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UNIQUENESS OE TRIP-END DISTRIBUTION

BY A GRAVITY MODELM

A. J. Goldman

National Bureau of Standards

ABSTRACT

The "gravity model" approach, for passing from trip- start totals at

sources and trip-end totals at sinks to a table of source-to-sink flow

volumes, is shown to admit at most one solution. Thus a solution

determined Ly some iterative method has intrinsic significance, inde-

pendent of the particular calculation procedure used.

Research supported "by Northeast Corridor Transportation Project,
U.S. Department of Transportation. No official endorsement implied.





1. INTRODUCTION

We begin -with a brutally bare description of one version of the

"gravity model" approach often used in analytical transportation studies

to estimate the flows between origin-destination pairs. For our purposes

it is unnecessary to discuss how this model appears as one of a battery of

models
,
receiving its inputs from some, 'and providing its outputs to one

or more others.

The data for the model consist of two sets of positive numbers, and

E ., and a table of positive numbers C_. The intended interpretations are

S
±

- number of trips starting at i-th source,

E. = number of trips ending at j-th sink,
J

C . .
- "conductance" between i-th source and j-th sink.

The desired output of the model is a table of positive numbers T_,

satisfying the "accounting" equations

(1. l)

( 1 . 2 )

as well as the "gravity model" condition that

T. . =s M.m'c. .

iJ 1J1J
(1.3)

for some sets of positive numbers M. and Mf . As would be expected from
^ <D

(l. l) and (1.2), the intended interpretation is

(1.4)T. . = number of trips from i-th source to j-th sink.
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It follows from (l. l) and (l. 2) that the model will he consistent

only if

We will assume that the problem data do indeed satisfy this condition, a

natural one for a "closed system" in view of the interpretations of the

S . and E . .

i J

A sufficiently strong obsession with the term "gravity" might lead

one to think of M. as a "generating mass" for the i-th source, and M [ as
1 J

an "attracting mass" for the j-th sink. And it is not uncommon to find

EL referred to as an "adjusted" or "corrected" version of S^, with similar

language relating Mf and E. . It seems to the writer that such usage,

without compensating advantage, creates serious risks of confusion, e.g.

suggesting (fallaciously) that depends only on those problem data

pertaining to the i-th source. The phrase "brutally bare" at the beginning

of the paper was chosen, in part, to reflect a refusal to obscure the

essentially artificial and arbitrary nature of the EL and .

Application of the model, in practice, involves an iterative procedure

which when convergent does indeed yield a solution (T. ., M., M f) of
1 J IL J

equations (l. l) through (l. 3). This however raises the question. .. especially

vexing in view of the peculiar roles of the EL and M
J.

. . of whether some other

iterative method (or a different set of initial values in the same iterative

process) might not yield a different table of T. . . Unless uniqueness of

the T. .
(i.e., independence of the method employed to calculate their values)
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can be established, a charge of capriciousness can properly be lodged against

making any practical use of. . . or attaching any physical significance such as

(1.4) to... a set of -values obtained by some particular iterative method.

In this paper we shall show that the T. . are in fact unique. Despite

the nonlinearity of the model (which is why an iterative solution procedure

is required), the proof of uniqueness is pleasantly simple, involving only

elementary algebra.

Note that the stickier question, of whether any solution necessarily

exists, is not addressed. Note also that the assertion of uniqueness for

the T. . is not extended to the M. and Mf . Such an extension would clearly
ij — i J

be incorrect, since one can multiply all NL by some positive factor and

divide all M
,
by the same constant without affecting the T. . . This "degree

J 3

of freedom" will be exploited below to simplify the uniqueness proof.





2. PROOF OF UNIQUENESS

The proof begins -with the substitution of (1.3) into (l. l) and (l. 2)

respectively, yielding

• ( c
J

m' = 1/2 . ( C. . / E. ) M. . ( 2 . 2 )
3 1 3 1

Note that (2. l), (2.2) and (l. 3 ) are equivalent to the original model.

From (2.1) and (l. 3) we see that the T„ and NL will be uniquely determined

once definite values for the M [ are known.
J

Next substitute (2. l) into (2.2), yielding

M. = 1/Z
1

. . / S. ) M. ,ij 1 3
(2 . 1 )

M.
3
= l7V (c

ij
7 V 7 t,

(c
ik 7 siK ^ •

With the notation

x

.

0
Mf , a. = (C., / S.) / (C. . / E.) > 0 ,
j ijk ik 1 ij j

this takes the more palatable form

X. = Vr. (1 7 ^ a. ,

k
x
k ) . (2 . 3 )

If x ~ (x
n , x

, ...) is a positive solution of (2 . 3 )* then the same
J-

clearly holds for any positive scalar multiple of x . The uniqueness proof

will clearly be complete if we can prove, conversely, that any two solutions

x, y of (2 . 3 ) are proportional.
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Assume, to the contrary} that positive solutions x and y are not

proportional. The numbering can be chosen so that

1

2

Vyk (2.4)

for all k^ and so strict inequality must hold for at least one k.

We can use the "degree of freedom" mentioned earlier to normalize x

so that x
p

“ * This does not affect the numbering in (2.4), so we now

have x, > y, for all k. with strict inequality for at least one k. Then
k — k

a
ilk

X
k

>
^k

a
ilkyk ;

which implies

l/l
i
(l / E^ a

ilk
x
k ) > 1 / fej/ 1 / \ a

ilkyk'
) *

But since x and y both satisfy (2.3)_, the last inequality yields x^ > y^ ,

contradicting the normalization x^ = y^ . This completes the proof.








