Standard Reference Materials:

ELECTRICAL RESISTIVITY OF ELECTROLYTIC IRON, SRM 797, AND AUSTENITIC STAINLESS STEEL, SRM 798, FROM 5 TO 280 K
The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Measurement Services and the following divisions:

- Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences
- Applied Radiation
- Quantum Electronics
- Electromagnetics — Time and Frequency
- Laboratory Astrophysics
- Cryogenics.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices:

- Engineering and Product Standards — Weights and Measures — Invention and Innovation — Product Evaluation Technology — Electronic Technology — Technical Analysis
- Measurement Engineering — Structures, Materials, and Life Safety
- Building Environment
- Technical Evaluation and Application
- Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effectiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions:

- Computer Services — Systems and Software — Computer Systems Engineering — Information Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal Government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
² Part of the Center for Radiation Research.
³ Located at Boulder, Colorado 80302.
⁴ Part of the Center for Building Technology.
Standard Reference Materials:

ELECTRICAL RESISTIVITY OF ELECTROLYTIC IRON, SRM 797, AND AUSTENITIC STAINLESS STEEL, SRM 798, FROM 5 TO 280 K

J. G. Hust

Cryogenics Division
Institute for Basic Standards
National Bureau of Standards
Boulder, Colorado 80302

Special publication no. 260-47

U.S. DEPARTMENT OF COMMERCE, Frederick B. Dent, Secretary
NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued February 1974
CONTENTS

1. Introduction ... 2
2. Apparatus and Data Analysis .. 2
3. Specimen Characterization .. 3
4. Results .. 3
5. Summary ... 10
6. Footnotes and References ... 10
Appendix I .. 11

LIST OF TABLES

Table 1. Parameters, b_i, of equation (1) 4
Table 2. Calculated values of electrical resistivity for SRM's 797 and 798 ... 5

LIST OF FIGURES

Figure 1. Experimental electrical resistivity deviations from calculated values (equation 1) for SRM 797 6
Figure 2. Experimental electrical resistivity deviations from mean values of resistivity for three specimens of SRM 798 7
Figure 3. Calculated values of electrical resistivity for SRM 797 ... 8
Figure 4. Calculated mean values of electrical resistivity for SRM 798. .. 9

*Send order with remittance to: Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Remittance from foreign countries should include an additional one-fourth of the purchase price for postage.
Electrical Resistivity of Electrolytic Iron, SRM 797, and Austenitic Stainless Steel, SRM 798, from 5 to 280 K*

J. G. Hust
Cryogenics Division, NBS Institute for Basic Standards, Boulder, Colorado 80302

Electrical resistivity data are presented for characterized electrolytic iron, SRM 797, and austenitic stainless steel, SRM 798, at temperatures from 5 to 280 K. Resistivities at ice and liquid helium temperatures were determined for 22 randomly selected iron specimens and the same number of steel specimens. These data indicate that the effect of material variability is about 1% for each of these SRM's.

Key words: Austenitic stainless steel; cryogenics; electrical resistivity; electrolytic iron; Lorenz ratio; standard reference material.

* This work was carried out at the National Bureau of Standards, Boulder, Colorado, under the sponsorship of NASA-Space Nuclear Systems Office, Cleveland, Ohio and the National Bureau of Standards Office of Standard Reference Materials (NBS-OSRM), Washington, D. C.
1. Introduction

The research reported here is part of a larger program to establish several thermal conductivity and electrical resistivity standard reference materials. Several materials are needed to cover wide ranges of conductivity and resistivity. In earlier publications of this series, thermal conductivity data were presented for SRM 734 and 735. It has been decided that low temperature electrical resistivity data on these materials would be useful for two reasons. The characterization of the thermal conductivity specimens is improved with electrical resistivity data. Standards of electrical resistivity are useful for calibration and comparisons of the many existing apparatus. Although electrical resistivity measurements are generally considered routine, unsuspected systematic errors may be detected readily through the use of these Standard Reference Materials, SRM's.

The basic characteristics of an SRM are that it be: (a) stable and reproducible under the conditions of use, (b) uniform throughout a single specimen, (c) similar in property value to that of the materials to which it will be applied, (d) readily machined and fabricated to appropriate size and shape, (e) chemically inert with its environment, and (f) useable over a wide temperature range. The iron and steel reference materials satisfy these criteria reasonably well.

2. Apparatus and Data Analysis

A detailed description of this apparatus and the methods of data analysis have been given by Hust, et al. Briefly, the measurement is done by a standard 4 terminal potentiometric method on a 23 cm long cylindrical rod. The diameter of the rod is dependent upon its conductivity with a maximum diameter of about 2.5 cm. The electrical resistivity data were taken simultaneously with the thermal conductivity data on the same specimen with a single apparatus. Data were taken in the presence of temperature gradients along the specimen but the data analysis was performed so as to include the effect of these gradients.
The experimental data are represented by arbitrary functions over the entire temperature range and smooth tables are generated from these functions. The number of terms used to represent each of the data sets is optimized, through the use of orthonormal functions, so that none of the precision of the data is lost by underfitting, nor are any unnecessary oscillations introduced by overfitting.

3. Specimen Characterization

Details of specimen characterization have been given by Hust and Sparks\(^2,3\) and will not be repeated here. The results of these measurements showed a material resistivity variability of about 1% for both SRM 797 and 798. Specimens of these SRM's should therefore be used only for standardization to 1%. (See Appendix I for variability data and proper heat treatment of these SRM's.)

4. Results

The electrical resistivity of one specimen of SRM 797 was measured from 6 to 280 K. Three specimens of SRM 798 were measured from 5 to 280 K. These data were functionally represented with the following equation:

\[
\rho = \sum_{i=1}^{m} b_i [\ln T]^{i-1}
\]

\(\rho\) is electrical resistivity in ohm meters and temperatures, \(T\), are in kelvin based on the IPTS-68 scale above 20 K and NBS P2-20 (1965) scale below 20 K. The parameters, \(b_i\), determined by least squares, are presented in table 1. Further details of the fitting procedure are described by Hust, et al.\(^4\). The deviations of the experimental data from this equation are given in figures 1 and 2. Values of \(\rho\), calculated from equation 1, are presented in table 2 and figures 3 and 4.
A detailed error analysis for this system has been presented previously by Hust, et al. Based on this analysis of systematic and random errors, the measurement uncertainty estimate (with 95% confidence) is 0.25% of the resistivity.

Table 1. Parameters, b_i, of equation (1)

<table>
<thead>
<tr>
<th>i</th>
<th>b_i</th>
<th>b_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1.52995843 \times 10^{-5}$</td>
<td>$8.51517313 \times 10^{-7}$</td>
</tr>
<tr>
<td>2</td>
<td>$-6.57221842 \times 10^{-5}$</td>
<td>$-8.57069352 \times 10^{-7}$</td>
</tr>
<tr>
<td>3</td>
<td>$1.28083500 \times 10^{-4}$</td>
<td>$1.18184172 \times 10^{-6}$</td>
</tr>
<tr>
<td>4</td>
<td>$-1.50027718 \times 10^{-4}$</td>
<td>$-8.87557838 \times 10^{-7}$</td>
</tr>
<tr>
<td>5</td>
<td>$1.17942860 \times 10^{-4}$</td>
<td>$3.97914551 \times 10^{-7}$</td>
</tr>
<tr>
<td>6</td>
<td>$-6.57740194 \times 10^{-5}$</td>
<td>$-1.09135708 \times 10^{-7}$</td>
</tr>
<tr>
<td>7</td>
<td>$2.67952461 \times 10^{-5}$</td>
<td>$1.78713688 \times 10^{-8}$</td>
</tr>
<tr>
<td>8</td>
<td>$-8.0815141 \times 10^{-6}$</td>
<td>$-1.59617291 \times 10^{-9}$</td>
</tr>
<tr>
<td>9</td>
<td>$1.80581011 \times 10^{-6}$</td>
<td>$5.97187252 \times 10^{-11}$</td>
</tr>
<tr>
<td>10</td>
<td>$-2.95519976 \times 10^{-7}$</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>$3.44469418 \times 10^{-8}$</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>$-2.70952664 \times 10^{-9}$</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>$1.28939040 \times 10^{-10}$</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>$-2.80388287 \times 10^{-12}$</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Calculated values of electrical resistivity for SRM's 797 and 798

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Resistivity (n Ω m) SRM 797</th>
<th>Resistivity (n Ω m) SRM 798</th>
<th>Temperature (K)</th>
<th>Resistivity (n Ω m) SRM 797</th>
<th>Resistivity (n Ω m) SRM 798</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>--</td>
<td>593</td>
<td>75</td>
<td>9.38</td>
<td>617</td>
</tr>
<tr>
<td>6</td>
<td>3.87</td>
<td>593</td>
<td>80</td>
<td>10.56</td>
<td>621</td>
</tr>
<tr>
<td>7</td>
<td>3.87</td>
<td>593</td>
<td>85</td>
<td>11.88</td>
<td>625</td>
</tr>
<tr>
<td>8</td>
<td>3.85</td>
<td>593</td>
<td>90</td>
<td>13.27</td>
<td>629</td>
</tr>
<tr>
<td>9</td>
<td>3.85</td>
<td>593</td>
<td>95</td>
<td>14.76</td>
<td>634</td>
</tr>
<tr>
<td>10</td>
<td>3.85</td>
<td>593</td>
<td>100</td>
<td>16.32</td>
<td>638</td>
</tr>
<tr>
<td>12</td>
<td>3.87</td>
<td>593</td>
<td>110</td>
<td>19.69</td>
<td>647</td>
</tr>
<tr>
<td>14</td>
<td>3.89</td>
<td>593</td>
<td>120</td>
<td>23.30</td>
<td>656</td>
</tr>
<tr>
<td>16</td>
<td>3.90</td>
<td>593</td>
<td>130</td>
<td>27.07</td>
<td>665</td>
</tr>
<tr>
<td>18</td>
<td>3.90</td>
<td>593</td>
<td>140</td>
<td>31.0</td>
<td>674</td>
</tr>
<tr>
<td>20</td>
<td>3.92</td>
<td>593</td>
<td>150</td>
<td>35.0</td>
<td>683</td>
</tr>
<tr>
<td>25</td>
<td>3.99</td>
<td>593</td>
<td>160</td>
<td>39.1</td>
<td>692</td>
</tr>
<tr>
<td>30</td>
<td>4.10</td>
<td>594</td>
<td>170</td>
<td>43.2</td>
<td>701</td>
</tr>
<tr>
<td>35</td>
<td>4.26</td>
<td>595</td>
<td>180</td>
<td>47.5</td>
<td>710</td>
</tr>
<tr>
<td>40</td>
<td>4.50</td>
<td>597</td>
<td>190</td>
<td>51.8</td>
<td>718</td>
</tr>
<tr>
<td>45</td>
<td>4.84</td>
<td>598</td>
<td>200</td>
<td>56.1</td>
<td>727</td>
</tr>
<tr>
<td>50</td>
<td>5.28</td>
<td>601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>5.85</td>
<td>604</td>
<td>220</td>
<td>65.2</td>
<td>743</td>
</tr>
<tr>
<td>60</td>
<td>6.54</td>
<td>607</td>
<td>240</td>
<td>74.4</td>
<td>760</td>
</tr>
<tr>
<td>65</td>
<td>7.37</td>
<td>610</td>
<td>260</td>
<td>84.2</td>
<td>776</td>
</tr>
<tr>
<td>70</td>
<td>8.32</td>
<td>613</td>
<td>280</td>
<td>94.3</td>
<td>791</td>
</tr>
</tbody>
</table>
Figure 1. Experimental electrical resistivity deviations from calculated values (equation 1) for SRM 797.
Figure 2. Experimental electrical resistivity deviations from mean values of resistivity for three specimens of SRM 798.
Figure 3. Calculated values of electrical resistivity for SRM 797
Figure 4. Calculated mean values of electrical resistivity for SRM 798
5. Summary

We have established low temperature electrical resistivity standard reference data for electrolytic iron, SRM 797, and austenitic stainless steel, SRM 798, at temperatures from 5 to 280 K. These data were fitted to an empirical equation which was used to generate tabular values of resistivity at integer temperatures. Material variability affects electrical resistivity by about ± 1% and measurement uncertainty is estimated to be about 0.25%.

6. Footnotes and References

[1] Both SRM's 797 and 798 are available in the form of rods of three different lengths. SRM's 797-1 and 798-1 are rods 5 cm (2 in.) long, and 0.64 cm (1/4 in.) diameter; SRM's 797-2 and 798-2 are rods 10 cm (4 in.) long; and SRM's 797-3 and 798-3 are rods 15 cm (6 in.) long. Longer continuous lengths can be obtained by special order. These SRM's may be ordered from the Office of Standard Reference Materials, National Bureau of Standards, Washington, DC 20234.

Appendix I

Electrical Resistivity Variability

An extensive resistivity variability study was conducted on SRM-797, the object being to determine if it could be heat treated in such manner that the electrical resistivity would be the same for each specimen. This was achieved with a 2-hour, 1000°C anneal in either a vacuum or helium atmosphere. The results of this study are shown as residual resistivity ratios below. The ratio given is resistivity at 273.15K to resistivity at 4K. Specimens labeled C2T, A6L, C5L, A1L, and A5T were obtained from 1/4" diameter rods; the remaining specimens were machined from 1-1/4" rods. Based on the 63 residual resistivity ratio measurements made on these specimens in various stages of heat treatment, the following is concluded: The large 1-1/4" diameter specimens are significantly different in residual resistivity ratio from the smaller 1/4" diameter specimens in the as received condition. The ratio of the small rods is 22.01 ± 0.20 while the ratio of the larger rods is 19.52 ± 0.44.

Various heat treatments were tried to remove the differences in ratio of the two sets of rods. After 500°C for 1 hour the ratios increased but were still different (small rods = 23.53 ± 0.20; large rods = 22.14 ± 0.34). Raising the temperature to 1000°C for 2 hours produced rods which are indistinguishable, (small rods = 23.39 ± 0.28; large rods = 23.39 ± 0.20; all rods = 23.33 ± 0.24). The variation shown is 2s, where s is the estimated standard deviation, and includes material and measurement variability. In order to study the possibility of a change in these ratios with age, some of the rods were measured after about 50 days and again after 3 years; no significant change was detected after 50 days but in 3 years a 4% increase in RRR occurred. Heating to 400°C for 2-1/2 days changed the ratio to 24.94 ± 0.26 with no difference between the large and small rods when the first measurements were made during 1970. However, in 1973 a similar heat treatment produced a much smaller change. This is not understood.
After performing further anneals to obtain a better understanding of the aging phenomena, it appears clear that our earlier selected anneal procedure was proper in that we obtained the RRR value corresponding to the stabilizing condition of this iron. However, we were not aware at the time of the importance of the cooling rate of the furnace. At that time we used a rather massive furnace which cooled rather slowly. With the smaller furnace used in these later measurements, a hold of at least two hours at 800°C is necessary to stabilize this iron. After this heat treatment, heating the specimens to intermediate temperatures does not significantly affect the residual resistivity ratio. These measurements show that SRM 797 can be used as an electrical resistivity standard below room temperature with a variability of about 1% if annealed first at 1000°C for 2 hours and then 800°C for 2 hours.
Residual resistivity ratio (ρ_{000}/ρ_{xx}) of SRM-734

<table>
<thead>
<tr>
<th>Specimen</th>
<th>As received</th>
<th>500°F</th>
<th>500°F</th>
<th>1000°F</th>
<th>400°F</th>
<th>Aging</th>
<th>Aging</th>
<th>1000°F</th>
<th>800°C</th>
<th>500°C</th>
<th>1000°C</th>
<th>800°C</th>
<th>400°C</th>
<th>800°C</th>
<th>400°C</th>
<th>800°C</th>
<th>1000°F, 2 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2T</td>
<td>21.97 (a)</td>
<td>23.53</td>
<td>24.12</td>
<td>23.31 (e)</td>
<td>24.84</td>
<td>25.00</td>
<td>25.57</td>
<td>21.88</td>
<td>23.46</td>
<td>23.64</td>
<td>22.45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A5L</td>
<td>22.16</td>
<td></td>
<td></td>
<td></td>
<td>24.85</td>
<td>24.97</td>
<td>25.85</td>
<td></td>
</tr>
<tr>
<td>C5L</td>
<td>21.94</td>
<td></td>
<td></td>
<td></td>
<td>23.40 (f)</td>
<td>23.47</td>
<td>24.46</td>
<td>22.19</td>
<td>23.61</td>
<td>23.81</td>
<td>22.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1L</td>
<td>22.04</td>
<td></td>
<td></td>
<td></td>
<td>23.59 (c)</td>
<td>23.52</td>
<td></td>
</tr>
<tr>
<td>A5T</td>
<td>22.03 (b)</td>
<td></td>
<td></td>
<td></td>
<td>23.42 (f)</td>
<td>24.90</td>
<td></td>
</tr>
<tr>
<td>2A-1-1</td>
<td>19.35</td>
<td>21.96</td>
<td>22.32</td>
<td>23.47 (e)</td>
<td>25.12</td>
<td>25.24</td>
<td>25.69</td>
<td>22.20</td>
<td>23.45</td>
<td>23.76</td>
<td>22.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A-1-2</td>
<td>19.50</td>
<td></td>
<td></td>
<td></td>
<td>23.31 (c)</td>
<td>23.35</td>
<td></td>
</tr>
<tr>
<td>2A-1-3</td>
<td>19.30</td>
<td></td>
</tr>
<tr>
<td>2A-1-4</td>
<td>19.38</td>
<td></td>
<td></td>
<td></td>
<td>23.27 (f)</td>
<td></td>
</tr>
<tr>
<td>2A-3-1</td>
<td>19.77</td>
<td>21.83</td>
<td>22.25</td>
<td>23.20 (e)</td>
<td>24.94</td>
<td>25.01</td>
<td></td>
</tr>
<tr>
<td>2A-3-2</td>
<td>19.92</td>
<td></td>
<td></td>
<td></td>
<td>23.20 (c)</td>
<td></td>
</tr>
<tr>
<td>2A-3-3</td>
<td>19.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A-3-4</td>
<td>19.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-1-1</td>
<td>19.42</td>
<td>21.70</td>
<td>22.00</td>
<td>23.23 (e)</td>
<td></td>
<td></td>
<td></td>
<td>23.44</td>
<td>24.48</td>
<td>72.55</td>
<td>23.51</td>
<td>23.63</td>
<td>22.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-1-2</td>
<td>19.12</td>
<td></td>
<td></td>
<td></td>
<td>23.41 (c)</td>
<td></td>
<td></td>
<td></td>
<td>23.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-1-3</td>
<td>19.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-1-4</td>
<td>19.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-3-1</td>
<td>19.34</td>
<td>21.93</td>
<td>21.99</td>
<td>23.27 (e)</td>
<td></td>
<td></td>
<td></td>
<td>23.40</td>
<td>24.86</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-3-2</td>
<td>19.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-3-3</td>
<td>19.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C-3-4</td>
<td>19.40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td>20.11</td>
<td>22.19</td>
<td>22.54</td>
<td>23.33</td>
<td>24.94</td>
<td>23.96</td>
<td>24.51</td>
<td>22.20</td>
<td>23.51</td>
<td>23.71</td>
<td>22.53</td>
<td>23.79</td>
<td>23.69</td>
<td>23.78</td>
<td>23.96</td>
<td>24.97</td>
<td>23.53</td>
</tr>
</tbody>
</table>

- (a) repeat measurement = 21.91
- (b) *ratio of A5T thermal conductivity specimen = 21.89
- (c) these were heat treated in vacuum, the remaining were heated to 1000°C in a helium atmosphere (1 atm pressure)
- (d) repeat measurements = 23.39, 23.31
- (e, f) these were done in separate heat treatments to detect reproducibility of heat treatment
Electrical Resistivity of Electrolytic Iron, SRM 797, and Austenitic Stainless Steel, SRM 798, from 5 to 280 K

Author(s)

J. G. Hust

Performing Organization

NATIONAL BUREAU OF STANDARDS, Boulder Labs
DEPARTMENT OF COMMERCE
Boulder, Colorado 80302

Sponsoring Organization

NASA-Space Nuclear Systems Office
Cleveland, Ohio and the National Bureau of Standards Office of Standard Reference Materials (NBS-OSRM), Washington, D. C.

Abstract

Electrical resistivity data are presented for characterized electrolytic iron, SRM 797, and austenitic stainless steel, SRM 798, at temperatures from 5 to 280 K. Resistivities at ice and liquid helium temperatures were determined for 22 randomly selected iron specimens and the same number of steel specimens. These data indicate that the effect of material variability is about 1% for each of these SRM's.
JOURNAL OF RESEARCH reports National Bureau of Standards research and development in physics, mathematics, and chemistry. Comprehensive scientific papers give complete details of the work, including laboratory data, experimental procedures, and theoretical and mathematical analyses. Illustrated with photographs, drawings, and charts. Includes listings of other NBS papers as issued.

Published in two sections, available separately:

- Physics and Chemistry (Section A)
 Papers of interest primarily to scientists working in these fields. This section covers a broad range of physical and chemical research, with major emphasis on standards of physical measurement, fundamental constants, and properties of matter. Issued six times a year. Annual subscription: Domestic, $17.00; Foreign, $21.25.

- Mathematical Sciences (Section B)
 Studies and compilations designed mainly for the mathematician and theoretical physicist. Topics in mathematical statistics, theory of experiment design, numerical analysis, theoretical physics and chemistry, logical design and programming of computers and computer systems. Short numerical tables. Issued quarterly. Annual subscription: Domestic, $9.00; Foreign, $11.25.

DIMENSIONS, NBS

The best single source of information concerning the Bureau's measurement, research, developmental, cooperative, and publication activities, this monthly publication is designed for the layman and also for the industry-oriented individual whose daily work involves intimate contact with science and technology—for engineers, chemists, physicists, research managers, product-development managers, and company executives. Annual subscription: Domestic, $6.50; Foreign, $8.25.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey bibliographies are issued periodically by the Bureau:

Cryogenic Data Center Current Awareness Service (Publications and Reports of Interest in Cryogenics). A literature survey issued weekly. Annual subscription: Domestic, $20.00; Foreign, $25.00.

Send subscription orders and remittances for the preceding bibliographic services to the U.S. Department of Commerce, National Technical Information Service, Springfield, Va. 22151.

