

NBS SPEC. PUBL. **260** July 1969 Edition

Standard Reference Materials:

CATALOG AND PRICE LIST OF Standard materials issued by The National Bureau of Standards

U.S. Department of Commerce National Bureau of Standards

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards ' was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in four broad program areas. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Radiation Research, the Center for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Measurement Services and the following technical divisions:

Applied Mathematics-Electricity-Metrology-Mechanics-Heat-Atomic and Molecular Physics-Radio Physics 2-Radio Engineering 2-Time and Frequency 2-Astrophysics 2-Cryogenics.2

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; develops, produces, and distributes standard reference materials; relates the physical and chemical properties of materials to their behavior and their interaction with their environments; and provides advisory and research services to other Government agencies. The Institute consists of an Office of Standard Reference Materials and the following divisions:

Analytical Chemistry-Polymers-Metallurgy-Inorganic Materials-Physical Chemistry. THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations in the development of technological standards, and test methodologies; and provides advisory and research services for Federal, state, and local government agencies. The Institute consists of the following technical divisions and offices:

Engineering Standards-Weights and Measures - Invention and Innovation - Vehicle Systems Research—Product Evaluation—Building Research—Instrument Shops—Measurement Engineering-Electronic Technology-Technical Analysis.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center consists of the following divisions:

Reactor Radiation-Linac Radiation-Nuclear Radiation-Applied Radiation.

THE CENTER FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in the selection, acquisition, and effective use of automatic data processing equipment; and serves as the principal focus for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Center consists of the following offices and divisions:

Information Processing Standards-Computer Information - Computer Services - Systems Development-Information Processing Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System, and provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data-Clearinghouse for Federal Scientific and Technical Information a-Office of Technical Information and Publications-Library-Office of Public Information-Office of International Relations.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234. Located at Boulder, Colorado 80302 ³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

Standard Reference Materials:

Catalog and Price List of Standard Materials Issued by The National Bureau of Standards

Office of Standard Reference Materials National Bureau of Standards Washington, D.C. 20234

CAUTION: The values given in the following sections are listed primarily as a guide to purchaser. In some cases, the values shown are provisional and may differ from those shown on the certificates. Space limitations have required that some values be omitted. For these reasons, the certificates issued with the standards should always be consulted to obtain the certified values.

V 5 National Bureau of Standards Special Publication 260,

Issued July, 1969

(Supersedes NBS Misc. Publ. 260-1968 Edition)

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 50 cents

Preface

Within the framework of the NBS Institute for Materials Research the area of standard reference materials is a broad and important one, including the preparation, characterization, and distribution of a wide variety of materials in such diverse fields as metallurgy, polymers, and inorganic materials. In carrying out such a program there is much interaction with representatives of industry and science, beginning with discussions as to which primary standard materials will do most to advance technology, the furnishing of materials and fabrication of samples, and the characterization and certification of the materials by cooperative efforts. The many groups participating in a standards program are very interested in detailed information on specific aspects of the program—but to date there has been no publication outlet for such written discussions.

To meet this need, this 260 Series has been reserved for papers in the general area of "standard reference materials." This series begins with a descriptive price list of standard materials available. Succeeding publications present the results of studies and investigations undertaken within the Institute for Materials Research with emphasis on the preparation and characterization of standard reference materials. This subject-oriented series provides a means for rapid dissemination of this detailed information and we hope will stimulate the use of standard reference materials in science and industry.

Office of Standard Reference Materials

Contents

		Page
1.	General information	1
	1.1. Introduction	1
	1.2. Standards out of stock	1
~	1.3. New standards	1
2.	Purchase procedure	2
	2.1. Identification of standards	2
	2.2. Ordering	2
	2.3. Terms and shipping	2
	2.3.1. Domestic snipments	2
	2.3.2. Foreign snipments	20
2	2.3.3. Payment for foreign orders	2
0.	2 1 Stools (ship form)	3
	2.2 Steels (culid form)	0
	2.2.1 Inget inon and law allow steels	0
	3.2.2. Special ingot irons and low-allow	0
	etoola	7
	3 2 3 Stainless steels	
	3.2.4 Tool steels	ő
	3.2.5 Ferrous meteriels (for orwron	
	and nitrogen)	9
	3.2.6. Specialty steels	ő
	3.3. Cast iron (chip.form)	10
	3.4. White-cast iron (solid form)	11
	3.5. Steel-making allovs	- ii
	3.6. Nonferrous alloys (chip form)	12
	3.7. Copper-base alloys (solid form)	14
	3.8. High temperature alloys (solid form)	16
	3.9. Nickel oxides	16
	3.10. Tin metal (solid form)	17
	3.11. Titanium-base alloys	17
	3.11.1. Titanium-base materials	
	(chip form)	17
	3.11.2. Titanium-base materials	
	(solid form)	17
	3.11.3. Titanium-base materials	
	(for oxygen and hydrogen).	18
	3.12. Zirconium-base alloys	18
	3.13. Zinc-base die-casting alloys and zinc	
	a la Orma	19
	2.15 Comente	19
	3.16 Coromia materials	20
	3.17 Hudroseybon blands	21
	3.18. Metallo-organic compounds	22
	3.19. Microchemical standarda	20
	3.20. Chemicala	24
	3.20.1 Primary chamicals	24
	3.20.2. Intermediate purity Chemi-	41
	cals	24
	3.21. Special nuclear materials	25
	3.22. Isotopic reference standards.	25
	3.23. Analyzed gases	26
4.	Standards of certified properties and purity	26
	4.1. pH standards	26
	4.2. Freezing-point standards	26
	4.2.1. Defining fixed points-Inter-	
	national Practical Tempera-	
	ture Scale	26
	4.2.2. Secondary reference points	26

1.0		Page
4.3. Thermon	netric cells (discontinued)	27
4.4. Calorime	inity standards	27
4.5. 108010800	Alphe-rev stenderds	27
4.5.2	Beta-ray and gamma-ray so-	21
	lution standards	28
4.5.3.	Beta-ray, gamma-ray, and elec-	
	tron capture solution stand-	
	ards	28
4.5.4.	Beta gas standard	28
4.5.5.	Point-source gamma-ray stand-	28
456	Radium mck samples	29
4.5.7.	Radium solution standards (for	20
	radon analysis)	29
4.5.8.	Radium gamma-ray solution	
	standards	29
4.5.9.	Contemporary standard for car-	~
A.C. Stondard	bon-14 dating laboratories	29
4.0. Standard	rubbers and rubber compound-	20
461	Standard rubberg	30
4.6.2	Rubber compounding materials.	30
4.7. Polystyre	ene molecular weight standards.	30
4.8. Viscomet	er calibrating liquids	30
4.9. Glass vis	cosity standards	31
4.10. Color sta	indards for spectrophotometer-	~
tristim	ulus integrator systems	31
4.11. The ISCO	-NBS centroid color charts	32
4.12. Standard	colors for kitchen and bath-	32
4 13 Paint nic	ment standards for color and	02
tinting	strength	32
4.14. Phosphor	18	33
4.15. Light-sen	sitive papers and plastic chips_	33
4.15.1.	Light-sensitive papers	33
4.15.2.	Light-sensitive plastic chips	33
4.10. Internal	tearing resistance standard	33
4 17 Migrocon	w resolution test chart	34
4.18. Glass sph	eres for particle size	34
4.19. Turbidim	etric and fineness standard	34
4.20. Surface fi	lammability standard	34
4.21. Coating t	thickness	35
4.22. Thermal	emittance standards	36
4.23. Permittiv	vity standards	36
4.24. Mössbau	er differential chemical shift	
for iron	n-57	36
4.25. Carbon-1	4 and hydrogen-3 labeled	077
sugars.		31
4.25.1.	Carbon-14 and hydrogen-3 la-	37
4 95 9	Interior carbon-14 sugars	37
4,25,3	Tritium labeled sugars	37
4.26. Density s	and refractive index standards	37
Annendix		38
5 Index by SRM n	umber	40
6 Annondia I Trees	and contificate of characteriza-	10
tion	car certificate of characteriza-	43
7 Appendix II Cui	de for submission of requests	44
1. Appendix II. Gui	ne for submission of reducara-	**

Standard Reference Materials

Issued by the National Bureau of Standards

This catalog describes the various Standard Reference Materials issued by the National Bureau of Standards. These materials are used to calibrate measurement systems and provide scientific information that can be referred to a common base. A schedule of prices and quantities is included for each material, as well as directions for ordering. Listed are the types and compositions of those chemical standards that are presently available. Announcements of new standard reference materials are made in the Federal Register, in scientific and trade journals, and in the Technical News Bulletin of the National Bureau of Standards. Changes affecting the current status of the various standards will be indicated by an insert sheet available quarterly from the Bureau.

Key words: Analysis, catalog, certificate, characterization, composition, price list, property of material, purity of material, standard reference materials, standards.

1. General Information

1.1. Introduction

The standard reference materials issued by the National Bureau of Standards, their prices and directions for ordering, are given in this publication. All types of well-characterized materials are available for calibrating measurement systems, and providing scientific information that can be referred to a common base.

Other uses include calibration and standardization of spectrometers, spectrographs, colorimeters, pH meters, Geiger counters, scintillators, ionization chambers, pyrometers, polarimeters, refractometers, viscometers, and other laboratory and plant instruments; checking methods of analysis and analytical techniques; standardization of solutions for volumetric analysis and the development of new or improved methods of analysis, and the evaluation of the accuracy of analytical methods.

The first standard materials issued by the Bureau were a small group of metals certified with respect to their chemical composition. Because of their use as standards in chemical analysis, the term "Standard Samples" was applied to them. This term was extended first to similar composition standards, and later to cover materials certified with respect to chemical purity or to some physical or chemical property. By usage the term has been extended also to certain materials that are issued without certification of composition or properties. More recently, the term "Standard Sample" has been replaced with the more apt description "Standard Reference Material."

In this publication the materials are classified into groups according to the purposes for which they are intended and the kind of certification, if any, that applies to them. More than 600 different standards of metals, ores, ceramics, chemicals, and hydrocarbons are now available for distribution. About 400 of these are certified for chemical composition. Almost half of the composition standards have been prepared specifically for use in spectroscopic analysis. Other standard materials include those certified for such properties as acidity (*p*H), viscosity, freezingpoint, density, index of refraction, and heat of combustion. Each standard material is accompanied by a certificate of characterization. An example of such a certificate is shown in appendix I.

1.2. Standards Out of Stock

The preparation of "renewals" is intended to be completed at the time each kind of material becomes exhausted, but owing to delays encountered in obtaining a proper grade of material, and for other reasons, this is not always possible. If orders are received for standard reference materials that are out of stock, notice will be mailed to that effect. The composition of a "renewal" will not usually be identical with that of its predecessor, but it will be quite similar, especially with regard to the characteristic constituent or constituents, and generally the "renewal" can be used in place of its predecessor.

1.3. New Standards

When new standard reference materials or renewals of old ones are issued, announcement will be made in scientific and trade journals, in the Standard Materials column of National Bureau of Standards Technical News Bulletin, and in the Federal Register. This information will also be given in the Quarterly *insert sheet* for this catalog (NBS Misc. Publ. 260) available from the Bureau. If you wish to be placed on a mailing list to receive these inserts as they are issued, please complete the post card included at the end of this catalog, detach it, and mail to the National Bureau of Standards.

The Office of Standard Reference Materials welcomes suggestions for new standard materials. While it is not possible to produce all of the materials that will be requested by science and industry throughout the country, we will try to make those for which there is the greatest demonstrated need. Thus we have prepared a "Guide for the Submission of Requests for the Development of New or Renewal Standard Reference Materials" which delineates Bureau policy in this area and establishes a standard format for such requests. This "Guide" is reproduced for your information in appendix II (page 40) of this publication.

NBS callbrating and testing services for a wide variety of standards and instruments are given in a separate publication; NBS Mise. Publ. 250, Calibrating and Testing Services, price \$1.00.

2. Purchase Procedure

2.1. Identification of Standards

The standards are listed by groups; the numbers represent the issuance of the first representative sample of each kind. Renewals are indicated by the original number with an added letter to denote the relation. Thus, 11a is the first, 11b the second, 11c is the third renewal of No. 11 Basic Open-Hearth Steel, 0.2 percent carbon. In this way, a particular number always represents a material of fixed or approximately fixed composition. Although renewals are not identical with their predecessors, they generally can be used in place of them.

2.2. Ordering

Orders should be addressed to the Office of Standard Reference Materials, National Bureau of Standards, Washington, D.C. 20234, and should give the amount, catalog number and name of the standards requested. For example: 150 g of No. 11h Basic Open-Hearth Steel, 0.2 percent C. The list of standard materials, their numbers, prices and composition or intended use are given on the pages which follow. These materials are distributed only in the units listed. Acceptance of orders does not imply acceptance of any provision set forth in this order contrary to the policy, practice or regulations of the National Bureau of Standards in the U.S. Government. Prices as listed in this catalog are subject to change without notice. Price changes, when made are first announced in the Federal Register. Prices in effect at time of shipment will be billed to the purchaser.

2.3. Terms and Shipping

2.3.1. Domestic Shipments

Shipments of material (other than hydrocarbons, organic sulfur compounds and radioactive standards) intended for the United States, Mexico, and Canada are normally shipped prepaid parcel post (providing that the parcel does not exceed the weight limits as prescribed by Postal Laws and Regulations) unless the purchaser requests a different mode of shipment, in which case the shipment will be sent collect. It is impractical for the Bureau to prepay shipping charges and add this cost to the billing invoice. Hydrocarbons, organic sulfur compounds, rubber compounding materials, viscometer calibrating oils, and radioactive standards are shipped express collect. No discounts are given on NBS Standard Reference Materials.

2.3.2. Foreign Shipments

Small shipments will be forwarded as a U.S. Government shipment via International Parcel Post, providing that the parcel does not exceed the weight limits as prescribed by Postal Laws and Regulations to foreign countries. Shipments exceeding the parcel post weight limit must be handled through an agent (shipping or brokerage firm) located in the United States as designated by the purchaser. Parcels will be packed for overseas shipment and forwarded via express collect to the U.S. firm designated as agent.

2.3.3. Payment for Foreign Orders

Remittances in payment of foreign orders must be made payable to the National Bureau of Standards, and are *required in advance*. These remittances must be drawn on a bank in the United States and payable at the standard rate of U.S. currency.

3. Standards of Certified Chemical Composition

3.1. Steels (Chip Form)

This group of standard reference materials has been prepared for the steel industry primarily 'or use in checking chemical methods of analysis both for production control, and for customer acceptance. The group ponsists of nominal composition steel alloys and is selected to provide a wide range of analytical values for the various elements which are of vital concern to the chemist. They are furnished in 150 g units of chips, usually sized between 16- and 40-mesh sieves, prepared from selected portions of commercial ingots. Certificates of analyses, provided with these standards, give the composition as determined at the National Bureau of Standards, and most also include values obtained by industrial and other outside laboratories cooperating in the certification of the standards.

SRM Nos.	Kind	Price	SRM Nos.	Kind	Price
8i	Bessemer, 0.1 C	\$33.00	111b	Ni-Mo (SAE 4620)	\$33.00
10g	Bessemer, 0.2 C	33.00	106b	Cr-Mo-Al (Nitrallov G)	33.00
170a	Out of stock		139a	Cr-Ni-Mo (AISI 8640)	33.00
15g	Basic Open Hearth, 0.1 C	33.00	156	Cr-Ni-Mo (NE 9450)	33.00
335	Basic Open Hearth, 0.1 C (carbon only)_	27.00	50c	W18-Cr4-V1	33.00
11h	Basic Open Hearth, 0.2 C	33.00	132a	Mo5-W6-Cr4-V2	33.00
12h	Basic Open Hearth, 0.4 C	33.00	134a	Mo8-W2-Cr4-V1	33.00
152a	Basic Open Hearth, 0.5 C, 0.03 Sn	33.00	153a	Co8-Mo9-W2-Cr4-V2	33.00
13g	Basic Open Hearth, 0.6 C	33.00	155	Cr 0.5-W 0.5	33.00
14e	Basic Open Hearth, 0.8 C	33.00	73e	Stainless (Cr13) (SAE 420)	33.00
16e	Basic Open Hearth, 1.1 C	33.00	133a	Stainless (Cr13-Mo0.3-S0.3)	33.00
337	Basic Open Hearth, 1.1 C (carbon only)_	27.00	1016	Cr18-Ni9 (SAE 304)	33.00
19g	Acid Open Hearth. 0.2 C	33.00	121c	Cr18-Ni10 (Ti-bearing) (SAE 321)	33.00
20f	Out of stock		160a	Cr19-Ni14-Mo3 (SAE 316)	33.00
51b	Electric furnace, 1.2 C	33.00	166b	Cr19-Ni9 (carbon only)	33.00
65d	Basic electric, 0.3 C	33.00	339	Cr17-Ni9-0.2Se (SAE 303Se)	40.00
100b	Manganese (SAE T1340)	33.00	343	Cr16-Ni2 (SAE 431)	33.00
105	High-sulfur, 0.2 C (carbon only)	25.00	344	Cr15-Ni7-Mo2-A1 1	33.00
129b	High-sulfur, (SAE X1112)	33.00	345	Cr16-Ni4-Cu3	33.00
30f	Cr-V (SAE 6150)	33.00	346	Valve (Cr22-Ni4-Mn9)	40.00
32e	Ni-Cr (SAE 3140)	33.00	348	Ni26-Cr15 (A286)	33,00
33d	Ni-Mo (SAE 4820)	33.00	126b	Ni36 (High nickel)	33.00
72f	Cr-Mo (SAE X4130)	33 00			- 5100
					1

3.1. Steels (Chip Form)—Continued

ANALYSES

SRM Nos.	Kind	с	Mn	Р		s	Si	Cu	Ni	
					Grav.	Comb.				
8i	Bessemer	0.077	0. 511	0. 080	0.063	0.063	0. 020	0.016	0, 009	
10g	Bessemer	. 240	. 850	. 086	. 109	. 109	. 020	, 008	005	
170a	B.O.H. (Ti-bearing)	. 052	. 325	. 005	. 021	. 021	. 036	. 059	. 026	
15g	B.O.H. 0.1C	. 097	. 485	. 005		. 026	. 095			
335	B.O.H. 0.1C	. 092								
11h	B.O.H. 0.2C	. 200	. 510	. 010		. 026	. 211			
12h	B.O.H. 0.4C	. 41	. 84	. 018		. 027	. 237	. 073	. 033	
152a	B.O.H. 0.5C, 0.03 Sn	. 486	. 717	. 012		. 030	. 202	. 023	. 056	
13g	B.O.H. 0.6C	. 61	. 85	. 006		. 030	. 355			
14e	B.O.H. 0.8C	. 751	. 404	. 008	. 039	. 039	. 177	. 072	. 052	
16e	B.O.H. 1.1C	1.09	. 381	. 021		. 029	. 20			
337	B.O.H. 1.1C	1.07								
19g	A.O.H. 0.2C	0. 223	. 554	. 046	. 032	. 033	. 186	. 093	. 066	
20f	A.O.H. 0.4C	. 380	. 754	. 028	. 034	. 034	. 299	. 238	. 243	
51b	Electric furnace	1. 21	. 573	. 013	. 014	. 014	. 246	. 071	. 053	
65d	Basic electric	0.264	. 730	. 015	. 010	. 010	. 370	. 051	. 060	
100b	Manganese (SAE T1340)	. 397	1.89	. 023	. 029	. 028	. 210	. 064	. 030	
105	High-sulfur (Carbon only)	. 193								
129b	High-sulfur (SAE X1112)	. 094	0.763	. 085	. 221	. 226	. 021	. 015	. 013	
30f	Cr-V steel (SAE 6150)	. 49	. 79	. 010		. 010	. 28	. 076	. 071	
32e	Ni-Cr steel (SAE 3140)	. 409	. 798	. 008	. 022	. 021	. 278	. 127	1.19	
33d	Ni-Mo steel (SAE 4820)	. 173	. 537	. 006	. 010	. 011	. 253	. 123	3.58	
72f	Cr-Mo steel (SAE X4130)	. 301	. 545	. 014	. 024	. 024	. 256	. 062	0.055	
111b	Ni-Mo Steel (SAE 4620)	. 193	. 706	. 012	. 015	. 015	. 302	. 028	1.81	
106b	Cr-Mo-Al (Nitralloy G)	. 326	. 506	. 008	. 016	. 017	. 274	. 117	0.217	
139a	Cr-Ni-Mo (AISI 8640)	. 404	. 780	. 013	. 019	. 019	. 241	. 096	. 510	
156	Cr-N1-M0 (NE 9450)	. 515	1.40	. 032	. 017	. 018	. 226	. 053	. 475	
50e	W18-Cr4-V1	. 719	. 342	. 022	. 010	. 009	. 311	. 079	. 069	
132a	Mo5-W6-Cr4-V2	. 825	. 268	. 029	. 005	. 006	. 190	. 120	. 137	
134a	Mo8-W2-Cr4-V1	. 808	. 218	. 018	. 007	. 007	. 323	. 101	. 088	
153a	Co8-M09-W2-Cr4-V2	. 902	. 192	. 023	. 007	. 007	. 270	. 094	. 168	
155	Cr 0.5-W 0.5	. 905	1. 24	. 015	. 010	. 011	. 322	. 083	. 100	
130	Cr13 (SAE 420)	. 310	0.330	. 018		. 036	. 181	. 080	. 246	
133a	Cr13-M0 0.3-S 0.3	. 120	1.03	. 026	. 326	. 330	. 412	. 118	. 241	
101e	Cr18-N19 (SAE 304)	. 034	1. 11	. 025	. 010	. 010	. 43	. 339	9.48	
121e	Cr18-N110-T1 0.4 (SAE 321)	. 038	1.31	. 028		. 009	. 64	. 14	10. 51	
160a	Cr19-N114-M03 (SAE 316)	. 062	1.62	. 027	. 015	. 016	. 605	. 174	14.13	
1000	C_{17} Nio C_{17} (Carbon only)	. 0191	0 790	190	~	012	054	100		
009	C-10 Nio (CAE 421)	. 052	0. 758	. 129		. 015	. 034	. 199	8.89	
244	Cr15 Ni7 Mo2 A1 1	. 130	57	018		010	20.5	100	2.14	
245	Crife NiA Cu2	. 009	. 01	. 018	019	. 019	. 393	2 44	1.28	
240	Value (Cr99 Ni4 Mp0)	. 048	0 15	. 018	. 012	. 012	. 010	5. 44	4. 24	
240	Nige C_{n15} (A 90c)	. 041	9.10	. 018		. 003	. 204	0.99	0.94	
048 196b	N120-0110 (A280)	. 044	1. 48	. 015		. 002	. 34	0. 22	25.00	
1200	N100	. 090	0. 380				. 200	. 082	55.99	
1					1					

3.1. Steels (Chip Form)—Continued

ANALYSES-Continued

SRM Nos.	Cr	v	Мо	W	Co	Ti	As	Sn	Al (total)	Ν	Nb	Та	в	Se	Fe
8i	0.009	0.012	0.003							0.018					
170a	. 014	. 009	. 005	{Zirconium}		0. 281		0.006	0.046	. 005					
15g															
12h 152a	. 074 . 046	. 003 . 001	. 006 . 036					. 032		. 006					
$\frac{13g}{14e}$. 072	. 002	. 013						. 059						
16e 19g	. 374	. 012	. 013		0.012	0.27		. 008	. 031		0.026				
20f 51b	. 097	. 007	. 058					. 021		. 005	(A	cid-inse	aluble		
65d	. 049	. 002	. 025					. 004	. 059	. 013	1	as Al ₂ C	030.009	-}	=
100b	. 063	. 003	. 237							. 004					
105 129b	016	. 004	. 003							. 014					
30f	. 95	. 18													
32e	. 678	. 002	. 023					. 011		. 009					
33d 79f	. 143	. 002	. 246							. 011					
111b	. 070	. 003	. 255						. 043						
106b	1.18	. 003	. 199						1.07						
139a	0.486	. 003	. 183							. 008					
100 50e	4 13	1.16	. 138	18.44			0.022	. 018		. 012					
132a	4. 21	1. 94	4. 51	6. 20											
134a	3.67	1.25	8.35	2.00											
153a	3.72	2.06	8.85	1.76	8. 47					. 024					
73e	12. 82	. 030	. 091	0. 517						. 037					
133a	12.89	. 026	. 294							. 032					
101e	17.98	. 043	. 426	. 056	0.18			. 020		. 039	. 013				
121c 160a	17. 58	. 048	2.83		071	. 42		013		051	(Lead	0.001)			
166b	10. 7 1	. 001	2.00					. 010			(Dead				
339	17.42	. 058	0.248		. 096									0.247	
343	15.76	. 036							1 16	. 074					
345	14.95	. 040	2. 40 0. 122		. 089	. 070			1. 10		. 231	. 002			
346	21.61	. 058								. 441					
348	14.54	. 25	1.3			2.24			0.23				0.0031		53. 3
1260	0. 066	. 001	0. 006		. 032										

3.2. Steels (Solid Form)

Several groups of standards have been prepared and designed to meet the basic needs of the steel industry for analytical control primarily by optical emission and x-ray spectroscopic methods of analysis. Both nominal composition and analytical range standards are provided for ingo tiron, low-alloy steel, stainless steel, and too at teel.

These standard reference materials are furnished in three basic forms: (1) rods 1/2 in in diameter, 4 in long (400 series); (2) rods ½ in in diameter, 2 in long (800 series); and (3) disks 1¼ in in diameter and either ¼ in or ¼ in thick (1100

(2) rods ½ in in diameter, 2 in long (800 series); and (3) disks 1½ in in diameter and either ¾ in or ¼ in thick (1100 series or D 800 series). The 400 series is intended for optical emission spectroscopic methods of analysis utilizing the "point-to-point" technique. The 800 and 1100 series are intended for "point-to-plane" optical emission spectroscopic methods of analysis. Because of the special homogeneity requirements, most of these materials have been prepared by using the most modern techniques of melting, casting, fabrication, and heat treatment to insure adequate uniformity of composition. The standards are furnished with Certificates of Analyses which give the composition as determined at the National Bureau of Standards; some also include values by outside laboratories cooperating in the certification of the standards. (Values in parentheses are not certified, but are given for additional information on the composition.)

3.2.1. In	ngot Irea	and Lo	w-Alloj	7 Steels
-----------	-----------	--------	---------	----------

				Price		
	SRM Nos.		Kind	400 & 800 series	D900 series	
404a 405a 407a 408a 409b 410a 413 414	802 803a 804a 805a 807a 808a 809b 810a	D803a D805a D807a D809b	B.O.H., 0.8C. A.O.H., 0.6C. Basic electric Medium manganese Chromium-vanadium. Chromium-nickel. Nickel. Cr2-Mol. A.O.H., 0.4C. Cr-Mo (SAE 4140).	\$30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.00	\$35.00 35.00 35.00 35.00	
417a 418 418a 420a	817a 820a 821	 D820a	B O. H., 0.4C Cr-Mo (SAE X4130) Cr-Mo (SAE X4130) Ingot iron. Cr-Wo (SAE X4130) Cr-W. 0.9C	30.00 30.00 30.00 30.00 30.00	35.00	
427	827		Cr-Mo (SAE 4150) (boron only)	30.00		

SRM Nos.	Мв	81	Cu	Ni	Cr	v	Мо	w	Co	Rn	Al Total	в
802 033a 0803a 404a 801a 0803a 405a 805a 0805a 405a 806a 0805a 407a 807a 0807a 408a 808a 080b 409b 809b 0809b 410a 810a	0. 46 1. 04 0. 88 1. 90 0. 76 . 76 . 46 . 46 . 67 . 78 . 52 . 52 . 017 1. 24	0.060 .34 .44 .27 .29 .28 .27 .36 .22 .26 .22 .26 .28 .27	0. 025 . 096 . 050 . 032 . 132 . 104 . 104 . 11 . 13 . 0440 . 027 . 080	0. 010 . 190 . 040 . 065 . 169 1. 20 3. 29 0. 24 . 18 . 080 . 062 . 11 . 125 . 0092 . 10	0. 025 . 101 . 025 . 037 . 92 . 655 . 072 2. 39 0. 055 . 99 . 050 . 96 1. 02 0. 0032 . 49	0.005 .002 .146 .002 .002 .007 .003 	0. 033 . 007 . 005 . 009 . 91 . 006 . 32 . 013 . 22 . 21 . 0013 . 040	0.52	0. 025	0. 012 . 014 . 036	. 020	0, 0027

ANALYSES

3.2.2. Special Ingot Irons and Low-Alloy Steels

SRM Nos.	Kind	Price			
		400 series	1100 series		
461 1161 462 1162 463 1163 464 1164 465 1165 466 1166 467 1167 468 1168 1170	Low-alloy steel A (modified TS46B12) Low-alloy steel B (modified TS86B45) Low-alloy steel C (modified TS86B45) Low-alloy steel D (modified 14B52) Ingot iron E Ingot iron F Low-alloy steel G (modified C1010) Low-alloy steel H (modified TS4720) Leaded steel (0.2% Pb) Selenium steel (0.3% Se)	\$35.00 35.00 35.00 35.00 35.00 35.00 35.00 35.00	\$65,00 65,00 65,00 65,00 65,00 65,00 65,00 65,00 65,00 65,00		

	ANALYSES													
SR M	SRM Nos. C Mn P S Si				81	Cu N	li Cr	v	Mo	w	Co	Tì	As	
461 462 463 464 465 466 467 468	1161 1162 1163 1164 1165 1166 1167 1168 1169 1170	0. 15 . 40 . 19 . 54 . 037 . 065 . 11 . 26 . 077 . 089	0. 36 . 94 1. 15 1. 32 0. 032 . 113 . 275 . 47 . 992 . 79	0. 053 . 045 . 031 . 017 . 008 . 012 . 033 . 023 . 064 . 109	(0. 02) (. 02) (. 02) (. 01) (. 01) (. 01) (. 01) (. 02) . 318 . 207	0. 047 . 28 . 41 . 48 . 029 . 025 . 26 . 075 . 011 . 163	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0. 024 . 058 . 10 . 295 . 002 . 007 . 041 . 17 . 001	0. 30 . 080 . 12 . 029 . 005 . 011 . 021 . 20 . 008	0. 012 . 053 . 105 . 022 (. 001) (. 006) . 20 . 077	0. 26 . 11 . 013 . 028 . 008 . 046 . 074 . 16	(0. 01) . 037 . 010 . 004 . 20 . 057 . 26 . 011	0. 028 . 046 . 10 . 018 . 010 . 014 . 14 . 008
SRM	I Nos.	Sn	Al (total)	Nb	Та	в	Pb	Zr		8	Ge	0	N	Se
461 462 463 464 465 466 467 468	1161 1162 1163 1164 1165 1166 1167 1168 1169 1170	0. 022 . 066 . 013 . 043 . 001 . 005 . 10 . 009	(0, 005) . 023 . 027 . 005 . 19 . 015 . 16 . 042	0. 011 . 096 . 195 . 037 (. 001) . 005 . 29 . 006	0. 002 . 036 . 15 . 069 . 001 . 002 . 23 . 005	0. 0002 . 0005 . 0012 . 0001 (. 0002) (. 0002) . 009	$(\begin{array}{c}(0,\ 003)\\ .006\\ .012\\ .020\\ (<,\ 0005)\\ (,\ 0013)\\ .0006\\ (<,\ 0005)\\ .227\end{array}$	(<0.005 .063 .20 .010 (.002 (<.005 .094 (<.005))015))002))002))002))0025))0045))0040))002)	(0. 0015) (. 0030) (. 0025) (. 0015) (. 0035) (. 0030) (. 0030) (. 0010)	(0, 020) (, 006) (, 007) (, 006) (, 003) (, 004) (, 004)	(0. 006) (. 008) (. 006) (. 007) (. 005) (. 004) (. 004)	0.293

3.2.3. Stainless Steels

SRM Nos.	Kind (Group 1)	Price
442	Cr16-Ni10	\$35.00
443	Cr18.5-Ni9.5	35.00
444	Cr20.5-Ni10	35.00

SRM Nos.			Kind (Group 2)	Price				
				400 series	800 series	Da00 series		
445 446 447 448 449 450	845 846 847 848 849 850	D845 D846 D847 D848 D849 D850	Cr13- Mo0.9 (Modified AISI 410) Cr18-Ni9 (Modified AISI 321). Cr24-Ni13 (Modified AISI 309). Cr9-Mo0.3 (Modified AISI 403) Cr5.5-Ni6.5. Cr3-Ni25.	\$35.00 35.00 35.00 35.00 35.00 35.00		\$50.00 50.00 50.00 50.00 50.00 50.00		

SRM Nos.	Kind (Group 3)	Price
1152	Stainless Steel, B (Cr18–Ni10)	\$65.00
1154	Stainless Steel, D (Cr19–Ni10)	65.00

STAINLESS	STEELS	GROUP	1-ANALYSES
OTVININGO	OT WINDO	GUTOLL	I-ANADIONO

SRM Nos.	Mn	81	Cu	Nİ	Cr	v	Mo	w	Co	Ti	80	Nb	Тв	В	Pb	Zr	Zn
442	2.88	(0.09)	0.11	9.9	16. 1	0. 032	0. 12	(0.08)	0. 13	0. 002	0. 0035	0. 032	(0.0006)	0. 0005	0. 0017	(0. 004)	(0. 003)
443	3.38	(.15)	.14	9.4	18. 5	. 064	. 12	(.09)	. 12	. 003	. 006	. 056	(.0008)	. 0012	. 0025		(. 005)
444	4.62	(.65)	.24	10.1	20. 5	. 12	. 23	(.17)	. 22	. 019	. 014	. 20	(.004)	. 0033	. 0037		(. 004)

	STAINLESS STEELS GROUP 2—ANALYSES													
	SRM Nos.		Mn	81	Ca	Ni	Cr	v	Мо	w	Ti	60.	Nb	Тв
445 446 447 448 449 450	845 846 847 848 849 850	D845 D846 D847 D848 D849 D850	0. 77 . 53 . 23 2. 13 1. 63	0.52 1.19 0.37 1.25 0.68 .12	0.065 .19 .19 .16 .21 .36	0. 28 9. 11 13. 26 0. 52 6. 62 24. 8	13. 31 18. 35 23. 72 9. 09 5. 48 2. 99	(0. 05) (. 03) (. 03) (. 02) (. 01) (. 006)	0. 92 . 43 . 059 . 33 . 15	(0. 42) (. 04) (. 06) (. 14) (. 19) (. 21)	(0. 03) (. 34) (. 02) (. 23) (. 11) (. 05)	(0. 02) (. 05) (. 07) (. 09)	0. 11 . 60 . 03 . 49 . 31 . 05	(0. 002) (. 030) (. 002) (. 026) (. 021) (. 002)

STAINLESS STEELS GROUP 3-ANALYSES

SBM Nos.	С	Mn	P	8	81	Ca	Ni	Cr	v	Мо
1152	0. 163	1. 19	0. 017	0. 017	0. 654	0. 497	10. 21	18. 49	0. 044	0. 366
1154	. 094	1. 74	. 038	. 033	1. 09	. 560	10. 25	19. 58	. 061	. 463
SRM Nos.	ті	Nb	Та	A1	Zr	Co	80	Pb	As	В
1152	(0, 12)	(0.20)	(0.085)	(0.003)	(0.03)	(0.095)	(0.004)	(0, 001)	(0.01)	(0.005)
1154	(. 48)	(.26)	(.045)	(.035)	(.022)	(.12)	(.023)	(. 012)	(.03)	(.0006)

3.2.4. Tool Steels

	SRM N	08.	Kind		Price	
				400 series	800 series	D800 series
436 437 438 439 440 441	836 837 838 839 840 841	D836 D837 D838 D839 D840 D841	Special (Cr6-Mo3-W10) Special (Cr8-Mo2-W3-Co3) Mo High Speed (AISI-SAE-M30) Mo High Speed (AISI-SA:2-M36) Special W High Speed (Cr2-W13-Co12) W High Speed (AISI-SAE T1)	\$35.00 35.00 35.00 35.00 35.00 35.00	\$42.50 42.50 42.50 42.50 42.50 42.50 42.50	\$50.00 50.00 50.00 50.00 50.00 50.00

ANALYSES SRM Nos. Mn 81 Cn Cr v Mo w Co 836 0. 21 0.32 0.075 6.02 436 D836 0.63 2.80 9.7 437 837 D837 . 48 . 53 . 17 7.79 3.04 1.50 2.8 1.7 2.9 438 838 D838 . 20 . 17 4.66 1.17 8.26 4.9 839 . 21 . 12 2.72 7.8 439 D839 . 18 1.50 4.61 5. 7 2.12 . 15 . 059 2.11 440 840 D840 0.070 13.0 11.8 D841 . 16 . 072 4. 20 1. 13 . 84 441 841 . 27 18.5

3.2.5. Ferrous Materials (For Oxygen and Nitrogen)

These standards are intended to provide materials for checking analytical methods for determining oxygen and

nitrogen only. SRM No. 1041 is supplied in rods 1 in in diameter and 3 in long weighing approximately 300 g. Because the rods are radially segregated, care must be taken so that the sample used for an analysis represents the entire cross section of the rod.

SRM Nos. 1090 to 1092 are intended primarily to provide standards for determining oxygen by the vacuum fusion or inert gas fusion methods. They are supplied in rods 4 in long. Nos. 1090 and 1092 are ¼ in in diameter and 1091 is % in in diameter. (Note that two titanium-base SRMs, Nos. 355 and 356, section 3.11.3, page 18, also are available for the determination of oxygen.) Details on the preparation and analysis of SRMs 1090, 1091, and 1092 are given in NBS Misc. Publ. 260-14 "De-

termination of Oxygen in Ferrous Materials SRM 1090, 1091, and 1092" by Oscar Menis and J. T. Sterling. (See inside back cover for ordering instructions.)

SRM	Kind	(D	N	Price
Nos.		Percent	ppm		
1041 1090 1091	Medium-earbon	0. 017	434 131	0. 004	\$28.00 40.00 40.00
1092	Vacuum-melted steel		28		40.00

3.2.6. Specialty Steels

Maraging Steels: These alloys derive their name from the formation of martensite on age hardening. They attain remarkable metallurgical properties by a simple heat treatment. Extensive use of these alloys is expected, particularly in submarines, missiles and aircraft. The Maraging Steel Standard Reference Material No. 1156 is of the 19 percent nickel type and is designed primarily for optical emission and x-ray spectrochemical analysis.

SRM No.	Kind	Price
1156	Maraging Steel (Disk, form)	\$65.00

SRM No.	С	Mn	P	8	81	Cu	NI	Cr	Mo
1156	0. 023	0. 21	0. 011	0. 012	0. 184	0. 025	19. 0	0. 20	3. 1
SRM No.	TI	Co	Zr	в	Al	Ca			
1156	0. 21	7. 3	0. 004	0. 003	0. 047	<0. 001			

3.3. Cast Irons (Chip Form)

This group of standard reference materials is similar to the steels described in 3.1 and has been prepared for use in checking chemical methods in the cast iron industry. These materials, except White Iron No. 3b are furnished as 150 g portions in the form of chips, usually sized between 16- and 25-mesh sieves. They are prepared from thin-wall cylindrical castings specially made for this purpose by lathe cutting the chips with a multiple-tooth cutting tool. Supplied with each material is a Certificate of Analyses listing the composition as determined at the National Bureau of Standards and by outside laboratories.

SRM Nos.	Kind	Price	SRM Nos.	Kind	Price
3b 4j 5k 6f 7g 55e 82b	White iron (approx. wt. 110 g) Cast iron Out of stock Cast iron Cast iron (high phosphorus) Ingot iron Nickel-chromium cast iron	\$33.00 33.00 33.00 33.00 33.00 33.00 33.00	107b 115a 122d 341 342	Nickel-chromium-molybdenum cast iron Copper-nickel-chromium cast iron Cast iron (car-wheel) Ductile iron Nodular iron	\$33.00 33.00 33.00 33.00 33.00 33.00

SRM Nos.		5			8	ı						
	Total	Graphitic	Mn	Р	Grav.	Comb.	81	Cu	Ni	Or	v	Mo
3b	2.44		0. 351	0. 085		0. 090	1. 04	0. 050	0. 013	0. 052	0.006	0.002
4) 5k	2.99	2,38	. 79	. 17	0. 100	. 062	1. 31 2. 08	1. 50	. 008	. 109	. 03	. 080
7g	2.69	2. 59	. 612	. 794	. 061	. 060	2. 41	. 128	. 120	. 048	. 010	. 012
82b 107b	2.85	2.37	. 745	. 025	. 012	. 007	2, 10	. 038	1. 22	. 333	. 027	. 002
115a 122d	2. 62 3. 28	1.96	1.00	. 086	. 064	. 065	2. 13 0. 624	5. 52 0. 054	14.49 0.029	1.98 0.032	. 014	. 050
341 342	1. 81 2. 45	1. 23 2. 14	. 92 . 369	. 024 . 020	. 007 . 014	.007	2. 44 2. 85	. 152 . 14	20. 32 0. 023	1.98 0.032	. 012 . 005	. 010 . 009

ANALYSE	A	NA	LY	BE.	1
---------	---	----	----	-----	---

SRM Nos.	Co	Ti	As	Su	Al (Total)	Mg	N
3b 4j 5k 6f 7g 55e	0. 007	0. 05 . 028 . 063 . 044	0. 03 . 027 . 032 . 014 . 007	0. 007	0. 002		0.009 .005 .004 .004
107b 115a 122d		. 016 . 020 . 007	. 021				. 008
341 342		. 018				0. 068 . 053	

3.4. White Cast Irons (Solid Form)

These cast iron SRMs were prepared for use in analytical control by rapid instrumental methods. Although often employed in x-ray spectroscopic analysis, they are particularly useful for calibrating vacuum optical emission spectrom-eters because they permit the determination of earbon, phosphorus, and sulfur, in addition to the metallic elements. These materials are furnished as chill-cast sections approximately 1% in sq and % in thick. Details of the preparation and intended use of the standards are in the NBS Misc. Publ. 260-1, Preparation of NBS White Cast Iron Spectrochem-ical Standards by R. E. Michaelis and LeRoy L. Wyman. (See inside back cover for ordering instructions.) (Values in parentheses are not certified, but are given for additional information on the composition.)

SRM Nos.	Kind	Price
1174	White cast iron (special 1)	\$65.00
1175	White cast iron (special 2)	65.00

ANALYSES

SRM Nos.	С	Mn	P	8	81	Cu	NI	Cr	v	Мо	Ti
1174	3. 48	0. 175	0. 170	0. 168	0. 286	0. 171	0. 035	0. 018	0. 008	0. 008	0. 012
1175	1. 97	1. 64	. 652	. 017	3. 48	1. 50	2. 98	2. 43	. 221	1. 51	. 35

SRM Nos.	As	бр	Sn	Co	Te	B	Bi	Zr	Pb	Al
1174	0. 026	0. 19	0. 23	0. 009	0. 073	0. 040	(0.008)	(0.01)	(0.01)	(0.001)
1175	. 22	. 020	. 025	. 11	. 009	. 005	(.017)	(.04)	.003	(.03)

3.5. Steel-Making Alloys

These SRMs provide materials of known composition for checking the performance of chemical methods of analysis for the major constituents and for selected minor elements covered by ASTM specifications. They are furnished as fine powders, sized to about 100 mesh or finer. A Certificate of Analyses accompanies each standard.

SRM Nos.	Kind	Approx. wt. in grams	Price
57 64b 66a 71 90 172	Refined silicon Ferrochromium (high carbon) Out of stock	60 100 60 75 100	\$29.00 30.50 29.00 29.00 29.00

SRM Nos.	с	Mn	P	8	81	Mo	TI	A1	Ca
57 64b	0. 087 4. 30	0. 034 . 208	0.008 .012	0.005 .062 .021	96. 8 1. 42		0. 10	0. 67	0. 73
66a 71	4. 39	19. 77	. 049		2. 26	35. 3	. 06		
172	0. 234		26. 2		3. 63			. 05	

ANALYSES

ANALYSES-Continued

SRM Nos.	Fe	Cr	в	v	N	Cu	Iși	Zr	Mg
57 64b 71 172 -	0.65	0. 025 68. 03		0. 15	0. 033	0. 02	0. 002	0. 025	0. 01
	1. 92		13. 68						

3.6. Nonferrous Alloys (Chip Form)

These SRMs provide materials of known composition for checking the performance of chemical methods of analysis The bearing-metal standard is furnished as approximately 60- to 200-mesh powder prepared by air-blowing a stream of molten metal. The aluminum-, magnesium-, and zinc-base alloys are furnished in the form of approximately 10- to 20mesh chips. The remaining standards in the group are furnished as approximately 14- to 40-mesh chips prepared by cutting thin-wall castings or wrought bar stock. A Certificate of Analyses accompanies each material.

SRM Nos.	Kind	Approx. wt. in grams	Price	SRM Nos.	Kind	Approx. wt. in grams	Price
85b 86c 87a 54d 37e 52c 184 164a 124d 158a	Aluminum alloy, wrought Aluminum alloy, casting. Aluminum-silicon alloy. Bearing metal, tin-base. Bronze, cast. Bronze, leaded-tin. Out of stock. Bronze (Cu85-Pb5-Sn5- Zn5) ounce metal. Bronze, silicon.	75 75 75 170 150 150 150 150	\$33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00	168 349 157a 162a 169 171 94b	Co41-Mo4-Nb3-Ta1-W4. Nickel-base (Ni57-Co14- Cr20) Nickel silver (Cu58- Ni12-Zn29) Monel-type (Ni64-Cu31) Ni77-Cr20 alloy Magnesium-base alloy Zinc-base die-casting alloy	150 150 135 150 150 100 150	\$33.00 33.00 33.00 33.00 33.00 33.00 33.00 33.00

ALUMINUM-BASE ALLOY ANALYSES

SRM Nos.	Cu	Mn	81	Mg	Fo	Ti	Zn	РЪ	v	Ga	Ni	Cr	80
85b 86c 87a	3. 99 7. 92 0. 30	0. 61 . 041 . 26	0. 18 . 68 6. 24	1. 49 0. 002 . 37	0. 24 . 90 . 61	0. 022 . 035 . 18	0. 030 1. 50 0. 16	0. 021 . 031 . 10	0. 006	0. 019	0. 084 . 030 . 57	0. 211 . 029 . 11	0. 05

COPPER-BASE ALLOT ANALYSES

SRM Nos.	Cu	Zn	80.	Pb	Ni	Fo	Al	Mn
37e 52c 124d 158a 164a 184 157a	69. 61 89. 25 83. 60 90. 93 82. 25 88. 96 58. 61	27.85 2 12 5 06 2 08 0.07 2 69 29.09	1.00 7.85 4.56 0.96 .04 6.38 0.021	1. 00 0. 011 5. 20 0. 097 . 04 1. 44 0. 034	0. 53 . 76 . 99 . 001 3. 72 0. 50 11. 82	0. 004 . 004 . 18 1. 23 4. 05 0. 005 . 174	0. 46 9. 59	1. 11 0. 22 . 174

SRM Nos.	Sb	Ав	Ag	81	8	Р	Co
52c 124d 158a 164a 184 157a	0. 17	0. 02	0. 02	3. 03 0. 03	0.002 .093	0. 001 . 02 . 26 . 009 . 009	<0. 01 . 022

COBALT-BASE ALLOY ANALYSIS

SRM No.	Co	Ni	Cr	Mo	w	Nb	та	Fe	Mn	С	Р
168	41. 20	20. 25	20. 33	3. 95	3. 95	2. 95	0.95	3. 43	1. 50	0. 37	0. 008
SRM No.	s	Si	Cu	v	Ti						
168	0. 005	0. 80	0. 035	0. 03	0. 06						

MAGNESIUM-BASE ALLOY ANALYSIS

SRM No.	Al	Zn	Mn	Si	Cu	РЪ	Fe	Ni
171	2. 98	1.05	0. 45	0. 0118	0. 011	0. 0033	0. 0018	0. 0009

NICKEL-BASE ALLOY ANALYSES

SRM Nos.	Ni	Cu	Mn	Si	Co	Fe	Cr	Al	Ti	С	s
169 162a 349	77. 26 63. 95 57. 15	$\begin{array}{c} 0. \ 015 \\ 30. \ 61 \\ 0. \ 006 \end{array}$	0. 073 1. 60 0. 43	1. 42 0. 93 . 29	0. 19 . 076 13. 95	$\begin{array}{c} 0.54 \\ 2.19 \\ 0.13 \end{array}$	$20.\ 26 \\ 0.\ 042 \\ 19.\ 50$	0.095 .50 1.23	$\begin{array}{c} 0.\ 006 \\ .\ 005 \\ 3.\ 05 \end{array}$	0. 043 . 079 . 08	0. 002 . 007
SRM Nos.	Р	Zr	v	Ca		N	Мо	W	в	Nb	Ta
$\begin{array}{c} 169\\ 349\end{array}$	0. 002	0. 042 . 081	0. 018	0. 0	15	0. 031	4.04	< 0. 01	0. 0046	< 0. 01	< 0. 01

TIN-BASE ALLOY ANALYSIS

SRM No.	Pb	Sn	Sb	Bi	Cu	Fe	As	Ag	Ni
54d	0. 62	88. 57	7.04	0. 044	3. 62	0. 027	0. 088	0. 0032	0. 0027

ZINC-BASE DIE-CASTING ALLOY ANALYSIS

SRM No.	Al	Cu	Mg	Fe	Mn	Pb	Ni	Sn	Cđ
94b	4. 07	1. 01	0. 042	0. 018	0. 014	0. 006	0. 006	0. 006	0. 002

3.7. Copper-Base Alloys (Solid Form)

Several groups of copper-base alloy standards have been prepared to provide for analytical control by rapid instrumental methods in the copper industry. These standards are intended primarily for calibration of optical emission and x-ray spectroscopic equipment, and have been prepared in chill-cast form for the producer, and wrought form for the consumer—both forms having identical (or nearly identical) composition. Seven principal copper-base alloys are covered by a "nominal-composition" together with a low- and a high-composition standard. To make the standards more widely applicable, a number of trace elements were purposely added to the cartridge brass series, and these have been certified. Three beryllium copper standards have been prepared to be representative of the nominal composition for CABRA alloys 165-170, 25-172, and 10-175, respectively. The materials are furmished in two basic forms: (1) unidirectional chill-cast sampless (C1100 series) in the form of solid active for the cortrody by the the form of a bot cortrody by its the form of the form of the cortrody by the respectively.

The materials are furnished in two basic forms: (1) unidirectional chill-cast samples (C1100 series) in the form of solid sections 11_{10} in q_{10} in thick, and (2) wrought material (either forged or hot-extruded) in the form of disks 11_{10} in in diameter, 1_{10} in thick (1100 series). Details on the preparation and use of the seven principal copper-base alloys are given in NBS Misc. Publ. 260-2, Preparation or NBS Copper-Base Spectrochemical Standards by R. E. Michaelis, LeRoy L. Wyman, and Richard Flitzeh. Methods of chemical analyzes employed at NBS for these alloys are described in NBS Misc. Publ. 260-7 by R. K. Bell. The beryllium copper standards were prepared similar to the other copper-base alloys. Further details on the analysis, where different, will appear in a subsequent 260 series publication.

(Values in parentheses are not certified, but are given for additional information on the composition.)

SRM	M Nos.	Kind	Price	SRM	4 Nos.	Kind	Price
1101 1102	C1100 C1101 C1102	Cartridge Brass A Cartridge Brass B Cartridge Brass C	\$65.00 65.00 65.00	1112 1113 1114	C1112 C1113 C1114	Gilding Metal A Gilding Metal B Gilding Metal C	\$65.00 65.00 65.00
1103 1104 1105	C1103 C1104 C1105	Free-Cutting Brass A Free-Cutting Brass B Free-Cutting Brass C	$\begin{array}{c} 65.00 \\ 65.00 \\ 65.00 \\ 65.00 \end{array}$	1115 1116 1117	C1115 C1116 C1117	Commercial Bronze A Commercial Bronze B Commercial Bronze C	$\begin{array}{c} 65.00 \\ 65.00 \\ 65.00 \end{array}$
1106 1107 1108	C1106 C1107 C1108	Naval Brass A Naval Brass B Naval Brass C	$\begin{array}{c} 65.00 \\ 65.00 \\ 65.00 \end{array}$	1118 1119 1120	C1118 C1119 C1120	Aluminum Brass A Aluminum Brass B Aluminum Brass C	$\begin{array}{c} 65.00 \\ 65.00 \\ 65.00 \end{array}$
1109	C1109	Red Brass A	65.00	1121	C1121	Beryllium Copper	65.00
iiii	Ciiii	Red Brass C.	65.00	1122	C1122	Beryllium Copper	65.00
				1123	C11 23	Beryllium Copper CABRA alloy 10-175	65.00

ANALYSES

SRM Nos.	Cu	Zn	Pb	Fe	Sn	Ni	Al	Sb	As
C110	67.43	32. 20	0.106	0.072	0.055	0.052	0.008	0.018	0, 019
1101	69,60	30.26	. 05	. 037	. 016	. 013	. 0006	. 012	. 009
C110	69, 50	30.34	. 05	. 037	. 016	. 013	. 0006	. 012	. 009
1102 C110	2 72.85	27.10	. 020	. 011	. 006	. 005	. 0007	. 005	. 004
1103	59. 27	35.7	3.73	. 26	. 88	. 16			
C110	3 59.19	35.7	3.81	. 26	. 88	. 16			
1104 C110-	4 61.33	35.3	2.76	. 090	. 43	. 071			
1105	63. 7	34.0	2.0	. 044	. 21	. 043			
C110	5 63.72	34.0	2.01	. 044	. 21	. 043			
1106 C110	59.08	40.08	0.032	. 004	. 74	. 025			
1107 C110'	61. 21	37.34	. 18	. 037	1.04	. 098			
1108 C110	64.95	34.42	. 063	. 050	0.39	. 033			
1109	82. 2	17.4	. 075	. 053	. 10	. 10			
C1109	82. 22	17.43	. 075	. 053	. 10	. 10			
1110 C1110	84.59	15.20	. 033	. 033	. 051	. 053			
1111 C111	87.14	12.81	. 013	. 010	. 019	. 022			
1112 C1113	93.38	6.30	. 057	. 070	. 12	. 100			
1113 C1113	95.03	4.80	. 026	. 043	. 064	. 057			
1114 C1114	96.45	3. 47	. 012	. 017	. 027	. 021			
1115 C111	5 87.96	11.73	. 013	. 13	. 10	. 074			
1116 C1110	6 90.37	9.44	. 042	. 046	. 044	. 048			
1117 C111	93.01	6.87	. 069	. 014	. 021	. 020			
1118	75.1	21. 9	. 025	. 065			2.80	. 010	. 007
C1112	3 75.07	21.91	. 024	. 068			2.80	. 010	. 007
1119	77.1	20. 5	. 050	. 030			2.14	. 050	. 040
C1119	77.12	20.53	. 051	. 032			2.14	. 053	. 040
1120	80. 1	18.1	. 105	. 015			1.46	. 100	. 090
C1120	80.14	18. 10	. 105	. 015			1.46	. 104	. 088
1121	97.49	(0.01)	(. 002)	. 085	. 01	. 012	0.07		
C112	. 97.46	(.01)	(. 002)	. 085	. 01	. 012	. 07		
1122 C1122	97.45	(. 01)	(. 003)	. 16	(.01)	(.01)	. 17		
1123 C1123	97.10	. 01	(. 001)	. 04	(.01)	(.01)	. 02		

ANALYSES

SRM	Nos.	Be	Bi	Cd	Mn	Р	Si	Ag	Те	Co	Cr
$1101 \\ 1102 \\ 1103 \\ 1104 \\ 1105 \\ 1106$	C1100 C1101 C1102 C1103 C1104 C1105 C1106	0. 0015 . 00055 . 00003	0. 0010 . 0004 . 0005	0. 013 . 0055 . 0045	0. 003 . 0055 . 0045	$\begin{array}{c} 0. \ 010 \\ . \ 0020 \\ . \ 0048 \\ . \ 003 \\ . \ 005 \\ . \ 003 \end{array}$	(0. 010) (. 005) (. 002)	0. 019 . 003 . 0010	0. 0035 . 0015 . 0003		
$1107 \\ 1108 \\ 1109$	C1107 C1108 C1109				. 025	. 006					
$ \begin{array}{r} 1110 \\ 1111 \\ 1112 \end{array} $	C1110 C1111 C1112					. 009					
$ \begin{array}{r} 1113 \\ 1114 \\ 1115 \\ 1115 \end{array} $	$\begin{array}{c} C1113 \\ C1114 \\ C1115 \end{array}$. 008 . 009 . 005					
$ \begin{array}{r} 1116 \\ 1117 \\ 1118 \end{array} $	C1116 C1117					· 008 · 002 · 13	. 0021				
1119 1120	C1118 C1119 C1120				(004)	.125 .070 .018	. 0021 . 0015 . 0011				
1121 1122 1123	C1121 C1122 C1123	1. 89 1. 92 1. 75 0. 46			(.004) (.004) (.004) (.002)	(.005) (.005) (.004) (.002)	. 11 . 11 . 17 . 03	(.005) (.005) (.005) (.009)		$ \begin{array}{r} 0.295 \\ .295 \\ .220 \\ 2.35 \\ \end{array} $	(0.002) (.002) (.002) (.001)

3.8. High Temperature Alloys (Solid Form)

High temperature alloy standards have been prepared to meet the critical needs of industry and government, particularly the Department of Defense and the aerospace industries, for alloys of this type. These standards are useful in instrument calibration, primarily for optical emission and x-ray spectroscopic methods of analysis.

in instrument calibration, primarily for optical emission and x-ray spectroscopic methods of analysis. Some samples are issued in the wrought form (1184, 1185, 1193, 1194, and 1195); some as disks 1¼ inches in diameter and ¼ in thick; and others in chill-cast form (1190, 1204, and 1205) as sections 1¼ inches sq. and ¼ in thick.

(Values in parentheses are not certified, but are given for additional information on the composition.)

SRM Nos.	Kind	Price	SRM Nos.	Kind	Price
1184 1185 1190 1193	Out of stock AMS 5360A, AISI 316 Udimet 500 W 545	\$65.00 65.00 65.00	1194 1195 1204 1205	A 286 Discaloy 24 Inco 713-B. Inco 713-C.	\$65.00 65.00 65.00 65.00

ANALYSES

SRM Nos.	с	Mn	81	Cr	Ni	Co	Мо	w	Nb
1184 1185 1190 1193 1194 1195 1204 1205	(0. 25) . 11 (. 10) . 004 . 081 . 006 (. 03) (. 19)	1. 04 1. 22 0. 61 . 65 . 67 . 38 . 41 . 29	0.70 .40 .22 .110 .71 1.11 0.56 .63	19. 44 17. 09 17. 00 11. 95 16. 35 13. 83 12. 75 13. 82	9. 47 13. 18 51. 9 28. 35 24. 06 26. 07 70. 6 67. 5	19. 1 2. 77	1. 46 2. 01 3. 80 1. 47 1. 27 2. 97 4. 28 5. 75	1. 39 0. 08 	0, 49 <, 001 <, 01 1, 31 1, 95

SRM Nos.	Ti	Al	Fe	Р	8	Cu	Та	Zr	v	В
1184 1185 1190 1193 1194 1195 1204 1205	$\begin{array}{c} 0. \ 056 \\ <. \ 001 \\ 3. \ 57 \\ 3. \ 0 \\ 1. \ 45 \\ 1. \ 28 \\ 0. \ 63 \\ . \ 36 \end{array}$	2, 83 0, 21 . 39 . 074 5, 60 6, 68	$(0, 6) \\ 54, 2 \\ 51, 3 \\ 54, 0 \\ (3, 1) \\ (1, 55)$	0. 015 . 019 . 003 . 011 . 016	0. 012 . 016 . 030 . 008 . 008	0. 067 . 093 . 103 . 047 . 016 . 12 . 056	0. 022 <. 001 <. 01 . 46 . 67	0, 11 . 006 . 026 . 004 . 12 . 46	0. 051 . 32 . 45	0. 0023 0090 0043

3.9. Nickel Oxides

Three nickel oxide standards are available primarily for application in the electronics industry to the analysis of cathode grade nickel. The ASTM Standard Method for Spectrochemical Analysis of Thermionic Nickel Alloys by the Powder-D-C Arc Technique (E129) is based on calibration with these standards. The values given are for the percentage of the element in nickle oxide.

SRM Nos.	Kind	Price
671	Nickel oxide 1	\$35.00
672 673	Nickel oxide 2 Nickel oxide 3	$35.00 \\ 35.00$

|--|

SRM Nos.	Co	Cu	Fe	Mg	Mn	81	Ti	Al	Cr
671	0. 31	0. 20	0.39	0. 030	0. 13	0. 047	0. 024	0. 009	0. 025
672	. 55	. 018	.079	. 020	. 095	. 11	. 009	. 004	. 003
673	. 016	. 002	.029	. 003	. 0037	. 006	. 003	. 001	. 0003

3.10. Tin Metal (Solid Form)

This tin metal SRM has been prepared primarily for the tin-plate industry; it is useful for the calibration of optical emission spectroscopic equipment by the "point-to-point" technique. It is furnished as rods ½ in in diameter and 4 in long with a provisional Certificate of Analysis.

SRM No.	Kind	Price
432	Tin B	\$35.00

ANALYSIS

SRM No.	Cu	Pb	As	8b	Ni	Zn	Ag	Bi	Cd	Co
432	0. 097	0. 094	0. 075	0. 095	0. 020	0. 020	0. 0095	0. 0098	0. 0095	0. 011

3.11. Titanium-Base Alloys

A number of titanium-base alloy standard reference materials, primarily for the aerospace industries, are available for analytical control and equipment calibration purposes. Included are materials intended for chemical analysis, for spectroscopic analysis, and for vacuum fusion analysis.

spectroscopic analysis, and for vacuum lusion analysis. Titanium-base alloy standards 173a, 174, and 176 are furnished in 100-g portions as chips sized between 16 and 35 mesh sieves, and are intended to furnish material of known composition to check the accuracy of chemical methods of analysis of these alloys. Standards 641, 642, 643, 644, 645, 646, 653, and 654 are furnished in the forms of disks 1½ in in diameter $\frac{1}{2}$ in thick, and are intended as calibration materials for optical emission and x-ray spectroscopic methods of analysis of similar materials. Standards 552, 353, and 354 are furnished in 20g portions of $\frac{1}{2}$ in square cut from a sheet about 0.05 in thick, and are intended to check methods for the determination of hydrogen only.

SRMs 355 and 366 provide materials are supplied in rvds approximately 1/2 in in diameter and 2 in long. (Note that a group of ferrous materials, section 3.2.5, page 9, SRMs 1041, 1090, 1091, and 1092, also are available for the determination of oxygen.)

3.11.1.	Titanium-	Base M	aterials (Chip	Form)
---------	-----------	--------	------------	------	-------

SRM Nos.	Kind Approx. wt. 100 g)	Price	SRM No.	Kind (Approx. wt. 100 g)	Price
173a 174	6Al-4V 4Al-4Mn	\$33.00 33.00	176	5Al-2.5Sn	\$33.00

ANALYSES

SRM Nos.	Al	v	Mn	Fe	81	Мо	с	N	Sn	Cu
173a 174 176	6. 47 4. 27 5. 16	4. 06	4. 57 0. 0008	0. 15 . 175 . 070	0. 037 . 015	0. 005	0. 025	0. 018 . 012 . 010	2. 47	0, 002

3.11.2.	Titanium-	Base M	aterials	(Solid	Form)	
---------	-----------	--------	----------	--------	-------	--

SRM Nos.	Kind (disks)	Price	SRM Nos.	Kind (disks)	Price
641 642 643 644	8Mn (A) 8Mn (B) 8Mn (C) 2Cr-2Fe-2Mo (A)	\$50.00 50.00 50.00 50.00 50.00	645 646 653 654	2Cr-2Fe-2Mo (B) 2Cr-2Fe-2Mo (C) 6A1-4V (A) 6A1-4V (B)	\$50.00 50.00 50.00 50.00

ANALYSES

SRM Nos.	Mn	Cr	Fe	Мо	Al	v
$\begin{array}{c} 041\\ 642\\ 643\\ 644\\ 645\\ 646\\ 653\\ 653\\ 654\end{array}$	6. 68, 9. 08 11. 68	1. 03 1. 96 3. 43	1. 36 2. 07 2. 14	3. 61 2.38 1. 11	7. 25 6. 03	2, 58

3.11.3. Titanium-Base Materials (For Oxygen and Hydrogen)

SRM Nos.	Kind	Oxygen, ppm	Hydrogen, percent	Price
352 353 354 355 356	Unalloyed titanium for hydrogen Unalloyed titanium for hydrogen Unalloyed titanium for hydrogen. Unalloyed Alloy, 6Al-4V.	3031 1332	0. 0032 . 0098 . 0215	35.00 35.00 35.00 40.00 40.00

3.12. Zirconium-Base Allovs

Several zirconium-base standard reference materials of particular importance to the field of atomic energy have been prepared and are available for analytical control and instrumental calibration. A number of trace elements at the parts-per-million level critical to the application of zirconium metal and Zircaloy-2 have been certified in these standards. Standard 360a is furnished in the form of chips (18- to 40-mesh) to check chemical methods of analysis for Zircaloy-2. Standards 1210, 1211, 1214, and 1215 are furnished as wrought disks 1½ in in diameter and ½ in. thick, to provide mate-rial of known composition for the calibration of optical emission and x-ray spectroscopic methods of analysis for zirconium metal (SRM Nos. 1210 and 1211) and Zircaloy-2 (SRM Nos. 1214 and 1215). (Values in parentheses are not certified, but are given for additional information on the composition.)

SRM No.	Kind	Price
36 0a	Zircaloy-2	\$55.00

ANALIBIB	A	N	A	L	Y	8	I	٨	
----------	---	---	---	---	---	---	---	---	--

SRM No.	8n	Fe	Cr	Ni	Cu	Mn	U	Ti	81	с	N
360a	% 1. 42	ppm 1441	^{ррт} 1060	ppm 554	ppm 140	<i>рр</i> т З	ррт 0.15	ppm 27	ppm 51	<i>ррт</i> 136	^{ppm} 43

SRM Nos.	Eind	Price	SRM Nos.	Kind	Price
1210	Ziroonium metal A	\$85.00	1214	Out of stock	\$90.00
1211	Zriconium metal B	85.00	1215	Zircaloy-2 F	

ANALYSES

SRM					Parte	s per milli	on					Percent			
Nos.	Al	В	Cr	Cu	Mn	Мо	Ni	81	TI	σ	w	8n	Cr	Fe	NI
1210 1211 1214 1215	(60) (90)	(<0. 25)	95 95 	10 44 55 140	(5) (7) 38	22 30 (100)	8 26	(30) (100) (120) (350)	26 50 (50)	1.8 2.3 45 9	(4) (40) (40)	1. 60 0. 95	0. 108 . 190	0. 25 . 102 . 067 . 259	0. 051

3.13. Zinc-Base Die-Casting Alloys and Zinc Spelter (Solid Form)

These standards are intended for instrument calibration by optical emission spectroscopic methods of analysis primarily for ASTM alloys A G40A and AC41A. The materials are supplied as bar segments 1% in square and % in thick. They were prepared by a continuous chill-casting process. The certified portion of each standard is that part included between % in and 1% in from each side of the square sample. The center core, %s in square; and the outer portion, %s in from the outer surface, are parts which may differ in composition for some elements from the certified portion, and should not be used.

A Certificate of Analysis supplied with the standard gives the chemical composition determined at the National Bureau of Standards, and all except the spelter include values obtained by outside laboratories cooperating in the certification of the standards.

(Values in parentheses are not certified, but are given for additional information on the composition.)

SRM Nos.	Kind	Price	SRM Nos.	Kind	Price
625 626 627 628	Zine-base A Zine-base B Zine-base C Zine-base D	\$50.00 50.00 50.00 50.00 50.00	629 630 631	Zinc-base E Zinc-base F Zinc spelter (modified)	\$50.00 50.00 50.00

ANALYSES

SBM Nos.	Cu	Al	Mg	Fe	Pb	Cd	8n	Cr	Mn	Ni	81
625	0.034	3.06	0.070	0. 036	0.0014	0.0007	0.0006	0. 0128	0.031	0.0184	0.017
626	.056	3.56	.020	. 103	.0022	.0016	.0012	. 0395	.048	.047	.042
627	.132	3.88	.030	. 023	.0082	.0051	.0042	. 0038	.014	.0029	.021
628	.611	4.59	.094	. 066	.0045	.0040	.0017	. 0087	.0091	.030	.009
629	1.50	5.15	.094	. 017	.0135	.0155	.012	. 0008	.0017	.0075	.078
630	0.976	4.30	.030	. 023	.0083	.0048	.0040	. 0031	.0106	.0027	.022
631	.0013	0.50	(<.001)	. 005	(.001)	.0002	.0001	. 0001	.00015	(<.0005)	(<.002)

SRM No.	In	Ga	Ca	Ag	Ge	
631	0. 0023	(0.002)	(<0.001)	(<0.0005)	(0.0002)	

3.14. Ores

These materials of known composition are intended for use in checking the accuracy of assay methods. They are certified for the element(s) of economic interest, and occasionally have additional data given as a matter of information. This group is furnished in the form of fine powders, usually passing a 100-mesh or finer sieve.

SRM Nos.	Kind	Approx. wt. in grams	Price	SRM Nos.	Kind	Approx. wt. in grams	Price
69a 27e 28a 181 182 183	Bauxite Iron ore, Sibley Iron ore, Norrie Lithium ore (Spodumene) Lithium ore (Petalite) Lithium ore (Lepidolite)	50 100 50 45 45 45 45	\$27.00 28.00 25.00 27.00 27.00 27.00	25c 120a 138 113	Manganese ore Phosphate rock Tin ore (N.E.I. concen- trate) Zinc ore (Tri-State con- centrate)	100 45 50 50	\$27.00 28.00 27.00 27.00

ANALYSES

SRM Nos.	Kind	Elements certified
27e	Iron, Sibley	Fe, 66.58; P, 0.042; SiO ₂ , 3.65
28a	Iron, Norrie.	Mn, 0.435
181	Lithium (Spodumene)	Li ₂ O, 8.4
182	Lithium (Petalite).	Li ₃ O, 4.3
183	Lithium (Lepidolite).	Li ₃ O, 4.1
25c	Manganese Ore	Mn, 57.85; available O ₃ , 16.70
138	Tin (N.E.I. concentrate).	Sn, 74.8
113	Zinc (Tri-State concentrate).	Zn, 61.1

SRM Nos.	81O3	Al ₂ O ₃	FerO:	TiO;	ZrO	MnO	P ₂ O ₃	Cr2O3	CaO	BaO	MgO
69a 120a	6.0	55.0 0.94	5.8 1.00	2.8 0.12	0.18	<0.01 .02	0.08 34.4	0.05	0.29 50.3	0.01	0.02 .26

SRM Nos.	NagO	K10	803	F	CO1	Loss on ignition	
69a 120a	<0.01 .41	<0.01 .10	0.04	3.92	3.18	29.55	

3.15. Cements

These materials are furnished as standards for x-ray spectroscopic analysis and for chemical analysis of cements and related materials. Because these materials are hygroscopic, each unit consists of three sealed vials each containing approximately 5 g of material.

SRM Nus.	Kind	Price	SRM Nos.	Kind	Price
1011 1013 1014	Portland cement Portland cement Portland cement	\$27.50 27.50 27.50	1015 1016	Portland cement	\$27.50 27.50

	ANALTEBS												
SRM Nos.	SiO ₃	Al ₂ O₃	F ₂ O2	TiO1	PsOs	CaO (+8rO)	8r0	MgO	801	Mn ₂ O ₃	NagO	K10	Loss on ignition
1011 1013 1014 1015 1016	21. 03 24. 17 19. 49 20. 65 21. 05	5. 38 3. 30 6. 38 5. 04 4. 97	2, 07 3, 07 2, 50 3, 27 3, 71	0. 25 . 20 . 25 . 26 . 34	0. 33 . 20 . 32 . 05 . 13	66. 60 64. 34 63. 36 61. 48 65. 26	0. 11 . 08 . 26 . 11 . 25	1. 12 1. 39 2. 80 4. 25 0. 42	1. 75 1. 80 2. 70 2. 28 2. 27	0. 03 . 05 . 07 . 06 . 04	0.08 .20 .24 .16 .55	0. 26 . 32 . 99 . 87 . 04	1. 13 0. 99 . 81 1. 70 1. 20

3.16. Ceramic Materials

This group of standards is supplied in the form of powders, usually 100 mesh or finer. They are inteded to provide materials for checking the accuracy of methods used in the analysis of similar materials, primarily in the glass, ceramics, and steel industries. Note that Silica brick No. 102 is a density sample with density of 2.33 g/cm³ at 25 °C.

SRM Nos.	Kind	Approx. wt. in grams	Price	SRM Nos.	Kind	Approx. wt. in grams	Price
1b 70a 77	Limestone, argillaceous Feldspar, potash Burned refractory (60%	50 40	\$32.00 32.00	99a 102 103a	Feldspar, soda Silica brick Chrome refractory	40 60 60	\$32.00 27.00 27.00
78	Al ₃ O ₃) Burned refractory (70% Al ₃ O ₃)	60 60	27.00 27.00	104 112 154a	Silicon carbide	85 40	27.00 27.00 27.00
88a 89 91	Limestone, dolomitic Glass, lead-barium Glass, opal	50 45 45	$32.00 \\ 27.00 \\ 27.00$	198	Silica refractory (0.2% Al ₃ O ₃) Silica refractory (0.5%	45	27.00
92 93	Glass, low boron Glass, high boron	45 45	$27.00 \\ 27.00$		Al ₂ O ₂)	45	27,00

ANALTSES

SRM Nos.	Kind	SiO ₈	AlgO ₈	FegO ₃	FeO	TiO ₃	ZrO3	MnO	P ₂ O ₈
77 78 103a 198 199	Alumina refractory Alumina refractory Chrome refractory Silica refractory Silica refractory	32. 4 20. 7 4. 6	59. 4 70. 0 29. 96 0. 16 . 48	0. 90 . 79 . 66 . 74	12. 43	2.9 3.4 0.22 .02 .06	0.09 .12 .01 <.01 .01	0. 11 <. 01 <. 01	0.45 .62 .01 .02 .01

SRM Nos.	Kind	V ₂ O ₃	Сқоз	CaO	MgO	LizO	NagO	K40	Loss on ignition
77 78 103a 198 199	Alumina refractory	0. 03 . 05	32.06	0. 26 . 38 . 69 2. 71 2. 41	0.50 .51 18.54 0.07 .13	0. 35 . 20 . 001 . 002	0. 06 . 06 . 01 . 01	2. 11 2. 83 0. 02 . 09	0. 21 . 26 . 21 . 17

8RM Nos.	Kind	8iO3	РЬО	AlgO3	FegO1	ZnO	MnO	TiO3	ZrO3	CaO	BaO	Loss on ignition
89 91 93	Lead-barium Opal High-boron	65. 35 67. 53 80. 60	17. 50 0. 097	0. 18 6. 01 1. 94	0. 049 . 081 . 076	0. 08	0. 088 . 008	0. 01 . 019 . 027	0. 005 . 01 . 013	0. 21 10. 48	1. 40	0. 32

SRM Nos.	Kind	MgO	K.O	NagO	B ₂ O ₃	P ₂ O ₃	An ₀ O ₂	An ₀ O ₃	803	СІ	F
89 91 92	Lead-barium Opal	0. 03 . 008	8. 40 3. 25	5. 70 8. 48	0.70	0. 23 . 022	0.36 .102	0. 03 . 091	0. 03	0. 05 . 014	5. 72
93	High-boron	. 026	0. 16	4. 16	12. 76		. 14	. 085	. 009	. 036	

GLASS ANALTSES

SRM Nos.	Kind	81O3	Fe ₂ O ₃	AlıO	Ti	Da Ma	nO	CaO	8	r0	MgO
1b 70a 88a 99a 102 104 154a	Limestone, argillaceous Feldapar, potash Feldapar, soda. Silica brick. Burned magnesite. Titanium dioxide	4. 92 67. 1 1. 20 65. 2 93. 94 2. 54	0.75 .075 .28 .065 .66 7.07	1. 1 17. 9 0. 1 20. 5 1. 9 0. 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46 0.2 1 2 .0 07 6 3 .4	20)3)05 3	50. 9 0. 11 30. 1 ₅ 2. 14 2. 29 3. 35	0.	. 14	0. 36 21. 3 . 21 85. 67
SRM Nos.	Kind	NazO	K 10	BaO	Rb ₂ O	P2O4	co	h Loi	s on ition	I	ensity
1b 70a 88a 99a 102 104	Limestone, argillaceous Feldapar, potash Limestone, dolomitic Feldapar, soda Silica brick Burned magnesite	0. 04 2. 55 0. 01 6. 2 . 015 . 015	0. 25 11. 8 0. 12 5. 2 . 32 . 015	0. 02	0.06	0. 08 . 01 . 025 . 057	40.	4 41 0 46 0	1 40 7 26 38	2.3 at	8 g/cm ⁸ 25 °C.

FELDSPAR, LIMESTONE, SILICA BRICK, BURNED MAGNESITE AND TITANIUM DIOXIDE ANALYSES

SILICON CARBIDE ANALYSIS

SRM No.	Total Si	Total C	Free C	BIC	Fe	Al	Ti	Zr	Ca	Mg
112	69. 11	29. 10	0. 09	96. 85	0. 45	0. 23	0. 025	0. 027	0. 03	0. 02

3.17. Hydrocarbon Blends

These standard hydrocarbon blends were prepared for calibration of mass spectrometric and other instrumental procedures used in the analysis of gasolines, naphthas, and blending stocks. Each SRM comprises ten ampoules, each ampoule containing about 0.03 ml of the blend. To retard the effects of possible fractionation of the components after the ampoule is opened, each ampoule is intended to provide material for only one calibration analysis. For the individual components present in the mixtures in the amount of 10 percent or less, the limits of error in composition are not greater than ± 0.01 percent and for components present in over 10 percent. The composition of each blend is given in volume percent. A certificate is supplied with each of these samples.

SRM Nos.	Kind	Unit of issue	Price
592 593 594 595 596 597 598 599	Blend no. 1. Cr Paraffins in typical virgin naphthas. Blend no. 2. Cr Paraffins in typical estalytically cracked naphthas. Blend no. 3. Cr Paraffins in typical virgin naphthas. Blend no. 4. Cr Paraffins in catalytically cracked naphthas. Blend no. 5. Cr Cycloparaffins in typical virgin naphthas. Blend no. 6. Cr Cycloparaffins in typical virgin naphthas. Blend no. 7. Cr Cycloparaffins in typical virgin naphthas. Blend no. 8. Cr Cycloparaffins in typical virgin naphthas. Blend no. 8. Cr Cycloparaffins in catalytically cracked naphthas.	10 ampoules 10 ampoules	\$32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00 32.00

SRM Nos.	592	593	594	595	596	597	598	599
Blend No	1	2	3	4	5	6	7	8
- Hontene	45	17						
9 Mothylhovene	23	25						
2-Mothylawana	16	30						
2.2 Dimethylaentene	4	00						
2.2 Dimethylpentane	6	20						
2.4 Dimethylpentane	5	8						
2.2. Dimethylpentane	i i	Ĭ						
n-Ostano	· ·		39	12				
2-Mothylhentene			19	25				
2-Mothylhoptano			16	23				
A Mothylhoptano			8	8				
2. Ethylhovene			3	3				
2 2 Dimethylhevene			Ă	ŏ				
2. Dimethyliczano			5	5				
2.5 Dimethylhexane			6	ğ				
2.4 Dimethylhevane			Ŭ	6				
Mathylavalabayana					57	32		
Ethylevelopentane					G A	14		
1 1-Dimethylavalapentene					Å	3		
1 trans-2-Dimethylevelopentene					14	30		
1 trans-2-Dimethylevelopentane					16	21		
Ethylevelohevene					10		20	17
1 trans 2 Dimethylevelohevene							18	7
1 cie 2 Dimethylovelohevene							25	10
1 trans-4 Dimethylevelohevene							11	14
1. Mathylerie 2 athylevelopentane							7	20
1 1 2 Trimethyluvalapentene							5	20
1 trans_2_cis_2_Trimethylayalopentane							ğ	Å
1 trans_2_cis_4_Trimethylayslopentane							5	13
a, a to a to the a transfer of the transfer of							0	10

ANALYSES

3.18. Metallo-Organic Compounds

This group of standards is intended to provide oil-souble materials of known and reproducible composition. Possession of an adequate collection will permit preparation of any desired blend of known concentration in any appropriate lubricating oil. It has been prepared primarily for the transportation industry and the defense program for the analysis of lubricating oils to determine wear of engine parts. Details of the selection, preparation, and analysis of the compounds can be found in National Bureau of Standards Monograph 54, Analytical Standards for Trace Elements in Petroleum Products (1962). A certificate is supplied with each standard giving the amount of the element of interest present, and directions for the preparation of a solution of known concentration in lubricating oil.

3.19. Microchemical Standards

This group of materials is furnished as fine crystals of suitable homogeneity for use as standards in the conventional microchemical methods of analysis employing samples of approximately 5 mg.

SRM Nos.	Kind	Constituents determined or intended use	Approx. wt. in grams	Price
140b 141b 142 143b 147	Benzoie acid Acetanilide Amisic acid Cystine Triphenyl phosphate	C, H N, C, H Methoxyl 8, C, H, N P	2 2 2 2 2 2	\$27.50 27.50 26.00 29.00 27.50

3.20. Chemicals

3.20.1. Primary Chemicals

These chemicals are primary standards. The sucrose and dextrose, standards 17 and 41, are useful in the assay of sugar-containing materials. The remaining standards are furnished for the preparation or standardisation of solutions used in titrimetric methods of chemical analysis.

8RM Nos.	Kin	d	Approx. wt. in grams	Price
17 41 40g 83c 84h 136b 350 950a	Sucrose (cane sugar) Out of stock	Saccharimetric value	60 75 60 60 80 30 25	\$26.00 26.00 26.00 26.00 26.00 26.00 28.25

SRM Nos.	Kind	Purity on basis of titration
40g 83c 84h 136b 350 950a	Sodium oxalate	Percent 99, 95 99, 99 99, 99 99, 98 99, 98 99, 98

SRM Nos.	Xind	Moisture, percent	Reducing sub- stances, percent	Ash, percent
17	Sucrose	€0. 01	<0. 02	0. 003
41	Dextrose	. 01		. 003

8.20.2. Intermediate Purity Chemicals

This group of materials is intended to bridge the gap between commercial materials available in bulk and materials available in primary or purer grades. They should prove useful to the small research laboratory or individual engaged in purification, as a characterised starting material. Such materials are also useful in analytical procedures when a high-purity primary grade is neither necessary nor available.

SRM Nos.	Kind	Constituents determined or intended use	Approx. wt.	Price
726	Selenium	Limits for Al, As, B, Ca, Cr, Cu, halogens, Fe, Pb, Mg, Mn, Mo, Ni, Ag, S, Te, Tl, Sn, Be, Bi, Cd,	1 lb	\$45.00
727	Rubidium chloride	In, and V. Isotopic ratio, assay	1. 0 g	35.00

3.21. Special Nuclear Materials

This group of standards consists of a plutonium metal standard issued to check chemical methods of assay, a plutonium sulfate isotopic standard with an isotopic analysis by mass spectrometry and intended for the calibration of such instruments, and a group of 16 uranium oxide isotopic standards ranging from 0.5% U-235 to 93.27% U-235. Certificates of Analysis giving isotopic percentage determined by mass spectrometers. Standards are available to AEC contractors, AEC or State licensees, and foreign governments which have entered an Agreement for Cooperation with the U.S. Government concerning the Civil Uses of Atomic Energy. The purchase request for these standards may appear on special forms obtainable from the National Bureau of Standards, Office of Standard Reference Materials, Washington, D.C. 20234.

SRM No.	Kind	Certified for	Unit	Price
949b	Plutonium metal	Plutonium content 99. 99%	Pu 0. 5g	\$111.50

SRM Nos.	Kind		Isotopic abundance (wt. %)				Unit, g	Price
		Pu-138	Pu-839	Pu-840	Pu-841	Pu-848	Pu	
948	Plutonium sulfate hydrate	0. 011	91. 417	7.911	0. 628	0. 033	0. 25	\$60.50
	Uranium cride U ₈ O ₈		U-#\$4	U-835	U-896	U-\$ 38	U	
$\begin{array}{c} U-005\\ U-010\\ U-015\\ U-020\\ U-050\\ U-100\\ U-100\\ U-200\\ U-350\\ U-500\\ U-500\\ U-500\\ U-800\\ U-800\\ U-800\\ U-800\\ U-800\\ U-900\\ U-930\\ \end{array}$	U-235-depleted		$\begin{array}{c} 0.\ 0023\\ .\ 0054\\ .\ 009\\ .\ 012\\ .\ 018\\ .\ 028\\ .\ 0666\\ .\ 0978\\ .\ 1225\\ .\ 2467\\ .\ 526\\ .\ 5580\\ .\ 6519\\ .\ 6399\\ .\ 7735\\ 1.\ 0759 \end{array}$	0. 483 . 991 1. 51 2. 01 3. 01 4. 95 10. 075 15. 143 19. 811 34. 903 49. 383 75. 129 80. 088 84. 988 90. 098 93. 276	$\begin{array}{c} 0.\ 0046\\ .\ 0067\\ .\ 016\\ .\ 020\\ .\ 048\\ .\ 038\\ .\ 0656\\ .\ 2103\\ .\ 1667\\ .\ 0754\\ .\ 2502\\ .\ 2450\\ .\ 3713\\ .\ 3337\\ .\ 2034 \end{array}$	99. 51 98. 99 98. 47 97. 96 96. 95 94. 98 89. 821 84. 693 79. 856 64. 684 50. 029 24. 033 19. 015 14. 001 8. 795 5. 445	1. 0 1. 0 1	$\begin{array}{c} 42.50\\ 42.50\\ 43.00\\ 43.00\\ 43.00\\ 44.00\\ 45.50\\ 48.50\\ 50.00\\ 55.50\\ 56.00\\ 56.00\\ 57.00\\ 58.00\\ 59.50\end{array}$

3.22. Isotopic Reference Standards

Standard reference materials for chlorine, copper, bromine, silver, chromium, and magnesium are natural-ratio materials furnished in 0.25 g units with a certificate of isotopic composition. The lead standards, BRM Nos. 981, 982, and 983, are furnished as purified (99.9+ percent) metal, consisting of 1 g of 50-mil wire sealed in a 10-mi ampoule, and are available only as a set of three.

The isotopic composition of all the standards has been determined by mass-spectrometry, by comparison with mix-tures prepared from high-purity separated isotopes. These are useful as standard reference materials for those looking for small variations in the isotopic composition of the elements, and for the measurement of mass-discrimination effects encountered in the operation of mass spectrometers.

SRM Nos.	Kind	Element	Price
975 976 977 978 979 980 981 982 983	Sodium chloride Copper metal Sodium bromide. Silver nitrate. Chromium nitrate. Magnesium metal. Natural lead Equal atom (206/208) lead. Radiogenie lead	Chlorine	\$ 40.00 40.00 40.00 40.00 40.00 105.00 per set

3.23. Analyzed Gases

These standard reference materials are intended for the calibration of apparatus used for the measurement of various components in gas mixtures. Each sample is certified accurately within limits and is primarily intended to monitor and correct for long-term drifts in instruments used.

8 RM Nos.	Kind	Constituents determined (ppm)	Volume (liters at STP)	Price
1601	Carbon dioxide in nitrogen	$\begin{array}{c} \text{CO}_2 \ 308 \ \pm 3 \\ \text{CO}_2 \ 346 \ \pm 3 \\ \text{CO}_3 \ 384 \ \pm 4 \end{array}$	68	\$150.00
1602	Carbon dioxide in nitrogen		68	150.00
1603	Carbon dioxide in nitrogen		68	150.00

4. Standards of Certified Properties and Purity

4.1. pH Standards

These materials are furnished as crystals for the preparation of solutions of known hydrogen ion concentration for calibrating and checking the performance of commercially available pH materials. The samples are furnished with certificates giving directions for preparation of the solutions and tables of pH values at various temperatures.

The standards 1861c and 1861lb are certified for use in admixture only. At an equimolar (0.025 molal) mixture of the two salts a pH(S) of 6.865 at 25 °C is obtained. Directions are also furnished for the preparation of a physiological reference solution having a pH(S) of 7.413 at 25 °C.

SRM Nos.	Kind	pH(8) (at 25 °C)	Approx. wt. in grams	Price
185d 186Ic 186IIb 187a 188 189	Acid potassium phthalate Potassium dihydrogen phosphate Disodium hydrogen phosphate Borax Potassium hydrogen tartrate Potassium tetroxalate	4. 004 See above 9. 180 3. 557 1. 679	60 30 30 30 60 65	\$35.00 35.00 30.00 30.00 30.00 30.00

4.2. Freezing-Point Standards

4.2.1. Defining fixed pionts-International Practical Temperature Scale

The purity of these materials is such that they are suitable for realizing the defining fixed points on the International Practical Temperature Scale of 1948.

8RM Nos.	Kind	Value assigned to de- fining fixed point "C (Int. 1948)	Approximate weight in grams	Price
740	Zinc	419. 505	350	\$70.00

4.2.2. Secondary Reference Points

These are intended for the calibration of resistance thermometers and thermocouples.

SRM Nos.	Kind	Determined freezing point °C (Int. 1948)	Approx. wt. in grams	Price
44e	Aluminum	660. 0	200	$$27.00 \\ 28.00 \\ 28.00 \\ 27.00$
45d	Copper	1083. 3	450	
49e	Lead	327. 417	600	
42f	Tin	231. 88	350	

4.3. Thermometric Cells (Discontinued)

4.4. Calorimetric Standards

These standards are issued primarily to check the performance of calorimetric methods for the determination of the heat of combustion and the heat of solution. Standard 724 is a homogeneous material for use in interlaboratory correlation and standardization of solution calorimeters. It is not certified with a value for the heat of solution. 217b-85 is contained in a special ampoule with an internal break-off tip, the others are scaled "in vacuum" in a plain glass ampoule.

SRM Nos.	Kind	Amount	Price	SRM Nos.	Kind	Amount	Price
39i 217b-5 217b-88	Benzoic acid, 26.434 abso- lute kilojoules	30 g 5 ml 8 ml	\$26.00 40.00 65.00	217b-25 217b-50 724	2,2,4-Trimethylpentane 2,2,4-Trimethylpentane Tris(hydroxymethyl) aminomethane	25 ml 50 ml 50 g	\$180.00 330.00 40.00

4.5. Radioactivity Standards

Because of the nature of these materials, all, except the radium rock samples and the carbon 14 dating standard, are shipped by express only (shipping charges collect) to destinations in the United States and Canada.

supped by express only (simpling charges couled) to destinations in the United States and Canada. In the case of shipments to other countries, consignee should apply to the National Bureau of Standards for pro forma invoices, and establish credit in advance at any bank in the United States, or send payment by international money order or UNESCO coupons, to cover the cost of the standards. Consignee can either appoint an agent in the United States to handle shipments abroad, or shipments can be made by air freight or express (shipping charges collect) subject to the laws and regulations of the importing country.

A certificate containing pertinent information is sent under separate cover. Information concerning the standard appears on the standard or container.

Prices of certain materials may change as current stocks are depleted and are replaced by new issues. In these instances, buyers will be notified before orders are filled.

4.5.1. Alpha-Ray Standards

Standard Reference Material No. 4902 consists of a practically weightless deposit of polonium-210 on a monel disk 2.54-cm in diameter and 0.16-cm thick. SRM No. 4904-C consists of a practically weightless deposit of americium-241 on a platinum foil 1.27-cm in diameter and 0.016-cm thick. The foil is eccemented onto a monel disk 2.54-cm in diameter and 0.16-cm thick. The activities are restricted to a 0.3-cm diameter in the center of the mount. These samples can now be ordered under the general licensing provisions of the Atomic Energy Act of 1954 (Please

These samples can now be ordered under the general licensing provisions of the Atomic Energy Act of 1954 (Please refer to Title 10, Code of Federal Regulations).

SRM Nos.	Radionuclide	Approximate α -particle emission rate in 2 π geometry	Price
4902	Polonium-210	500 αps	\$55.00
4904-C	Americium-241	20 αps	81.00

Samples in the 100-250 aps range will now be made on request only, as a special test, see item 204.202z on page 94 of the "Calibration and Test Services (MP 250), Radioactivity Section."

4.5.2. Beta-Ray and Gamma-Ray Solution Standards (Combined with 4.5.3.)

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards

These Standard Reference Materials are contained in flame-sealed glass ampoules. The calibration radiation listed is the radiation for which the radionuclide is intended to be used as a standard.

Standards 4944-D (ide rational section is include to be device as a section be issued only under the special licensing provisions of the Atomic Energy Act of 1954, and it is therefore required that a copy of the purchaser's current AEC By-Product Material License be on file at the National Bureau of Standards. The activity of the other standards in this group is such that they may be ordered singly under the general licensing provisions of the Atomic Energy Act of 1954.

SRM No.	Redionuclide	Calibration radiation	Approximate activity or emission rate at time of calibration (month, year)	Approximate weight of solution, g	Price
4921-C 4922-E 4924 4925 4926 4927 4929-B 4940 4940 4943 4944-D 4947 4948	Sodium-22 Sodium-22 Carbon-14 (water) Carbon-14 (benzoic acid in toluene) Hydrogen-3 (water) Iron-55 Promethium-147 Chlorine-36 Iodine-125 Hydrogen-3 (tritiated toluene) Cerium-Praseodymium-144	\$`7\$`\$\$\$\$X\$\$ \$	$\begin{array}{c} 1\times 10^{4} \ \beta^{+} \mathrm{ps/g} \ (8/64) \dots \\ 2\times 10^{4} \ \beta^{-} \mathrm{ps/g} \ (3/67) \dots \\ 1\times 10^{3} \ \mathrm{dps/g} \ (7/58) \dots \\ 9\times 10^{4} \ \mathrm{dps/g} \ (7/58) \dots \\ 9\times 10^{4} \ \mathrm{dps/g} \ (9/61) \dots \\ 2\times 10^{4} \ \mathrm{dps/g} \ (9/61) \dots \\ 2\times 10^{4} \ \mathrm{dps/g} \ (5/64) \dots \\ 1\times 10^{4} \ \mathrm{dps/g} \ (5/64) \dots \\ 1\times 10^{4} \ \mathrm{dps/g} \ (12/66) \dots \\ 3\times 10^{4} \ \mathrm{dps/g} \ (12/66) \dots \\ 3\times 10^{4} \ \mathrm{dps/g} \ (12/66) \dots \\ 2\times 10^{4} \ \mathrm{dps/g} \ (12/65) \dots \end{array}$	352532532533335433	42.00 61.00 48.00 48.00 48.00 60.00 60.00 43.00 71.00 46.00 70.00

4.5.4. Beta Gas Standard

Sample No. 4935-B contains krypton-85 in inert krypton at a pressure of approximately one atmosphere in a 10 ml break-seal glass ampoule.

SRM No.	Radionuclide	Calibration radiation	Approximate activity at time of calibration (month, year)	Volume	Price
4935-B	Krypton-85	β-	6×10 ⁷ dps per gram mole (10/62)	10 ml	\$28.00

4.5.5. Point-Source Gamma-Ray Standards

These standards are deposited between two layers of polyester tape approximately 0.006-cm thick and mounted on aluminum annuli, 0.8-cm wide and 5.5-cm outside diameter. Standard 4203-B (cobalt-60) can be issued only under the special licensing provisions of the Atomic Energy Act of 1954, and it is therefore required that a copy of the purchaser's current AEC By-Product Material License be on file at the National Bureau of Standards. The activity of the other standards in this group is such that they may be ordered singly under the general licensing provisions of the Atomic Energy Act of 1954.

SRM No.	Radionuclide	Approximate emission rate at time of calibration (month, year)	Price
4991-B	Sodium-22.	6×10 ⁴ γps (1/65)	67.00
4997-D	Manganese-54.	5×10 ⁴ γps (6/66)	55.00
4999-D	Cerium-139.	2×10 ⁴ γps (7/67)	60.00
4200	Cesium-137.	5×10 ⁴ γps (8/63)	51.00
4201	Niobium-94.	1×10 ⁴ γps (8/63)	60.00
4203-A	Cobalt-60.	3×10 ⁴ γps (8/66)	70.00
4203-B	Cobalt-60.	7×10 ⁴ γps (8/66)	70.00

4.5.6. Radium Rock Samples

This sample consists of 100 g of pulverized rock taken from bulk material analyzed for radium content. Petrographic data and the chemical analyzes of a typical specimen of the rock is also given in a certificate accompanying the sample. The sample is shipped parcel post prepaid.

SRM No.	Rock	Average radium content (picogram of radium per gram of rock)	Price
4984	Out of stock	0.18±0.03	

4.5.7. Radium Solution Standards (for Radon Analysis)

These samples are contained in flame-sealed glass ampoules.

SRM Nos.	Radium content (in grams) as of 1956	Approximate weight, g	Price
4950-A	10-*	100	\$55.00
4951		100	48.00
4952		100	30.00

4.5.8. Radium Gamma-Ray Solution Standards

These samples are contained in flame-sealed glass ampoules.

SRM Nos.	Nominal radium content (in micrograms)	Approximate weight, g	Price
4955	0.1	5	\$48.00
4956	0.2	5	48.00
4957	0.5	5	48.00
4958	10	5	48.00
4959	2 0	5	48.00
4960	5.0	5	48.00
4961	10	5	48.00
4962	20	5	48.00
4963	50	5	48.00
4964-B	102	5	48.00

4.5.9. Contemporary Standard for Carbon-14 Dating Laboratories

SRM No.	Description	Price
4990-B	1 lb. of oxalic acid; no specific activity is given. NOTE: These samples are shipped parcel post, prepaid to domestic and overseas purchasers.	\$26.50

4.6. Standard Rubbers and Rubber Compounding Materials

These standards have been established to provide the rubber industry with standard materials for rubber compounding. They are useful for the testing of rubber and rubber compounding materials in connection with quality control of raw materials and for the standardization of rubber testing.

Each material has been statistically evaluated for uniformity by mixing rubber compounds and vulcanizing them in accordance with ASTM Designation D-15 and determining the stress-strain properties of the resulting vulcanizates. Certificates are issued for the rubbers since the properties of different lots are not the same. Replacement lots of rubber compounding materials impart essentially the same characteristics to rubber vulcanizates so that certificates are not issued for these materials.

4.6.1. Standard Rubbers

SRM Nos.	Kind	Approx. wt. in grams	Price
386f	Styrene-butadiene, type 1500	34, 000	
388d	Butyl.	27, 000	
389	Styrene-butadiene, type 1503	34, 000	
390	Butyl (Mooney Viscosity Only)	27, 000	

4.6.2. Rubber Compounding Materials

SRM Nos.	Kind	Approx. wt. in grams	Price	SRM Nos.	Kind	Approx. wt. in grams	Price
370c 371e 372d 373e 374b 375f 376a	Zinc oxide Suffur	2, 000 1, 400 600 500 500 7, 000 450	25.70 25.00 25.00 27.20 26.00 34.00 25.25	3788 379 380 381 382 383 384	Oil furnace black Conducting black Calcium carbonate Gascium silicate Gas furnace black. Mercaptobensothiasole. N-tertiary-Butyl-2-benso- thiasolesulfenamide.	7,000 5,500 6,000 4,000 7,500 800 800	\$26.2 26.2 25.2 25.2 26.2 25.2 26.2 25.2 26.2

4.7. Polystyrene Molecular Weight Standards

Two samples of polystyrene are available for use in calibrating non-absolute techniques of measuring the numberaverage (M_{σ}) and weight-average (M_{Θ}) molecular weights. Also these polymeric samples can be used for determining the feasibility of some fractionating techniques since the ratios of the M_{σ} , M_{σ} , and *x*-average molecular weight are also given. The intrinsic viscosities at a high rate of shear both in benzene and cycloherane are also stated.

In addition, these samples represent highly purified polystyrene samples for polymeric research requiring the following chemical characteristics:

Standard 705 has a relatively narrow molecular weight distribution with a M_{*} 1.8×10⁴. The sample was prepared by the polymerization of styrene in benaene using butyl lithium as an initiator. As content and volatiles are 0.05 and 0.5 percent, respectively. The polystyrene is in pellet form, each pellet weighing about 10 mg.

Standard 706 has reasonably broad molecular weight distribution, the ratio M_o/M_a being 2.1, and an M_{\odot} of 2.7×10⁴. The sample was prepared by the thermal polymerization of styrene at 140 °C to 37 percent conversion. Ash content and volatile content are 0.001 percent and 0.8 percent respectively. The polystyrene is in pellet form, each pellet weighing about 80 mg.

SRM Nos.	Kind	Weight in grams	Price
705	Polystyrene, narrow molecular weight distribution	2	\$33.00
706	Polystyrene broad molecular weight distribution	18	33.00

4.8. Viscometer Calibrating Liquids

As of July 1, 1967, the National Bureau of Standards has discontinued the sale of the viscometor calibrating liquids identified as oils D, H, I, J, K, L, M, N, OB, P, SB, and SF. Liquids of comparable viscosity are available elsewhere.
4.9. Glass Viscosity Standards

Standard Reference Materials 710 and 711 are furnished as rectangular-shaped bars, and are certified for viscosity Standard Reference Materials 710 and 711 are furnished as rectangular-shaped oard, and are certified for viscosity between values of 10° and 10° poises. They are furnished to check the performance of high-temperature viscosity equipment (rotating cylinders) and low-temperature viscosity equipment (fiber elongation). In addition, values are furnished for the softening point, annealing point, and strain point by ASTM Designations (C388-61 and C336-61). Certificates of data from 8 laboratories are furnished for these two glasses.

Standards 712, 713, 714, 715, and 716 are furnished in cone, gobs, or patties as listed, and are certified only for softening point, annealing point, and strain point. Certificates of data from three laboratories are furnished for these glasses.

SRM Nos.	Kind	Unit of issue	Price
710 711 712 713 714 715 716	Soda-lime silica glass-type 523/586. Lead-silica glass-type 617/366. Mixed alkali lead silicate glass, ½ in patties (6 pcs.). Dense barium crown 620/603 glass, 1½ in diam × ½ in thick gobs (4 pcs.) Alkali-ree aluminosilicate glass, ½ in diam cane (16 pcs—6 in long) Alkali-ree aluminosilicate glass, ½ in diam cane (16 pcs—6 in long) Neutral (borosilicate) glass, ½ in diam cane (6 pcs—6 in long)	2 lb 3 lb 0. 5 lb . 5 lb . 5 lb 200 g 250 g	\$52.00 75.00 38.00 38.00 38.00 38.00 38.00 38.00

CERTIFIED PROPERTIES							
Viscosity poises	SRM 710 (Temp. °C)	SRM 711 (Temp. °C)	SRM 712 (Temp. °C)	8RM 713 (Temp. °C)	SRM 714 (Temp. °C)	SRM 715 (Temp. °C)	8RM 716 (Temp. °C)
102 104 104 104 105 106 107 108 109 109 109 109 109 109 109 109 109 109 Softening point Strain point Strain point	1434.3 1181.7 1019.0 905.3 821.5 757.1 706.1 706.1 664.7 630.4 601.5 576.9 724 546 504	$\begin{array}{c} 1327.\ 1\\ 1072.\ 8\\ 909.\ 0\\ 794.\ 7\\ 710.\ 4\\ 645.\ 6\\ 594.\ 3\\ 552.\ 7\\ 518.\ 2\\ 489.\ 2\\ 489.\ 2\\ 464.\ 5\\ 602\\ 432\\ 392\end{array}$			908 710 662	961 764 714	

4.10. Color Standards for Spectrophotometer-Tristimulus Integrator Systems

This set of 5 transparent colored glass standards is available to check the performance of spectrophotometer-tristimulus This set of 5 transparent colored glass standards is available to check the performance of spectrophotometer-tristimulus integrator systems, the automatic recording and computing devices used in routine color measurements. The set consists of five 2-inch square glass filters (approximately 3.0 mm thick) with polished faces. A chart of tristimulus values for CIE sources A, B, and C, representing incandescent-lamp light, noon sunlight, and average daylight; and a detailed report on the changes in tristimulus values caused by errors in the 100-percent and zero adjustments of the photometric scale, wave-length errors, slit-width errors, errors due to stray energy, and inertia errors of the recording mechanism, are furnished with each set of glasses. Through the use of these standards the user of a spectrophotometer-integrator combination will be able not only to determine when the instrument goes out of adjustment, but also from the pattern of the discrepancies between measured and reported tristimulus values, to obtain some clue as to the type of maladjustment. The descent are valiable candity in pate of five

The glasses are available only in sets of five.

SRM Nos.	Kind	Price
2101 2102 2103	Orange-red glass	\$255.00
2104 2105	Cobalt blue glass. Selective neutral glass.) per set

4.11. The ISCC-NBS Centroid Color Charts

The ISCC-NBS centroid colors are available to illustrate a characteristic color for each of the ISCC-NBS color-name blocks in the Color Names Dictionary, NBS Circular 553. This chart set along with the table containing the history of the color-names project, the centroid number and the Munsell renotation of each of the 251 color chips included, constitute the Supplement to the Color Names Dictionary. Each chart set contains 18 constant-huc centroid color charts. These centroid colors represent a systematic sampling of the whole color solid, each color of which has been carefully measured. Each centroid color has its own specification and can be used as a color standard. The centroid color charts can also be used for approximate color specifications wherever the ISCC-NBS color designations are applicable, for statistical studies of trends in industrial color usage, or for planning lines of merchandise intended to have coordinated colors.

SRM Nos.	Kind	Price per set
2106	Centroid color charts	\$5.00

4.12. Standard Colors for Kitchen and Bathroom Accessories

These commercial standards establish certain colors having the greatest general acceptance. They provide references whereby manufacturers can produce, and buyers can stock, items of colored kitchen and bathroom accessories with assurance that the purchaser can obtain from different sources and at different times, materials that will match one another in color. Calibration of these standards for use with 3-filter reflectometers may be obtained by applying to NBS.

SRM No.	Kind	Unit of issue	Price per set
1000	Enameled iron plaques, 3 by 5 inches, in accordance with Commercial Standards CS62-38 and CS63-38.	Set of 10	\$25.00

4.13. Paint Pigment Standards for Color and Tinting Strength

Material standards are the most practical means of designating color, tinting strength, and character of tint of paint pigments. The present series of color pigment standards has been developed for that purpose, Reference is made to these standard materials in the Federal Specifications for pigments. Methods of making the required color comparisons between standard and the delivered product are set forth in detail in the certificate supplied with each sample. The procedures given are similar to those covered by Methods 4220 and 4221 of Federal Standard 141 and by ASTM Designation D 387-60.

PAINT-PIGMENT	STANDARDS FOR	COLOR AND	TINTING	STRENGTH	ONLY
---------------	---------------	-----------	---------	----------	------

SRM Nos.	Kind	Approx. wt. in grams	Price	SRM Nos.	Kind	Approx. wt. in grams	Price
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314	Toluidine red toner Yellow ocher Raw sienna Burnt sienna Raw umber Burnt umber Venetian red Mitallie brown Indian red Mineral red Bright red oxide Carbon black (all-purpose) Black iron oxide, light lemon	40 45 45 50 60 60 60 65 50 10 20 42 20	\$26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00	315 316 317 318 319 320 321 322 324 324 325 326 327 328	Yellow iron oxide, lemon Yellow iron oxide, orange Yellow iron oxide, dark orange Lampblack. Primrose chrome yellow Medium chrome yellow Light chrome orange Dark chrome orange Ultramarine blue Iron blue Light chrome green Dark chrome green Dark chrome green	20 25 40 15 65 60 65 100 100 37 25 60 50 45	\$26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00 26.00

4.14. Phosphors

These materials are issued without certification. They are issued so that those interested in developing methods of measurement for phosphor materials can work on a common source of materials.

pprox. wt. in grams	Price	8RM Nos.	Kind	Approx. wt. in grams	Price
14 28	\$23.50 23.50	1026	Calcium tungstate phosphor_ Magnesium tungstate	28	\$23.50
14	23.50	1028	phosphor Zinc silicate phosphor	28 28	23, 50 23,50
14	23.50	1029 1030	Calcium silicate phosphor Magnesium arsenate	14	23. 50
14 28	23.50 23.50	1031	phosphor Calcium halophosphate	28	23.50
		1032	phosphor Barium silicate phosphor	28 28	23.50
-	proz. wt. n grams 14 28 14 14 14 14 28	ppot. m Price 14 \$23,50 28 23,50 14 23,50 14 23,50 14 23,50 14 23,50 14 23,50 28 23,50 28 23,50	prot. n rams Price 8 RM Noc. 14 \$23,50 1026 28 23,50 1027 14 23,50 1028 14 23,50 1028 14 23,50 1029 14 23,50 1030 14 23,50 1031 108 23,50 1031	proc. rt. n grams Price 8 RM Nos. Kind 14 \$23,50 1026 Calcium tungstate phosphor Phosphor 14 23,50 1027 Magnesium tungstate phosphor Phosphor 14 23,50 1029 Calcium silicate phosphor 14 23,50 1029 Calcium silicate phosphor 14 23,50 1029 Calcium silicate phosphor 14 23,50 1031 Magnesium arsenate phosphor 28 23,50 1031 Calcium silicate phosphor 1032 Barium silicate phosphor Phosphor	proc. st. n grams Price BRM Nos. Kind Approx. wt. In grams 14 \$23,50 1026 Calcium tungstate phosphor phosphor

4.15. Light-Sensitive Papers and Plastic Chips

4.15.1. Light-Sensitive Papers

Standard light-sensitive paper and booklets of standard faded strips of this paper are available for use in standardizing the dosage of radiant energy when testing textiles for color fastness by exposure in commercial carbon-arc fading lamps. The paper is distributed in units of 100 pieces 25% in by 3% in. The booklets contain six strips of the paper 11% in wide that have been faded by exposure in the NBS master lamp. A copy of NBS Misc. Publ. 260–15 which describes the preparation and use of the materials, is furnished with each booklet.

8RM Nos.	Kind	Unit of issue	Price
700b	Light-sensitive paper	Pkg. of 100 pieces	\$ 30.00
701b	Booklet of standard faded strips	Booklet	115.00

4.15.2. Light-Sensitive Plastic Chips

Standard light-sensitive plastic chips are available for use in calibration and standardisation of artificial weathering and fading apparatus. These chips are distributed in two thicknesses (0.060 and 0.124 in) in units of five plates 2 in by 4% in, and have been standardized by the measurement of the change of transmittance as a function of exposure (in standard fading hours) to the NBS master lamps.

SRM Nos.	Kind	Unit of Issue	Price
702	Light-sensitive plastic chips (0.124 in)	Package of 5 chips	\$40.00
703	Light-sensitive plastic chips (0.060 in)	Package of 5 chips	40.00

4.16. Internal Tearing Resistance Standard Paper

This standard is available for calibration of instruments used for the determination of the internal tearing resistance of paper according to methods ASTM Designation D689 and TAPPI Standard T414. Sufficient material is furnished in each unit to provide 40 or more measurements. Initial distribution is in a set of twelve packages, one package shipped at approximately monthly intervals. Packages are also available on a four month cycle, or by individual package. The tearing strength value of the material is approximately 40 g. The exact value will be given in the certificate accompanying the standard.

SRM No.	Kind	Price
704a	Internal tearing resistance of paper	\$32.50 per package

4.17. Microcopy Resolution Test Chart

This chart is used to test the resolving power of whole microcopying systems. It is printed photographically on paper, and has high-contrast five line patterns ranging in spatial frequency from one cycle per millimeter to ten cycles per millimeter. Instructions for the use of this chart are supplied with each order.

SRM No.	Kind	Unit of issue (minimum)	Price
1010a	Resolution chart for testing the resolving power of microcopying cameras.	5 charts	\$ 8.75 Set of five.

4.18. Glass Spheres for Particle Size

Standard Reference Materials 1018 and 1019 are issued for evaluating the effective openings of testing sieves in the size range U.S. Standard No. 8 through No. 70. These standards are used by placing the entire sample on a clean sieve or on the top of a stack of clean sieves and shaking them in a shaking device or by hand. Each of the sieve fractions of glass spheres is weighed to the nearest 0.01 gram, and the weight percent retained on each sieve is calculated. The effective opening of each sieve is then determined from the calibration data on the certificate supplied with each sample. The reproducibility of calibrations made with these standards varies from ± 2 to ± 5 percent of the nominal width of the

SRM 1003 is furnished to calibrate equipment used to determine particle sizes in the 5 to 30 micron range. A certificate is supplied showing particle size distribution by volume and by weight, and Stoke's Law distribution for air and water.

SRM Nos.	Kind	Weight in grams	Price
1003	Calibrated glass spheres (5–30 micron)	40-45	\$32.50
1018	Calibrated glass spheres (for calibrating sieves No. 20–70)	40	30.50
1019	Calibrated glass spheres (for calibrating sieves No. 8–18)	100	30.50

4.19. Turbidimetric and Fineness Standard

This standard is available to calibrate the Blaine fineness meter according to the latest issue of Federal Test Method Standard 158, Method 2101 or ASTM Designation C204; to calibrate the Wagner turbidimeter according to ASTM Designation C115; and to determine sieve residue according to ASTM Designation C430. Each unit consists of two sealed vials, each containing approximately 10 grams of cement.

SRM No.	Kind	Certification	Price
114L	Cement	(No. 325 sieve residue, 7.1 percent Surface area, 1780 cm ² /g (Wagner turbidimeter) Air permeability, 3030 cm ³ /g Mean particle diameter (air permeability), 6.29 microns	\$53.00 Set of ten units

4.20. Surface Flammability Standard

This standard is issued for checking the operation of radiant panel test equipment in accordance with Interim Federal Standard No. 00136 and later revisions. Flame spread Index, $I_{e_1} = 131$; Heat Evolution Factor, $Q_i = 27.0$; Smoke Deposit, weight in $m_{Q_i} = 0.7$.

8RM No.	Kind	Unit	Price
1002a	Hardboard sheet	4 specimens, 6 x 18 inches	\$25.00

4.21. Coating Thickness

Nominal thickness only is given below. The certified thickness appears on the cards accompanying the samples.

SRM Nos.	Prev. Desig.	Nominal Thickness (inch)	Coating	Substrate	Price*
	Type I	0-0.08	Nonmagnetic	Magnetic	
1301		0.00010	copper + chromium	steel	\$29.00
1302	AA	.00025	do	do	29.00
1303	AB	. 00050	do	do	29.00
1304	AM	.00075	do	do	29.00
1305	AC	.0010	do	do	29.00
1306	CA	. 0015	do	do	29.00
1307	AD	. 0020	do	do	29.00
1308		. 0025	do	do	29.00
1309	CM	. 0027	do	do	29.00
1310	CB	. 0032	do	do	29,00
1311	CC	. 0055	do	do	29,00
1312	CD	. 0080	do	do	29.00
1313	DA	.010	do	do	29.00
1314	DB	.015	do	do	29.00
1315	DC	. 020	do	do	29.00
1316	DD	. 025	do	do	29.00
1317	HA	. 03	do	do	29.00
1318	HB	.04	do	dod	29.00
1319	HC	.06	do	do	29.00
1320	HD	.08	do	do	29.00
	Type II	0-0.0025	Magnetic	Magnetic	
1221	BA	0.00012	nickel	stool	\$ 20, 00
1222	BB	00035	do	do	\$ <u>2</u> 9.00
1333	BC	00055	do	do	29.00
1334	BD	00075	do	do	29.00
1335	EA	0010	do	do	29.00
1336	EB	0013	do	do	29.00
1337	ĒČ	0016	do	do	29.00
1338	ED	0020	do	do	29.00
1339	EE	.0025	do	do	2900
	Type III	0-0.002	Magnetic	Nonmagnetic	
1341	FA	0.00012	nickel/chromium	brass	\$29.00
1342	FB	.00035	do	do	29,00
1343	FC	.00065	do	do	29,00
1344	FD	.0010	do	do	29.00
1345	FE	.0015	do	do	29.00
1346	FF	. 0020	do	do	29.00

* In sets of four, \$42.00,

4.22. Thermal Emittance Standards

Standards of normal spectral emittance are available in three materials, platinum-13 percent rhodium alloy having low emittance, sandblasted and oxidized Kanthal (an iron-chromium-aluminum alloy) having intermediate emittance, and sandblasted and oxidized Inconel (a nickel-chromium-iron alloy) having high emittance. Standards of all three materials have been calibrated for normal spectral emittance at 800 and 1100 °K, the Kanthal and Inconel standards at 1300 °K and the platinum-13 percent rhodium at 1400 and 1600 °K. Normal spectral emittance data is supplied at 156 wavelengths in the one to fifteen micron range for all the combinations listed above. In addition, data for the platinum-13 percent rhodium standards is supplied in the fifteen to thirty-five micron range at 1100 °K.

SRM Nos.	Unit	Price
1402	Emittance standards, ½ in disks Pt-13% Rh	\$180.00
1403	Emittance standards, ⁷ / ₄ in disks Pt-13 [°] / ₆ Rh	190.00
1404	Emittance standards, 1 in disks Pt-13% Rh	205.00
1405	Emittance standards, 1½ in disks Pt-13% Rh	240.00
1406	Emittance standards, 1¼ in disks Pt-13% Rh	255.00
1407	Emittance standards, 2 in x 2 in squares Pt-13% Rh	390.00
1408	Emittance standards, 1 in x 10 in strips Pt-13% Rh	755.00
1409	Emittance standards, ³ / ₄ in x 10 in strips Pt-13% Rh	605.00
1420	Emittance standards, ½ in disks Kanthal	180.00
1421	Emittance standards, ¼ in disks Kanthal	180.00
1422	Emittance standards, 1 in disks Kanthal	180.00
1423	Emittance standards, 1½ in disks Kanthal	180.00
1424	Emittance standards, 1¼ in disks Kanthal	180.00
1425	Emittance standards, 2 in x 2 in squares Kanthal	180.00
1427	Emittance standards, ³ / ₄ in x 10 in strips Kanthal	180.00
1428	Emittance standards, ¼ in x 8 in strips Kanthal	180.00
1440	Emittance standards, ½ in disks Inconel	180.00
1441	Emittance standards, 7% in disks Inconel	180.00
1442	Emittance standards, 1 in disks Inconel	180.00
1443	Emittance standards, 1% in disks Inconel	180.00
1444	Emittance standards, 1¼ in disks Inconel	180.00
1445	Emittance standards, 2 in x 2 in squares Inconel	180.00

4.23. Permittivity Standards

These standards are furnished in three different shapes and are certified for relative permittivity (approximately 6.3 in the case of the 1723 glass and 3.83 in the case of the 7940 fused silica) in the frequency range 10^6 to 10^{10} here. These standards are intended for use in checking and improving measurement systems for complex permittivity.

SRM Nos.	Kind	Price
1501	1723 glass, $2\frac{1}{4}$ in x $2\frac{1}{4}$ in x $\frac{3}{6}$ in rough cut blank for making 2 in disk for low-frequency, capacity-type holder	\$92,50
1502	1723 glass, 1 in x ½ in x ½ in rough-cut blank for X-band waveguide	92.50
1503	1723 glass, 1¼ in x 1¼ in x ¾ in rough-cut blank for making nominal 1 in cylindrical waveguide for dielectrometer.	92.50
1504	7940 fused silica, $2\frac{1}{4}$ in x $2\frac{1}{4}$ in x $\frac{1}{4}$ in for making 2 in disk for low-frequency, capacity- type holder.	92.50
1505	7940 fused silica. 1 in x ½ in x ½ in rough-cut blank for X-band waveguide	92.50
1506	7940 fused silica, 1¼ in x 1¼ in x ¾ in rough-cut blank for making 1 in cylindrical wave- guide for dielectrometer.	92.50

4.24. Mössbauer Differential Chemical Shift for Iron-57

This standard reference material is intended to furnish a base (zero) point for Mössbauer spectrometry. It is furnished as a platelet 1 cm x 1 cm x 0.0775 cm cut from a single crystal of sodium nitroprusside along the 100 crystal plane. The natural iron concentration is $25.0 \text{ mg/cm}^2 \pm 4$ percent. This standard reference material has an average value for the chemical shift of 0.0000 ± 0.0002 cm/sec, and an average value for the electric quadrupole splitting of 0.1726 ± 0.0002 cm/sec

SRM No.	Kind	Price
725	Mössbauer Differential Chemical Shift for Iron-57 (Sodium Nitroprusside)	\$155.00

4.25. Carbon-14 and Hydrogen-3 Labeled Sugars

These standards are furnished to supply a series of carbohydrates, labeled with carbon-14. They are intended primarily for use as radioactive tracers in chemical and biochemical research.

SEE ADDENDUM

4.26. Density and Refractive Index Standards

These standard reference materials are certified with respect to values of density, for air-saturated material at 1 atm, at 20, 25, and 30 °C, to ± 0.00002 g/ml, and also with respect to values of refractive index, for each of seven wavelengths (helium 668 and 502, hydrogen 656(C) and 486(F), mercury 546(e) and 436(g), and sodium 569(D),D) at 20, 25, and 30 °C to ± 0.00002 . These standards may be used to calibrate refractometers, pinometers, and density balances, as well as spectrometers. A certificate is supplied with each of these samples. 217b-8S is contained in a special ampoule with an internal breakoff tip, the others are sealed "in vacuum" in plain glass ampoules.

SRM Nos.	Kind	Approx. d ²⁰	Approx. n D	Amount, ml	Price
217b-5 217b-8S 217b-25 217b-50	2,2,4-Trimethylpentane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane 2,2,4-Trimethylpentane	0.6918 .6918 .6918 .6918	$\begin{array}{c} 1.3915 \\ 1.3915 \\ 1.3915 \\ 1.3915 \\ 1.3915 \end{array}$	5 8 25 50	

4.26. Density and Refractive Index Standards

These standard reference materials are certified with respect to values of density, for air-saturated material at 1 atm, at 20, 25, and 30 °C, to ± 0.00002 g/ml, and also with respect to values of refractive index, for each of seven wavelengths (helium 668 and 502, hydrogen 656(C) and 436(F), mercury 546(e) and 436(g), and sodium 589(D,D) at 20, 25, and 30 °C to ± 0.00002 . These standards may be used to calibrate refractometers, for conducting the seven wavelengths internal breakoff tip, the others are sealed "in vacuum" in plain glass ampoules.

SRM Nos.	Kind	Approx. dm	Approx. n ³⁰ _D	Amount, ml	Price
217b-5 217b-88 217b-25 217b-50	2,2,4-Trimethylpentane. 2,2,4-Trimethylpentane. 2,2,4-Trimethylpentane. 2,2,4-Trimethylpentane. 2,2,4-Trimethylpentane.	0.6918 .6918 .6918 .6918	1.39151.39151.39151.39151.3915	5 8 25 50	\$ 40.00 65.00 180.00 330.00

ADDENDUM FOR NBS MISCELLANEOUS PUBLICATION 260-STANDARD REFERENCE MATERIALS

3. Standards of Certified Chemical Composition

3.3. Cast Irons (Chip Form)

SRM Nos.	Kind	Price	SRM Nos.	Kind	Price
$_{6g}^{5L}$	Cast Iron Cast Iron	$^{\$40.50}_{36.00}$			

3.19. Microchemical Standards

SRM Nos.	Kind	Constituents determined or intended use	Approx. wt. in grams	Price
148	Microheteronitrogen (Nicotinic Acid)	N, C, H	2	\$23. 50

3.24. Biomedical Chemicals

SRM Nos.	Kind	Approx. wt. in grams	Price
911	Cholesterol	0.5	\$30.00

4. Standards of Certified Properties and Purity

4.5. Radioactivity Standards

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards

SRM _√os.	Radionuclide	Approximate activity or emission rate at time of calibration (month, year)	Price
$\begin{array}{c} 4222 \\ 4223 \\ 4224 \end{array}$	N-Hexadecane-1-carbon-14 N-Hexadecane-1-carbon-14 N-Hexadecane-1-carbon-14	$\begin{array}{r} 4 \times 10^{\circ} dps/g (6/67) \\ 4 \times 10^{\circ} dps/g (6/67) \\ 4 \times 10^{\circ} dps/g (6/67) \end{array}$	\$55.00 55.00 55.00 55.00

4.6.1. Standard Rubbers

SRM Nos.	Kind	Approx. wt. in grams	Price
385b	Natural Rubber	34,000	\$105.00

4.25. Carbon-14 and Hydrogen-3 Labeled Sugars

4.25.1. Terminal Carbon-14 Sugars

SRM Nos.	Kind	Amount of Activity	Price
1526	D-Arabinose-1	200μCi 60μCi	\$155.00 63.00
1527	L-Arabinose-1	$\begin{array}{c} 200 \mu \mathrm{Ci} \\ 60 \mu \mathrm{Ci} \end{array}$	$155.00 \\ 63.00$
1528	D-Galactose-1	$300\mu Ci$ $100\mu Ci$	$155.00 \\ 67.00$
1529	D-Galactitol-1	200μCi 60μCi	$155.00 \\ 63.00$

4.25. Carbon-14 and Hydrogen-3 Labeled Sugars-Continued

SRM Nos.	Kind	Amount of Activity	Price
1530	D-Glucose-1	300μCi 100μCi	\$155.00 67.00
1531	D-Glucitol-1	200µCi 60µCi	155.00 63.00
1532	Lactose-1	120μCi 40μCi	155.00 67.00
1533	D-Lyxose-1	200µCi 60µCi	155.00 58.00
1534	Maltose-1	$120\mu Ci$ $40\mu Ci$	$155.00 \\ 67.00$
1535	D-Mannose-1	300μCi 100μCi	$155.00 \\ 67.00$
1536	D-Mannonic-1 (lactone)	100µCi	67.00
1537	D-Mannitol-1	$200\mu Ci$ $60\mu Ci$	$155.00 \\ 63.00$
1538	L-Rhamnose-1	120μCi 40μCi	$ \begin{array}{r} 155.00 \\ 67.00 \end{array} $
1539	D-Ribose-1	60µCi	63.00
1540	D-Xylose-1	150μCi 50μCi	$155.00 \\ 67.00$

4.25.1. Terminal Carbon-14 Sugars-Continued

4.25.2. Interior Carbon-14 Sugars

SRM Nos.	Kind	Amount of activity	Price
1551	D-Arabinose-5	120μCi 40μCi	\$155.00 67.00
1552	D-Galactose-2	$\begin{array}{c} 80\mu { m Ci}\\ 25\mu { m Ci} \end{array}$	$145.00 \\ 61.00$
1553	D-Glucose-2	80μCi 25μCi	$145.00 \\ 61.00$
1554	D-Glucose-6	200μCi 60μCi	155.00 63.00
1555	D-Glucurone-6	$\begin{array}{c} 200 \mu \mathrm{Ci} \\ 60 \mu \mathrm{Ci} \end{array}$	155.00 63.00
1556	D-Glucurone-6 (Na salt)	200μCi 60μCi	155.00 63.00
1557	D-Xylose-2	80μCi 25μCi	$145.00 \\ 61.00$
1558	Dextran NRC-1	150µCi	65.00
1559	Dextran NRC-2B	150µCi	65.00
1560	Dextran NRC-3	150µCi	65.00
1561	Dextran NRC-4	150µCi	65.00
1562	Inulin	500µCi	65.00

5. Index By SRM Number

SRM No.	Page No.	SRM No.	Page No.	SRM No.	Page No
U-005	25	85b	12	186IIB	26
Ŭ-010	25	86c	12	187a	26
Ŭ-015	25	87a	12	188	26
U - 020	25	88a	21	189	26
U - 030	25	00	01	198	21
U - 050	25	89	21	199	21
U - 100	25	90	21	217b-5	27, 37
U-150 U-200	20	02	21	2170-85	21, 31
U-200 U-350	25	93	21	217b-25	27 37
0 000	20	94b	12	217b - 50	27. 37
U-500	25	99a	21	300	32
U - 750	25	100b	3	301	32
U - 700	25	101e	3	302	32
U-850	25	102	21	303	32
U-900	25	1039	91	304	32
U-930	25	104	21	303 206	32
1D 2b	10	105	3	300	04 22
3D 4i	10	106b	3	301	02
5k	10	107b	10	308	32
		111b	3	309	32
6f	10	112	21	310	32
7 g	10	113	19	311	32
8i	3	114K 115o	34	312	32
10g	3	115a	10	313	32
11h	3	120a	19	314	32
12n 12a	0 9	121c	3	310 216	32
10g	2	122d	10	317	32
159	3	124d	12	011	02
16e	3	126b	3	318	32
		1290	0 9	319	32
17	24	133a	3	320	32
19g	3	134a	3	321	32
20I 25a	3 10	136b	24	322	32 39
27e	19			324	32
28a	19	138	19	325	32
30f	3	139a	3	326	32
32e	3	140D 141b	24	327	32
33d	3	1410	24 24		
37e	11	143b	24	328	32
20:	07	147	$\overline{24}$	325	
40g	24	152a	3	330	3
41	24	153a	3	341	10
42f	26	154a	21	342	10
44e	26	155	3	343	3
45d	26	156	3	344	3
49e	26	157a	12	345	3
500 51b	3	158a	12	340	3
510 52e	5 19	160a	3	348	3
020	12	162a	12	349	12
54d	12	164a 166b	12	350	24
55e	10	168	12	352	18
57	11	169	12	353	18
64b	11	100	12	354	18
65d	3	170a	3	355	18
60a	11	171	12	360a	18
09a 70a	19	172	11	370e	18
71	11	173a 174	17	0100	
72f	3	174	17	371e	30
		181	19	372e	30
73c	3	182	19	373e	30
77	21	183	19	374b	30
78 89b	21	184	12	375f	30
820 830	10	1854	26	376a 377	30
	1.44				211

SRM No.	Page No.	SRM No.	Page No.	SRM No.	Page No.
$\begin{array}{r} {\rm SRM No.} \\ \hline \\ 379 \\ 380 \\ 381 \\ 382 \\ 383 \\ 384 \\ 386f \\ 389 \\ 390 \\ 404a \\ 405a \\ 4005a \\ 4005a \\ 4009b \\ 4103 \\ 4009b \\ 4103 \\ 4103 \\ 4103 \\ 4104 \\ 4103 \\ 4104 \\ 4103 \\ 4104 \\ 4104 \\ 413 \\ 414 \\ 415 \\ 420a \\ 427 \\ 438 \\ 439 \\ 440 \\ 441 \\ 442 \\ 443 \\ 444 \\ 444 \\ 444 \\ 444 \\ 444 \\ 444 \\ 445 \\ 446 \\ 465 \\ 466 \\ 467 \\ 468 \\ 466 \\ 467 \\ 468 \\ 466 \\ 467 \\ 468 \\ 592 \\ 593 \\ 596 \\ 597 \\ 598 \\ 599 \\ 625 \\ 625 \\ 625 \\ 625 \\ 625 \\ 625 \\ 629 \\ 631 \\ 6$	Page No. 30 30 6 6 6 6 6 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SRM No. 644 645 646 653 654 671 672 673 700b 701b 702 703 704a 705 706 710 711 712 713 714 715 726 727 740 802 803a D803a D803a D805a 807a 807a 808a 809b B805a 807a 808a 807a 808a 809b 809b 810a 817a 820a 820a 820a 821 827 838 839	Page No. 17 17 17 17 17 17 17 16 16 16 16 16 16 33 33 33 33 30 30 30 30 30 30 30 30 30	SEAN No. 850 D850 948 949b 950a 975 976 977 978 979 980 981 982 983 1002a 1003 1010 1011 1013 1014 1015 1016 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1041 1051a 1052a 1053 1053 1053 1053 1057a 1057a 1066a 1066a	Page No. 8 25 24 25 26 20 20 20 20 20 20 20 20 20 20 20 20 21 23 23 23 23 23 23
$642 \\ 643$	17 17	849 D849	8 8	$ \begin{array}{r} 1091 \\ 1092 \end{array} $	9 9

SRM No.	Page No.	SRM No.	Page No.	SRM No.	Page No.
$\begin{array}{c} {\rm C1100} \\ {\rm 1101} \\ {\rm C1101} \\ {\rm 1102} \end{array}$	$ \begin{array}{c} 14 \\ 14 \\ 14 \\ 14 \\ 14 \end{array} $	$ \begin{array}{r} 1175 \\ 1184 \\ 1185 \end{array} $	$\begin{array}{c}11\\16\\16\end{array}$	1428 1440 1441	36 36 36
$\begin{array}{c} {\rm C1102} \\ {\rm 1103} \\ {\rm C1103} \\ {\rm 1104} \\ {\rm C1104} \\ {\rm 1105} \end{array}$	$14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\$	$1190 \\ 1193 \\ 1194 \\ 1195 \\ 1204 \\ 1205 \\ 1210$	$ \begin{array}{r} 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 18 \\ \end{array} $	$1442 \\ 1443 \\ 1444 \\ 1445 \\ 1501 \\ 1502 \\ 1503$	36 36 36 36 36 36 36 36
$\begin{array}{c} {\rm C1105} \\ {\rm 1106} \\ {\rm C1106} \\ {\rm 1107} \end{array}$	$\begin{array}{c}14\\14\\14\\14\\14\end{array}$	$1211 \\ 1214 \\ 1215 \\ 1301$	18 18 18 35	1504 1505 1506 1525	36 36 36 37
$\begin{array}{c} {\rm C1107} \\ {\rm 1108} \\ {\rm C1108} \\ {\rm 1109} \\ {\rm C1109} \\ {\rm 1110} \\ {\rm C1110} \\ {\rm 1111} \end{array}$	14 14 14 14 14 14 14 14 14 14 14 14	1302 1303 1304 1305 1306 1307 1308 1309	35 35 35 35 35 35 35 35 35 35 35	$1250 \\ 1550 \\ 1575 \\ 1601 \\ 1602 \\ 1603 \\ 2101 \\ 2102$	
C1111 1112 C1112 C1112 1113	14 14 14 14	1310 1311 1312 1313 1214	35 35 35 35 25	$2103 \\ 2104 \\ 2105 \\ 2106 \\ 4200 \\ $	$31 \\ 31 \\ 31 \\ 32 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28 \\ 28$
$\begin{array}{c} C1113\\ 1114\\ C1114\\ 1115\\ C1115\\ 1116\\ 11$	14 14 14 14 14 14 14	1314 1315 1316 1317 1318 1319 1320	35 35 35 35 35 35 35 35	4201 4203a 4203b 4902 4904C	28 28 28 27 27 27
C1116 1117 C1117 1118 C1118 C1118 1119 C1119	14 14 14 14 14 14 14	1331 1332 1333 1334 1335 1335 1336	35 35 35 35 35 35	4922E 4924 4925 4926 4926 4927 4929B 4929B 4935B	28 28 28 28 28 28 28 28 28 28 28
1120 C1120 1121 C1121 C1121 1122	14 14 14 14 14 14 14	$ \begin{array}{r} 1337 \\ 1338 \\ 1339 \\ 1341 \\ 1342 \\ 1242 \\ 1242 \\ \end{array} $	35 35 35 35 35 35	4940 4943 4944D 4947 4948	28 28 28 28 28 28 28
$\begin{array}{c} {\rm C1122} \\ {\rm 1123} \\ {\rm C1123} \\ {\rm 1152} \\ {\rm 1154} \\ {\rm 1156} \end{array}$	$ \begin{array}{c} 14 \\ 14 \\ 14 \\ 8 \\ 8 \\ 8 \\ 9 \\ 9 \end{array} $	1344 1345 1346 1402 1403 1404 1405		$\begin{array}{c} 4950A\\ 4951\\ 4952\\ 4952\\ 4955\\ 4956\\ 4957\\ 4958\\ \end{array}$	29 29 29 29 29 29 29 29 29
$1161 \\ 1161 \\ 1162 \\ 1163 \\ 1164 \\ 1165$	777777777777777777777777777777777777777	1405 1406 1407 1408 1409 1420	36 36 36 36 36 36 36	$\begin{array}{c} 4959 \\ 4960 \\ 4961 \\ 4962 \\ 4963 \\ 4964 \\ B\end{array}$	29 29 29 29 29 29 29
$1166 \\ 1167 \\ 1168 \\ 1169 \\ 1170 \\ 1174$	7 7 7 7 7 7	$1421 \\ 1422 \\ 1423 \\ 1424 \\ 1424 \\ 1425 \\ 1427 \\$	36 36 36 36 36 36 36 36	4984 4990B 4991B 4997D 4999D	29 29 28 28 28 28

U.S. Department of Commerce Alexander B. Trowbridge, Secretary National Bureau of Standards A. V. Astin, Director

Certificate of Analysis

Standard Reference Material 131a Low-Carbon Silicon Steel

ANALYST*	METHOD	CARBON
1 2 3 4 5 6 7 8 9	Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric * Combustion-conductometric *	$\begin{array}{c} Percent \\ 0, 004_1 \\ 004_3 \\ 004_3 \\ 004_4 \\ 004_5 \\ 004_5 \\ 004_3 \\ 004_3 \\ 004_3 \\ 004_3 \\ 004_3 \\ \hline \end{array}$

* l-g sample.

* List of Analysts

- 1. E. R. Deardorff and J. I. Shultz, Division of Analytical Chemistry, National Bureau of Standards.
- 2. D. P. Bartell and R. B. Fricioni, Allegheny Ludlum Steel Corp., Brackenridge Works, Brackenridge, Pa.
- T. D. McKinley, E. I. Du Pont de Nemours and Co., Pigments Department, Experimental Station, Wilmington, Del.
- W. F. Harris and R. N. Revesz, Westinghouse Electric Corp., Research and Development Center, Pittsburgh, Pa.
- 5. R. R. Ralston and K. P. Kreis, General Electric Co., Transformer Division, Pittsfield, Mass.

- L. M. McInick, J. F. Martin, and J. B. Ferons, Unite d States Steel Corp., Applied Research Laborator y, Monroeville, Pa.
- L. M. Melnick and M. J. Nardozzi, United States Steel Corp., Applied Research Laboratory, Monroeville, Pa.
- 8. P. P. Eismont, United States Steel Corp., Duquesne Works, Duquesne, Pa.
- Armco Steel Corporation, Research and Technology, Chemical Laboratory, Arba Thomas, in charge-Analyses by L. C. Bartels and D. E. Swanger.

The material for the preparation of this standard was furnished by the Allegheny Ludlum Steel Corp., Brackenridge, Pa.

WASHINGTON, D.C. 20234 September 15, 1967 W. Wayne Meinke, Chief Office of Standard Reference Materials.

7. Appendix II. Guide for Submission of Requests

U.S. DEPARTMENT OF COMMERCE—NATIONAL BUREAU OF STANDARDS INSTITUTE FOR MATERIALS RESEARCH OFFICE OF STANDARD REFERENCE MATERIALS

GUIDE FOR THE SUBMISSION OF REQUESTS FOR THE DEVELOPMENT OF NEW OR RENEWAL STANDARD REFERENCE MATERIALS

August 20, 1964

INTRODUCTION

The National Bureau of Standards presently has available more than 500 standard reference materials. It is also working on the development of about 50 new ones and has on hand requests for the preparation of many others. The requests have always far exceeded the Bureau's capacity to produce and certify these materials.

Policy

One of the main functions of the NBS Institute for Materials Research is to develop, produce, and distribute standard reference materials which provide a basis for comparison of measurements on materials and aid in the control of production processes in industry. To help carry out this function the Office of Standard Reference Materials evaluates the requirements of science and industry for carefully characterized reference materials, and directs their production and distribution. Emphasis is given to providing NBS Standard Reference Materials (a) where attainment of needed accuracy of analysis or accuracy is generally important to users, (b) where industry-wide standards for commerce are needed from a neutral supplier who is not otherwise available, and (c) where continuing availability of highly characterized material from a common source is important to science or industry.

⁴ The National Bureau of Standards recognizes the need for broadening the present program on reference materials to include all types of well-characterized materials that can be used to calibrate a measurement system or to produce scientifie data that can be readily referred to a common base. With this broadening, however, it still remains apparent that the demand for new Standard Reference Materials will continue to far exceed the Bureau's capacity for development. Therefore, requests for new Standard Reference Materials while will have limited use and for which the need is not very great will have to be passed by in favor of requests clearly showing a critical need. For the purpose of determining which requests are to receive top priority, the National Bureau of Standards will need, and will rely heavily upon, the information supplied by industry, either through its own representatives or through interested committees, such as those of the American Society for Testing and Materials, the American Standard Association, the International Organization for Standardization, etc.

Accordingly, while the Burcau welcomes all requests for the development of new Standard Reference Materials, it will help both the Burcau, and industry as well, if requests are accompanied by such information as will permit an assessment of the urgency and importance of proposed new reference materials.

INFORMATION NEEDED

Those requesting the development of new Standard Reference Materials should supply as much as possible of the following information:

- (1) Short title of Standard Reference Material.
- (2) Purpose for which the new standard material is needed.
- (3) Reasons why the new standard material is needed.
- (4) Special characteristics and/or requirements for the material. Include additional requirements and reasons, if more than one standard material is necessary for standardization in this area.
- (5) Your estimate of the possible present and future (10 year) demand for this new standard in your own operations and elsewhere.
- (6) Whether this standard, or a similar standard, can be produced by, or obtained from, a source other than the National Bureau of Standards. If so, give reasons to justify its preparation by NBS.
- (7) Miscellaneous pertinent comments to aid justification for the new standard reference material, such as: (a) an estimate of the range of application, monetary significance, and scientific and/or technological significance including when feasible estimates of the impact upon industrial productivity or growth, and (b) supporting letters from industry leaders, trade organizations, interested committees and others.

IMPORTANT NOTICE

Orders will be processed more expeditiously if they are addressed to:

Office of Standard Reference Materials National Bureau of Standards Washington, D. C. 20234

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

February 1, 1968

QUARTERLY INSERT SHEETS FOR NBS MISCELLANEOUS PUBLICATION 260-STANDARD REFERENCE MATERIALS

Catalog and Price List of Standard Materials Issued by the National Bureau of Standards

New and renewal Standard Reference Materials continuously are being prepared while the supply of others may be exhausted. This Quarterly Addendum is issued to bring the Catalog and Price List up-to-date as of February 1, 1968.

CHANGES IN PURCHASE PROCEDURE

2.3. Terms and Shipping

2.3.1. Domestic Shipments

Shipments of material (other than hydrocarbons, organic sulfur compounds, and radioactive standards) intended for the United States, Mexico, and Canada are normally shipped prepaid parcel post (providing that the parcel does not exceed the weight limits as prescribed by Postal Laws and Regulations) unless the purchaser requests a different mode of shipment, in which case the shipment will be sent collect. It is impractical for the Bureau to prepay shipping charges and add this cost to the billing invoice. Hydrocarbons, organic sulfur compounds, rubber compounding materials, and radioactive standards are shipped express collect. No discounts are given on NBS Standard Reference Materials.

Shipment will be made from Washington, D. C., approximately two weeks after receipt of your purchase order. Prices as quoted are subject to change without notice. Prices in effect at time of shipment will be billed to the purchaser, and invoice will follow shipment.

2.3.3. Payment for Foreign Orders

The National Bureau of Standards does not reserve materials. Therefore, your order will be subject to adjustment of the numbers of each item ordered depending upon inventory levels upon receipt of your payment. Remittances in payment of foreign orders must be made payable to the National Bureau of Standards, and are required in advance. These remittances must be drawn on a bank in the United States and payable at the standard rate of U. S. currency. Prices as quoted are subject to change without notice. Prices in effect at time of shipment will be billed to the purchaser.

3. Standards of Certified Chemical Composition

3.1. Steels (Chip Form) (Materials Temporarily Out Of Stock)

SRM No.	Kind	Price	SRM No.	Kind	Price
20f	A.O.H. 0.4% C		170a	В.О.Н., 0.05% С, 0.3% Ті	

3.1. Steels (Chip Form) (Materials Out of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
129b	Steel, High Sulfur (SAE X1112)				

3.1.1. Steels (Powder Form) (New Standard Reference Material)

The powder form material is furnished in 100g units and was prepared by a pre-alloyed powder metallurgical process including argon atomization and hydrogen annealing. The material has been sized through selected sieves to ensure satisfactory homogeneity, usually between 20 and 100 mesh.

Certificates of analyses, provided with these standards, give the composition as determined at the National Bureau of Standards, and most also include values obtained by industrial and other outside laboratories cooperating in the certification of the standards.

SRM No.	Kind	Price
163	Steel, 0.9C, 0.9Mn, 1.0Cr	\$35.00

ANALYSIS

SRM No.	Kind	с	Mn	Р	s	Si	Cu	Ni
163	Steel, 0.9C, 0.9Mn, 1.0Cr	0.933	0.897	0.007	0.027	0.488	0.087	0.081

ANALYSIS-Continued

SRM No.	Kind	Cr	Мо	N	
163	Steel, 0.9C, 0.9Mn, 1.0Cr	0.982	0.029	0.007	

3.2. Steels (Solid Form)

3.2.2. Special Ingot Irons and Low-Alloy Steels (Materials Temporarily Out of Stock)

SRM No.	Kind	Prie	ce
		400 series	1100 series
1162	Low-alloy steel B(Modified T 886B45)		

3.3. Cast Iron (Chip Form) (Renewal of Earlier Material)

SRM Nos.	Kind	Price	SRM No.	Kind	Price
5L 6g	Cast Iron Cast Iron				

3.4. White Cast Iron (Solid Form) (Renewal of Earlier Material)

SRM No.	Kind	Price
1175a	White Cast Iron (Special 2)	\$60.00

3.5. Steel-Making Alloys (Material Out Of Stock-Discontinued)

SRM No.	Kind	Price
66a	Spiegeleisen	

3.6. Nonferrous Alloys (Chip Form) (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price	SRM No.	Kind	Approx. wt. in grams	Price
127b	Solder (Sn40-Pb60)	150	\$28.00				

3.6. Nonferrous Alloys (Chip Form) (Material Out of Stock-Discontinued)

SRM No.	Kind	Approx. wt. in grams	Price	SRM No.	Kind	Approx. wt. in grams	Price
164a	Bronze, aluminum						

3.8. High Temperature Alloys (Solid Form) (Materials Out Of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
1184	19-9DL				

3.10. Tin Metal (Solid Form)

3.10.1. Tin-Lead Solder (Solid Form) (New Standard Reference Material)

This standard is intended primarily for application in optical emission and x-ray spectroscopic methods of analysis. It is furnished in the form of disks 1¼ in. in diameter and ¾ in. thick.

The material for this standard was prepared as alloy 40B to specifications for solder contained in ASTM Designation B32 and in powder form, minus 200 mesh. [Note: A large portion of the powder material was sized between 200 and 325 mesh sieves, blended, analyzed, and is issued as SRM No. 127b primarily for checking methods of analysis.] A smaller portion of the powder material was converted to rods for this standard by cold compaction at 13 tons psi to billets, followed by cold extrusion.

SRM No.	Kind	Approx, wt. in grams	Price
1131	Solder (Sn40-Pb60)	135	\$45.00

3.12. Zirconium-Base Alloys (Material Out of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
1214	Zircaloy-2E				

3.17. Hydrocarbon Blends

NOTE:

Standard samples of hydrocarbons of certified purity which were prepared by NBS in cooperation with the American Petroleum Institute are now available only as API Standard Samples from: API Samples Attn: A. J. Streiff Carnegie-Mellon University Schenley Park Pittsburgh, Pennsylvania 15213 Telephone: AC 412 621-2600 Ext. 531

Complete information concerning these standards may be obtained from the API Samples office.

3.18. Metallo-Organic Compounds (Renewal of Earlier Material)

SRM No.	Kind (approximate wt. 5 grams)	Constituent determined	Price
1073b	Zinc cyclohexanebutyrate	Zn16.7%	\$26.00

3.19. Microchemical Standards (New Standard Reference Material)

SRM No.	Kind	Constituents determined or intended use	Approx. wt. in grams	Price
148	Microheteronitrogen (Nicotinic acid)	N,C,H	2	\$18.50

3.20. Chemicals

3.20.1. Primary Chemicals (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price
41a	Dextrose(glucose)	70	\$21.00

3.24. Biomedical Chemicals (New Standard Reference Material)

This standard reference material is intended to be used in clinical and pathological laboratories in their calibration of apparatus and methods, and to assist manufacturers of clinical products in meeting the chemical and physical specifications required for clinical chemicals.

SRM No.	Kind	Purity (%)	Approx. wt. in grams	Price
911	Cholesterol	99.4	0.5	\$25.00

3.25. High-Purity Metal Materials (New Standard Reference Materials)

These standards are intended to meet the urgent need of analysts working at trace level concentrations of elements in high-purity metal materials. The standards should serve not only for important benchmarks in calibration of equipment but also for development of new or improved methods and techniques in extending the sensitivity of detection in the determination of trace constituents in various materials by chemical, optical emission and solids mass spectrochemical, activation, and resistivity methods.

3.25.1. Platinum

These standards have been established to provide homogeneous reference materials for the analyses of highpurity platinum. Designated SRM No. 680, High-Purity Platinum and SRM 681, Doped Platinum, the materials are available in wire form, 0.020 inch (0.51 mm) in diameter, and are issued in two lengths, 4 inches (10.2 cm) and 39.4 inches (1.00 meter), designated L-1 and L-2, respectively. Both standards have been certified for a dozen impurity elements which in general range from a fraction of a part per million (by weight) in the high-purity platinum to about 10 in the doped platinum.

A Certificate of Analysis supplied with the standards gives the range of values reported which represents the present state of the art in the cooperating laboratories for the various trace determinations.

SRM Nos.	Kind	Price
680 L-1	High-Purity Platinum	\$ 35.00
680 L-2	High-Purity Platinum	185.00
681 L-1	Doped Platinum	35.00
681 L-2	Doped Platinum	185.00

ANALYSES (Concentration in Parts per Million by Weight)

SRM Nos.	Cu	Ag	Pd	Pb	Fe	Ni	
680 681	$\substack{\textbf{0.1}\\\textbf{5.1}}$	0.1 2.0	0.2 6	$< \frac{1}{12}$	0.7 5	$<^{1}_{0.5}$	

ANALYSES—Continued (Concentration in Parts per Million by Weight)

SRM Nos	Au	Mg	Zr	Rh	Ir	0	
680 681	< 1 9	$< \frac{1}{12}$	< 0.1 11	$< \begin{array}{c} 0.2\\ 9\end{array}$	< 0.01 11	4 7	

3.26. Analyzed Liquids (New Standard Reference Materials)

These materials are intended for use as standard reference materials for the analysis of liquids for individual elements.

SRM Nos.	Kind	Element determined	Percent	Amt. (ml)	Price
$\begin{array}{c} 1621 \\ 1622 \end{array}$	Sulfur in residual fuel oil Sulfur in residual fuel oil	s s	$\begin{array}{c} 1.05\\ 2.14\end{array}$	100 100	\$25.00 25.00

4.5. Radioactivity Standards

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (New Standard Reference Materials)

These Standard Reference Materials are contained in flame-sealed glass ampoules. The calibration radiation listed is the radiation for which the radionuclide is intended to be used as a standard.

Standard 4948 (cerium-praseodymium-144) can be issued only under the special licensing provisions of the Atomic Energy Act of 1954, and it is therefore required that a copy of the purchaser's current AEC Byproduct Material License be on file at the National Bureau of Standards. The activity of the other standards in the group is such that they may be ordered singly under the general licensing provisions of the Atomic Energy Act of 1954.

SRM Nos.	Radionuclide	Calibration radiation	Approximate activity or emission rate at time of calibration (month, year)	Approximate weight of solution, g	Price
4221	Mercury-197	x-ray	Issued periodically,	5	
4222	Carbon-14(n-hexadecane)	β	4 X 10° dps/g (6/67)	3	\$50.00
4223	Carbon-14(n-hexadecane)	β—	4 X 10 ³ dps/g (6/67)	3	50.00
4224	Carbon-14(n-hexadecane)	β—	$4 \times 10^{2} \text{ dps/g} (6/67)$	3	50.00

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (Renewal of Earlier Material)

SRM No.	Radionuclide	Price
4940- B	Promethium-1475 X 10 ⁸ dps/g (11/67)	\$55.00

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4944-D	Iodine-125	

4.5.4. Beta Gas Standard (Temporarily Out Of Stock)

SRM No.	Radionuclide	Price
4935-B	Krypton-85	

4.5.6, Radium Rock Samples (Material Out of Stock-Discontinued)

SRM No.	Rock	Price
4984	Triassic Diabase	

4.6. Standard Rubbers and Rubber Compounding Materials

4.6.1. Standard Rubbers (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price
385b	Natural rubber	34,000	\$100.00

4.6.2. Rubber Compounding Materials (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price
372g	Stearic Acid	600	\$26.00 (Set of 4)

4.21. Coating Thickness

These standards are intended to be used to calibrate coating thickness gages of the magnetic type for the measurement of the thickness of nonmagnetic coatings on steel, of nickel coatings on steel, or of nickel coatings on nonmagnetic substrate. The steel substrate has the magnetic properties of 1010 steel and the nickel coatings have the magnetic properties of an annealed Watts nickel electrodeposit free of cobalt and iron. The certified thickness is within $\pm 5\%$ of the true thickness except for numbers 1301, 1302, 1303, and 1304,

The certified thickness is within $\pm 5\%$ of the true thickness except for numbers 1301, 1302, 1303, and 1304, which have an uncertainty of ± 0.00003 inch. Sets of either two or four standards mounted on one card are available in the specific combinations that are

Sets of either two or four standards mounted on one card are available in the specific combinations that are requested most frequently, but only as listed below.

SRM Nos.	Kind	Price
$1351 \\ 1352 \\ 1353$	(Sets of Two Standards Mounted on One Card) 1307 and 1311 1332 and 1334 1335 and 1339	\$30.00 30.00 30.00
	(Sets of Four Standards Mounted on One Card)	
$1361 \\ 1362 \\ 1363 \\ 1364 \\ 1365 \\ 1366 \\ 1366 \\ 1367 \\$	1302, 1303, 1305, and 1307 1306, 1310, 1311, and 1312 1313, 1314, 1315, and 1316 1317, 1318, 1315, and 1316 1317, 1318, 1319, and 1320 1331, 1332, 1333, and 1334 1335, 1336, 1337, and 1383 1341, 1342, 1343, and 1344	42.00 42.00 42.00 42.00 42.00 42.00 42.00 42.00

4.23. Permittivity Standards (Materials Temporarily Out Of Stock)

SRM Nos.	Kind	Price
$\begin{array}{c} 1501 \\ 1504 \end{array}$	1723 glass 7940 fused silica	

4.25. Carbon-14 and Hydrogen-3 Labeled Sugars

These standards are intended primarily to supply a series of carbohydrates, labeled with carbon-14, which are unavailable elsewhere. They are intended primarily for use as radioactive tracers in chemical and biochemical research.

SRM Nos.	Kind	Amount of Activity	Price
1526	D-Arabinose-1	200µCi	\$150.00
		60µCi	58.00
1527	L-Arabinose-1	200µCi	150.00
		60µCi	58.00
1528	D-Galactose-1	300µCi	150.00
		100µCi	62.00
1529	D-Galactitol-1	200µCi	150.00
		60µCi	58.00
1530	D-Glucose-1	300µCi	150.00
		100µCi	62.00
1531	D-Glucitol-1	200µCi	150.00
		60µCi	58.00
1532	Lactose-1	120µCi	150.00
		40µCi	62.00
1533	D-Lyxose-1	200µCi	150.00

D-Mannose-1_____

D-Mannonic-1 (lactone)_____

D-Mannitol-1_____

150.00

62.00

62.00

62.00

58.00

58.00

150.0062.00

150.00

150.00 62.00

150.00

58.00

60µCi

120µCi

40µCi

300µCi

100µCi

100µCi

200µCi

60µCi

120μCi 40μCi

60µCi

150μCi 50μCi

L-Rhamnose-1____

4.25.1. Terminal Carbon-14 Sugars (Renewals of Earlier Materials-Replaces 1525)

_

1534

1535

1536

1537

1538

1539

1540

Maltose-1_

D-Ribose-1

D-Xvlose-1____

4.25.1. Interior Carbon-14 Sugars (Renewals of Earlier Materials-Replaces 1550)

SRM Nos.	Kind	Activity Amount	Price
1551	D-Arabinose-5	120µCi	\$150.00
1552	D-Galactose-2	$40\mu Ci$ $80\mu Ci$	62.00 140.00
1553	D-Glucose-2	25μCi 80μCi	56.00 140.00
1554	D-Glucose-6	25μCi 200μCi	56.00 150.00
1555	D-Glucurone-6	60μCi 200μCi	58.00 150.00
1556	D-Glucurone-6 (Na salt)	60μCi 200μCi	58.00 150.00
1557	D-Xylose-2	60μCi 80μCi	58.00 140.00
1558	Dextran NRC-1	25μCi 150μCi	56.00 60.00
$1559 \\ 1560$	Dextran NRC-2B Dextran NRC-3	150μCi 150μCi	60.00 60.00
$1561 \\ 1562$	Dextran NRC-4 Inulin	150μCi 500μCi	60.00 60.00

4.25.3. Tritium Labeled Sugars (Material Out Of Stock-Discontinued)

SRM Nos.	Kind	Price
1575	Tritium-labeled carbohydrates	

4.27. Organic Chemicals (New Standard Reference Materials)

These materials are intended primarily for use in identifying and characterizing compounds resulting from organic or biochemical reactions. They may also be useful in reactions where limited amounts of these rare or high-purity organic chemicals are necessary for starting material.

SRM Nos.	Kind		Price
1591	1,2-O-Isopropylidene- β -L-Idofuranose	15	\$30.00
1592	1,2–O–Isopropylidene– β –D–threo-pentulose		30.00
1593	L-Inositol		30.00
1594	Quebrachitol	500	30.00

IMPORTANT NOTICE

Orders will be processed expeditiously if they are addressed to:

Office of Standard Reference Materials National Bureau of Standards Washington, D. C. 20234

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

June 1, 1968

QUARTERLY INSERT SHEETS FOR NBS MISCELLANEOUS PUBLICATION 260-STANDARD REFERENCE MATERIALS

Catalog and Price List of Standard Materials Issued by the National Bureau of Standards

New and renewal Standard Reference Materials continuously are being prepared while the supply of others may be exhausted. This Quarterly Addendum is issued to bring the Catalog and Price List up-to-date as of April 1, 1968.

CHANGES IN PURCHASE PROCEDURE

2.3. Terms and Shipping

2.3.1. Domestic Shipments

Shipments of material (other than hydrocarbons, organic sulfur compounds, and radioactive standards) intended for the United States, Mexico, and Canada are normally shipped prepaid parcel post (providing that the parcel does not exceed the weight limits as prescribed by Postal Laws and Regulations) unless the purchaser requests a different mode of shipment, in which case the shipment will be sent collect. It is impractical for the Bureau to prepay shipping charges and add this cost to the billing invoice. Hydrocarbons, organic sulfur compounds, rubber compounding materials, and radioactive standards are shipped express collect. No discounts are given on NBS Standard Reference Materials.

Shipment will be made from Washington, D. C., approximately two weeks after receipt of your purchase order. Prices as quoted are subject to change without notice. Prices in effect at time of shipment will be billed to the purchaser, and invoice will follow shipment.

2.3.3. Payment for Foreign Orders

The National Bureau of Standards does not reserve materials. Therefore, your order will be subject to adjustment of the numbers of each item ordered depending upon inventory levels upon receipt of your payment. Remittances in payment of foreign orders must be made payable to the National Bureau of Standards, and are required in advance. These remittances must be drawn on a bank in the United States and payable at the standard rate of U.S. currency. Prices as quoted are subject to change without notice. Prices in effect at time of shipment will be billed to the purchaser.

3. STANDARDS OF CERTIFIED CHEMICAL COMPOSITION

SRM No.	Kind	Price	SRM No.	Kind	Price
20f	А.О.Н. 0.4% С		170a	B.O.H., 0.05% C, 0.3% Ti	

3.1. Steels (Chip Form) (Material Temporarily Out Of Stock)

3.1. Steels (Chip Form) (Materials Out of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
129b	Steel, High Sulfur (SAE X1112)		156	Cr-Ni-Mo (NE 9450)	

3.1. Steels (Chip Form) (Revised Price 1/15/68)

SRM No.	Kind	Price	SRM No.	Kind	Price
335	B.O.H. 0.1% C (Carbon only)	\$22.00 (300/g unit)	337	B.O.H. 1.1% C (Carbon only)	\$22.00 (300/g unit)

ANALYSES

SRM No.	Kind	С
335	B.O.H. 0.1% C (Carbon only)	0.092
337	B.O.H. 1.1% C (Carbon only)	1.07

3.1.1. Steels (Powder Form) (New Standard Reference Material)

The powder from material is furnished in 100 g units and was prepared by a pre-alloyed powder metallurgical process including argon atomization and hydrogen annealing. The material has been sized through selected sieves to ensure satisfactory homogeneity, usually between 20 and 100 mesh.

Certificates of analyses, provided with these standards, give the composition as determined at the National Bureau of Standards, and most also include values obtained by industrial and other outside laboratories cooperating in the certification of the standards.

SRM No.	Kind	Price
163	Steel, 0.9C, 0.9Mn, 1.0Cr	\$35.00

ANALYSIS

SRM No.	Kind	С	Mn	Р	S	Si	Cu	Ni
163	Steel, 0.9C, 0.9Mn, 1.0Cr	0.933	0.897	0.007	0.027	0.488	0.087	0.081

ANALYSIS-Continued

SRM No.	Kind	Cr	Mo	N	
163	Steel, 0.9C, 0.9Mn, 1.0Cr	0.982	0.029	0.007	

3.2. Steels (Solid Form)

3.2.2 Special Ingot Irons and Low-Alloy Steels	(Materials Temporarily Out of Stock)
--	--------------------------------------

SRM No.	Kind	Pr	ice
		400 series	1100 series
1162	Low-alloy steel B (Modified TS 86B45)		

3.3. Cast Iron (Chip Form) (Renewal of Earlier Material)

SRM No.	Kind	Price	SRM No.	Kind	Price
5L 6g	Cast Iron Cast Iron	\$35.50 31.00			

	Analyses											
SRM No.	Kind	C Total Graphite		Mn	Р	s	Si	Cu				
5L 6g	Cast Iron Cast Iron	2.59 2.84	1.99 2.00	0.68 1.06	0.280 .56	0.123 .123	$1.83 \\ 1.06$	1.01 0.50				

ANALYSES-Continued

SRM No.	Kind	Ni	Cr	v	Мо	Ti	As	N
5L	Cast Iron	0.086	0.15	0.036	0.020	0.05	<0.005	0.006
6g	Cast Iron	.136	.37	.06	.035	.06	.04	

3.4. White Cast Iron (Solid Form) (Renewal of Earlier Material)

SRM No.	Kind	Price
1174a	White cast iron (special 1)	60.00
1175a	White cast iron (special 2)	60.00

SRM No.	C	Mn	Р	S	Si	Cu	Ni	Cr	v	Mo	Ti
1174a	3.46	0.180	0.168	0.168	0.283	0.170	0.035	0.018	0.008	0.008	0.011
1175a	1.98	1.62		.018	3.47	1.50	2.99	2.41	.222	1.49	.35

ANALYSES-Continued

										-
SRM No.	As	Sb	Sn	Co	Te	В	Bi	Zr	Pb	Al
1174a 1175a	0.024	0.17 .022	0.23 .025	0.009	0.071 .009	0.040 .005	(0.008)	(0.02)	(0.01) 0.006	(0.001)

ANALYSES

SRM No.		Approx. in gran	wt. ns	Price		
196	Ferrochromium	100		\$40.00		
			ANALYSIS			
SRM No.	C	Mn	Si	Cr	v	
196	0.035	0.28	0.38	70.87	0.12	

3.5 Steel-Making Alloys (New Standard Reference Material)

3.6. Nonferrous Alloys (Chip Form) (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price	SRM No.	Kind	Approx. wt. in grams	Price
127b	Solder (Sn40-Pb60)	150	\$28.00				

ANALYSIS

SRM No.	Kind	Sn	Sb	As	Bi	Cu	Ni	Ag
127b	Solder (Sn40-Pb60)	39.3	0.43	0.01	0.06	0.011	0.012	0.01

3.6. Nonferrous Alloys (Chip Form) (Material Out of Stock-Discontinued)

SRM No.	Kind	Approx. wt. in grams	Price	SRM No.	Kind	Approx. wt. in grams	Price
164a	Bronze, aluminum						

3.8. High Temperature Alloys (Solid Form) (Materials Out Of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
1184	19-9DL		1205	Inco 713-C	

3.10. Tin Metal (Solid Form)

3.10.1. Tin-Lead Solder (Solid Form) (New Standard Reference Material)

This standard is intended primarily for application in optical emission and x-ray spectroscopic methods of analysis. It is furnished in the form of discs $1\frac{1}{4}$ in in diameter and $\frac{3}{4}$ in thick.

The material for this standard was prepared as alloy 40B to specifications for solder contained in ASTM Designation B32 and in powder form, minus 200 mesh. [Note: A large portion of the powder material was sized between 200 and 325 mesh sieves, blended, analyzed, and is issued as SRM No. 127b primarily for checking chemical methods of analyzis.] A smaller portion of the powder material was converted to rods for this standard by cold compaction at 13 tons psi to billets, followed by cold extrusion.

SRM No.	Kind	Approx. wt. in grams	Price
1131	Solder (Sn40-Pb60)	135	\$45.00

ANALYSIS

SRM No.	Kind	Sn	Sb	As	Bi	Cu	Ni	Ag
1131	Solder (Sn40-Pb60)	39.3	0.43	0.01	0.06	0.011	0.012	0.01

3.12. Zirconium-Base Alloys (Material Out Of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
1214	Zircaloy-2E				

3.17. Hydrocarbon Blends

NOTE:

Standard samples of hydrocarbons of certified purity which were prepared by NBS in cooperation with the American Petroleum Institute are now available only as API Standard Samples from:

roleum Institute are now available only a API Samples Attn: A. J. Streiff Carnegie-Mellon University Schenley Park Pittsburgh, Pennsylvania 15213 Telephone: AC 412 621-2600 Ext. 531

Complete information concerning these standards may be obtained from the API Samples office.

3.18. Metallo-Organic Compounds (Renewal Of Earlier Material)

SRM No.	Kind (approximate wt. 5 grams)	Constituent determined	Price
1052b 1059b 1061b 1073b 1077a	Bis (1-phenyl-1,3-butanediono) oxovanadium (IV) Lead cyclohexanebutyrate Magnesium cyclohexanebutyrate Zinc cyclohexanebutyrate Silver 2-ethylhexanoate	$\begin{array}{c} V_{1} 3.0\% \\ Pb_{36.7\%} \\ Mg_{6.5\%} \\ Zn_{16.7\%} \\ Ag_{42.6\%} \end{array}$	

3.19. Microchemical Standards (New Standard Reference Material)

SRM No.	Kind	Constituents determined or intended use	Approx. wt. in grams	Price
148	Nicotinic Acid	N,C,H	2	\$18.50

3.20. Chemicals

3.20.1.	Primary	Chemicals	(Renewal	of	Earlier	Material)	
---------	---------	-----------	----------	----	---------	-----------	--

SRM No.	Kind	Approx. wt. in grams	Price
41a	Dextrose (glucose)	70	\$21.00

3.23. Certified Gas Standards

These standard reference materials are intended for the calibration of apparatus used for the measurement of various components in gas mixtures. Each sample is certified accurately within limits and is primarily intended to monitor and correct for long-term drifts in instruments used.

SRM No.	Kind	Constituents determined	Volume (liters at STP)	Price
$\begin{array}{c} 1601\\ 1602\\ 1603\\ 1604\\ 1605\\ 1606\\ 1607\\ 1608\\ 1609 \end{array}$	Carbon dioxide in nitrogen Carbon dioxide in nitrogen Carbon dioxide in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen	CO ₃ , 308 ±3 ppm CO ₄ , 346 ±3 ppm CO ₅ , 346 ±4 ppm O ₅ , 3 ppm O ₅ , 10 ppm O ₇ , 112 ppm O ₇ , 212 ppm O ₇ , 978 ppm O ₇ , 20. 95 mole percent	68 68 68 68 68 68 68 68 68 68	$$145.00 \\ 145.00 \\ 145.00 \\ 105.00 \\ 105.00 \\ 105.00 \\ 105.00 \\ 105.00 \\ 105.00 \\ 105.00 \\ 105.00 $

3.24. Biomedical Chemicals (New Standard Reference Material)

This standard reference material is intended to be used in clinical percent and pathological laboratories in their calibration of apparatus and methods, and to assist manufacturers of clinical products in meeting the chemical and physical specifications required for clinical chemicals.

SRM No.	Kind	Purity (%)	Approx. wt. in grams	Price
911	Cholesterol	99.4	0.5	\$25.00

3.25. High-Purity Metal Materials (New Standard Reference Materials)

These standards are intended to meet the urgent need of analysts working at trace level concertrations of elements in high-purity metal materials. The standards should serve not only for important benchmarks in calibration of equipment but also for development of new or improved methods and techniques in extending the sensitivity of detection in the determination of trace constituents in various materials by chemical, optical emission and solids mass spectrochemical, activation, and resistivity methods.

3.25.1. Platinum

These standards have been established to provide homogeneous reference materials for the analyses of high-purity platinum. Designated SRM No. 680, High-Purity Platinum and SRM 681, Doped Platinum, the materials are available in wire form, 0.020 inch (0.51 mm) in diameter, and are issued in two lengths, 4 in. (10.2 cm) and 39.4 in. (1.00 meter), designated L-1 and L-2, respectively. Both standards have been certified for a dozen impurity elements which in general range from a fraction of a part per million (by weight) in the high-purity platinum to about 10 in the doped platinum.

A Certificate of Analysis supplied with the standards gives the range of values reported which represents the present state of the art in the cooperating laboratories for the various trace determinations.

SRM No.	Kind	Price
680 L-1	High-Purity Platinum	\$35.00
680 L-2	High-Purity Platinum	185.00
681 L-1	Doped Platinum	35.00
681 L-2	Doped Platinum	185.00

ANALYSES (Concentration in Parts per Million by Weight)

SRM No.	Cu	Ag	Pd	Pb	Fe	Ni	
680 681	$\begin{array}{c} 0.1 \\ 5.1 \end{array}$	$\begin{array}{c} 0.1\\ 2.0 \end{array}$	0.2 6	< 1 12	0.7 5	<1 0.5	

ANALYSES—Continued (Concentration in Parts per Million by Weight)

SRM No.	Au	Mg	Zr	Rh	Ir	0	
680	<1	< 1	< 0.1	<0.2	<0.01	4	
681	9	12	11	9	11	7	

3.26. Analyzed Liquids (New Standard Reference Materials)

These materials are intended for use as standard reference materials for the analysis of liquids for individual elements.

SRM No.	Kind	Element determined	Percent	Amt. (ml)	Price
1621	Sulfur in residual fuel oil	S	$\substack{1.05\\2.14}$	100	\$25.00
1622	Sulfur in residual fuel oil	S		100	25.00

4.5. Radioactivity Standards

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (New Standard Reference Materials)

These Standard Reference Materials are contained in flame-sealed glass ampoules. The calibration radiation listed is the radiation for which the radionuclide is intended to be used as a standard.

SRM No.	Radionuclide	Calibration radiation	Approximate activity or emission rate at time of calibration (month, year)	Approximate weight of solution, g	Price
4221	Mercury-197	x-ray	Issued periodically, please write for details	5	
$4222 \\ 4223 \\ 4224 \\ 4225*$	Carbon-14 (n-hexadecane) Carbon-14 (n-hexadecane) Carbon-14 (n-hexadecane) Tin-113-Indium-113-	$\begin{array}{c} \mathcal{B}-\\ \mathcal{B}-\\ \mathcal{B}-\\ \mathcal{B}-\\ \gamma\end{array}$	$\begin{array}{c} 4 \times 10^{4} \text{ dps/g } (6/67) \\ 4 \times 10^{3} \text{ dps/g } (6/67) \\ 4 \times 10^{2} \text{ dps/g } (6/67) \\ 1 \times 10^{5} \gamma/\text{s/g } (4/68) \end{array}$	3 3 3 5	

*This standard can be issued only under the special licensing provisions of the Atomic Energy Act of 1954, and it is therefore required that a copy of the purchaser's current AEC By-Product Material License be on file at the National Bureau of Standards.

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (Renewal of Earlier Material)

SRM No.	Radionuclide	Price
4940-B	Promethium-1475×10 ^s dps/g (11/67)	\$55.00

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4944-D	Iodine-125	

4.5.4. Beta-Ray Gas Standard (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4935-B	Krypton-85	

4.5.5. Point-Source Gamma-Ray Standards (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4200	Cesium-137	

4.5.5. Point-Source Gamma-Ray Standard (New Standard Reference Material)

These standards are deposited between two layers of polyester tape approximately 0.006-cm thick and mounted on aluminum annuli, 0.8-cm wide and 5.5-cm outside diameter.

SRM No.	Radionuclide Approximate emission rate at time of calibration (month, year)		Price
4202	Cadmium-109	1×10 ⁵ γps (12/67)	\$88.00

4.5.6. Radium Rock Samples (Material Out of Stock-Discontinued)

SRM No.	Rock	Price
4984	Triassic Diabase	

4.5.8. Radium Gamma-Ray Solution Standards (Recalibrated as of September 1967)

These samples are contained in flame-sealed glass ampoules.

SRM No.	Nominal radium content (in micrograms)	Approximate weight, g	Price
$\begin{array}{r} 4955\\ 4956\\ 4957\\ 4957\\ 4958\\ 4959\\ 4960\\ 4961\\ 4961\\ 4962\\ 4963\end{array}$	$\begin{array}{c} 0.1\\ 0.2\\ 0.5\\ 1.0\\ 2.0\\ 5.0\\ 10\\ 20\\ 50\\ \end{array}$	555555555555555555555555555555555555555	\$58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00

4.6. Standard Rubbers and Rubber Compounding Materials

4.6.1. Standard Rubbers (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price
385b	Natural rubber	34,000	\$100.00

4.6.2. Rubber Compounding Materials (Renewal of Earlier Material and Price Revision)

SRM No.	Kind	Approx. wt. in grams	Price (Set of four)
370d 371e 372g 373e 375f 378a 383 384	Zinc Oxide	$20,000\\1,400\\500\\7,000\\7,000\\800\\800$	\$28.80 26.00 26.00 34.80 62.00 31.00 28.00 32.00

(Note: The above SRM's will be sold only in sets of four or multiples thereof.)

4.6.2. Rubber Compounding Materials (Material Temporarily Out of Stock)

SRM No.	Kind	Approx. wt. in grams	Price
382	Gas Furnace Black		

4.16. Internal Tearing Resistance Standard Paper

This standard is available for calibration of instruments used for the determination of the internal tearing resistance of paper according to methods ASTM Designation D689 and TAPPI Standard T414. Sufficient material is furnished in each unit to provide 40 or more measurements. Initial distribution is in a set of twelve packages, one package shipped at approximately monthly intervals. Packages are also available on a four month cycle, or by individual package. The tearing strength value of the material is approximately 40 g. The exact value will be given in the certificate accompanying the standard.

SRM No.	Kind	Price (Set of four)
704a	Internal tearing resistance of paper	\$51.20

(Note: SRM 704a will be sold only on a subscription basis in sets of four or multiples thereof.)

4.19. Turbidimetric and Fineness Standard

This standard is available to calibrate the Blaine fineness meter according to the latest issue of Federal Test Method Standard 158, Method 2101 or ASTM Designation C204; to calibrate the Wagner turbidimeter according to ASTM Designation C115; and to determine sieve residue according to ASTM Designation C430. Each unit consists of two sealed vials, each containing approximately 10 grams of cement.

SRM No.	Kind	Certification	Price
114L	Cement	Residue on No. 325 sieve, bronze cloth, wet method	\$48.00 Set of ten units.

4.21. Coating Thickness

These standards are intended to be used to calibrate coating thickness gages of the magnetic type for the measurement of the thickness of nonmagnetic coatings on steel, of nickel coatings on steel, or of nickel coatings on nonmagnetic substrate. The steel substrate has the magnetic properties of 1010 steel and the nickel coatings have the magnetic properties of an annealed Watts nickel electrodeposit free of cobalt and iron.

The certified thickness is within $\pm 5\%$ of the true thickness except for numbers 1301, 1302, 1303, and 1304, which have an uncertainty of ± 0.00003 in.

Sets of either two or four standards mounted on one card are available in the specific combinations that are requested most frequently, but only as listed below.

SRM No.	Kind	Price
1351 1352 1353	(Sets of Two Standards Mounted on One Card) 1307 and 1311 1332 and 1334 1335 and 1339	\$30.00 30.00 30.00
1361 1362 1363 1364 1365 1366 1367	(Sets of Four Standards Mounted on One Card) 1302, 1303, 1305, and 1307 1306, 1310, 1311, and 1312 1313, 1314, 1315, and 1316 1317, 1318, 1319, and 1320 1331, 1332, 1333, and 1334 1335, 1336, 1337, and 1338 1341, 1342, 1343, and 1344	$\begin{array}{c} 42.00\\ 42.00\\ 42.00\\ 42.00\\ 42.00\\ 42.00\\ 42.00\\ 42.00\\ \end{array}$

4.23. Permittivity Standards (Materials Temporarily Out Of Stock)

SRM No.	Kind	Price
5101 1504	1723 glass 7940 fused silica	

4.25. Carbon-14 Labeled Sugars

These standards are intended primarily to supply a series of carbohydrates, labeled with carbon-14, which are unavailable elsewhere. They are intended primarily for use as radioactive tracers in chemical and biochemical research.

4.25.1. Terminal Carbon-14 Sugars (Renewals of Earlier Materials-Replaces 1525)

SRM No.	Kind	Amount of Activity	Price
1526	D-Arabinose-1	200µCi	\$150.00
1527	L-Arabinose-1	60μCi 200μCi	$58.00 \\ 150.00$
1528	D-Galactose-1	60μCi 300μCi	$58.00 \\ 150.00$
1529	p-Galactitol-1	100µCi 200µCi	62.00 150.00
1530	p-Glucose-1	60µCi 300µCi	$58.00 \\ 150.00$
1531	p-Glucitol-1	100µCi 200µCi	62.00 150.00
1532	Lactose-1	60µCi 120µCi	58.00 150.00
1533	D-LVX0SP-1	40µCi 200µCi	62.00 150.00
1534	Maltosa_1	60µCi 120µCi	58.00
1525	D. Mannoso 1	40µCi	62.00
1590	D-Mannosc-1	100µCi	62.00
1537	D-Mannitol-1	200µCi	150.00
1538	L-Rhamnose-1	120µCi	150.00
1539	p-Ribose-1	$40\mu C1$ $60\mu C1$	62.00 58.00
1540	D-Xylose-1	150μC1 50μCi	62.00

4.25.2. Interior Carbon-14 Sugars (Renewals of Earlier Materials-Replaces 1550)

SKM NO. Kind Activity Pro	ce
1551 p-Arabinose-5. $120\mu Ci$ \$150. 1552 p-Galactose-2. $80\mu Ci$ 62 . 1553 p-Glucose-2. $80\mu Ci$ $140.$ 1554 p-Glucose-6. $20\mu Ci$ $56.$ 1555 p-Glucone-6. $200\mu Ci$ $156.$ 1556 p-Glucone-6. $200\mu Ci$ $156.$ 1556 p-Glucone-6. $200\mu Ci$ $156.$ 1556 p-Glucone-6. $200\mu Ci$ $156.$ 1557 p-Xylose-2. $60\mu Ci$ $58.$ 1558 Dextran NRC-1. $25\mu Ci$ $66.$ 1559 Dextran NRC-2. $150\mu Ci$ $60.$ 1650 Dextran NRC-4. $150\mu Ci$ $60.$ 1561 Dextran NRC-4. $150\mu Ci$ $60.$	00 00 00 00 00 00 00 00 00 00 00 00 00
4.25.3. Tritium Labeled Sugars (Material Out Of Stock-Discontinued)

SRM No.	Kind	Price
1575	Tritium-labeled carbohydrates	

4.27. Organic Chemicals (New Standard Reference Materials)

These materials are intended primarily for use in identifying and characterizing compounds resulting from organic or biochemical reactions. They may also be useful in reactions where limited amounts of these rare or high-purity organic chemicals are necessary for starting material.

SRM No.	Kind	Amount, mg	Price
1591	1,2-O-Isopropylidene-β-L-idofuranose	$15 \\ 50 \\ 250 \\ 500$	\$30.00
1592	1,2-O-Isopropylidene-β-D-threo-pentulose		30.00
1593	L-Inositol		30.00
1594	Quebrachitol		30.00

.

IMPORTANT NOTICE

Orders will be processed expeditiously if they are addressed to:

Office of Standard Reference Materials National Bureau of Standards Washington, D. C. 20234

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

November 1, 1968

QUARTERLY INSERT SHEETS FOR NBS MISCELLANEOUS PUBLICATION 260-STANDARD REFERENCE MATERIALS

Catalog and Price List of Standard Materials Issued by the National Bureau of Standards

New and renewal Standard Reference Materials continuously are being prepared while the supply of others may be exhausted. This Quarterly Addendum is issued to bring the Catalog and Price List up-to-date as of November 1, 1968.

1. General Information (ADDITIONAL)

1.4. Standard Reference Materials (SRMs) Transferred to Other Organizations

Under certain circumstances it is more practical for the National Bureau of Standards to transfer the custody and responsibility for the sale and distribution of a particular group of SRMs. Notification of such a transfer will normally be given under the appropriate section of this catalog. In one case, however, this was not done due to the reorganization of this catalog.

Hydrocarbon Blends

Standard samples of hydrocarbons of certified purity which were prepared by NBS in cooperation with the American Petroleum Institute are now available only as API Standard Samples from: API Samples Attn: A. J. Streiff Carnegie-Mellon University Schenley Park Pittsburgh, Pennsylvania 15213 Telephone: AC 412 621-2600 Ext. 531

Complete information concerning these standards may be obtained from the API Samples office.

CHANGES IN PURCHASE PROCEDURE

2.3. Terms and Shipping

2.3.1. Domestic Shipments

Shipments of material (other than hydrocarbons, organic sulfur compounds, and radioactive standards) intended for the United States, Mexico, and Canada are normally shipped prepaid parcel post (providing that the parcel does not exceed the weight limits as prescribed by Postal Laws and Regulations) unless the purchaser requests a different mode of shipment, in which case the shipment will be sent collect. It is impractical for the Bureau to prepay shipping charges and add this cost to the billing invoice. Hydrocarbons, organic sulfur compounds, rubber compounding materials, and radioactive standards are shipped express collect. No discounts are given on NBS Standard Reference Materials.

Shipment will be made from Washington, D. C., approximately two weeks after receipt of your purchase order. Prices as quoted are subject to change without notice. Prices in effect at time of shipment will be billed to the purchaser, and invoice will follow shipment.

2.3.3. Payment for Foreign Orders

The National Bureau of Standards does not reserve materials. Therefore, your order will be subject to adjustment of the numbers of each item ordered depending upon inventory levels upon receipt of your payment. Remittances in payment of foreign orders must be made payable to the National Bureau of Standards, and are required in advance. These remittances must be drawn on a bank in the United States and payable at the standard rate of U.S. currency. Prices as quoted are subject to change without notice. Prices in effect at time of shipment will be billed to the purchaser.

3. STANDARDS OF CERTIFIED CHEMICAL COMPOSITION

SRM No.	Kind	Price	SRM No.	SRM No. Kind	
20f	A.O.H. 0.4% C		166b 170a	Cr 19-Ni9 (carbon only) B.O.H. 0.05% C, 0.3% Ti	

3.1. Steels (Chip Form) (Materials Temporarily Out of Stock)

3.1. Steels (Chip Form) (Materials Out of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
129b	Steel, High Sulfur (SAE X1112)		156	Cr-Ni-Mo (NE 9450)	

3.1. Steels (Chip Form) (Revised Price 1/15/68)

SRM No.	Kind	Price	SRM No.	Kind	Price
335	B.O.H. 0.1% C (Carbon only)	\$22.00 (300/g unit)	337	B.O.H. 1.1% C (Carbon only)	\$22.00 (300/g unit)

ANALYSES

SRM No.	Kind	с
335	B.O.H. 0.1% C (Carbon only)	0.092
337	B.O.H. 1.1% C (Carbon only)	1.07

3.1.1. Steels (Powder Form) (New Standard Reference Material)

The powder form material is furnished in 100 g units and was prepared by a pre-alloyed powder metallurgical process including argon atomization and hydrogen annealing. The material has been sized through selected sieves to ensure satisfactory homogeneity, usually between 20 and 100 mesh.

Certificates of analyses, provided with these standards, give the composition as determined at the National Bureau of Standards, and most also include values obtained by industrial and other outside laboratories cooperating in the certification of the standards.

SRM No.	Kind	Price
163	Steel, 0.9C, 0.9Mn, 1.0Cr	\$35.00

SRM No.	С	Mn	Р	s	Si	Cu	Ni	Cr	Мо	N
163	0.933	0.897	0.007	0.027	0.488	0.087	0.081	0.982	0.029	0.007

ANALYSIS

3.1.1. Steels (Powder Form) (Renewal of Earlier Material)

SRM No.	Kind	Price
101f	Steel, Cr18-Ni10 (AISI 304L)	\$28.00

ANALYSIS

SRM No.	с	Mn	Р	s	Si	Cu	Ni	Cr	v	Мо
101f	0.020	0.085	0.007	0.008	0.88	0.029	10.10	18.47	0.038	0.008

ANALYSIS-continued

SRM No.	SRM No. Co		As	Sb	Ga	
101f	0.088	(0.0002)	(0.003)	(0.0009)	(0.004)	

3.2. Steels (Solid Form)

3.2.1. Special Ingot Iron and Low-Alloy Steels (Material Out of stock-Discontinued)

SRM No.		Pr	ice
	Kind		D800 series
802	B.O.H., 0.8C		

3.2.2. Ingot Iron and Low-Alloy Steels (Out of Stock-To Be Replaced With 1200 Series)

SRM No.	Wi-3	Pr	ice
5101 140.	Kina		1100 series
1162 1164	Low-alloy steel D (Modified TS 86B45) Low-alloy steel D (Modified 14B52)		

3.2.5. Ferrous Materials (For Oxygen & Nitrogen) (Material out of stock-Discontinued)

SRM No.	Kind	0 Percent ppm	N	Price
1041	Medium-carbon			

3.3. Cast Iron (Chip Form) (Renewal of Earlier Material)

SRM No.	Kind	Price	SRM No.	Kind	Price
5L	Cast Iron	\$35.50	6g	Cast Iron	\$31.00

	ANALISES								
SRM No.	C Total Graphitic		Mn	Р	s	Si	Cu		
5L 6g	$2.59 \\ 2.84$	$1.99 \\ 2.00$	0.68 1.06	0.280	0.123	$1.83 \\ 1.06$	1.01 0.50		

ANALYSES-Continued

SRM No.	Ni	Cr	v	Мо	Ti	As	N
5L 6g	0.086 .136	0.15 0.37	0.036 .06	0.020 ,035	0.05 .06	$< \substack{0.005 \\ .04}$	0.006

3.4. Cast Steels; Ductile Irons, and White Cast Irons (Solid Form) (New Standard Reference Materials)

These chill-cast SRMs were prepared for use in analytical control by rapid instrumental methods. Although often employed in x-ray spectroscopic analysis, they are particularly useful for calibrating vacuum optical emission spectrometers because they permit the determination of carbon, phoshorus, and sulfur in addition to the metallic elements.

These materials are furnished as chill-cast sections approximately 1¼ in. sq. and ½ in. thick. Details of the preparation and intended use of the standards are in the NBS Misc. Publ. 260-1, Preparation of NBS White Cast Iron Spectrochemical Standards by R. E. Michaelis and LeRoy L. Wyman. (See inside back cover for ordering instructions.)

(Values in parentheses are not certified, but are given for additional information on the composition.)

SRM No.	Kind	Price
1138 1139 1140 1141 1142	Cast Steel 1Cast Steel 2Cast Steel 2C	\$60.00 60.00 60.00 60.00 60.00

SRM No.	С	Mn	Р	s	Si	Cu	Ni	Cr	v	Мо	Ti
1138 1139 1140 1141 1142	$\begin{array}{c} 0.120 \\ .792 \\ 3.18 \\ 3.64 \\ 2.94 \end{array}$	0.43 .98 .725 .480 .18	0.053 .011 .0070 .072 .20	0.053 .013 .010 .020 .015	$\begin{array}{r} 0.34 \\ .85 \\ 1.92 \\ 1.11 \\ 3.33 \end{array}$	0.09 .40 .10 .21 1.02	$0.10 \\ .93 \\ .028 \\ .54 \\ 1.65$	0.12 1.96 0.030 .145 .053	0.020 .24 .030 .0090 .006	0.05 .51 .090 .05 .022	0.10 .013 .008

ANALYSES-continued

SRM No.	Al	As	Mg	Ce	Y
1140	(0.01)	(0.07)	0.019	(0.09)	(<0.002)
1141	(.005)	(.04)	.044	(.05)	.040
1142	(.09)	(.015)	.10	(.015)	.01

ANALYSES

SRM No.					K	ind						Price
1174a 1175a	White White	White cast iron (special 1) White cast iron (special 2)								\$60.00 60.00		
					ANA	LYSES						
SRM No.	С	Mn	Р	s	Si	c	Zu	Ni	Cr	v	Mo	Ti
1174a 1175a	3.46 1.98	0.180 1.62	0.168 .648	0.168 .018	$\begin{array}{c} 0.283\\ 3.47\end{array}$	0.17 1.50	70 0 0 2	.035 .99	0.01 2.41	8 0.00	$ \begin{array}{c} 3 \\ 2 \\ 1.49 \end{array} $	0.011 .35
				A	NALYSES-	-Cont	inued					
SRM No.	As	Sb	Sn	Co		Ге	В		Bi	Zr	Pb	Al
1174a 1175a	0.024 .19	0.17 .022	0.23 .025	0.009	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				(0.001) (.03)			
3.5. Steel-Making Allove (New Standard Reference Material)												

3.4. White Cast Iron (Solid Form) (Renewal of Earlier Material)

Material)

SRM No.	Kind	Approx. wt. in grams	Price
196	Ferrochromium (Low Carbon)	100	\$40.00

ANALYSES

SRM No.	C	Mn	Si	Cr	v
196	0.035	0.28	0.38	70.87	0.12

3.5. Steel-Making Alloys (Material Out of Stock-Discontinued)

SRM No.	Kind	Approx. wt. in grams	Price
66a	Spiegeleisen		

3.6. Nonferrous Alloys (Chip Form) (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price	SRM No.	Kind	Approx. wt. in grams	Price
127b	Solder (Sn40-Pb60)	150	\$28.00				

ANALISIS								
SRM No.	Kind	Sn	Sb	As	Bi	Cu	Ni	Ag
127b	Solder (Sn40-Pb60)	39.3	0.43	0.01	0.06	0.011	0.012	0.01

3.6. Nonferrous Alloys (Chip Form) (Material Out of Stock-Discontinued)

SRM No.	Kind	Approx. wt. in grams	Price	SRM No.	Kind	Approx. wt. in grams	Price
164a	Bronze, aluminum						

3.8. High Temperature Alloys (Solid Form) (Materials Out of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
1184 1190	19-9DL Udimet 500		1204 1205	Inco 713-B Inco 713-C	

3.10. Tin Metal (Solid Form)

3.10.1. Tin-Lead Solder (Solid Form) (New Standard Reference Material)

This standard is intended primarily for application in optical emission and x-ray spectroscopic methods of analysis. It is furnished in the form of discs 1¼ in. in diameter and ¾ in. thick.

The material for this standard was prepared as alloy 40B to specifications for solder contained in ASTM Designation B32 and in powder form, minus 200 mesh. [Note: A large portion of the powder material was sized between 200 and 325 mesh sieves, blended, analyzed, and is issued as SRM No. 127b primarily for checking chemical methods of analysis.] A smaller portion of the powder material was converted to rods for this standard by cold compaction at 13 tons psi to billets, followed by cold extrusion.

SRM No.	Kind	Approx. wt. in grams	Price
1131	Solder (Sn40-Pb60)	135	\$45.00

ANALYSIS

SRM No.	Kind	Sn	Sb	As	Bi	Cu	Ni	Ag
1131	Solder (Sn40-Pb60)	39.3	0.43	0.01	0.06	0.011	0.012	0.01

3.12. Zirconium-Base Alloys (Material Out of Stock-Discontinued)

SRM No.	Kind	Price	SRM No.	Kind	Price
1214 1215	Zircaloy-2E Zircaloy-2F				

3.16. Ceramic Materials (Material Temporarily Out of Stock)

SRM No.	Kind	Approx.wt. in grams	Price
78	Burned Refractory (70% Al _z O ₃)		

3.16. Ceramic Materials (Material Out of Stock-Discontinued)

SRM No.	Kind	Approx. wt. in grams	Price
102	Silica Brick		

3.18. Metallo-Organic Compounds (Material Temporarily Out of Stock)

SRM No.	Kind (approximate wt. 5 grams)	Constituent Determined	Price
1066	Octaphenylcyclotetrasiloxane		

SRM No.	Kind (approximate wt. 5 grams)	Constituent determined	Price
1051b 1052b	Barium cyclohexanebutyrate Bis (1-phenyl-1,3-butanediono) oxo-	Ba28.7%	\$26.00
1055b	Cobalt cyclohexanebutyrate	V13.0% Co14.8%	26.00
1057b	Dibutyltin bis (2-ethylhexanoate)	Sn23.0%	26.00
1059b 1061b	Lead cyclonexanebutyrate	Pb36.7% Mg 6.5%	26.00
1073b	Zinc cyclohexanebutyrate	Zn16.7%	26.00
1077a	Silver 2-ethymexanoabe	Ag42.6%	26.00

3.18. Metallo-Organic Compounds (Renewal Of Earlier Material)

3.19. Microchemical Standards (New Standard Reference Material)

SRM No.	Kind	Constituents determined or intended use	Approx wt. in grams	Price
148	Nicotinic Acid	N,C,H	$\frac{2}{2}$	\$18.50
149	o-Fluorobenzoic Acid	F		28.00

3.20. Chemicals

3.20.1. Primary Chemicals (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price
41a	Dextrose (glucose)	70	\$21.00

3.20.2. Intermediate Purity Chemicals (New Standard Reference Material)

SRM No.	Kind	Constituents determined or intended use	Approx. wt.	Price
728	Zinc	Values for Pb, Cu, Fe, Cd, Ag; Limits for Tl, Sn, and others	450 g	\$38.00

3.23. Certified Gas Standards

These standard reference materials are intended for the calibration of apparatus used for the measurement of various components in gas mixtures. Each sample is certified accurately within limits and is primarily intended to monitor and correct for long-term drifts in instruments used.

SRM No.	Kind	Constituents determined	Volume (liters at STP)	Price
$\begin{array}{r} 1601\\ 1602\\ 1603\\ 1604\\ 1605\\ 1606\\ 1607\\ 1608\\ 1609\\ \end{array}$	Carbon dioxide in nitrogen Carbon dioxide in nitrogen Carbon dioxide in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen Oxygen in nitrogen	CO ₂ , 308±3 ppm CO ₃ , 346±3 ppm CO ₃ , 384±4 ppm O ₄ , 3 ppm O ₈ , 10 ppm O ₈ , 10 ppm O ₈ , 12 ppm O ₈ , 212 ppm O ₈ , 978 ppm O ₈ , 920 ppm O ₈	68 68 68 68 68 68 68 68 68 68 68	\$145.00 145.00 105.00 105.00 105.00 105.00 105.00 105.00 105.00

These standard reference materials are intended to be used in clinical and pathological laboratories in their calibration of apparatus and methods, and to assist manufacturers of clinical products in meeting the chemical and physical specifications required for clinical chemicals.

3.24.1.	Certified	for l	Purity
---------	-----------	-------	--------

SRM No	Kind	Purity (%)	Approx. wt.	Price
911 912 913 914	Cholesterol	99.4 99.7 99.7 99.8	$0.5 \\ 25 \\ 10 \\ 10 \\ 10$	

3.24.2. Certified Regarding a Specific Property

SRM No.	Kind	Property	Value	Approx. wt.	Price
186 Ic	Potassium dihydrogen phosphate	pH	}7.41	30	\$30.00
186IIb	Disodium hydrogen phosphate	pH		30	25.00

3.25. High-Purity Metal Materials (New Standard Reference Materials)

These standards are intended to meet the urgent need of analysts working at trace level concentrations of elements in high-purity metal materials. The standards should serve not only for important benchmarks in calibration of equipment but also for development of new or improved methods and techniques in extending the sensitivity of detection in the determination of trace constituents in various materials by chemical, optical emission and solids mass spectrochemical, activation, and resistivity methods.

3.25.1. Platinum

These standards have been established to provide homogeneous reference materials for the analyses of highpurity platinum. Designated SRM No. 680, High-Purity Platinum and SRM 681, Doped Platinum, the materials are available in wire form, 0.020 inch (0.51 mm) in diameter, and are issued in two lengths, 4 in (1.02 cm) and 39.4 in (1.00 meter), designated L-1 and L-2, respectively. Both standards have been certified for a dozen impurity elements which in general range from a fraction of a part per million (by weight) in the high-purity platinum to about 10 in the doped platinum.

A Certificate of Analysis supplied with the standards gives the range of values reported which represents the present state of the art in the cooperating laboratories for the various trace determinations.

SRM No.	Kind	Price
680 L-1	High-Purity Platinum	\$ 35.00
680 L-2	High-Purity Platinum	185.00
681 L-1	Doped Platinum	35.00
681 L-2	Doped Platinum	185.00

SRM No.	Cu	Ag	Pd	РЬ	Fe	Ni
$\begin{array}{c} 680\\ 681 \end{array}$	$\begin{array}{c} 0.1 \\ 5.1 \end{array}$	$<^{0.1}_{2.0}$	$\begin{array}{c} 0.2 \\ 6 \end{array}$	$<^{1}_{12}$	$\begin{array}{c} 0.7 \\ 5 \end{array}$	$<^{1}_{0.5}$

ANALYSES (Concentration in Parts per Million by Weight)

ANALYSES—Continued (Concentration in Parts per Million by Weight)

(Concentration in Farts per Minion by Weight)

SRM No.	Au	Mg	Zr	Rh	Ir	0
680 681	$<^{1}_{9}$	$<^{1}_{12}$	$< {0.1 \\ 11.1}$	$<^{0.2}_{9}$	$< 0.01 \\ 11$	$\frac{4}{7}$

3.25.2. Zinc

These zinc metal standards have been prepared to provide research materials characterized with respect to trace impurity elements for use primarily in extending analytical methods for trace element determinations. Additionally, the materials are expected to serve in furthering research in physical measurement systems with increased correlation between physical and chemical characterization. Designated SRM No. 682, High-Purity Zinc, and SRM No. 683, Zinc Metal, the materials are available in the form of semicircular bar segments about 2¼ in in diameter, 1 in deep at mid-diameter, and % in long. The same starting material was used in the preparation of both standards; however, the High-Purity Zinc, SRM 682, was further purified by vapor distillation, zone refining, and degasification. The total impurity content of SRM No. 683 is estimated to be about 25 ppm (wt) whereas the total impurity content of SRM No. 682 is near 1 ppm (wt).

A Certificate of Analysis supplied with the standards gives the recommended values for the elements determined (Ag, Cd, Cu, Fe, and Sn in both standards, and additionally Pb and Tl in SRM No. 683), and estimated upper limits of concentration for all other elements detected as being present by either neutron activation analysis, spark source mass spectrometric analysis, or both.

SRM No.	Kind	Price
682	High-Purity Zinc	\$85.00
683	Zine Metal	50.00

ANALYSES

(Concentration in Parts per Million by Weight)

SRM No.	Cu	Cd	Fe	Ag	Sn	РЬ	Tl
682 683	0.042 5.9	(0.1) 1.1	(0.1) 2.2	(0.02) 1.3	(0.02) (0.02)	11.1	(0.2)

(Values in parentheses are not certified, but are provided for additional information on the composition)

3.25.3. High-Purity Gold

This standard has been established to provide a homogeneous reference material of high-purity gold. It is issued in two forms, wire and rod. The wire form, designated SRM 685-W, is 1.4 mm (0.055 in) in diameter and 10.2 cm (4 in) long. The rod form, designated SRM 685-R, is 5.9 mm (0.23 in) in diameter and 2.5 cm (1 in) long. The wire form is intended for applications such as spark-source mass spectrometry where the low level of impurities should make it useful for evaluating instrument and system blanks. The rod form is intended for use in other methods of characterization and in other scientific applications.

A Certificate of Analysis supplied with the standard gives the "state of the art" information on the composition, including values for Cu, In, Fe, O, and Ag, and estimated upper limits of concentration for 21 additional elements which were detected by spark source mass spectrometry.

SRM No.	Kind	Price
685-W	High-purity gold (wire)	\$50.00
685-R	High-purity gold (rod)	50.00

ANALYSES

(Concentration in Parts per Million by Weight)

SRM No.	Cu	In	Fe	0	Ag
685-W	0.1	0.007	0.3	[2]	[0.1]
685-R	.1	.007	.2	[<2]	[.1]

(Values in brackets are possibly subject to greater error since only one method of analysis was employed.)

3.26. Certified Analyzed Liquids (New Standard Reference Materials)

These materials are intended for use as standard reference materials for the analysis of liquids for individual elements.

SRM No.	Kind	Element determined	Percent	Amt. (ml)	Price
$1621 \\ 1622$	Sulfur in residual fuel oil Sulfur in residual fuel oil	S S	$\begin{array}{c} 1.05\\ 2.14\end{array}$	100 100	\$25.00 25.00

4.1. pH Standards (New Standard Reference Materials)

SRM No.	Kind	pH(S) (at 25°C)	Approx. wt. in grams	Price
191	Sodium Bicarbonate	}10.01	30	\$28.00
192	Sodium Carbonate		30	28.00

4.1.1. pD Standard (New Standard Reference Materials)

These materials are furnished as crystals for preparation of solutions of known deuterium ion concentration for the calibration and correction of pH indicating equipment to indicate pD data.

SRM No.	Kind	pD(S) Values	Approx. wt. in grams	Price
2186-I	Potassium Dihydrogen Phosphate	} 7.43	30	\$36.00
2186-II	Disodium Hydrogen Phosphate		30	36.00
2191	Sodium Bicarbonate	}10.74	30	36.00
2192	Sodium Carbonate		30	36.00

4.4. Calorimetric Standards (Price Revision)

SRM No.	Kind	Amount	Price	SRM No.	Kind	Amount	Price
39i	Benzoic acid, 26.434 abso- lute kilojoules	30 g	\$27.00				

4.5. Radioactivity Standards

4.5.1. Alpha-Ray Standards (Material Discontinued-Available Only as Test Fee Item)

SRM No.	Radionuclide	Approximate α -particle emission rate in 2 π geometry	Price
4902	Polonium-210		

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (New Standard Reference Materials)

These Standard Reference Materials are contained in flame-sealed glass ampoules. The calibration radiation listed is the radiation for which the radionuclide is intended to be used as a standard.

SRM No.	Radionuclide	Calibration radiation	Approximate activity or emission rate at time of calibration (month, year)	Approximate weight of solution, g	Price
4221	Mercury-197	x-ray	Issued periodically, please write for details	5	
4222	Carbon-14 (n-hexadecane)	β	4×10^4 dps/g (6/67)	3	\$50.00
4223	Carbon-14 (n-hexadecane)	B-	4×10^3 dps/g (6/67)	3	50.00
4224	Carbon-14 (n-hexadecane)	β	4×10^2 dps/g (6/67)	3	50.00
4225*	Tin-113-Indium-113	γ	$1 \times 10^5 \ \gamma / s/g \ (4/68)$	5	85.00

^oThis standard can be issued only under the special licensing provisions of the Atomic Energy Act of 1954, and it is therefore *required* that a copy of the purchaser's current AEC By-Product Material License be on file at the National Bureau of Standards.

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (Renewal of Earlier Material)

SRM No.	Radionuclide	Price
4940-B	Promethium-1475×10 ^s dps/g (11/67)	\$55.00

4.5.3. Beta-Ray, Gamma-Ray and Electron-Capture Solution Standards (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4944-D	Iodine-125	

4.5.4. Beta-Ray Gas Standard (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4935-B	Krypton-85	

4.5.5. Point-Source Gamma-Ray Standards (Temporarily Out of Stock)

SRM No.	Radionuclide	Price
4200	Cesium-137	

4.5.5. Point-Source Gamma-Ray Standard (New Standard Reference Material)

These standards are deposited between two layers of polyester tape approximately 0.006-cm thick and mounted on aluminum annuli, 0.8-cm wide and 5.5-cm outside diameter.

SRM No.	Radionuclide	Approximate emission rate at time of calibration (month, year)	Price
4202	Cadmium-109	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\$88.00
4205	Thorium-228		93.00
4206	Thorium-228		93.00

4.5.6. Radium Rock Samples (Material Out of Stock-Discontinued)

SRM No.	Rock	Price
4984	Triassic Diabase	

4.5.7. Radium Solution Standards (for Radon Analysis) (Renewal of Earlier Material) These samples are contained in flame-sealed glass ampoules.

SRM No.	Radium content (in grams) as of 1956	Approximate weight, g	Price
4950-В	Blank solution	100	\$76.00
4952-А	10 ¹⁰	100	25.00

4.5.7. Radium Solution Standards (for Radon Analysis) (New Standard Reference Material)

SRM No.	Radium content (in grams)	Approximate weight, g	Price
4953	10-8	20	\$76.00

4.5.8. Radium Gamma-Ray Solution Standards (Recalibrated as of September 1967)

These samples are contained in flame-sealed glass ampoules.

SRM No.	Nominal radium content	Approximate weight, g (in micrograms)	Price
$\begin{array}{r} 4955\\ 4956\\ 4957\\ 4957\\ 4959\\ 4960\\ 4960\\ 4961\\ 4962\\ 4963\end{array}$	$\begin{array}{c} 0.1 \\ 0.2 \\ 0.5 \\ 1.0 \\ 2.0 \\ 5.0 \\ 10 \\ 20 \\ 50 \end{array}$	ច ទ ទ ទ ឆ ទ ឆ ទ ឆ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ ទ	\$58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00 58.00

4.6. Standard Rubbers and Rubber Compounding Materials

4.6.1. Standard Rubbers (Renewal of Earlier Material)

SRM No.	Kind	Approx. wt. in grams	Price
385b	Natural rubber	34,000	\$100.00

4.6.2. Rubber Compounding Materials (Renewal of Earlier Material and Price Revision)

SRM No.	Kind	Approx. wt. in grams	Price (Set of four)
370d 371e 372g 373e 375f 378a 382a 383 384	Zinc Oxide	$\begin{array}{c} 2,000\\ 1,400\\ 800\\ 500\\ 7,000\\ 7,000\\ 7,500\\ 800\\ 800\\ \end{array}$	\$28.80 26.00 34.80 62.00 31.00 47.00 28.00 32.00

(Note: The above SRM's will be sold only in sets of four or multiples thereof.)

4.6.2. Rubber Compounding Materials (Material Temporarily Out of Stock)

SRM No.	Kind	Approx. wt. in grams	Price
388d	Butyl rubber		

4.15.1. Light-Sensitive Papers (Price Revision)

SRM No.	Kind	Unit of issue	Price
700b	Light-sensitive paper	Pkg. of 100 pieces	\$ 35.00
701b	Booklet of standard faded strips	Booklet	150.00

4.16. Internal Tearing Resistance Standard Paper

This standard is available for calibration of instruments used for the determination of the internal tearing resistance of paper according to methods ASTM Designation D689 and TAPPI Standard T414. Sufficient material is furnished in each unit to provide 40 or more measurements. Initial distribution is in a set of twelve packages, one package shipped at approximately monthly intervals. Packages are also available on a four month cycle, or by individual package. The tearing strength value of the material is approximately 40 g. The exact value will be given in the certificate accompanying the standard.

SRM No.	Kind	Price (Set of four)
704a	Internal tearing resistance of paper	\$51.20

(Note: SRM 704a will be sold only on a subscription basis in sets of four or multiples thereof.)

4.19. Turbidimetric and Fineness Standard

This standard is available to calibrate the Blaine fineness meter according to the latest issue of Federal Test Method Standard 158, Method 2101 or ASTM Designation C204; to calibrate the Wagner turbidimeter according to ASTM Designation C115; and to determine sieve residue according to ASTM Designation C430. Each unit consists of two sealed vials, each containing approximately 10 g of cement.

SRM No.	Kind	Certification	Price
114L	Cement	Residue on No. 325 sieve, bronze cloth, wet method6.8 percent Residue on No. 325 sieve, electroformed sheet (44.0 µm), wet method12.2 percent Surface Area (Wagner Turbidimeter)1820 cm ³ /g Surface Area (Air-permeability)3380 cm ³ /g Mean Particle Diameter (Air-permeability)5.64 µm	\$48.00 Set of ten units.

4.20. Surface Flammability Standard (Renewal of Earlier Material)

SRM No.	Kind	Unit	Price
1002b	Hardboard sheet	4 specimens 6 x 18 in	\$30.00

4.21. Coating Thickness or Coating Weight Standards

4.21.1. Nonmagnetic Coatings on Steel, Nickel Coatings on Steel, or Nickel Coatings on Nonmagnetic Substrate

These standards are intended to be used to calibrate coating thickness gages of the magnetic type for the measurement of the thickness of nonmagnetic coatings on steel, or nickel coatings on steel, or of nickel coatings on nonmagnetic substrate. The steel substrate has the magnetic properties of 1010 steel and the nickel coatings have the magnetic properties of an annealed Watts nickel electrodeposit free of cobalt and iron.

The certified thickness is within ± 5 percent of the true thickness except for numbers 1301, 1302, 1303, and 1304, which have an uncertainty of ± 0.00003 in.

Sets of either two or four standards mounted on one card are available in the specific combinations that are requested most frequently, but only as listed below.

SRM No.	Kind	Price
1051	(Sets of Two Standards Mounted on One Card)	
1351	1307 and 1311	\$30.00
1352	1335 and 1339	30.00
1000	(Sets of Four Standards Mounted on One Card)	30.00
1361	1302, 1303, 1305, and 1307	42.00
1362	1306, 1310, 1311, and 1312	42.00
1363	1313, 1314, 1315, and 1316	42.00
1364	1317, 1318, 1319, and 1320	42.00
1365	1331, 1332, 1333, and 1334	42.00
1366	1335, 1336, 1337, and 1338	42.00
1367	1341, 1342, 1343, and 1344	42.00

4.21.2. Gold Coatings on Nickel (New Standard Reference Materials)

These standards are suitable for calibrating thickness gages of the beta-backscatter type for the measurement of the thickness of gold coatings on nickel. The weight of gold per unit area is certified. Thickness equivalents are computed assuming a density of 19.3 g/cm³ for the gold coating. Each standard is a 15 mm square and is mounted on a card with the certified weight per unit area and equivalent thickness printed below it.

Sets of either two or four standards mounted on one card are available in the specific combinations that are requested most frequently, but only as listed below.

Gold assay: 99.9%, certified

SRM No.	Kind	Nominal Coating Wt. (mg/em ²)	Nominal Thickness (microinches)	Price
1375 1376 1377 1378	Gold Thickness Gold Thickness Gold Thickness Gold Thickness	$\begin{array}{c} 1.5\\3\\6\\17\end{array}$	$30 \\ 60 \\ 120 \\ 350$	\$43.00 43.00 43.00 43.00
1384 1385 1386 1399	Gold Thickness Gold Thickness Gold Thickness Gold Thickness	(Sets of Two Standards Mounted on One Card) 1375 and 1376 1376 and 1377 1377 and 1377 (Sets of Four Standards Mounted on One Card) 1375, 1376, 1377, and 1378)		68.00 68.00 68.00 118.00

4.23. Permittivity Standards (Materials Temporarily Out Of Stock)

SRM No.	Kind	Price
$\begin{array}{c} 1501 \\ 1504 \end{array}$	1723 glass 2¼ x 2¼ x ½ blank 7940 fused silica 2¼ x 2¼ x ¼ blank	

4.25. Carbon-14 Labeled Sugars (Materials-Discontinued)

4.25.1. Terminal Carbon-14 Sugars (1526 thru 1540)

4.25.2. Interior Carbon-14 Sugars (1551 thru 1562)

4.25.3. Tritium Labeled Sugars (1575 series)

4.27. Organic Chemicals (New Standard Reference Materials)

These materials are intended primarily for use in identifying and characterizing compounds resulting from organic or biochemical reactions. They may also be useful in reactions where limited amounts of these rare or high-purity organic chemicals are necessary for starting material.

SRM No.	Kind	Amount, mg	Price
1591	1,2-O-Isopropylidene- β -L-idofuranose	15	\$30.00
1592	1,2-O-Isopropylidene- β -D-threo-pentulose	50	30.00
1593	L-Inositol	250	30.00
1594	Quebrachitol	500	30.00

Other NBS Publications of Interest

- NBS Misc. Publ. 260-1, Standard Reference Materials: Preparation of NBS White Cast Iron Spectrochemical Standards, June 1964. 30 cents.
- NBS Misc. Publ. 260-2, Standard Reference Materials: Preparation of NBS Copper-Base Spectrochemical Standards, October 1964. 35 cents.
- NBS Misc. Publ. 260-6, Standard Reference Materials: Methods for the Chemical Analysis of White Cast Iron Standards, July 1965. 45 cents.
- NBS Misc. Publ. 260-7, Standard Reference Materials: Methods for the Chemical Analysis of NBS Copper-Base Spectrochemical Standards, October 1965, 60 cents. NBS Misc. Publ. 260-9, Standard Reference Materials: Half Lives of Materials Used in the

NBS Misc. Publ. 260-9, Standard Reference Materials: Half Lives of Materials Used in the Preparation of Standard Reference Materials of Nineteen Radioactive Nuclides Issued by the National Bureau of Standards. November 1965. 15 cents.

- by the National Bureau of Standards, November 1965. 15 cents. NBS Misc, Publ. 260-10, Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards II: Cartridge Brass and Low-Alloy Steel, December 1965. 30 cents.
- NBS Misc. Publ. 260-11, Standard Reference Materials: Viscosity of a Standard Lead-Silica Glass, November 1966. 25 cents.NBS Misc. Publ. 260-12, Standard Reference Materials: Homogeneity Characterization
- NBS Misc. Publ. 260-12, Standard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards III: White Cast Iron and Stainless Steel Powder Compact, September 1966. 20 cents. NBS Misc. Publ. 260-13, Standard Reference Materials: Mossbauer Spectroscopy Standard
- NBS Misc. Publ. 260-13, Standard Reference Materials: Mossbauer Spectroscopy Standard for Chemical Shift of Iron Compounds, July 1967. 40 cents.
- NBS Misc. Publ. 260-14, Standard Reference Materials: Determination of Oxygen in Ferrous Materials SRM 1090, 1091, and 1092, September 1966. 30 cents.
- NBS Misc, Publ. 260-15, Standard Reference Materials: Recommended Method of Use of Standard Light-Sensitive Paper for Calibrating Carbon Arcs Used in Testing Textiles for Colorfastness to Light, July 1967. 20 cents.
- NBS Spec. Publ. 260-16. Štandard Reference Materials: Homogeneity Characterization of NBS Spectrometric Standards IV: Preparation and Microprobe Characgerization of W-20% Mo Alloy Fabricated by Powder Metallurgical Methods. January 1969. 35 cents.
- Send orders with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage.

U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230

OFFICIAL BUSINESS

_

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE

•...