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PREFACE

Standard Reference Materials (SRM's) as defined by the
National Bureau of Standards are "well-characterized mate-
rials, produced in quantity, that calibrate a measurement
system to assure compatibility of measurement in the nation."
SRM's are widely used as primary standards in many diverse
fields in science, industry, and technology, both within the
United States and throughout the world. In many industries
traceability of their quality control process to the national
measurement system is carried out through the mechanism and
use of SRM's. For many of the nation's scientists and tech-
nologists it is therefore of more than passing interest to
know the details of the measurements made at NBS in arriving
at the certified values of the SRM's produced. An NBS series
of papers, of which this publication is a member, called the
NBS Special Publication - 260 Series is reserved for this
purpose

.

This 260 Series is dedicated to the dissemination of
information on all phases of the preparation, measurement,
and certification of NBS-SRM's. In general, much more de-
tail will be found in these papers than is generally allowed,
or desirable, in scientific journal articles. This enables
the user to assess the validity and accuracy of the measure-
ment processes employed, to judge the statistical analysis,
and to learn details of techniques and methods utilized for
work entailing the greatest care and accuracy. It is also
hoped that these papers will provide sufficient additional
information not found on the certificate so that new appli-
cations in diverse fields not foreseen at the time the SRM
was originally issued will be sought and found.

Inquiries concerning the technical content of this
paper should be directed to the author (s). Other questions
concerned with the availability, delivery, price, and so
forth will receive prompt attention from:

Office of Standard Reference Materials
National Bureau of Standards
Washington, D.C. 20234

J. Paul Cali, Chief
Office of Standard Reference Materials
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Standard Reference Materials:

STANDARD THERMOCOUPLE MATERIAL, Pt-67: SRM-I967

Robert L. Powell, Larry L. Sparks, and J. G. Hust

Cryogenics Division
Institute for Basic Standards
National Bureau of Standards

Boulder, Colorado 80302

Industry-wide standardization of thermocouple wire depends in part on

thermoelectric comparisons of commercial wires to a standard. In this
paper we describe a thermoelectric standard, designated Pt-67, which is

available in wire form as a Standard Reference Material (SRM 1967).
High purity platinum meets the requirements of a thermoelectric reference
material for temperatures from 77K (-197 °C) up to 2040K (1767 °C) .

Thermoelectric voltages, residual resistance ratios, temperature coef-
ficients of resistance, and chemical composition are reported for a high
purity, highly characterized lot of platinum that has been developed as
a thermoelectric standard, Pt-67. A review of the historical develop-
ment of the material is followed by characterization data on the mate-
rial and descriptions of the cryogenic and high temperature apparatus.
The important effects of impurities are also described. Recommendations
and precautions for usage of the reference material conclude the dis-
cussion.

Keywords: Chemical composition; effects of imperfections; high
purity platinum; high temperature thermoelectric measurements; low
temperature thermoelectric measurements; platinum; Pt 67; residual
resistivity ratio; Standard Reference Material; temperature coefficient
of resistors; thermocouple; thermoelectric standard; thermoelectric
voltage.

1 . INTRODUCTION

The ability to standardize thermocouple wires depends in part on
the availability of a reliable Standard Reference Material (SRM) .

In addition, commercial thermocouple materials must be well characterized
if excessive manufacturer-to-manufacturer, batch-to-batch, or spool-to-
spool variations are to be avoided. Because of the difficulty of ac-
curately characterizing thermocouple wires (especially base-metal alloys)
in terms of composition, they must be controlled primarily by direct
thermoelectric measurements. If these direct thermoelectric measurements
are made with respect to a SRM which, in turn, is compared to standard
reference data, then industry-wide uniformity is possible. The first
step of this program, to experimentally establish such standard ref-
erence data, has been completed at cryogenic temperatures by Sparks et
al. [1] and at high temperatures by Powell, et al. [2]. The next step,
the establishment of a SRM, is described in this Special Publication.

1



The electrical characteristics of high purity platinum have been
well established primarily because of platinum's extensive use in inter-
polating thermometers for measuring temperatures on the international
temperature scales of ITS-27 , IPTS-48, and IPTS-68. The platinum resistance
thermometer is used from 13.81K (-259.34 °C) to 630.74 °C and the Pt-10%
Rh vs Pt thermocouple is specified for higher temperatures from 630.74 to

1064.43 °C. Platinum is used by thermocouple wire manufacturers for

production control of commercial thermocouples and by standards lab-
oratories for calibrations because of its fundamental standing in the
temperature scales and because it is relatively easy to obtain as

reproducible, high-purity, well-characterized material.

Pure platinum and three alloys of platinum with rhodium are commonly
used for high temperature thermocouple thermometry. The three standardized
combinations are: (1) Platinum - 10% rhodium versus platinum (Type S)

,

(2) platinum - 13% rhodium versus platinum (Type R) , and (3) platinum -

30% rhodium versus platinum - 6% rhodium (Type B) . (It is conventional
in thermocouple thermometry to name the positive thermoelement first in

specifying thermocouple combinations.) Usually only pure platinum and
the Type S combination are used as reference materials for thermocouple
calibrations at temperatures above 0 °C.

The platinum - 10% rhodium thermocouple was developed and tested by
Le Chatelier almost a century ago. Because of his pioneer work, this
type of thermocouple was often referred to as the Le Chatelier couple.
In this country the ASTM E-20 and ISA-C96 standards for this thermocouple
type were formerly taken from NBS Circular 561 by Shenker et al. [3].

The reference tables given in NBS Circular 561 were based on functions
given by Roeser and Wensel [4] in 1933, as revised to conform with IPTS-
48. In Great Britain the British Standards Institution Table BS 1826
for this thermocouple type was based on the research by Barber [5] in
1950. There were considerable differences between the American and
British reference tables because of small differences in rhodium content,
in amount of iron impurities, in purity of platinum, and in realizations
of the temperature scales.

For many industrial applications, other noble metal thermocouples,
Types R and B described above, have preferable characteristics and have
replaced the Type S platinum - 10% rhodium vs platinum thermocouple.
However, Type S thermocouples remain the standard for determining
temperatures between 630.74 °C and the freezing point of gold (1064.43
°C). The official CIPM article (as amended in 1975) [6] details the
temperature scale definition in this range and includes specifications
on the limits of the thermocouple voltage. The other fixed point used
for determining the constants in the specified quadratic interpolation
formula of the thermoelectric voltage is the freezing point of silver,
961.93 °C. The primary and secondary fixed points of the IPTS-68 in the
temperature range suitable for platinum reference thermoelements are
given in tables 1 and 2, respectively. Modern methods of realizing
those fixed points were reviewed during the Fifth Symposium on Temper-
ature in 1971 [7]

.
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Table 1 Defining fixed points of the IPTS-68'

Equilibrium state

quilibrium between the liquid and vapor phases of oxygen (boiling point of oxygen)

quilibrium between the solid, liquid and vapor phases of water (triple point of water)'

quilibrium between the liquid and vapor phases of water (boiling point of water) b
'

c

quilibrium between the solid and liquid phases of zinc (freezing point of zinc)

quilibrium between the solid and liquid phases of silver (freezing point of silver)

quilibrium between the solid and liquid phases of gold (freezing point of gold)

Assigned value of International

Practical Temperature

T«s (K) '68 (°C)

90.188 -182.962

273.16 0.01

373.15 100

692 . 73 419.58

1235.08 961.93

1337.58 1064.43

aEntries ire limited to those suitable for use with platinum reference thermoelements. The assigned values of temperature are

for equilibrium states at a pressure pQ ;i standard atmosphere ( 101 325 N/m^). 1" the realization of the fixed" points small

departures from the assigned temperatures will occur as a result of the differing immersion depths of thermometers or the failure

to realize the required pressure exactly. If due allowance is made for these small temperature differences, thev will not affect the

accuracy of realization of the Scale. The magnitudes of these differences are given in section JII of the original article by

CIPM (6).

b The equilibrium state between the solid and liquid phases of tin (freezing point of tin) nas the assigned value of f 68= 231.9681 C

id may be used as an alternative to the boiling point of water.

c The water used should have the isotopic composition of ocean water, see section 111, 4, ot the orginal article by Ll^M (6).
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Table 2. Secondary reference points of the IPTS—68

Equilibrium state

International Practical

Temperature

Tn (K) '68 (° Q

Equilibrium between the liquid and vapor phases of nitrogen (boiling point of nitrogen)

p B Ttg

lg— =A+—+C lg—+DTM+ET^
po Ta

C= -2.3668, D-

(25)

,4=5.893 271, fl= -403 . 960 46K
,

£
,=72.5872X10-«K- 2

, T
q

= 77.344
for the temperature range from 63. 146 K to 84K.

Equilibrium between the liquid and vapor phases of oxygen

p B T6S

lg- =A+—+C \g—+DT„+ETtt

po Teg

.4=5.961 546, B= —467.455 76 K,

-0.014 281 5K

£
,

=50.8041X10~ 6 K-2
> T

Q
= 90.188K

To

C= -1.664 512,

(26)

D= -0.013 213 01 K_1
,

for the temperature range from 54.361 K to 94 K.

Equilibrium between the solid and vapor phases of carbon dioxide (sublimation point of carbon

dioxide)

j
= ^194 . 674+ 12 . 264^-— 1^

- 9 . 15^- - 1^
K (27)

for the temperature range from 194 K to 195 K.

Equilibrium between the solid and liquid phases of mercury (freezing point of mercury) b

Equilibrium between ice and air-saturated water (ice point)

Equilibrium between the solid, liquid and vapor phases of phenoxybenzene (diphenyl ether) (triple

point of phenoxybenzene)

Equilibrium between the solid, liquid and vapor phases of benzoic acid (triple point of benzoic acid)

Equilibrium between the solid and liquid phases of indium (freezing point of indium) b

Equilibrium between the solid and liquid phases of bismuth (freezing point of bismuth) b

Equilibrium between the solid and liquid phases of cadmium (freezing point of cadmium) b

Equilibrium between the solid and liquid phases of lead (freezing point of lead) b

Equilibrium between the liquid and vapor phases of mercury (boiling point of mercury)

*68 = ^356.66+55.552^—-1^-23.03^—-1^ +14.0^--!^ °
(28)

for p = 90 X 10 3 N/m 2 to 104 X 10 3 N/ms
.

Equilibrium between the liquid and vapor phases of sulphur (boiling point of sulphur)

*68= |^444 . 674+69 . 010^—- 1^
- 27 . 48^—— 1^ +19. 14^—-

1^
(29)

for/> = 90Xl0 3 N/m 2 to 104X10 3 N/m 2
.

Equilibrium between the solid and liquid phases of the copper-aluminum eutectic

Equilibrium between the solid and liquid phases of antimony (freezing point of antimony) b

Equilibrium between the solid and liquid phases of aluminum (freezing point of aluminum)

Equilibrium between the solid and liquid phases of copper (freezing point of copper)

Equilibrium between the solid and liquid phases of nickel (freezing point of nickel)

Equilibrium between the solid and liquid phases of cobalt (freezing point of cobalt)

Equilibrium between the solid and liquid phases of palladium (freezing point of palladium)

77.344 -195.806

194.674 -78.476

234. 314 -38 .8 36

273. 15 0

300.02 26.87

395 . 52 122.37

429.784 156.634

544.592 271.442

594.258 321.108

600.652 327 . 502

629.81 356.66

717.824 444.674

821.41 548. 26

903 . 905 630. 7 55

933. 61 660.46

1358.03 1084.88

1728 1455

176 8 1495

1827 1554

aEntries are limited to those suitable for use with platinum reference thermoelements. The assigned values of temperature are

for equilibrium states at a pressure pQ = i standard atmosphere ( 10 1 325 N/m2
)- In the realization of the fixed points small

departures from the assigned temperatures will occur as a result of the differing immersion depths of thermometers or the failure
to realize the required pressure exactly. If due allowance is made for these small temperature differences, they will not affect the

accuracy of -ealization of the Scale. The magnitudes of these differences are given in section III of the original article by

CIPM ffiV

bSee the original article by CIPM (6) for the effect of pressure variations on these freezing points.



Because of the differences between the British and American standards
for Type S thermocouples noted above, an international program was begun
several years ago to rectify the unsatisfactory disagreements and to es-
tablish a common set of standard reference tables. Unfortunately the

highest purity platinum was not used as the common negative reference
material for that program, so a small correction must be applied to

values for Type S thermocouples to reference them to the Pt-67 wire
described in this Special Publication. However, the correction is

automatically accounted for whenever any positive or negative thermo-
element is calibrated directly, or indirectly, against the standard
platinum described in this Special Publication. The program involved
cooperation of three national laboratories—the National Bureau of
Standards (USA) , the National Physical Laboratory (UK) , and the National
Research Council (Canada)—and seven manufacturers in Great Britain and
the United States. The thoroughly documented experimental details have
been published by Bedford et al. [8] and tables and functions have also
been published by Powell et al. [2].

Pt-67 (or SRM 1967) is the designation for the new platinum thermo-
electric reference standard material that is maintained by the Office of
Standard Reference Materials. It replaces the former standard, Pt-27,
which was used from 1922 up until January, 1973. A history of Pt-27 was
given by Wickers [9]. Pt-67 is a selected, highly-homogeneous, portion
of the chemical composition standard, SRM 680, that was set aside to be
developed as the thermoelectric standard. The historical development of
Pt-67 will be described in the next section. It should be noted that
Pt-27 stands for a batch number and Pt-67 stands for a date of prepara-
tion. Characterization of this reference material is described in
section 3. The low temperature and high temperature thermoelectric
measurements are briefly discussed in sections 4 and 5. The important
effects of impurities are given in section 6. The last section, 7,

includes recommendations for proper usage of this reference material,
Pt-67.

At temperatures below about 50K, the thermoelectric power of
platinum becomes strongly dependent on trace impurities. Thus platinum
is not recommended for standard reference thermoelectric measurements
below liquid nitrogen temperatures (77K) . An Ag-Au alloy, SRM 733, has
been established for use to 4K [l6] . The present paper describes
the work which has been done to certify and characterize high purity
platinum for use as a thermocouple reference material between 77K and
2040K (1767 °C).

2. HISTORICAL DEVELOPMENT

The predecessor of Pt-67 was Pt-27. The early development of the
latter was described by Wickers [9]. Early in 1922 a trial melt of
platinum, numbered as 27, was found to be thermoelectrically negative to
all previous specimens, and therefore by inference, to be more pure.
(Note that Pt-27 refers to a batch number, but Pt-67 refers to a date.)
Unfortunately, that trial melt only provided about 1 meter of wire for
thermoelectric calibrations. Over the years, it was consumed and other

5



batches of wire were used, though the reference values were still referred

to Pt-27. Gradually the apparent value of thermoelectric voltage drifted

until it was arbitrarily, by decree, revised back toward a value more
representative of highest purity material. A precise history of the

original material and its successors is difficult to trace, but in 1949
R. J. Corruccini reviewed the status of Pt-27 and recorded his comments
in a laboratory notebook [ll] . The situation was obviously undesirable
for a national standard, and new research on the preparation and
characterization of high purity platinum was begun some 10 years later.

Representatives of major platinum refiners were aware of the need
for reference material that was more pure and better characterized than
the earlier Pt-27. In fact, improved industrial and chemical methods
allowed the preparation and widespread usage of considerably better
platinum wire. On December 14, 1959, representatives of J. Bishop &

Co., Sigmund Cohn Corp.; Johnson, Matthey Co., Inc; and Engelhard
Industries, Inc. met in the offices of Johnson Matthey & Co. in New
York, to plan a joint cooperative test program on high purity platinum

[12]. A follow-up meeting was held on August 19, 1960, at Engelhard
Ind. , Inc. in New Jersey. Soon thereafter members of the National
Bureau of Standards actively entered the program. On September 1, 1960,
a conference was held at the Van Ness Street campus of the National
Bureau of Standards in Washington, D.C. That meeting was attended by
NBS and industry representatives, Mr. J. F. Swindells of NBS presiding.
Other NBS staff included F. R. Caldwell, J. P. Evans, R. Gilchrist, W. F.

Roeser, B. F. Scribner, and E. Wickers. H. J. Albert, H. C. Anderson,
Arnold J. Lincoln, and E. Zysk represented Engelhard Ind.; John Cochrane
represented Johnson, Matthey & Co.; and B. Brenner represented Sigmund Cohn

Corp. At that meeting it was agreed that the manufacturers would prepare a

high purity lot of material and would characterize it as well as they could.

Other chemical and physical characterization tests, in particular the high
temperature thermoelectric measurements, would be simultaneously carried out

at the National Bureau of Standards. Later R. E. Honig of the RCA Labora-
tories joined the program to provide mass spectroscopic analyses.

After considerable effort by many individuals and organizations,
the material was finally prepared and characterized and then certified
as a Standard Reference Material (SRM 680) on December 28, 1967. The
material for SRM 680 was prepared at Sigmund Cohn by induction melting
of high purity platinum sponge in a zirconium silicate crucible, and by
casting into a platinum-lined, water-cooled copper mold. The ingot was
trimmed, swaged, and drawn into wire using the utmost precautions to
minimize contamination. The best specimens, based on resistivity mea-
surements, from that lot were selected as thermoelectric standards and
were distributed to several national standardizing laboratories. R. E.

Michaelis of the OSRM suggested that because of the certification date,

the platinum should become known as Pt-67 . A select portion of the

chemical standard, SRM 680, has now become certified as a thermophysical
standard SRM 1967.
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Cooperating with the National Bureau of Standards in this extensive

analytical program were the following American and British manufacturers
and laboratories: Matthey Bishop, Inc.; Sigmund Cohn Corp.; Engelhard
Industries, Inc.; Johnson, Matthey Co., Ltd.; and RCA Laboratories.

3. MATERIAL CHARACTERIZATIONS

A high-purity lot of platinum, designated SRM 680 has received
extensive characterization under the direction of the Office of Standard
Reference Materials (OSRM) , National Bureau of Standards. The material
for Pt-67 was selected from SRM 680 platinum. SRM 680 platinum was
prepared as described in the previous section.

This lot of platinum wire, SRM 680, was found satisfactory with respect

to homogeneity and was subsequently certified for chemical composition.
The chemical composition of Pt-67, SRM 1967, is given in table 3 where the

data are the recommended values taken from the previous chemical certifi-
cate of analysis for SRM 680. The elemental analyses were made by the

following analytical methods: optical emission spectrography ,
spark source

mass spectrography (with isotopic dilution), polarography , spectrophoto-
metry, activation analysis, and vacuum fusion.

The temperature coefficient of electrical resistance between 0 and
100 °C is commonly used as an indicator of the quality of platinum used
in thermometry. The alpha coefficient is defined by:

R (100 °C) - R (0 °C)

01 =
R (0 °C)

_o
The IPTS-68 [6] requires an alpha coefficient of 3.925 x 10 /°C or
higher for platinum used as an interpolating thermometer. Two specimens
from the lot of Pt-67 wire were tested by each of four cooperating
laboratories (National Bureau of Standards, Engelhard, Johnson Matthey,
and Sigmund Cohn) and the values reported for the temperature coefficient
of resistance, a, ranged from 3.926 to 3.9275 x 10~3k~1. The average value
for ten determinations was 3.9269 (°±0.001i) x 10~3K-1 where the indicated
uncertainty is the 2 a value.

Each of the four cooperating laboratories listed above also deter-
mined the thermoelectric voltage of two specimens of Pt-67 against
representative specimens that were descendants of the former standard,
Pt-27. For measuring junction temperatures of 1200 °C and reference
junctions at 0 °C, values of -9 and -10 microvolts were reported. (Note
that many current comparisons are made at 1100 °C . ) As could be expected
from its greater purity and lack of iron and rhodium impurities, Pt-67 is

thermoelectrically negative with respect to Pt-27. The value determined by
the National Bureau of Standards, -9 microvolts, is used as a standard
correction. For a reference junction at 0 °C, thermoelectric voltage
versus temperature relationship of Pt-67 with respect to Pt-27 can be
approximated by:
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Table 3. Chemical Composition of Pt-67, SRM 1967

Element Recommended Range of

Value Values Reported
3

Concentration in Parts Per Million by Weight

Copper 0. 1 0. 087 - <1

Silver <0. 1 ( < 0. 06 - <1

Palladium 0. 2 ( < 0. 1 - <1

Lead <1 ( 0. 6 - 3

Iron 0. 7 ( 0. 6 - 2.6

Nickel <1 0. - <1

Gold <1 ( < 0. 1 - 8

Magnesium <1 ( < 0. 05 - 2

Zirconium <0. 1 ( < 0. 03 - 0.3

Rhodium <0. 2 0. 09 - <1

Iridium <0. 01 0. 007 - 0.01

Oxygen 4 3. 2 - 5.2

Platinum (remainder - 99.999 +%)

Range from one laboratory only.

1. This is the same chemical composition that was certified for SRM 680,

High-Purity Platinum, December 28, 1967.

2. Other elements are also contained in the standards; some of them such

as Al, Ca, Na, Si, and Sn may be certified at a later date.

3. The values listed are based on a consideration of the analytical

methods and results reported by cooperating laboratories. For all

elements in SRM 1967, either because a single method was used or

because of lack of agreement among methods, no estimate of accuracy

can be made at this time.
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^67-27
= " 7 - 5 X 10

"
3t

68

where AE is expressed in microvolts and t68 i-n degrees Celsius (1968)

.

This relation was found to be valid over the range -197 to +1200 °C to

within the estimated limits of experimental uncertainty (about ±1 uV
below 600 °C, increasing to about ±2 yV at 1200 °C). There was insuf-
ficient data available to substantiate the validity of the relation
outside this temperature range. However, data available from other
high-purity platinum wires support its extrapolation to higher tempera-
tures, but not to lower temperatures. At very low temperatures most
high purity metal wires become unduly sensitive thermoelectrically to

minute amounts of trace impurities. The quantitative results given
above were obtained with specimens of Pt-67 wire which had been electri-
cally annealed in air for 10 minutes at 1200 °C and slowly cooled to

room temperature.

The various methods for characterizing thermocouples at high tempera-
tures have been described in considerable detail by Roeser and Lonberger
113] . The two main high-temperature methods of characterization, thermo-
electric voltage and temperature coefficient of resistance, have moderate
sensitivity. A more sensitive measure of both the effective electrical
purity and the state of physical perfection is the residual resistance
ratio,

RRR _ R (273 K)
RRR " R (0 K)

The residual resistance R (0 K) is well approximated for most metals by
the resistance at liquid helium temperatures, about 4.2 K. For most
metal specimens, there is no further decrease of resistance below 4.2 K.

Bulk specimens may be characterized by the eddy current decay method
which has been described in a previous OSRM publication by Clark et al.

[14] . Thin wires may be characterized by the more simple four-probe
electrical resistance method. Values of RRR were determined from
liquid helium and ice point resistance measurements for five specimens
taken at equally separated points along the lot of Pt-67 wire. The
measured values are shown in figure 1. The average ratio for these
five measurements is 3496. Specimen preparation prior to these tests
consisted of cleaning in aqua regia for 12 minutes at 50 °C, rinsing in
distilled water, annealing in air at 600 °C for 1 hour, and slow cooling
to room temperature. It should be noted that this method is sufficiently
precise to show inhomogeneity variations not clearly observed utilizing
other methods.

The principal measurements made to characterize this wire as a
cryogenic thermoelectric standard were performed in cryogenic comparators
specifically designed to minimize handling and temperature cycling
damage to the standard and test wires. A description of these comparators
and their use is given in the next section.
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The melting point of high-purity platinum is used as one of the

secondary fixed points in the IPTS-68. Its assumed temperature is 1772

°C. However, Quinn and Chandler [15] of the National Physical Laboratory
in Teddington, England, have more recently carried out extremely well
controlled experiments on the melting point of platinum and have deter-
mined a value of 1767.6 ±0.3 °C. Their paper includes a detailed
discussion of the effects of possible impurities and systematic experi-
mental errors. Similar discrepancies and variations in realizing thermo-
dynamic temperatures from determinations of the IPTS-68 temperatures can

be significant for accurate thermophysical measurements. Those varia-
tions and the resultant precautions that are necessary are described
more fully in section 5.

For accurate thermometry, one must insure that the temperature
sensor truly measures the desired unknown temperature and is not affected
significantly by the external environment. Some of the necessary ex-
perimental precautions have been described by Hust, et al. [16] for low
temperatures and by Roeser and Lonberger [13] for high temperatures.
Estimates of errors caused by poor thermal insulation or tempering can
be calculated using standard heat transfer equations. An important
physical parameter necessary for those heat transfer calculations is the
thermal conductivity. Values of the thermal conductivity have been
compiled by Childs, et al. [17] for low temperatures and by R. W. Powell,
et al. [18] for high temperatures.

Values for other physical parameters of platinum are contained in
standard handbooks and in two corporate publications by International
Nickel Co. [19] and Engelhard Industries, Inc. [20].

4. LOW-TEMPERATURE THERMOELECTRIC MEASUREMENTS

For any calibration experiment, whether it be at high or low tem-
peratures, it is very important that the experimental method incorporate
sufficient redundancy for meaningful statistical analyses. Unfortunately,
this fundamental requirement is often overlooked. There are many ways
in which statistically important comparisons may be incorporated into an
experimental methodology. One of the simplest yet most powerful, was
suggested by Youden [21] some years ago. The general method has been
greatly expanded and made more rigorous utilizing the mathematical
concepts of network or graph theory and the specific use of connectivity
in those graphs [22,23]. Those developed methods have been incorporated
into our publications on thermoelectric thermometry (e.g., 1,2). They
were also used for the thermoelectric measurements reported in this
Special Publication. Because of their importance to the reliable and
accurate usage of this Standard Reference Material, an outline of their
application to a simple four object measurement is described next.

As a simple illustration of how graph theory is applied, consider
the situation where one is to intercompare some property of two different
objects where two other intermediate objects are also available.
Graphically this situation can be represented as in figure 2. In this
figure, the objects are represented by the vertices and the comparison
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of some property between objects is represented by the connecting lines.

For example, the comparison a might represent the difference in weight

between objects A and B. In applying graph theory to thermoelectric
measurements, the vertices represent the thermocouple test wires and the

connecting lines represent the thermal voltages generated by a given

temperature gradient. The thermoelectric voltage between A and C in

figure 2 would be determined by (1) measuring o, that is, a direct
measurement of the desired voltage, (2) measuring the thermal voltages a

and b and combining these data algebraically, and (3) measuring the
thermal voltages d and e and similarly combining these data. The algebraic
combination of a + b and d + e yield two additional independent deter-
minations of the desired voltage equivalent to a. The final determination
of the voltage (A-C) is given by:

e - = (A-C)= [2&+(a+b)+(d+e)]/b. (1)
oaLo

The measurement a is given a weight of 2, since it involves only one ex-

perimental determination, whereas the other two measurement paths both
require two readings. The estimate of the variance for (A-C) is given
by

:

^ealc-^l
2

}'
3

- < 2 >

v
The advantages of taking data in this way are that it randomizes po-
tentiometer dial or multimeter output errors, eliminates any subconscious
operator prejudice, and randomizes spurious voltages in the lead wires.
The magnitudes of a, b, c, d, and e usually vary considerably; this means
that the potentiometer dial or multimeter settings are also considerably
different. Any setting errors which exist are randomized by this method.
These random errors would then appear as scatter in the data and would
be accounted for in the variance calculated from equation 2.

Since the potentiometer or multimeter readings vary a great deal
and the order of readings may be random, the chance for subconscious
operator prejudice is minimized. In order to influence the readings in
a systematic way, the operator would have to algebraically combine very
different numbers which are not necessarily taken in adjacent readings.
This is not done subconsciously, even on the simple four object system
being considered here. On the other hand, if multiple readings are
taken of the same quantity, there is a strong tendency to produce data
which are biased in a systematic way that falsely reduces the apparent
imprecision.

Spurious voltages in the extension wires are also randomized by
using the graph theory method : Consider a three wire system such as
that which would result if the D wire were eliminated from figure 2.

Assume the number we actually want is (B-C) . This is the thermoelectric
voltage generated by the thermocouple made from materials B and C when
a thermal gradient, AT = Tj_ - T2, exists. The number which is actually
measured is b which includes the spurious voltages generated in the

12
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extension wires to both B and C. If the spurious voltages 6^ and 6
^

are zero or are at least known, then the true value of (B-C) may be
determined. The voltages 5_. and 6_. can be determined by an isothermal

test where T = T . When T = T~, (B-C) = 0 and b = (B-C) + 6 . + 6 .
=

6 r* _L Z _i_ Z Ox*

B% C%

However, this determination of the spurious voltages is valid only when
the thermal gradients in the system are the same as when the isothermal
test was made. In many experimental situations this approach to the

spurious voltage problem is not practical. The only other solution is

to randomize these voltages so that they appear as scatter in the ex-
perimental data and are therefore included in the estimate of the

variance, s^. The graph theory approach does allow these voltages to be
randomized. Suppose, for instance, that we wish to determine (B-C) in
figure 2. The voltages a3 b 3 and a would then be measured.

a = {B-A)+ 8Ai+8Bl

b = (B-C)+ 8B2+8 C i

C=(A-C)+ 8A2+8C2

26+a+c
&dc=[&+*(a+c)]/3/2

^calc =

3

[2(B-Q+(B-A)+ (A-Q]

+

3

If the spurious conditions are stable, i.e., the measurements are made
rapidly enough that the system gradients haven't changed,

then 8a = 8ai = 8a2, 8b = $bi— 8B 2, and 8c= Sci = 802

and ocaic= g

+§8A+8B+ 8 C .

If the more common procedure of multiple readings of b were used, b would
be measured, say, 3 times:

b l = (B-C) 1
-\-8B+8c ,

b 2 = (B-C) 2+8B1+8cu

6 3 = (5-C) 3+6b 2 +5c2, and

l _ [(B-Qi+(B-Q a+(B-Q i ]
"calc — ~

1

8B+ Scrh 8bi+ 5ci+ 8B2+ 8 C2

3

Again, assume stable spurious conditions for the time required to determine
b three times. Then 8b = 8Bi=8b2, 8c=8c1= 8C2, and beaic =(B-C)i,2,3+8s+8c.
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The tendency to randomize dial errors and to eliminate operator

prejudice is illustrated by comparing hQa i0 from the graph theory method

and from the multiple readings method. More dials or output readings are

probably changed in determining (B-C) 3 (B-A) , and (A-C) than are changed

in determining (B-C) three times. The subconscious operator prejudice
is reduced by having to combine the two readings (B-A) and (A-C) to get

the independent determination of (B-C) .

The third and perhaps the most important advantage of the graph
theory approach to the measurement of thermocouple outputs is the ran-
domization of spurious voltages in the extension wires. These errors

would not be accounted for, i.e., they would introduce a systematic
bias, if the multiple reading approach is utilized. This is shown in

the calculation of the estimate of variance for the two methods

:

now assume that the only cause of variation is the spurious voltages

:

First by graph theory:

[2(B-Q + (B-A)+ (A-Q]
3

+
3

S2
j..,.= {2(6caic-6)

2+[6c.io-(o+c)] 2
}/2;

!

6oa.c=l/3(5A-+ ^-5c0 2

where 8A '= 8Ai+8A 2,

8b'= 8bi~ and

8c = 8ci~ 8c2-

If spurious conditions are constant, §B, =o, 5c =0 and S2
bc&lc = 1/35^,2.

+ fta+ 5c~\- 831+801+ 8b2+8c2
3

S2
60al0 = { (6calo- bi)

2+ (feealc~ 6S)
2+ (kale~ &l)

2
} /2

again assuming all scatter is due to spurious voltages, e.g

(B-C) i = (B-C) 2 = (B-C) 3) then

18 S2
i

= [—2(8b~\- 8c)-*r 8bi~\- 8ci~\- 8b2~\~ 802]

+ [-2(8bi+8ci)+ 8b+Sc+8b2+8c2] 2

+ [-2(8b2+8 C2+8b+8c+8bi+8ci] 2
.
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Now if the spurious conditions are constant

= = ^o. 6 = 6 = 6 „, and S? . =0.
B Bl B2 c cl c2 bcalc

The spurious voltages do not appear in the estimate of the standard
deviation when the multiple measurement method is used. They are truly
present but unaccounted for until some estimate of systematic error is

introduced.

In other words, the calculated standard deviation using graph theoretical
methods is usually larger than that obtained using simply repeated mea-
surements. However, it is much more representative of the true experi-
mental uncertainty. Likewise, calculated values for quantities such as

the voltages a, b, or c are more representative of their true mean
values. The method also has the twin advantages of spot-lighting erroneous
readings when they do occur and allowing substitution values to be in-
serted into the data sets when some value is obviously in error or is lost.

4.1. Thermocouple comparator

The thermocouple comparator to be discussed here is basically a

mechanical support which allows thermoelectric intercomparison between
standard reference wires and a test wire without damaging the reference
wires. Figures 3a and 3b show the essential details of the design used
here; complete details are given in a preceding publication in this series

[10] . The two tubes containing the test and standard specimens are dipped
into reference baths, e.g., liquid helium, liquid nitrogen, ice slush
mixture, etc. For the thermoelectric results presented below, Table 4, the
two legs were inserted into liquid nitrogen boiling at atmospheric pressure
and an ice slush and water mixture at 0 °C. Figure 4a is an electrical
schematic of a two wire differential thermocouple. Figure 4b extends the
same configuration to a four wire system such as the one we use in our
thermoelectric comparators. All thermoelectric combinations are accounted
for in the six measurements indicated in this figure. Using graph theory
[1] and thermoelectric additivity principles [24,25], one can get four
independent determinations of any thermocouple pair; e.g., if is
needed, each of the following equations represent a nonredundant , inde-
pendent determination of E,,,.. :

(6) E
T1

= E
T1

(3) E
T1

= E
T2

" E
12

(3) E
T1

= F -
N?3

E
13

(2) E
T1

= E
T3

" E
12

-
"
E
23

The relative weighting, assuming the same variance for each measured
voltage, is shown in parenthesis before each equation. The average
value of E is given by:
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Fig. 3a. Details of thermocouple comparator (pictorial view).
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•Electrical
connector

Test

wire

Expansion

loop -

—

Reference wires

( Separate Tubes)

-

6' Long, 32 AWG copper

Instrumentation wires

in one flexible tube.

Reference wires

Test wire

(Separate Tube)

All wires in

separate tubes.

Wound on plastic

collar (one layer)—

^

Wires wound on plastic collar in seperate

layers with plastic tape between layers

Wires soldered into brass

with Wood's metal ( after assembly is

complete).

Junctions soldered and insulated from

each other and brass by layers of plastic

tape secured by wire bands

Low melting

point solder

( both ends)

Fig. 3b. Details of thermocouple comparator (wiring diagram).
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Table 4. Thermoelectric Voltage of Pt-67 versus commonly used
thermocouple wire between liquid nitrogen (76 K) and
the ice (273.15 K) fixed point.

Thermocouple

KP or EP** vs Pt-67
TP** vs Pt-67
Pt-67 vs TN**
Pt-67 vs KN**
Pt-67 vs SRM 733tt

EMF, y V*t

3401.0
207.6

5350.0
2445.1
221.9

+

+

0.5
0.5
0.5
0.5
0.5

Sensitivity at 76K (uV/K)

5.4

4.3
20.4
10.4
6.2

The data for Pt-67 versus KP, KN, TP, and TN were computed from earlier
data by Sparks et al. [1] and more recent comparisons of the thermoelectr
voltage of Pt-67 and the platinum wire used in [1]. The value for Pt-67

versus SRM 733 was obtained by direct comparison in the Pt-67 comparator
discussed in this paper.

fThe uncertainties given are twice the estimated standard deviations.

** EN or TN A copper-nickel alloy, constantan, Cupron [40], Advance
[41], Thermo Kanthal JN [42].

KP or EP A nickel-chromium alloy, Chromel [43], Tophel [40], T-l

[41], Thermo Kanthal [42].

KN A nickel- aluminum alloy, Alumel [43], Nial [40], T-2 [41],

Thermo Kanthal [42]

.

TP Copper, usually electrolytic tough pitch.

The use of trade names does not constitute an endorsement of any manu-
facturer's products. Any materials manufactured in compliance with
established standards are equally suitable.

tt SRM 733 is a Ag_-28 at % Au alloy,

in [101.

This SRM is described in detail
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E
T1

= [6En + 3(E
T2

- E
12

) + 3(E
T3

- y + 2 (E^ - E
12

- E^l/U.

It is suggested that similar data be taken with different immersion
depths so that different sections of the wires are exposed to the tem-
perature gradient at the liquid-gas interface. Also, repeat data should

be taken with the legs of the comparator reversed in the fixed point

baths. These redundant data are necessary to obtain a value for the
degree of scatter (variance) caused by spurious signals.

The determination of the thermoelectric voltage of a test wire with
respect to the standard reference thermocouple wire is summarized below:

(1) Record the six voltages illustrated in figure 4b.

(2) Repeat step 1 for three immersion depths to randomize spurious
voltages

.

(3) Repeat (1) and (2) with comparator reversed in the baths.

(4) Compute the most probable values of the six sets of six voltages
using all of the redundancy in the data, both for the forward
and reverse directions.

(5) Compute the average voltage for the test wire with respect to

the reference standard:

E
TR

= (En + EK + E
T3y 3 + (En + EM + ^) R

/3]/2.

Also calculate the variance of this voltage. This variance is based
upon the random scatter indicated by the redundancy of these measurements

The values E-^* E^3, and E23 , similarly determined, are used to

detect possible systematic changes among the reference wires. Control
charts of E^2» ^13 » anc^ E23 wiH be maintained to detect such changes in

the comparators. To further reduce the possibility of undetected changes
in reference wires, three comparators have been built. The first or
working standard will be used for routine testing; the second or primary
standard will be used occasionally for comparison to the working com-
parator. The third comparator will be considered as a replacement for
either of the others. Occasional intercomparisons will be made among
all three comparators. Figure 5 illustrates the present intercomparisons
of these three comparators between 76 and 273 K. These measurements
were made on a common transfer wire; the transfer wire was annealed at
1100 °C before each measurement.

The procedure used to prepare the Pt-67 wires for test in the
thermoelectric comparators is as follows: degrease the wire in freon,
rinse in distilled water, and then anneal. The effect of annealing
temperature was investigated by performing thermoelectric comparisons on
wires annealed at 400 °C, 1100 °C, and 1200 °C. The anneals at 1100 °C

and 1200 °C are obtained by passing on electrical current through the

22



specimens and thereby resistance heating them. A thermoelectric dif-

ference of 0.41 yV was observed between the wires annealed at 400 and

1100 °C. No difference was observed between the 1100 and 1200 °C anneals.

The 1100 °C anneal, adopted for use to prepare this thermoelectric
standard, is as follows: resistance heat in air to 1100 °C, hold for

four minutes, cool to room temperature in about 2.5 minutes. Slow

cooling of the wire is necessary in order to minimize quenching in

vacancies. This annealing procedure produces wires which are indis-

tinguishable from each other and are apparently strain free since they

are thermoelectrically the same as wires annealed at 1200 °C for a

significantly longer time.

The five wires which were chosen to represent the entire lot of Pt-
67 and were previously characterized by RRR measurements (see figure 1)

were compared to the standard reference wires in the working comparator
between 76 and 273 K. These results, illustrated in figure 6, show that

no systematic variation in thermoelectric voltage is detectable along
the entire length of Pt-67. Variation of the Seebeck coefficient (dE/dT)

caused by material variability is thus within the measurement error of

the system, approximately 0.002 uV/K.

The cryogenic comparators were designed and will be maintained in

the Cryogenics Division by one of the authors (L.L.S.).

5. HIGH-TEMPERATURE THERMOELECTRIC MEASUREMENTS

The high-temperature comparator is very similar in concept to the

low-temperature one described in the previous section. The schematic
drawing, figure 7, shows the apparatus designed and used by members of

the Temperature Section, Heat Division of the National Bureau of Standards
in Gaithersburg , Maryland. The main conceptual differences in the
techniques are that the high-temperature method uses repeated measurements
rather than graph networks for statistical redundancy and the high
temperature furnace has variable temperatures which must be determined
by reference thermocouple thermometers. The more apparent differences
are that the high temperature specimens are held horizontally rather
than vertically and the electrical switching circuit is different because
of the different type of data redundancy.

The high temperature methodology is also, quite naturally, very
similar to that used at low temperatures. The platinum test wires are
washed with ethanol and are not etched with any cleaning acid. They are
then annealed at 1200 °C in air for 10 minutes, cooled over a 1 minute
period to 750 °C where they are held for 30 minutes. If the material is

part of a Type S or R thermocouple, it is annealed first at 1450 °C for
45 minutes and then cooled to 750 °C and held there for 30 minutes. In
both circumstances the wire is heated electrically by an ac current that
flows through the wires from temporary clamps attached near the ends of
the wires. The annealing is performed in a cabinet to reduce the

effects of variable air currents and possible dust contamination.
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The annealed wires, usually about one meter long, but at least 60

cm, are threaded through single bore high purity alumina tubes that are

about 40 to 50 cm long. Care must be exercised during threading to mini-

mize the effects of work hardening. At least one Type S positive thermo-

element (Pt-10% Rh) is also assembled with each test batch of platinum

thermoelements so that the test temperature can be determined. Up to

six tubes and wires (including any Type S or Type R positive material
being calibrated at the same time) are then inserted into a larger (18

mm o.d.) alumina tube for further protection. All of the test wires and

the temperature reference thermoelement are welded together at the end

that will be immersed in the furnace. In order to reduce the effects of

variable temperature gradients and cooling of the test junction, the
wires are always immersed at least 25 to 30 cm into the furnace and the
welded junction is placed near the center of the furnace. Because of

the welded junction, about 2 to 6 mm of the reference platinum material
is consumed for each calibration run. The end of each wire opposite to

the welded junction is immersed in a reference bath and joined to a wire
that goes to the switch and potentiometer system. The reference bath is

a carefully prepared ice-water mixture contained in an insulated glass
vessel. Each test wire and its connecting lead wire are inserted in a

separate small glass tube that contains some mercury in the bottom for

electrical contact. Each tube with its wires is inserted into the ice

bath reference and a cover is placed over the reference bath to minimize
the effects of radiation and air convection.

Calibration tests are run at many different temperatures, but the most
common are near the freezing points of antimony, silver, and gold (630.74,
961.93, and 1064.43 °C respectively). It usually takes about one-half hour
for a suitable thermal equilibrium to be obtained by the furnace and ther-
moelement system. The test temperature is determined by the incorporated
calibrated Type S thermocouple as measured by a potentiometer system. When
the calibrated thermometer indicates the proper temperature, the voltage of

the test thermoelements is measured by another potentiometer system.

As indicated above, a small amount of the reference platinum thermo-
element is consumed for each calibration run. In order to prevent the
complete depletion of the primary Pt-67 (SRM 1967) material,, secondary
reference wires are used for the routine calibrations. The secondary
materials calibrated against the primary lot. In this manner the primary
material should be maintained for many years, yet all calibrations are
traceable to the primary Pt-67 material. The primary reference material
is maintained by G. W. Burns of the Temperature Section in NBS, Gaithersburg.

The International Practical Temperature Scale of 1968, labeled IPTS-
68, uses a platinum-10% rhodium versus platinum thermocouple (Type S) as
the interpolating standard for the temperature range from the antimony
freezing point, 630.74 °C, to the gold freezing point, .1064.43 °C, with
the silver freezing point, 961.93 °C, serving as an intermediate defining
fixed point [6]. Discussions of the development of that scale were
given by Preston-Thomas [26] and Bedford [27] at the Fifth Symposium on
Temperature in 1971. Graphs of the thermoelectric voltage, Seebeck
coefficient and its temperature derivative for the Type S thermocouple
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are shown in figures 8, 9, and 10 (from reference 2). The circles
indicate fixed point values, not experimental measurements. It is seen
in Fig. 10 that the Seebeck derivatives in the temperature range from
630.74 to 1064.43 °C do not fit smoothly with those in the ranges above
and below. Those deviations are caused by the arbitrary assignment in

IPTS-68 of quadratic behavior to the thermoelectric voltage of Type S

thermocouples

.

It could well be expected that those discontinuities in slope at

630.74 and 1064.43 °C and the imposed quadratic behavior within the same

temperature range would lead to observed differences between IPTS-68 and

other thermodynamic or interpolating scales. Such a phenomenon has been
observed and is becoming well documented. Quinn, et al. [28] and Bonhoure

[29] have compared the thermoelectrically maintained IPTS-68 to radiation
photoelectric pyrometer measurements. These authors clearly observe
significant differences, becoming as large as 0.5 °C near 800 °C. To a

lesser extent, the radiation measurements of Bonhoure [29,30] also
question the thermodynamic temperature assigned to the silver and gold
freezing points.

At the lower temperature reference point, 630.74 °C, the platinum
thermoelectric scale joins the scale where interpolated temperatures are
obtained by platinum resistance thermometers. The use of such thermometers
has been exhaustively described in the recent Monograph by John Riddle
and his colleagues of the Temperature Section [31] . Evans and Woods
[32] have extended platinum resistance measurements from the antimony
freezing point up to the gold point, 1064.43 °C. They also, as could be
expected, find significant differences between the IPTS-68 temperatures
and those derived by assuming a smooth variation of the electrical
resistance of platinum. Their observed deviations, up to about 0.5 °C,

agree qualitatively, and even semi-quantitatively , with those reported
later by Quinn, et al. [28] and Bonhoure [29] using the completely
different radiation technique.

The differences between temperatures based on the IPTS-68 platinum
thermoelectric scale and the true thermodynamic scale can become important
for highly accurate thermometric or thermodynamic measurements. These
considerations will, however, not affect the use of platinum as a reference
thermoelement for other thermocouple materials besides Types S and R
platinum-rhodium alloys. Articles by Jones [33] and by McLaren and Murdock
[34] describe in great detail the precautions one must make to obtain
highly accurate thermoelectric measurements with platinum materials at high
temperatures

.

6. EFFECTS OF IMPERFECTIONS

The thermoelectric voltage of platinum, like most other electronic
properties of pure metals, is more sensitive to impurities at low tempera-
tures than it is at high temperatures. For that reason, pure platinum is
not suitable as a thermoelectric Standard Reference Material below about
50 K. Therefore, SRM 1967 is not recommended for calibrations below the
liquid nitrogen normal boiling point, 77.348K or -195.802 °C. In its
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place the Ag-Au alloy, SRM 733, is recommended for use down to the liquid

helium normal boiling point, 4.2K. Deviations of the voltages of three

standard Pt-67 specimens are shown in figure 5 and of five specimens in

figure 6. It is seen that the deviations range from 0.1 to 0.5 yV for

extremely carefully handled specimens with junctions at the ice point and

at the liquid nitrogen normal boiling point. More recent results on two

platinum Pt-67 wires mounted in a cryostat have been obtained by Burley, et

al. [35] in their study on Nicrosil and Nisil alloys. The deviations shown

in figure 11 indicate the amount of variation that can be observed in

practical cryostats, even when great care is used in handling well-annealed
specimens. The errors are larger near 0 °C because the reference bath was
near 76 K and therefore there were larger thermal gradients for the

higher temperature runs.

Vines [36], Rhys and Taimsulu [37], Cochrane [38] and Aliotta [39]

have studied the effects of dilute or trace impurites on the high-
temperature electrical properties of pure platinum. Cochrane 's paper is

thorough and up-to-date, especially in its discussion on Pt-67. He
concluded, among many things, that the principal cause of thermoelectric
inhomogeneities was radial chemical inhomogeneity caused by surface
contamination, especially of iron, during the production process. The

thermoelectric effectiveness of some impurities was found to depend on
the melting and annealing of test specimens. The effect of an individual
impurity was essentially linear and the total effect of all impurities
was simply additive from the effects of each specific impurity. All
impurities show a positive effect on the thermoelectric voltage except
gold, which shows a slight negative effect. The largest specific
effects for significant impurities (in yV/ppm weight) are shown by
chromium, lead, silicon (if electrically active) and ruthenium. Because
the iron concentration is usually much greater than that for any other
impurity, the impurity effect on thermoelectric voltage is controlled
primarily by the iron content. Cochrane [36] also includes much data on
the relation of thermoelectric voltage to temperature coefficient of
resistance between 0 and 100 °C.

The effects of impurities on the electrical properties of platinum
at high temperatures are summarized in table 5 and figure 12, both of
which are derived from Cochrane's research [38].

7. RECOMMENDATIONS FOR USAGE

SRM 1967 is intended for use as a standard reference thermo-
element from 77K (-196 °C) up to 2040 K (1767 °C) . However, great
caution must be exercised if it is to be used above 1200 °C. The mate-
rial may be used as (1) a reference thermoelement for calibration of
various thermocouple materials; (2) the negative leg of the standard
thermocouple (Type S) in the IPTS-68 defined temperature range from
630.74 to 1064.43 °C; or (3) the negative leg of Type S or Type R
thermocouples in their temperature range from -50 °C to near the melting
point of platinum.
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L diD 1c 5. Effects of impurities
platinum.

on the electrical properties

Effect on Voltage

,

uV/ppm
1

Effect on Resistance, 10
^

Element
Ir

Weight
0.350

Atomic
0.344

Weight
0.200

Atomic
0.197

Pd .069 .038 .100 .054

Rh .200 .106 .090 .047

Ag .025 .014 .150 .083

Cu .115 .037 .349 .114

Fe 2.300 .658 1.280 .366

Ni 0.499 .150 0.160 .048

Cr 4.041 1.077 3.250 .866

Mn 0.322 0.091 0.212 .060

Pb 2.999 3.178 .900 .956

Au -0.070 -0.071 .070 .071

Ru 1.099 .570 .250 .129

Si 1.173 .169 .550 .079

Co 0.161 .049

Os 1.955 1.906

Ta 0.920 0.853

rte 3.680 3.513

W 2.645 2.493

Mo 3.680 1.810

Change in microvolts with the reference junction at 0 °C and the test
junction at 1200 °C.

Change in resistivity coefficient, alpha, the temperature coefficient
of resistance a = (R(100 °C) - R(0 °C))/100 R(0 °C)

.
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The proper usage of platinum as a thermoelectric standard requires

(1) the availability of highly-characterized, high-purity material; (2)

careful annealing and handling techniques for the material; and (3) an

accurate experimental methodology. The first requirement is satisfied

by the certification of this SRM 1967. The second and third requirements
are discussed next.

7.1. Annealing and handling

The recommended procedure for preparing a Pt-67 standard reference
wire is:

1. Clean with ethanol and air dry.

2. Suspend wire in clean, dust-free cabinet and connect to a

current source.

3. Continuously increase the current until the wire is at about
1373 K.

4. Maintain this temperature for 10 minutes.
5. Slowly decrease the current until the temperature of the wire

is just below incandescence, hold for 60 minutes and slowly cool to room
temperature

.

6. Care should be taken at all times to avoid unnecessary mechanical
stresses of the wire. If the platinum is to be used at high temperature,
use special gloves or paper padding while handling.

7. High-purity sintered alumina tubing is recommended for insulating
and protecting the platinum wire during use at high temperatures. After
assembling the wire in an insulating tube, reanneal the assembly in a

furnace for 60 minutes at 1100°C, followed by slow cooling to room temp-
erature.

If the wire is to be used above 1100 °C, then the annealing tem-
perature should be correspondingly raised. Bedford, et al. [8] recommend
holding the wire at the higher temperature for 30 minutes, then reannealing
the experimental thermocouple assembly in protection tubes at 1100 °C for
60 minutes. The other steps remain the same.

7.2. Experimental methodology

For any temperature range, the general principles discussed by
Roeser and Lonberger [13] should be observed. For cryogenic usage,
Hust, et al. [16] describe methods for thermocouple thermometry; for
high temperatures, the problems and precautions described by Jones [33]

and McLaren and Murdock [34] should be carefully considered.

It should be emphasized again that temperature measurements determined
with Type S thermocouples in the temperature range from 630.74 to 1064.43
°C are based on the defined quadratic thermoelectric behavior imposed by
the IPTS-68. There are probably significant (0.5 °C) differences between
the IPTS-68 scale and best estimates of thermodynamic temperatures in this
temperature range. For accurate thermophysical measurements, results
should be presented in terms of the IPTS-68, but corrections based on the
work of Evans and Wood [32] or Quinn, et al. [28] may be necessary to
obtain smoothly varying property values.



Platinum thermoelements and Types S, R, or B thermocouples have
environmental restrictions when used at high temperatures. They should not

be used in reducing atmospheres, nor in those containing metallic vapor
(such as lead or zinc), nonmetallic vapors (such as arsenic, phosphorous,
or sulfur) or easily reduced oxides, unless suitably protected with non-
metallic protecting tubes. They should never be inserted directly into a

metallic primary tube.

\

Platinum thermoelements that conform closely to the high temperature
values may not necessarily conform closely at cryogenic temperatures,
especially near 77 K. If they are to be used for accurate measurements
both above and below 0 °C, then the materials should be calibrated against
carefully maintained Pt-67 specimens in both temperature ranges.

7.3. Availability

SRM 1967 (Pt-67), issued as 24 AWG wire (0.51 mm diam.) in multiples
of 1 meter length up to a maximum of 3 meters length, may be ordered
from the Office of Standard Reference Materials, Chemistry Building,
National Bureau of Standards, Washington, D.C. 20234. (Longer con-
tinuous lengths in multiples of 3 meters can be obtained by special
order to the OSRM.)
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