This report has been prepared for information and record purposes and is not to be referenced in any publication.

NATIONAL BUREAU OF STANDARDS REPORT

9881

COMPUTER PROGRAM TO CALCULATE NATURAL CONVECTION FLOWS IN A ROOM

July 18, 1968

.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards¹ was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

Applied Mathematics—Electricity—Metrology—Mechanics—Heat—Atomic Physics—Cryogenics²—Radio Physics²—Radio Engineering²—Astrophysics²—Time and Frequency.²

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

Analytical Chemistry—Polymers—Metallurgy — Inorganic Materials — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information,³ a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

Building Research—Electronic Instrumentation — Technical Analysis — Product Evaluation—Invention and Innovation— Weights and Measures — Engineering Standards—Vehicle Systems Research.

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

Reactor Radiation-Linac Radiation-Applied Radiation-Nuclear Radiation.

¹ Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C. 20234. ² Located at Boulder, Colorado 80302.

³ Located at 5285 Port Royal Road, Springfield, Virginia 22151.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

July 18, 1968

NBS REPORT

421 2650

9881

COMPUTER PROGRAM TO CALCULATE NATURAL CONVECTION FLOWS IN A ROOM

by

Kenneth E. Torrance Factory Mutual Research Associate Fire Research Section Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

IMPORTANT NOTICE

NATIONAL BUREAU OF ST for use within the Government. and review. For this reason, the whole or in part, is not author Bureau of Standards, Washingto the Report has been specifically

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015 is accounting documents intended subjected to additional evaluation listing of this Report, either in : Office of the Director, National y the Government agency for which opies for its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

COMPUTER PROGRAM TO CALCULATE

NATURAL CONVECTION FLOWS

IN A ROOM

by

Kenneth E. Torrance Factory Mutual Research Associate Fire Research Section Institute for Applied Technology National Bureau of Standards Washington, D. C. 20234

July 18, 1968

COMPUTER PROGRAM TO CALCULATE NATURAL CONVECTION FLOWS IN A ROOM

by

Kenneth E. Torrance

ABSTRACT

A computer program is described for calculating time-dependent, laminar natural convection flows in a room. The complete Fortran language program as used on the NBS Univac 1108 computer is given. A discussion of the program and instructions for its use are facilitated by the aid of a flowchart and an example.

COMPUTER PROGRAM TO CALCULATE NATURAL CONVECTION FLOWS IN A ROOM

1. INTRODUCTION

This report provides a description of the computer program EXCON1 and instructions for its use. The program was written in ASA Fortran language (reference 1) and coded for use on the NBS Univac 1108 computer. The program was developed to calculate time-dependent, <u>laminar</u> natural convection flows in a room. The room is in the form of a vertical circular cylinder, with the heat source which induces the flow located in the center of the floor (see figure 1). The computer program is based upon mathematical principles which are discussed in references 2 and 3. A comparison of several programs for calculating flows is presented in reference 2, which highlights the particular advantages, as well as the limitations, of EXCON1 (known therein as numerical method V). An application of EXCON1 is presented in reference 3, in which calculated results are compared with the experimental flows of reference 4.

Figure 1 illustrates a cylindrical room of height a and radius b. In the center of the floor, a disk of radius c is held at a temperature ΔT above the remaining walls of the enclosure. The flow is assumed to be axisymmetric two-dimensional; i.e., without variations in the azimuthal direction. A grid is constructed as shown of M+1 horizontal lines and N+1 vertical lines spaced at intervals of ΔX and ΔR . The program EXCON1 is employed to calculate the temperature, vorticity, stream function and vertical and radial velocities at the intersections of these grid lines (called grid or mesh points). By rotation about the centerline, the resulting fields of temperature, velocity, etc., are translated to any azimuthal plane.

2. DISCUSSION OF EXCON 1

An annotated listing of the complete program EXCON1 is presented in figure 3. A flowchart of the main program is presented in figure 2. The next two sections describe the main program and the subroutines, respectively.

2.1 Main Program

The logical sequence of the main program (pp 1-7 of figure 3) can be grasped most readily by first considering the flowchart in figure 2. A list of input parameters is read in on data cards (an example of which is shown on p 16 of figure 3) as follows:

RB = aspect ratio of enclosure = b/a.

RS = relative size of heat source = c/a.

- GR = Grashof number = $g\beta\Delta Ta^3/v^2$, where g = gravity, β = volume expansion coefficient of fluid, and v = kinematic viscosity of fluid.
- PR = Prandtl number of fluid in enclosure = ν/κ , where κ = thermal diffusivity.
- M = number of vertical mesh points minus one.
- N = number of radial mesh points minus one.
- TAUZER = Time level at start of calculation.
- DTAU = Time step for first time advancement. If JDATA = 0, DTAU is automatically calculated within the program.
- TAUMAX = Computation to proceed in time up to this value.
- TAUNOM = Nominal time level at start of program. Output is indexed with respect to this, so as to have output at convenient time values.
- RELAX = relaxation parameter for iteration of stream function
 field.
- JDATA = If = 0, calculation starts from quiescent initial conditions; if $\neq 0$, it starts from input data fields.
- ITMAX = maximum number of stream function iteration cycles
 permitted at each time step. Each cycle consists of
 two iterative sweeps over the field; one vertically
 and one radially.
- FKTR = heat transfer rates calculated and printed at times $TAU = TAUNOM + n \cdot FKTR$, where $n = 0, 1, 2, \cdots$.
- FPRINT = fields of temperature, velocity, vorticity and stream function printed at times TAU = TAUNOM + n · FPRINT, where n = 0, 1, 2, ···.
- FTAPE = fields put on magnetic tape at times TAU = TAUNOM + $n \cdot FTAPE$, where $n = 0, 1, 2, \cdots$.
- FPUNCH = fields punched onto cards at times $TAU = TAUNOM + n \cdot FPUNCH$, where $n = 0, 1, 2, \cdots$.

2

FPLOT = not used in present program.

INTAPE	=	logical I/O unit on which input tape is mounted (if used).
ОІЛТАРЕ	=	logical I/O unit on which output tape is mounted (if used).
INBLK	-	data block to be read from input tape.
OUTBLK	=	data block in which writing starts on output tape.

After reading the input parameters the initial data fields are either generated within the program or read in, according to the value of JDATA. The program then enters the computation cycle as shown in figure 2.

2.2 Subroutines

<u>SUBROUTINE VEL</u> (p 8 of figure 3): This subroutine is called from the main program and computes the velocities U and V at node points with central difference approximations. At the solid boundaries, U = V = 0. The output fields, however, have nonzero values for U along the vertical wall and for V along the floor and ceiling. These values pertain to a location $\Delta R/2$ or $\Delta X/2$ away from the boundary and are computed with one sided differences.

SUBROUTINE MEAN (p 9 of figure 3): This subroutine is called from the main program and computes the following "mean" velocities:

 $UM(I,J) = (U(I,J) + U(I+1,J))/(2\Delta X)$ VM(I,J) = (V(I,J) + V(I, J+1))/(2\Delta R).

The grid spacings ΔX and ΔR appear in the denominators and eliminate several multiplications in the main program.

<u>SUBROUTINE RESLTS</u> (p 10 of figure 3): This subroutine is called from the main program and controls printing of the fields of temperature, velocity, vorticity and stream function.

<u>SUBROUTINE BLOCK</u> (p 11 of figure 3): This is called from subroutine RESLTS to break up and print the output fields in blocks ten or eleven columns wide. The top and bottom of each block corresponds to the ceiling and floor, respectively. The printed output is illustrated in the example, section 3.

<u>SUBROUTINE PUN</u> (p 12 of figure 3): This subroutine is called from the main program and punches the fields of temperature, velocity, etc., onto cards. The first card serves to identify the data field. When used as input for the main program, this first card replaces the first of the three cards (shown on p 16 of figure 3) which contain the input parameter list. This first card is then followed by two cards containing suitable values for the remaining input parameters, and the data field cards.

3

SUBROUTINE TAP (p 13 of figure 3): When called from the main program, this subroutine puts the fields of temperature, velocity, etc., onto magnetic tape, followed by an end of file mark. (An end of file mark is always placed at the beginning of a new tape). The first record identifies the data block and is of the same format as the first input data card of the main program. This record is used to locate data blocks on tape. The information in this record, in the same format, is also punched onto two cards.

SUBROUTINE CHECK (p 14 of figure 3): When called from the main program, this subroutine scans the first record after every end of file mark on the input tape, until a data block corresponding to the first input data card of the main program is located. Four input data cards are required for the main program, the first and fourth cards being identical.

<u>SUBROUTINE NUSSEL</u> (pp 15-16 of figure 3): When called from the main program, this subroutine calculates two rates of heat transfer: (a) from heat source to fluid in enclosure; and (b) from fluid in enclosure to cold walls. Results are printed as a dimensionless ratio, \dot{Q}_{in} or $out /\lambda a \Delta T$, where λ is the thermal conductivity of the fluid in the enclosure. Nusselt numbers are also computed by dividing the dimensionless rates of heat transfer by the dimensionless heating area (A /a²) or cooling area (A out /a²).

3. EXAMPLE

Results obtained from the execution of the program shown in figure 3 are presented in figure 4. Page 1 of the figure is the heading for the output results, which lists the pertinent input parameters for the problem. These are some of the parameters read in from the data cards on p 16 of figure 3. Following this heading, heat transfer results and calculated fields are periodically printed out. To save space, only the printed output for TAU = 0.25 is shown (pp 2-6 of figure 4). The computed fields are listed in the following order: temperature, vertical velocity U, radial velocity V, vorticity, and stream function. A 21x21 grid was employed, and for each field, 441 numbers are printed. For the first block of numbers, 21x10, the left-most column pertains to the centerline, and columns to the right correspond to increasing values of radius, up to R = 0.45. The top and bottom numbers in each column correspond respectively to the ceiling and the floor. The second block of numbers, 21x11, covers the radius range from R = 0.5 (left column) to R = 1.0 (right column). Again, ceiling and floor correspond to the top and bottom of each column.

As noted in the discussion of SUBROUTINE VEL, the right-most column of vertical velocities U is nonzero. These values pertain to R = 0.975 (not R = 1.0). Similarly, the radial velocities V along the floor and ceiling are nonzero. These values respectively correspond to X = 0.025 and X = 0.975.

Following the stream function field, some additional output is shown (p 6 of figure 4). The first entry is the number of cycles required for convergence of the stream function iteration (in this case, one). The next three entries constitute printed output from the subroutines PUN, TAP, and NUSSEL. Similar output results results whenever these subroutines are called. The words CARDS PUNCHED indicate that the temperature, velocity, etc., fields have been punched onto cards. The next line indicates that these fields have been written on tape in BLOCK 9. The first identifying record of the data block on tape is printed between the asterisks. The remaining two lines on the page are printed by subroutine NUSSEL, and provide the time TAU, the next time step DTAU, and the heat transfer rates.

4. APPLICATION EXPERIENCE

Most of the calculations to date with EXCON1 have employed fixed values of the following parameters: RB = 1, RS = 0.1, and PR = 0.7. This includes reference 2, which presents information on truncation errors and the effects of grid size. A range of GR from 1 x 10^o to 4 x 10^o is covered. Reference 3 presents a study of the effect of varying GR from 4 x 10^d to 4 x 10^o with M = 50 and N = 20. The computed flows are all laminar. The validity of the calculations for $GR \le 1 \times 10^{\circ}$ is confirmed by comparison with the experiments of reference 4. At higher values of GR the experiments indicate turbulence, although the calculated flows are laminar. This difference is due to the assumed axisymmetry and to numerical truncation errors. The latter increase with both GR and coarser grids. From figure 5, it is apparent that the M x N = 50 x 20 grid employed in reference 3 required computing times of several hours at high values of GR.

Some calculations have also been attempted at $GR = 4 \times 10^8$ with an aspect ratio of RB = 10. Preliminary runs with 10 x 100 and 20 x 200 grids indicate that the required computing times to reach steady state are 81 minutes and 17 x 81 minutes, respectively. Both grids are too coarse to adequately resolve details of the flow. Furthermore, the finer grid increases the amount of computer time required roughly as the ratio of the squares of the number of grid points.

From experience, the following conclusion can be noted about the use of EXCON1: Meaningful results can be obtained only when the grid is fine enough to resolve details of the flows. If the grid is too coarse, details are not resolved and truncation errors become important. The use of fine grids to improve the calculation, however, can quickly lead to prohibitively large demands on computer time and storage. The application of EXCON1 to very high GR natural convection flows does not yet seem feasible, because of the foregoing requirements. Nevertheless, the program can be effectively and successfully applied to calculate flows when the mesh size is chosen judiciously and does not exceed computer storage limitations.

5

5. REFERENCES

- D. D. McCracken, A guide to Fortran IV programming (John Wiley and Sons, Inc., New York, N.Y., 1965).
- K. E. Torrance, Comparison of finite-difference procedures for integrating the equations of fluid flow, submitted to the J. Research (NBS) (1968).
- 3. K. E. Torrance and J. A. Rockett, Numerical study of natural convection in an enclosure with localized heating from belowcreeping flow to the onset of laminar instability, submitted to the J. Fluid Mechanics (1968).
- K. E. Torrance, L. Orloff and J. A. Rockett, Experiments on natural convection in enclosures with localized heating from below, submitted to the J. Fluid Mechanics (1968).

APPENDIX A. APPLICATION TO THE FACTORY MUTUAL IBM 360 COMPUTER IN NORWOOD, MASSACHUSETTS

The program listed in figure 3 must be modified for use on the FM IBM 360. The IBM compiler uses a "basic Fortran" language and does not recognize logical IF statements, which are used extensively throughout EXCON1. These statements would all have to be reprogrammed. An improved IBM compiler is being developed, which, when available, will recognize the logical IF. Only minor modifications would then be required.

Any decks of cards punched for or on the Univac 1108 have to be converted for use on the IBM 360. A few symbols are punched differently for the two computers, such as parentheses, plus sign, etc. Dr. John A. Rockett has developed a program to effect such a conversion.

FIGURE 1. Cylindrical room and grid system.

<pre> RUN TORRAN,19350,10,130,1400 II FOR EXCOMI,EXCOMI</pre>	 C THE PROBLEM OF NATURAL CONVECTION IN A ROOM INDUCED BY A HEAT SOURCE AT C FLOOR LEVEL. EXPLICIT CALCULATION SCHEME, WITH THE DIRECTION OF CONVECTIVE C TRANSPORT BETWEEN NODES DETERMINED BY THE MEAN VELOCITY BETWEEN THE C RODES. STATISFIES MASS CONSERVATION APPROXIMATELY, TRANSPORT TERMS OF C NODES. STATISFIES MASS CONSERVATION APPROXIMATELY, TRANSPORT TERMS OF C ENERGY AND VORTICITY EQUATIONS CONSERVATIVE. TIME STEP USED TO ADVANCE C THE CALCULATION IS LIMITED BY STABILITY CONSIDERATIONS. TEMPERATURE, C VELOCITIES, STREAM FUNCTION AND VORTICITY ARE OBTAINED AS FUNCTIONS OF C CYLINDRICAL COORDINATE POSITION (X,R) AND TIME (TAU). 	<pre>C PROGRAM RCOM FLOW INTEGER OUTAPE.OUTBLK C READ INPUT PARAMETERS C READ INPUT PARAMETERS I READ(5.5) RB.RS.GR.PR.M.N.TAUZER.DTAU.TAUMAX.TAUNOM.RELAX.JDATA. 11TMAX.FKIR.FPRINT.FTAPE.FPUNCH.FPLOT.INTAPE.CUTAPE.INBLK.OUTBLK 5 FORMAT(Fd.O.F7.O.F15.O.F10.0.215.2E15.8/3F6.0.216.5F10.0/4110) MM=M+1 NN=N+1 COMMON T(101,21). Z(101.21). U(101.21). V(101.21). UM(101.21).</pre>	<pre>IVM(I01,21), PSI(I01,21) DIMENSION TSTAR(I01,21), ZSTAR(I01,21) WRITE (6,10) RB,RS,GR,PR IO FORMAT(IH1////ICX,BIHMATURAL CONVECTION IN A ROOM ARISING FROM A I LOCALIZED HLAT SOURCE AT FLOUR LEVEL.///20X,33HHEAT SOURCE AT TEM ZPERA/URE T = 1./ 20X,48HCEILING, WALLS, AND REMAINDER OF FLOOR AT 3T = 0.///I5X,16HINPUT PARAMETERS///20X, RADIUS/HEICHT = U/A = R3 = 4 ',F7.3,6X, 'HEAT SOURCE RADIUS/RADIUS = C/B = RS =',F7.3 //20X, 5'GRASHOF BASED ON HEICHT = GR =',IPLII.3,IOX,'PRANDTL = PR =', 6UPF7.3)</pre>	C COMPUTE CONSTANTS DX = 1.0/FLOAT(M) DX = RB/FLOAT(M) DX SQ=DX*DX DX SQ=DX*DX DX SQ=DX*DX A1 = 1./DX A2 = 1./DR A3 = 1./DX A3 = 1./DX
• RUN TORRAN, 19350, 10, 130 • IT FOR EXCONI, EXCONI	C THE PROBLEM OF NATURAL C FLOOR LEVEL. EXPLICIT C TRANSPORT BETWEEN NODE C NUDES. STATISFIES MAS C NUDES. STATISFIES MAS C THE CALCULATION IS.LIM C VELOCITIES, STREAN FUN C CYLINDRICAL COORDINATE	C PROGRAM RCOM FLOW INTEGER OUTAPE,OUTB C READ INPUT PARAMETERS C READ INPUT PARAMETERS I READ(5,5) RB,RS,GR, IITMAX,FKTR,FPRINT,F 5 FORMAT(F3,0,F7.0,F1 MM=M+1 NN=N+1 COMMON T(101,21), Z	<pre>IVM(101,21), PSI(101 DIMENSION TSTAR(101 WRITE (6,10) RB,RS, 10 FORMAT(1H1/////IOX 1 LOCALIZED MLAT SOU 2PERA/URE T = 1./ 20 3T = 0.//15X,16HINP 4 ',FT.3,5X, 'HEAT S' 5'GRASHOF BASED ON H 6UPFT.3)</pre>	C C C DX DX DX DX C C DX C C C DX C C C DX C DX C C C DX C DX C DX C DX C DX C DX C DX C DX C DX C DX C DX DX C DX C DX C DX DX C DX DX C DX C DX C DX DX C DX DX DX DX DX DX C DX DX DX DX DX DX DX DX DX DX DX DX DX

Fortran language program.

1

.

63

.

. 1

.

FIGURE 3 (cont'd) page 2

-

0

FIGURE 3 (cont'd) page 3

	· · · ·	I • 1) +D4 %T(T • 2))				([[]]])
U3 = A7 - (A5 + A9) D0 70 I = 2,M U1 = A3 D2 = A3	D31 = D3 D4 = A9 IF(UM(1,1),6T.00) D31 = D31 - UM(1,1) IF(UM(1,1),LT.00) D1 = D1 - UM(1,1) IF(UM(1,1),LT.00) D1 = D1 - UM(1,1)	IF (UM(I-1,1), 61, 0, 0) $DZ = DZ + UM(I-1,1)$ IF (UM(I-1,1), LT.00, D31 = D31+ UM(I-1,1) IF (VM(I,1), GT.00, D31 = D31 - 4, *VM(I,1) IF (VM(I,1), LT.00, D4 = D4 - 4, *VM(I,1) 69 TSTAR(1,1) = DTAU*(D1*T(I+1,1) + $D2*T(I-1,1)+D31*T(1)$ 70 CONTINUE	IF (ABS(151AK(M)1) - 5).01.0051) 00 10 250 D3 = A7 - (A5 + A6) D0 80 J = 2,N FJ = 1./FLOAT(J-1) FJ1 = 1. + 5%FJ FJ2 = 1 5%FJ	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{l} \label{eq:posterior} b51 = b5\\ \hline b51 = b5\\ \hline ff(UM(1,J), GT,0,) \ b1 = b1 - UM(1,J)\\ \hline ff(UM(1-1,J), GT,0,) \ b1 = b1 - UM(1-1,J)\\ \hline ff(UM(1-1,J), GT,0,) \ b2 = b2 + UM(1-1,J)\\ \hline ff(UM(1,J), GT,0,) \ b31 = b31 + UM(1-1,J)\\ \hline ff(VM(1,J), LT,0,) \ b31 = b31 - fJ1*VM(1,J)\\ \hline ff(VM(1,J), LT,0,) \ b41 = b41 - fJ1*VM(1,J)\\ \hline ff(VM(1,J), LT,0,) \ b51 = b51 + fJ2*VM(1,J-1)\\ \end{array}$	<pre>IF(VM(I,J-1).LT.0.) D31 = D31 + FJ2*VM(I,J-1) 79 TSTAR(I,J) = DTAU*(D1*T(I+1,J) + D2*T(I-1,J) + D31* 1 + D41*T(I,J+1) + D51*T(I,J-1)) 80 CONTINUE IF(ABS(TSTAR(3,3)5).GT.0.51) G0 T0 250 C C COMPUTE NEW VORTICITY FIELD ZSTAR</pre>

FIGURE 3 (cont	d) page 5
<pre>D0 100 J=2.M EU = FLOATUJ FJ = FLOATU FJ = FLOATU FJ = FJ = All FJ = FJ = All FJ = FJ FJ = FJ =</pre>	32 IF(KIRVEL-LE-ITEVEL) GO TO 237 KTRVEL = 0 CALCULATE NEW STREAM FUNCTION FIELD DO 160 ITER = 1.1TMAX REFPSI = 0.

.

ø

		·			•••			
		PSI(I+1.) + + + + + + + + + + + + + + + + + + +		+ ([+1.]) ISd				
		1* Z(I,J-1) + A3*(SI(I,J-1))		1* Z(1,J) + A3*(51(1,J-1)) 11(1,J)	0 210)*A14	J)*FJ VМ	
	2 + D3)	SI(I,J) + REL*(D SI(I,J+1) + D3*P	2 + D3)	SI(I,J) + REL*(U SI(I,J+1) + D3*P SI) REFPSI = PS - P)	LT.0.0001) GU T	<pre>S AT BOUNDARIES •N) + PSI(I•N-1)</pre>	J) + PSI(3,J))*F ,J) + PSI(M-1,J) FS H. V. HM AND	R. R. B. J. C.
PSI = J. 150 J=2,N FLOAT(J-1) = FJ*DR	= A4*FJ/(FJ+•5) = A4*FJ/(FJ-•5) = RELAX/(A5 + D 150 I=2,M	(T,J) = RELAX1*P I(I-1,J)) + D2*P TINUE 155 I=2,M 155 J=2,N FLOAT(J-1)	<pre>= FJ*DR = A4*FJ/(FJ+•5) = A4*FJ/(FJ-•5) = RELAX/(A5 + D</pre>	PSI(I,J) (I,J) = RELAX1*P I(I-1,J)) + D2*P PSI(I,J), GT.REFP = ABS(PSI(I,J)) = ABS(PSI(I,J))	TINUE = ITER (DELPSIZREFPSI).	E NEW VORTICITIE 220 I=2,M ,NN) =(-8,*PSI(I 230 J=2,N	$(1) = (-8 \cdot *PSI(2) + PSI(2) + PSI(2)$	L VEL(MM, NN, DX, D L MEAN(MM, NN, A1, ATE NLW DTAU
DEL 00 FJ= 01	D3 REL	150 CON 150 CON 00 FJ=	01 02 03 REL	PSI PSI IF(155 CON . 17E . 17E . 17E . 160 CON	C C COMPUT 210 00 220 2(I 00	230 Z (M C CALCIII	C CALCUL

FIGURE 3 (cont'd) page 6

1 2 - - -

1

					FIGU	RE 3 (co	ont'd) page 7	
VELMXC = 0. VELMX = 0. DO 232 I= 2.M VELTST = 0.	<pre>FELUN(1,1).GT.0.) VELTST = VELTST + UM(1,1) FF(UM(1,1).GT.0.) VELTST = VELTST + 4.*VM(1,1) FF(UM(1-1,1).LT.0.) VELTST = VELTST - UM((1-1,1) FF(VELTST.GT.VELMXC) VELMXC = VELTST - UM((1-1,1) 232 CONTINUE 232 CONTINUE VFLMXC = VELMXC + A5 + A9 </pre>	DO 235 J=2.N FJI = 1. + .5/FLOAT(J-1) DO 235 I = 2.M VELTST = 0. IF(UM(I,J).GT.0.) VELTST = VELTST + UM(I.J) IF(VM(I,J).GT.0.) VELTST = VELTST + FJI*VM(I.J)	<pre>IF(UM(I-1,J).LT.0.) VELTST = VELTST - UM(I-1.J) IF(VM(I,J-1).LT.0.) VELTST = VELTST - VM(I.J-1) IF(VELTST.GT.VELMX) VELMX = VELTST 235 CONTINUE</pre>	VELMY = VELMX + A5 + A6 IF(VĽLMXC•GT•VELMX) GO TO 236 DTAU = •95/VELMX GO TO 238 236 DTAU = •95/VELMXC	<pre>238 IF(DTAU.GT.DTAUMX) DTAU = DTAUMX C C LOOP COMPLETE CHECK FOR OUTPUT 237 IF(GPRINT.GT.FPRINT) CALL RESLTS(MM.NN.TAU.DTAU.GPRINT.FPRINT.ITE) IF(GPUNCH.GT.FPUNCH)CALL PUN(M.N.RB.RS.GR.PR.TAU.DTAU.GPUNCH.FPUNC</pre>	1H) IF(GTAPE-GT.FTAPE)CALL TAP(M,N.RB.RS,GR,PR,TAU.DTAU.GTAPE,FTAPE. 1 OUTAPE,OUTBLK) 239 IF(GKTR.GT.FKTR)CALL NUSSEL(M,N.JRS,RB.TAU.DTAU.GKTR.FKTR.DX.DR)	C CHECK FOR RETURN TO START OF LOOP IF (TAU-GT.TAUMAX) GO TO 245 240 GO TO 52 245 CONTINUE 250 STOP END	

																											NAME AN AD ADDRESS OF TAXABLE	
	T NODE POINTS	1), V(101,21), UM(101,21),													-									a strong to a submy suit of Response can be an importance or variable to the later topological and the submy set of the				
D,VELCD.	O COMPUTE VELOCITIES U AND V A	TINE VEL(MM,NN,DX,DR,RB) T(101,21), Z(101,21), U(101,2	,21), PSI(101,21)	0.5/(DX*DR).	• / (DR*DR)	1 • / (I = 1, MM = C3*PSI(1,2)	= 0•	J = 2, NN	= 1./FLOAT(J-1)	1*FJINV	2 *F JINV	5*FJINV	I = 1, MM	T.NN) GO TO 10	= C4*PSI(I,J-I)	15	= C6*(PSI(I,J+1) - PSI(I,J-1) T., AND.I.T.MM, GO TO 20	0.1 V(1.) = $-C8 \times PSI(1+1.)$	Q_{MM} V(I,J) = C8*PSI(I-1,J)	30	= C7*(PSI(I+1,J) - PSI(I-1,J)	UE .	an analysis and an and an and a sub-state of the state of the				
IT FOR VELC	PROGRAM T	SUBROU COMMON	101 JAN (101	C2 = +	C3 = 2	C4 = 1 C5 = 1	00 5	$(1,1) \sqrt{2}$	DO 30	FJINV	C6 = C	C7 = C	C8 = C	DO 30	IF (J•L	([•]) U (60 10	15 IF(I.G		IF(I.E	60 TO	20 V(I,J)	30 CONTINU FND	The Contraction of the second se			nanonina mananina a pamine nanone mana ana data da mananina e n	

FIGURE 3 (cont'd) page 8

	FIGURE 3 (cont'd)	page 9
A AND VM UM(101,21),		
RT VELOCITIES UN .21), V(101,21),		
ER-NODE TRANSPO MN,A1,A2) (101,21), U(101 ,21) ,21) 0 U(1+1,J))*A1A V(1,J+1))*A2A V(1,J+1))*A2A		
ANAV, MEANAV TO COMPUTE INT OUTINE MEAN(MM, ON T(101,21), Z U1,21), PSI(101 = A1*,5 0 J = 1,NN = A2*,5 0 J = 1,NN 0 J = 1,NN 0 J = 1,NN (1,J) + 1NUE INUE		
C PROGRAM C PROGRAM C SUBR C SUBR COMM 1VM(1 A1A A2A DO 3 IF(1 VM(1 30 CONT END		

2 ma

	JRE, VELOCITY, VORTICITY AND STREAM S (N) ACROSS THE ENCLOSURE.	INT, FPRINT, ITE)	<pre>(1), V(101,21), UM(101,21),</pre>	6HTAU = ,1PE15.7// 10X. 33HTHE		TY COMPONENT U IS GIVEN BY)		Y COMPONENT V IS GIVEN BY)	Y IS GIVEN BY)		TELD IS GIVEN BY?	TIONS =, 14)					
•IT FOR PRINT, PRINT C	C PROGRAM TO CONTROL PRINTING OF TEMPERATU C FUNCTION FIELDS FOR ANY NUMBER OF POINTS	C SUBROUTINE RESLTS(MM,NN,TAU,DTAU,GPRI	COMMON T(101,21), Z(101,21), U(101,21 , 1VM(101,21), PSI(101,21)	WRITE (6,600) TAU 600 FORMAT(1H1 10X,9HAT A TIME//10X,6	I TEMPERATURE FIELD IS GIVEN BY) CALL BLOCK (MM, NN, T, 1)	WRITE (6,620) 620 FORMAT (//ICX,45HTHE FIELD OF VELOCIT	CALL BLOCK (MM, NN, U, 2) WRITE (6,630)	530 FORMAT (//JOX,45HTHE FIELD OF VELOCIT CALL BLOCK (AM, NN, V, 2)	WRITL (6,640) 640 FORMAT(//10X,34HTHE FIELD OF VORTICIT	CALL BLOCK (NM, NN, Z, Z) WRITF (6,650).	650 FORMAT(//10X,37HTHE STREAM FUNCTION F CALL BLOCK (MM, NN, PSI, 2)	WRITE (6,660) ITE 660 FORMAT (10X, 29HSTREAM FUNCTION ITERA	070 GPRINT = GPRINT - FPRINT END				

FIGURE 3 (cont'd) page 10

11					
			-	FIGURE 3 (cont'd)	page 11
• IT FOR BLOCK, BLOCK C C PROGRAM TO PRINT BLOCKS OF OUTPUT DATA. CALLED FROM SUBROUTIME RESLTS.	<pre>C THE DIMENSION OF DUMMY AND THE FIELDS IN COMMON MUST CORRESPOND DIMENSION DUMMY AND THE FIELDS IN COMMON MUST CORRESPOND DIMENSION DUMMY(I01,21) M = MM - 1 N = NN - 1 NUMBER = N/10 I FORMAT (3X, 10F10.6)</pre>	<pre>2 FCRMAT (3X, 1P10E10.3) 3 FORMAT (3X, 11F10.6) 4 FORMAT (3X, 1P11E10.3) 00 700 K = 1.NUMBER 1ND1 = 1 + 10*(K-1) 1ND2 = 10*K PRINT 650 650 FORMAT (1H) 650 FORMAT (1H) 00 700 1 = 1, MM</pre>	II = MM + I - I IF (K.EQ.NUMBLR) GO TO 690 IF (KFQ.EQ.NUMBLR) GO TO 690 IF (KFOR.EQ.2) PRINT 1, (DUMMY(II.J), J=IND1,IND2) GO TO 700 690 IF (KFOR.EQ.2) PRINT 2, (DUMMY(II.J), J=IND1,IND2) 160 CONTINUE 700 CONTINUE	END	

.

H,PUNCH O PUNCH RESULTS OF TEMPERATURE, VELOCITIES, VORTICITY AND STREAM WHICH ARE ACCEPTABLE AS INPUT DATA	TINE PUN(M.N.RB.RS.GR.PR.TAU.DTAU.GPUNCH.FPUNCH) T(101.21). Z(101.21). U(101.21). V(101.21). UM(101.21). 21). PSI(101.21) +1 +1	710, RB,RS,GR,PR,M,N,TAU,DTAU (F8.3,F7.3,F15.0,F10.3,215,2E15.8) 720 ((1,J, T(1,J), U(1,J), V(1,J), Z(1,J), PSI(1,J),),J=1,NN) (215, 5E14.7) (6.730)	(1H /10X,13HCARDS PUNCHED) = GPUNCH - FPUNCH - FPUNCH		
LI FOR PUNCH, PUNCH C PROGRAM TO PUNCH C FUNCTION WHICH AF	C SUBROUTINE PUN COMMON T(101,2 MM = M+1 NN = N+1 NN = N+1	PUNCH 710, 710 FORMAT(F8.3,F7 PUNCH 720 ((11=1,MM),J=1,NN 720 FORMAT (215, WRITE (6,730)	730 FORMAT (1H /1 GPUNCH = GPUNC END	·	

. .

. .

IT FOR TAPE,TAPE C	C PROGRAM TO PUT RESULTS ON TAPE C	SUBROUTINE TAP(M,N,RB,RS,GR,PR,TAU,DTAU,GTAPE,FTAPE,IO,IBLOCK) COMMON T(101,21), Z(101,21), U(101,21), V(101,21), UM(101,21),	IVM(101,21), PSI(101,21) MM = M+1	NN = N+I IF(IJLOCK.6T.1) GO TO 5	C INSERT CARD TO PLACE AN END OF FILE MARK ON IO TAPE	PUNCH 10, RU,RS,GR,PR,M,N,TAU,DTAU	10 FORMAT(F8.3,F7.3,F15.0,F10.3,215,2E15.8)	20 CONTINUE	WRITE(IO:35)((I,J, T(I,J), U(I,J), V(I,J), Z(I,J), PSI(I,J),	1 I = 1, MM, J = U, (MM, J = 1, MM)	35 FURMAT (215, 5E14.7)	C INSERT CARD TO PLACE AN END OF FILE MARK ON IO TAPE	WRITE(6,40)IBLOCK,Rb,RS,GR,PR,M,N,TAU,DTAU 40 FORMAT (1H / RESULTS ON TAPE IN DIOCK 12 +++++++	1 F15-0.F10-3.215,2E15-89.******)	IBLOCK = IBLOCK + 1	GTAPE = GTAPE - FTAPE	END				
-----------------------	---------------------------------------	--	--------------------------------------	-------------------------------------	---	------------------------------------	---	-------------	---	-------------------------------------	-------------------------	---	---	-----------------------------------	---------------------	-----------------------	-----	--	--	--	--

				/ - * * * * * * * * *	NUMBERED ON	•													ne objectively experiment whereas the second part of the second part of the second							na na sia manana anin' amin'ny fany amin'ny sora mangana na fanataona na manana amin'ny sora amin'ny soratra ma	
IT FOR CHECK, CHECK	C PROGRAM TO FIND AND VERIFY DATA BLOCK ON IOTAPE C	SUBROUTINE CHECK(IOTAPE,IOBLK) DIMENSION M(80), N(80)	5 FORMAT(80A1) 6 FORMAT(7/19X, DATA BLOCK', 13, ' *****',80A1,'*****'//	7 FORMAT(//10X, -************************************	1 10X, **•,48X,•*•/ 10X,•* THIS DATA BLOCK IS MIS 2 TAPE *•/ 10X,•*•,68X,•*•/ 10X,•************************************		READ(5,5) M	KPLUS = IOBLK + 5	DO 30 K = 1,KPLUS	C INSERT CARD TO SKIP OVER ONE END OF FILE MARK OM IOTAPE	KEAD(IOTAPE, 5) N	$ \begin{array}{c} 0 1 1 1 1 0 \\ 1 1 1 1 1 1 1 1 1 1$	TU CONTINUE TETRIME IONTRY DRIMT 7	PRINT 6, K,N	60 10 40	20 IF(K.LT.IOBLK) GO TO 30	PRINT 7	PRINT 6, K,N	IF (K.EQ.KPLUS) GO TO 45	30 CONTINUE	40 RETURN	45 STOP	END				

FIGURE 3 (cont'd) page 14 1

•

CALCULATION OF HEAT TRANSFER RATES WITHIN ENCLOSURE	SUBROUTINE NUSSEL(M,N,JRS,RB,TAU,DTAU,GKTR,FKTR,DX,DR) Common I(101,21), Z(101,21), U(101,21), V(101,21), UM(101,21),	IVM(101,21), PSI(101,21)	PI = 3.14159265	$AI = I \bullet / DX$	A2 = 1./DR	AJI = PI*DR*DR/4.	AJ2 = 2.*PI*DR*DR	DTDX = 0	WRITE (6,10) TAU, DTAU	IC FORMAT(/2X,JDHAL A TIME TAU =,IPUID.7,25X,IIHNEXT UTAU =,IPUID.7) Dest - dest t	00 30 J=1.JRS	F.I = FIOAT(.J-1)	$IF(J_FO_1) AFEA = AJI$	$IF(J_0GT_1) AREA = AJ2*FJ$	IF(UM(1,J).GT.0.) DTDX = DTDX + UM(1,J)*DX*AREA*T(1,J)	IF(UM(1,J).LT.0.) DTDX = DTDX + UM(1,J)*DX*AREA*T(2,J)	30 DTDX = AREA*AI*(T(1,J) - T(2,J)) + DTDX = AREA*AI*(T(1,J) - T(2,J)) + DTDX	AREA = PI*DX*DR*(FLOAT(JRS)5)	QEDGE = AREA*A2*(T(1,JRS) - T(1,JRS1))	IF(VM(I,JRS).GT.0.) QEDGE=QEDGE+AREA*VM(I,JRS)*DR*T(I,JRS)	<pre>IF(VM(1,JRS).LT.0.) QEDGE=QEDGE+AREA*VM(1,JRS)*DR*T(1,JRSI)</pre>	UTDX = QEUGE + DTDX	DTDN = QEDGE	D0 50 J = 1.N	IF (J. C.W. L.) ANLA - AUL	IF(J_LT_JRS1) GO TO 40	IF(UM(1,J),GT.0.) DTDN = DTDN - UM(1,J)*DX*AREA*T(1,J)	<pre>IF(UM(1,J).LT.0.) DTDN = DTDN - UM(1,J)*DX*AREA*T(2,J)</pre>	DTDN = -AREA*A1*(T(1,J) - T(2,J)) + DTDN	40 IF(UM(M,J).GT.C.) DTDN = DTDN + UM(M,J)*DX*AREA*T(M,J)	50 DIDN = AREA*AI*I(M,J) + DIDN AREA = PI*(2.*RB-DR)*DX	DO 60 I = 2,M	IF(VM(I,N),GT,O,) DTDN = DTDN + VM(I,N)*DR*AREA*T(I,N)	
 υυ															angener direct kinemen og																			

*

i

FIGURE 3 (cont'd) page 15

			FIGURE 3 (cont'd)	page 16
11.4. X.	·	00 .00000000000		
LT HS = • F		•0000000+0		
**2 #X 4X 2HNUSSELT CV		- 20 20 -01000		
+ DTDN T(JRS) - •5) •) - AREA1 GHS, FNUCW, T APPROX • +)		0 700 15 . 001000 0		
*A2*T(I,N) DR*DR*(FLOA 2.*RB*(FLOA Z.*RB*(RB+1 /AREA1 /AREA1 /AREA2 FNUHS. IX. 11H2-P K*A*DT = ,F9.4		5 0 100000		
60 DTDN = AREA AREA1 = PI* AREA2 = PI* QHS = DTDX FNUHS = QHS QCW = DTDN FNUCW = QCW FNUCW = QCW 70 F0RMAT(13X, 12HQCM/K*A 2 12HQCW/K*A	GND - GND END QT EXCONI	1.0 .100 500 .0000 1.7 1N IN		

NATURAL CONVECTION IN A ROOM ARISING FROM A LOCALIZED HEAT SOURCE AT FLOOR LEVEL.

HEAT SOURCE AT TEMPERATURE T = I. CEILING, WALLS, AND REMAINDER OF FLOOR AT T = O.

INPUT PARAMETERS

 RADIUS/HEIGHT = B/A = RB = I.000
 HEAT SOURCE RADIUS/RADIUS = C/B = RS = .100

 GRASHOF BASED ON HEIGHT = GR = I.000+05
 PRANOTL = PR = .700

 M = 20
 N = 20
 OX = .050000
 OR = .050000

 TAUZER = 0.0000000
 OTAUZER0 = 3.9583333-04
 TAUMAX = .25000000

 RELAX = 1.75
 ITMAX = I5
 KTR = .0010000
 PRINT = .0100000
 TAPE = .0100000

TAU = 2.5084057-01

THE TEMPERATURE FIELD IS GIVEN BY

.000000	•000000	.000000	.000000	.000000	.000000	.000000	.000000	000000	000000	
.018008	.017492	016278	.014639	.012827	.011022	.009331	007909	.000000	.000000	
.031463	.030607	028581	025868	.022882	019001	.017090	01//804	.008477	.005338	
+040075	•038952	036248	.032600	.02002	0 26 2 20	.021020	019770	+U12177	+010124	
.045579	.044157	.040686	+036234	.031657	.027426	.023694	. 320449	• 0 1 3 4 7 6	•013483	
+049712	.047919	+043514	• 0 3 7 9 7 9	.032404	027447	.023643	.020336	+017604	015067	
+053551	.051306	+045786	.038984	.0324/2	024042	.022643	010044	•01/5/3	015185	
.057682	.054890	• 0 4 8 0 5 8	.039811	.032147	020702	021232	017270	+016588	+014397	
.062460	.058998	•050610	.040723	031930	023728	010025	01/275	+015200	.013183	
.068184	.063880	.053603	.041931	031434	• 0 2 4 8 6 7	010573	010275	+013746	+011861	
075199	.069797	+057210	.043307	031401	• 0 2 3 7 5 3	+010572	019705	+012388	+010590	
.093998	•077164	+061682	.045220	+031091	023239	01/470	013097	+011172	+009428	
.095277	086511	.067253	.047421	032510	• 0 2 2 7 0 0	016330	0112043	+010094	•008387	
110060	.098606	.074259	+04/621	•035200	+ U Z Z Z Y 4	• 0 1 5 7 7 9	011/02	+009129	+007452	
129982		.093230	•050500	.033220	+021973	015047	•010837	008247	•006600	
157796	.136839	.095080	• 054208	+ 034092	+021679	01351	•010003	+007410	+005802	
198461	149054	111036	01030007	0000/5	+021331	013200	009145	+006578	005028	
. 261623	- 210453	117200	• 0 6 4 2 0 3	.036041	.020777	.012620	.008186	+005697	.004238	
. 349697	. 200043	170010	+071008	+036575	+019672	•011295	• 006996	.004689	•003387	
.573223	+ 3 0 7 0 6 3	949161	•078191	035222	+017166	+009162	.005372	.003455	.002420	
10/02/0		.200151	• 0 / 6 4 1 0	•047010	+011361	.005536	.003062	001892	+001288	
1.000000	1.000000	•500000	+000000	.000000	•000000	.000000	• 0 0 0 0 0 0	+000000	•000000	
000000	000000									
.000000	•000000	•000000	• 0 0 0 0 0 0	.000000	.000000	.000000	•000000	000000	•000000	•000000
+004378	.003562	•002865	+002271	.001768	001342	.000984	.000683	+000426	• 00 0 2 0 3	.000000
•008353	+006824	+005507	+004378	.003414	002596	001905	.001322	.000825	.000393	•000000
+011252	.009283	•007555	+006049	.004747	.003628	.002673	.001860	+001164	.000555	•000000
+012760	+010670	008792	+007118	.005639	.004346	003225	.002257	+001418	000677	•000000
+013040	+011061	009242	•007580	006077	004732	.003542	. 002496	001576	.000755	•000000
012487	+010730	•009088	+007553	.006131	004827	.003648	002590	+001644	•000789	•000000
+011493	+009975	008549	007193	.005908	.004703	.003588	002567	.001638	•000789	•000000
+010350	.009038	007815	006642	.005514	.004433	.003413	.002460	.001578	+000762	.000000
+009210	•00805 7	007009	•006007	.005031	.004082	.003168	.002300	.001483	+000718	.000000
•008144	+007112	.006204	+005347	+004510	.003687	002883	002106	.001365	•000663	•000000
• 0 0 7 1 7 3	006235	005437	004699	.003983	003275	002577	+001893	+001232	.00000	•000000
•006296	005432	• 0 0 4 7 2 2	004083	.003470	.002865	•002244	.001670	+001091	000532	.000000
005494	004696	+004061	003504	.002980	.002466	•001954	.001446	+000947	.000463	.000000
+004751	+004014	.003446	•002962	.002515	002082	.001652	.001225	.000803	•000393	•000000
+004041	.003369	.002866	002449	002073	• 001714	.001360	.001009	.000662	000324	.000000
.003337	.002740	+002306	.001957	.001649	.001360	+001078	.000800	.000525	.000257	.000000
+002609	.002107	001752	.001475	.001237	+001017	.000804	.000596	+000391	.000191	.000000
001822	.001447	+001189	• 0 0 0 9 9 3	.000828	.000678	.000535	.000396	000259	+000127	.000000
+000950	.000744	.000605	·000502	.000417	.000340	.000268	.000198	.000129	.000063	.000000
.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000	.000000

THE FIELD OF VELOCITY COMPONENT U IS GIVEN BY

3.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5 112.00		4 004+00	3,220+00	2.319+00	1+508+00	8.505-01	3.607-01	2.444-02	-1.866-01
5+112+U0	4.733+00	4.080.00	3+220+00	2 0 5 0 - 0 0	5.219.00	3.274100	1.710+00	5.298-01	-2.953-01
1+456+01	1+363+01	1+202+01	9.832+00	/.404+00	5+217400	30270400	2	1.449+00	3,915-02
2+385+01	2.245+01	2+005+01	1.673+01	1.310+01	9.575+00	6 + 427 + 00	3.779+00	2 046+00	7.684=01
3+139+01	2+963+01	2+659+01	2+242+01	1.784+01	1+340+01	9:393+00	5.936+00	3:005+00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

84 68: 3.695+31 3.490+01 3.134+01 2.649+01 2.123+01 1.618+01 1.164+01 7.708+00 4.379+00 1.627+00 FIGURE + (cont'd) p go 3 3.848+01 3,446+01 2.904+01 2.328+01 1.784+01 1.302+01 8,872+00 5.342+00 2.368+00 4.082+31 3.526+01 3.035+01 2.420+01 1+853+01 1 + 360 + 019.415+00 5.869+00 2+857+00 4.070+01 4.332+01 2.424+01 1.844+01 1.352+01 9.420+00 5.979.00 3.702+01 3.069.01 3,058+00 4.188+01 4.477+G1 1+293+01 8.995+08 5.743+00 2,359+01 1.776+01 2,997+00 3.698+01 3+026+01 4.223+01 4.541+31 2.924+01 2.242+01 1.662+01 1+196+01 8.248+00 5.240+00 2,728+00 4.195+01 3.630+01 4.543+01 2.082+01 1.513+01 1,070401 4,549+00 2+313+00 2.773+01 7.267+00 3,511+01 4.115+01 4.496-01 1.336+01 9+223+00 6.126+00 3.739+00 1.811+00 2.580+01 1.887+01 3.346+01 4.404+01 3.991+01 1.659+01 1.136+01 7.599+00 4.891+00 2.871+00 1+276+00 2 • 346 + 01 3.135+01 3.820+01 4.269+01 9.187.00 5.883.00 3.622+00 2.003+00 7.598-01 2+071+01 1.402+01 2.875+01 3.597+01 4,083+01 1.118+01 6.886+00 4+147+00 2.390+00 1 • 1 97 + 00 3 • 0 93 - 01 2.556+01 1.751+01 3.308+01 3.829+01 1.283+00 5.196-01 -2.921-02 1.383+01 8.105+00 4.555+00 2.491+00 2.164+01 2.929+01 3.471+01 4.945+00 2.366+00 1.072+00 4.162-01 4.608-02 -2.110-01 9.698+00 2.420+01 1.684+01 2.955+01 5:316+00 2.028+00 6.312-01 1.087-01 -7.963-02 -1.604-01 -2.203-01 1+105+01 1.731+01 2.189+01 4.622+00 1.438+00 6.654-02 -1.989-01 -1.882-01 -1.427-01 -1.113-01 -9.879-02 8.340+00 1:096:01 0.000 -3.095-01 -3.753-01 -4.032-01 -4.077-01 -3.992-01 -3.833-01 -3.592-01 -3.176-01 -2.405-01 -1.159-01 -4.293-02 -8.292-01 -1.148+00 -1.315+00 -1.380+00 -1.380+00 -1.338+00 -1.255+00 -1.111+00 -8.635-01 -4.741-01 -2.443-01 -1.100+00 -1.848+00 -2.294+00 -2.522+00 -2.597+00 -2.563+00 -2.430+00 -2.170+00 -1.719+00 -9.917-01 -5.540-01 -9,752-01 -2,215+00 -3,032+00 -3,516+00 -3,749+00 -3,784+00 -3,642+00 -3,290+00 -2,642+00 -1,558+00 -8,958-01 -5,716-01 -2,240+00 -3,428+00 -4,206+00 -4,648+00 -4,808+00 -4,704+00 -4,297+00 -3,482+00 -2,073+00 -1,204+00 -9.024-02 -2.050+00 -3.531+00 -4.575+00 -5.231+00 -5.539+00 -5.503+00 -5.075+00 -4.134+00 -2.467+00 -1.434+00 3.138-01 -1.785+00 -3.446+00 -4.683+00 -5.516+00 -5.958+00 -5.997+00 -5.570+00 -4.547+00 -2.708+00 -1.569+00 5.634=01 =1.545+00 =3.271+00 =4.609+00 =5.554+00 =6.093+00 =6.192+00 =5.777+00 =4.713+00 =2.795+00 =1.609+00 6.437-01 =1.374+00 =3.065+00 =4.416+00 =5.401+00 =5.988+00 =6.122+00 =5.721+00 =4.656+00 =2.745+00 =1.569+00 5.788-01 -1.277+00 -2.858+00 -4.146+00 -5.107+00 -5.691+00 -5.834+00 -5.448+00 -4.415+00 -2.586+00 -1.468+00 4.106=01 =1.237+00 =2.653+00 =3.822+00 =4.706+00 =5.246+00 =5.375+00 =5.005+00 =4.036+00 =2.347+00 =1.323+00 1.851-01 -1.222+00 -2.440+00 -3.454+00 -4.224+00 -4.692+00 -4.791+00 -4.442+00 -3.559+00 -2.055+00 -1.150+00 -5.362-02 -1.204+00 -2.204+00 -3.041+00 -3.677+00 -4.059+00 -4.122+00 -3.798+00 -3.022+00 -1.732+00 -9.619-01 -2.659-01 -1.154+00 -1.931+00 -2.585+00 -3.082+00 -3.372+00 -3.399+00 -3.110+00 -2.454+00 -1.394+00 -7.679-01 -4.169-01 -1.051+00 -1.613+00 -2.090+00 -2.452+00 -2.655+00 -2.655+00 -2.408+00 -1.880+00 -1.056+00 -5.750-01 -4.780-01 -8.810-01 -1.248+00 -1.566+00 -1.807+00 -1.937+00 -1.919+00 -1.722+00 -1.326+00 -7.315-01 -3.906-01 -4.323-01 -6.456-01 -8.516-01 -1.036+00 -1.177+00 -1.250+00 -1.227+00 -1.088+00 -8.212-01 -4.384-01 -2.242-01 -2.584-01 -3.697-01 -4.585-01 -5.433-01 -6.099-01 -6.425-01 -6.260-01 -5.473-01 -4.010-01 -2.002-01 -9.122-02 -1.021-01 -1.168-01 -1.379-01 -1.605-01 -1.793-01 -1.887-01 -1.834-01 -1.583-01 -1.105-01 -4.622-02 -1.231-02 0.000 0.000 0.000 0.000 0.000 0.000 0.000

THE FIELD OF VELOCITY COMPONENT V IS GIVEN BY

0,000

4:733+00 6:300+00 7:197+00 7:490+00 7:311+00 6:808+00 6:114+00 5:339+00 1.078+01 1.151+01 1.154+01 1.103+01 1.015+01 9.048+00 0,000 2.556+00 3.640+00 6.813+00 9.228+00 1.456+01 1.594+01 1.643+01 1.617+01 1.531+01 1.402+01 0.000 1,594+01 1.553+01 1.465+01 1.220+01 8.860+00 0,000 4,685+00 1.344+01 1.497+01 1.578+01 1 . 279+01 1 . 239+01 1.112+01 8.002+00 1.043+01 1.168+01 1.246+01 1.281+01 4.207+00 0.000 7.970+00 8.489+00 8.804+00 8.936+00 8.621+00 8.872+00 6.221+00 0:000 3.277+00 4.355+00 4.665+00 4.860+00 5.012+00 5.139+00 5.222+00 4.424+00 6:032+00 0,000 2.358+00 2.081+00 1.987+00 1.885+00 1.847+00 1.892+00 2.003+00 3 • 8 1 1 + 0 0 2.904+00 0.000 1.590+00 5.220-01 7.646-01 6.536-01 3.085-01 -9.880-02 -4.387-01 -6.436-01 -6.961-01 -6.125-01 0:000 1.658=01 3.935=02 -4.234=01 =1.068+00 -1.712+00 -2.230+00 -2.562+00 -2.697+00 -2.650+00 0:000 -1.140-01 -5.374-01 -1.283+00 -2.165+00 -2.987+00 -3.632+00 -4.050+00 -4.237+00 -4.211+00 0:000 -3.475-01 -1.024+00 -2.013+00 -3.090+00 -4.048+00 -4.776+00 -5.237+00 -5.439+00 -5.408+00 0.000 -5.651-01 -1.481+00 -2.695+00 -3.941+00 -4.998+00 -5.766+00 -6.226+00 -6.404+00 -6.334+00 0.000 -8.020-01 -1.969+00 -3.408+00 -4.801+00 -5.919+00 -6.679+00 -7.091+00 -7.201+00 -7.058+00 0.000 -1.102+00 -2.560+00 -4.230+00 -5.745+00 -6.871+00 -7.562+00 -7.867+00 -7.859+00 -7.606+00 0.000 -1.530+00 -3.344+00 -5.246+00 -6.830+00 -7.881+00 -8.414+00 -8.536+00 -8.357+00 -7.958+00 3:000 1.000

1 m

0.000		-0 -00 -00								Ŧ.	28
0.000			~\$+538+00	-8.079+00	-8+908+00	-9-123-00	-8.999+00	-8.591+00	-8+022+00	. 1(te a (contra) et a
0.000	=3+206+00	-5.985+00	-9+130+00	-9:379+00	= 9 • 7 4 0 + 0 0	-9.522+00	-3,999+00	-8.334+00	=7+504+00		
0.000	-4.646.00	-7:928+00	-9.695+00	-1:013+01	-9+720+00	-8.910.00	-8.023+00	-7+172+00	- 4 - 390 - 00		
0.000	-5:473-00	-8.55+00	-9+192+00	-8:315+0n	-7+138+00	-5:059+00	-5-192+00	-4-482-00	-3 665.00		
0.000	-5+481+00	-8:340:00	-7.990+00	-5:327+00	= 4 + 9 0 0 + 0 0	-3.885+00	=3+179+00	-2.445.00	-> >74.00		
					1110-00			21003400	~ 2 + 2 + 4 + 0 0		
4.556+00	3.805+00	3+108+00	2.475+00	1.907+00	1+400+00	9.501-01	5.592-01	2,445-01	4-462-02	0.000	
7 + 853+00	6.649+00	5.492+00	4.412+00	3.426.00	2+536+00	1 = 743+00	1+056+00	5.005-01	1.270-01	0.000	•
1.245+01	1+075+01	9:026+00	7+352+00	5 + 774 + 00	4.320+00	3.008400	1.963+00	9.245-01	2 4 5 4 9 1	0.000	
1+338+01	1+185+01	1+018+01	8.445+00	5.739+00	E.109+00	3.602+00	2.241+00	1 144.00	2:000-01	0:000	
1.165+01	1.062+01	9.355.00	7.940+00	6 455+00	5 107400	3 502+00	2 2 2 2 1 2 0 0	1+1+++00	3:386-01	0.000	
8.589+00	8.043+00	7.308+00	4.343+00	6 292+0-	4.700+00	3.975+00	2 • 2 7 3 + 00	1+141+00	3+3/7=01	0.000	
5.219+00	5 0 7 7 2 0 0	4 746,00	3 3 3 8 2 4 U U	3.202400	4 • 130 + 00	2.778400	1 = 373+00	7+576=01	2 + 7 9 - 0 1	0.000	
3 1 3 5 4 0 0	3.077+00	3 0 4 2 0 2	9+2/9+00	3.641+00	2.898+00	2+108+00	1.340+00	6+710=01	1:897-01	0.000	
2:135+00	2 • 2 3 3 + 0 0	2+272+00	2+129+00	1.890+00	1+545+00	1+134+00	7+143=01	3+459-01	9 • 071 = 02	0.000	
-4+305-01	-2.012-01	1.850-02	1+819=01	2 + 6 4 2 = 0 1	2.646-01	2 + 0 3 7 = 0 1	1+157=01	3 • 857 - 02	2 • 1 7 2 - 0 4	0.000	
=2+455+00	=2+154+00	-1+800+00	-1+442+00	-1+113+00	-8:323-01	-5+973-01	-3+768-01	-2.202-01	-7.333-02	0.000	
-4+005+00	-3+657+00	=3+212+00	-2+714+00	-2+202+00	-1.703+00	=1+232+00	-7+994-01	=4.195=01	=1+281=01	0.000	
-5+177+00	=4.782+00	-4.264+00	=3+661+00	-3+011+00	-2.348+00	-1+699+00	-1 + 091 + 00	-5+603-01	-1.652-01	0.000	
-6+056+00	-5.605+00	-5+017+00	-4.328+00	-3.574+00	-2.791+00	-2+014+00	-1.283+00	-6.500-01	-1.875-01	0.000	
-6.706+00	-6.184+00	-5.526+00	-4.763+00	= 3 + 930+00	-3.063+00	-2+201+00	=1.393+00	-6.984-01	-1.986-01	0.000	
-7+158+00	-6.553+00	-5.824+00	-5.000+00	= 4 + 109 + 00	+3+189+00	-2,280+00	-1-434+00	-7+135-01	=2:011=01	0.000	
-7:395+00	-6.704+00	=5+912+00	-5+043+00	= 4 + 121 + 00	-3.180+00	-2+261+00	=1+413+00	-6.989-01	=1+961=01	0.000	
-7 - 341+00	-6-578+00	=5+747+00	-4+863+00	=3.947+00	= 3 + 0 2 5 + 0 0	=2+135+00	=1+325+00	-6.515-01	=1+823=01	0.000	
-6-840+00	= 6 + 0 4 9 + 0 0	=5+231+00	-4-389+00	=3.534+00	=2.687+00	=1.879400	=1.154+00	=5.609=01	-1.556-01	0.000	
-5.636+00	= 4 . 9 2 0 + 0 0	= 4,212+00	-3.504+00	=2.797+00	-2.105+00	=1.453+00	=8.754=01	= 4.140=01	+1-101-01	0.000	
-3.397.00			-2.052+00	-2+/7/400	-2.105-00			=2.113=01	=4.741=02	0.000	
	-2.725+00	-2.90700	-2:052-00	-1+845+00	-1+207+00	- 4 4/1-01	-2 494-01	-21113-01	-1 279-02	-0.000	
-1 + 954+00	-1.075+00	=1+414+00	-1+162+00	= 4+145=01	=6e/2/=U1	10-167-17	=Z+484=UI	-7.75/=02	-1+2/7=02	-0.000	

THE FIELD OF VORTICITY IS GIVEN 84

0.000	-1+317+02	-2:424+02	-3+195+02	-3,602+02	-3.690÷02	-3.542+02	-3.241+02	-2.862+02	-2+461+02	
0.000	-3+328+01	-6+650+01	-9+812+01	-1+253+02	-1+456+02	-1.573+02	-1.605+02	=1+560+02	-1.452+02	
0.000	2.655+01	4 • 260 + 01	4 • 6 6 9 + 0 1	4.030+01	2.656+01	9+044+00	-8.976+00	⇒2+491+01	≈3+705+01	
0.000	5.488+01	9+521+01	1+190+02	1+275+02	1+241+02	1+120+02	9.438+01	7+385+01	5+271+01	
0.000.	6.662+01	1+166+02	1 • 473+02	1.614+02	1.630+02	1+561+02	1.431+02	1+259+02	1:058+02	
0.000	7 + 218 + 01	1 + 254 + 02	1 • 564+02	1.694+02	1 + 7 0 5 + 0 2	1.647+02	1.546+02	1.415+02	1 = 257 + 02	
0.000	7 • 6 2 1 + 0 1	1+306+02	1+590+02	1.676+02	1 • 649+02	1 • 5 7 3 + 0 2	1+477+02	1+370+02	1 • 249 + 02	
0.000	8 + 0 3 7 + 0 1	1+354+02	1+601+02	1.632+02	1+555+02	1.445+02	1.338+02	1+240+02	1+143+02	
0.000	8+521+01	1.407+02	1+614+02	1.586+02	1.456+02	1.312+02	1+188+02	1 + 0 8 9 + 0 2	1.003+02	
0.000	9:095+01	1 + 469 + 02	1+631+02	1.544+02	1+367+02	1+192+02	1.051+02	9:453+01	8+635+01	
0.000	9 + 775 + 01	1+540+02	1+654+02	1.511+02	1+290+02	1+087+02	9,298+01	8 + 170 + 01	7.350+01	
0.000	1+056+02	1+621+02	1+684+02	1.484+02	1+222+02	9 • 9 3 4 + 0 1	8.226+01	7:032+01	6+196+01	
0.000	1 • 1 4 7 + 0 2	1+713+02	1+719+02	1.460+02	1+157+02	9+060+01	7.239+01	5+995+01	5+148+01	
0,000	1+251+02	1+815+02	1+755+02	1.431+02	1+089+02	8+177+01	6 = 272 + 01	5:002+01	4 • 157 + 01	
0.000	1+367+02	1.923+02	1.784+02	1.390+02	1+008+02	7 • 202+01	5-246+01	3 + 977 + 01	3 + 1 5 9 + 0 1	
0.000	1.491+02	2:031+02	1+797+02	1:323+02	9+019+01	6+011+01	4.047+01	2.819+01	2.062+01	
0.000	1:609+02	2 + 1 2 1 + 0 2	1+771+02	1.205+02	7.466+01	4.395+01	2.498+01	1 • 378 + 01	7.386+00	
0.000	1.675+02	2+143+02	1+651+02	9.787+01	4.919+01	1+957+01	2,940+00	-5.785+00	-9.856+00	
0.000	1.549+02	1.930+02	1+273+02	4.909+01	2+509+00	=2:058+01	=3.057+01	=3+370+01	-3:330+01	
0.000	7+025+01	7 . 845+01	2+553+00	-6.830+01	-8.877+01	-8+831+01	-8.140+01	-7+313+01	-6:494+01	
0.000	-3+290+02	-4.941+02	-4+553+02	-3+398+02	-2.493+02	-1.895+02	-1.504*02	-1+236+02	=1+040+02	
-2.074+02	-1 -714+02	-1:388+02	-1+098+02	-8.405+01	-6+129+01	-4 + 114 + 01	-2.362+01	-9:562+00	-1:030+00	0.000
-1+301+02	-1+129+02	-9.507+01	-7+757+01	-6.100+01	-4,580+01	=3+231+01	-2.095+01	-1.222+01	-6.20/+00	-1+170+01
-4-369+01	~4+563+01	-4+390+01	-3+956+01	-3.364+01	-2.713+01	-2+097+01	-1,603+01	-1+292+01	-1+156+01	- (+ 0 2 9 + 0
3-336+01	1.785+01	6.541+00	-8+497-01	-5,090+0n	-7.243+00	-8+534+00	-1:021+01	=1+331+01	-1.836+01	-23492+0
8.411.01	A. 347 + 01	4.546+01	3+076+01	1.928+01	1.028+01	2 + 6 3 2 + 0 0	-5,051+00	-1,422+01	=2,602+01	= 4 + 1 1 / + 0
21.11.01	01017-01									

· ·

1,11,3402	3 4 7 6 8 4 0 1	A 0/0.01								
1.1.0.0.0.0.0	01100001	0.390401	5+127+01	3.612.01	2.290.01	1.074.01	-1.671+00	~1.588+01	-3-345+01	-5-677-01
1.104+03	Y + 482+01	7.783+01	5.103.01	4.606.001	2 897.01	1.518.01	- 2.676-01	-1 010.01	010101	212/2101
1.037.02	9-133-01	7.744.01	· · · · · · · · · · · · · · · · · · ·	1000001	2.0 4 4 1 4 01	1.010401	~3*0/0*U1	-1:813+01	-3+957+01	-5.644+01
0 102.01	0.001.01	1041411	0+202+01	4+752+01	3.220+01	1.634+01	-8.553-01	-2:055:01	-4.403.01	-7.297+01
1+1+2+01	8.251+01	7+150+01	5.905-01	4.549+01	3.090+01	1.509.01	-2.487.00	=2+253+01	-4.621.01	-7 400.01
7+912+31	7 • 1 5 0 + 0 1	6 + 287 + 01	5.261.001	4 090.0.	0 7/16 . 0 1	1 246.01		2 202 01	ALCCIAUT	-/-400401
6.684+01	5.046.01	6 333.01	Dirot-01	4.000+01	20/4001	10242401	-4*218*00	-2+341+01	-4.619+01	-7+181+01
e e e e e	0.00001	2+323+01	4.484+01	3.472.01	2:287+01	9,203+00	-6.432+00	-2:420+01	-4.427+01	~5.881+01
2+224+1	4.99Z+01	4.390.01	3:580+01	2.821+01	1.794301	5,912+00	-7.913+00	-2.351.01	=# 092.01	
4.531+31	4+015+01	3.498.01	2.003.01		1 + 1 + 1 + 0 +					-2•404+01
3.565+01	3.100.01	3 (50.01	2 4 7 0 3 4 0 1	2+183+01	1 + 317 + 01	2 • 9 4 1 • 0 0	~8,8U2+00	=2+193+01	=3+627+01	-5+180+01
0.00.01	20100001	2+657+01	Z+169+01	1.583+01	8.767+00	4.327-01	-9.099+00	-1:965+01	-3.099+n1	-4-309+01
5+203+01	2+205+01	1.848+01	1+465+01	1.014+01	4.725+00	41.665.00	-9.940+00	=1.490.01	-2.633.01	-1 410.01
1.587+01	1+270+01	1.013.01	7 5 2 0 . 0 0		40/60400	11000400		100/0401	-2:222401	-3+418+01
1 000.00	0.010.01	1+012+01	/*230*00	4.475+00	8+133-01	-3.569+00	-8.567+00	~1.399+01	-1:961+01	-2:537+01
3.700+00	2+010+00	8+130-01	-2+665-01	=1.587+00	=3 + 3 + 6 + 00	-5.600+00	-8.285+00	=1+122+01	-1.418+01	-1.496+01
-1+121+01	-1+114+01	-1+041+01	-9.497+00	-9.490.00	-0.200.00	-9 102.00	-9 370.00	-0.004.00	10.011.01	10070401
-3-112-01	=2.003.01	-2 (152 01		~0:0/0400	~8.200+00	-0+102+UU	-0:3/9+00	-8:370+00	-9+375+00	- 7 • 384+00
-04115-01	~21003401	~2+453+01	-2+092+01	-1+740+01	-1+415+01	=1+131+01	-8,982+00	~7+151+00	~5+551+00	-3.404+00
-5+713+01	-4.963+01	-4+232+01	= 3 + 5 1 3 + 0 1	=2.810+01	= 2 + 138 + D1	=1.520+01	⇒9.881+00	=5 + 7 30 + 00	= 2 . 771 + 00	-9.400-02
-8.858+01	-7.547+01	= 6 + 3 4 7 + 0 1	-5.105.01	-4 044401	20100001	1 0 0 1 1 0 1	1 0 2 0 1 0 0	2 500 00	2	-7:400-02
		0.011			⇒Z₀964+U1	=10931+01	=leU32+01	-3+580+00	-7.507-02	0.000

THE STREAM FUNCTION FIELD IS GIVEN BY

~

0.00	0.000	0.000	0:00:0	0.000	0.000	0.000	0.000	0.000	0.000	
0.000	6.390-03	2.367-02	4 + 7 2 5 ≈ 0 2	7.197-02	9.362-02	1.097-01	1.191-01	1+223=01	1 + 201 = 01	
0.000	1.820-02	6 • 813 - 02	1+384=01	2 . 156=01	2 + 877 - 01	3+461=01	3.860-01	4.060-01	4.072-01	
0.000	2.982-02	1 • 1 2 3 - 0 1	2+303=01	3.632-01	4 + 922=01	6.026.01	6.850-01	7.347-01	7,510⇒01	
0.000	3.924-02	1.481-01	3:052-01	4.844-01	6 • 6 2 0 - 0 1	8.195.01	9.438-01	1.027+00	1+066+00	
0.000	4.620-02	1 + 7 4 5 - 0 1	3.596-01	5.718-01	7 . 842-01	9.763-01	1.133+00	1.246+00	1+309+00	
0.000	5.103-02	1 + 9 2 4 = 0 1	3 • 9 5 6 = 0 1	6.281-01	8+613-01	1+074+00	1 . 252+00	1.385+00	1,466+00	
0.000	5.415-02	2 + 0.35 = 0.1	4.168-01	6.589-01	9.008-01	1.122+00	1.309+00	1.452+00	1.544+00	
0:000	5.596-02	2.094-01	4 + 262 - 01	6.697-01	9+110=01	1+131+00	1+317+00	1.460+00	1+556+00	
0.000	5.676-02	2.112-01	4 . 266 - 01	6.650-01	8.984=01	1+109+00	1 . 285+00	1.424+00	1.516+00	۰, -
0.000	5.679-02	2.098-01	4 + 198 = 01	6.483-01	8 • 682 - 01	1.064+00	1.227+00	1,352+00	1.437+00	
0.000	5.619-02	2:058-01	4+073-01	6.217-01	8.237-01	1.000+00	1.145+00	1 . 254+00	1.327+00	
0:000	5.505-02	1.995-01	3 + 895 = 01	5.865-01	7.669-01	9 + 205 - 01	1.044+00	1+135+00	1+193+00	
0.000	5.337-02	1.910=01	3+669=01	5.429-01	6.987-01	8.270-01	9.267-01	9,982=01	1+042+00	
0:000	5.104-02	1.798-01	3.385-01	4.905-01	6+190=01	7 + 202 = 01	7.955-01	8.469-01	8 • 756 = 01	
0.000	4.786-02	1 • 654 = 01	3.034-01	4.280-01	5 • 270 - 01	6.002-01	6.514-01	6.838-01	6 + 992 = 01	
0.000	4 + 3 3 9 = 0 2	1 • 464 - 01	2 + 5 9 8 = 0 1	3.539-01	4.219-01	4 • 677 = 01	4 • 967 - 01	5.126-01	5 • 175 • 01	
0.000	3.693-02	1.210-01	2+054=01	2 . 664 - 01	3 • 0 4 3 = 0 1	3 • 256 = 01	3:364-01	3.402-01	3.383-01	
0.000	2.736-02	8.655-02	1+379=01	1.663=01	1.784-01	1.821=01	1 + 317 - 01	1.793-01	1 + 753 = 01	
0.000	1 + 370 = 02	4 + 170 - 02	5 + 992 = 02	6.327-02	6 • 1 2 5 = 0 2	5 • 8 2 9 - 0 2	5.561-02	5 • 3 3 0 - 0 2	5+116-02	
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0.000	
0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000	0.000
1+139-01	1.046-01	9 • 325 = 02	8+045-02	6.675-02	5:250=02	3 • 800 - 02	2.377=02	1 • 1 0 1 = 0 2	2 + 1 2 0 = 0 3	0.000
3 + 9 2 7 - 0 1	3.657-01	3 • 295 = 01	2 + 868 = 01	2:398=01	1 • 9 0 2 - 0 1	1 + 395 - 01	8 • 978 - 02	4 • 5 0 4 = 0 2	$1 \cdot 206 \to 02$	0.000
7.364-01	6+959-01	6.348-01	5 + 5 8 3 = 0 1	4.709-01	3 • 7 6 5 - 0 1	2.787-01	1.821-01	9.422-02	2 • 7 3 5 - 0 2	0.000
1.062+00	1.018+00	9.400-01	8+357-01	7 • 1 1 5 = 0 1	5 + 7 3 3 - 0 1	4.276-01	2.820-01	1.480-01	4.423-02	0.000
1+319+00	1.280+00	1.196+00	1+074+00	9 • 2 2 7 = 0 1	7.491-01	5.621-01	3.728-01	1.969-01	5 • 944 - 02	0.000
1.491+00	1.461+00	1.379+00	1 • 2 4 9 + 0 0	1.081+00	8 + 8 3 1 = 0 1	6.657-01	4.429-01	2.344=01	7.082-02	0.000
1+580+00	1.559+00	1.482+00	1+353+00	1.178+00	9.664-01	7+308-01	4.867-01	2 + 573 = 01	7.745-02	0+000
1:598+00	1.584+00	1.513+00	1+388+00	1 + 2 1 3 + 00	9.990-01	7.565-01	5.036-01	2.655-01	7.944-02	0.000
1.559+00	1.548+00	1.483+00	1 • 364 • 00	1.196+00	9.863-01	7.471-01	4.965-01	2.608-01	7.748-02	0.000
1+475+00	1.465+00	1.405+00	1+294+00	1:136:00	9:365-01	7.087-01	4.699-01	2.457-01	7.247-02	0.000
1.358+00	1.347.00	1.290+00	1 • 1 8 8 * 00	1.042+00	8.585-01	6.485-01	4.285-01	2.230-01	6.531-02	0.000
1.216+00	1.202+00	1 . 149 + 00	1+056+00	9.247=01	7.604-01	5.728-01	3.771-01	1.953=01	5.678-02	0.000
1:056:00	1.039+00	9.894-01	9:066-01	7:918=01	6.492-01	4.873-01	3.195-01	1.645-01	4.749=02	0+000
8-911-01	8 • 6 2 3 - 0 1	8 • 177-01	7.464-01	5.496-01	5,307-01	3.967-01	2.588-01	1.324-01	3.791-02	0,000
6,977-01	6.784-01	6.400-01	5.816-01	5.041-01	4 ₀ 1 0 0 ≈ 0 1	3.049-01	1.976-01	1:003-01	2:834-02	0.000

AGE: 37

 5.11*-01
 4.936-01
 4.629-01
 4.187-01
 3.611=01
 2.922-01
 2.159-01
 1.387-01
 6.949-02
 1.928-02
 0.000

 3.307-01
 3.166-01
 2.952-01
 2.655-01
 2.278=01
 1.831=01
 1.341=01
 8.498-02
 4.165-02
 1.107-02
 0.000

 1.69*-01
 1.400-01
 1.334+01
 1.137-01
 9.067-02
 6.553-02
 4.059-02
 1.901-02
 4.504+03
 0.000

 4.655-02
 4.243-02
 3.778-02
 3.200-02
 2.523-02
 1.785-02
 1.056-02
 4.391-03
 6.076-04
 0.000

 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000

LARUS FUNCHED

 RESULTS ON TARE IN BLOCK
 9*****
 1.000
 100000.
 .700
 20
 .25004057*00
 .28714466-03****

 AT A TIME TAU =
 2.5004057-01
 NEXT DTAU =
 2.8714466*04

 Z-PT APPROX
 NU55ELT H5 =
 12.810950
 QH5/K*A*DT =
 .628856
 NU55ELT CW =
 .050083
 QCW/K*A*DT =
 .626905

FIGURE 5

Computing time required for EXCON1 at several Grashof numbers (GR), numerical study of reference 3. Calculations carried from quiescent initial conditions to steady state with a M x N = 50×20 grid.

