

functions of other measured quantities will be treated under propagation of

error formulas (see Eq. 2-13).

6. Standard errors of the sample mean and the weighted means (of

independent measurements) are special cases of the above. Since

X = O/n) 2 Xi and the jCi's are independent with variance o^, it follows,

by (2-9), that
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as previously stated.

If Xi is an average of k values, and Xs is an average of n values, then for

the over-all average, x, it is logical to compute

» -^1 ""h • • • 4" -^fc + Xi^+i -|~ • • • ~h X/c+n
^ k + n

and 0-= = a^J{k + n). However, this is equivalent to a weighted mean of

jc, and Xa, where the weights are proportional to the number of measurements

in each average, i.e.,

= k, M's = n

and

X =

k _ .

n + k ' n + k

Since

cr|, ^ Q-yA: ^ A = ^

the weighting factors w, and are therefore also inversely proportional

to the respective variances of the averages. This principle can be extended

to more than two variables in the following manner.

Let X,, Xj, . . . , be a set of averages estimating the same quantity.

The over-all average may be computed to be

1

Wi + ^2 + • • • + Wfc

where

(WiX, + W2X2 + • • • + WfcXfc)

1 1 1

The variance of x is, by (2-9),

al = i (2-11)
Wi + + • • • + W*:

In practice, the estimated variances si will have to be used in the above

formulas, and consequently the equations hold only as approximations.

Propagation of error formulas. The results of a measurement process

can usually be expressed by a number of averages x, y, . . . , and the standard

errors of these averages = Sxl's/~n, s-y = Sy/ys/~k, etc. These results, however,

may not be of direct interest; the quantity of interest is in the functional

relationship niy, = f(mx,niy). It is desired to estimate niw by m> = f(x,y) and

to compute s^^ as an estimate of o-^;.

314-38



If the errors of measurements of these quantities are small in comparison

with the values measured, the propagation of error formulas usually work

surprisingly well. The a%, cr|, and o-| that are used in the following formulas

will often be replaced in practice by the computed values s%, si, and 4-

The general formula for a% is given by

dx
or,-,

dx
(2-12)

where the partial derivatives in square brackets are to be evaluated at the

averages of x and y. If X and Y are independent, p = 0 and therefore the

last term equals zero. If X and Fare measured in pairs, (Eq. 2-4) can be

used as an estimate of pxv<^i(Jy.

If W is functionally related to U and V by

w„, = f{mu, my)

TABLE 2-3. PROPAGATION OF ERROR FORMULAS FOR
SOME SIMPLE FUNCTIONS

(A' and Y are assumed to be independent.)

Function form Approximate formula for j|

Am^ + Bniy

mx
rriy

l_

(j) + y)

m,,, =
1 +

=

=

= In mj.

=

W = 100^
X of variation)

(1 +

(^^Kt + f

)

14
4 X

&xA

(not directly derived from
2(« — 1) the formulas)t

^Distribution of w is highly skewed and normal approximation could be seriously

in error for small n.

tSee, for example. Statistical Theory with Engineering Applications, by A. Hald, John

Wiley & Sons, Inc., New York, 1952, p. 301.
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and both U and V are functionally related to X and Y by

rriu = g{m^, rriy)

w„ = /j(mx, niy)

then U and K are functionally related. We will need the covariance

Puv^^u'^v to calculate a%. The covariance a^^ is given approximately by

dg dhlo
dy 8yi

dg
^
8h'

By dx_

cr

dg_ ,
dh

dx Bx
0-1 +

+ Bg Bh
Bx '

By.
+

(2-13)

The square brackets mean, as before, that the partial derivatives are to be

evaluated at x and y. If X and Y are independent, the last term again

vanishes.

These formulas can be extended to three or more variables if necessary.

For convenience, a few special formulas for commonly encountered functions

are listed in Table 2-3 with X, Y assumed to be independent. These may be

derived from the above formulas as exercises.

In these formulas, if

(a) the partial derivatives when evaluated at the averages are small, and

(b) 0-3., cTy are small compared to x, y,

then the approximations are good and -w tends to be distributed normally

(the ones marked by asterisks are highly skewed and normal approximation

could be seriously in error for small n).

Pooling Estimates of Variances. The problem often arises that there are

several estimates of a common variance which we wish to combine into

a single estimate. For example, a gage block may be compared with the

master block «, times, resulting in an estimate of the variance si. Another

gage block compared with the master block times, giving rise to si, etc.

As long as the nominal thicknesses of these blocks are within a certain

range, the precision of calibration can be expected to remain the same.

To get a better evaluation of the precision of the calibration process, we

would wish to combine these estimates. The rule is to combine the computed

variances weighted by their respective degrees of freedom, or

ViSl + ViSl +
(2-14)

Vi + V2 ^ • +
The pooled estimate of the standard deviation, of course, is

In the example, Vi = rii — I, = — \, . . . , Vk = rik — \, thus the

expression reduces to

{n, - \)s\ + in, - \)sl + • • • + (Wfc - \)s\

«1 + «2 + + fik — k
(2-15)
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The degrees of freedom for the pooled estimate is the sum of the degrees

of freedom of individual estimates, or ^1 + 1^2+ • • • f*: = «i + «2 + • •
•

-\- Hk — k. With the increased number of degrees of freedom, Sp is a more

dependable estimate of a than an individual s. Eventually, we may consider

the value of Sp to be equal to that of a and claim that we know the precision

of the measuring process.

For the special case where k sets of duplicate measurements are available,

the above formula reduces to:

4 =
2^ i d\ (2-16)

where di = difference of duplicate readings. The pooled standard deviation

Sp has k degrees of freedom.

For sets of normally distributed measurements where the number of

measurements in each set is small, say less than ten, an estimate of the

standard deviation can be obtained by multiplying the range of these meas-

urements by a constant. Table 2-4 lists these constants corresponding to the

number n of measurements in the set. For large n, considerable information

is lost and this procedure is not recommended.

TABLE 2-4. ESTIMATE OF a FROM THE RANGE*

n Multiplying factor

2 0.886

3 0.591

4 0.486

5 0.430

6 0.395

7 0.370

8 0.351

9 0.337

10 0.325

Adapted from Biometrika Tables for Statisticians, Vol. I, edited by E. S. Pearson

and H. O. Hartley, The University Press, Cambridge, 1958.

If there are k sets of n measurements each, the average range R can be

computed. The standard deviation can be estimated by multiplying the

average range by the factor for n.

Component of Variance Between Groups. In pooling estimates of vari-

ances from a number of subgroups, we have increased confidence in the value

of the estimate obtained. Let us call this estimate the within-group standard

deviation, a^. The within-group standard deviation cr^ is a proper measure

of dispersions of values within the same group, but not necessarily the

proper one for dispersions of values belonging to different groups.
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If in making calibrations there is a difference between groups, say from

day to day, or from set to set, then the hmiting means of the groups are

not equal. These limiting means may be thought of as individual measure-

ments; thus, it could be assumed that the average of these hmiting means

will approach a limit which can be called the limiting mean for all the groups.

In estimating o-^^,, the differences of individuals from the respective group

means are used. Obviously (7„, does not include the differences between

groups. Let us use al to denote the variance corresponding to the differences

between groups, i.e., the measure of dispersion of the limiting means of the

respective groups about the limiting mean for all groups.

Thus for each individual measurement x, the variance of X has two

components, and

(T^ = al + u\

For the group mean x with n measurements in the group,

<7| = + ^
If k groups of n measurements are available giving averages Xi,X2, . . .

,

Xfc, then an estimate of cr| is

with k — 1 degrees of freedom, where x is the average of all nk measure-

ments.

The resolution of the total variance into components attributable to

identifiable causes or factors and the estimation of such components of

variances are topics treated under analysis of variance and experimental

design. For selected treatments and examples see references 5, 6, and 8.

Comparison of Means and Variances

Comparison of means is perhaps one of the most frequently used tech-

niques in metrology. The mean obtained from one measurement process

may be compared with a standard value; two series of measurements on

the same quantity may be compared; or sets of measurements on more than

two quantities may be compared to determine homogeneity of the group

of means.

It is to be borne in mind in all of the comparisons discussed below,

that we are interested in comparing the limiting means. The sample means

and the computed standard errors are used to calculate confidence limits

on the difference between two means. The "t" statistic derived from normal

distribution theory is used in this procedure since we are assuming either

the measurement process is normal, or the sample averages are approxi-

mately normally distributed.
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Comparison of a Mean with a Standard Value. In calibration of

weights at the National Bureau of Standards, the weights to be calibrated are

intercompared with sets of standard weights having "accepted" corrections.

Accepted corrections are based on years of experience and considered to be

exact to the accuracy required. For instance, the accepted correction for the

NB'IO gram weight is —0.4040 mg.

The NB'IO is treated as an unknown and calibrated with each set of

weights tested using an intercomparison scheme based on a 100-gm standard

weight. Hence the observed correction for NB'IO can be computed for each

particular calibration. Table 2-5 lists eleven observed corrections of NB'IO

during May 1963.

TABLE 2-5. COMPUTATION OF CONFIDENCE LIMITS FOR

OBSERVED CORRECTIONS, NB'IO gm*

Date / Xi Observed Corrections to standard 10 gm wt in mg

5-1-63 1 -0.4008

5-1-63 2 -0.4053

5-1-63 3 -0.4022

5-2-63 4 -0.4075

5-2-63 5 -0.3994

5-3-63 6 -0.3986

5-6-63 7 -0.4015

5-6-63 8 -0.3992

5-6-63 9 -0.3973

5-7-63 10 -0.4071

5-7-63 11 -0.4012

^Xi= -4.4201 2 -^f
= 1.77623417

X = -0.40183 mg _ 1.77611673
n

difference = 0.00011744

j2 = _J_(0.0001 1744) = 0.000011744

s = 0.00343 = computed standard deviation of an observed correction about the mean.

—f= = 0.00103 = computed standard deviation of the mean of eleven corrections.
V n

= computed standard error of the mean.

For a two-sided 95 percent confidence interval for the mean of the above sample of

size 11, a/2 = 0.025, v = 10, and the corresponding value of t is equal to 2.228 in the

table of / distribution. Therefore,

Li = X - t-^ = -0.40183 - 2.228 x 0.00103 = -0.40412

and

L„ = jc + /-4== = -0.40183 + 2.228 x 0.00103 =-0.39954
V n

*Data supplied by Robert Raybold, Metrology Division, National Bureau of Standards.
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Calculated 95 percent confidence limits from the eleven observed cor-

rections are —0.4041 and —0.3995. These values include the accepted value

of —0.4040, and we conclude that the observed corrections agree with the

accepted value.

What if the computed confidence limits for the observed correction do

not cover the accepted value ? Three explanations may be suggested

:

1. The accepted value is correct. However, in choosing a = 0.05, we
know that 5 percent of the time in the long run we will make an

error in our statement. By chance alone, it is possible that this par-

ticular set of limits would not cover the accepted value.

2. The average of the observed corrections does not agree with the

accepted value because of certain systematic error, temporary or

seasonal, particular to one or several members of this set of data for

which no adjustment has been made.

3. The accepted value is incorrect, e.g., the mass of the standard has

changed.

In our example, we would be extremely reluctant to agree to the third

explanation since we have much more confidence in the accepted value than

the value based only on eleven calibrations. We are warned that something

may have gone wrong, but not unduly alarmed since such an event will

happen purely by chance about once every twenty times.

The control chart for mean with known value, to be discussed in a

following section, would be the proper tool to use to monitor the constancy

of the correction of the standard mass.

Comparison Among Two or More Means. The difference between two

quantities X and Y to be measured is the quantity

and is 'estimated by x — y, where x and y are averages of a number of

measurements of X and Y respectively.

Suppose we are interested in knowing whether the difference w^.j, could

be zero. This problem can be solved by a technique previously introduced,

i.e., the confidence limits can be computed for trix-y, and if the upper and

lower limits include zero, we could conclude that m-,_y may take the value

zero; otherwise, we conclude that the evidence is against ttijc^y — 0.

Let us assume that measurements of X and Y are independent with

known variances and respectively.

By Eq. (2.10)

0-2

oi = — for X of n measurements
n

2

o\ = for y of k measurements

then by (2.8),

320-44



k

Therefore, the quantity

z = (2-17)

Vtt + t
is approximately normally distributed with mean zero and a standard

deviation of one under the assumption rux-y = 0.

If ax and ay are not known, but the two can be assumed to be approxi-

mately equal, e.g., x and y are measured by the same process, then si and

4 can be pooled by Eq. (2-15), or

, _ in - l)sl + {k- \)sl

n + k-2
This pooled computed variance estimates

a^ = a\ = al

so that

Thus, the quantity

t = r^\~ ^ (2-18)

is distributed as Student's 'T', and a confidence interval can be set about

rrix-y with = « + /: — 2 and p — \ — a. If this interval does not include

zero, we may conclude that the evidence is strongly against the hypothesis

= niy.

As an example, we continue with the calibration of weights with

NB'lOgm. For 11 subsequent observed corrections during September and

October, the confidence interval (computed in the same manner as in the

preceding example) has been found to be

Li = -0.40782

L„ = -0.40126

Also,

Y = -0.40454 and -4^ = 0.00147
k

It is desired to compare the means of observed corrections for the two sets

of data. Here

« = A: = 11

X = -0.40183, y = -0.40454

si = 0.00001 1669, 4 = 0.000023813
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si = ^(0.000035482) = 0.000017741

n + k _ 11 + 11 _ 2l
nk 121 ~11

" + ^Sr, = ^ i X 0.000017741 = 0.00180
nk " y 11

For a/2 = 0.025, I - a = 0.95, and v = 20, t = 2.086. Therefore,

Lu^{x -y) + ^y^^^ Sp = 0.00271 + 2.086 x 0.00180

0.00646

L, = (x-y)- t^l^ s, = -0.00104
nk

Since L; < 0 < shows that the confidence interval includes zero, we

conclude that there is no evidence against the hypothesis that the two

observed average corrections are the same, or nix = f^y. Note, however,

that we would reach a conclusion of no difference wherever the magnitude

of X — y (0.00271 mg) is less than the half-width of the confidence interval

(2.086 X 0.00180 = 0.00375 mg) calculated for the particular case. When
the true difference m^-y is large, the above situation is not likely to happen;

but when the true difference is small, say about 0.003 mg, then it is highly

probable that a conclusion of no difference will still be reached. If a detection

of difference of this magnitude is of interest, more measurements will

be needed.

The following additional topics are treated in reference 4.

1. Sample sizes required under certain specified conditions—Tables A-8

and A-9.

2. al cannot be assumed to be equal to al—Section 3-3.1.2.

3. Comparison of several means by Studentized range—Sections 3-4

and 15-4.

Comparison of variances or ranges. As we have seen, the precision of

a measurement process can be expressed in terms of the computed standard

deviation, the variance, or the range. To compare the precision of two

processes a and b, any of the three measures can be used, depending on

the preference and convenience of the user.

Let si be the estimate of al with Va degrees of freedom, and si be the

estimate of al with degrees of freedom. The ratio F = sl/sl has a distri-

bution depending on and v^. Tables of upper percentage points of F
are given in most statistical textbooks, e.g., reference 4, Table A-5 and

Section 4-2.

In the comparison of means, we were interested in finding out if the

absolute difference between and could reasonably be zero; similarly,

here we may be interested in whether al = al, or al/al = 1. In practice,

however, we are usually concerned with whether the imprecision of one
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process exceeds that of another process. We could, therefore, compute the

ratio of si to si, and the question arises: If in fact al = al, what is the

probabiHty of getting a value of the ratio as large as the one observed?

For each pair of values of Va and Vh, the tables list the values of F which are

exceeded with probability a, the upper percentage point of the distribution

of F. If the computed value of F exceeds this tabulated value of F^-^v^.v,,

then we conclude that the evidence is against the hypothesis al = al; if it

is less, we conclude that al could be equal to al.

For example, we could compute the ratio of si to si in the preceding

two examples.

Here the degrees of freedom Vy = = 10, the tabulated value of F
which is exceeded 5 percent of the time for these degrees of freedom is

2.98, and

4_ _ 0.000023813 _ y r..,

si
~ 0.000011669

~

Since 2.04 is less than 2.98, we conclude that there is no reason to believe

that the precision of the calibration process in September and October is

poorer than that of May.

For small degrees of freedom, the critical value of F is rather large,

e.g., for Va = vd = 3, and a' = 0.05, the value of F is 9.28. It follows

that a small difference between al and al is not likely to be detected with a

small number of measurements from each process. The table below gives

the approximate number of measurements required to have a four-out-

of-five chance of detecting whether aa is the indicated multiple of o-j (while

maintaining at 0.05 the probability of incorrectly concluding that o-^ > a„,

when in fact aa = ctj).

Multiple No. of measurements

1.5 39

2.0 15

2.5 9

3.0 7

3.5 6

4.0 5

Table A- 11 in reference 4 gives the critical values of the ratios of ranges,

and Tables A-20 and A-21 give confidence limits on the standard deviation

of the process based on computed standard deviation.

Control Charts Technique for

Maintaining Stability and Precision

A laboratory which performs routine measurement or calibration opera-

tions yields, as its daily product, numbers—averages, standard deviations,

and ranges. The control chart techniques therefore could be applied to these
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numbers as products of a manufacturing process to furnish graphical

evidence on whether the measurement process is in statistical control or out

of statistical control. If it is out of control, these charts usually also indicate

where and when the trouble occurred.

Control Chart for Averages. The basic concept of a control chart is

in accord with what has been discussed thus far. A measurement process

with limiting mean m and standard deviation a is assumed. The sequence

of numbers produced is divided into "rational" subgroups, e.g., by day,

by a set of calibrations, etc. The averages of these subgroups are computed.

These averages will have a mean m and a standard deviation ul^s/~n where

n is the number of measurements within each subgroup. These averages

are approximately normally distributed.

In the construction of the control chart for averages, m is plotted as the

center line, m + kiuj^/li ) and m — k(o-/^,/li) are plotted as control limits,

and the averages are plotted in an orderly sequence. If k is taken to be 3,

we know that the chance of a plotted point falling outside of the limits,

if the process is in control, is very small. Therefore, if a plotted point falls

outside these limits, a warning is sounded and investigative action to locate

the "assignable" cause that produced the departure, or corrective measures,

are called for.

The above reasoning would be applicable to actual cases only if we have

chosen the proper standard deviation a. If the standard deviation is estimated

by pooling the estimates computed from each subgroup and denoted by ay,

(within group), obviously differences, if any, between group averages have

not been taken into consideration. Where there are between-group differences

the variance of the individual x is not o^Jn, but, as we have seen before,

(^l + {(^wh)-, where represents the variance due to differences between

groups. If cTj is of any consequence as compared to a^, many of the x values

would exceed the limits constructed by using Gy, alone.

Two alternatives are open to us: (1) remove the cause of the between-

group variation; or, (2) if such variation is a proper component of error,

take it into account as has been previously discussed.

As an illustration of the use of a control chart on averages, we use again

the NB'IO gram data. One hundred observed corrections for NB'IO are

plotted in Fig. 2-5, including the two sets of data given under comparison

of means (points 18 through 28, and points 60 through 71). A three-sigma

limit of 8.6 /x-g was used based on the "accepted" value of standard deviation.

We note that all the averages are within the control limits, excepting

numbers 36, 47, 63, 85, and 87. Five in a hundred falling outside of the

three-sigma limits is more than predicted by the theory. No particular

reasons, however, could be found for these departures.

Since the accepted value of the standard deviation was obtained by

pooling a large number of computed standard deviations for within-sets of
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Fig. 2-5. Control chart on x for NB'IO gram.

calibrations, tiie graph indicates that a "between-set" component may be

present. A sHght shift upwards is also noted between the first 30 points and

the remainder.

Control Chart for Standard Deviations. The computed standard

deviation, as previously stated, is a measure of imprecision. For a set of

calibrations, however, the number of measurements is usually small, and

consequently also the degrees of freedom. These computed standard devia-

tions with few degrees of freedom can vary considerably by chance alone,

even though the precision of the process remains unchanged. The control

chart on the computed standard deviations (or ranges) is therefore an indis-

pensable tool.

The distribution of s depends on the degrees of freedom associated with

it, and is not symmetrical about m^. The frequency curve of .s is limited on the

left side by zero, and has a long "tail" to the right. The limits, therefore,

are not symmetrical about Wj. Furthermore, if the standard deviation of

the process is known to be a, is not equal to cr, but is equal to Cjcr, where

is a constant associated with the degrees of freedom in s.

The constants necessary for the construction of three-sigma control

limits for averages, computed standard deviations, and ranges, are given

in most textbooks on quality control. Section 18-3 of reference 4 gives

such a table. A more comprehensive treatment on control charts is given

in ASTM "Manual on Quality Control of Materials," Special Technical

Publication 15-C.

Unfortunately, the notation employed in quality control work differs
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Fig. 2-6. Control chart on s for the calibration of standard cells.

in some respect from what is now standard in statistics, and correction

factors have to be apphed to some of these constants when the computed

standard deviation is calculated by the definition given in this chapter.

These corrections are explained in the footnote under the table.

As an example of the use of control charts on the precision of a cali-

bration process, we will use data from NBS calibration of standard cells.*

Standard cells in groups of four or six are usually compared with an NBS
standard cell on ten separate days. A typical data sheet for a group of

six cells, after all the necessary corrections, appears in Table 2-6. The stan-

dard deviation of a comparison is calculated from the ten comparisons for

each cell and the standard deviation for the average value of the ten com-

parisons is listed in the line marked SDA. These values were plotted as

points 6 through 1 1 in Fig. 2-6.

Let us assume that the precision of the calibration process remains the

same. We can therefore pool the standard deviations computed for each

cell (with nine degrees of freedom) over a number of cells and take this

value as the current value of the standard deviation of a comparison, a.

The corresponding current value of standard deviation of the average of

ten comparisons will be denoted by a' = cr/vTO. The control chart will be

made on s' = s/^^lO.

*Illustrative data supplied by Miss Catherine Law, Electricity Division, National

Bureau of Standards.
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For example, the SDA's for 32 cells calibrated between June 29 and

August 8, 1962, are plotted as the first 32 points in Fig. 2-6. The pooled

standard deviation of the average is 0.114 with 288 degrees of freedom. The

between-group component is assumed to be negligible.

TABLE 2-6. CALIBRATION DATA FOR SIX STANDARD CELLS

Day Corrected Emf's and standard deviations, Microvolts

1 27.10 24.30 31.30 33.30 32.30 23.20

2 25.96 24.06 31.06 34.16 33.26 23.76

3 26.02 24.22 31.92 33.82 33.22 24.02

4 26.26 24.96 31.26 33.96 33.26 24.16

5 27.23 25.23 31.53 34.73 33.33 24.43

25.90 24.40 31.80 33.90 32.90 74 10

7 26.79 24.99 32.19 34.39 33.39 24.39

8 26.18 24.98 32.18 35.08 33.98 24.38

g 76 1 7 25.07 31.97 34.27 33.07 07Aj.y 1

in 25.16 31.96 34.06 32.96 Z't. 1

0

R 1.331 1.169 1.127 1.777 1.677 1.233

AVG 26.378 24.738 31.718 34.168 33.168 24.058

SD 0.482 0.439 0.402 0.495 0.425 0.366

SDA 0.153 0.139 0.127 0.157 0.134 0.116

Position Emf, volts Position Emf, volts

1 1.0182264 4 1.0182342

2 1.0182247 5 1.0182332

3 1.0182317 6 1.0182240

Since n = 10, we find our constants for three-sigma control limits on s'

in Section 18-3 of reference 4 and apply the corrections as follows:

Center line = J c,a' = 1.111 x 0.9227 x 0.114 = 0.117
V « — 1

Lower limit = ^ B,a' = 1.111 x 0.262 x 0. 1 1 4 = 0.033
V « — 1

Upper limit =
^J-^^-^

B^a' = 1.111 x 1.584 x 0.114 = 0.201

The control chart (Fig. 2-6) was constructed using these values of center

line and control limits computed from the 32 calibrations. The standard

deviations of the averages of subsequent calibrations are then plotted.

Three points in Fig. 2-6 far exceed the upper control limit. All three cells,

which were from the same source, showed drifts during the period of

calibration. A fourth point barely exceeded the limit. It is to be noted that

the data here were selected to include these three points for purposes of

illustration only, and do not represent the normal sequence of calibrations.

The main function of the chart is to justify the precision statement on

the report of calibration, which is based on a value of a estimated with
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perhaps thousands of degrees of freedom and which is shown to be in control.

The report of caHbration for these cells (cr = 0.117 = 0.12) could read:

"Each value is the mean of ten observations made between

and . Based on a standard deviation of 0.12 microvolts for the

means, these values are correct to 0.36 microvolts relative to the

volt as maintained by the national reference group."

Linear Relationship and Fitting of

Constants by Least Squares

In using the arithmetic mean of n measurements as an estimate of the

limiting mean, we have, knowingly or unknowingly, fitted a constant to

the data by the method of least squares, i.e., we have selected a value m
for m such that

t (yi -my = 1: d\
1 1

is a minimum. The solution is w = j'. The deviations di = yt ~ m = yi — y
are called residuals.

Here we can express our measurements in the form of a mathematical

model

Y=m + e (2-19)

where Y stands for the observed values, m the limiting mean (a constant),

and e the random error (normal) of measurement with a limiting mean zero

and a standard deviation a. By (2-1) and (2-9), it follows that

niy = m -\- = m
and

cfl = a'

The method of least squares requires us to use that estimator m for m such

that the sum of squares of the residuals is a minimum (among all possible

estimators). As a corollary, the method also states that the sum of squares

of residuals divided by the number of measurements n less the number of

estimated constants p will give us an estimate of a"^, i.e.,

s2 ^ D (yi - my ^ S (yt - yy ^2-20)
n — p « — 1

It is seen that the above agrees with our definition of s^.

Suppose Y, the quantity measured, exhibits a linear functional relation-

ship with a variable which can be controlled accurately; then a model can

be written as

Y = a -\- bX + € (2-21)

where, as before, Y is the quantity measured, a (the intercept) and b (the

328-52



slope) are two constants to be estimated, and e the random error with

Hmiting mean zero and variance cr^ We set X at Xj, and observe yt. For

example, yi might be the change in length of a gage block steel observed for

n equally spaced temperatures Xi within a certain range. The quantity of

interest is the coefficient of thermal expansion h.

For any estimates of a and b, say a and b, we can compute a value j^i

for each Xu or

= a + bXi

If we require the sum of squares of the residuals

i = l

to be a minimum, then it can be shown that

. i (Xi - x){yi - y)
b = (2-22)

S (^i - xf
i = l

and

a^y - bx (2-23)

The variance of Y can be estimated by

.2 _ 2 {yi - y^Y
n

(2-24)

with n — 2 degrees of freedom since two constants have been estimated

from the data.

The standard errors of b and d are respectively estimated by and s^,

where

4=^0^ (2-25)

With these estimates and the degrees of freedom associated with 5^ con-

fidence limits can be computed for d and b for the confidence coefficient

selected if we assume that errors are normally distributed.

Thus, the lower and upper limits of a and b, respectively, are

:

d — tss, d + ts^

b — tSi, b + tsi

for the value of / corresponding to the degree of freedom and the selected

confidence coefficient.

The following problems relating to a linear relationship between two

variables are treated in reference 4, Section 5-4.
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1. Confidence intervals for a point on the fitted line.

2. Confidence band for the line as a whole.

3. Confidence interval for a single predicted value of Y for a given X.

Polynomial and multivariate relationships are treated in Chapter 6 of

the same reference.
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results is discussed.
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Introduction

In the December 1939, issue of the American
Physics Teacher, Raymond T. Birge wrote an ex-

pository paper on "The Propagation of Errors."

In the introductory paragraph of his paper, Birge

remarked:
"The question of what constitutes the most reUable value to

be assigned as the uncertainty of any given measured quantity is

one that has been discussed for many decades and, presumably,

will continue to be discussed. It is a question that involves many
considerations and by its very nature has no unique answer. The
subject of the propagation of errors, on the contrary, is a purely

mathematical matter, with very definite and easily ascertained

conclusions. Although the general subject of the present article

is by no means new,' many scientists still fail to avail themselves

of the enlightening conclusions that may often thus be reached,

while others frequently use the theory incorrectly and thus arrive

at quite misleading conclusions."

Birge's remark 27 years ago still sounds fitting today.

For a number of years, the need for an expository
paper on this topic has been felt by the staff of the

Statistical Engineering Laboratory at the National
Bureau of Standards. Frequent inquiries have to

be answered, yet a diligent search in current litera-

ture and textbooks failed to produce a suitable ref-

erence that treats the subject matter adequately.
The present manuscript was written to fill this need.

In section 1, we consider the two distinct situations

under which the propagation of error formulas can
be used. The mathematical manipulations are the

same, yet the interpretations of the results are en-

tirely different. In section 2 the notations are de-

fined and the general formulas given. Frequently
used special formulas are Usted at the end of the

section for convenient reference. In section 3 the

accuracies of the approximations are discussed,
together with suggestions on the use of the errors

propagated. Section 4 contains suggestions on the

reporting of final results.

'See, for instance, M. Merriman, Method of Least Squares, pp. 75-79 (ed. 8, 1910).

The "law of propagation of error" is a tool that

physical scientists have conveniently and frequently

used in their work for many years. No claim is

made here that it is the only tool or even a suitable

tool for all occasions. "Data analysis" is an ever-

expanding field and other methods, existing or new,
are probably available for the analysis and inter-

pretation for each particular set of data. Never-

theless, under certain assumptions given in detail

in the following sections, the approximations resulting

from the use of these formulas are useful in giving

an estimate of the uncertainty of a reported value.

The uncertainty computed from the use of these

formulas, however, is probably somewhat less that

the actual in the sense that no function form is known
exactly and the number of variables considered usually

does not represent fuUy the contributors of errors

that affect the final result.

1 . Statistical Tolerancing Versus Impreeisioo

of a Derived Quantity

1.1. Propagation of error formulas are frequently

used by engineers in the type of problem called "Sta-

tistical tolerancing." In such problems, we are

concerned with the behavior of the characteristic

W oi a system as related to the behavior of a charac-

teristic X of its component. For instance, an engi-

neer may have designed a circuit. A property W
of the circuit may be related to the value X of the

resistance used. As the value of X is changed,
W changes and the relationship can be expressed

by a mathematical function

W= FiX)

within a certain range of the values of X.

Suppose our engineer decides on W= Wf, to be the

desired property of the circuit, and specifies X= Xo

for this purpose. He realizes, however, that there
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will be variations among the large lot of resistors he
ordered, no matter how tight his specifications are.

Let X denote the value of any one of the resistors
in the lot, then some of the time x wiU be below
xo, while at other times x will be above Xq. In other
words, X has a distribution of values somewhat clus-
tered about Xo- As x varies with each resistor, so
does w with each circuit manufactured.

If our engineer knows the mean and standard
deviation (or variance) of x, based on data from the
history of their manufacture, then he can calculate
the approximate mean and variance of w by the
propagation of error formulas:

mean (w) = F(mean x), and

[dFV
variance (m^) - hf^; var {x), (1.1)

where the square brackets signify that the derivatives

within the brackets are to be evaluated at the mean
of X. The approximations computed refer to the mean
and variance of an individual unit in the collection of

circuits that wiU be manufactured from the lot of

resistors. The distribution of values of w, however,

is stiU far from being determined since it depends
entirely on the functional form of the relation between
W and X, as mathematical variables, and the distri-

bution of X itself, as a random variable. This type of

approach has been used frequently in preliminary

examinations of the reliability of performance of a

system, where X may be considered as a multidimen-

sional variable.

1.2 Let us consider now the second situation under
which propagation of error formulas are used. This

situation is the one considered in Birge's paper, and
is the one that will be discussed in the main part of

this paper.

A physicist may wish to determine the "true" value

Wo of interest, for example, the atomic weight of silver.

He makes n independent measurements on some re-

lated quantity x and calculates

X„ = - (Xi+ X2+ . . .+Xn}
n

as an estimate of the true value xo and

1
"

S^ = r Y {Xi — Xnfn— I yi

as an index of dispersion of his measured values. The
physicist is mainly concerned in obtaining an estimate

w of Wo, and of the standard deviation of m; as a measure
of precision of his result. He therefore computes by
the propagation of error formulas:

W=^F(Xn)

a-w= Vvar (w)

Often he assumes that w is distributed at least approxi-
mately in accordance with the normal law of error and
gives probability hmits to the statistical uncertainty of
his estimate w based on the standard deviation calcu-
lated i&uj) and this assumption.
Cramer [1946] has shown that under very general

conditions, functions of sample moments are asymp-
totically normal, with mean and variance given by
the respective propagation of error formulas.^ Since
x„ is the first sample moment, the estimate w will be
approximately normally distributed for large n. Hence
our physicist is interested in the variance (or the
standard deviation) of the normal distribution which
the distribution of F(x„) approximates as n increases.
(Note that both estimators w and var (w) are functions
of n.) For n large, the distribution of w can be as-
sumed to be approximately normal and probability
statements can be made about w.

1.3 Hence, we have the two cases:

(1) The problem of determining the mean and vari-

ance (or standard deviation) of the actual distribu-

tion of a given function F(x) of a particular random
variable x, and

(2) The problem of estimating the mean and vari-

ance (or standard deviation) of the normal distri-

bution to which the distribution of Fix,,) tends asymp-
totically.

As examples of problems studied under the first

case, we can cite Fieller [1932] on the ratio of two
normally distributed random variables, and Craig

[1937] and Goodman [1962] on the product of two
or more random variables. Tukey, in three Princeton

University reports, extended the classical formulas

through the fourth order terms for the mean and
variance, and propagated the skewness and elon-

gation of the distribution of F(x) as well. These
reports present perhaps the most exhaustive treat-

ment of statistical tolerancing to date.

From now on we shall be concerned in this paper
with the second case only, i.e., the problem of esti-

mating the mean and variance, or standard deviation,

of the normal distribution to which the distribution of

F(xn) tends as n increases indefinitely, and hence
also the problem of using approximations to the

mean and variance computed from a finite number of

measurements. Since the mean and standard
deviation are the parameters that specify a particular

normal distribution, our problem is by its very nature

less comphcated than that of statistical tolerancing

where the actual distribution of the function may
have to be specified. We shall, however, utilize

formulas given in Tukey's reports to check on the

adequacy of some of the approximations.

' A brief summary is given in paragraph 2.2.
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2. Propagation of Error Formulas

2.1. Definitions and Notations

(1) X, F, Z in capitals stand for the mathematical
variables to be measured; x, y, z in lower cases stand

for the measured values of these variables; Xi, jj, Zk

with subscripts stand for the particular values of the

ith measurement on x, the 7th on y, and the kxh on 2,

respectively.

(2) W=f{X, Y, Z) is a continuous function of the

variables X, Y, Z, with derivatives

dW dW
, etc.

dX ' dXdY

(3) All derivatives appearing in square brackets, for

example
dX

dm
dY

, stand for the values of these de-

rivatives evaluated at the means of x and y, if known,
or at the sample averages of x and y, if the means are

not known.

(4) In order *to emphasize the fact that the mean M,
variance cr^ and other population parameters are usu-

ally not known, we list here symbols for both the

estimators of population values and the population

values. For a particular set of values of x, the values

computed from these estimators are estimates, or

computed values of these estimators.

Estimators of parameters Corresponding population

parameters

x=- y Xi Mx (mean = first moment)

(Tx (variance = second
central moment)

n— 1 I n ]

Sxn = Syx = -^—r ^ (Xi - x) (yt - y) crxy = o-yx (covariance)

f! — 1 I. n J

_ Sxy
rxy ^yx

SxSy
pxy (correlation coefficient)

Sx ax (standard deviation of x
about Mx)

1

5x =— Sx

^A
ax = -—~z (standard deviation

Vn of the average x,

or standard error)

Sx
Vx=—

X

—- (coefficient of variation or

Mx relative standard
deviation)

In addition, we use |Aa;| to denote the bound for pos-

sible systematic errors on the measurements of x.

The bound of these errors, unknown in sign, is usually
established or conjectured by the experimenter and
its value is not based on the measurements in hand.

2.2. General Theorem and Remarks

As mentioned briefly in paragraph 1.2, the propaga-
tion of error formulas are special apphcations of re-

sults obtained in the study of properties of distributions

of functions of sample moments. Doob [1935], Hsu
[1949], and others have investigated the limiting

distribution of functions of sample means relating to

hypothesis testing. Curtiss [1943] derived the hmit-
ing means and variances of the several functions of

variables in connection with transformations used in

the analysis of variance. Cramer, in chapters 27
and 28 of his classical treatise, proved two theorems
and also discussed the asymptotic properties of distri-

butions of functions of sample moments in detail.

For convenient reference we shall phrase his theorems
and remarks in terms of functions of sample averages,
to serve as a basis of justification for the use of propa-
gation of error formulas.

Theorem (Cramer, pp. 366, 352-356)

//, in some neighborhood of the point X = Mx, Y = My,
the function F(X, Y) is continuous and has continuous
derivatives of the first and second order with respect to

the arguments X and Y, the random variable w = F(x, y)

15 asymptotically normal, the mean and variance of
the limiting normal distribution being given by:

mean w = F(Mx, My) (2.1)

var w = aF

dX

2 „2

dY
2i
n

dF

dX

dF'

dY n
(2.2)

Remark 1. (Cramer, p. 367)
It follows from this theorem that any functi. n of

sample averages is, for large values of n, approxi-
mately normally distributed about the value of the
function determined by the mean values of the basic
variables, with a variance of the form Cjn, provided
only that expressions (2.1) and (2.2) yield finite values
for the mean and the variance of the limiting
distribution.

Remark 2. (Cramer, pp. 367, 415, also Doob, Hsu)
In general, the constant C in the expression of the

variance will have a positive value. However, in
exceptional cases C may be zero, which imphes that
the variance is of a smaller order than n'K Then
some expression of the form

nP{w-F{M^,My)}, p>i,

may have a definite limiting distribution, but this is

not necessarily normal.
Remark 3. (Cramer, pp. 366, 213-214)
The function F(x. y) may be asymptotically normal

even though the mean and variance of F(x. y) do not
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exist, or do not tend to the mean and variance of the
hmiting normal form. Generally, if the distribution

of a random variable u> depends on a parameter n,

and if tv^o quantities M and a can be found such that

the distribution function of the variable — tends
cr

to O(0 (normal distribution function with mean zero
and standard deviation one) as re—**, vfe shall say that

w is asymptotically normal (M, cr). This does not
imply that the mean and the standard deviation of

w tend to M and cr, nor even that these moments
exist, but is simply equivalent to saying that for any
interval (a, b) not depending on n,

hm Prob. (M+ aa < w < M+ ba-) = <S>{b) - 0(a).

re
—* =0

mean €, = 0
mean Xi = Mx

var X = var e,

= mean ef = (t|.

And for condition 2, we assume
A2: The errors in the measurements of Xi (i=l, 2,

. . . , n) are statistically independent; in particular

these errors are not correlated or associated in any
way, i.e.,

mean (e, e,) = 0, i j.

_ 1

Thus for jc = - (xi + + . . . + x„), the mean of x is A/j.
n

Furthermore,

Example: If x is from a continuous distribution with

positive mean and a finite variance but with positive

probability that some x can take negative values, then

the function In x is not even defined for all values of x,

and therefore the mean of the function In x does not

exist; yet where the mean of x has a positive value,

(2.1) and (2.2) give the mean and variance of the lim-

iting normal distribution.

2.3. Propagation of Error Formulas

Fortified with the general theorem stated in the

preceding paragraph, we shall proceed to derive the

traditional propagation of error formulas in an ele-

mentary manner, making some comments and as-

sumptions that may be of interest. It wiU be helpful,

however, to explain first what is meant here by the

term "random error" in a measurement process.

a. Random Errors

In a measurement situation, we consider random
errors typically to be the sum total of all the small
negligible independent errors over which we have no
control — interpolation in reading scales, shght fluctu-

ation in environmental conditions, imperfection and
nonconstancy of our senses, etc. Thus for a stable

measurement process, we find that:

(1) The measured values do follow a distribution,

with small errors occurring more frequently than larger

ones, and with positive and negative errors about
balancing one another, and

(2) there is no obvious trend or pattern in the se-

quence of measurements.
Let us denote the ith measurement of x to be

Xi = Mx + e,-

where Mx is the mean of all measurements for the

measurement process, and the random error of

measurement x,. Then for condition 1, we assume
Ai: The distribution of errors is symmetrical and
bell-shaped, with mean zero and standard deviation

(Tx, or

ei +€, + .

x-Mx
n

By definition, the variance of x is

^e, + €. + .

. + €„

mean (x — Mj-)^ = mean
.+€„

4f,

=\ \n mean (e,)^ +^ mean (ei€j)|-

Using assumptions Ai and A2, we obtain

_ 1

var (x) = -(tI
n

or the variance of the average of n independent meas-

urements is - of the variance of an individual meas-
n

urement.^

Here the average x is a hnear function of the in-

dividual x's, and the exact expressions of mean and

variance of an average in terms of that of the individual

values are well known. For functions that are not

hnear in the x's, we expand the function about the

mean of x by the Taylor series, and assume that the

function in the neighborhood of the mean can be ap-

proximated by the lower order terms. For example,

let

W=F{X, Y),

X = Mx + €x,

y=My+€y,

3 If. however, the measurements are not independent, then this formula is incorrect since

the means of products (ej€>) are not equal to zero. In that case let

mean =Pi>o-i|. , and p = ^ptj/n(n— I), then var U) =
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where each of €x and satisfies assumptions Ai and
A2, then we can write

F(x, y) = F(Mx, My) +
dF
dX

+ el + 2
d^F

dF
dY

dXdY
^1 2I

+ terms of higher orders in and €y. (2.3)

Or, neglecting terms of higher order than e% and e^,

F{x,y)-FiMx, My) =

d^Fl

d£
dX

+
1:[ dX''

el + 2
d^F

dY

dXdY
exey +

Since the means of ex and Cy are 0, if we take the mean
on both sides.

mean {F{x, y)-F(Mx, My)}

d^F d^F

dXdY

d^F

dY^
(2.4)

Thus the mean of a function of values always differs

from the value of a function of means by a quantity rep-

resented by (2.4). approximately. If the function of

means F{Mx, My) is the value of interest, then to

approximate F(Mx, My) by the mean of F{x, y) would
introduce an error, or bias, the magnitude of which
depends on the functional form, the variances of and
the covariance between x and y. If, however, we
use the function of averages, F(x, y), then

mean w=mean F(x, y) = F(Mx, My)

+ d^F

dX^

d''F

dXdY
dW
dY^

(2.5)

and the bias is only 11 n times that of the mean of the

function of individual values. When n becomes large,

this bias tends to zero, and (2.1) results.

This bias can be calculated by (2.5) and compared to

the standard deviation of w. In practice, if ax and <Ty

are small, the bias is often of a magnitude that is

neghgible.

To propagate the variance, we note that if Cj- and ey

are small in the sense that the second and higher order
terms in (2.3) can be collectively neglected in compari-
son to terms involving ex and ey only, then

F(x,y)-F(Mx, My)^
dF
dX

ex+
dF
dY

and the variance of F{x, y) is. approximately.

mean{F(x. y)-F{Mx, My)y^= mean

dF
dX

dF
dY

dF
dX

dF'

dX_

dF
dY

ex+
dF
dY

(Txy. (2.6)

And for ib — F(x, y), the variance of tb is

var(?J;) =
dF
dX

dF
dY

' + 2
dF
dX

dF
dY

-> Jcy

n
(2.7)

the limiting form of which is (2.2).

Finally, if a-|., cr^, and cTxy are not known, we substi-

tute their estimators in formulas (2.5) and (2.7),

resulting in:

m€^n{{u) =F(Mx, My) + -
d-'F

dX-'

+ h2
r d-'F 1

dY\ n _dXdY_

and

\^v{{o) =
dF
dX

dF
dY

dF
dX

dF
dY n

(2.8)

(2.9)

If we assume further that the random errors in meas-
urements of X and y are independent, then dxy — 0. and
the terms involving o-.,.y in (2.5), (2.6), and (2.7) vanishes.
If this is the case, the terms involving Sxy in (2.8) and
(2.9) should also be dropped. This reduced version
of the formula for independent x and y.

'dF' dF'

dX. n
(2.10)

is of the form given in Birge's paper and in other text-

books on statistical analysis of data [Mandel, 1964,

pp. 72-76].

For W= F{X, Y, Z), there will be three variance and
three covariance terms in (2.5) and (2.7). Extension
to more than three variables presents no new problems.

b. Extension to More Than One Function of the Variables

Let

and
u=g{x, y, z),

v=h{x, y, z).
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Then in addition to the above formulas, we have

'dU dV dV~

_dY
CTI +

dU dV
dZ'dZ

+

'dU dV ~dU dV
_dX'dY_

+
_dY dX_

~dV dV + dU dV~

_dY'dZ_ dZ dY_

dZ'dX
+

dU dV
dX'dZ

PzxCTzCTx. (2.11)

Expression (2.11) may be convenient to use to get

aiw) where W= F(U, V), and U and Fare known func-

tions of A^, y, and Z.

When there are a number of systematic errors to be
propagated, one approach is to take

|
Am;

|
as the square

root of the sum of squares of terms on the right-hand

side of (2.12), instead of adding together the absolute

values of all the terms. This procedure presupposes
that some of the systematic errors may be positive and
the others negative, and the two classes cancel each
other to a certain extent.

The treatment of inaccuracy due to systematic errors

of assignable origin but of unknown magnitudes is

discussed in detail in section 4.2 of Eisenhart [1963].

Since there is no generally accepted standard method
for combining several systematic i^rrors, Eisenhart

advised and we quote

"Therefore, anyone who uses one of these methods for the "com-

bination of errors' should indicate expUcitly which of these (or an
alternative method) he has used."

Information on the source and magnitude of each con-

tributing elemental systematic error is, of course, also

essential.

c. Some Frequently Used Formulas

For convenience, a few special formulas for com-
monly encountered functions are listed in table 1 with

X, y assumed to be independent. These may be
derived from the above formulas.

2.4. Systematic Errors

By a systematic error we mean a fixed deviation that

is inherent in each and every measurement of x in a

particular sequence of measurements. If the magni-

tude and direction of the systematic error are known, a

correction can be made such that Mx = X(), or the mean
of the sequence of measurements is equal to the value

sought after. If the sign of the systematic error is not

known and the magnitude of the error can be only

estimated to be within some reasonable bound |Ajr|.

perhaps by experience or judgment, then Ms is within

the limits Xn — Ax and Xo + Ajc.

For a function of two variables W= F(X, Y) then, a

bound \Aw
\
for the systematic error in W is given by:

Am'
I

= dF
dX

Ax
dY

Ay (2.12)

assuming, as before, that Ax and Ay are small such that

second and higher order terms in Ax and Ay are collec-

tively negligible in the Taylor series expansion. Since

ordinarily we do not know the signs of Ax and Ay, we
have no choice but to add the absolute values of the

two terms together, even though the signs of the values

of the partial derivatives evaluated are known. (If the

signs of either Ax or Ay is known, this information, of

course, should not be ignored.) K these derivatives

are evaluated at the point x and y, then the random
components of error of x and y are required to be small

so that these derivatives take approximately the same
values as when evaluated at xo and y».

3. Practical Accuracies at the Various Stages
of Approximations

3.1. From the preceding sections we observe that
there are three stages of approximations:

(1) In the Taylor series expansion (2.3), terms higher
than the first partial derivatives are considered to be
negligible.

(2) w is approximately normally distributed for large

n. Is the normal distribution still a good approxima-
tion for small «?

(3) If (Tj and (t'I are known, we obtain (Jw^ from (2.7),

and we can use this value to construct a confidence
interval about w with the desired level of confidence
(approximate) based on normal theory. If crj and cr^

are not known, and s% and 5^ are calculated from a small
number of measurements, what can we say about

w using var(u;) calculated from (2.9)?

To get some numerical feeling for the closeness of

these approximations, we shall simplify matters by
making the following assumptions which do not seem
to be too restrictive in measurement situations:

fii: X and y are normally and independently distrib-

uted, with the ratio Mjcr not less than 10.''

B,: The functional forms used are the well-behaved

ones that do not possess derivatives assuming
unreasonably large values when evaluated at the

averages of the individual variables.

Thus for linear functions, such as

W= AX + BY,

the second and higher derivatives vanish, and (2.6) is

exact.

The adequacy of these approximations is studied in

paragraphs 3.2 and 3.3 below. In paragraph 3.4 sug-

'•See Nalrella |1%31 sec. 1 lo 7. also chs. 2 and 3.

* For Rotational convenience, the symbols w. x, y. cTj-, <Ty, etc.. are used in this and the

subsequent sections. The corresponding symbols for the average could be used by straight

substitution.
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Table 1. Propagation of error formulas for some simple functions

Function form of m; *

Approx. formula for var {w)

(x and y are assumed to be
statistically independent)

Term to be added if x and y
are correlated, and a

reliable estimate of

s—, can be assumed

Ax + By

X

y

1

y

X

x + y

X

1+x

xy

In J

Itx-'y"

Si (= coefficient

7 of variation

in percent)

(!)

4 i

1 f*^"*'!^)
4-2 + -

4 . 2* » X

(57 and s-r. in radians)

u?2 (not directly derived

2{n — \) from the formulas)

2ABs-,

y/ \ xy)

(D*

sm - cos —

2 siri^
:

*
' It is assumed that the value of w is finite and real, e.g., y ^0 for ratios with y as denominator, x > 0 for Vj: and In x.

**
' Weighted mean as a special case of Ax + By, with (Tj- and cry considered known.

t Distribution of w is highly skewed and normal approximation could be seriously in error for small n.

tt See, for example, Statistical Theory with Engineering Applications, p. 301, by A. Hald (John Wiley & Sons. New York, N.Y., 1952).
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gestions are made on the use of the standard deviation

calculated for w when the standard deviations oi x and

y are not known. Readers may wish to go directly to

paragraph 3.5 for a summary of the conclusions.

3.2. For X. y independently distributed and arbi-

trary F{x, y), the first correction terms to (2.6) are

dF
dX dY (3.1)

where y is a measure of skewness of the distribution.^

Therefore these terms equal zero for x, y symmetri-

cally distributed, a condition satisfied by assump-
tion Bi.

The next order of correction terms involve cr*, a*

and o-|cr^ and are usually negligible compared to terms

in (2.6). These terms are

dF
dX

d^F

dX^ dY

d^F'

dY^

+ 1

(Fx-IK
dY^

+ dF' r d^F 1
2

r d^F
'

dX_ _dXdY\
+

_dXdY_
+

_dX^dY_

(r,-i)o-^

dF
dY

(3.2)

For functions involving powers of x and y less than

three, some of the partial derivatives also vanish.

For example, if W=XY, the only nonzero term of

this order is cr%al, or

Var (w) = Mlal + Mla-%+ o-kr|.

The contribution of cr5.cr| is less than 1 in 200 if Mia
is larger than ten.

For functional forms such as quotients, roots, and
logarithms, the accuracy is usually adequate since

powers of the means of the variables appear in the

denominators of the partial derivatives.

For the exponential function W= e^, the variance

of w as given by (2.6) is

Var (w) =e2^o-2,

whereas the exact formula® for the variance of w,

when x is normally distributed, is

Var (u;) = e<^V^(e<^'-l)

{-(

*For definition of y and I see (3.3).

*See, for example, The Lognormal Distribution, p. 8, by J. Aitchison and J. A. C. Brown,
Cambridge University Press, 1957.

Here the variance of w as given by (2.6) underestimates
the true variance by the factor given in the brackets,
and the approximation could be seriously in error.

(Note, however, the "exact" formula is correct only
if X is exactly normally distributed. If x is only ap-

proximately normally distributed, then both for-

mulas are approximations.)
For specific functions, formulas (3.1) and (3.2) given

in Tukey's report can be used to check on the ade-
quacy of the approximation. We quote Tukey's con-
clusion in this respect:

"The most important conclusion is that the classical propagation
formula is much better than seems to be usually realized. Examples
indicate that it is quite likely to suffice for most work."

3.3 Next we look into the adequacy of the normal
approximation. For this purpose we will define the
first four central moments of the distribution of w as

follows:

mean (w — Mu-) = 0

mean (w — M^f =
mean (w— Mu-f = yo^
mean {w— M^.)'* --- For*. (3.3)

3. Fol-If w is normally distributed, y= 0, and r =

lowing Tukey, we shall define

skewness = ya^, and
elongation = Fcr* — 3cr^

;

then both skewness and elongation are equal to zero

when w is normally distributed.

If and y are normally distributed as assumed under
Bi, then in general w= F(x, y) is not normally dis-

tributed unless the function form is linear. By a

procedure similar to that used in the last section, the

coefficients of skewness /3i and excess fiz of w can be
calculated where:

_ [skewness w]^

[var w]^

elongation w
[var i<;]^

+ 3.

If /3i is close to zero and /82 is close to 3, the normal
approximation may be considered as adequate.

I'he terms up to order cr"* in the propagation of

skewness for w= F(x, y), with x, y independent, are

skewness w

+

+

d'^F^

-m
I [in

dXdY
(3.4)
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For X, y normally distributed, only terms of order

(f* remain. If we take w = xy again as an example,

then

skewness w — 6MxMy(r\a\

^ 36M|M|ol(4
[M|o-| +MX + o"'o"|]'

Of course one can always compute the half-widths

of the respective 100 (1 — a) percent confidence inter-

vals for Mx and for My by the use of the Student's t

statistic, and use (2.12) to get the half-width of the

interval for Mu_-^ i.e., set

^X = ti —7= and , Ay =

Neglecting o%(t'^ in the brackets in the denominator,

and taking /V//cr=10, /3i is computed to be 0.045.

Hence, for ^= xy, where x and y are averages of four,

the coefficient of skewness is reduced by a factor of

four or equals 0.011 approximately.

Similarly, terms up to order cr* for the elongation

of w=f{x, y), with x, y independent, are

elongation w
dF
BX

(r^-3)(4+
dF
dY

(r«-3)o-*

(3.5)

which is zero for x, y normal.

Hence ^2 -

elongation w
+ 3 = 3, and no correction

and use (2.12) to get ^w. Then the interval w±^w
is a confidence interval for Mw for a confidence co-

efficient of at least (1 — a). This procedure, however,

may be criticized on the ground of gross inefficiency

in using the data.

We may write (2.9) as

'See Table 42. Biomctrika Tables for Statisticians. Vol. 1, edited by E. S. Pearson and
H. O. Hartley, The University Press, 1958 Also. pp. 79-84.

var {ih) = \tSl + k'Sl

where \i
=-

n

d_F

dX
and ki

dF
dY

(Variance wY
for elongation is necessary here.

If we look up a table ^ of percentage points of dis-

tribution of the standardized variate ^ with given
Ow

fii and I3>, we note that the changes of values are rather

sensitive to /3i and much less so to /S-i. Thus the co-

efficient of elongation is usually not as much a source
of worry in the normal approximation as is the coeffi-

cient of skewness.

Formulas (3.4) and (3.5) and the table of percentage
points allow us to check how good the normal approxi-

mation is for a given number of measurements in the

variables x and y. Table 2 gives some examples of

results of such calculations.

3.4 The third approximation concerns the use of the

sample variance s'^ as an estimate of the population

variance cr^. If we know the precision of the proc-

esses for the measurements of x and y, i.e., we know
CTj and CTy, (Tw can be computed from (2.7) and a con-

fidence interval about w can be constructed with the de-

sired confidence coefficient 1 — a by using the table of

the normal probability integral. If ax and ay are not

known, then even if &^ can be computed from (2.9),

the constants to be used for constructing a confidence
interval with confidence coefficient I— a will be dif-

ferent from those for known a.

To offer some guideline to the solution of this prob-

lem, we again assume measurements on x and y to

be independently and normally distributed. If the

number of measurements is large (a rule of thumb
could be R > 30), then (2.7) can be used assuming
a^, a^, and axy are known.

For given degrees of freedom for 5j-, n

A|5j ~l" kzSy

are two constants.

1, and Sy,

values of a "t^"A — 1. and given ratios of

statistic have been tabulated^ for confidence coef-

ficients of 0.99, 0.98, 0.95, and 0.90. The interval

(3.6)

is a confidence interval with confidence coefficient

1-a.
These tables, however, do not contain values for

"i;" for n and A less than 10, 10, 8, and 6 for the re-

spective confidence coefficients, and hence cannot
be used for smaller samples. In addition, they are

useful only for two independent variables x and y.

Alternatively Welch [1947] has proposed the use
of "effective degrees of freedom" for the estimated
variance of H of the form

var {li;} = Ikisf.

The effective degree of freedom / is computed from

f- (3.7)

where /; is the degrees of freedom for^ 5?.

In general / wiU be fractional. The t value with /
degrees of freedom can be found or interpolated from
the t table and the confidence interval computed as

'See Table 11, Biometrika Tables for Statisticians. Vol. 1; also Further critical values

for the two-means problem, W. H. Trickett. B. L. Welch, and G. S. James. Biometrika 43,

1956, pp. 204-5.
' If sf is computed from m measurements, the degrees of freedom is ni — I

.
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Table 2. Departures from normal approximations

X, y independently distributed, with y = 0. F = 3. and {M!(j)= 10.

rercentage point oi :

—

w Skewness from (3.4) /3i computed
crj.

Lower 2.5% Upper z.5%

Ax + By 0 0 — 1.96 + 1 .96 t

xy
n

4.5

looi^

n=l 0.045 -1.84 + 2.06
n = 4 .011 -1.91 + 2.01

n= 10 .0045 — 1.93 + 1.99

n

9

lOOn

u.uuy — 1 .VU + 2.00

162/W^
/̂It

36

lUUn

/i= 4 0.09 — 1 Rfl -I- 9 no

y

MA'
+

\IV1y/ \'" y 1*' x'^i yf

18

n = 10 .l/IO -1.89 + 2.03

]nx**
Q

ToOn

n=lO 0.009 - 1.90 + 2.00

e 9of Depends on <t and n (both skewness and /3i

n underestimated for (r/Vn >0.2).

* > >0.
*• J >0.
t Exact when x and y are normally distributed.

The approximate confidence intervals computed by
the use of effective degrees of freedom were found to

check the exact confidence intervals given by (3.6)

very well over the range of the latter.

3.5 In summary, the following may be concluded
for practical purposes:

(1) Terms of order higher than in the propagation
of error formulas for variance, (2.6) and (2.7), can be
neglected if (a) the standard deviations are. small in

comparison to their respective means, and (b) the

second and higher order partial derivatives evaluated

at the means do not give rise to abnormally large num-
bers. This is usually true in the field of physical

science, since errors of measurements are usually

of the order of 1 part in 1000, or parts per million;

furthermore, the functional forms used are usually

the well-behaved ones.

(2) The normal approximation will be adequate for

large n, or if, in addition to (a) and (b) above, (c) the

individual variables can be assumed to be normally

distributed. For particular functions, the approxi-

mate values of the coefficients of skewness and elon-

gation may be calculated and Pearson's table can be

used to check the adequacy of the approximation.

(3) For the case where the standard deviations of

the individual variables are unknown, and are esti-

mated from the data, confidence intervals for the

estimate <!o< can be constructed either by the use of

tabulated values of the "t;" statistic or by the use of

effective degrees of freedom. These confidence

intervals can be considered as a form of "precision

hmits" in the sense that if one makes the same sets

of measurements a large number of times under the

same conditions, and constructs the confidence in-

tervals each time by the same procedure, then a large

proportion of the intervals so constructed, 100 (1 — a)

percent, will bracket the mean of all these sets of

measurements. When only one set of measurements

will be made, the probabihty is 1 — a that this interval

will bracket the mean.
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4. Reporting of Results

4.1. Suppose a set of measurement data is avail-

able, and, by using the appropriate propagation of

error formulas, the following are obtained for the

quantity of interest, wq:

(1) The estimate of wo, w, based on n values of x,y,

etc.;

(2) the estimated standard error of w, aw, and asso-

ciated degress of/reedom /;

(3) limits to the systematic error in w. Aw.
The estimated standard error of w gives a measure

of precision of the experimental results, or a measure
of scatter of the values of w from the average value of

Mw for repeated performance of the particular experi-

ment. But this measure of precision does not indicate

at all how close this average value is to the value wo
intended to be measured. The estimation of limits to

the systematic error is an essential part of an experi-

ment and need not be discussed here [Youden, 1961].

One may remark generally that systematic errors

usually do not pose a serious problem when the

"imprecision" is large, since these systematic errors

are, so to speak, "swallowed up" by the random errors.

The systematic errors, however, play an important

role when the precision is excellent and is of about the

same order of magnitude as the systematic error. In

that case, it is essential that the systematic error, or

errors, be reported separately from the imprecision

part of the reported value, as measured by the standard
error, or the confidence intervcds, computed.

In scientific literature, it is not uncommon to come
across expressions of results in the form of M±e,
where "M" is an average of some kind and "e" repre-

sents the uncertainty of "Af" in some vague sense.

This type of reporting proves to be most frustrating

from the reader's point of view. From the context

alone the reader cannot possibly infer whether "e"
represents probable error, 3-sigma limits, systematic
error, or some combination of random and systematic
errors. As a consequence, the quality of the results,

and the validity of inference drawn from these results,

are to a large extent left to the judgment and guesswork
of the reader. Hence, the writer owes to himself, and
to his reader, to specify clearly the meaning of "e"
as he uses it. In particular, the number of measure-
ments from which the measure of random error was
computed and the manner in which the systematic
error was estimated are both essential elements of the

reported value and need to be included.

A footnote explaining the role of "e" is often very

helpful. Several examples are given below:

"In the expression of the form M ±e, M is, the average and e is the

standard error of M based on n measurements (or based on v degrees
of freedom)."
"The indicated uncertainty limits for M are overaD Umits of error

based on 95 percent confidence limits for the mean and on allow-

ances for effects of known sources of possible systematic error
"

"The uncertainty given represents 3-sigma limits based on the

current accepted value of the standard deviation, known sources of

systematic errors being negligible."

Chapter 23 of Natrella [1963] "Expressions of the

Uncertainties of Final Results" gives a thorough dis-

cussion on this topic, and is an excellent reference
for aU physical scientists who have occasion to report

numerical results of their experiments.
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RANDOMIZATION IN FACTORIAL AND

OTHER EXPERIMENTS

E. Bright Wilson, Jr.

4.10. Randomization in Factorial and Other Experiments

The principle of randomization has important applications to factorial

design. Besides the variables forming the factors which are consciously

varied from observation to observation, there are always other variables

which vary either in an unknown way or with unknown effects. The
less the influence of these variables, the more precise the experiment, but

in no experiment can their effects be completely eliminated. Wherever
possible these other variables should be randomized.

For example, in repetitions of measurements with complex physical

apparatus, it is seldom possible to carry out experiments all at the same
time. Time therefore is another variable which is not held constant

during the various comparisons, and it is well known that many disturb-

ing variables such as temperature, line voltage, state of chemical decom-

position, quantity of living matter, etc., can change with time. In other

cases sets of experiments can be carried out at the same time but then not

in the same place, or with the same equipment, or on the same patients.

The effects of any of these variables may be confused with those of the

factors under test.

To reduce this danger, the temporal order of the experiments, the

apparatus, the patients, or the position, etc., used with each combination

of factors should be chosen by a truly random process such as the applica-

tion of a table of random numbers. (See Sec. 10.3.)

Two Examples. In an important set of chemical analyses, it was

standard practice to follow each analysis by a duplicate run. The agree-

ment between the pairs was good, and so the results were accepted with

confidence. However, their importance was sufficient so that samples

were sent for analysis to an independent laboratory, with the result that

wide discrepancies were found between the analyses from the two places.

Investigation showed that a zinc reductor, through which all the samples

were passed in turn, gradually lost its effectiveness because of the presence

of certain other elements in the samples. The effect from one analysis to

the next was small, so that the pairs checked well, but by the end of a

day the absolute values were much in error. If the temporal order in

which the analyses were made had been randomized, many of the pairs

would have been widely separated in time and the agreement between

pairs would not have been regarded as adequate.

This point is so important that another example may not be super-

fluous. In an industrial laboratory, experiments were performed to
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THE DESIGN OF EXPERIMENTS

determine the effect of the length of time of pressing in the mold on the

strength of a plastic part. Hot plastic was introduced in the mold,

pressed for 10 seconds, and removed. Another batch was then intro-

duced into the same mold, pressed for 20 seconds, and so on, the time

increasing with each batch. Afterward the strength of each piece was

measured and plotted against the duration of the pressure. Figure 4.1

to

I 1 I I I I

Duration of Pressure

Fig. 4.1. Results of an experiment supposed to demonstrate that the strength of a

molded plastic part depended on duration of pressure. See Fig. 4.2.

c

O
6th

o
3rd

o
5th o

4th

o
2nd

- o
1st

I 1 1 1 I
I

Duration of Pressure

Fig. 4.2. Repeat of experiment shown in Fig. 4.1 except that order in which experi-

ments were carried out was randomized. Order is shown. Results depended on

order, not on duration.

shows the resulting curve, which was taken to indicate a strong depend-

ence of strength on duration. However, the research supervisor criticized

the experiment because the order of the experiments had not been ran-

domized, and so it was repeated. The results are shown in Fig. 4.2,

which also notes the order in which the measurements were taken.

Obviously, it was the order and not the duration which was the controlling

variable; the first conclusion was quite erroneous. The origin of the

trouble was easily traced after its presence was made known; the mold

got warmer and warmer as successive batches of hot plastic were pressed

in it.
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AN INTRODUCTION TO SCIENTIFIC RESEARCH [Sec. 4.10

Other Variables. Time is not the only variable which should be ran-

domized. In agricultural experiments the exact position of each test

variety in a plot is randomly selected. If different materials or specimens

are used, they should be randomly selected. For example, in testing

explosives steel plates were used in the gauges. These were rolled from

one ingot to promote uniformity, but the whole batch of plates was
shuffled thoroughly before use to randomize out any bias due to variations

in strength.

Randomization converts effects of randomized variables into unbiased

error. The importance of randomization in connection with the mathe-

matical methods of estimating error and the significance of differences

will be discussed in Sec. 8.6.

If there is strong reason to believe that a certain variable will influence

the results of an experiment and if it can be controlled, it should be

included in the design as one of the factors ; but if it is only suspected that

it might have some influence or if it cannot be controlled, then random-

ization is the safe course. Sometimes both techniques are combined;

crop varieties may be planted in parts of plots, the parts being randomly

selected, but the separate plots, being farther apart and therefore prob-

ably more divergent in fertility, are considered as different values of the

factor position. Similarly groups of observations taken near to one

another in time may be randomized as to order, but repetitions of the

groups (with separately randomized orders) which are more widely

spaced in time may be regarded as testing the effect of the factor time.

When any element of an experiment has been randomized, it is impor-

tant to keep good records of the original situation. Thus it was impor-

tant to know the order in which the plastic-molding experiments of Fig.

4.2 were carried out because afterward they could be reordered to show

that a trend existed. This is often the case in more complicated factorial

experiments, as will be discussed in Sec. 4.12.

Balanced Designs. From time to time objections have been raised

against the use of randomization. It has been argued that it is better to

use consciously planned patterns devised to minimize errors due to the

extra variables. For example, in a simple case of an experiment in which

a variety A is compared with B with several replications, in a linear

physical layout or in a time sequence or with a similar linear variation of

some other variable, a possible randomized arrangement would be

ABBAAABABBAB
But it could happen that the random choice produced the pattern

AAAAAABBBBBB
If it was suspected that a trend existed along the line (as a fertility
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THE DESIGN OF EXPERIMENTS

gradient in a field, or a trend with time), this pattern would be a poor one,

yet it could have resulted from the random draw.

For this reason some authorities have recommended systematic

arrangements, such as

ABBAABBAABBA
in which such a gradient would tend to be balanced out. However, there

are very strong arguments against these "balanced" arrangements. For

example, although a gradient is taken care of by the above pattern, a

periodicity with a period coinciding with that apparent in the pattern

could cause serious bias. Such periods are easily introduced in certain

types of experiment.

In many cases both schools can be satisfied. Instead of randomizing

without restriction, certain restrictions may be introduced. Thus it may
be fixed that every adjacent pair contains one A and one B but the order

in each pair is chosen randomly. This really amounts to introducing the

gross position along the sequence as an additional factor and randomizing

only within each "position." Perhaps the best rule in many cases is to

select by lot one from among all the possible patterns which as far as

available foresight is concerned are equally good. These should of course

not be biased; i.e., for every pattern included there should also be included

any which result from a permutation of treatments throughout, e.g.,

exchanging A and B above. In applying the mathematical theorems of

Sec. 8.11 to these cases, certain rules need to be observed which may
limit the freedom with which patterns are discarded.

From Wilson, E, B,, Aa Introduction to

Scientific Research, Section 4,10, pp.

54-57 (McGraw-Hill Book Co., New York,

1952).
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Some Remarks on Wild Observations*

William H. Kruskal**

The University of Chicago

Editor's Note: At the 1959 meetings of the American Statistical Association held

in Washington D. C, Messrs. F. J. Anscombe and C. Daniel presented papers on the

detection and rejection of 'outliers', that is, observations thought to be maverick or

unusual. These papers and their discussion will appear in the next issue of Techno-

metrics. The following comments of Dr. Kruskal are another indication of the present

interest of statisticians in this important problem.

The purpose of these remarks is to set down some non-technical thoughts

on apparently wild or outlying observations. These thoughts are by no means
novel, but do not seem to have been gathered in one convenient place.

1. Whatever use is or is not made of apparently wild observations in a statisti-

cal analysis, it is very important to say something about such observations

in any but the most summary report. At least a statement of how many observa-

tions were excluded from the formal analysis, and why, should be given. It is

much better to state their values and to do alternative analyses using all or

some of them.

2. However, it is a dangerous oversimplification to discuss apparently wild

observations in terms of inclusion in, or exclusion from, a more or less conven-

tional formal analysis. An apparently wild (or otherwise anomalous) observation

is a signal that says: "Here is something from which we may learn a lesson,

perhaps of a kind not anticipated beforehand, and perhaps more important

than the main object of the study." Examples of such serendipity have been

frequently discussed—one of the most popular is Fleming's recognition of the

virtue of penicillium.

3. Suppose that an apparently wild observation is really known to have come

from an anomalous (and perhaps infrequent) causal pattern. Should we include

or exclude it in our formal statistics? Should we perhaps change the structure

of our formal statistics?

Much depends on what we are after and the nature of our material. For

example, suppose that the observations are five determinations of the percent

of chemical A in a mixture, and that one of the observations is badly out of

* This work was sponsored by the Army, Navy and Air Force through the Joint Services

Advisory Committee for Research Groups in Applied Mathematics and Statistics by Contract

No. N6ori-02035. Reproduction in whole or in part is permitted for any purpose of the United

States Government.
** With generous suggestions from L, J. Savage, H. V. Roberts, K. A. Brownlee, and

F. Mosteller.
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line. A check of equipment shows that the out of Une observation stemmed
from an equipment miscaUbration that was present only for the one observation.

If the magnitude of the miscahbration is known, we can probably correct

for it; but suppose it is not known? If the goal of the experiment is only that

of estimating the per cent of A in the mixture, it would be very natural simply

to omit the wild observation. If the goal of the experiment is mainly, or even

partly, that of investigating the method of measuring the per cent of A (say in

anticipation of setting up a routine procedure to be based on one measurement

per batch), then it may be very important to keep the wild observation in.

Clearly, in this latter instance, the wild observation tells us something about

the frequency and magnitude of serious errors in the method. The kind of

lesson mentioned in 2 above often refers to methods of sampling, measurement,

and data reduction, instead of to the underlying physical phenomenon.

The mode of formal analysis, with a known anomalous observation kept in,

should often be different from a traditional means-and-standard deviations

analysis, and it might well be divided into several parts. In the above very simple

example, we might come out with at Jeast two summaries: (1) the mean of the

four good observations, perhaps with a ± attached, as an estimate of the per

cent of A in the particular batch of mixture at hand, and (2) a statement that

serious calibration shifts are not unlikely and should be investigated further.

In other situations, nonparametric methods might be useful. In still others,

analyses that suppose the observations come from a mixture of two populations

may be appropriate.

The sort of distinction mentioned above has arisen in connection with military

equipment. Suppose that 50 bombs are dropped at a target, that a few go wildly

astray, that the fins of these wild bombs are observed to have come loose in

flight, and that their wildness is unquestionably the result of loose fins. If we
are concerned with the accuracy of the whole bombing system, we certainly

should not forget these wild bombs. But if our interest is in the accuracy of the

bombsight, the wild bombs are irrelevant.

4. It may be useful to classify different degrees of knowledge about an ap-

parently wild observation in the following way:

a. We may know, even before an observation, that it is likely to be wild,

or at any rate that it will be the consequence of a variant causal pattern. For

example, we may see the bomb's fins tear loose before it has fallen very far from

the plane. Or we may know that a delicate measuring instrument has been jarred

during its use.

b. We may be able to know, ajter an observation is observed to be apparently

outlying, that it was the result of a variant causal pattern. For example, we
may check a laboratory notebook and see that some procedure was poorly

carried out, or we may ask the bombardier whether he remembers a particular

bomb's wobbling badly in flight. The great danger here, of course, is that it is

easy after the fact to bias one's memory or approach, knowing that the observa-

tion seemed wild. In complex measurement situations we may often find some-

thing a bit out of line for almost any observation.

c. There may be no evidence of a variant causal pattern aside from the observa-
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tions themselves. This is perhaps the most difficult case, and the one that has

given rise to various rules of thumb for rejecting observations.

Like most empirical classifications, this one is not perfectly sharp. Some
cases, for example, may lie between b and c. Nevertheless, I feel that it is a

useful trichotomy.

5. In case c above, I know of no satisfactory approaches. The classical approach

is to create a test statistic, chosen so as to be sensitive to the kind of wildness

envisaged, to generate its distribution under some sort of hypothesis of non-

wildness, and then to 'reject' (or treat differently) an observation if the test

statistic for it comes out improbably large under the hypothesis of nonwildness.

A more detailed approach that has sometimes been used is to suppose that

wildness is a consequence of some definite kind of statistical structure—usually

a mixture of normal distributions—and to try to find a mode of analysis well

articulated with this structure.

My own practice in this sort of situation is to carry out an analysis both with

and without the suspect observations. If the broad conclusions of the two analyses

are quite different, I should view any conclusions from the experiment with

very great caution.

6. The following references form a selected brief Ust that can, I hope, lead

the interested reader to most of the relevant literature.
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This paper makes available to the physicist two of the modern statistical tests for possible

rejection of outlying observations. These two methods have been selected because they apply

in a majority of the actually occurring situations and because they are so easy to use.

A PERENNIAL problem vexing the experi-

menter is that of rejection of suspected

data. For one hundred years attempts at the

solution of this problem have been advanced,

most of them to be themselves rejected as suspect.

Fortunately, modern statistical theory has

proposed useful, reliable methods for objectively

rejecting deviant values. However, the solution

is far from complete at present.

This paper makes available to the physicist

two of the modern statistical tests for possible

rejection of outlying observations. These two

methods have been selected because they apply

in a majority of the actually occurring situations

and because they are so easy to use.

THE PROBLEM

Here is a common problem facing experi-

menters. The typical scientist, X. Perry Menter,

makes a number (say five) of repeated measure-

ments of some unknown quantity. The smallest

value (or the largest) is so far removed from the

other four that he suspects that it may be in

error. However, Perry has no specific knowledge

that a mistake actually did occur. Let us assume

that he has no previous data from which to

estimate the precision of measurement. How can

he decide from the values themselves whether the

suspected value is in error or not ?

The answer seems clear. He should consider

the suspected value as in error when it seems

too far from the other four values. But how can

he judge when it is "too far from the other four

values"

?

A LOGICAL APPROACH

Here is a simple, logical, objective criterion.

Suppose Perry could somehow make millions of

* Now at Sylvania Electric Products, Inc., Hicksville,

New York.

sets of five observations each. Suppose, too,

that he could guarantee that none of these ob-

servations had any mistakes. Call a typical set

^l, Xz, X3, Xi, Xb, where the/x's are arranged in

order of size, so that Xi<X2<:X3<Xi<X5. Now a

logical measure of the distance between the

smallest value and the other four values is

X2 —Xi
rio = .

X5—X1

i.e., the ratio of the interval between the sus-

pected and adjacent value to the total range.

Now Perry records with what frequency,

among his millions of sets of live values each,

different values of rio occur. He finds that a value

of Tio larger than 0.780 occurs one time in one

hundred. He then reasons this way:
"I have found that among sets of five observa-

tions each (containing no mistakes) a value of

rio larger than 0.780 is quite unlikely (occurs only

once in one hundred). If now, in my future ex-

periments I get a set of five observations for

which rio is larger than 0.780, I will conclude

that my largest observation is in error."

CONFIDENCE IN THE TEST

This seems reasonable. But what confidence

can Perry have in such a procedure? How often

will he consider as mistaken a perfectly good

observation? How often will he consider ac-

ceptable an incorrect observation ?

Clearly, from the way in which he derived the

test, he will classify a perfectly good smallest

observation as mistaken once among one hundred

sets of five each, on the average. But there is no

general answer to the question of how often he

will let pass a mistaken observation. This de-

pends on how "mistaken" the mistaken observa-

tion is. If a very large error were made, his
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test would tend to reject the observation almost

certainly. If a very small error were made, his

test would tend to reject the observation with a

small probability.

Figure 1 gives some idea of the performance of

rio in detecting mistaken observations. It is

based on a sampling experiment in which samples

of five from a normal population with mean n

and standard deviation a were contaminated

with values drawn from a normal population

with mean (n+'Ka) and standard deviation a.

The ordinate shows the percent discovery of

contaminators (the proportion of the time the

contaminating population provides an extreme

value and the test discovers this value) while

the abscissa shows X, the magnitude of the

shift (error) of the contaminator in standard

deviations.

We said above that once in every 100 sets of

values (on the average) Perry would consider as

mistaken a perfectly good observation. If he were

to reject this observation and then compute

the mean and standard deviation of the re-

maining values, these would be biased estimates.

In addition, when a good observation is rejected,

any further statistical tests of significance will

become less reliable. This is the price that he

must pay for improving the data in the cases

where a mistaken observation is removed.

MATHEMATICAL DERIVATION

Of course, 0.780, the value of rio that is ex-

ceeded by chance 1 percent of the time (called

the 1 percent level of significance of rio), is not

determined by actually making millions of sets of

five observations each. Rather it may be calcu-

lated mathematically^ with even greater accuracy

than if millions of sets of five observations had

been used. The basic assumption is that the

repeated measurements would follow the normal

distribution.

LARGER SAMPLE SIZES

For sample sizes larger than seven, slight

modifications in the rio statistic result in a more

> Dixon, Ann, Math, Stat. 22, No. 1, 68-70 (1951).

100

75

90

25

0 I234»678»
Fig. 1. Performance of r test. The ordinate shows the

percent discovery of contaminators, while the abscissa
shows X, the magnitude of the shift (error) of the con-
taminator in standard deviations. From W. J. Dixon,
Ann. Math. Stat. 21, No. 4, 493 (1950).

sensitive test: Thus for sample size n= S,9, or 10,

ru =
Xn-l -Xi

is superior to rio. Similarly for »= 11, 12, or 13,

X3-X1
r?i =

Xn-l -Xi

is superior. Finally for w = 14, 15, • • •, 30,

Xz-Xi
r22 =

is best.

USE OF TABLE I

Let us now define r as the appropriate statistic

among rio, rn, r2i, and r22 according to the

sample size. Table I gives critical values of r for

significance levels a= 5 percent and a= 1 percent,

for sample sizes from n = 3 to 30.

Thus for example for n = 8 and a = 5 percent,

the table gives a critical value for r (in this case

Til) of 0.554. This means that in 100 sets of 8

observations each, free of mistakes, five values of

rn will be larger than 0.554, on the average.

What if Perry suspects the acceptability of the

largest observation in a set? In this case, he

simply considers the observations as numbered

in the reverse order and proceeds as before.
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Table I. Testing for extreme observation (no past data).*

Critical values

Statistic

rio-
Xj— Xi

Xn—Xi

X2— X1

Xn-l— Xi

r2i = -
Xt— Xi

Xn-l— Xi

rss=-
X3— X1

*n-2— *1

SzLinplc SIZ6 t a =5 percent a = 1 percent

0 0.941 0.988
A
*T 0^765 0.889

5 0.'642 0.780

6 0.560 0.698
71 0.507 0.637

8 0.554 0.683

9 0.512 0.635

10 0.477 0.597

11 0.576 0.679

12 0.546 0.642

13 0.521 0.615

14 0.546 0.641

15 0.525 0.616

16 0.507 0.595

1. f 0.490 0.577

18 0.475 0.561

0.462 0.547

20 0!450 o!535

21 0.440 0.524

22 0.430 0.514

AO 0.421 0.505

24 0.413 0.497

25 o!406 0^489

26 0.399 0.486

27 0.393 0.475

28 0.387 0.469
29 0.381 0.463

30 0.376 0.457

• By permission from W. J. Dixon and F. J. Massey, Introduction

to Statistical Analysis (McGraw-Hill Book Company. Inc., New York,
19S1). o. 319.

Why are two significance levels given? The
reason is that no one significance level is ap-

propriate to all problems. For example, consider

these two cases:

(a) Additional observations are not possible.

(b) Additional observations are possible.

In case (a) for many problems it might be

appropriate to compute r and test it at the 1

percertt level of significance. If the particular

observed value of r is larger than the tabulated

value for a==l percent, it raight then be a good

idea to exclude that observation.

In case (b), for many situations a reasonable

procedure might be to test r at the 5 percent

level. If the sample value of r is significant at the

5 percent level, one or more additional observa-

tions would be taken. If the observation orig-

inally suspected remained outlying, it would be

tested again, using the combined set of observa-

tions. This time, however, the r test would be

performed at the 1 percent level of significance.

If the outlier were significantly deviant at the

1 percent level, it would be rejected. It should

be noted that among many sets tested in this

way, the proportion of sets in which a perfectly

good largest value will thus be rejected will be

less than 1 percent. This is because the observa-

tion has a "second chance" before it is finally

rejected.

SUMMARY

A set of n observations is made. No previous

data are available from which to estimate the

variability of a measurement. What is a rational

procedure for testing whether the largest (or

smallest) of the set is too deviant to be explained

by the ordinary errors of measurement ?

Rank the n observations in order of size from

smallest to largest, if the smallest observation is

suspected,

xi<xi<'' • • • <Xn ;

reverse the numbering system if the largest is

suspected.

Next compute

rii =

r22 =

Xi--Xi

Xn--Xi

Xi -Xi

Xn-\-Xi

Xz -Xi

Xn-1-Xi

Xz -Xi

Xn-i-Xi

if « = 3 to 7

if « = 8 to 10

if w = ll to 13

if n = 14 to 30.

Table I may be used to determine how likely

it is to get as large a value of r as actually ob-

tained, simply by chance. A procedure that might

be appropriate for many problems is as follows.

{a) No additional observations possible. In this

case, compared the computed r with the value

in Table I at the 1 percent level. If the com-
puted value of r is larger than the tabulated

value, exclude the deviant observation. Other-

wise, do not.
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(6) Additional observations possible. In this

case, compare the computed r with the value

of f at the 5 percent level. If the computed value

of r is larger than the value, take one or more
additional observations. Otherwise accept the

suspected value without taking additional

observations.

If, in the enlarged set (containing all the

original and the additional observations), the

previously suspected value remains outlying,

compute r for the enlarged set. This time com-

pare it with the value at the 1 percent level.

If the computed value exceeds the table value,

exclude the outlier ; otherwise do not.

EXAMPLES

1. In a preliminary experiment, Silas N. Tist

makes 5 determinations of the velocity of light

in vacuum by a new method, obtaining 299 792,

299 780, 299 795, 299 786, 299 820, (km/sec). Si

N. Tist suspects the last value, 299 820, as being

mistaken since it is so much larger than the other

values. Before going on with additional experi-

mentation, Si wishes to decide whether 299 820

is mistaken or not. What shall he do ?

Since no previous data are available from

which to compute the precision of measurement

by this new method, the r test is appropriate.

The first step is to arrange the five values in

order of size: 299 780, 299 786, 299 792, 299 795,

299 820. Then

299 820-299 795 25
r = i' 10

= =— = 0.625.

299 820-299 780 40

Since this is less than 0.780, the 0.01 point of

r for n = 5. Si N. Tist concludes that 299 820 is

not mistaken.

2. Using the Atwood machine, Norris G. Neer

makes determinations of g, the acceleration of

gravity, in his college course in experimental

physics. N. G. Neer's values are: 986, 964, 989,

1000, 987, 909, 999 (cm/sec^). He suspects 909

as being inconsistent with the other values.

Shall he accept it, or shall he experiment further?

He computes

«2-Xi 964-909 55
r = rn = = =—= 0.604.

xt-Xi 1000-909 91

This value lies between the 0.01 and the 0.05

points of r for « = 7. Hence N. G. Neer makes an
additional determination and gets a new value

of 971.

Since 909 remains outlying in the enlarged set

of eight, he computes r for this set of eight. Now
r(rii) is 0.611. Since it is smaller than the 1 per-

cent level of r for » = 8, N. G. Neer accepts 909

and uses all eight values.

ESTIMATE OF MEASUREMENT VARIABILITY
AVAILABLE

In a great many laboratory situations, past

data are available for estimating the uncertainty

of a measurement. It is clear that where such

information is available, it should be used in

deciding whether an outlier is mistaken or not.

This will make the decision more reliable than

if only the one set containing the suspected value

is used.

The u Test

The test ratio used now is

Xn-X
u = (If x„ is the suspected value)

Sd

or

X —Xi
u = (If xi is the suspected value),

Sd

where

X = mean of the set of observations,

5d= standard deviation of an individual measure-

ment, based on d degrees of freedom.

Calculating Sd

To determine Sd from a single set of measure-

ments we would first calculate the sum of the

squares of the deviations of the observations

from their mean. Then we would divide by one

less than the number of observations. This

would give us an unbiased estimate of the

variance 5/. Thus,

Sd'=(J:^(xi-xy^/{d-l).

On the other hand, suppose a number of sets of
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observations were available

:

1 • •
, Xlni Xi

2 »22, • •
, X2ni Xi

k Xkl, Xki, • •, Xknk Xk

Now we could calculate from

(xxi-Xx)2+E {x^i-x,y+
•=1

+ («2-l)+--- + («*-l)), (1)

where d, the number of degrees of freedom for

estimating the uncertainty of measurement, is

(«i-l)+(«2-l)+- •• + («*-!).

An example: An example will make the whole

procedure clear: Alec Tronick has just made
three determinations of the frequency deviation

sensitivity in megacycles/volt for a certain

reflex klystron, obtaining the values: 1.13, 1.12,

1.02, with mean, x= 1.09.

He wishes to test whether "1.02" is unusually

deviant. He has past data (Table H) to estimate

the precision of this type of measurement.

Although he could calculate 5/ from Eq. (1),

it is generally more convenient (especially with

a computing machine available) to use the

following Eq. (2).

1'^ \ V
ni / n2

Hxu^ +Y:xi^—

Cixk^
nk V i=l /

• + Lx*i2
i=l Uk /

/

(«i-l)+(«2-l)+--- + (nt-l). (2)

It can easily be shown that Eq. (2) is algebraically equivalent to Eq. (1). Thus, substituting values

into Eq. (2) yields

5/=[1.112+1.072+1.102- (1.11+ 1.07+1.10)73+ ••• + 1.062+1.012+1.082

- (1.06+1.01+ 1.08)2/3]/[(3-l)+--- + (3-l)] = 0.027l/16 = 0.001694.

Hence .^d = 0.041.

Substituting for u gives

x-xi 1.09-1.02
u = -

Sd 0.041

= 1.71.

He now uses Table III which gives the 5

percent and 1 percent levels of u for various

values of n and d. Here n is the size of the sample

which contains the suspected value, while d is

the number of degrees of freedom on which Sd

is based. In the present case n = 3 and d=l6.

Table II. Data available previously.

Set 1 2 3

1 1.11 1.07 1.10

2 1.17 1.15 1.19

3 1.20 1.23 1.16
4 1.11 1.15 1.25

5 1.06 1.10 1.00
6 1.03 1.10 1.04

7 1.07 1.01 1.06
8 1.06 1.01 1.08

The observed value of «, 1.71, is less than the

value of M at the 5 percent level, 1.90. Hence

he concludes that the suspected value 1.02 is not

significantly outlying. In other words the devia-

tion of 1.02 from the mean of the set of three

measurements is easily explainable in terms of

the precision of the measurement process.

Hence, 1.02 is accepted into the fold of good

measurements.

When past data are available, the u ratio may
be computed and Table III used just as the

r ratio and Table I were used fo^ the case where

no past data were available. The procedure out-

lined above for the two cases (a) and (b) may be

followed just as before (using u and Table III

instead of r and Table I).

CAUTIONS AND COMMENTS

(a) Obviously, if the experimenter knows by
direct observation that a mistake has occurred

he should reject the observation. The tests of this
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Table III. Upper percent points of the studentized extreme deviate.

U= (Xn- St)/Si or (i-Xi)/id

X 3 4

a

5

™5 percent

6 7 8 9 3 4

a

5

" 1 percent

6 7 8 9

10 2.02 2.29 2.49 2.63 2.75 2.85 2.93 2.76 3.05 3.25 3.39 3.50 3.59 3.67
11 1.99 2.26 2.44 2.58 2.70 2.79 2.87 2.71 3.00 3.19 3.33 3.44 3.53 3.61
12 1.97 2.22 2.40 2.54 2.65 2.75 2.83 2.67 2.95 3.14 3.28 3.39 3.48 3.55
13 1.95 2.20 2.38 2.51 2.62 2.71 2.79 2.63 2.91 3.10 3.24 3.34 3.43 3.51

14 1.93 2.18 2.35 2.48 2.59 2.68 2.76 2.60 2.87 3.06 3.20 3.30 3.39 3.47

15 1.92 2.16 2.33 2.46 2.56 2.65 2.73 2.57 2.84 3.02 3.16 3.27 3.35 3.43
16 1.9C 2.14 2.31 2.44 2.54 2.63 2.70 2.55 2.81 3.00 3.13 3.24 3.32 3.39
17 1.89 2.13 2.30 2.42 2.52 2.61 2.68 2.52 2.79 2.97 3.10 3.21 3.29 3.36
18 1.88 2.12 2.28 2.41 2.51 2.59 2.66 2.50 2.77 2.95 3.08 3.18 3.27 3.34
19 1.87 2.11 2.27 2.39 2.49 2.58 2.65 2.49 2.75 2.92 3.06 3.16 3.24 3.31

20 1.87 2.10 2.26 2.38 2.48 2.56 2.63 2.47 2.73 2.91 3.04 3.14 3.22 3.29
24 1.84 2.07 2.23 2.35 2.44 2.52 2.59 2.43 2.68 2.85 2.97 3.07 3.15 3.22
30 1.82 2.04 2.20 2.31 2.40 2.48 2.55 2.38 2.62 2.79 2.91 3.01 3.08 3.15
40 1.80 2.02 2.17 2.28 2.37 2.44 2.51 2.34 2.57 2.73 2.85 2.94 3.02 3.08

60 1.78 1.99 2.14 2.25 2.33 2.41 2.47 2.30 2.52 2.68 2.79 2.88 2.95 3.01

120 1.76 1.97 2.11 2.21 2.30 2.37 2.43 2.25 2.48 2.62 2.73 2.82 2.89 2.95
00 1.74 1.94 2.08 2.18 2.27 2.33 2.39 2.22 2.43 2.57 2.68 2.76 2.83 2.88

• From K. R. Nair, Biometrika 35, 143 (1948).

paper are used only if he does not know that a

mistake has occurred.

(b) If the experimenter uses this technique for

a certain routine type of measurement, he should

apply it, implicitly or explicitly, every time he

makes that type of measurement. After several

explicit applications of this technique, he will

probably be able to perform the r (or u) test

in all but the most doubtful cases without

actually explicitly doing the arithmetic, since

he will have the critical value of r (or u) in mind.

He should not, however, reject outliers by the

r test in some cases and accept others just as

badly deviating, simply because he did not

apply the test in these latter cases.

(c) Both the r and u tests are based on the

assumption that repeated measurements of the

same unknown follow the normal frequency dis-

tribution. If, in actual practice, the distribution

of repeated measurements is markedly different

from the normal curve, then the use of these

tests will lead to different risks than originally

intended.

(d) The use of the 0.01 and 0.05 points is

arbitrary. The individual experimenter should

use whatever levels of significance are most ap-

propriate. It is accepted practice to choose the

level of significance at the time the experiment

is being planned and before any data are collected.

(e) Suppose the type of measurement is such

that the suspected value will practically always

be the smallest in the set, or practically always

the largest. Then as stated above, 1 percent of

the time a perfectly good observation will be

rejected in case no additional observations are

possible. Suppose, however, the type of measure-

ment is such that the suspected value may be

either the largest or the smallest. In this case

about 2 percent of the time a perfectly good ob-

servation will be rejected. The appropriate

tabular point should be selected with this in

mind.

(f) Other tests^ for rejection of suspected

values are available. However, the r and u tests

have been selected because of their ease of

application.
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Foreword

One of the most delightful papers to read in this volume is D. B. De
Lury's Computation with Approximate Numbers. This paper (6.7) explains

once and for all the difference between computation operations with arith-

metic numbers and computation operations with numbers resulting from
measurements. No one engaged in the field of measurement can afford not

to read it.

Edwin L. Crow's Optimum Allocation of Calibration Errors (6.4) con-

siders the way errors accumulate in a hierarchy of calibrations, and pro-

poses optimum allocation of errors within such a system, from the point of

view of minimizing the total cost of achieving a given accuracy. Optimum
error ratios were computed for several examples under extremely simpli-

fied assumptions. Much work needs to be done in this direction before the

results can be fruitfully used.

R. B. Murphy is the author of ASTM E177-61T, Use of the Terms
Precision and Accuracy as Applied to Measurement of a Property of a

Material, and is currently working on a revised version to be issued as a

standard. His paper (6.1), giving some background philosophy on the

meaning of the terms precision and accuracy, was presented in the ASTM
Symposium on Quality of Observations in 1961.

Two other papers, one by W. J. Youden and one by Milton Terry, are

reprints from the same Symposium. Youden's paper (6.2) emphasizes, as

he always does, the use of experimental design to throw light on the

sources of errors. Terry (6.3) presents an example of the use of control

charts on residuals. For further reading on the important subject of

residual analysis, one may begin with Chapter 3, The Examination of

Residuals, in Applied Regression Analysis by Draper and Smith (Selected

References B8).

The relationship between confidence intervals and tests of significance,

and the interpretation of confidence intervals and tolerance intervals, have

always been sources of difficulty to some. Two papers, one by Mary G.

Natrella, (6.6) and one by Frank Proschan, (6.5) are included here for the

clarification of these concepts.
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Quality of Observations

Your test program is now complete and your file bulges with num-
bers. Two questions arise: How big are the numbers? How good are they? The
following four papers address themselves to the second question. Here you
will find definitions of those much-debated terms, "precision" and "accuracy,"
together with methods for determining them. Here you will also find suggestions

on how to plan your experiments so as to improve the quality of your observations.

On the Meaning of Precision and Accuracy
By R. B. MURPHY

For some years, the

terms precision and accuracy have been

used in connection with problems of

measurement. About ten years ago
ASTM Committee E-11 on Quality

Control of Materials set itself the task

of setting down some definitions for

these two ideas. Their work on this

subject is not completely finished even

now. The words "accuracy" and "pre-

cision" have appeared in many places

in ASTM standards and practices over

the years. Other committees besides

E-11 have attempted to set down stand-

ard definitions.

Debates and arguments about these

terms seem to go on and on, so that the

job of setting down definitions is a

tough one. It is always a problem in

defining ideas to balance rigor and
e-xactness against practicality and sim-

plicity; and in the present case matters

have been made worse by a rather pro-

longed disagreement over which of two
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particular meanings the word "ac-

curacy" should come to have.

The Measurement Process

Before we discuss the development

of the E-11 definitions, I should like

to adopt some terms for purposes of

discussion. First and foremost, I

should like to draw a distinction between

a measurement or test method and a

measurement process. A test method
consists of a prescription or written

procedure by which one can go about

the business of making measurements
on the properties of some physical

material. This prescription may be

very specific indeed, but essentially

it is a much more inanimate object

than a measurement process. A meas-
urement process includes : (a) measure-

ment method, (6) system of causes, (c)

repetition, and (d) capability of control.

A measurement process we could call

a realization of a method in terms of

particular men, particular equipment,

and particular material to be tested.

Of course, there is the question of

whether a process is loyal to the method
that it attempts to follow, or whether
two different processes should be con-

sidered realizations of the same method.
It is handy here to import some of the

language of statistical quality control

to further characterize a measurement
process. A measurement process may
be regarded as a product of a system of

causes, some of which may or may not

have been specified in the test method.
The important thing at this point is

to recognize the broad scope of meaning
embraced by the notion of a system of

causes. A system of causes encom-
passes: (a) the material, (6) operator,

(c) instrument, (rf) laboratory, and
(e) day.

Following through with this line of

thought borrowed from quality control,

we shall add a requirement that an
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effort to follow a test method ought

not to be known as a measurement
process unless it is capable of statistical

control. Capability of control means
that either the measurements are the

product of an identifiable statistical

universe or an orderly array of such

uiuvefses or, if not, the physical causes

preventing such identification may
themselves be identified and, if desired,

isolated and suppressed. Incapabihty

of control impUes that the results of

measurement are not to be trusted

as indications of the physical property

at hand—in short, we are not in any
verifiable sense measuring anything.

Of course, it is profoundly difficult

to say how capability of control shall

be ascertained.

There is, however, a relatively simple

procedure or body of related procedures

for substantiating—or even defining

—

a state of statistical control. If, in

fact, we have statistical control—and

not merely the capabihty of it—and
if for some reason such control, however

we gage it, appears to be lost, we would

be ready, wilUng, and able to take some
special action beyond that normally

entailed in the test method alone.

Such action would have the aim, of

course, of restoring our confidence

in the capability of the measurement
process to be statistically controlled

and, indeed, to restore such control,

if possible.

Why, one may ask, is there any
need to impose the requirement of

capabihty of statistical control? It

is very simple. Without this limitation

on the notion of measurement process,

one is unable to go on to give meaning
to those statistical measures which

are basic to any discussion of precision

and accuracy.

In any particular case, failure to

have statistical control casts doubt
on the sufficiency of our knowledge

of the system of causes. It is then a

question of determining which causes

responsibk for lack of statistical con-

trol should be acknowledged and in-

cluded in our concept of the measure-

ment process at hand and which should

be eliminated so far as possible in their

effect on the measurement process.

Such ehmination may entail a new pre-

scription for the test method itself.

Reference Level or Target Value

One element of the system of causes

which may be changed dehberately,

although perhaps with unpredictable

consequences, is what we may call

the reference level of the quaUty of the

material tested. A change of material

would ordinarily imply a change in the

reference level. This single cause in

the system of causes has a unique
position of importance in any measure-

ment process. Some people prefer

the term "true value," although others

excoriate it as philosophically unsound.

We could also call the reference level

a "target value." In a way this is a

bad term because it impHes that it is

something we want to find through the

measurement process rather than some-

thing we ought to find because, hke
Mt. Everest, it is there. Unfortunately

our desires can influence our notion

of what is true, and we can even un-

consciously bring the latter into agree-

ment with the former; my use of the

term "target value" is not meant to

imply that I think it legitimate to

equate what we would like to see with

what is there.

Precision is indicated by a multiple of a'p.

X'p-X'r is called bias-

Fig. 1.—Precision and bias.

On the other hand, "target value"

is a suggestive term (hopefully, not

overly so) for purposes of present dis-

cussion. It is, in fact, interesting to

compare the measurement situation

with that of a marksman aiming at

a target. We would call him a precise

marksman if, in firing a sequence of

rounds, he were able to place all his

shots in a rather small circle on the tar-

get. Any other rifleman unable to group

his shots in such a small circle would

naturally be regarded as less precise.

Most people would accept this char-

acterization whether either rifleman

hits the bull's-eye or not.

Surely all would agree that if our

man hits or nearly hits the bull's-eye

on all occasions, he should be called

an accurate marksman. Unhappily, he

may be a very precise marksman, but

if his rifle is out of adjustment, perhaps

the small circle of shots is centered at

a point some distance from the buU's

eye. In that case we might regard

him as an inaccurate marksman. Per-

haps we should say that he is a poten-

tially accurate marksman firing with

a faulty rifle, but speaking categorically,

we should have to say that the results

were inaccurate.

Components of Precision and
Accuracy

One-sehooljif thought on the subject

of accuracy insists that if a marksman
hits the bull's-eye "on the average,"

then he is accurate even though the man
may have a wavering aim so that his

shots scatter. The point is that ac-

curacy in this sense is determined

solely by the behavior of the long-run

average of the shots. The position

of the average shot is assumed, of course,

to be the centroid of the bullet holes

in the target: few shots might actually

hit or nearly hit the bull's-eye.

The second school of thought on

accuracy would insist that if the man is

unlikely to be very close to the buU's-

eye he should be termed an inaccurate

shot. That is, the second school holds

to the beUef that accuracy should imply

that any given shot is very likely to be

in the bull's-eye or very near to it.

Both schools of thought have meaningful

and verifiable versions of the compara-

tives "more accurate" and "less ac-

curate," although if one follows the

second school of thought, such a com-

parison is not always possible.

We may regard the rifle-range rules,

the specifications of the rifle, ammuni-

tion and target, and manual for marks-

men as analogous to a test method ; the

marksman and his rifle firing away

at a specific target, on a specific range,

perhaps on a specific day, correspond

to a measurement process. Likewise,

it is easy to translate the difference

in viewpoints with regard to accuracy

just noted from the field of marksman-

ship to the field of measurement and

testing.

Before going further, we had best

put down some elementary notions that

we intend to use with respect to the

problem of precision and accuracy in

measurement. The first of these is

the long-nm average of the measure-

ment process, designated by X'p (Fig. 1).

It is assumed in this case that our meas-

urement process produces a series ofnum-

bers and that therefore the quantity

denoted by X'p is a smgle real number.

The reference level will be denoted by

X'r. The difference between these

two quantities is almost universally

referred to as "bias." Some have used

the term 'systematic error" synony-

mously, but others prefer to regard sys-

tematic error as the cause of bias.

Another notion of primary importance

is the standard deviation of the meas-

urements produced by the measurement

process. For this we have the symbol,

a'p, and we regard this as a long-run

characteristic of the process just as

we do X'p. In words, the definition

of the standard deviation is the square

root of the mean squared deviation of

the measurements from X'p.

Definition of Accuracy

Now let us return to our debate

about the definition of accuracy. It

is impossible to say that one of these

viewpoints is wrong and the other is

right from a sheerly logical point of

view. I can put forth an argument

relative to the conservation of linguistic

resources. It seems to me that the

terms "bias" and "systematic error"

are adequate to cover the situation with
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which they are concerned. If, never-

theless, we add the term "accuracy"

to apply again in this restricted sense,

we are left wordless—at the moment
at least—when it comes to the idea of

over-all error. From the point of view

of the need for a term it is hard to defend

the view that accuracy should concern

itself solely with bias.

It is also important to determine

whether one or the other of these defini-

tions of accuracy has practical ad-

vantages over the other. I feel that

there are certain circumstances in which
one ma,f be preferred and certain cir-

cumstances in which the other may be

preferred. I doubt that one could

show that there are substantially more
situations in which one of these is

appreciably more suitable than the

other.

We are then left with the problem:

If we are to have a single recognized

definition of accuracy, on what basi.s

other than that of need will we choose

between these two, assuming that these

are the only two possibilities we wish

to consider? It would seem that the

only basis for decision is a consideration

of how the term accuracy is now used.

It must be conceded that the school

that believes that accuracy should

connote the agreement between a long-

run average of measurement process

and the reference level is one of long

standing among some experimenters.

It can be argued, too, that it is easy

to use accuracy in this way, because

it is then possible to measure accuracy

in terms of bias or systematic error.

On the other side, a paper by Churchill

Eisenhart of the National Bureau of

Standards' has had considerable in-

fluence. The Bell Telephone Labora-

tories have used accuracy in his sense

for some years.

We can also look at what practices

are being followed with respect to the

use of the word "accuracy" in different

ASTM standards. There are a negli-

gible number of cases in which accuracy
is explicitly described in ASTM stand-

ards as a property of the long-run

average. Usually there is no clear

statement of which concept of ac-

curacy is intended. In most of the

standards in which accuracy is men-
tioned or discussed, precision is not
mentioned or discussed, and vice versa.

While the meaning and usefulness of the

exact quantities given may be open
to question in some cases, the obvious

intent of these statements with regard

to accuracy is that of an all-inclusive

notion of error of measurement. In-

cidentally, in some instances the term
precision has been used with regard to

over-all error of measurement. At
least one ASTM paper has explicitly

taken this same view of precision.

Seldom is bias or systematic error

singled out in this body of literature.

Thus there is overwhelming evidence

that we need a term at least for the

concept of over-all error.

Equal Precision

Unequal Resolution
Unequal Precision

Equol Resolution

< C. Eisenhart, "The Reliability of Meas-
ured Values—Part I, Fundamental Con-
cepts," Photogrammetric Engineering, June,
1952, pp. 542-554.

Fig. 2.—Resolution and precision (illus-

trated by frequency histograms).

On this basis I think there is con-

siderable justification for the choice

of Committee E-11 that accuracy should

connote the idea of the error of in-

dividual measurements when that error

is compounded of bias or systematic

error and random or nonsystematic

error.

Statistical Resolution

At this point I should like to inject

one more note of confusion. It seems

to me that one of the features of test

methods which occasionally obtrudes

itself in the arguments about definitions

of precision and accuracy is the question

of sensitivity and, as f shall call it,

statistical resolution of measurement.

Sensitivity sounds as though it ought

to contribute to precision as we have

described it. We could describe sensi-

tivity as being measured by the mini-

mum difference between the measure-

ments of two different materials which
we can possibly distinguish by the

test method under consideration—the

smaller the difference, the higher the

sensitivity. Logically, if not conven-

tionally, we might say that sensitivity

should be the reciprocal of this quantity,

but we shall follow the more conven-

tional idea that sensitivity is directly

measured by this minimum measurable

difference.

At any rate, it is obvious that if our

sensitivity is not very good, our pre-

cision is also not very good. However,
the two are different, and we might
define another quantity, to be called

statistical resolution, which may be

expressed as the ratio of sensitivity

to standard deviation. If we can detect

arbitrarily small differences in the

property measured, the resolution is

numerically small, because the sensi-

tivit}' is small while the standard devia-

tion is presumably a function of other

factors as well which do not permit

its magnitude to be arbitrarily reduced.

Figure 2 exhibits some interesting

distinctions that can be drawn. The
left-hand pair of histograms in Fig. 2

have about equal spread, but the upper

one is more coarsely grained, so to

speak. Thus the sensitivity of a process

producing the lower histogram would
be greater than that of a process pro-

ducing the upper one. Since the stand-

ard deviations are about equal, it

follows that the resolution associated

with the lower histogram is greater

than that associated with the upper.

On the other hand, if we spread the

upper histogram out and squeeze the

lower one together, as it were, without

much change in the column widths,

we should get something like the right-

hand pair of histograms. The ratio

of standard deviations would have

been changed but not the ratio of

sensitivities. If we spread and squeeze

just the right amount, we can obtain

equal resolutions although the sensi-

tivities and standard deviations differ.

This serves simply to emphasize that

sensitivity is an absolute property and
resolution a relative one in terms of the

units of measurement. It may be

useful to consider this kind of statistical

resolution in measurement problems

more than it has been thus far.

It may be perfectly possible that one

process has higher resolution (niuner-

ically smaller) than another and yet is

less precise. The number 2 represents

a "worst possible" resolution, so to

speak: it is that of a process in which

we are able to observe either one or

another of two values with equai prob-

abiUty. In general, we would expert

the resolution of a process to be numer-

ically smaller than 2. For practical

purposes perhaps we should prefer

resolutions on the order of f or less.

Measures of Precision and Accuracy

Another purpose of the E-11 practice

is to give a common set of terms for

describing the measures or indexes

of precision or accuracy stated in par-

ticular standards. This is not an easy

job either. First of all, different fields.,

have particularly favorite ways of

expressing precision. Most of these

measures are multiples of the standard

deviation; it is not always clear which

multiple is meant. It is possible, of

course, that a single simple multiple

might not do.

Some consider it unfortunate that

precision should be stated as a multiple

of standard deviation, since precision

should increase as standard deviation

decreases. Indeed, it would be more
exact to say that standard de\'iation

is a measure of imprecision. However,

sensitivity, as we have previously
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indicated, suffers from this logical

inversion without hurt. Perhaps we
can best avoid this by saying that

standard deviation is an index of pre-

cision. The habit of sa5dng "The
precision is ... " is deeply, rooted,

and there would he understandable

impatience with the notion that stand-

ard deviation should be numerically

inverted before being quoted in a state-

ment of precision.

Some obvious choices of multiples of

standard deviation for indexes of pre-

cision are given in Table I. The stand-

ard deviation itself, of course, may be

used as an index. Sometimes the

precision is stated as ±2 standard

deviations with the implication that

approximately 95 per cent of all the

measurements of the measurement proc-

ess will fall within two standard de-

viations of the long-run average for

that process, whether that long-run

average agrees with the reference level

or not. In some cases people have
used the multiple 1.96 rather than 2

in the hope that they will have obtained

limits which more truly represent actual

bounds within which 95 per cent of the

universe will lie. Usually such refine-

ments are specious on two grounds:

first, because the accuracy with which
the standard deviation will be known
is not consistent with distinguishing

between mutlipliers of 2.00 and 1.96;

second, too great a reliance on the figure

of 95 per cent is unjustifiable, anyway,
smce some measurement processes will

yield a universe of observations of

which perhaps only 90 per cent may
lie within the 2-standard-deviation

limits. It is reasonable to suppose

in most cases, however, that such

limits will include 90 to 95 per cent of

the statistical universe of observations.

Because of the uncertainty associated

with this multiple, it might usually

be better avoided in favor of other

alternatives.

Precision is often stated as ±3
times the standard deviation, with the

idea that for all practical purposes a

measurement process, assumed to be

under control, should be expected to

yield measurements only within a

3-standard-deviation band about the

long-run process average.

In some fields a preference has been
shown for expressing precision not so

much as a difference between an ob-

servartion and the long-run average

value of the measurement process

but rather as a difference between
any two observations from the same
process. This has led to limits analo-

gous to those previously mentioned and
calculated from them by multiplying by

yj2. There is again a problem of giving

such things names.

TABLE I.—INDEXES OF PRECISION.

Reference
Term Abbrevi- Nota-

ation tion

One-Sigma Limits. IS it ct'/>

Two-Sigma Limits. . 2S ±2(r'f.
Three-Sigma Limits

.

3S
DifTerence Two-
Sigma Limits D25 ±2v'2'it'p

Difference Three-

Sigma Limits D3S

There are other distinctions to be
made, however, which should be as clear

as possible in any statement of ac-

curacy. Frequently precision is stated

as a percentage, such as the coefficient

of variation. Any of the above indexes

of precision can be converted to a

percentage, but it is not altogether

clear that there is only one figure of

which these may be stated as percent-

ages. Obviously the long-run average

of the process is an outstanding candi-

date to use as a means of expressing

percentage figures. However, this may
not be convenient in all cases. In

some areas it is not unusual tf' use a

.single fixed quantity of which precision

is stated as a percentage.

Furthermore, the precision of a

process may alter with the reference

level regardless of the way in which we
indicate the precision, whether as a

standard deviation or a standard devia-

tion expressed as a percentage of some
other number. If that is so, the use of

a single number on a standard then

raises a question. Does this mean that

the precision is constant over the range

of reference levels in which we could

possibly be interested or does this

single figure of precision mean some-

thing else? Certainly it is not un-

common to consider this to be a maxi-

mum figure of precision over all possible

levels of interest. If so, it would be

well to append the word "max" after

the stated precision of the process.

Again it is often desirable to qualify

the statements of precision by some
reference to the systein^f causes for

which the statement of precision is

valid. For instance, is this the kind

of precision we should expect if we have

one highly trained scientist operating

one carefully adjusted instrument in a

laboratory? Is it what we should

expect over a short period of time or

over a long period of time? Is it what
we should expect of industry-wide

comparisons of the same material?

And so on. Such qualifying terms as

"single operator," "interlaboratory,"

"single-day" are helpful to the in-

terpretation of statements of precision.

Perhaps even more important, thinking

about the.se things is likely to be a big

help in getting one to state the pre-

cision that he is really interested in

in the first place. Sometimes we cannot

TABLE II.—INDEXES OF ACCURACY

Term
Refer-,
ence
Abbre-
viation

Notation

find Bias

Limits of
T 1?

— —
^

Root
Mean
Square
Error ((X'p-X'«)2-|-a'V)'"

succeed in being altogether explicit,

but efforts to do so in this regard may
very well help in the attainment of valid

statements of precision.

Wliat has been said of precision can

be said also of accuracy with regard

to the terms and clarity of reference.

The particular measures used arc some-

what more difficult to deal with. This

is because we have used the definition

of accuracy which involves the com-

bination of random and systematic

error. Perhaps the most satisfactory

way of expressing accuracy is to express

precision in some way and then also

to state the bias in a comparable manner.

Both these figures could be represented

as quantities which may vary as the

system of causes is altered in some

respects. This and other possible

means are set down in Table II. The
root mean square of error has nothing

in particular to recommend it except

statistical history. It cannot be used

in any simple straightforward way,

nor is it much help in efforts to visuaUze

the situation with regard to experi-

mental error. It has been dropped

from the practice.

Thus, we hope this practice may pro-

vide a way of interpreting consistently

and exactly such statements as "the

precision of the method is ±2 per cent

(relative per cent S.D.) max." Refer-

ence to this practice would, we hope,

faciUtate such consistent interpretation.

Verification of Precision and Accuracy

There is one very obvious problem,

among others, which is not discussed

at all in the recommended practice

to be issued by ASTM Committee E-U.
That is the problem of verification

of the precision or accuracy of a meas-

urement process. Anyone will ac-

knowledge that assessing the precision

or accuracy is a prerequisite to stating

it. It is not so easy to see just how
one goes about doing this. Other

speakers at this symposium will discuss

this subject. However, it is pointed

out in the Recommended Practice

that any such process of assessment

is in itself a measurement process

distinct from one that exists for the

purpose of testing materials and evaluat-

ing them on a routine basis.
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How to Evaluate Accuracy

This paper presents a logical breakdown of the error in a measurement
into (a) the systematic error inherent in the procedure, (6) the local system-

atic error of the laboratory using the procedure and, (c) the random error

(precision). This breakdown should facilitate efforts to attain better

accuracy. Several methods are given for identifying sources of error in

measurements.

BY W. J. YOUDEN

The term accuracy con-

veys to most the idea of a value that

is very close to the truth. The "truth"

has to be defined rather carefully.

Absolutely pure sodium chloride un-

doubtedly has a composition which

conceptually, at least, corresponds to

a certain weight per cent content of

chlorine and a residual weight per cent

of sodium. The presently accepted

atomic weights for chlorine and sodium

can be used to calculate the weight

composition. This calculated result,

admittedly, is not the absolute truth,

but it has to serve in that role. A
chemist, trying out an analytical pro-

cedure, will take this calculated com-
position as the truth.

Systematic Errors

Good agreement among repeat meas-

urements in no way implies that

the average of the measurements is close

to the "truth" when the truth is some
conceptual value of the property under

measurement. Experience shows that

averages of increasing numbers of

repeat measurements, made under uni-

formly maintained conditions, do con-

verge upon a particular value that

reflects the true value but also depends

in part upon the procedure, equipment,

and environment used to make the

measurement.

In the ideal situation, the limiting

mean that the averages of repeat meas-

urements converge to would be the

same as the true value. The difference

between the conceptual true value and
the average of the measurements is an

estimate of the systematic error as-

sociated with the particular procedure

and the circumstances providing the

measurements. If there is evidence

of a systematic error when the proce-

dure is used in several laboratories, then

this systematic error may be taken as

a property—undesirable-^f the par-

ticular procedure.

Some care is necessary at this point.

Again, experience shows that if a meas-

urement procedure is used at different

times and places, that is, in different

laboratories, the measurements con-

verge to different average values.

These average values are often main-

tained for considerable periods for the

different laboratories and reflect in-

NOTE—DISCUSSION OF THIS PAPER
IS INVITED, either for publication or for
the attention of the author or authors. Ad-
dress all communications to ASTM Head-
quarters, 1916 Race St., Philadelphia 3, Pa.

evitable differences in reagents and in

the caUbration of instruments; also

differences between localities in humid-
ity, temperature, etc., and finally some
possible differences in the interpretation

of the instructions for making meas-

urements. Every round robin results

in a collection of laboratory averages

that differ among themselves by more
than can reasonably be accounted for

by the within-laboratory precision.

Some point of view needs to be adopted

toward the collection of systematic

errors that are available when a value

acceptably close to the true value is

available for comparison.

One convenient viewpoint, when-
ever enough laboratories are involved,

is to designate the average of all the

laboratory averages as a grand average,

char|icteristic of the procedure. The
difference between this grand average

and the true value can be considered

an estimate of the systematic error of

the procedure. The scatter exhibited

by the individual laboratory averages

suggests that calibration errors, and all

other departures from the norm, intro-

duce positive or negative departures

from the normal systematic error of the

procedure. There are two important

consequences of this point of view.

First, the difference between a labora-

tory average and the true value is not re-

garded as a single item but rather as a

composite of two items, namely, the

systematic error of the method modified

by a systematic error of the labor.-itory

as measured from the grand average.

The second consequence is that the

systematic error of the laboratory,

relative to the consensus of all labora-

tories, can be obtained even when the

true value of the prof)orty is not known.
Even when the true value is known, it

does not seem fair to charge a test labo-

ratory with the .systematie error that

is an inherent property of the procedure

as shown by the consensus of all lab-

oratories. A test laboivitory should

Ik; held responsible only for departures

from the performance that the proce-

dure is capable of giving. The con-

sensus of the laboratories seems a reason-

able appraisal of the procedure.

There is another interesting conse-

quence of the concept of the procedure

average. Figure 1 shows the averages

for a chemical analysis for each of nine

laboratories marked on a scale of values.

Also marked is the procedure average

(grand average of all laboratories) and
the assumed true value computed from

the atomic weights. The procedure

average is about 0.2 per cent above the

theoretical composition, and this may

True Procedure

Volue

I-

Procedure

Syslemolic Error

Average

68. e 69l0 69.2

Per Cent C

Fig. 1.—Averages for nine laboratories.
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be taken as an estimate of the system-

atic error of the procedure. The nine

laboratories are scattered over a range

of about 0.4 per cent. The lowest

laboratory average is virtually coinci-

dent with the true value; the high-

est laboratory average is 0.4 per cent

above the true value. Heretofore,

the lowest laboratory (in this instance)

would expect congratulations and the

highest laboratory would be suspect.

Quite the contrary interpretation can

be made. There is no basis to con-

sider either laboratory as doing better

work than the other. Both labora-

-60 -40 -20 True 20 40 60
I , I Unils

I

Within 25 Of True]

Fig. 2.—Which one is the more accurate?

tories have averages that depart by

about equal amounts from the proce-

dure average. Unless the low labora^

tory can describe some departure from

the prescribed procedure to account for

its result, no credit should be given for

the accidental coincidence with the true

value. Incidentally, if a departure

from the procedure is admitted, this

useful information should have been

made available to the committee when
the instructions were being prepared.

Departures from the procedure average

cannot be ignored. Indeed, unless

and until a procedure has been ad-

equately described, so that nearly all

the laboratories show acceptable agree-

ment for their averages, the question

of agreement with a true value is hardly

meaningful. If laboratories disagree,

the procedure needs more careful speci-

fication. If the procedure average diff-

ers by an unacceptable amount from

the true value, the procedure itself re-

quires modification or rejection.

It is worth noting that the usual

evolution of a procedure does not sug-

gest the" viewpoint discussed above.

Generally a particular laboratory works

out a procedure and, because it gets

highly satisfactory results, urges a trial

by other laboratories. If this proce-

dure happened to have been first tried

by the laboratory that got the highest

result in Fig. 1, perhaps nothing more
would have been heard of the procedure.

If the lowest laboratory in Fig. 1 was
the first to try, then this laboratory be-

comes an enthusiastic sponsor of the

procedure. One cannot escape the

evidence that the laboratories are spread

out and that any one of them might

have been the originator of the pro-

cedure. There is a possibility that, for

the sponsoring laboratory, a chance
combination of instruments environ-

ments, etc. approximately canceled out
the inherent systematic error of the pro-

cedure. Confusion will reign until

the evidence is reviewed in the proper

light. The procedure reported in Fig.

1 does have a systematic error as shown
by the fact that eight of the nine labora^

tory averages have positive deviations

from the true value.

Precision and Accuracy

There is much evidence that the

systematic errors of laboratories, even
when measured from the consensus,

often tend to be as large or larger than
the standard deviation computed for

the random deviations associated with

the precision. Even rather small system-
atic errors are fairly easy to demon-
strate, because the random error of an
average is inversely proportional to

Vn, where n is the number of measure-
ments in the average. Consequently,

a relatively few measurements stabil-

ize reasonably well a laboratory

average. In passing, it should be re-

marked that a much larger number of

measurements are necessary to obtain

a good estimate of the precision.

Fortunately, the precision appears to

be much the same for most laboratories

using a procedure so that a pooled

estimate of the precision is usually

employed.

One question is often raised. Is a

procedure with a small systematic

error to be preferred to one with prac-

tically no systematic error if the latter

has much poorer precision? Suppose

a precise procedure. A, with a standard

deviation of 10 units has a systematic

error of 10 units. Still, 93.3 per cent

of individual results will be within

25 units of the true value. Another

procedure, B, without systematic error,

but with a standard deviation of 20

units, will have only 78.9 per cent of

the individual results within 25 units

of the true value. The error curves

are shown in Fig. 2, and clearly more
of the area of curve A lies within 25

units of the true value. So, on a single

result, there is a better chance of an

error less than 25 units using the pro-

cedure with the systematic error.

Some writers have suggested that, from
this point of view, A is the more ac-

curate procedure.

This advantage of the more precise

procedure does not always apply.

Consider a manufacturer shipping many
lots of his product. If the manufac-
turer is paid on the amount of active

ingredient in his product, he will lose

money in the long run using procedure

A. His average will be 10 units lower

than it would have been if procedure B,

had been used. True, the results will

fluctuate more with procedure B, but

the losses and the gains will, in the long

run, cancel out. This manufacturer

no doubt would regard procedure B as

the preferred procedure.

The Evaluation of Accuracy

There is no solution to the problem

of devising a single number to represent

the accuracy of a procedure. All

through the preceding discussion ac-

curacy has been associated with the

test procedure rather than with the

numerical measurement that results

from using the procedure. The per-

formance of the test procedure has to

be established, and, barring evidence

to the contrary, the measurements ob-

tained by the procedure are considered

to be subject to a particular systematic

error and to have a particular precision.

By various devices the systematic

error may be allowed for. In routine

work a reference specimen often permits

the introduction of a correction that

simultaneously adjusts for both the

procedure systematic error and the

local systematic error.

A more troublesome matter concerns

the desire to attach to a reported result

some statement of confidence limits

for the result. The question is some-

times put in the form : What confidence

limits apply to a result reported by a

new laboratory not included in the

original group participating in the study

of the procedure? There is a pitfall

here that will catch some who have

uncritically accepted certain statistical

techniques. One may glibly say that

there is a certain within-laboratory

o o o

Both Sets Hove Some Vorionce

o o oo o oo o

o o oooq o o o

Both Sets Hove Some Vorionce

Fig. 3.—Variance does not tell the whole story.
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error and, in addition, a between-lab-

oratories error that need only to be

combined. The upper half of Fig. 3

shows two hypothetical sets of labora-

tory averages. Both sets have five

laboratories, and both have the same
between-laboratory variance. Never-

theless the two sets correspond to

substantially different situations. In

the set below the axis the laboratories

fall into a reasonable pattern that

might, conceivably, arise if the labora-

tory systematic errors were normally

distributed. The set above the axis

shows one extreme laboratory with

the others compactly grouped and con-

veying a picture of a far more satis-

factory procedure. More laboratories

emphasize this contrast (Fig. 3, lower

half).

In predicting what may happen if

a new laboratory is included, statisti-

cal formulas lead to the same result for

both sets. Few experienced laboratory

workers will feel comfortable at this

equivalence. More likely these workers

would be inclined to get the extreme

laboratory in the upper set to locate

its trouble or else drop it from the

group. Indeed, is it fair to judge

the procedure with this laboratory

included? The matter of confidence

limits rests upon the presumption of

a statistical distribution. Blind ap-

plication of statistical formulas without

thoughtful examination of the results

may lead to absurd predictions.

The successful application of statis-

tical methods rests upon a thorough
understanding of the way the data
were obtained. For example, a dozen

repeat measurements made in close

succession provide an estimate of the

random variation to be encountered

under such relatively unchanging con-

ditions. If the dozen measurements
are made one-by-one on randomly
selected days over a period of weeks,

the variation is usually larger. This

additional component of variance can
be merged with the within-day com-
ponent. But if there is an awareness

of a systematic error that applies to

all the measurements, any well informed

estimate of, say, the maximum size of

this systematic error, must not be

combined with the random component.
Probability statements cannot be made
about such combinations of random and
systematic errors.

Detection of Systematic Errors

The differences so often found be-

tween the averages reported by several

laboratories testify to the presence of

systematic errors for at least some of the

laboratories. Within one laboratory,

other means are required to reveal any
systematic error in the procedure.

There are three major devices com-
monly used to test a measurement
procedure

:

1. Measurement of known ma-
terials.

2. Comparison with other meas-
urement procedures.

3. Comparison with modifications

of the given procedure.

More often than is realized a true

value is known. All target shooting

is a class of known values. The center

of the bulls'-eye, or the assigned target

coordinates in a bombing mission, is a

known value. The objective is to hit

the center of the target. The result

of each aiming is a measurement usually

reported directly as the "aiming error."

Pteflection shows that, given a collection

of impact points, it will be more in-

formative to locate, first, the centroid

of the impact points. The displace-

ment of this centroid from the assigned

coordinates of the target corresponds

to a systematic error, and the scatter

of points about the centroid reveals

the precision. Quite different steps

will be needed to correct for the dis-

placed centroid and to reduce the

scatter about the centroid.

Often, in analytical chemistry, sam-
ples of known composition can be

prepared. Spectrographic procedures

are sometimes tested on materials

analyzed by the more tedious and ac-

curate "wet" methods of analysis.

The "true" values thus established

are often quite adequate for testing

the spectrographic procedure. The
standard materials prepared by the

National Bureau of Standards are also

used to provide materials with known
"true" values.

Experimenters have long felt more
at ease when two or more quite differ-

ent procedures show agreement. Agree-

ment does not prove the absence of a

systematic error, but it does constitute

evidence against the presence of a

systematic error. Analytical chemistry

offers many opportunities to try, on the

same material, two or more analytical

procedures that differ in the chemical

reactions and reagents involved.

Another method, not used as often

as it might be, makes use of a propor-

tional relation when this exists. Con-
sider a stock of material submitted
to analysis. If several samples each
weighing 2 g are analyzed, good agree-

ment does not rule out the presence

of a systematic error in all the results.

But if samples of 0.5, 1.0, 1.5, 2.0, and
2.5 are tested, the weights of precipitate,

or the volumes of reagent used should

be strictly proportional to the sample
weights. A straight line through the

origin should fit the points if the

observed results are plotted against

sample weights. If there is a system-

atic error, constant over the range of

sample weights, the points will be fitted

by a line that intercepts the 2/-axis at a

point corresponding to the systematic

error. If the systematic error is pro-

portional to the sample weights, the line

will still go through the origin and the

systematic error will not be revealed.

Test procedures for many materials

lead to results which are not invariant

under, for example, changes in specimen

dimensions. Extremely careful speci-

fication of the test ijpecLmens is then

necessary. The results are considered

to be closely correlated with important

properties of the material in bulk. Thus
a cube of cement 2 in. on each edge may
be submitted to a compression test.

The results of such tests are used to

determine whether the product meets
certain specifications. Compression
tests on cubes 3 in. on each edge could

also be used, but, presumably, the re-

lation of breaking load to cube dimen-

sions is not a simple one.

Refined measurements of certain

physical constants usually have system-

atic errors considerably in excess of the

precision error attached to the average.

Here an extremely carefully constructed

set of equipment tends to give a series

of readings showing superb agreement.

Later, another worker, with an entirely

different ensemble but based on the

same principle, obtains an average

unquestionably displaced from the re-

sults of preceding workers. Standard
practice calls for the most painstaking

elimination of sources of systematic

errors often by introducing various

corrections. Suppose, in the equip-

ment, a tube of 1 mm in diameter is

needed. An estimate will undoubtedly

be made of the uncertainty introduced

in the final result by the estimated

uncertainty in the tube diameter.

Surely the use of a second similar tube,

or even one somewhat bigger or smaller,

will provide an opportunity to estimate

the effect of uncertainty in the tube

diameter.

Experimenters immediately object

that such dualization of each part of

the apparatus would vastly increase

the program. That is true. It is also

true that a later investigator usually

changes nearly everything. He gets a

somewhat different result and there is

no way to locate the reason. If the

first man had tried two diameters of

tube, and the second worker tried some
other alternatives, then eventually there

would accumulate the necessary in-

formation to pin down the source or

sources of discrepancies.

Detection of Errors by Designed
Experiments

Testing laboratories that run many
tests of the same kind often overlook

opportunities to check up on their
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TABLE I.—SCHEDULE FOR PLACEMENT OF BARS.

Comparison Bar Position Difference,

Number East West East-West

1 A B di
2 B C
3 CD ds
4 D E dt
5 E A di

Total

equipment without in any way interfer-

ing with their regular program of work.

Two examples will be given, one a pre-

cision procedure and the other a more
approximate measurement.

Meter bars are sometimes compared
by placing them end-to-end in a long

chamber. Every effort is made to

maintain a uniform temperature the

length of the chamber, otherwise spuri-

ous differences in the lengths of the bars

may be introduced. Careful measure-

ments are made to check on the uni-

formity of the temperature. The bars

are intercompared in sets, every bar be-

ing matched with every other bar. A
set of five bars makes possible ten pair-

ings and consequently ten comparisons.

Each comparison leads to a difference

in lengths between the two bars in the

chamber. Let one end of the chamber
be designated the east end and the other

end the west end. If the various pairs

of meter bars are placed in the chamber
without any plan, an opportunity for an
easy test of the equipment will be lost.

One device long used to compensate
for position effects is to reverse the

positions of the objects and repeat the

measurement. An alternative device

achieves the same effect without actu-

ally reversing the positions for each

pair. The objects may be' scheduled

for the positions so that, over the total

of all the pairings used, each object

will occupy each position the same num-
ber of times. The schedule shown in

Table I has been used for this purpose.

The letters, A, B, C, D, and E are used

to identify the bars and the d's with

subscripts denote the observed differ-

ences, the difference always being the

length of the bar in the east end of the

chamber minus the length of the bar in

the west end.

Examination of the schedule (Table

I) shows that the placement of the bars

the chamber is such that, for the first

five comparisons, all five bars have been

in the east end and the same five bars

also in the west end. When the five

differences are summed this amounts to

subtracting the total length of the five

bars from the total length of the same
five bars. The sum of these five differ-

ences should, therefore, be zero, within

the limits of the measurement error.

Suppose, however, that one end of

the chamber is persistently sUghtly

warmer than the other end. This will

increase the length of the bars in the

Comparison Bar Position Difference,

Number East West East-West

6 AC d.
7 C E di
8 E B ds
9.."... B D d,
10 D A d,o

Total Sd

TABLE II.—SCHEDULE TO TEST
EQUIVALENCE OF MACHINE HEADS.

Run Head Number
Number

1 2 3 4 5 6 7 8
I.

.

a b c d a b c d
II.

.

e g g e h f f h
III.

.

i j k 1 j i 1 k
IV.

.

. m n m n 0 P 0 P
V. . • q r s t 8 t q r
VI.. u u V V W w X X
VII. . y A B z z B A y

1 2-1 3-1
2 1-2 ... 3-2
3 1-3 2-3
4 1-1 2^ 3^
5 1-5 2-5 3-5
6 1-6 2-6 3-6
7 1-7 2-7 3-7
8 1-8 2-8 3-8
Total 2i 22 23

warm end and introduce a small bias

in every observed difference. The sum
of the five differences provides a very

sensitive measure because the total

length of aU five bars is involved. The
second set of five comparisons provides

a check on the first result.

Two advantages accrue from such a

planned assignment of bars. First,

a temperature gradient may be de-

tected or, it the sum of the differences

is satisfactorily small, the evidence -of

position equality has been provided

at no cost. Second, if there is a position

effect the correction of the observed

differences using the estimate of the

systematic error, Xd/5, is a simple

matter.

Consider a piece of equipment with

eight test positions. Perhaps duplicate

specimens are usually run. In any
event dupUcate specimens of each test

material wiU be needed for the 28

materials tested in the program in

mind. With dupUcate specimens and
eight test heads, four materials can be

compared in any run. Comparisons

among materials, within a run, rely

on the equivalence of the various test

positions. The choice of the two posi-

tions assigned to the duplicate speci-

mens can be used to throw light on

the equivalence of the eight heads.

Number the heads 1 to 8, the runs by
Roman numerals, and the 28 materials

hy a, b, . . . , z, A, B. The schedule for

the assignment of duplicates of these

28 materials is shown in Table II.

Each pair of dupUcate specimens pro-

vides a difference. These differences

should be entered In Table III by
placing in each ceU the difference

obtained by subtracting one dupUcate
from the other In the order Indicated.

For example, material a tested In the

first run gives the difference between
positions one and five. Thus, in the

first column the differences are obtained

by subtracting from the result obtained

on head 1 the appropriate results ob-

tained on the other heads. The first-

row entries Ust the same values with

opposite sign.

The totals at the foot of the colunms
when divided by 8 rank the eight heads

with reference to zero. As an arith-

metical check, the sum of the eight

column totals must be zero. A statisti-

4-1 5-1 6-1 7-1 8-1
4-2 5-2 6-2 7-2 8-2
4-3 5-3 6-3 7-3 8-3

5-A 6-4 7-4 8-4
4-5 6-5 7-5 8-5
4-6 5^6 7-6 8-6
4-7 5-7 6-7 8-7
4-8 5-8 6-8 7-8
2< 26 28 27

'

28

clan's help will be useful In a complete

analysis of these data. The experimen-

tal design presented here is Intended to

fit into the regular testing procedure

with a minimum of interference. A
simple direct way to compare the heads,

m a special test, is to use eight speci-

mens of the same material in a single

run. About four such runs will be

required to obtain as much Information

regarding head differences as is here

obtained with 28 pairs of dupUcates.

Summary

The number of test procedures grows

dally. The variety of equipment defies

enumeration. Always the question of

the sources of variation arises when
test results show poor agreement. The
written instructions for conducting tests

contain phrases such as "shake vigor-

ously," or "clean thoroughly." Opera-

tors will vary In the way they foUow such

Instructions. Often no effort has been

made to ascertain how vulnerable a test

procedure Is to moderate variations in

the actual manual operations involved.

Usually, if some major source of ex-

perimental variation can be located,

steps may be taken to improve the

situation. Fortunately, for every in-

teresting test situation some equally

interesting experimental design can be

devised to throw Ught on the sources of

experimental source. As these sources

are identified and corrected the accuracy

of test results will likewise improve.

TABLE III.—ARRANGEMENT OF DUPLICATE DIFFERENCES TO EVALUATE
THE HEADS.

Head Head Number
Number 12345678
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On the Analysis of Planned Experiments
By MILTON E. TERRY

^^ver the past decade, scientists and

engineers have increased the scope of

their experimentation and the volume

of test data to such an extent that

additional analytic and reduction tech-

niques have been required. With auto-

matic data recorders of analog and

digital types becoming almost common-
place, and with continuing enlargement

of the body of scientific knowledge,

it has become increasingly difficult

for an experimenter to extract a satis-

factory amount of information from

his experiments.

The experimenter is finding himself

more and more in the situation of the

manufacturing or process engineer with

far more data than he can ingest, digest,

or understand.

It is not surprising, then, that several

statisticians have returned to the

pattern concepts of Shewhart and the

other engineers interested in control

of processes. Tukey and Anscombe,'

and others have proposed several

distinct and ingenious graphical tech-

niques appropriate to various aspects

of data analysis. Presented here

are the technique and concepts I

proposed and described.^ This choice

is personal and not dictated by scien-

tific demand.
Over the past 30 years, two the-

oretical approaches to the statistical

treatment of research and development

problems have evolved. It is the

purpose of this paper to show how both

can be used together in the analysis

of data.

W. A. Shewhart^ and others have
considered the problem of analyzing

NOTE—DISCUSSION OF THIS PAPER
IS INVITED, either for publication or for
the attention of the author or authors. Ad-
dress all communications to ASTM Head-
quarters, 1916 Race St., Philadelphia .3, Pa.

1 F. J. Anscombe and J. W. Tukey, "The
Criticism of Transformation," unpublished
manuscript, 1954.

' M. E. Terry, "On the Analysis of
Planned Experiments," Transactions, Am.
Soc. Quality Control, pp. 553-556 (1955).

' W. A. Shewhart, private communication.

process data where the number of

measurements is large. The approach

proposed by Sir Ronald A. Fisher is

to select a group of variables and a set

of values of each variable, and then

take measurements at selected com-
binations of these values. Then an
estimate is made of the effect of chang-

ing each variable among its selected

values, this effect being averaged over

the selected values of each of the other

variables. Randomization is used to

average out the effects of the variables

not under study.

The Shewhart method of analyzing

data uses graphical methods wherein

the data are first plotted in the pertinent

recorded order in rational subgroups,

and the appUcable control limits found

from an average "within-subgroup"

estimate of dispersion. A subgroup

central value and a dispersion estimate

are plotted on charts together with their

appropriate control hmits. It is then

standard practice to scrutinize all

the charts for evidence of nonran-

domness and lack of control. When
the data finally pass all the tests of

interest, estimation is justified. Of

course, all datum points and statistics

not satisfying a test criterion must be

examined carefully by the research

team for assignable causes. When the

process yielding the data is not in

control, estimation and prediction are

hazardous.

Shewhart has pointed out that one

may find sets of data which satisfy

all simple statistical tests but display re-

current patterns which cast doubt on any

hypothesis of randomness and inde-

pendence. One of the most common
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patterns he has found occurs in the

field of multiple readings, forming

trend lines of varying length and mag-
nitude of slope, with sharp breaks

between segments. When the variation

of these lengths and slope magnitudes
is small, certain inferences can be made.
When the variation is large, it is not

clear what inferences should be made
or with what confidence.

The analysis of a statistically de-

signed experiment using the classical

form of the analysis of variance depends
on three basic assumptions of (1) addi-

tivity of treatment effect, (2) inde-

pendence, and (3) homoscedasticity.

Under these assumptions it is possible

to incorporate into almost all research

projects a schedule of measurements
on specified elements of the experiment

involving the selected variables in such

a way that the effects of each selected

variable averaged over the combinations

of selected values of the remaining

variables can be measured. In addi-

tion, the reaUty of effect from a selected

variable can be tested statistically.

In fact, the testing of apparent reality

of effect and estimation of residual

variacion have been the main functions

of the analysis of variance, and until

recently were considered a satisfactory

ending to the reduction of experimental

data. Hence, some engineering and
industrial research personnel have cast

aside the statistical design of ex-peri-

ments, since they could neither satisfy

all of the assumptions nor accept the

classical form of the analysis of variance

as satisfactory at the end of most ex-

periments where several or all of the

following questions must be answered

:

1. Are there any assignable causes

of variation present other than those

introduced into the experiment de-

liberately?

2. How important are the effects of

each of the selected variables?

3. Was the experiment well con-

ducted?

4. Were there any unusual outcomes
worthy of study?

5. How large a fluctuation can be

expected in the process for manufactur-
ing a product of which the experimental

units were originally presumed repre-

sentative?

6. What specifications can be written?

7. Which of the selected variables

have effects demonstrated by this

experiment not to be zero?

The control chart technique gives

answers to these questions, but not
all have the same efficiency. The
analysis of variance originally seemed
to be designed to answer question 7
only, but with the aid of recent de-

velopments (components of variance.

multiple comparisons, and the analysis

of residuals) now offers reasonable

answers to the remaining questions.

Under the assumptions of a statis-

tically designed experiment we can

always state a mathematical model.

Consider the following hypothetical

simple experiment. We wish to study

the effect of reducing corrosion by
evaporating a metal p mils in thickness

on an electrical element. Ten elements

at each of six thicknesses (pi, . . . ,p«)
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are considered necessary. Only one
element at a time can be coated, so the

60 units will be processed in a random
order. They are to be subjected to

a controlled corrosion attack and then

measured. Let U be the true relative

effect of thickness pi in reducing corro-
0

sion (S ti = 0). Let m be the true
i = l

average corrosion effect over the ex-

perimental range and yij the measure-

ment of the jth element with the thick-

ness coating pi. Then our mathe-
matical model is

ya = li + ii + en; i = 1, . . ., 6;

j = 1 10

where etj is the residual effect and is

assumed to be a random independent

normal variate.

We cj,n estimate m by the over-all

mean X = SSytj/QO; and << by Z<
_ a _

- X, where Xi = Sytj/lO. Then

we define Yn = /ji + ti, (i = 1, . . . , 6)

to be the predicted - value, and 2^ =
yij — Yijio be the residual of the meas-
urement ij. It follows that =

We stimulated this experiment by
assigning constants to the y. and t,

and values to the from a table of

random order. In two simulations

with respect to the ordered y'ij, a linear

trend and an abrupt shift in level were

superposed respectively on the yUi to

yield two sets of data yn of known
behavior (see Figs. 1 (o) and (6)).

Standard analyses were run. The esti-

mates of relative mean effect were not

very biased, but the estimates of the

residual variation were so bad that no

conclusions about equality of effects

could be drawn. Then the zn were

calculated for each simulation and
plotted against order (see Figs. 2 (a)

and (6)). When the data of Fig. 2

were corrected for the fitted trend line,

the new estimates of the known pa-

rameters were exceDent. The use of

Fig. 3 gives an excellent estimate of the

shift in level, and again correctly ad-

justed the estimates from Fig. 2

When the set of residuals, zn, con-

stitute a time sequence, they can be

plotted as such. In many engineering

experiments, only one fabricating or

measuring device is available, and hence

one or more time sequences are imposed

on the experiment. In general the

statistical design will average out the

time effect in the estimates ti by ran-

domizing the order of fabrication or

measurement of the experimental units.

In a real sense, the set of residuals

plotted against time, together with

control Umits, ± A;^,^^^,,, are a control

chart. Hence we are tempted to use

the usual chart techniques. Since there

may be constraints imposed by the

model, the significance levels may be

no longer identical- with the tabular

values. But when the control limits

are used as action limits, satisfactory

results should ensue.

Anscombe and Tukey have proposed

plotting the set of residuals, Zij, against

its associated predicted value, Yn,
when the experiment contains at least

a double classification. Here "non-

additivity is shown by a curved re-

gression. Nonconstancy of variance

is shown by a wedge shape."

In general, plotting residuals both

against their predicted values, and

against serial order, s, enables the ex-

perimenter to examine that portion

of his measurements which is not at-

tributable to the suspect variables.

He will have visual evidence as to the

vexations from many sorts of non-

additivity of effect, nonconstancy of

variance, hnear trends, cycles, and wild

shots which may be embedded in his

experiment. Hence, the analyst-ex-

perimenter can take the necessary

action to ensure that the final

accepted readings in the proper

units satisfy the assumptions on which

valid predictions and estimates wiU be

made. This form of analysis, used

in conjunction with the analysis of

variance, enables the user of a sta-

tistically designed experiment to focus

the same type of scrutiny on his data

that the control engineer can give to

process data.
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Optimum Allocation

of Calibration Errors

EDWIN L. CROW
National Bureau of Standards, Boulder, Colorado

Answers are given to two questions, with emphasis on

the second, (a) How do the errors accumulate from echelon

to echelon in a hierarchy of calibrations? (b) If a certain ac-

curacy is required at the final echelon of a hierarchy, what

is the best way to achieve that accuracy, or, more specifically,

what is the optimum allocation of errors among the echelons?

The criterion for optimization is taken to be the minimization

of the total cost of achieving a given accuracy.

Introduction

Since the art of measurement began there have
been standards, more or less informal, by means of

which further measuring sticks, weights, and capacity

measures have been produced for use in construction

and commerce.* With each reproduction of the meas-
ures variations were inevitably introduced, and these

often consisted of intentional as well as accidental

errors. The ancient Egyptians, Greeks, and Romans
had respected standards of measure, but these fell

out of use during the Dark Ages, and the later at-

tempts to establish widely used standards were long
doomed to failure.

In 1830 the United States Senate noted that varia-

tions in the standards in use at various customhouses
were causing loss of revenue and directed the Sec-

retary of the Treasury to make comparisons of these

standards. The Treasury in fact took steps to supply
uniform weights and measures to all customhouses,
and the Secretary reported in 1832 that standards
were being fabricated at the United States Arsenal in

Washington "with all the exactness that the present

advanced state of science and the arts will afford."

Thus the Office of Weights and Measures came to

be established in the late 1830's within the Treasury
Department. In 1901, when its budget was still less

than $10,000, the Office became a part of the new
National Bureau of Standards. In 1903 the Bureau
was transferred to its present position in the Depart-
ment of Commerce.

Dr. Crow is Consultant in Statistics, Environmental Science
Services Administration, Boulder, Colorado.

Adapted from a paper delivered to the 18th Midwest Quality
Control Conference on October 12, 1963, in Tulsa, Oklahoma.

•The Introductory historical remarks are derived from the fasci-
nating histories of standards written by Jolin Perry'^' and
Ralph W. Smith<«>.

ASQC LCS Code 767;60;70:400

Now the Bureau maintains hundreds of national

standards and calibrates the standards of the states,

military departments, manufacturers, utilities, uni-
versities, private testing companies, and others. The
Bureau is unable to calibrate all secondary standards
and instruments, and the above types of organizations

in turn calibrate further standards. For example,
counties and cities may have their balances, weights,

and other measures certified by their state offices,

and they in turn certify the balances within their

jurisdictions.

In electrical energy the Bureau uses a standard
watthour meter accurate to about 0.03 percent to

calibrate the master standards of public utility com-
missions and power companies. The latter in turn
make measurements to about 0.1 percent of custom-
ers' meters. As a result in part of variability in time,

customers' meters operate within about one percent
accuracy.*^'

In recent years the demanding requirements of

missiles, spacecraft, and other vehicles have led to

the establishment of extensive hierarchies of stand-
ards laboratories by the military departments. As
indicated in Fig. 1, the National Bureau of Standards
is at the apex of these hierarchies. The figure indi-

cates just a few examples of the standards labora-
tories that enter in various levels, or echelons, of

the hierarchy. For most basic standards the Bureau
is itself just one of the many national laboratories
deriving their units from the International Bureau of

NBS

FRANKFORD
ARSENAL

—^ \ r-
BUWEPS
EPSL

WASHINGTON

I

I I'l I I

NAD
CRANE
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mj~26
(125)
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Industrial Quality Control 368-215
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Figure 1—Schematic Representation of HIerarcliies of Military

Standards Laboratories Using National Bureau of Standards

Calibration Services.
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Weights and Measures. In each echelon of the hier-

archy and with each transfer of information, some
error is unavoidably introduced.

Two questions arise:

(a) How do the errors accumulate from echelon

to echelon in a hierarchy of calibrations?

(b) If a certain accuracy (or, alternatively, pre-

cision; see Eisenhart'2> for a basic discus-

sion including definitions) is required at the

final echelon of a hierarchy, what is the

best way to achieve that accuracy, or, more
specifically, what is the optimum allocation

of errors among the echelons?

The first question was discussed recently by Woods
and Zehna''', but the present article will summarize
some complementary results, as well as mathematical
and numerical answers to the second question. The
basic material is drawn from a 1960 paper 'i', in

which more details may be found. It has often been
stated that each echelon should be 10 times as ac-
curate as the next one, but the answer to the second
question will show that usually nowhere near that

accuracy is required.

If we are to answer a question of the "best way" or

"optimum" quantitatively, we must adopt some cri-

terion for judgment. Here we have quite naturally

adopted the criterion that, for a specified final ac-

curacy (total error), the cost should be minimized.
It is a pleasant fact that the answer would be the

same if the criterion were that, for a specified cost,

the final accuracy should be maximized.

How Do Errors Accumulate in a Hierarchy?

Before we answer the first question we must de-
fine "error" a little more precisely. Also, in order
to answer this and the next question without un-
necessary complication we shall make the simplifying
assumption that the characteristic errors, however
they are defined, and the characteristic costs of all

calibrations in the same echelon of the hierarchy are
the same.

Let us suppose that in a particular type of calibra-

tion there are n echelons, numbered from 1 to n
starting with the top laboratory. A laboratory in the
jth echelon of a hierarchy adds an error, say ej, to

the error passed on to it from laboratories higher in

the hierarchy; Cj is an individual error, varying from
day to day and calibration to calibration, perhaps
positive, perhaps negative, and not known in an indi-

vidual case. However, if there are n echelons, we
can say that the total error of a measurement in the
nth echelon (relative to the international standard),
say et„t. is given by the equation

etot = ei + eg + . . . -I- e„

Let us define Ej as the "maximum" numerical value
of Cj, or, if we need to be more precise, the value
that is exceeded by ej numerically just 0.3 percent
of the time in the long run. Likewise let Ej^t be the
maximum value of etot- Consider the extreme case in

which the errors ej and ej + j in successive echelons
are perfectly positively correlated, so that

E,„t = El + E2 + . . . + E„

If we assume that the error ratio Ej + j/Ej between
successive echelons is a constant, then Et^, can be
easily evaluated in terms of this ratio and the final

Table I—Relative Total Maximum Error, Etot/En

n

Ej*i/Ej

10 4 2 1

2 1.10 1.25 1.50 2.00

3 1.11 1.31 1.75 3.00

00 1.11 1.33 2.00 00

maximum error E^. Some values are given in Table
I. We see that the total error is never more than
twice the error added in the nth echelon, however
many echelons there are, as long as the error ratio

is at least two. However, if the error ratio approaches
one, the total error mounts up rapidly.

The above extreme case of perfect positive cor-
relation would probably rarely be met in practice.

Even though the error ej passed on to a laboratory
in echelon (j + 1) has the effect of a systematic
error within the calibrations performed by that lab-
oratory until its next checkup with echelon j, or
even over the course of many checkups, it is unlikely
that the error ej + 1 added by that laboratory in a

particular case is appreciably correlated with e^. In
particular, if we restrict consideration of errors to

uncorrelated deviations about mean values (i.e., to

random errors), the variance of the total error, o^tot. is

given in terms of the variance of in the several
echelons by the equation

O^tot = Oi^ -\- o-r + . . . + a„2

Even if systematic as well as random errors are
included, McNish and Cameron'^i pointed out that
this square-type combination of errors is more real-

istic for a chain of calibrations than the simple sum.
For simplicity we shall, however, give results for

the square-type of combination in terms of the fa-
miliar notation o. (See also Youden'**.)

If we assume that the error ratio Oj + i/Oi between
successive echelons is a constant, then the standard
deviation Otot is easily evaluated, and some relative

values are given in Table II. Here we see that Otot is

little more than the standard deviation in the last

echelon, c,,, however large the hierarchy is, unless

0j + i/Oj falls below two.

Cost Considerations

As indicated earlier, the optimum error ratio will

be determined by minimizing the total cost of the
entire hierarchy. For example, if the National Bu-
reau of Standards were to require considerable basic
research at great cost to improve its working stand-
ards, then to decrease the total error E^^t or Otot it

would tend to be more economical to use more
expensive instruments, methods, and personnel in

the lower echelons. On the other hand, if the number
of laboratories in lower echelons were very large, it

would tend to be more economical to improve the
single set of working standards at the Bureau, or
the relatively few standards near the top echelon.
The costs to be considered are of two types: the

cost of research and development that needs to be

Table II—Relative Total Standard Deviation, otot/on

n 10 4 2 1

2 1.005 1.03 1.12 1.41

3 1.005 1.03 1.15 1.73

zo 1.005 1.03 1.15 00

369-216



COST
C

R AND D cost: C(,(E) = boE'

Table III—Exponents ai for Four Calibration Systems

COST OF INSTALLATION AND
OPERATION FOR ONE LABI

-a,
C|(E)=b|E

ERROR E

Figure 2—Illustrative Costs of Research and Development, Co(E), and

of Installation and Operation, Ci(E), Drawn for ao = 2 and ai = 1.

done only once, or even not at all if the system has

already been developed, and costs of installation and
operation for each laboratory. The latter costs need
to be multiplied by the number of laboratories in

each echelon. We assume that both types of costs

are directly proportional to some power of the ac-

curacy required; that is, inversely proportional to

some power of the maximum or average error. Figure
2 shows functions of this type, with the research and
development cost cut off at a certain error value to

indicate that systems are already available for errors

larger than that value. The. exponents ao and aj are

important; here the curves are drawn for ao = 2 and
a, =r 1, and in the general solution it is assumed that

c,

COST IN

DOLLARS

100,000

50,000

10,000

5,000

1,000

500

100

r-O-

41 1 i

<

>

0.001 Q005 0.01 0.05 0.1

E, ERROR IN db
0.5 LO

Figure 3—Estimated and Fitted Costs of Installation of Attenuator

Calibration Systens.

Installation Operation

Resistance 0.5 0.4
Voltage 0.5 0.2
Current 0.9 0.3
Power 1.0 0.3

Uo — ai; i.e., that research and development cost,

if present at all, rises more rapidly with accuracy
than the costs of installation and operation.

In Fig. 3 are plotted the estimated costs of installing

six attenuator calibration systems with different

maximum errors E. These data were generously sup-
plied to me by David H. Russell of the National
Bureau of Standards. The best-fitting curve of the
type in Fig. 2, fitted as the (least-squares) regression

line of log C, on log E, is also shown; the exponent a,,

the slope, is about 0.9. From data kindly supplied
to me by Frank D. Weaver and David Ramaley of the
Bureau, I was also able to determine approximate
exponents a, as shown in Table III.

The Optimization Problem

The essentials of the optimization problem can be
best demonstrated on a simple example using the
approximate costs of installing attenuator systems.
Suppose there are only two echelons, with one lab-
oratory in the first and eight in the second. Suppose
also that the required maximum total error is 0.3

dB or about three percent, that each maximum error
is taken as three times the standard deviation o, and
that errors combine by squares. Then the error equa-
tion is

(the coefficients three canceling). The cost of in-

stalling one system is, from Fig. 3, approximately
411/Ej, where Ej is in dB, or

Ci(Oj) = 14OO/0J dollars (oj in %),

The total cost equation therefore is

1400
. „ 1400

Ctot(Ol, 02 ) +

One can easily calculate this cost for various values
of Oi and 02 whose squares add to one as required.

COST

$
30,000

20,000

10,000 —

1 \ \ I \ I I \ r
8 LABORATORIES IN SECOMD ECHELON
TOTAL ERROR PERM ITTED = 3o-,o| =Q3dBa3%
COST PER ECHELON = 4200(3tr|)''=l400/crj DOLLARS, iTj IN %

5

a, /a-,

Figure 4—Theoretical Cost of Installing a Two-Echelon Hierarchy of

Attenuator Calibration Systems.
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In Fig. 4 the cost is graphed as a function of the

error ratio 02/01 (where Otot is kept equal to one

percent always). We see that it is a minimum for

O2/01 = 2. This is confirmed by the general theory,

which states that the optimum error ratio is the

(ai + 2)th root of mj, where is the numbel: of

laboratories in the second echelon, so that in this

case we have the cube root of eight. The optimum

errors themselves are easily found to be Oi = 1/V 5

= 0.45%, 02 = 2/V~5 = 0.89%. However, we see that

the minimum of the curve is fairly flat; in fact the

minimum cost of $15,650 for all nine laboratories

would be exceeded only by five percent if the error

ratio were as small as 1.3 or as large as 3.2.

If w£ had assumed that the err.ors combined
linearly rather than by squares, then the optimum
error ratio would have been the (ai + l)th root of

mj, that is, the square root of eight, or 2.8 in this case.

Thus, the practical difference between the two as-

sumptions on error combinations is not large in

this case.

On the other hand, we see that the value of the

exponent aj could be important. If aj were very small
relative to one, then the optimum error ratio would
be close to mz, or eight, if errors combine linearly.

However, since it is more likely that squares of er-

rors add, the optimum error ratio even for very
small ai is more likely to be near the square root

of mj, or 2.8 here.

To consider the general optimization problem, let

n be the number of echelons and mj the number of

laboratories in the jth echelon servieed by each
laboratory in the (j — l)th echelon. For the case of

linear combinations of errors the problem can be
stated as follows:

Given a prescribed value of Et„t, determine Ej,

E2 En so as to minimize the total cost,

C(Ei,E2 E„)

= 2 [Co(Ej) + mimg . . . mjCi(Ej)]
J = i

D

= 2 [boEj-»o + mjmz . . . mjbjEj-'i],
J = i

subject to

El + E2 -|- . . . -|- En = Etot,

where ao ^ ai > 0 and bo may be 0 for Ej sufficiently

large.

The solution to this problem can be obtained by
applying differential calculus (using the "Method of

Lagrange Multipliers"). The optimum error ratio

between each pair of echelons is given by

Ej^i/Ej = mj + iV(a+i) (j = 1,2 n-1),

where 0 < a ^ ai, and, in the particular case that
research and development are unnecessary, a = aj.

Table IV gives some values of these optimum ratios

for a wide range of values of and three values of

a. For the defense hierarchies shown in Fig. 1 the

mj's vary from 2 to 23. Only for the laboratories in

the echelon reporting to the National Bureau of

Standards does mj rise to as high as 125, and that

figure is for a very common quantity like resistance

when all the industrial laboratories as well as the

military laboratories are included.

The solution to the corresponding problem with
errors being combined by squares is given by the

optimum error ratio

oj + i/oj = (mj + i>i/(. + 2) (j r= 1, 2 n-1).

where 0 < a ai and a = aj in the particular case

that research and development are unnecessary.

Table V gives some values of these optimum ratios,

all of which are smaller than the corresponding
values in Table IV. Since errors are more likely

to combine as squares than linearly. Table V should

be considered as more appropriate than Table IV.

From our cost estimates on electronic quantities, th^

column a = 0.3 seems to apply approximately to

operating costs and the column a = 0.8 to installation

costs. Thus for the mj values occurring in the military

calibration hierarchies, the optimum error ratios

range from about 1.3 to 4.

Concluding Remarks

We have considered the errors occurring in a

hierarchy of calibrations from two points of view,

how the errors probably accumulate and how they
should accumulate, or be allocated, from the point

of view of minimizing the total cost. We have seen

that from either point of view the errors add up
rather slowly and that the optimum ratio of errors

from one echelon to the next should be relatively

small in most cases, perhaps about 1.3 to 5. When
the size and a cost exponent of a particular calibra-

tion hierarchy are known, the optimum error ratio

can be calculated from the formulas given. These
results are valid only to the extent that the assump-
tions, the cost functions of Fig. 2 in particular, are
realistic.
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Table IV—Optimum Error Ratios if Etot = Ei + E2 + . . . 4- En

a = 03 a = 0.8 a = 2

2 1.7 1.5 1.3

8 5.0 3.2 2.0

32 14.4 6.9 3.2

128 41.8 14.8 5.0

Table V—Optimum Error Ratios if c^tot = ai^ + 02^ + . . . + on*

a = 0.3 a = 0.8 a = 2

2 1.4 1.3 1.2

8 2.5 2.1 1.7

32 4.5 3.4 2.4

128 8.2 5.7 3.4
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CONFIDENCE AND TOLERANCE INTERVALS FOR
THE NORMAL DISTRIBUTION*

Frank Proschan

National Bureau of Standards^

Confidence and tolerance intervals for the normal distribu-

tion are presented for the various cases of known and un-

known mean and standard deviation. Practical illustration

and interpretation of these intervals are given. Tables are

presented permitting a comparison among the intervals. Fi-

nally the relationship between the two types of intervals is

described.

L Introduction. Discussions of the theory of errors will sometimes

state that the mean plus or minus the probable error will include 50%
of future observations (assumed normally distributed). This, of course,

is true only if the mean and the probable error of the population itself

are used. Unfortunately, in most practical problems one or both of

these may not be known. Experimenters who use the sample mean plus

or minus the sample probable error with the expectation that this

interval will contain 50% of future observations may be seriously delud-

ing themselves.

However it is possible to construct intervals of the type x + ks

(5 = sample mean, s = sample standard deviation) which will, on the

average, include 50% of the population. From this one is led to a more

general consideration of such intervals, and to the uses to which they

can be put.

All populations discussed in this paper are normal unless otherwise

specified. Let n, c refer to the population mean and standard deviation

respectively.

Any one of foufpossible situations may exist: (a) m, f both known;

(b) M unknown, a known; (c) ii known, a unknown; (d) <t both un-

known.

Let m represent either ju or x; let s. d. represent either o- or s. Then two

important types of assertions may be made about intervals of the form

m ± k s.d. (1)

A. Confidence interval. The probability is y that the interval (1)

contains the population mean (or, alternatively, the second sample

mean).

Presented at the annual meeting of the American Statistical Association, Boston, December 1951.

t Now at Syracuse Electric Products, Inc., Hicksville, N. Y.
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B. Tolerance interval. In a large series of repeated samples the pro-

portion of the population contained in (1) is

(Bl) a, on the average

(B2) P or more, 7 of the time.

In this paper, a comparison is made among the values of k appro-

priate to the respective cases obtained from various combinations of

A and B with (a), (b), (c), and (d). Practical illustrations and inter-

pretations are given of these cases.

In addition, details are given of a proof of a result by Wilks (1941)

for the case Bl. These details are given because they are suggestive of

a general method applicable in such problems. Also, tables are presented

of values of k for a certain class of confidence and tolerance intervals.

Finally, the relationship between confidence intervals and tolerance

intervals is discussed.

2. Definition of symbols. For convenience, the definitions of symbols

are brought together in this section.

/z = population mean
0- = population standard deviation

n

x =— mean of a sample of n observations,
n

/ E (xi-xr

s= A/ > sample standard deviation
V n— 1

m — II ov X

s.d. = 0- or s

p = proportion of the population contained in m + fc s.d. where k

— constant

Given a normal distribution with m = 0, o- = 1. Then

La = normal curve deviate which is exceeded in absolute value

with probability a

fa,n-i= Student-f value for n—1 degrees of freedom which is ex-

ceeded in absolute value with probability a.

X^a.n-i = Chi-square value with n— 1 degrees of freedom which is ex-

ceeded with probability a.

3. Confidence intervals. A chemist makes n determinations of the iron

content, n, of a solution. What interval shall he select so that he can
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assert with 50% confidence that m lies within that interval? The dis-

tribution of observations is normal with mean /x-

3.1 For the population mean, standard deviation known. First consider

the case wheie the chemist knows a. (The determination is of a routine

type, for which a great many sets of previous observations are avail-

able, from which a is calculated.) In this case

.6745
X ± = <T

y/n

will contain the "true" value (population mean) 50% of the time.

This may be seen from the following diagram:

-D

C 5.

B

AIL

Lay off AB: m± (.6745/Vn)cr, and CD: :r+ (.6745/Vri)<r. Notice that

when X lies in AB, n must of necessity lie in CD; and when x does not

lie m AB, tJ- must lie outside of CD. But since x is normally distributed

with mean n, standard deviation {uly/n) the probability is .50 that x

will lie in AB. Hence the probability is .50 that CD contains \l.

Values of A;i = .6745/Vn forn = 2(l) 30, 40, 60, 120, oo are presented

in Table 1.

To generalize, when the confidence coefficient is 7, the confidence

interval for /i is

Ij\—y
X ± — (T

3.2 For the population mean, standard deviation unknown. Consider

the case where the only information about <r is in the present sample.
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Then the interval

^BO.n-l
X ± — s

will contain y., 50% of the time. The proof is similar to that of Section

3.1. Values of fc2 = f.Bo.„-i/\/n for n = 2(l) 30, 40, 60, 120, oo are pre-

sented in Table 1. Comparison of h\ arid hi shows k2>ki, but as n—

In general, when the confidence coefficient is 7, the confidence

interval is

tl—y,n—l _ tl~y,n—l
X s ^ M = ^ H zr~ ^•

s/n y/n

3.3 '^Confidence interval for second sample mean. Suppose the

chemist who made the iron determinations wishes to set up a confidence

interval, not for n, but for the mean, X2, of a second sample of W2 ob-

servations. Such an interval might be called more appropriately a

prediction interval, since the term "confidence interval" generally

refers to population parameters.

Let us call the mean of the first sample xi, and its size Ui. Since the

statistic

Xi — Xi
t =

Sia/- + -
V Wi 712Wi nz

is distributed as the Student-i ratio, it follows that the interval

/I 1

Xl ± t.60.ni-lA/ 1 Si (2)
r Wi 712

will constitute a 50% prediction interval for Xz [1].

What does this mean? It simply means that if pairs of samples of

size Til and 712 respectively, with means xu and X2i (^ = 1, 2, • • •

)

respectively are drawn repeatedly, then for 50% of these pairs X2i

will lie in

/I 1

Xli + t.60,ni-lA/ 1 Sli.

V Til 7l2

It does not mean that if one first sample of size 7ii with mean xi is drawn,

to be followed by the drawing of a great many "second" samples of
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TABLE 1

FACTORS FOR 50% CONFIDENCE INTERVALS

For M ;* 52

0- known (K) or K U U
unknown (U)

Form of interval X ±k2S Xi + A;3S

n ki

4.77.'±1 1
7f>7 1 .UUU

q
• ooy J.71.4/1 . DDO

A% QQ7 KAI.041
cO • oU^ . ool

O 97 9Q7
. zy /

1
9M^

. ZOO 971.Z/ 1 .oo4
oo 9QQ 9K1 Q KA.OOO
Q
«7 • ^£tO . Zoo QQQ.OOO

1 n 91 Q 999 Q1 A

1

1

XL 9nQ 91 1
. Zl 1 9QO

1 9 9ni
. ZUl 9QK.ZOO

1 Q 1 fe7 1 QQ
. lyo 9'7Q.Z/O

1 A 1 an
. loo 9A9

xo 1 7/1 1 7Q
. 1 /y 9 KQ

. ZOO

XD 1 7Q.I/O OA A.Z44

X 1
1 AA

. 1d7 907.zo7
1 sXo 1

. loy 1 A9
. luZ 9on

1 oXi7 . I Do . loo OOQ
. ZZO

on
. iuX . 104 91 O.zlo

91zx 1 A7
. lOU 91 9.zlz

99 1 A.A
. 140 .zU7

9Q
. 14.0 9A9

. zUz
9J.

. loo 1 An 1 no

. loo 1 Q7
. Lot 1 CiA.194

1 Q9
. loZ 1 Q/l

. lo* 1 nn
. lyu

97 1 Qn
. loU 1 Q9

. loZ 1 OA
. lob

98 1 97 1 9Q 1 OQ
. loo

9Q 1 OK
• IZO 1 97

. IZ/ 1 Tn
. 1 /y

30 .123 .125 .176

40 .107 .108 .152
60 ns7UO 4 .Uoo 1 OA

. 1Z4
120 .062 .062 .087

00 0 0 0

For discussion

see Section 3.1 3.2 3.2
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size W2 with means xa 2 • • • ) then for 50% of the "second"

samples X2i will lie in (2),

When n2 = ni = n the coefficient of Si in (2) becomes

^3 — ^.50,n—

1

Values of kz for w = 2 (1) 30, 40, 60, 120,_oo are given in Table 1 for

purposes of comparison. Note that kz=\/2k2 simply.

In general, if the "confidence" coefficient is to be 7 for X2, then the

interval to be used is

4. Tolerance intervals. In Section 3 an interval of type (1) was formed

to contain the population mean (with a certain confidence). Suppose

now, we are interested in setting up an interval of type (1) which will

contain a certain proportion p of the population. Such an interval is

known as a tolerance interval.

If either or o- is unknown, then the interval (1), containing x or s,

is random. Hence the proportion p contained in (1) will be a random
variable.

4.1 Average value of p. In Section 4.1 we determine k so that on the

average the proportion p is equal to a, a constant. In Section 4.2 we
determine k so that in a large series of samples from normal universes

a certain proportion 7 of the intervals (1) will include a proportion p
or more of the universe.

4.1.1 Population mean and standard deviation known. In this case

may be used as a tolerance interval. The proportion p contained in

(3) is constant, and the appropriate value for specified p may be ob-

tained from a table of normal areas. Thus for p = .50, ki = .674:5

(listed in Table 2 for purposes of comparison).

4.1.2 Population mean and standard deviation unknown. Unfortu-

nately, in most practical problems n and a are not known. Hence x and

s must be used. How shall we determine k so that the average p con-

tained in Xi±ksi (t = l, 2, • • • ) will be a?

Wilks [8] gave a solution without presenting the details of the proof.

(For an independent derivation see Appendix.) The solution states that

the tolerance limits which will include, on the average, a proportion

a of the normal universe are

' 1 1— + — 51.

H ± kcr (3)
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X ±
'n-\-l

n
s. (4)

Values of k,,a = ti-^.n-iVn-\-l/n forn = 2 (1) 30, 40, 60, 120, ^ and for

o = .50, .75, .90, .95, .99, .999 are given in Table 3. This table should

be of use both to the experimenter and to the quality controller; it

supplements the values of k given in [3]. In addition, for purposes of

comparison, Table 2 gives values of A:6,.6o for ri = 2 (1) 30, 40, 60, 120,

An example of the use of Table 3 is given

:

Example: A quality control engineer measures the voltages of a

random sample of 30 batteries from his production line. From the

sample mean voltage x = 7.52 and the sample standard deviation of

voltages s = .90, he wishes to estimate tolerance limits that will, on the

average, contain 95% of the population of batteries. Assuming the dis-

tribution of battery voltages to be normal, what shall these tolerance

limits be?

The tolerance limits will be of the form x±k5,.95S. Entering Table 3

with n = SO, he finds A;6,.96 = 2.079. Hence the tolerance limits are:

7.52 ± 2.079(.90) = 7.52 + 1.87 = 5.65 to 9.39.

Notice that A;6..96 = 2.079 is larger than the value 1.96 that would be

used if M and <r were known.

One sided tolerance limits. Suppose now the problem is to find the

value of ka such that, on the average, the proportion of the normal

population less than x-{-kaS is a specified value a. By the same proce-

dure as in the proof for the two sided case (Appendix) it may be shown

that

A similar result holds if the proportion of the normal population

greater than x— kaS is to be a specified value a, on the average.

Example : A pilot run of 40 electron tubes is made. For each tube the

plate current in milliamperes, x, under normal operating voltages, is

measured; for the sample x= 12.25, s = .68. From past experience with

similar tubes, it is known that x is normally distributed. What pro-

cedure shall be followed to determine the value of L such that 99% of

the population of tubes will, on the average, have a plate voltage less

than Z/?

We may write

ka = k^,'. (5)
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1/ = X + fc.gg's.

Then according to (5)

A;. 99' = fc5,2(.99)_l = A;6,.98.

Table 3 furnishes A;6,.98 = 2.455. Hence

L = 12.25 + 2.455(.68) = 13.92.

4.1.3 Population mean unknovm, standard deviation known. In this

case an interval of the form

X ± /c6<r (6)

must be used. Using the same method as in the proof given in the

Appendix, the following result may be derived

:

If the expected value E{p) of the proportion p of the normal universe

contained in (6) is to be a, then

r= A/ 1^1—a-

y n

For purposes of comparison, is given in Table 2 for a — .50 and for

n = 2(l) 30, 40, 60, 120, 00.

4.1.4 Population mean known, standard deviation unknown. In this

case the interval

fi + kjs (7)

must be used. Again using the same method as in the proof of the

Appendix, the appropriate value for hj to include, on the average, a

is given by

k7 = tl-a,n-l-

For purposes of comparison, values of bj are given in Table 2, for a = .50

and n = 2 (1) 30, 40, 60, 120, «.

4.2 Confidence statement about tolerance interval. A number of papers

have been written on the problem of confidence statements for toler-

ance intervals [2], [3], [6], [7], [8], [9]. The problem may be illustrated

as follows:

4.2.1 Population mean and standard deviation unknown. Suppose

the battery engineer mentioned in Section 4.1.2 asked the following

question : What value of k shall I take so that I can be 95% confident

that x±ks will include at least 80% of my population of batteries?

Bowker [3, pp. 102-107] gives extensive tables of k such that "in
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TABLE 2

FACTORS FOR TOLERANCE INTERVALS

that will include, on

the average, 50% of

the population. V V V V
or

that will include at

least 50% of the

population 50% of

the time. V \/

n known {K) or

unknown {U)

K U u K K U

a known {K) or

unknown {U)

K U K U U K

Form of interval ^1+^:4^ £±hs x±ki<T ^l±k^s ij.±kss x±k9(T

n U ^6,. 60 ^6 ki ki kt

0a .Ul t 1 Q9R 1 C\(\(\ i .UUU . /o4

0 . yiz "770 .olD CIA
. olU TOT

A .0/ 1 . oOO . 1 O'l . / DO . 4 0\}
Tl A

. 714

5 .674 .812 .739 .741 .736 .706

6 .674 .785 .729 .727 .723 .700

7 .674 .768 .721 .718 .714 .697

8 .674 .754 .715 .711 .708 .694

9 .674 .744 .711 .706 .704 .692

10 .674 .737 .707 .703 .701 .690

11 .674 .731 .704 .700 .698 .688

12 .674 .725 .702 .697 .698 .687

13 .674 .721 .700 .695 .694 .686

14 .674 .718 .698 .694 .692 .686

15 .674 .715 .697 .692 .691 .685

16 .674 .712 .695 .691 .690 .684

17 .674 .710 .694 .690 .689 .684

18 .674 .708 .693 .689 .688 .683

19 .674 .706 .692 .688 .687 .683

20 .674 .705 .691 .688 .687 .682

21 .674 .703 .690 .687 .686 .682

22 .674 .701 .690 .686 .685 .681

23 .674 .701 .689 .686 .685 .681

24 .674 .699 .688 .685 .684 .681

25 .674 .699 .688 .685 .684 .681

26 .674 .697 .687 .684 .684 .680

27 .674 .697 .687 .689 .683 .680
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Table 2 (cont.)

71 *C6,.60 IVfl k-i A/g

.074 .byo . Dob .bo4 .bo3 .boU
Oft .d74 ftC.byo .bob .boo coo.bo3 ^? Oft.680
Oft .674 cft/1.Dy4 cod.bob .bad oo.bo2 C Oft.b80

40 .674 .689 .683 .681 .680 .678

60 .674 .685 .680 .679 .678 .677
1 Oft120 .d74 £! Oft .677 cry.677 .676 .b7b

00 .674 .674 .674 .674 .674 .674

For discussion

see Section 4.1.1 4.1 .2 4.1.3 4.1 .4 4.2.2 4.2.3

a large series of samples for normal universes a certain proportion 7
of the intervals x + ks will include P or more of the universe

; 7 is called

the "confidence coefficient" since it is a measure of the confidence with

which we may assert that a given tolerance range includes at least P
of the universe." In these tables 7 = -75, .90, .95, .99, .999.

4.2.2 Population mean known, standard deviation unknown. Consider

the case where a* is known and 5 unknown. Then an interval of the form

^l ± k»s (8)

can be set up to include at least a proportion P of the population with

confidence 7 as follows:

Let us take specific values of P = .80 and 7 = .95 for illustrative

purposes. We note first that p is monotonic increasing with s (and

with s^). Hence when takes on a value exceeded 95% of the time

(call it p will take on a value exceeded 95% of the time. But

X.96.n-1
S.96^ = —

n — 1

Then the appropriate value of ks is

^^8 = L.2o/Vx.95,n-l^/(n - 1).

Values of fcg for p = 7 = .50 forn = 2 (1) 30, 40, 60, 120, « . are given

in Table 2, for purposes of comparison.

For general P, 7

ka = Li-p/Vx'^y.n-i/{n - 1).

4.2.3 Population mean unknown, standard deviation known. In this

case, an interval of the type
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(9)

must be used. Let us solve for k% when P = .80, 7 = .95 to illustrate the

reasoning.

We first note that 95% of the x's lie in the interval ii± {L^/ y/n)<j

that is, 95% of the x±k9(T intervals have their centers inside the

interval n±{L,Qf,/ y/n)(T. Now we find fcg such that the normal curve

area between n-\-(L.06/\/n)<T— kg(T and fjL-\-{L.ob/\/n)a-\-k9(T is .80. Then
95% of the x±kg(r intervals will contain .80 (namely those intervals

for which x lies in n± {L^/ y/n)<T).

It follows that the interval (9) will contain a proportion .80 or more
of the population, .95 of the time.

Values of h for P = 7 = .50 are given in Table 2 forn = 2 (1) 30, 40,

60, 120, 00 . For general P, 7, k^ is the value such that the normal curve

area between n-{-{Li-y/ ^yn)<i— k^<j and m+(Z/i_y/V?*)o'+^90' is P.

5. Relationship between confidence intervals and tolerance intervals.

There is a very interesting relationship between confidence intervals

and tolerance intervals that may be illustrated by the following ex-

ample :

Suppose, as in Section 3.3, we wanted to find a prediction (or "confi-

dence") interval for the mean of a second sample. But now let ^2=1.

In other words, we will now be finding a confidence interval for a single

future observation. According to the result in Section 3.3. our answer is

where a is the confidence coefficient.

What does this mean? One way of looking at it is that if repeatedly

a sample of size rii is first drawn and then a second sample of one item

is drawn, then a proportion a of the time the single item will lie in the

interval (10). But a little thought shows that this is exactly equivalent

to stating that in repeated samples of size ni, the average proportion,

p, of the population contained in (10) is a. In other words, confidence

limits with confidence coefficient a for a second sample of size one

are identical with tolerance limits that will include a proportion a on

the average. This is confirmed by the fact that (10) is the same as (4)

(except for the subscript 1).

The above is an illustration of a theorem by Paulson [5]

:

"If confidence limits Ui{x\, . . .
,
Xn) and Uiixi, . . .

,
a:„) on a prob-

ability level = ao are determined for g, a function of a future sample of

Xi ± ti-,

1—
- 5i = Xi ± ti-,a , n J—

1

(10)
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TABLE 3

FACTORS, FOR TOLERANCE INTERVALS SUCH THAT
x±k,,a s WILL INCLUDE A PROPORTION a OF

THE POPULATION, ON THE AVERAGE

Sample size, n k 6.. 76 ^5. .90 A, A;6,.98 ^6.. 98 ki, .999

2 1.225 2.,957 7.733 15. 562 38. 973 77. 964 779.,699

3 .942 1.,852 3.372 4. 969 8. 042 11

.

460 36.,486

4 .855 1

.

591 2.631 3. 558 5. 077 6. 530 14.,469

5 .812 1..473 2.335 3.041 4. 105 5. 043 9.,432

6 .785 1 .405 2.176 2.,777 3 .635 4,.355 7..409

7 .768 1

,

,361 2.077 2

.

616 3. 360 3. 963 6..370

8 .754 1,,330 2.010 2

.

508 3.,180 3.,711 5..733

9 .744 1,,307 1.961 2

.

431 3. 053 3. 536 5,.314

10 .737 1 .290 1.922 2

.

.372 2,.959 3..409 5,.014

11 .731 1 .276 1.893 2

,

,327 2,,887 3,.310 4,.791

12 .725 1 .264 1.869 2

.

.291 2,.829 3..233 4 .618

13 .721 1 .255 1.849 2,.261 2 .782 3 .170 4 .481

14 .718 1 .246 1.833 2

.

.236 2,.743 3,.118 4 .369

15 .715 1 .239 1.819 2

.

,215 2,.710 3.,075 4.,276

16 .712 1 .234 1.807 2

.

,197 2.,682 3. 038 4. 198

17 .710 1 .228 1.797 2

.

, 181 2..658 3,.006 4,.131

18 .708 1 .224 1.788 2

.

,168 2,.637 2..977 4 .074

19 .706 1 .220 1.779 2 .156 2 .618 2 .953 4 .024

20 .705 1 .216 1.772 2

.

145 2.,602 2. 932 3.,979

21 .703 1 .213 1 .766 2 .135 2 .587 2 .912 3 .941

22 .701 1 .210 1.760 2 .127 2 .575 2,.895 3 .905

23 .701 1 .207 1.754 2,.119 2 .562 2 .880 3 .874

24 .699 1 .205 1.749 2 .112 2 .552 2 .865 3 .845

25 .699 1 .202 1.745 2 .105 2 .541 2 .852 3 .819

26 .697 1 .200 1.741 2 .099 9
. oo^ 9 3 .796

27 .697 1 .198 1.737 2 .094 2 .524 2 .830 3 .775

28 .696 1 .197 1.733 2 .088 2 .517 2 .820 3 .755

29 .695 1 .195 1.730 2 .083 2 .509 2 .810 3 .737

30 .694 1 .193 1.727 2 .079 2 .503 2 .802 3 .719

40 .689 1 .182 1.706 2 .047 2 .455 2 .741 3 .602

60 .685 1 .171 1.686 2 .017 2 .411 2 .684 3 .492

120 .680 1 .161 1.665 1 .988 2 .368 2 .628 3 .388

00 .674 1 .150 1.645 1 .960 2 .326 2 .576 3 .291

See Section 4.1.2 for a disciission of this case.
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k observations, with distribution "^(g), and p=fu^(g)dg, then E{p)

= ao.''

In the illustration of this section, g corresponds to the value of the

single future observation and fc = l. Similarly we can check the results

of Sections 4.1.3 and 4.1.4 by the use of Paulson's theorem.

APPENDIX

Mathematical proof of Wilks' result. The details of the derivation

(independently obtained by I. R. Savage of the Statistical Engineering

Laboratory, National Bureau of Standards) of the result of Section

4.1.2 are given, since the method is a suggestive one.

The problem is to determine k so that the average p contained in

Xi±ksi (2 = 1, 2, ... ) wUl be a. By an appropriate linear transforma-

tion, the problem may be reduced to that of finding

0 J —aa*J i-kt

where Ci is a constant free of k. In the following, C,- = constant free of k.

The conditions for differentiating under the integral hold. Hence
we have

/>
00 ^00

I
g-HK^^+l £+(fc«/v'r>'+T))'+(n-l+fc*(n/n+l)«'']5»i-l(/^(^g

0 -00

/>
OO /» 00

I
g-i[KM^l i-(fc8/v'M^l))'+(n-l+fc2(7»/7i+l))g'']gn-l)^^(^g

dE /.» du

dk J 0 J + 1

/'
°° /* * du

0 J + 1

BE

dk

Let

/>
00

Sn-le-i(n-l+fc^n/„+l)),2^S_

0

\ n + 1/
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Then

8E / n \"/2
= C2

I
2»/2-i2/"/2-ie-i// In - I -j-

) dtj

8k J 0 \ w + 1/

= C3
/ n
( n - 1 + )

Hence

E(p) = C^ f
dk

(w - 1 + A;2
)

\ n+ 1/

Now let

so that

y n+l

C ' dt
E(p) = —

J_t (ri - 1 -f

+ - l))"/2.

But the integrand is the well known Student-/ density function. Now
when A;= 00, E(p) = l. Hence C5 must be identical with the constant

of the Student-/ distribution. Therefore the result of Section 4.1.2

follows:

— tl-a.n-lA/ "

n + 1

n
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THE RELATION BETWEEN CONFIDENCE INTERVALS
AND TESTS OF SIGNIFICANCE

— A Teaching Aid —
by Mary G. Natrella, National Bureau of Standards

1. Introduction.

The advertising sheet for a recent revision of a classi-

cal text book on statistical methods states "The author has

diverted emphasis from tests of significance to point and

interval estimates." This author is not alone. Many
statistical consultants, analyzing an experiment for the

purpose of testing a statistical hypothesis, e.g., in com-

paring means of normal populations, find that they prefer

to present results in terms of the appropriate confidence

interval.

It must be noted of course that not every statistical

test can be put in the form of a confidence interval.

Kendall, [5], for example, speaks of two broad classes

of statistical tests, "those which give a direct test of a

given value of a parent parameter, and those which do

not." Berkson [2] also distinguishes these two classes

of tests in discussing tests of normality and says "I sug-

gest tentatively that the two classes I have in mind can

be differentiated as (1) those which in principle can be

alternatively stated in terms of an estimate and its con-

fidence interval and (2) those which cannot be so stated."

It is this first class of tests which will be discussed in

this paper. Tests such as tests of normality, tests of

goodness-of-fit, and tests of randomness fall into the

second class.

When the results of a statistical test can alternatively

be stated in terms of a confidence interval for a param-

eter, is there any reason to prefer the confidence interval

statement? An early indication of dissatisfaction with the

logic of tests of significance as experimental evidence is

given in another paper by Berkson [3]. He stresses the

point that experimenters are not typically engaged in

disproving things, but are looking for evidence for

afifirmative conclusions, and that after rejecting the null

hypothesis, they will then look for a reasonable hypothesis

to accept. The relation between confidence intervals and

tests of significance is mentioned only briefly by most

textbooks, and ordinarily no insight is given as to which

conclusion might be more appropriate. (A notable excep-

tion is Wallis and Roberts [7].)

In the present note, we draw attention to how these

two approaches are related and how they differ. One

reason for preferring to present a confidence interval

statement (where possible) is that the confidence inter-

val, by its width, tells more about the reliance that can

be placed on the results of the experiment than does a

YES-NO test of significance. Of course, a test of signifi-

cance, when accompanied by its appropriate Operating

Characteristic curve, provides much the same kind of

information as does a confidence interval. In practice,

however, the associated O.C. curve is often ignored by

and may be unknown to the experimenter. We feel that

the experimenter himself finds the confidence interval

more natural and more appealing, but generally has little

notion of how the two concepts are related.

2. An Example.

Let us review both procedures with reference to a

numerical example.

For a certain type of shell, specifications state that the

amount of powder should average 0.735 lb. In order to

determine whether the average for the present stock meets

the specification, twenty shells are t£iken at random and

the weight of powder is determined. The sample average

(X) is 0.710 lb. The estimated standard deviation (s)

is 0.0504 lb. The question is whether or not the average

of present stock differs from the specification value. In

order to do a two-sided test of significance at the (I—a)

probability level, we compute a critical value, to be called

for example, C. Let C= /—~
V n

where t* is the positive number exceeded by 100 ^^^%
of the t-distribution with n— 1 degrees of freedom.

In the example above with a=.05, t*= 2.G9, C=
0.0236 lb. The test of significance says that if |X— 0.735|

> C, we decide that the average for present stock differs

from the specified average. Since |0.710— 0.735
1 >

0.0236, we decide that there is a difference.

We can also compute from the data a 95% confidence

interval for the average of present stock. This confidence

interval is Xrt C= 0.710 ± 0.0236 or 0.686 to 0.734

lb. The confidence interval can be used for a test of

significance; since it does not include the standard value

0.735, we conclude that the average for the present stock

does differ from the standard.

Comparisons of two materials (both means unknown

and equal variances) may be made similarly. In com-

puting a test of significance we compare the observed

difference |Xa — XbI with a C (a computed critical

quantity similar to C above). If |Xa— Xb| is larger than

C we declare that the means differ significantly at the

chosen level. We also note that the interval (Xa— Xb)
± C is a confidence interval for the difference between

the true means ([Xa— Hb)- If then this interval does

not include zero, we conclude from the experiment that

the two materials differ in mean value.

3. Do the Two Approaches Differ?

Here then are two ways to get the same answer to the

Vol. Ih. p. 20.The American Statistician, February, 1960
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original question. We may present the result of a test of

significance, or we may present a confidence interval.

Are there any differences between the two? The signifi-

cance test is a "go no-go" decision. We compute a critical

value C, and we compare it with an observed difference.

If the difference exceeds C, we announce a "difference";

if it does not, we announce no "difference." If we had no

OC curve for the test, our decision would be a yes-no

proposition with no shadowland of indifference. The test

may say NO, but only the OC curve can qualify this by

saying that this particular experiment had only a ghost

of a chance of saying YES to this particular question.

For example, see Fig. 2. If the true value d= \— —
is equal to 0.5, a sample of 10 is not likely to detect a

difference, but a sample of 100 is almost certain to.

Using a rejection criterion alone is not the proper way

to think of a significance test. One should always think

of the associated OC curve as part and parcel of the

test. Unfortunately this has not always been the case,

and the significance test without its OC curve has dis-

torted the thinking in some experimental problems. As

a matter of fact many experimenters who use significance

tests are using them as though there were no such thing

as an OC curve. For this reason, it may be preferable

for the experimenter to approach the problem of testing

hypotheses by using confidence intervals.

4. Why Prefer the Confidence Interval?

A confidence interval procedure contains information

similar to the appropriate OC curve, and at the same

time is intuitively more appealing than the c6mbination

of a test of significance and its OC curve. If the stand-

ard value is contained in the confidence interval, one can

announce "no difference." The width of the confidence

interval gives a good idea of how firm is the Yes or No
answer.

1

Suppose that the standard value for some property is

known to be 0.735, and that a 100(1 — a) % confidence

interval for the same property of a possibly different

material is determined to be 0.600 to 0.800. It is true

that the standard value is in the interval, and that we
would say that there is no difference. All that we really

know about the new product, however, is that its mean

probably is between 0.6 and 0.8. If a much more

extensive experiment gave a 100(1 — a)% confidence

interval for the new mean of 0.60— 0.70, our previous

decision of no difference would be reversed.

On the other hand, if the computed confidence inter-

val, for the same confidence coefficient, had been .710-—

.750, our answer would still have been "no difference",

but we would have said "No" more loudly and firmly.

The confidence interval not only gives a Yes or No
answer, but also, by its width, gives an indication of

whether the answer should be whispered or shouted.

This is certainly true when the width of the interval,

for a given confidence coefficient, is a function only of n

^ There is a caution in this regard as explained a little further on.
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and the appropriate dispersion parameter (e.g., known

a). When the width itself is a random variable (e.g., is

a fixed multiple of s, the estimate of a from the sample)

,

one can occasionally be misled by unusually short or

long intervals. But the average width of the entire family

of intervals associated with a given confidence-interval

procedure is a definite function of the appropriate dis-

persion parameter, so that on the average the random

widths do give similar information. See [1] for a graph-

ical illustration of confidence intervals computed from

100 random samples of n= 4 (actually random normal

deviates) .2 Figure 14 in reference [6] shows a similar

illustration of 100 intervals for n= 4, and in addition

shows 40 intervals for n=100, and 4 intervals for n=
1000. The fluctuation in size and position is of course

very much reduced in the latter cases.

The significance test gives the same answer, and a

study of the OC curve of the test indicates how firm is

the answer. If the test is dependent on the value of a,

the OC curve has to be given in terms of the unknown o,

In such a situation, one has to make use of an upper

bound for a in order to interpret the OC curve, and

again one may be misled by a poor choice of this upper

bound. On the other hand the width of the confidence

interval is part and parcel of the information provided

by that method. No a priori estimates need be made of

o as would be necessary to interpret the OC curve.

Furthermore, a great advantage of confidence intervals

is that the width of the interval is in the same units as

the parcimeter itself. The experimenter finds this infor-

mation easy to grasp, and to compare with previous

information he may have had.

5. What does the Confidence Interval Show?

The most striking illustration of information provided

by confidence intervals is shown in the charts of confi-

dence limits for a binomial parameter. In this case the

limits depend only on n and the parameter itself, and

one cannot be misled in an individual sample. Figure 1

shows the "central" 95% confidence limits for propor-

tions. These "central" limits are the well-known Clopper-

Pearson limits, such that each tail probability is not

greater than .025. The central limits correspond to an

equal-tail significance test at the (1—-a) probability level,

and to each of the two "central" limits there corresponds

a single-tail significance test at the (1 — a/2) probability

level. In constructing a system of confidence limits there

is no unique method of subdividing between the two

tails. Limits which are not "central" may have other

optimum properties—e.g., the recently-developed system

of E. L. Crow [4] gives limits which are shorter than

the "central" limits.

Suppose that a new item is being tested for comparison

with a standard. In a sample of 10 we observed two

^This picture is an excellent teaching aid in itself. Despite the

fluctuation in size and position of the individual intervals, a pro-

portion of the intervals remarkably close to the specified propor-

tion do include the known population average. If a were known
rather than estimated from the individual sample, the intervals

would fluctuate only in position, of course.
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defectives and therefore estimate the proportion defective

for the new item as 0.20. The central 95% confidence

interval corresponding to an observed proportion of 0.20

(n= 10) is 0.02 — 0.56. Assume that the known pro-

portion defective for the standard (Po) is 0.10. Our

experiment with 10 gives a confidence interval which

includes Po, and therefore we announce "no difference"

between the new item and the standard in this regard.

Intuitively, however, we feel that the interval 0.02 — 0.56

is so wide that our experiment was not very indicative.

Suppose then we test 100 new items and observe 20

defectives. The observed proportion defective is again

0.20. The confidence interval now is 0.13 — 0.29, and

does not include Po= 0.10. This time we are forced to

announce that the new item "is different" from the stand-

Fig. 2 Operating Characteristics of the

Two-Sided t Test (a=0.05)

ard, and the narrower width of the confidence interval

(0.13— 0.29) gives us some confidence in doing so.

6. What does the Operating Characteristic Curve

Show?

The foregoing has shown that it is possible to get some

notion of the discriminatory power of the test from the

size of confidence intervals. Is it also possible in reverse,

to deduce from the OC curve what kind of confidence

interval we would get for the new mean? Although we

cannot deduce the exact width of the confidence interval,

we can infer the order of magnitude. Suppose that we

have measured 100 items, have performed a two-sided

t-test (does the average [ii differ from ^o?), and have

obtained a significant result. Look at the curve for n=
100 in Figure 2, which plots the probability of accepting

[il — t^o

(J

FromHo (the null hypothesis) against d=
the curve we see that, when d is larger than 0.4, the

probability of accepting the null hypothesis is practically

zero. Since our significance test did reject the null hypoth-

esis, we may reasonably assume that our d= ^ ^

is larger than 0.4, and thus perhaps infer a bound for

the true value of
|
Hi— |Xo|, in other words, some "con-

fidence interval" for \3l\.

On the other hand, suppose that only 10 items were

tested and a significant result was obtained. If we look

at the curve for n= 10 in Fig. 2, we see that the value

of d which is practically certain to be picked up on a

significance test is now d=1.5 or larger. A significant

result from an experiment which tested only 10 items

thus, as expected, corresponds to a wider confidence inter-

val for [Xi than that inferred from the test of 100 items.

A rough comparison of the relative widths may be made.

Mjre quantitative comparisons could be made, but the

purpose here is to show a broad general relationship.

7. Relation to the Problem of Determining Sample
Size.

The problem of finding the required sample size to

detect differences between means can also be approached

in two ways. We can specify tolerable risks of making

either kind of "wrong" decision (errors of the first and

second kind)—thereby fixing two points on the OC
curve of the required test. Matching these two points

with computed curves for various n enables one to pick

the proper sample size for the experiment.

Alternatively, we can specify the magnitude of differ-

ence between means which is of importance. We then

compute the sample size required to give a confidence

interval of fixed length equal to the specified difference.

8. Conclusion.

Presentation of results in terms of confidence intervals

is often more meaningful than is the presentation of the

usual tests of significance (if the test result is not con-

sidered in connection with its OC curve) . Things are
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rarely black or white, and decisions are rarely made on

one-shot tests, but usually in conjunction with other

information. Confidence intervals give a feeling of the

uncertainty of experimental evidence, and (very impor-

tant) give it in the same units, metric or otherwise, as

the original observations.

The author is indebted to Dr. Churchill Eisenhart and

Dr. Norman C. Severo who encouraged the writing of

this paper.
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Computations with approximate

numbers^ The Mathematics Teacher
|

November, 1958

D. B. DELURY, Ontario Research Foundation, Ontario, Canada.

Contrary to present practices in the schools,

there are no simple answers and no general rules

for computing with approximate numbers.

There is room, I think, for the view that

it is improper to speak at all of "approxi-

mate numbers." Admittedly this is jargon,

an abbreviated phrase that we use to

spare us the effort of saying over and over

exactly what we mean, namely, "a num-
ber whose value approximates the value of

this or that magnitude." There is no deny-

ing the usefulness of jargon. As long as it

is used within the circle of experts or spe-

ciahsts for whom it is intended, there is

probably httle danger of confusion. On the

other hand, there is no doubt that it can

cause serious misunderstandings when it

is used outside these circles. We have all

seen the weird interpretations put on such

words as infinity, curved space, the fourth

dimension. It seems to me that "approxi-

mate number" is especially exposed to

misinterpretation, because we have taken

the word "approximate" from the place

where it belongs, as a description of the

process that produced the number, and

attached it to the number itself.

I incline to the view that those of us

who are concerned with giving accurate

instruction should avoid this kind of jar-

gon or, at least, delay its introduction

until the need for it and the precise mean-

ing to be attached to it have become amply

clear.

When we come to speak about computa-

' An address delivered at the 1958 Annual Easter
Meeting of the Mathematics and Physics Section of

the Ontario Education Association. It is being re-

printed with the permission of the Canadian School.

tions with such numbers and more par-

ticularly about the proprieties concerning

the presentation of the results of these

computations, it is, I believe, important

to distinguish sharply between the two

ways in which questions of approximation

can arise:

1. through arithmetical operations only;

2. through measurement.

For the present, I shall speak of 1.

Since calculations for the most part are

conducted with digital numbers, we are

compelled to use approximations to irra-

tional numbers and usually we find it con-

venient to use decimal approximations to

rational numbers also. Here there ought to

be general agreement on the procedures

to be followed in truncating numbers, not

because there is only one way or because

there is necessarily one best way, but

simply because, if only one rule is used, it

need not be stated over and over.

If, for example, I wish to use a modest

approximation to e, I look up its value in

a book and find e = 2.718281 • • •
. Now I

could truncate it simply by chopping it off

at the desired place, e.g., e = 2.71. Then,

I am required to take the view that e lies

somewhere in the range 2.71-2.72. Let us

make no mistake here; these numbers are

exact and should be so treated. They

simply mark the boundaries of a range

within which e certainly lies. If I want to

make calculations with the value of e so

specified and to know within what range
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the true answer certainly lies, I must make
the calculation with each end of the range,

thus obtaining the range within which the

true answer must certainly Ue. These cal-

culations should be exact, to the extent

that they can be, unless we wish to add

arithmetical mistakes to the uncertainty

caused by the truncation. Thus lies

in the range (2.71)2-(2.72)2 = 7.3441-

7.3984.

The notion of a range within which a

number must certainly he is the founda-

tion on which every accurate procedure

for computation must be based. Indeed,

some writers use the term "range number"
to give the idea a name. Range numbers

need not arise only through the kind of

truncation I used in the little illustration.

I suppose there are all sorts of ways in

which we could come by the information

that "this magnitude certainly lies within

the range so and so." If we were prepared

to use range numbers always and perform

the dual calculations they require, there

would be no need here to go any further,

beyond developing some simple rules to

assist in performing quickly the funda-

mental arithmetical operations with range

numbers. The fact is, however, that rarely

are we wilUng to do the work that is re-

quired to make a calculation with range

numbers. We prefer to sacrifice both ac-

curacy and clarity in order to be able to

calculate with single numbers. In the ex-

ample we have been using, we could ac-

complish this by replacing the range num-
ber by the value at the middle of the range,

2.715, thereby rendering the maximum in-

accuracy as small as possible. Then
6^ = (2.715)2 = 7.371225. One might com-
plain that this answer is wrong. I would
prefer to say that it is not complete. To
make it complete, we would have to write

6 = 2.715 + .005,

whence

= (2.715) 2 + 2(.005) (2.715) + (.005) ^

= 7.371225 + .02715-t-.000025.

Hence hes in the range

7.344100-7.398400.

This is, of course, just another way of

using the notion of range. The result is,

and must be, the same whichever way we
choose to write our numbers. In particu-

lar, the zeros that came out in this calcula-

tion may be retained or dropped, at our

pleasure. We may remark, too, that even

though one of these calculations uses more
digits than the other, their accuracies are

the same. Numbers written in the form

— +— are sometimes called approxima-

tion-error numbers.

This second calculation is somewhat
more tedious than the first, because the

numbers we had to use require more non-

zero digits. This stems from the way in

which we performed the truncation. It

gave us nice end points, 2.71 and 2.72, but

a nasty mid-point, 2.715. If we had in-

tended to use the second form of computa-

tion, we would have done better to use a

form of truncation which requires as few

digits as possible for the chosen accuracy,

for the mid-point. We would, presumably,

have said "e lies in the range 2.715-2.725,"

which has, it is true, nasty end-points but

a nice mid-point, 2.72. We would then

write e as the approximation-error num-
ber 2.72 + .005. The largest possible inac-

curacy is the same as in the first trunca-

tion.

It appears then, that if we propose to do
our arithmetic with range numbers, we
would use the first way of performing the

truncation, and if we want to use the ap-

proximation-error form we would use the

second.

Now in fact, we do not, as a rule, want
to do our arithmetic in either of these

ways. We want to calculate with the mid-

points and forget about the inaccuracy.

This point of view has dictated the uni-

versal practice of truncating in the second

way, rather than the first. This process we
call "rounding-off" and the resulting num-
ber we call a "significant number." A sig-

nificant number, then, is one whose maxi-
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mum inaccuracy is + 1 in the last recorded

digit. Significant numbers have the prop-

erty that, for a given range of inaccuracy,

they require fewer digits to specify ex-

actly the mid-point than one would get by
any other way of performing the trunca-

tion.

Since the convention about rounding off

is, for all practical purposes, universal, it

is generally understood that a truncated

number is a significant number, and hence

it is not necessary to specify the range of

inaccuracy, since it is known to be + § in

the last recorded digit. This has some ad-

vantages. We know, for example, that the

numbers hsted in our tabulations of values

of functions are significant numbers. On
the other hand, the notion of significant

numbers probably played no part in the

computations that produced them. Sig-

nificant numbers are not good numbers to

calculate with, because the result of any

computation with a significant number is

not a significant number. For example,

e = 2.72 is a significant number, i.e., e cer-

tainly Ues in the range 2.72 + .005. Hence,

we can calculate that certainly lies

within the range (2.715)2-(2.725)2

= 7.371225-7.425625. There is no signifi-

cant number equivalent to this range num-
ber. The best we can do is 7.4, which

yields a range 7.35-7.45. Now it is true

that this range certainly contains but

it is far wider than it has to be in order to

have this property.

This kind of mistake snowballs rapidly

in extended calculations. For this reason,

people who take their computations seri-

ously do not use significant numbers, nor

do they necessarily state the results as

significant numbers. Hence, today we
never know whether t)»e numbers we see

are significant numbers or not, except in

books of tables. There is no way of telling,

from the look of a number, whether it is

a significant number or not. Things are, to

put it mildly, somewhat confused. There

is really no need for this situation, either.

Largely it springs from the attempt to use

significant numbers in dealing with meas-
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urements about which I shall speak later.

If we stay for the moment within the field

of arithmetic, which is the only place

where the notion of significant number
has any meaning, there is no need what-

ever for any confusion.

Let us agree that any number that has

been reached solely through the opera-

tions of arithmetic, if it cannot conven-

iently be stated exactly, ought to be written

as a significant number if possible; if not,

there should be an exphcit statement of

its accuracy.

Presumably, before we embark on such

a calculation, we know how many digits

we wish to have in the result. The only

question, then, that needs answering is

"How shall we carry out the calculation

in order to get the result we want?" It ap-

pears that we have been asking our ques-

tion the wrong way round. We have asked

"How should we calculate with approxi-

mate numbers?" when it would have been

better to ask "How should we proceed to

obtain an approximate number with the

desired degree of accuracy?"

Having asked our question thus, it

must be admitted that there is no simple

answer and there are no general rules. We
can, however, easily trace through the

effects of arithmetical inaccuracy, caused

by truncation of numbers, in a single ap-

plication of each of the fundamental op-

erations of arithmetic, and these effects

can, and have been, formulated as rules.

Perhaps I should stop here for a mo-
ment to gather up the substance of what

I have been saying.

1. I have been talking only about arith-

metic.

2. Exact computations with approximate

numbers are quite feasible, if somewhat

distasteful, using range numbers. Obvi-

ously such calculations can lead to

numbers with many digits. There is

nothing improper in this. Indeed, the

number of digits has nothing to do with

the question of accuracy. However,

these numerous digits can be a nuisance

and we might well adopt the position
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that, in view of the range, perhaps

large, within which the answer Ues, it

is not important that we know exactly

the boundaries of this range. We would,

therefore, round off our numbers at

some chosen number of decimal places.

The choice would be determined by the

use to which our answer is to be put,

not by any considerations of inherent

accuracy.

3. A significant number is, by definition,

one that cannot differ from the one to

which it approximates, by more than

f in the last recorded digit. Significant

numbers are formed by the process of

truncation called rounding-off. Signifi-

cant numbers are, or if you prefer,

easily lead to, range numbers, but

range numbers can rarely be written as

significant numbers. The convention

that numbers which result from arith-

metical operations only be written as

significant numbers is useful and should

be maintained quite generally. It may
be remarked, though, that these cir-

cumstances do not arise as often as

might be supposed. Most of our calcu-

lations are made with numbers that

we get from measurements and to these

the notion of significant number does

not apply.

4. Significant numbers are not well suited

to numerical calculations and are not so

used by people who take their arith-

metic seriously.

In connection with this last item, the

following quotations are pertinent:

The loss in the number of significant figures

in products and quotients, for example, is due
not so much to accumulation of errors as to the
simpUcity that has been gained at the expense
of precision.

By simplicity, here, must be meant ease

of computation. Actually, the use of sig-

nificant numbers in computation makes
for considerable complexity. Here, for

example, is the theorem for products and
quotients of significant numbers.
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The product or quotient of two numbers,
each containing n significant figures (at least two
of which are not zero) is a significant number of

at least (n— 2) figures. If the leading digits of

these numbers are both equal to or greater than

2, then the product or quotient has at least n — 1

significant figures.*

This, I suggest, is not a step in the di-

rection of simphcity.

The selection of a suitable type of approxi-

mate number depends on the purpose of the

computation. Operations with significant num-
bers are easier and simpler than the correspond-

ing operations with range or approximation-
error numbers. They are quite satisfactory when
additions, subtractions or a single multiplication

or division are involved. They are also satisfac-

tory when we are not concerned with the loss of

significant figures in each operation. In most
computational work we cannot afford this

luxury.'

We can take it, then, that whenever we
can avoid the use of range or approxima-

tion-error numbers, we will do so, but we
prefer not to use significant numbers.

What, then, do we do? One more quota-

tion from the same book:

For the basic linear problems the method of

the next paragraph is to be preferred.

An alternative method is the use of incom-
plete numbers. An incomplete number is an ap-
proximation-error number in which the error

term is omitted. These numbers look very much
like significant numbers, but, unlike significant

numbers, the results may be recorded to any
desired number of places. This method makes
for ease with a machine, since all numbers to be
placed on the machine may be rounded off to the

same number of places. It must be remembered
that any recorded number is not necessarily a
significant number in the technical sense, that is,

we do not know what the bound for the error

may be.*

This is surely a curious statement, with

its invention of the term incomplete num-
ber. It means simply this, that every num-
ber that enters into the calculation is

treated as if it were exact, to a chosen

number of decimal places. The number of

decimal places is chosen to be adequate,

or usually much more than adequate, to

yield results of the required accuracy.

This is the way computers usually do

their arithmetic.

' Dwyer, Linear Computations (1951), p. 15.

5 Ibid., p. 33.

* Ibid., p. 34.
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Let us pass on now to the second way
in which we come to deal with numbers

that are approximations to others—those

which arise from measurement. Let us

restrict ourselves to physical measure-

ments—the so-called measurements of

psychology and such fields pose somewhat

special problems.

To start the discussion on this topic, I

offer you a quotation from N. R. Camp-
bell: "Probably more nonsense is talked

about measurement than about any other

part of physics."

I acquired this quotation second-hand

and I cannot say that he had in mind the

kind of thing I must talk about today. If

he didn't, I shall make the same state-

ment in this context.

In the first place, measurement does

not produce numbers. The result of a

measurement should properly be stated in

the form of a range, within which some

point, fine, or whatever is observed to he.

Presumably this process could be carried

out in such a way that this range could

be expressed as a number, plus or minus

J in the last recorded digit. This is not

always done, by any means, but let us say

that it is. Then, it seems to be an easy step

to say that these recorded numbers, ob-

tained from measurement, are significant

numbers, that is, the numerical value of

the magnitude, which our process of meas-

urement is supposed to estimate, certainly

lies within the range defined by + 1 in the

last recorded digit.

It is a pity that this is not true. If it

were, the world of science would be much
simpler than it is. The fact is, of course, as

we all know, measurements don't behave

this way at all. We all know, for example,

that the real error of any measurement is

not composed wholly of the error com-

mitted in making a final scale reading. Not
uncommonly, two attempts at measuring

the same thing produce two ranges which

do not overlap at all and we cannot,

surely, be certain that the true value lies

in both of them.

This imphes that the real error is likely
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to be far greater than that imphed by the

coarseness of the scale with which the final

reading is made. Often it is so great that

this final contribution to the error may be

ignored. On the other hand, repeated de-

terminations, made with even a coarse

scale, can lead to an estimate which is far

more precise than the coarseness of the

scale would lead one to expect. What I

am saying, then, is simply this: no num-
ber, significant, range, or any other, can,

by itself, say anything about the precision

or accuracy of the measuring process used

to obtain it.

Now, this has been known for a long

time. Over 100 years ago. Gauss and

Laplace worked over this ground and pro-

duced the theory of errors, based on the

notion of the frequency distribution,

which is simply an idealization of the ex-

perience of people who make measure-

ments on how errors of measurement be-

have. They did the job pretty well, too,

and this theory has come down to us vir-

tually unchanged, except that a compara-

tively new disciphne, the design of experi-

ments, has given it considerably greater

depth and scope.

In any event, the theory of errors pro-

vides us with the only usable tool we have

for deaUng with errors of measurement.

This tells us, among other things, that the

treatment of errors cannot be undertaken

as an exercise in arithmetic. The basic re-

quirement is that the program of measure-

ment be so arranged as to permit the

estimation of a standard deviation, in

terms of which the precision of the meas-

uring process can be stated. The state-

ment that the length of something or

other is 11.3 inches, to the nearest tenth-

inch, is either trivial or not true. The

statement that the length of something or

other is 11.3 inches, with a standard de-

viation of .2 inch, is a meaningful state-

ment. It implies, among other things, that

the "true" length is almost certainly

somewhere between 10.7 and 11.9 inches,

leaving aside the possibility of bias or

systematic error, which is irrelevant to our
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topic. Note, however, that this is not a

range number, because we cannot know

that the true value is certainly in this

range. To say the same things in another

way, there is no place, in connection with

errors of measurement, for any talk about

possible errors, meaning the maximum
error that could possibly be encountered.

The notion of possible error, or, I would

prefer to say, possible inaccuracy, has

meaning only in arithmetic.

I do not know how the notion has crept

in that the theory of errors can be replaced

by an exercise in arithmetic, coupled to a

convention about the form in which the

answer should be written, but I favor

the view that the physicist is the culprit,

not because I know of anything in the

literature that points a finger at him, but

rather because physicists have generally

been loath to carry out their programs of

observations in such a way that their real

errors can be estimated and the theory of

errors brought properly into play. In these

circumstances, then, they have tried to

assign what they call a "Umit of error,"

that is to say, a maximum possible error.

Let me quote from a book recently pub-

Ushed, written by a physicist, on the

Theory of Error:

Many observers estimate the limit of error,

the maximum amount by which the quantity

may be supposed to be in error. Other observers

believe such a procedure too conservative, since

large errors are relatively improbable compared
with small ones. Therefore, instead of using the

full estimated value of the limit of error, these

observers reduce it, perhaps by one-third. Since

these are matters of opinion, no firm rules can be
given and each experimenter must use his own
judgment.^

This says to us, it seems, "Pick the error

you hke best."

Now, the theory of errors is not a matter

of opinion and there is no doubt at all

about how an experimenter should carry

out his work in order to make proper use

of it. This kind of humbug is an attempt to

gain an air of respectability by sneaking

' Yardley Beers, Introduction to the Theory of Error
(Cambridge, Mass. : Addison-Wesley Publishing Com-
pany, Inc., 1953).

under the mantle of the theory of errors

without doing the work that it demands.

With respect to practices of the kind re-

vealed in this quotation, a remark made

by Bertrand Russell in his Introduction to

Mathematical Philosophy seems to me to

be wholly pertinent.

The method of postulating what we want has

many advantages; they are the same as the ad-

vantages of theft over honest toil.'

Presumably this is not the place for an

exhortation about the importance of the

theory of errors. My whole concern here

is to bring out one fact, that errors of

measurement have nothing whatever in

common with so-called approximate num-

bers. They are conceptually wholly dif-

ferent. One is concerned entirely with a

question in arithmetic, specifically, with

the magnitude of the mistakes (rather

than errors) that can enter into an arith-

metical calculation through truncation of

numbers. The other has to do with the

physical processes of making measure-

ments and is based on empirical evidence

about the way measurements behave. In

the one, it is wholly proper to speak of the

largest possible mistake introduced into an

arithmetical calculation by truncation of

numbers; in the other, it is quite improper

to speak of a maximum possible error in a

measurement. It is important, if we want

to think accurately about these matters,

that we keep these two things sharply

separated.

Where, then, does all this leave us?

Specifically, what does this mean for us,

who are concerned with providing instruc-

tion that is accurate and comprehensible

at the level at which we must give it?

I would not undertake to give any

comprehensive answer to this question.

Indeed, I beheve that for me or anyone

else to do so, without having tried and ex-

perimented a bit to build up some experi-

ence on what can be done successfully and

what can't, would be sheer folly. On the

* Bertrand Russell, Introduction to Mathematical

Philosophy (London: George Allen and Unwin, Ltd.,

1919).
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other hand, there are certain principles

which must be rigorously observed in any

attempts in this direction. These have,

for most part, already emerged, but I shall

list them again and offer some opinions on

the impUcations of these principles.

1. Errors of measurement should be

sharply distinguished from mistakes in

arithmetic of the sort that lead us to speak

of significant numbers. I beUeve that this

separation should be so stoutly maintained

that no discussion of measurement would

be permitted in mathematical subjects.

In these, and especially in trigonometry,

we have a good opportunity to see the way
in which arithmetical calculations are

properly carried out, with due attention

paid to orderly procedures, mistakes in-

troduced by truncation, and checks

against blunders. After all, there is only

one reason why anybody performs an

arithmetical calculation. It is to get the

right answer. As far as the question of ap-

proximate numbei's4s concerned, there is

room here, I should think, for studying

how truncation mistakes are propagated

through simple calculations. I would make
no room at all for horrible examples in

which numbers with grossly different ac-

curacies have to be combined. If the

arithmetic is handled competently, this

should not be allowed to happen. The em-

phasis should be on how one should carry

out his calculation to arrive at a result of

the required accuracy. It is, in my opin-

ion, quite proper to put a problem in the

following form: Two sides of a triangle are

9 metres and 12.3 metres long. The angle

between them is 27°39'. Calculate ap-

proximately the area of the triangle and

give a range within which the area of the

triangle must lie.

The numbers given in this question are,

by impUcation, exact.

It is true that there are many answers

to this question, all of them correct. This

is as it should be. If we want to single out

a particular one of these, we can require

the answer to so many significant figures

or, what comes to the same thing, we can
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ask for the area, in square metres, correct

to so many places of decimals.

One might object that the question so

stated is artificial. If, by this, is meant
that if one had to measure these quanti-

ties, he could not ask such a question, I

agree. On the other hand, it is a real

mathematical question and I remind you

that I am talking about a course in mathe-

matics. Furthermore, the question is no

less artificial, from the point of view of

measurement, if it is asserted that the

sides are measured to the nearest centi-

metre and the angle to the nearest minute,

or if the same notion is conveyed by adopt-

ing the convention of significant numbers

and writing 9.0 instead of 9, and so on. It

is, I repeat, no less remote from reaUty

and, in addition, it carries the implication

that we can cope with errors of measure-

ment in this manner, which is monstrous.

If we allow ourselves to go this far, we
might as well go all the way and write our

lengths as 9.0 and 12, because now they

have the same number of significant figures.

At this point, we are as far from the real-

ities of measurement as we can get.

If we want to ask such a question in the

only proper way it can be asked, when the

dimensions of the triangle are measured,

it would have to read somewhat as fol-

lows: The sides of a triangle are 9 and

12.3 metres, with a standard error of .12

metres; the included angle is 27°39', with

a standard error of 5'. Calculate the area

of the triangle and its standard error.

This is no mean problem!

2. The basic notion in any discussion of

mistakes in arithmetic, caused by trunca-

tion, is the range number. It is so simple a

concept that any child can see all that is

involved and it seems to me the natural

place to begin. The significant number
then emerges as a special kind of range

number and its merits and weaknesses are

immediately obvious. The dogma of the

significant number has been with us for a

long time and I fear it will plague us for

some time to come, so we can hardly avoid

discussing it in our teaching. However, let
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us teach it as it is, not with a halo of false

impHcations surrounding it, and we should

make it clear that we do not encounter

genuine significant numbers very often.

All in all, it seems to me that what needs

doing and a general outUne of how to do

it are fairly clear, as far as purely arith-

metical questions are concerned. It may
be granted that the going gets rough when

we come to elaborate calculations, such as

the solution of large systems of equations,

but such questions should not arise at an

elementary level.

3. Things are less clear when we turn

to errors of measurement, but it seems nat-

ural to me to suppose that the place to

talk about measurements is where meas-

urements- are made, at least where they

are made seriously, to learn something

about a physical or chemical system. I do

not regard as acceptable here the sort of

exercise that has gained favor in some

places, for example, sending a number of

pupils with yardsticks to measure the

length of a room, taking their measure-

ments, which may read 24', 23'9", 2371",

and so on, then using these numbers to

show how to reduce them all to the level of

the worst, average them, and come out

with an estimate of the length of the

room. I can see nothing but harm in such

exercises. Not only do they invoke the

confusion of approximate numbers with

errors of measurement, but they cast a

false Ught on the process of measurement

itself. In all honesty, anyone who treats

numbers so obtained as anything but gar-

bage makes a mockery of the whole idea

of measurement. The making of measure-

ments is too serious a business to be

treated so casually. It is, among other

things, a complex physiological and psy-

chological process and is without meaning

until stabiUty and control have been dem-
onstrated.

Really, I see nothing to be gained by
talking about errors of measurement, ex-

cept to people who make measurements,

that is, in courses in physics, chemistry,

and perhaps biology. Maybe laboratory
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work can be planned to give some indica-

tion of the way measurements behave.

Measurements must be repeated and, in-

deed, if one is concerned to know the

whole of his error, whole experiments must

be repeated.

I do not suggest that it is desirable or

feasible to introduce any discussion of the

theory of errors at the high school level.

It is a topic that apparently demands con-

siderable maturity. Even in universities,

no serious attempts are made to provide

the rudiments of the theory of errors to

all the people who need them. However,

it should be quite feasible to discuss the

notion of bias (the systematic error of the

physicist) and that of true errors, which

tend to compensate. In connection with

these, it is vitally important to give a care-

ful and thoughtful discussion of the notion

of average, what it can accompUsh and

what it can't, when one has the right to

use an average and when he hasn't. I

beheve that, today, the average is among
the most overworked and most abused of

all our concepts.

4. Above all, we must scotch the notion

that the precision of an average or of a

single measurement can be judged from

the way in which it is written. Apparently

the opinion is current that some impro-

priety attaches to running an average out

to "more places than are warranted," in-

deed, that there is some suggestion of

deception in that more precision is claimed

than can be justified. Now, we may grant

that running averages of measurements

out to many places of decimals is siUy,

but the real impropriety lies not in this,

but in failing to provide a standard errpr

to go with this average.

Perhaps an example will gather up some
of the notions I have been putting for-

ward. The example comes unchanged

from the A.S.T.M. Manual on Presenta-

tion of Data. (Incidentally, in this manual,

which is wholly concerned with the pres-

entation and interpretation of measure-

ments, there is no mention of significant

numbers or significant digits.)
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The ten numbers presented in the table

are the measured breaking-strengths, in

pounds, of 10 samples of copper wire,

taken to estimate the mean breaking-

strength of wire from one production lot,

Beeaking-
Specimbns Stbength=X X*

1 578 334,084
2 572 327,184
3 570
4 568
5 572
6 570
7 570
8 572
9 596

10 584 341,056

5,752=2X 3,309,232=2X2

Average =SX/10 = 575.2 = Z
2X710=330,923.2

(X)» = 330,855.04
Subtract 68. 16

Extract square root 8. 26= standard deviation.

Remarks

1. The numbers X may represent read-

ings rounded off to the nearest unit, i.e.,

+ ^ in the last digit, but on the other hand

they may not and without knowing the de-

tails of the measuring process it would be

improper to assume that they do. (The

fact that they all are even makes one

wonder!) In any event, this is irrelevant.

We will do the same things with these

numbers, no matter how the readings

were made.

2. The object in making these measure-

ments is to estimate the mean breaking-

strength of this lot of wire. The average

of the observations is calculated as an

estimator of this number. It is here calcu-

lated to one place more than those given

in the data. This is in accord with

A.S.T.M. recommended practice. There is

positively no implication that the true

mean hes between 575.15 and 575.25. A
range within which it is likely to he is cal-

culable from the standard deviation.

3. In the calculation of the standard de-

viation (and indeed in the calculation of

the mean also) the observed numbers are

400.

treated as exact. To do anything else

would bring us out with no meaningful

numbers whatever.

4. The standard deviation is given to

two places more than the data. This also

is. recommended A.S.T.M. practice.

Let us look at these A.S.T.M. recom-

mendations as they apply to this particu-

lar example. A small statistical calcula-

tion indicates that there is near-certainty

that the interval 575.2 + 8.94 straddles the

true mean. In view of the A,tidth of this

interval, it is hkely that these decimals

serve no useful purpose and 575 + 9 would

meet all the needs we have. Thus it ap-

pears that the A.S.T.M. rule has given us

more places than we have any use for.

This has happened because most of the

error has come from sources other than

the final scale reading. On the other hand,

if most of our error had been so caused, as

it might be if we were measuring the value

of some physical constant, these decimals

might be well worth having. We see, then,

I think, the meaning of these rules. They
are simple conventions which have been

adopted to keep people from doing out-

rageously silly things. They have not been

derived from any fundamental considera-

tions. Furthermore, there could be cir-

cumstances, I think, in which I would

choose not to follow them.

These considerations have a bearing on

the advice we should give to students who
make measurements in the laboratory and
then make calculations with them. I as-

sume that the laboratory work will not be

carried out in such a way that the theory

of errors can be apphed and that the the-

ory of errors will not have been taught

anyway. In these circumstances, the error

in the measurements and in the final calcu-

lated estimates cannot be known. Two
questions require answers. How shall they

carry out their arithmetic and how shall

they present the results of their calcula-

tions?

The answers are easily given. In their

arithmetic, all numbers are to be treated

as exact, with the proviso that if the num-
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ber of decimal places becomes unduly

large, some of them may be eliminated by

rounding off in the course of the calcula-

tion. The final answer should be rounded

off to a reasonable number of decimals.

I am sure we would, all of us, like to

have something more definite than this,

but the fact is that there are no grounds

for definiteness. And, after all, what dif-

ference does it make if one person runs his

calculation out to, say, two more decimal

places than another? As long as they have

not stopped too soon, the basis for a pref-

erence between them is largely aesthetic.

Of course, before we can adopt this indul-

gent view, we must get rid of the notion, to

which we never had any right, that we are

deaUng with significant numbers. It is this

notion that has led to the view that too

many decimals in the answer imply decep-

tion. As far as deception is concerned, the

shoe is entirely on the other foot. The con-

tention that the result of a calculation,

with numbers obtained from measure-

ment, is to be interpreted as a significant

number is practically certain to deceive.

Let us look back at the example and, for

purposes of illustration, treat the num-
bers as significant numbers. Then we cer-

tainly have the right to express the aver-

age of them as a significant number, to the

same number of digits, i.e., 575. Then,

since 575 is a significant number, the

"true" value certainly Ues in the range

574.5-575.5. This statement is simply not

true.

To sum up, then, let us keep the signifi-

cant number where it belongs, as a con-

venient convention for writing answers in

pure arithmetic. It has no other use.

Reprinted from The Mathematics Teacher

Volume LI, No. 7, November, 19S8
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NATIONAL BUREAU OF STANDARDS
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Washington, D. C. 2023^
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SELECTED REFERENCES

David Hogben

The list of books in this section is provided for persons active in
measurement science who are concerned with the analysis and statistical
treatment of measurement data. The object is to provide the scientist
unfamiliar with statistical concepts a short list of books that he may
turn to for help in understanding techniques which will be of use to him.

The list has been kept short intentionally, and many good books have been
excluded. No attempt has been made to include books intended for
research worKers in other fields and no attempt has been made to include
advanced texts primarily of interest to statisticians. Comments, usually
in the form of quotes from the author's preface, are given to guide the
reader in making his own selection.

A. General (and easy reading)

1. WILSON, E. B., An Introduction to Scientific Research , McGraw-Hill,

1952 (375 pp.) PaperbacK, $2.75-

This book is unique. It embraces the fundamental prin-
ciples and methods of scientific research without the loss
of important details. Data collection and analysis are
treated in chapters 7 thru ^.

2. YOUDEN, W. J., Experimentation and Measurement , National Science

Teachers Association, Washington, D. C. (127 pp.) Paperback, $0.^0.

Primarily written for young scientists, but the concepts
introduced and techniques demonstrated are clearly applicable
in general.
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3. MORONEY, M. J., Facts from Figures, Pelican Books, I951 {k'J2 pp.)

Paperback.

An amusing, common sense approach to basic statistics,
written for the non-mathematician. "The book ranges from
purely descriptive statistics, through probability theory,
the game of Crown and Anchor, the design of sampling schemes,

production quality control, correlation and ranking methods,
to the analysis of variance and covariance."

h. WILKS, S. S., Elementary Statistical Analysis , Princeton University

Press, 1951. (284 pp.

)

A nice blend of elementary methods and theory. "An effort
has been made throughout the book to emphasize the role played
in statistical analysis by a sample of measurements and a
population from which the sample is supposed to have arisen. ...

Considerable attention is given to the application of sampling
principles to the simpler problems of statistical inference
such as determining confidence limits of population means and
difference of means, making elementary significance tests,
testing for randomness, etc."

B. Statistical Methods

1. DAVIES, OWEN L. , Statistical Methods in Research and Production ,

Hafner Publishing Co., Nev York, Third edition, 1957 (396 pp.)

"The object of this handbook is to bring together under one
cover those methods of statistical analysis which are most liively

to be of use in the Chemical Industry." Many useful topics are
treated in detail and with worked examples.

2. YOUDEN, W. J., Statistical Methods for Chemists , John Wiley and Sons,

1951 (126 pp.)

This book provides a refreshingly elementary approach to many
of the most basic problems in applied statistics. It is written
for the experimenter in his language.
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3. BROWNLEE, K. A. , Statistical Theory and Methodology In Science and

Engineering , Second Edition, John Wiley and Sons, New York, I965

(590 pp.).

A middle ground between theory and applications.

h. DIXON, W. J., and MASSEY, F. J., Introduction to Statistical Analysis,

McGraw-Hill Co,, 1957, Second Edition (488 pp.).

An elementary but useful book.

5. HAID, A., Statistical Theory with Engineering Applications , John Wiley

and Sons, Inc., 1952 (783 pp.).

"It is the aim of this book to provide a fairly elementary
mathematical treatment of statistical methods of importance to
the engineer in his daily work."

6. MANDEL, JOHN, Statistical Analysis of Experimental Data , John Wiley and

Sons, Inc., ISSK $12.00 {klO pp.)

"The aim of this book is to offer to experimental scientists
an appreciation of the statistical approach to data analysis."
Most of the examples are "based on genuine data obtained in the
study of real laboratory problems." Chapter 6, "The Precision
and Accuracy of Measurements," is concerned with measures of
experimental error. Some other topics particularly well

^ presented are weighted averages, and the importance of a careful
examination of residuals. Chapter 13, "The Systematic Evalua-
tion of Measuring Processes," and the final chapter, "The Com-
parison of Methods of Measurement," are particularly Interesting.

7. ACTON, FORMAN S., Analysis of Straight -Line Data , John Wiley and Sons,

1959 (267 pp.). Dover has a paperback edition.

This book is of limited scope, but it treats some problems
which occur frequently with measurement data in considerable
depth.
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8. DRAPER, N. H. and SMITH, H. , Applied Regression Analysis , John Wiley

and Sons, I966 (407 pp.)«.

"This book provides a standard, basic course In multiple
linear regression, but It also Includes material that either has
not previously appeared In a textbook or. If It has appeared. Is

not generally available. For example, Chapter 3 discusses the
examination of residuals; Chapter 6 examines the methods employed
as selection procedures In mrious types of regression programs;
Chapter 8 discusses the planning of large regression studies;

and Chapter 10 provides a basic Introduction to the theory of
nonlinear estimation."

C. Manuals and Handbooks

1, ASTM Manual on Quality Control of Materials, ASTM Coram. E-11. Special

technical publication 15-C, 1951 (12? pp.)*

Part I - Presentation of data
Part II - Presenting + limits of uncertainty of an observed

average
Part III - Control chart method of analysis and presentation

of data

(ASTM Address: American Society for Testing Materials,
1916 Race Street, Philadelphia, Pa. I9IO3)

2. NATRELLA, M. G., Experimental Statistics , NBS Handbook 91, U. S.

Government Printing Office, Washington 25, D. C, 1963 (50U pp.) $4.25.

"The Handbook is intended for the user with an engineering
oackground vho, although he has an occasional need for statistical
techniques, does not have the time or inclination to become an
expert on statistical theory and methodology."

"Step-by-step instructions are given for attaining a stated
goal, and the conditions under vhich a particular procedure is
strictly valid are stated explicitly. An attempt is made to
indicate the extent to which results obtained by a given procedure
are valid to a good approximation when these conditions are not
fully met. Alternative procedures are given for handling cases
where the more standard procedures cannot be trusted to yield
reliable results."
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3. DUNCAN, A. J., Quality Control and Industrial Statistics , Third Edition,

Richard D. Irvln, Inc., Homewood, 111., I965 (992 pp.).

This book presents "... the "basic principles and procedures
of statistical quality control. It is ... a discourse on the
assumptions and principles of theory that underlie modern quality
control practice."

Part I - Fundamentals
Part II - Lot Acceptance Sampling Plans
Part III - Rectifying Inspection
Part IV - Control Charts
Part V - Some Statistics Useful in Industrial Research

h. OWEN, D. B., Handbook of Statistical Tables , Addison-Wesley, 1962.

(580 pp.)

A comprehensive and reliable collection of tables by an
excellent table maker.

D. Design of Experiments

1. COX, D. R., Planning of Experiments , John Wiley and Sons, 1958 (308 pp.).

"This book is an account of the ideas underlying modern vork
on the statistical aspects of experimental design. I have tried,
so far as is possible, to avoid statistical and mathematical
technicalities, and to concentrate on a treatment that will be
intuitively acceptable to the experimental worker, for whom the
book is primarily intended."

2. YOUDEN, W. J. , Statistical Design, American Chemical Society, Wash.

,

D. C. (72 pp. ).

Reprinted from Industrial and Engineering Chemistry , a
collection of bimonthly articles (7I) from 1954 to 1959-

3. HICKS, C. R., Fundamental Concepts in the Design of Experiments , Holt,

Rinehart and Winston, 1964 (293 pp.).

A well written elementary book which presents "... a logical
sequence of designs that fit into a consistent outline; for every

type of experiment, the distinction among the experiment, the
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design, and the analysis are emphasized."

k, DAVIES, OWEN L., Editor, The Design and Analysis of Industrial

Experiments , Hafner Publishing Co., New York, 195^4- (636 pp.).

"This handbook is a sequel to Statistical Methods
in Research and Production . It deals with . . . the arrangement
of the individual items composing a complex experiment designed
for a given purpose, and the statistical analysis of the results.

... This book has been written principally for the research
worker in the chemical industry with a limited knowledge of
mathematical statistics, bat it is hoped that it will appeal to
other readers.

''

E. Textbooks on Probability and Statistics

1. ANDERSON, R. L. , and BANCROFT, T. A., Statistical Theory in Research ,

McGraw-Hill Book Co., Inc., New York, 1952 (399 PP. )•

"Many research workers have expressed a need for a convenient
reference book on statistical theory pointed to research problems,
which could be used in conjunction with their booits on general
statistical methods, experimental design, and survey sampling.
The authors have tried to write a book which would serve this
purpose as well as that of a textbook in statistical theory."

2. MOOD, A. M. and GRAYBILL, F. A., Introduction to the Theory of

Statistics , McGraw-Hill Book Co., Inc., 1963 (^3 pp.)«

A standard advanced undergraduate/first -year graduate level
text on the theory (rather than mathematics) of statistics having
a one year of calculus prerequisite.

"While this text is primarily concerned with the theory of
statistics, full cognizance has been taken of those students
who fear that a moment may be wasted in mathematical frivolity.
All new subjects are supplied with a little scenery from
practical affairs, and, more important, a serious effort has been
made in the problems to Illustrate the variety of ways in which
the theory may be applied."
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7. Abstracts of Recent

Publications

Papers Page

7.1. Measurement philosophy of the pilot program for mass
calibration (Abstract) . Pontius, P. E 411
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The Measurement Philosophy for the Pilot Program

for Mass Calibration

PaulE. Pontius

The Pilot Program for mass measurement is the result of a consid-
eration in which the values produced are thought of as the products of

a mass measurement process. The collective performance of elements of

the mass measurement process results in establishing the process
precision which, under certain conditions, can be described quantita-
tively by pertinent performance parameters. The uncertainty attached
to the product of the process, the measured value, is computed from
these parameters and reflects the total performance of the process
rather than the immediate measurement which might have produced the

value. Interpretations of uncertainty and surveillance tests are

discussed. The Pilot Program in mass measurement, whereby suitable
process performance parameters can be established for precise mass
measurement processes in other facilities, is discussed.

Key words: Mass measurement process, process performance parameters,
and uncertainty.

1. Introduction

In order to utilize the capabilities of a particular mass measurement process, it is

necessary to have at least one mass standard of known value to establish the measurement
unit and, equally important, to know quantitatively how well the process performs. The

process produces mass values for a wide variety of objects and, in most instances, the

objects and values pass on to others to serve many purposes. The uncertainty associated
with values produced by the process establishes the suitability of these values for the
intended usage, the amount of measurement effort necessary to meet the requirements with
confidence, and the basis for agreement when the same measurement must be made with two
different measurement processes. If the uncertainty is to be realistic, it must be
formulated from process performance parameters which are established by all the data
generated by the process to date. In addition, it must adequately reflect both the random
variabilities and systematic errors associated with the process.

The activities of the Mass and Volume Section and the Statistical Engineering Labora-
tory have been directed, for the past several years, toward an objective evaluation of the
mass measurement process and toward the establishment of suitable parameters of performance
which can be used to compute realistic estimates of process uncertainty to be associated
with the mass values produced. The success of these efforts provide the basis for the
formulation of a different method for disseminating the mass measurement unit and for
maintaining the standards of mass which are directly involved in measurement processes
throughout the country. The resulting program, currently designated the Mass Measurement
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Pilot Program incorporates, in each participating facility, the calibration procedures
currently in use at the National Bureau of Standards which provide both a means to recog-
nize and to utilize the maximum capabilities of the mass measurement processes.

The Mass Measurement Pilot Program, at the present stage of development, requires the
participating facility to either have, or have access to, a pair of kilogram mass standards
and suitable sensitivity weights which have been recently calibrated by NBS. The calibra-
tion of duplicates, subdivisions, and multiples of the kilogram are accomplished by using
the equipment of the facility to make the observations in accordance with the prescribed
procedures. The raw data is transmitted to NBS via teletype or other convenient means of
communication. The data will be processed using an appropriate computer program. The
monitoring function incorporated in the analysis will test the values obtained for the
performance parameters against the appropriate parameters which represent the performance
of the facility which produced the data. The mass values and appropriate uncertainties
for the weights being calibrated are returned to the facility via teletype in a format
suitable for inclusion in a report of calibration. The analysis sheets, which include,
in addition to the statistical eavluation, a listing of supplementary information such as

the equipment used, the operator, the weighing designs used and also a copy of all of the

raw data listed essentially in the order it was taken, are forwarded by mail for evaluation
and use as substantiating documentation. At the present time, the program is in limited
operation at three facilities over a restricted range of nominal mass values. The success
of the operation, to date, has been most gratifying.

The programs for data analysis, incorporated in the Pilot Program, strive to provide a

service matched to the unique requirements of the total mass measurement process and to

extract from the resulting data all possible information concerning the process performance.
The procedures are designed to calibrate most ordered sets of mass standards, with few if

any, extra observations over those required by other calibration procedures, and in addition,
one obtains the statistical information necessary to assess the performance of the particular
process that was used. The analysis of the data provides parameters relative to both short
and long term process variability and it is possible to compute in advance, and verify the

appropriateness of the uncertainty to be associated with each mass value determined.

Facilities that can demonstrate a continuous "in control" operation through the use of the

Pilot Program are, in essence, extensions of the NBS facilities and, as such, require only
minimal calibration support.
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Designs for Surveillance of the Volt
Maintained, by a Small Group of Saturated Standard Cells

W. G. Eicke
Electricity Division

Electrochemistry Section

and

J. M. Cameron
Applied Mathematics Division

Statistical Engineering Laboratory

ABSTRACT*

When a local standard such as that for electromotive force is

maintained by a group of standards_, procedures must be established to

provide evidence that the group has maintained its original value. One

also needs methods for the transfer of the value to test items that pro-

vide efficient use of measurement effort vhile monitoring the measurement

process and providing information for updating the values of process

parameters. Solutions to the more general problem of transferring the

value from laboratory to laboratory and of maintaining agreement among

laboratories depend on the existence of control within the laboratories.

This technical note describes a procedure for maintaining surveillance

over a small group of saturated standard cells. The measurement process

is briefly discussed and the principle of left -right balance as a means

of eliminating certain systematic errors is developed. Specific designs

and their analysis for intercomparing 3; 5 and 6 cells in a single

temperature controlled environment are given. Procedures for setting up

control charts on the appropriate parameters are given, and a technique

is described for detecting certain types of systematic errors.

Key words: Control charts, experiment design, saturated standard cells,

standard cells calibration, statistics, voltage standard.

* Revised September l6, I968
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ANALYTICAL MA.SS SPECTROMETRY SECTION:

INSTRUMENTATION AND PROCEDURES FOR ISOTOPIC ANALYSIS

Edited by William R. Shields

ABSTRACT

This report describes the general instrumentation of the Analytical
Mass Spectrometry Section and the specific analytical techniques which
have been devised for the measurement of isotopic ratios of Ag, Br, CI,

Cr, Cs, Cu, Mg, Pu, and U. Interim procedures for B, Li, Rb, and Sr
are also given.

In the appendix some general statistical principles used in the
design and analysis are briefly discussed j an example is given in detail
illustrating the various steps involved leading from original data to
the reported uncertainties for the isotopic ratio of bromine.

Key words: Mass spectrometry, instrumentation, procedures,

isotopic analysis.
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STATISTICAL TECHNIQUES FOR

COLLABORATIVE TESTS

FOREWORD
This manual presents statistical techniques that may be used in collaborative

testing of analytical methods. It is an introductory guide issued for use by the

AOAC's Associate Referees, whose statistical backgrounds cover a wide range.

Every effort has been made to keep the presentation simple and flexible, and to

hold the statistics to a minimum. Special attention is focused on planning the

collaborative test and presenting and interpreting the analytical results.

Obviously the laboratory proposing a new method should study the method

carefully before a collaborative trial is undertaken. Section VI D of this hand-

book gives an efficient program for a within-laboratory examination of a method.

An important innovation is that materials be chosen in pairs (Section V). The
two members of a pair should be similar in nature and amount present. Such a

pair becomes a "unit block" in the collaborative tests. The concept of the unit

block leads to an easy statistical analysis and graphical examination of the data.

The data from several unit blocks are readily presented in summary form.

The concept of the unit block allows a way to utilize the services of smaller

laboratories not having the resources to participate in some of the more compre-

hensive collaborative studies by having them participate on only the unit blocks

of materials in the range of interest to them. It is not necessary that each unit

block have the same number of collaborators. As a guiding rule, as many collab-

orators as possible should be obtained—up to 30 collaborators per unit block.

At the minimum level it is suggested as a guide (not as a standard) that the

number of collaborators be maintained at not less than six, if possible. We must

recognize that situations sometimes exist which severely limit the number of

collaborators that can be obtained. This rule is certainly not intended to cut ofT

such investigations because an arbitrary minimum number of collaborators can-

not be found. I firmly believe that any data properly taken are better than

no data.

To properly interpret the analytical results of a collaborative test, the scientist

must give careful consideration to the various sources of error in the data ob-

tained. Any analytical result is a complex of three factors: (1) the random

error; (2) the inherent systematic error in the procedure; and (3) the modifica-

tion in this systematic error that is a consequence of any particular laboratory's

environment, equipment, and any personal way of using the procedure.

One modern trend is the increasing use of reference materials and the adjust-

ment of instruments to make them deliver the known values for the reference

materials. Properly used, the reference materials delete the second and third

factors mentioned in the preceding paragraph. There is a disadvantage, however,

because the process of adjusting the instrument also involves a random error. The

standardization of a volumetric reagent is a similar situation. There is still the

424-1



random titration error in determining the titer. But this random error, which now
becomes a part of the titer value, acts as a constant, or systematic error, when
the reagent is used on a series of unknowns: Any error in the value of the titer is

directly carried over into every result. Consequently at least three or four titra-

tions should be made when standardizing a reagent. The average of these repeats

allows a certain degree of cancelling out of the random errors. The random error

in the average of four is just half that of a single titration. This reduces the

random error in the titer value to the point at which, now acting as a systematic

error, it is smaller than the random error of a single titration on an unknown.

This averaging device is not possible in the adjustment of instruments.

Most introductory statistical texts are necessarily limited to the consideration

of very simple experimental situations. After all, the statistical student has to

begin his learning with simple techniques. The real world of measurement is

usually an intricate place and requires careful examination by the scientist to

enumerate the various sources of error in his measurement. Since a statistician

without much experience may easily overlook the hidden complexities in an un-

familiar field of measurement, the scientist must not shirk the responsibility for

the interpretation of his data. This is the best reason for writing this manual,

which represents the initial action in filling a recognized need for statistical guide-

lines in analytical method studies. Comments and suggestions from the users are

invited. Further developments along these lines are intended, and revisions, addi-

tions, and deletions will be made as experience dictates.

Published "by the Association of Official Analytical
Chemists, Inc. , Washington, D.C. , I967,
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NBS TECHNICAL PUBLICATIONS

PERIODICALS

JOURNAL OF RESEARCH reports National

Bureau of Standards research and development in

physics, mathematics, chemistry, and engineering.

Comprehensive scientific papers give complete details

of the work, including laboratory data, experimental

procedures, and theoretical and mathematical analy-

ses. Illustrated with photographs, drawings, and
charts.

Published in three sections, available separately:

• Physics and Chemistry

Papers of interest primarily to scientists working in

these fields. This section covers a broad range of

physical and chemical research, with major emphasis

on standards of physical measurement, fundamental
constants, and properties of matter. Issued six times

a year. Annual subscription: Domestic, 36.00; for-

eign, g7.25*.

• Mathematical Sciences

Studies and compilations designed mainly for the

mathematician and theoretical physicist. Topics in

mathematical statistics, theory of experiment design,

numerical analysis, theoretical physics and chemis-

try, logical design and programming of computers

and computer systems. Short numerical tables.

Issued quarterly. Annual subscription: Domestic,

f2.25; foreign, 32.75*.

• Engineering and Instrumentation

Reporting results of interest chiefly to the engineer

and the applied scientist. This section includes many
of the new developments in instrumentation resulting

from the Bureau's work in physical measurement,

data processing, and development of test methods.

It will also cover some of the work in acoustics,

applied mechanics, building research, and cryogenic

engineering. Issued quarterly. Annual subscription:

Domestic, 32.75; foreign, 33.50*.

TECHNICAL NEWS BULLETIN

The best single source of information concerning

the Bureau's research, developmental, cooperative

and publication activities, this monthly publication

is designed for the industry-oriented individual whose

daily work involves intimate contact with science

and technology

—

for engineers, chemists, physicists,

research managers, product-development managers, and

company executives. Annual subscription: Domestic,

33.00; foreign, 34.OO*.

*Difierence in price is due to extra cost of foreign mailing.

NONPERIODICALS

Applied Mathematics Series. Mathematical
tables, manuals, and studies.

Building Science Series. Research results, test

methods, and performance criteria of building ma-
terials, components, systems, and structures.

Handbooks. Recommended codes of engineering

and industrial practice (including safety codes) de-

veloped in cooperation with interested industries,

professional organizations, and regulatory bodies.

Special Publications. Proceedings of NBS con-

ferences, bibliographies, annual reports, wall charts,

pamphlets, etc.

Monographs. Major contributions to the techni-

cal literature on various subjects related to the

Bureau's scientific and technical activities.

National Standard Reference Data Series.

NSRDS provides quantitative data on the physical

and chemical properties of materials, compiled from
the world's literature and critically evaluated.

Product Standards. Provide requirements for

sizes, types, quality and methods for testing various

industrial products. These standards are developed
cooperatively with interested Government and in-

dustry groups and provide the basis for common
understanding of product characteristics for both
buyers and sellers. Their use is voluntary.

Technical Notes. This series consists of com-
munications and reports (covering both other agency
and NBS-sponsored work) of limited or transitory

interest.

CLEARINGHOUSE

The Clearinghouse for Federal Scientific and
Technical Information, operated by NBS, supplies

unclassified information related to Government-
generated science and technology in defense, space,

atomic energy, and other national programs. For
further information on Clearinghouse services, write:

Clearinghouse

U.S. Department of Commerce
Springfield, Virginia 22151

Order NBS publications from:

Superintendent of Documents
Government Printing Office

Washington, D.C. 20402



NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards^ was established by an act of Congress March 3,

1901. Today, in addition to serving as the Nation's central measurement laboratory,

the Bureau is a principal focal point in the Federal Government for assuring maxi-

mum application of the physical and engineering sciences to the advancement of tech-

nology in industry and commerce. To this end the Bureau conducts research and
provides central national services in three broad program areas and provides cen-

tral national services in a fourth. These are: (1) basic measurements and standards,

(2) materials measurements and standards, (3) technological measurements and
standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials

Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the

United States of a complete and consistent system of physical measurement, coor-

dinates that system with the measurement systems of other nations, and furnishes

essential services leading to accurate and uniform physical measurements throughout

the Nation's scientific community, industry, and commerce. The Institute consists

of an Oflfice of Standard Reference Data and a group of divisions organized by the

following areas of science and engineering

:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Phys-

ics—Cryogenics^—Radio Physics'—Radio Engineering'—Astrophysics'—Time

and Frequency.'

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research lead-

ing to methods, standards of measurement, and data needed by industry, commerce,
educational institutions, and government. The Institute also provides advisory and
research services to other government agencies. The Institute consists of an Office of

Standard Reference Materials and a group of divisions organized by the following

areas of materials research:

Analytical Chemistry—Polymers—Metallurgy— Inorganic Materials— Physical

Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appro-

priate opportunities for the use and application of technology within the Federal Gov-

ernment and within the civilian sector of American industry. The primary functions

of the Institute may be broadly classified as programs relating to technological meas-

urements and standards and techniques for the transfer of technology. The Institute

consists of a Clearinghouse for Scientific and Technical Information,^ a Center for

Computer Sciences and Technology, and a group of technical divisions and offices

organized by the following fields of technology:

Building Research—Electronic Instrumentation— Technical Analysis— Product

Evaluation—Invention and Innovation— Weights and Measures— Engineering

Standards—Vehicle Systems Research.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement,

and application of radiation to the solution of Bureau mission problems and the

problems of other agencies and institutions. The Center for Radiation Research con-

sists of the following divisions:

Reactor Radiation—Linac Radiation—Applied Radiation—Nuclear Radiation.

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted ;
mailing; address Washington, D. 0. 20234.

2 Located at Boulder, Colorado 80302.

3 Located at 5285 Port Royal Road, Springfield, Virginia 22151.



Announcement of New Volumes in the

NBS Special Publication 300 Series

Precision Measurement and Calibration

Superintendent of Documents,

Government Printing Office,

Washington, D.C. 20402

Dear Sir:

Please add my name to the announcement list of new volumes to be

issued in the series : National Bureau of Standards Special Publication 300,

Precision Measurement and Calibration.

Name

Company

Address

City State Zip Code

(Notification key N-353)

•(TU. S. government printing office ; 1969 O—322-208













Official SI Unit Names and Symbols
[For a complete statement of NBS practice, see

NBS Tech. News BuU. Vol. 52, No. 6, June 1968.]

Name Symbol

meter m
kilogram kg
second s

ampere A
kelvin^ K
candela cd

radian rad

steradian sr

hertz Hz
lumen Im
lux Ix

Name Symbol

newton N
joule J

watt W
coulomb C
volt V
ohm n
farad F
weber Wb
henry H
tesla T

Additional Names and Symbols approved for NBS use

curie^ Ci

degree Celsius^ °C
gram g

mho mho
mole mol
Siemens* S

' The same name and symbol are used for thermodynamic temperature interval. (Adopted by the 13th General

Conference on Weights & Measures, 1967.)

- Accepted by the General Conference on Weights & Measures for use with the SI.

^ For expressing "Celsius temperature" ; may abo be used for a temperature interval.

* Adopted by lEC and ISO.

Table for Converting U.S. Customary Units to Those of the

International System (SI)^

To relate various units customarily used in the United States to those of the Interna-

tional System, the National Bureau of Standards uses the conversion factors listed in the

"ASTM Metric Practice Guide", NBS Hand :ook 102. These are based on international agree-

ments effective July 1, 1959, between the national standards laboratories of Australia, Canada,
N:w Zealand, South Africa, the United Kin gdom, and the United States.

To convert from:

(1

(2

(3

(4

(5

(6

(7

(8

(9

(10

(11

(12

(13

(14

(15

(16

(17

(18

(19

(20

(21

inches to meters, multiply by 0.0254 exactly.

feet to meters, multiply by 0.3048 exactly.

feet (U.S. survey) to meters, multiply by 1200/3937 exactly.

yards to meters, multiply by 0.9144 exactly.

miles (U.S. statute) to meters, multiply by 1609.344 exactly.

miles (international nautical) to meters, multiply by 1852 exactly.

grains (1/7000 Ibm avoirdupois) to grams multiply by 0.064 798 91 exactly.

troy or apothecary ounces mass to grams, multiply by 31.103 48 . .

.

pounds-force (Ibf avoirdupois) to newtons, multiply by 4.448 222 . .

.

pounds-mass (Ibm avoirdupois) to kilograms, multiply by 0.453 592...
fluid ounces (U.S.) to cubic centimeters, multiply by 29.57 . . .

gallons (U.S. liquid) to cubic meters, multiply by 0.003 785 . . .

torr (mm Hg at 0 °C) to newtons per square mater, multiply by 133.322 exactly.

millibars to newtons per square meter, multiply by 100 exactly.

psi to newtons per square meter, multiply by 6894.757 . .

.

poise to newton-seconds per square meter, multiply by 0.1 exactly.

stokes to square meters per second, multiply by 0.0001 exactly.

degrees Fahrenheit to kelvins, use the relation tK— (fF-|-459.67) /I.8.

degrees Fahrenheit to degrees Celsius, use the relation tc = (iF-32)/1.8.

curies to disintegrations per second, multiply by 3.7 X lO^o exactly.

roentgens to coulombs per kilogram, multiply by 2.579 760X10"* exactly.

' Systeme International d'Unites (designated SI in ail languages).




