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ALLOCATING SERVICE PERIODS TO MINIMIZE DELAY TIME

W.A. Horn

National Bureau of Standards

ABSTRACT

Consider a facility which must divide its services, during

the time interval [0,T] ,
among N streams of arrivals . The

prohlem treated Is that of finding a pattern of service which

minimizes total delay to the members of the streams, taKing into

account the "dead time" which begins each service period. For

each stream, it is required that final queue size equal initial

size, and that the queue be empty sometime in [0,T] . Conditions

for feasibility of solutions are given in the case where the

instantaneous service rates are bounded above by known constants.

In the event that all streams have constant arrival rates and are

to be served the same number of times, an optimal service pattern

is derived using a recent result of R. Rangarajan and R.M. Oliver.

Key words

Transportation theory, queueing theory, traffic flow, switching
theory, scheduling, allocation.





ALLOCATING SERVICE PERIODS TO MINIMIZE DELAY TIME

W.A. Horn

National Bureau of Standards

1. PROBLEM STATEMENT

This paper presents a further investigation into the type

of problem studied in [1] . The problem pertains to the allocation

of servicing times among several incoming streams which require

"processing" of some kind by a single "server" capable of handling

only one stream at a time . The server might for example be a

switching point or a congestion point (e.g., a tunnel entrance)

in a transport network, in which case "serving" a stream simply

means permitting passage to its flow. Or, the server might be a

computer handling reservations being arranged at several points,

or exercising control on a real-time basis over operations along

several linKS

.
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The time period during which servicing occurs is assumed to

be £0,T] , where T > 0 . The rate at which "customers" arrive

at stream i is assumed to be the known continuous function a (t) ,

while the outflow or service-rate function s (t)
> which will be

defined below, is bounded above by the constant > 0 , the

capacity when servicing stream i . It is further assumed that

a
.
(t) crosses the level C. at most a finite number of times in

i i

rO,T] . That is, a^'(Ch) Is a set with a finite number of

connected components.

The size of the waiting queue in stream i at time t is

designated by Q^(t) , and we let q^ = ( 0) ,
where it is

assumed that each q is non-negative. Then clearly

t

(l) Q
±
(t) - q.

± + J
(a^r) - s

1
( T))dT .

0

A cumulative waiting time function W^(t) is defined for

each I by

t

W
i
(t) =

,f
Q

;L
(t)4t ,

0

and a total waiting time function W(t) is defined by

N
W(t) = £ W (t)

,

i=l

where N is the number of streams.
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Since s
.
(t) will depend on the times at which servicing

actually occurs
,

it is clear that W and W also depend on

these variables. Furthermore, W_. and W depend on the quantities

q^
. These functional dependencies may be expressed explicitly

when convenient

.

Next we define s_. (t) . As a preliminary, we further limit

the generality of the problem by assuming that a given stream i

is serviced, within [0,1] , only during a finite set of closed

intervals [fx. .,y. where m(i) is the total number oflL ij’ ij -J=l

such intervals of service to stream i . No two intervals of

servicing, for any streams, may overlap except at their endpoints.

and the set of all service intervals for all streams covers [0,T].

(The endpoints of these intervals comprise the switching pattern .)

Furthermore, for some set of positive constants fd_.
}

called the

"dead" times, it is assumed that x. . + d. < y. . , for i = 1,2 N ,

ij i — ij

and j = 1,2, . .
. ,m(l) .

If stream i is not being serviced at time t ,
then s_. (t)

is defined to be 0 . If t lies in the service interval

fx. .,y. .1 , then s.(t) is defined by
' 1 J 1 J 1

s
±
(t)

0 : tf rx.
. ,x. .+d. 1 ,* ij ij

C. : tf(x. .+d.,y. .1 and Q.(t) >0 ,
i ij i ij - i

min (C.,a.(t)) : (x. .+d. ,y . . 1 and

Q
1
(t) < o .



h

Tit is clear from (l) that Q. depends on s. , whereas the
1 i

above definition states that s^ depends on ,
at least on

the intervals (x. .+d.,y. ."I . Thus it is necessary to show that
ij i ij J

there exist unique functions s^ and which satisfy (i)

and the equation for s^ . This will not be detailed here,

although it is quite simple due to the particular form of a^(t).

Briefly, the proof consists of constructing the unique and

Q. by breaking up each interval (x. .+d. ,y. .1 into subintervals
i ij i ij J

where either a.(t) < C. or a.(t) > C. . The functions s.i—i i i i

and Ch are then defined in the natural way and easily shown to

be unique
.

]

The above definition of s^
,
together with the fact that

q^ > 0 , assures that Q (t) > 0 for all t^rChT*] , since if

Q^(t) < 0 for some t then there would exist t* < t such that

Q^(t') = 0 , by the continuity of Q . Let t^ be the greatest

such t
|

Then Q (r) < 0 for all r such that t^ < r < t , and so

a^(r) - s_^(r) >0 in this interval, by the definition of s^ .

This contradicts the fact that

t

0 > Q
i
(t) = Q

i
(t

(

I

)

)+ J
(a

1
(r) - s

i
(r))dr .

The general problem to be considered is that of finding a finite

set of intervals Tx. .,y. .1 of service, as defined and restricted
L ij iJ J

above, such that the total waiting time W(T) is a minimum, given

the initial values q. .

i
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We will consider a variant of the general problem in this

paper by introducing the restrictions (for i=l,2, ...,N)

( 2 )

(3)

q. = Q
i
(0) = Q.(T) ,

Q .
(t )

= 0 for some t^fO,T] ,

and by allowing the minimization not only over the intervals of

servicing but also over the parameters q. as well. That is, the

q_. will not be considered fixed but variable, subject to (2) and (3)

Constraints (2) and (3) are called the feasibility constrs ints , and

a solution is feasible if it satisfies them.

Imposing constraint (2) has the property of making the problem

periodic, in the following sense . If we suppose that a_. is defined

for all t > 0 , rather than for t^TO,Tj ,
with a

.
(t+T) = a

.
(t) ,

and that the switching pattern is extended in such a way that stream

i is being serviced at time t+T if and only if it is also being

serviced at time t , then Q_. (0) = Q_. (T) implies

+ (t+T) = Qgt) .

It is also seen from this that

W.(T+t) - W.(t) = W.(T) ,

or,

W
±
(nT+0) = nW

±
(T) + W

± { q ) .
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This in turn implies that

W(t)/t - W(T)/T as t -* oo ,

so that, in a sense, minimizing W(T) and thus W(T)/T is

equivalent to minimizing the "long-term average delay". The

motivation for this restriction is that the applications we

have in mind refer to ongoing systems rather than isolated occurr-

ences. It seems of little practical use (except for emergency

evacuation operations and the like) to formulate the problem as if

what happened after time T were of no concern. Condition (2) ,
at

least for periodic arrival patterns, implies stability in the sense

of "repeatability" for the situation, in particular ruling out

unbounded growth of queues over the long run. It might prove

worthwhile to investigate the problem variant in which (2) is

replaced by

(2') Q±
(T) <Q.(0) ,

but this version will not be studied here.
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2. FEASIBILITY AND CONSISTENCY CONDITIONS

So far it is not known whether there exist feasible solutions

of the problem of section 1. This section will be devoted to

finding necessary and sufficient conditions for the existence of

such solutions

.

Since we are considering the problem where not only the points

of switching are allowed to vary, but also the q^ , the first

question which arises is how much freedom the q^ have, for a

given switching pattern, so that conditions (2) and (3) may still

be satisfied. The following two lemmas answer this.

LEMMA 1. Let Q. and QJ be the queue-size functions associated
1 1

with the initial values
q_^

and q_J ,
respectively, and having

the same switching pattern. Then
| Q ( t ) - Q3(t)

|

is a non-

increasing function of t .

PROOF. First, Q^-Q_! does not change sign. For if Q (a) -07(a) >0

and Q (b) - Q^(b) < 0 , where a < b
,
then by continuity

Q (t) = Q7(t) for some t^(a,b) . But then Q ( 7 ) = Q-J(t)
for

all 7 > t , contradicting Q (b) < Q, ! (b) .

Now suppose (say) Q ( 0 ) > Q'(0) . Then

Q^(t) - <q(t) = |Q (t) - Q!(h)
|

,
by the above. But

t

Qi(t) - Q^t) - q
j

_-ql_ + J
(s^( T )

- s
i

( T ))dT ,

0

and since s^( T ) < s ( T )
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for all 7f[0 ,T] because
,

we have that
|

( t

)

- Q^(t)

|

is non-increasing. Similarly if Q^O) < Q^(o) or Q^(0) = Q^(0) .

LEMMA 2. Let and be two queue-size functions associated

with the same switching pattern during [0,T1 and both satisfying (2)

.

Then and differ by a constant. Hence there exists at most

one feasible solution for each switching pattern.

PROOF. From lemma 1

,

|Q±
(0) - Q^(0)

|
> |Qi

(t) - Q>(t)| > |Q.(T) - Q^(T)| for all

te (0,T] . But by ( 2 )

,

|Q.(0) - Q'(0)
| = |Q.(T) - Q’ (T)

|

.

Hence
,
by the continuity of the queue -size functions ,

Q^(t) - Q^(t) = q^ - q_! ,

a constant.

Now if two solutions having the same switching pattern are both

feasible, then they satisfy (3) in addition to (2). But if q^ > q^ ,

for example, then Q^(t) >Q^(t) >0 , by the above, and is not

feasible. Therefore q. = q! and so Q. - Q

.

i i ii

The next question to be treated is which patterns of switching

times admit feasible solutions.



9

THEOREM 3. Suppose that stream i is serviced during successive

intervals of length L . _ ,L
, ^ ,

. .
.
,L . / . \

,

and let d. he the dead
ll i2 7

im( ij 1

time for stream i . Then a necessary and sufficient condition

that a set of q exist for which the given switching pattern

produces a feasible solution is

m( i) T

C. £ L. . > f a.(t)dt + m(i)C.d.

0

for all i .

PROOF. Let the above inequality be satisfied. It is clear that,

when q is sufficiently large, Q (t) > 0 for all t^[0,T] .

Then, by definition, s (t) = 0 during non-service intervals and

during a part d^ of each service interval, and s_^(t) = other-

wise. Thus for such q. ,
1

J
s
±
(t)dt

0

C.
1

m(i)

s (L

J=1
IJ

- d
i>

m(i)

C. y L. .
- C.m(i)d.

1 ij 1 1
J=1

T

> J
a
i
(t)dt

,

0

QfT) q . +
1

T

0
(a--(t) s

1 (t))dt

< q
i

so that
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On the other hand, for
q^

= 0 it is clear that Q^(t) > q^ .

But for a fixed switching pattern, Q^(t) is a continuous function

of q
i .

(in fact, by lemma 1, |

Q

±
(T) - QI^(T)

|
< |q_. -

qjj .)

Thus there exists a q. for which Q.(T) = q. .

l i i

Q
Let q^ be the infimum of all such

q_^
satisfying

q_^
= (T)

for the given pattern of switching. Let

b = inf {Q.(t):tc [0,T] , Q.(o) = q^} .

Q
If b=0 , then q gives a feasible solution. But if b > 0 ,

then using the value q =
q_^

- b/2 as the initial queue size,

we find that Q (t) >b - b/2 = b/2 for all t^[0,Tl , by lemma 1.

Thus by the definition of s. we have the same value of s.(t) ,
i l 7

0 0
for each t^[0,Tl ,

for the two initial values q^ and q^
- b/2 .

But this implies that the solution with initial value q^
- b/2

also satisfies (2), contradicting the definition of q^ .

This proves sufficiency.

Necessity follows from (2), via the inequality

T T

J
a
i
(t)dt =

J*

s
i
(t)dt

0 0

C.
l

m(i)

T (L. .
- d.

)

J=1
1
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LEMMA 4 . Suppose there exist numbers It > 0 such that

N

E T. = T
i=l

1

and

T

T. > f a.(t)dt + m(i)C.d. .

i — J i li
0

Then there exists a feasible solution for which stream i is

serviced exactly m(i) times (some of which may be consecutive
) 3

and there exists an optimal such solution relative to the particular

m(i) *s .

PROOF. By Theorem 3> if [L . .}
is a set satisfying

<3

m(i)
T L. .

j=i 1J
TX
i

'

where each L. . > d. , then L, . represents a feasible solution
ij ~ i ij

By lemma 2, q_^
is uniquely determined by the switching pattern

But the vector of switching times is a point of

[°,T]
T»(i)

a compact set. The conditions (given in Theorem 2) defining those

switching patterns which correspond to feasible solutions are linear

inequalities in the L ’s
,
and so in the switching times themselves

J
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thus the minimization is to take place over a closed subset of the

compact set.

Nov it may be shown that W(T) depends continuiously on the

switching times. In fact, W(T) is uniformly continuous in the

vector of switching times. (The proof, which is lengthy but not

difficult, will not be given here. However, briefly, the following

argument is used* Let {(x. .,y. .)} and [(x 1

. ,y. .)} be two

feasible switching patterns which differ, for any stream i , in

at most one term. If the first pattern, for example, results in

less service to stream i , let q. be the initial value for

Q^(t) associated with this pattern. Apply the second pattern to

this starting value, obtaining a new Q (T) = . It can be

shown that this q^ is the initial value of the i-th queue

associated with the second pattern.)

Since W(T) depends continuously on the switching times,

which in turn range over a compact set, an optimal solution must

exist

.

The last result permits us to state explicit conditions for

the existence of an optimal solution in the simplest case, namely

i

for constant a. .

l

COROLLARY 5* Suppose a^(t) = a^
,

a constant. If [L_] are

the service interval lengths of a switching pattern such that
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m(i)

(4) ^ L_ > m(i)d. + a.T/C.
,

then the pattern is feasible. Furthermore, if numbers T > 0

exist such that

N

T T. = T
• i

i
i=l

and

T. > m(i)d. + a.T/C. ,

l — i l
' l 7

then an optimal feasible solution exists

PROOF. From Theorem 3 and Lemma 4.

Now let

following.

°i

N
a./C. and d = y* m(i)d.
i' i .

-1 i
i=l

Then we have the

THEOREM 6. For constant a^ , the following conditions are necessary

and sufficient for the existence of a feasible solution with m(i)

servicings of stream i which is optimal with respect to the given

set [m(i)j:

N

£ P± < ^

1=1
( 5 )
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(6) T >

1

d

N

£
i=l

PROOF. If [L _ }
is

Summing (4) over all

feasible, by Lemma 5 it must satisfy (4).

i ,
we get

(T)

N N
T > E m(i)d. + T J (a^C.)

i=l 1=1

N
= d + T T O,

i=l

or equivalently

N
T(l - Y! p ) > d > 0 .

i=l

N
Since T > 0 ,

we have 1 - £ £>. > 0 , proving (5)* and also
i=l

1

T > d

N
1 - £ Oi

i=l

proving (6)

.

Now suppose ( 5 ) and (6) are satisfied. Then (j) is also

satisfied. Thus it is possible to find T_^ > 0 such that



T. > m(i)d. + a.T/C.1—1 i '
i

The result follows from Corollary 5-
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3. OPTIMAL SOLUTIONS FOR CONSTANT ARRIVAL RATES

AND EQUAL m(i)'s

This section will deal with the special case in which each

a^(t) is a constant function, and the m(i) are all equal to

some common value m . This case was treated in ri] , with the

further provision that m=l , that is, that each stream was

serviced exactly once

.

A method of finding the optimum service period length for

each stream was found in [1] ,
and this is the result to he

generalized here. It will he shown that an optimum (not necessarily

the optimum) switching pattern is obtained for the case m(i) - m, a^

constant, when the interval fO,T] is broken up into m subintervals

of equal length, the switching pattern is optimized over the first

interval [0,T/m] by the methods of with one servicing per

stream, and this pattern is repeated cyclically for each of the

other m-1 subintervals. In addition to this, an auxiliary result

of fl] will be used to find the optimum value of m .

LEMMA 7 • Suppose that in the interval fs,t] the function f(x)

is either increasing at a rate p or decreasing at a rate -q almost

everywhere. Suppose that f(s) = f(t) - 0 and that f(x) > 0

for xc (s,t)

.

Suppose further that f increases during fs,s+A^) ,

decreases during ( s+A
n , s-kA^+B^)

,

etc., where each interval of



increase of length A. is followed by an interval of decrease of*

length B. ,
and each interval of decrease of length B. is

followed by an interval of increase of length A, +

1

,
the last

intervals being of length A^ and B^ respectively. Then

t

r
n

2
J f(x)dx > p(p+q) £ A_

: .

S
2q i=l

PROOF. The proof is geometric in nature and is by induction on n .

First, for n=i the inequality reduces to

t
? f(x)dx > p(p+q) A^ .

s 2q

t

Referring to figure 1, we see that f(x)dx is the area of the
t)

s

triangle whose altitude is A
n p and whose base is A, +B

1 ,
where

B
1

= A^p/q .

t
r 2

Thus p f (x)dx = p(p+q) A. , proving the case n=l .

s
2*

Assume that the lemma has been proved for l,2,...,n-l. Looking

at fingure 2, we see that



t

J*

f (x)dx >

s

>

p(p+q) £ A
2

+ Area YWVZX
2q i=l

1

p(p+<l) H A
i

+ &&
2q i=l

2 2
p(p+<i) s A

i
+ p(p+q) A

n
2q 1=1 2q

p(p+q) r a? •

2q i=l
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We nov state the following notations to be used during the

rest of this section. I. . will denote the ,1-th interval of

service for lane i during f0,T] . Because of the cyclic

character of the problem we also define

I., = I. .

ij

where 1 < j < m and k = j (mod m) . We denote the length of

I. .
by L. . . The interval contained between I. . and I

ij iJ ij i^j+1

(or the two intervals, if j = m) will be denoted by J. , and
J

its length ( respectively, the sum of their lengths) by M.
ij

LEMMA 8. Let S be a feasible switching pattern for a

problem with constant a^ . Then

W.(T) > ...

2(C.-a.)

a C. „ s2
i i t (M. .+d.

)

— ij i

PROOF. By definition, W is the integral of , which is always

non -negative . Thus W^ may be thought of as the area under the

curve representing . Since CL > a,, in order to satisfy

feasibility, Q is either rising at a rate a (when s =0)

,

falling at a rate - (C.-a.

)

(when s.=C.) , or constant at 0li ii
(when s^=a^). We may represent this as in figure 3* It is also

clear that the curve is rising only during the time that lane i is

not being serviced, plus the dead time, that is, during intervals of

length M. . + d. .

ij i
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Nov let us group the I. . as follows. By condition ( 3 ),
i J

there exists t-^CO.T'1 such that Q.(t.) = 0 . Let I. . he0* J i 0 iji
v

o-

the interval of service to lane i to which t^ belongs.

(Obviously t_ must lie in some interval of service.) Let I.
0 IK

be the first interval after . during which Q.(t) is again 0
ij i

v

Then the lengths of the intervals of non-service to i between

I.. and I., , namely J. J. J. , _ , will be
ij ik J ij’ i,j+l’ 1,K-1

M. . , M. . M. , , . If we let z. represent the ri
ij i,J+l i.k-1

endpoint of any interval I , then from lemma 7 we have

ght

z
IK

Z . .

IJ

a
i
c
i

^
2(C.-a.) v=i

' ±v
Q n
.(t)dt > ^i^i £ + d.)^ .

Summing this inequality over all intervals in which Q_. becomes 0 ,

we get

T
W.(T) = r Q. (t)dt >

a
i
c
i

1

i
1 ~

0 x ii

m(i)

S (M
±Jj=l J

d.)'
1

This proves the lemma.

THEOREM 9’ Suppose that, for constant a

optimal feasible solution, where m(i) = m

optimal feasible solution [I
}

with

[I
}

represents an

Then there exists an

L. .

ij
= (l/m )

m

r
k=l

L...
IK 9 1 < i < n
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where L. . is the length of interval I. . , L. . the length of I. .

iJ ij ij

m
PROOF. Consider the solution defined by L. . = (l/m) v; L. ,

1J k=l
1K

where I is the first interval and where interval I. . is
ij

followed by I . for i < n , and interval f . is followed
nj

by I, , . _ . Then we have
1 J+l

M. . = M. , 1 < j < n .

ij i - -

By lemma 8, the waiting time for the original solution satisfies

W.(T)
i

a . C

.

l i

m

> ii T (M. .+d.

)

j=i
1

2

and the Cauchy-Schwartz inequality yields

m

T
J=1

(M +d f > m(M +d fIj 1 IJ 1

m

T,

j=l
(M. .+d.)‘

ij i

Thus it suffices to show that the new solution (which by corollary 5

is feasible) obeys Lemma 8 with equality , i.e. that

W.(T) = f Q.(t)dt =
a
i
C
i

1
0

1
2(C. -a.)

i i

m

E (M. .+d.
)'

ij i

From the proofs of lemmas 7 and 8, it should be apparent that this

is equivalent to proving that is reduced to 0 during each

service interval I. . . The condition for this is
ij



which will now he demonstrated.

By corollary

m
rriL . . = y L . . > md . + a . T/C . .

ij ^ ij ~ 1 11

and so

C.(L. .
- d.) > a.(T/m) = a.(M. . + d. + (L. .

- d.)) ,
1 ij l — l

7 i ij l ij l 7 '

implying (8) as desired.

Note that theorem 9 merely establishes the form of one optimal

solution. It is clear that we could get a set of optimal solutions

by permuting indices. Furthermore , it could probably be shown that

these solutions are the only ones which are optimal,, but this would

involve solving a set of simultaneous linear equations relating the

M. . and L. . and this is not considered here to be worth the trouble,
ij ij

Also, nothing is said about the case where m(i) ^ m(k) . This

seems to be a much harder case to analyze generally. However, if

N=2 the above proof may be modified so that this problem is.

completely solved. For in that case it is obvious that m(l) = m(2) ,
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since othervise two servicings of some lane would be consecutive,

giving a higher value for W than that obtained by merging the

two consecutive servicings into one. Also, L. .
= M and

i J ^ j J ~l

.
= M. . . Thus the condition M. .

= M., is equivalent to
2j ij IJ IK

L. . = L., .

ij ik

Finally, we shall discuss the optimum value of m to choose

in the above problem, given T . Note that if [I
}

denotes

an optimal solution on the interval [0,T~1 as described above,

where each lane is serviced once during the interval pO,T/m] and

this procedure is repeated m times, then we have

mW(T/m) = W(T) .

This recalls the work of [1] in which the function to be minimized

is W(T)/T instead of W(T) . ( Of course, for constant T ,

minimizing W(T) is equivalent to minimizing W(T)7t
,
and the

first part of fl] considers the problem in this way.) We show

how the results of [1] can be applied to the above problem.

Suppose that T T is a variable which is allowed to take on

only the discrete set of values T/m , m an integer, in the

problem where each lane is serviced exactly once during the interval

[0,T’]. If W(T t )/T 1 attains its minimum value on this discrete
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set at the point T l = = T/m^ , then W(T) in the original

problem attains its minimum value over all m for m = m^ .

For we have

W(T/m ) W(T/m)
_iL_ < — >

T/m T/m

for m / m^ ; or ,

m^W^/m ) < mW(T/m) .

But by the above remarks, mW(T/m) = W(T)
,
where W(T) is calculated

for m cycles of service in the interval [0,T"| ,
and similarly

for m
0
W(T/m

0 ) .

Thus it is clear that finding m^ such that W(T)
,
optimized

over all switching patterns, attains its least value when each

stream is- serviced times, is equivalent to finding m^ such

that W(T/m^.)/(T/mQ) is a minimum for the optimized solution of

the one-cycle case. Now a method is given in [11 1° optimize

W(T , )/T t when T’ is a continuous variable, and it is shown that

w(t 1

) /t
1 is monotone decreasing to the left of the optimum, T 1 = Tq >

and monotone increasing to the right. Thus if n is an integer

such that

T/(n+l) < Tq < T/n
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it is clear that the optimum value m^ sought above must be either

n or n+1 . In order to determine which of these values is

optimum, it is only necessary to substitute in the expression for

the optimized value of W(T t )/T’ ,
also given in [1] . Thus

is easily determined.
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