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1. INTRODUCTION

Cochran (19^1) suggested using the test statistic

2 , 2
S'

-

,. / E S . "in testing one of a group of estimates of variance
max ,

which appears to he anomalously large. " In this study we inves-

tigate some properties of four such tests all of the general form

V / £ V.
max . j0=1

where the V. are independent estimates of dispersion. In these

four tests the V. are respectively: (l) sample variances
0

(Cochran, 19^1), (2) sample ranges (Bliss, Cochran and Tukey,

1956), ( 3 ) sample standard deviations (suggested by Churchill

Eisenhart), and (4) sample mean deviations. The emphasis through-

out is on small sample properties.

This study was motivated by a desire to find a simple test

for homogeneity of variance that would not be as sensitive to non-

normality as those in the literature, and to provide some

qualitative comparisons among some of those already available. A

brief discussion of the conclusions of the study is given in

Chapter 2, and two suggested approaches toward more robust tests

for homogeneity of variance are given in Chapter 3- These two

approaches are suggested by the results we have obtained in this

work and may be considered topics for further research.



Chapter 4 consists of a collection of information on the small

sample properties of the standard deviation, mean deviation and

range in samples from non-normal distributions. Information

available in the literature on the expectation and coefficient of

variation of these three estimators is summarized in Section 4. 3-

New information on the three estimators is given in Section 4.

5

for samples of size 5* and 10 from a number of discrete distri-

butions each having at most eleven categories. In addition new

information on the range is given in Section 4.4 for samples from

a family of random variables suggested by Tukey. All of this

information is compared with an approximation to the lower moments

of the standard deviation based on a modified degrees of freedom

approach suggested by Le Roux (1931)* His method seems to provide

a very good approximation to the first two moments of the standard

deviation, and an adequate approximation for very small sample

sizes to the first two moments of the mean deviation. The results

on the range are compared with those of Cox (1954) and others in

Section 4.6. In Section 4.7 we suggest a modified degrees of

freedom approximation for R and give values of the modified sample

size for Tukey random variables and Cox’s "average.”



Some general properties of Cochran-type tests are considered

in Chapter 5> and methods for computing approximate percentage

points of such tests are described. Chapter 5 also includes a

brief outline of the historical development of this class of tests.

In Chapter 6 approximate percentage points are computed for

the two new tests based on the standard deviation and mean devia-

tion respectively. For the test based on the standard deviation,

called Eisenhart's test, approximate percentage points are given

for significance levels of .01, .05 and .10. For the tests based

on the mean deviation critical values are given for a significance

level of .05.

Chapter 7 consists of two sections, the first of which con-

siders some properties of the four tests under normality and the

second of which considers some approximate properties of the

four tests under non-normality. In the first section a single

alternative to the null hypothesis of equal variance is considered.

In this alternative an unknown one of the underlying variances is

2
assumed to have been inflated in the ratio 0 > 1 . Two functions

closely related to the power function are introduced and some

numerical values computed. Let P(RC) denote the probability

that the null hypothesis is rejectable for the correct reason,

that is, the probability that V. / LV. is larger than the

critical value when the i’th population is indeed the one with the



inflated variance. Then it is shown that P(RC) constitutes the

bulk of the power function for at least moderately distant

alternatives. Some numerical values are computed for P(RC) and

for a modified version of the "median significance level.
"

The "median significance level" (M3L) is introduced in

Appendix B as an alternative to the power function as a means of

assessing the properties of statistical tests. The MSL may be

simply described as the median of the distribution of the observed

significance level for a given alternative hypothesis. It is a

single function that represents some of the properties of a test

that are given in full by the family of power functions. Some

elementary examples are given in which the median significance

level is compared with several similar criteria.

In Appendix A several approximations to the distribution of

the sum of independent chi variates are compared. These approxi-

mations are used in the computation of percentage points of

Eisenhart's test in Section 6.1.
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2. SUMMARY AND CONCLUSIONS ON COCHRAN-TYPE TESTS

In this chapter we summarize our principal conclusions con-

cerning tests for homogeneity of variance. Summaries of detailed

results are given in several other places; in particular, results

on the expectation and coefficient of variation of S, M, and R

are summarized in Sections 4.5 and 4.6, and results on properties

of four Cochran-type tests under normality and under non-normality

are summarized in Sections 7« 1 and 7-2, respectively.

Our approach has differed from previous work in this area in

that we have considered only sma.ll sample properties. In addition

we have focused attention on a particular class of tests and

compared the properties of several tests in this class. The choice

of the particular class of tests (Cochran-type tests) was based

primarily on its intuitive appeal since tests in this class would

appear to be sensitive to alternative hypotheses that are

frequently of interest. In addition, this class of tests has the

desirable properties of being relatively easy to compute and

relatively easy to interpret.

It may be noted that' we have not considered the possibility

of structure among the variances. If there were evidence that the

variances were related to some variable in a systematic manner,

a completely different approach would be pertinent. Bechofer

(i960) has, for example, considered the case where the variances

are related according to a completely multiplicative model.
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We have compared some power-type properties of four tests

in this class in Section 1 and have found that for the small

values of n and k considered here there is virtually no loss of

power from using Eisenhart's test rather than Cochran's test. In

the class of alternative considered here, an unknown one of the

2
variances has been inflated in the ratio Q > 1 . The mean

deviation test seems to he slightly less powerful than Eisenhart's

test and the BCT test slightly less powerful than the mean

deviation test. Bartlett's test is appreciably less powerful than

Cochran's test for the type of alternative considered here.

This alternative is particularly tailored to be favorable to

Cochran-type tests, however, and Bartlett's test would probably

prone to be better against other alternatives.

However, our primary emphasis has not been on power-type

properties, but on the robustness properties of the various tests

when the parent distributions are not normal. Box (1953a) in his

fundamental paper on the general lack of robustness of tests for

homogeneity of variance has shown that "a test of variances should

be ' studentized ' for the fourth moment just as a test of means is

studentized for the second moment, " and has concluded that all

tests "which do not utilize evidence on variance variability with-

in the samples are equally sensitive to non-normality. " The four

tests considered in this work are not studentized and we have

shown in Section 7*2 that they are all quite radically effected by

non -normality. However in Section 7-2 we have also given some
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evidence that there may be appreciable differences in the extent

to which the various non-studentized tests are affected by dif-

ferent kinds of non-normality.

The evidence given there is not clear-cut since the results

based on modified degrees of freedom approximations differ

appreciably from the results obtained in the limited sampling

study. It appears that these differences may be due primarily to

differences between parent distributions all having the same

value of , since Le Roux (1931) has shown that there do exist

distributions for which the sample variance does behave much as

if it were based on a. sample of a modified size from the normal

distribution.

It is not easy to draw conclusions in such a situation but if

a choice among the tests had to be made based on the robustness

results in Section 7*2, it seems doubtful that Bartlett’s test

could be recommended. The tests based on the mean deviation

might be the safest bet. For samples from distributions like the

TRV-small distributions, the tests based on the range may be

slightly more robust than Cochran’s and Eisenhart's tests. Cox's

(1957, p. 479) comment that "comparative tests based on ranges of

small samples are appreciably less affected by non-normality than

the corresponding tests based on mean squares, " seems to be a

slight overstatement but does seem to point in the right direction.
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TWO SUGGESTED APPROACHES TOWARD MORE ROBUST TESTS

Here we briefly describe two ’’new" ways of testing for

homogeneity of variance that are suggested by the results we have

obtained, and that seem intuitively appealing to us. The first of

these methods enables one to use almost any conventional test for

homogeneity of variance and, to a first order of approximation,

to assess the result using critical values appropriate for several

different values of the standardized fourth moment p of the

parent distribution. Tables are provided. The second "method"

is a proposed new test based on the statistic S, / S where
K K-

1

S, and S. denote the largest and second largest observed
k k-1

standard deviations. The properties of the test have not been

studied, but heuristic reasons are given why this test is conjectured

to be of greater robustness than most of those presently available.

First we mention two existing tests that are apparently quite

robust with respect to departures from normality.

Box (1953a), Scheffe (1959* p.83) and Odeh and Olds (1959)

have considered a test based on the analysis of variance of

logarithms of sample variances. However, this test can only be

employed by creating artificial subsamples if one does not wish zq

2
assume that any subsets of the cl (i = 1* •••• k) are equal. In

such a case the result obtained in a particular application would

have the intuitively unattractive feature of being dependent upon

how the artificial subsamples were created.



Box and Andersen (1953) :/-a suggested another procedure in

which Bartlett's ( 193 -7 ) test is "studentized" by the observed

fourth moment. This procedure does not seem to have been widely

accepted, however, perhaps because of the rather heavy computations

involved or possibly because of the notorious inaccuracy of samli

sample estimates of the fourth moment.

A Simple Approximate Procedure for Compensating for Non-Normality

The method described here consists of treating the sample

variances (or possibly other measures of dispersion) as though they

were based on samples of a modified size from the normal distri-

bution, the modification depending on the value of p for the

parent distributions. Using this method the test statistic is

first computed and then assessed against critical values for

several modified sample sizes.

Much of the background for this suggestion is described in

Sections 4.5, 4.7 and 7*2. The basic idea stems from an observa-

tion of Le Roux (193d) and has been used in connection with tests

for homogeneity of variance by Box (1953a) and in Section 7*2 of

this work.
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The basis for the method may briefly be described as follows:

1. The properties of all known tests for homogeneity of

variance based on equal sized samples do not depend on

the expectation of the sample variances, merely their

relative expectations.

2. The properties of tests for homogeneity of variance that

are not "studentized" for the parent fourth moment (3o

do depend critically on the coefficient of variation of

the variance which in turn is a simple function of •

3. The coefficient of variation of the sample variance based

on a sample of size n from any distribution with stan-

dardized fourth moment p^ , is the same as that for

some sample size n from the normal distribution. The

value of n is a function of n and
(3^

and may be

fractional.

4. Thus the properties of a test for homogeneity of variance

based on samples of (equal) size n from distributions

with a given value of p^ ,
should be at least roughly

the same as those for the same test based on samples of

size n from the normal distribution.



Table 3* 1 gives some values for the modified degrees of

-X* ^
freedom v = n “1 for all combinations of

v = 1 ( 1 ) 10 ( 2 ) 20 ( 5 ) 50 ( 10)100 and p
2

= 2 ( 1)9 where v is the

nominal number of degrees of freedom in each sample. Strictly

*
speaking v is exact only for the case where the sample variance

is based on 2(X^ - X) in which case V = n-1, although it may

be approximately correct in more general situations.

When |3 is known this approximate method may readily be

used to assess a result obtained from Cochran's, Eisenhart's or

Hartley's test. For Bartlett's test the statistic L should be

•¥r ,

multiplied by v /v before being compared with the appropriate

critical value. As an example let n = 10 and k = 10, then

v - 9 and the approximate . 05 critical values of Cochran 's test

would be roughly as follows:

P2
2 3 4 5 6 9

*
V 16 . 4 9 6.2 4.7 3.8 2.4

Critical
Value

.203 . 244 .279 . 311 . 340 4 16

Hence an observed value of the test statistic of . 30 would be

significant at the . 05 level if were less than about 4.5*

The basis for the above approximate method of compensating

for non-normality is implicit in a statement of Box (1953a, P-330).

In discussing possible interpretations of the result of Bartlett's

test applied to an example of Bartlett and Kendall's he notes

that (to the extent of the approximation) the null hypothesis is
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not contradicted, at the 5$ level for any value of greater

than J.kk. Thus one may approximately assess what effect a given

degree of non-normality would have on the significance attached

to an observed result. If the significance or non-significance

of the result may be ascertained independently over a range of

non-normality deemed appropriate, then one may be confident of

the result. However when these conditions are not realized one

is warned to proceed with caution.

When
(3^

is not known, Box and Anderson (1955) have sug-

gested that one may use

A k
£

j=l c >i
* )

2

where k. . denotes the i'th k-statistic (see Kendall and Stuart,
ij

195&; P-277) based on the j'th sample. It would, of course,

always be preferable if some prior information on
j3^

were

available.

The validity of this method of approximation has not been

ascertained and evidence has been given in Section 7- 2 that this

method may overcompensate in some cases and undercompensate in

others. However it is believed that this approximate method of

compensating for the effect of non-normality is better than none

at all. It should serve adequately as a qualitative guide in

assessing the significance of an observed result in the sense

that if the result is significant under strict normality but not
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under a modest degree of non-normality such as f3Q = 4 or 5, then

little reliance can ordinarily he placed on the result.

Proposed Test Based on S, / S, nk k-1

In this section we propose a new test which we conjecture to

be more robust than those currently available. Heuristic reasons

are given in support of our conjecture.

(l) , (£)
Let T = S, / S where the S's are independent sample

K

standard deviations with subscripts assigned in order of increasing

( l

)

magnitude, and where S denotes the l 'th mean of the k-1

smallest S’s. That is, let S
^

^ be defined by

k-1

z =
i/i

j y

( i )Consider the class of tests defined by T such that

-oo < i < oo . For finite l, this class of tests is equivalent to

a subclass of Cochran-type tests, as defined in Chapter 5j namely

the subclass based on powers of the sample variance. For example,

T^^ and T^^ are equivalent to Cochran’s and Eisenhart's tests,

respectively. The limiting case l
~ -oo yields Hartley’s test.

A similar notation and method of classification of tests

homogeneity of variance has been considered by Laue ( 1965 ).

considered the class of tests defined by ^ ^

for

He

(0where M
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denotes the f’th mean of all of the S’s. These means have been

considered in more generality by Norris (1935)* For finite l,

( n )
(oo)

, (z)
T ' is equivalent to Ml / M v

Three limiting cases of the l 'th mean are described by

(-°o) (i)
S

v } = lim S
v ; = S-, ,

S
(0)

= lim
1-0

k-1
n s.

i=l J

l/k-1

and

(o°)
= lim S

(/) — Q
J

k-1

Hartley's (1950) test is equivalent to °°'

, and we con-

(°°)
jecture that T is probably more robust overall than the other

U)tests based on T The heuristic argument behind this

( H

)

conjecture may be stated as follows. The numerator of T is

obviously quite sensitive to non-normality and the most robust

( l )test would therefore be one in which the denominator S would

be as nearly as possible equally sensitive to non-normality^ in a

compensatory manner. It would seem that the distribution of
1

would be affected more nearly in the same way as that of S, than
K.

would that of any combination of the S. for j < k-1, for most

types of non-normality. Thus it seems that the robustness of

T
(i

might increase with l. Conflicting evidence is given in

Section 7* 2 with respect to the argument that the robustness of

( l

)

T is an increasing function of l. First, some evidence in
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support of the argument is given in the sense that it appears that

(Cochran's test) is slightly more robust than

(Eisenhart ’ s test), but then evidence against the argument's

holding in complete generality is given when the sampling study

indicates that T (Hartley's test) is slightly more robust

overall than either or T ^
. Percentage points of

( OO
) j

T = S
k / ^

are not presently available so it is not

possible to begin a direct evaluation of its robustness, but the

intuitive appeal of the test and the heuristic argument above

would appear sufficient to warrent a more detailed examination

of the test's properties.



4. ROBUSTNESS PROPERTIES OF S, M, AND R .

Conflicting claims have been made as to the relative merits

of the sample standard deviation, mean deviation, and range as

measures of dispersion when sampling from non-normal populations.

For example, physicists, astronomers and other scientists have

long held that the mean deviation M is a better measure of dis-

persion in practice since it gives less weight to the possibly

spurious observations that sometimes occur in the tails of a

sample. Cox (1954, 1955) has given evidence that certain proper-

ties of the range R, are less sensitive to non-normality than are

the corresponding properties of the standard deviation S. The

standard deviation has long received the blessings of statisticians

although its complete superiority has been rigorously demonstrated

only for the normal distribution. The mean deviation has indeed

received few kind words from statisticians since it was thrown

into disrepute by Fisher (1920). For exceptions, see Tukey (i960)

and Herrey (1965).

It seems appropriate, in light of these conflicting statements

and of the importance of the question, to pursue in detail a can-

parative study of the small, sample properties of these most

commonly used measures of dispersion.
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The present investigation is based on comparisons of functions

of the first two moments of the sampling distributions of the

estimators. In Section 4. 1 the basis for the choice of the partic-

ular properties investigated is given along with a discussion of

the concept of "robustness of scale parameters. " Section 4.2 gives

a survey of the properties of S, M, and R for samples from the

normal distribution. The material in these first two sections

serves as background information for the remainder of the Chapter.

In Sections 4.3, 4.4, and 4.5 some properties of S, M, and R

are given for a number of non-normal distributions. Section 4.3

consists of what is believed to be a comprehensive survey of the

literature on the expectation and coefficient of variation of S

,

M, and R from non-normal distributions. In Section 4.4 some

properties of R are given for samples from the family of distribu-

tions known as "Tukey random variables" and in Section 4.5 the

expectation and coefficient of variation of S, M, and R are given

for samples from a number of discrete distributions. These

discrete distributions are not related to the classical discrete

distributions but are such that only a small number of equally-

spaced distinct values are possible. The number of possible

values ranges from 2 to 11. The results on S and M are summarized

at the end of the section.



19

Section 4. 6 consists of a summary of the results on R con-

tained in Sections 4.3, 4.4, and 4. and a comparison of these

results with those already available in the literature. In Section

4.7 we suggest a modified degrees of freedom approach for R and

give values of the modified sample size for Tukey random variables

and Cox's "average."
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4.1 PROPERTIES CONSIDERED

The different properties of an estimator assume varying im-

portance depending upon the purposes for which the estimator is to

he used. Three basic uses for estimators of scale parameters are :

(l) as a point estimate of a scale parameter, (2) in tests of

hypotheses concerning means including the setting of confidence

limits on means, and (3) in tests of hypotheses concerning scale

parameters including the setting of confidence limits on scale

parameters. Tukey (i960) and Cox (1954) have discussed various

uses of scale parameters, estimators and other related topics.

For the first two uses outlined above, the relative biases of

estimators may be important considerations, particularly in large

samples. However, for the third use the relative biases of

estimators become unimportant in tests for homogeneity of variance

as long as all samples are of the same size and the parent dis-

tributions involved can be assumed to have essentially the same

shapes. Tukey (i960) and Cox (1954) have also given a more

detailed discussion of this point.

In Chapters 5,6, and 7 we will be primarily interested in

tests for homogeneity of variance and under the above assumptions

the biases of the estimators will be of no importance. However,

in the present chapter, information will also be accumulated on

the expectation or bias of the estimators since it is readily

available as a by-product in computation of the more pertinent
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coefficient of variation. It should be noted that only the bias of

the estimators considered as estimators of cr, is obtained. The

latter is an important point and will be discussed in more detail

below.

Our primary purpose here is, however, to gain information

about the sampling variation of the estimators, since Box and

Anderson (1955 > page 16 ) have shown that the reason tests on

means are robust while tests on variance are not, is

"... because, whereas in tests to compare means we
compare the variation among the means with an estimate
of the variation obtained from internal evidence with-
in the groups, in current tests to compare variances
...we tacitly compare some measure of variation among
the variances with a theoretical value which is

correct only for the normal distribution.

”

A natural measure of variation in this context is the variance

of the unbiased version of the estimator. To avoid pathological

considerations we assume throughout that the expectation of an

estimator is a constant multiple of cr, where the constant may

depend on the parent population and on the sample size but not on

u. Then the variance of the unbiased version of the estimator is

identical to its squared coefficient of variation defined by

cv
2
^) = v(t)/e

2
(t) = v(t/e(t)) .

This measure of variation permits us to avoid the troublesome

question of exactly what is being estimated.
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We note here that it is not necessary to compute the

expectation of the sample range for both samples of size two and

three since

E(R
2

) = I e(r
3

)

for any distribution. This may be seen by using Tippett’s (1925)

formula for E(R), or by using a more general recurrence relation

for E(r) due to Carlson (1958)*

Robustness of Scale Parameters

Before beginning a discussion of the complicated problem

of robustness of scale parameter estimators , it may be informative

to consider the related concept of robustness of scale parameters

per se. Just as the various properties of a scale estimator

assume varying importance, depending upon its usage, so do those

of scale parameters. In scientific work scale parameters, or

their estimators, are probably most frequently used in setting

some sort of "uncertainty interval" about an estimated mean or

other least squares value. One would hope that the frequency

with which the interval covered the true value did not depend

sensitively on the shape of the parent distribution. Thus, one

natural measure of scale parameter robustness would seem to be

the stability of the percent of the distribution covered by
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u + 6 , -where m is the expected value and 9 is a scaling parameter.

In this framework cr is a different parameter from • Another

quite similar measure of scale parameter robustness may be defined

as the stability of the value of k needed to make m + k0

contain a specified probability.

Investigations by Eisenhart (unpublished), Chand ( 1949 ),

Walsh (1956) and Pearson and Tukey (1965) gives preliminary

evidence that for a large number of "reasonable” continuous

distributions kcr is a very robust scaling parameter if (roughly)

ii < k < 2 . Apparently no such investigations have been made

for 6, the population mean deviation, or for the expected value

of R. It would seem that such investigations might be fruitful

in either pointing out the inherent non-robustness of the parent

mean deviation and expected range or putting them on the firm

footing presently enjoyed only by the standard deviation. A

brief analysis of the robustness of the expected value of R in

this context is included in Section 4.4 for Tukey random

variables.

It may be noted that in the above sense the interpercentile

distances (see Tukey i960 for discussion) satisfy this criterion

of robustness perfectly.



2k

In the analysis below, a subtle bias is introduced by con-

sidering S, M, and R as estimators of cr . This assumption would

seem to prejudice the case against M and R since E(M) and

E(R) could be very robust scale parameters in the sense outlined

above but not be very robust as estimators of a . We will briefly

compare the properties of M considered as an estimator of the

parent mean deviation with its properties when considered as an

estimator of cr for some discrete distributions in Section 4.5.

It may be re-emphasized that such considerations of expec-

tation are irrelevant in tests for homogeneity of variance when

samples are of the same size and are ail from populations with

the same shape, that is, populations that differ at most in

location and scale.
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4 . 2 PROPERTIES UNDER NORMALITY

The properties of S, M, and R have been extensively studied

for samples from the normal distribution. The purpose of this

section is to summarize such properties as are needed elsewhere

in this work.

The Standard Deviation

The sample standard deviation S is defined by

n

For samples from a normal distribution it is well known that

the parent distribution.

Pearson and Hartley (1954) have tabulated the expected value,

the standard deviation. The expected value of S/cr may be computed

from the relation

S
2

'l
(X

i
- X)

2
/ (n-l) .

i=l

2 2
VS / cr is distributed as chi-square, where V = n-l is the

2 2
degrees of freedom associated with S

,
and cr is the variance of

standard deviation, |3^, (3^
and a number of other quantities for

Mv
= E(S/a) = J2/v r ( ) / n I ) >

03

0

where
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For general r > 2 ,

E [(S/<r)
r

]
= — l

'- -
g

E[(s/ff)
r* 2

]
.

The squared coefficient of variation of S based on v degrees of

freedom is given by

cv
2
(s) = 1/mv

2
- 1 .

The Mean Deviation

The sample mean deviation is defined by

n

M = l
|x. - X|/n

i=l

A siimmary of known properties of the mean deviation in normal

samples has recently been given by Herrey ( 1965 ). The population

mean deviation 6 is related to cr in a normal distribution by

6 = \Z2/tt cr .

For normal samples the

E(m/ 6) = \/(n-l)/n

and

CV* (M) = ~ + arcsin(n-l)"
1

- n + Vn(n-2)
j

Godwin and Hartley (1945) have tabulated percentage points of M

and Cadwell (1955 > 1954a) has given fractional powered chi-square

approximations to its distribution.



For samples of size three from a normal distribution the

mean deviation and range have identical distributions (except for

a scale factor). This result which does not appear to have been

27

noticed before is stated in the following theorem.

THEOREM : For samples of size three from a normal distribution

R has the same distribution as (>s/3~ / 2)M.

PROOF :

3M = Ix^xl +
I

Xg-X| + |x
3
-x|

2X
i"
X2‘X

3| +
2X -X -X

|

2 1.5
2X -X -X

5 12
3 3 ! |

3

= ( M +
l
V

i

+
l

W
! )

where U, V, and W are trivariate normal with mean zero and

covariance matrix

'
i 4 4~

4 i 4
4 4 i •

b

L. J

Similarly

2R =
|
X
1
-X

2 |
+ |X

£
-X

3
|+ |X

3
-X

1 |

= ( |n'| + | v'l + |w'| )

where U
7

,
V', and W' have the same distribution as U, V, and W

above.
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This common distribution of M and R may be written as

(McKay and Pearson, 1933 )

and § and cp are the normal c.d. f. and p. d. f . respectively.

The Sample Range

The sample range is defined by

R = X - X .

max min

An excellent summary of properties of the range for samples from

a normal distribution has recently been given by David (1962).

Extensive tables of the probability integral, percentage points,

and moments of the range have been given by Harter and Clemm

( 1959 ) and Harter (i960). Percentage points of the ratio of two

ranges have been tabulated by Harter (1963).

f(y) = 6/JF Q 2$(yA/6 ) - l ') ®(y/*/2 )

where
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Relative Efficiencies

We will be concerned in Chapter 7 below, with the properties

of

1. the pooled standard deviation defined by

s
2

= 2S
2
/k,

p i

2. the average standard deviation

s = IS /k,

3. the average mean deviation

M = LM./k,
0

and 4. the average range

R = LR./k,
0

where in each definition the sums are from j=l to k and the k

estimates (S
.

,

M., or R,, as appropriate) are assumed to be
0 0 0

identically and independently distributed. In particular, each

of the k samples has the same number of observations.

For samples from a normal distribution, has the same dis-

tribution as an individual standard deviation based on kv degrees

of freedom. For S the
P

cv2(s
p

) = v4 - 1 .
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The coefficient of variation of an average is related to the

coefficient of variation of an individual observation by

CV
2
(Y) = CV^Yj/k .

Hence

CV^S) = CV
2
(s)/k,

etc.

Let the relative efficiency of an estimator Z with respect

to an estimator Y be defined by the ratio of the variances of the

unbiased estimators. That is, let

Eff(z| y) = v(y/e(y))/ v(z/e(z))

which is equivalent to

Eff(zlY) = CV
2
(Y) / CV^Z) .

Then Table 4.2.1 gives the relative efficiency of S with respect

to 3^
. Also given is the relative efficiency of M with respect

to S and the relative efficiency of R with respect to S. The

relative efficiency of M or R with respect to S for any given n,

is the same for all k. The relative efficiency of M with respect

to 3^
may readily be computed as

Eff(M| S ) = Eff(M|s) • Eff(s|S ) .

P P

An analogous relation holds for the efficiency of R with respect

to S .

P
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For samples from a normal distribution, the properties of

S for a sample of size n in which the mean must be estimated, are

the same as those for a sample of size n-1 where the mean is

known. This is not true for the mean deviation although its

expectation does behave in an analogous manner.
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4.3 A SURVEY OF INFORMATION AVAILABLE ON THE FIRST TWO MOMENTS OF

S, M, AND R FOR SAMPLES FROM NON-NORMAL POPULATIONS

Analytic Results on S

Small sample analytic approaches to the properties of S from

non- normal distributions have been almost uniformly unsuccessful.

Such meagre results as are available are outlined below in chron-

ological order. Results for sample size n = 2 are generally not

included since they are more appropriately considered as results

on the range.

Rietz (1931)

Craig ( 1932 )

Baker (1935)

Truksa (1940)

Irick (1950)

Uniform (0,l) parent; exact distribution for

n = 3«

Integral equations for joint distribution of X

and S from arbitraty parent for n = 3>^° Joint

distribution given explicitly for exponential and

uniform for n = 3°

Two- term Gram-Charlier parent; joint distribution

of X and S for n = 2,3° Three- term Gram-

Charlier parent; joint distribution of X and S

for n = 2.

Two- fold integral recurrence relationship for

joint cumulative distribution of X and S.

(n-l)-fold integral representation for distri-

bution of S.



Springer (1950) Distribution of S from for arbitrary n and

from yf for n = 3* (Results seem to be in error

since E(Ss
) does not check.)

Springer (1953) Integral recurrence relationship for joint dis-

tribution of X and S from doubly infinite parent

Bennett (1955) Integral recurrence relationship for joint

distribution of X and S.

Sampling Studies on S

E. S. Pearson and others performed a sampling study for six

Pearson curves about 1928. Results on the sample variance ob-

tained in this study for samples of size 5* 10, and 20 are given

by Le Roux (l93l)» Also included in Le Roux's tables are results

of a sampling study he performed for n = 5*25 and results of a

study by Church (1926) for n = 10. The grouping interval of the

reported results on the variance was very fine (approximately 50

categories) so the expectation and variance of the standard de-

viation could be satisfactorily computed from the reported results

Table 4.3*1 gives the results of this calculation.

Neyman and Pearson (1928) report, for Church's population,

E(s) = 3*3l8l and aa = 0.8086, whereas, from Le Roux's table, I
O

get E(s) = 3« 3098 and aa = 0 08096. This slight discrepancy is
O

probably due to their having additional information but is

certainly not large enough to change any of our conclusions.
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Table 4.3d

Results on S computed from sampling studies

reported by Le Roux (l93l) c "Standardized’ 1 means that

the entry has been divided by the normal theory equivalent *

The indicates that the result was for n = 25.

L. M l \

SON
YPE R 2 DL/SG

STANDARDIZED
EXPtCTAT ION

N — 5 10 20

STANDARDIZED
CHEF. VAR. SO

N = 5 10 20

HUNDREDS
OF SAMPLES
N = 5 10 20

I 1 2 .50 .8184 1.02 1.00 1.01 .86 . 84 .77 10 5 5

V I I A . 3 2 . 7714 1.00 .99 1.03 1.31 1 .19 1.45 10 5 5

VI I 7 . 0 :> . 7369 . 96 .96 .98 1 . 73 2.17 2.2 7 10 5 5

1 1

1

3 .29 1 .01 3.01 1.00 1.21 1 .03 1.10 10 5 5

1 1

1

3 . 7 2 . 7909 .99 .98 ,96 1.15 1.17 3 . 55 10 5 10

I 3 ,83 . 7971 .98 .99 . 98 1 . 29 1 . 45 3 .45 10 3 0 5

IV 5 .81 .95 .95 1 .
01* 1.37 1.05 2.08* 5 10 5*

Reyman and Pearson (1928) used beads to do a sampling study

on the standard deviation for samples from a discrete distri-

bution that was approximately rectangular. For samples of size

n = 4 they used a population with K = 21 categories and for

n = 10, K = 11 categories.

Dunlap (l93l) performed a sampling study on the standard de-

viation using dice. The discrete parent distribution was

approximately rectangular with K = 6 categories and samples of

size 10 were taken

«



36

Bounds and Asymptotic Results on S

The first six even moments of S about the origin are avail-

able in terms of the lower parent cumulants since they are simply

the integral moments of (see, for example, Kendall and Stuart,

1958). Asymptotic expansions for the odd moments of S in terns

of the parent moments have been given by Craig ( 1929 ) and Kondo

( 1930 ) but for small sample sizes these expansions seem to con-

verge only for distributions very near the normal (see Pearson

1929)

-

Le Roux (l93l) has made the interesting discovery that there

exists a subset of the Pearson family of distributions (corre-

sponding to a curved line in the Type I region) for which the

sample variance based on v = n-1 degrees of freedom is very

nearly distributed as the sample variance of a sample based on v*

degrees of freedom from a normal distribution where

He has given f3
n

- £ diagram showing this subset on Page 1^9

*

This "equivalent degrees of freedom" procedure gives the correct

value for CV P(S^) for all parent populations and it will be shown

below in Section ^.5 that it seems to provide a good working

approximation to the behavior of S for samples from some discrete

1

di stributions

.
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Harris and Tukey (1949) give asymptotic efficiencies of the

standard deviation and mean deviation for samples from "contami-

nated normal" distributions for various amounts of "contamination.”

In their contaminated normal model each observation has (independ-

ent) probability P of coming from a normal distribution with

standard deviation 3a> and probability (l-P) of coming from a

normal distribution with standard deviation 1$, both with mean /x.

Table 4.3*2 gives the asymptotic relative efficiency of M with

respect to S computed from their results. P denotes percent

contamination and asymptotic efficiency is defined to be

CV 3
( s)/cv

2
(m).

P

0

1

2

5

Table 4.3.2

Asymptotic efficiency of M relative to S

for contaminated distributions

cv2 (s)/cv3 (m)

3.00 0.86

4.63 lo44

5.80 I .75

7.65 2.03

8.3310 1.90



38

The following bounds on E(s/q) may be found using Liapunov’s

inequality (Kendall and Stuart, 1958, page 63 )

:

(n-Xj^-jW n(n+l) ]^< E(S/ct) < 1

Thus bounds on the coefficient of variation of S are given by

P Op- 3)
0 < CV 2

(S) < + — .— v — n-1 n

Results on S
3

The lower moments of S^/o3 are well known (see for example

Kendall and Stuart, 1958, p.290).

E(S3
/a

S
)
= 1

CV
2
(S

2
)

02-3) 2

n
+

n-1

Results on M

The properties of the mean deviation in samples drawn from

non- normal populations are even less well known than those of

the standard deviation. The expectation and approximate variance

of M in samples from a Pearson Type III distribution were given

by Johnson (1958), but no other analytical work on the mean

deviation seems to have succeeded.
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Asymptotically the variance of M is given by

V(M) = (V - 6
3

) / n + 0 ( n'
2
)

where 6 = E| X-uJ (see Kendall, 1950* exercise #19*0.

To the author's knowledge no sampling studies have been

reported on the mean deviation, though in sampling studies of

Geary's (1935) criterion for testing for non- normality, values of

S and M must have been computed.

Results on R

The range, being more mathematically tractable, has been

subjected to a much more thorough investigation. Pearson (l950)>

David (195*0 > and Cox (1950 have summarized much of what was

then known about the small sample properties of the range. In

addition, the exact distribution of R has been given for samples

from a discrete rectangular population by Rider (1951) and for

samples from the logistic distribution by Gupta (1965). Burr

(1966) has recently given the expectation and coefficient of

variation of R for samples from a family of distributions defined

by

0 < X < « .



Asymptotic results on R have been given (e»g. ; by Cadwell,

1954) but are not included here since our primary interest is in

small sample properties and a number of small sample results are

available for the range.

Burr (1955) has given a computational formula for the dis-

tribution of R for samples from discrete distributions, and has

computed the distribution and first four moments of R for an

11- category analog of the normal and a 12- category analog of a r

distribution. More results on discrete distributions will be

given in Section 4.5*

In addition to the sampling studies reported by Pearson

(1950), Gephart (1955 ) has obtained empirical results for 13

populations for samples of size 3* 5> 7 and 10. The relevant

part of his results is outlined in Table 4.3*3 below.

Tables 4.3*4, 4.3*5> and 4.3*6 outline the numerical result

on R available in the literature. The column headings are

abbreviations for the following:

B2 = pk/n* and DL/SG = (,/a = Ej X-/i| / a

for parent population.

Under -RANGE-,

D means distribution of range is given,

E means expectation of range is given,

V means variance of range is given

„
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Under ORDER STAT,

E means expectations of the order statistics are given,

V means covariances of the order statistics are given.

Entries in the columns denote the following:

T means numerical results are given in tables,

F means formulas only are given,

B means both formulas and tables are given.

Table 4o3°4 lists the populations for which information on

R is available. Table 4.3*5 gives, for these populations, the

standardized expectation of R defined by E(R/d
na)

where

E(r/q) = d^ for samples from the normal distribution. Table

4 o 3*6 gives the standardized coefficient of variation of R which

is defined by CV
2
(R)/[CV

q
(R) from normal distribution].

The mixed normal distributions referred to in Tables 4.3*4,

4.3*5 and 4. 3° 6 , through the ID of MNk, are defined such that

each observation has (independently) a ^0% chance of coining

from a normal distribution with mean -ka and a ^0°/o chance of

coming from a normal distribution with mean +ka .

In Table 4.5.4 the reference entry is sometimes abbreviated

ana occasionally a second or third author’s name has been omitted

entirely.

Hartley and David (1954) have given a lower bound for E(r/q)

for distribution on the finite interval a < x < b .
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Table

List of distributions for which information on the

first two moments of R is available.

For explanation of notation see text.

ORDER
RANGE STAT.

I n P 0 P U L A T I 0 M

i\i M 0 R M A L

k RECTANGULAR
ST S Y M M FT T P I A N

G

RT RIGHT T R I A N

G

CHI - 1 CHI 1-DFG EDM
LG logistic
tv P X T R F M F V A L U r

U E D9L EXPO MENTAL
E EXPONENT I AL

GMp gamma a = 2

G M 3 G A M M A A = 3

G M 4 G A M M A A = 4

G M 5. G A M M A A = 5

(a M 9 GAM M A A = 9

G M 1 6 G A M M A A = 1 6

W J ,5 HE I BULL A = 1 , 5

W? HE I BULL A = 2

w 3 . 5 PEI BULL A = 3 , 5

W 6 W E I B t ) L L A = 6

HR w E I B U L L A = 8

T 5 STUDENT N U = 5

T 8 STUDENT NU = 8

T 1 3 STUDENT N U = 1

3

H 3 R E ! A A ~ R - 3

b 1 0 BETA A = B = 1 0

M N 0 . 5 MXD NORMAL +

M N 1 . G M X D N 0 R M A L *

MN1 . 6 M X I) NORMAL *

M A X F(R/SIGMA) ALL

M I N ' C V 2 ( R ) ALL POPl

D2 DL/SC D V F V

3 . n n ,7979 T
T
i T

1,80 , 8 6 6 0 F B B

2.40 , 8165 T y

2,40 .8381 F R B

3 .67 , 8006 P R

4,20 , 7642 B R R

5.40 F R F

6.00 . 70 71 T R R

9.00 .7358 R B R

6.00 , 7656 F B T

5 , U 0 . 7761 T p

4.50 .7815 T R

4,20 , 7847 R

3.67 , 7905 T T

3.38 .7937 T
“T

4,3 9 ,7878 B

3,25 , 8038 R

2,71 .8064 B

3.0 4 , 7996 B

3,33 ,7939 R

9,00 , 7351 T T

4,50 ,7655 T T

3,67 . 760 0 T T

2.33 ,6267 T T

2.7 4 . 7969 T T

2,92 ,6010 T T

2.50 * 8 2 4 9 y T

2,04 , 86 46 T T

PORULAT I ONS 8

LA T IONS R

PEFFRENCF

H A P T h K I960

MCKAY PEARSON 1933
S A R H A N 19 5 4

MCKAY 33 OSTLE 61
G 0 V 1 N D , 6 5 POLKS 6 5

H I R N R . 6 3, S H A H 65
0 A V I D 5 4 , l I

£ P L F I N 6 3

M 0 0 R F 5 7 / G 0 V I M H * 6 6

DAVID 1954 COX 1954

DAVID 1954
MOORE 57, GUPTA 60
MOORE 57, GUPTA 60
GUPTA 1 9 6 0

MO S E S 1956
MOSES i 9 5 6

HARTER 1964
HARTER 1964
HARTER 1964
HARTER 1964
HARTER 1964

MOSES 1 9 5 6

MOSES 1956
M 0 S £ S 195 6

MOSES 1956
MQSb S 1 9 5 6

MOSES 1.956

MOSES 1956
MOSES 1956

PLACKETT 1947

MQRIGUTI 1954



Table 4 . 3 * 5

Summary of results available on E(R/d a).

Standardized Expectation of the Range

ID B2 ts ii ro + UJ A 5 6 8 10

N 3.00 1.00000 1.00000 1.00000 1.00000 1 .00000 1 .00000

R 1.80 1.02333 1.00957 .99289 . 97630 .94630 .92096
ST 2. AO 1.0130A 1.009AA 1.00506 1.00055 .99172 . 98 34*4

RT 2. AO 1.00265 . 99 AA

1

. 98 AA2 .97442 .95611 •94037
CHI-1 3.87 .97176 .96907 .96580 .96255 .95667 .95171
LG A. 20 .97720 .98192 .98765 . 99342 1.00415 1.01361
EV 3. AO .95791 .96083 • 964 3 7 . 96793 .97456 .96039
DE 6.00 .93999 .95168 .96587 .98000 1.00564 1.02743
E 9.00 .88623 . 89051 .89570 .90093 .91067 .91924

GM2 6.00 .93999 • 9 A 1 9 A . 94431 . 94671 .95117 .95512
GM3 3.00 .95937 .96062 .96214 .96367 .96653 .96906
GM4 A. 30 .96931 .97023 .97135 .97247 .97457 .97643
GM5 A. 20 .97535 .97608 .97696 .97784 .97949 .98095
GM9 3.67 .98708
GM1

6

3.38 .99270

W 1 • 3 A. 39 .96600 . 965A5 .96481 .96415 .96299 .96203
W 2 3.25 • 993 1

A

.99128 .98899 .98671 .98249 .97883
W 3 • 5 2.71 1.00627 1.00A58 1 • 002 49 1.00040 .99647 .99300
W 6 3.0A .99793 .99752 .99697 .99641 .99536 . 99437
W 8 3.33 .99152 .99173 .99200 .99226 .99272 .99306

T 3 Q.00 . 96639
TB A. 50 .98618
T 1 3 3.67 .99344

R 3 2.33 . 99790
BIO 2 • 7 A 1.00227

MNO. 5 2.92 1.00068
MN1.0 2.50 1.00187
MN1.3 2.0A .99509

MAX ALL 1.02333 1*01224 1.00610 1.00746 1 ,02584 1.05423
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Table k. 3.6

Summary of information available on

CV (R ) / [CV (R
n ) from normal distribution].

Squared Coefficient of Variation of the Range

ID B2 n = 2 3 4 5 6 8 10

N 3.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

R 1.80 .8760 . 7260 .6084 .5176 • 4466 • 3446 .2761
ST 2.40 .8766 .8310 . 7900
RT 2.40 .9854 .9075 .8402 .7835 .7356 .6594 .6011
CHI-1 3.87 1.1623 1.1859 1.2022 1.2155 1.2271 1.2474 1.2645
LG 4.20 1 .1299 1.2100 1.2769 1.3332 1.3813 1.4598 1.5219
EV 5.40
DE 6.00
E 9.00 1.7519 2.0167 2.2174 2.3766 2.5073 2.7122 2.8683

GM? 6.00
GM3 5.00
GM4 4.50
GM5 4.20
GM9 3.67 1.1435
GM16 3.38 1.0803

W 1.5 4.39
W 2 3.25
W 3 • 5 2.71
W 6 3.04
W8 3.33

T 5 9.00 1.7017
T 8 4.50 1 . 3439
T 1

3

3.67 1.1808

B 3 2.33 .8515
BIO 2.74 .9128

MNO. 5 2.92 .7984
MN1.0 2.50 .8114
MN1 .5 2.04 .6272

MIN ALL .8760 .6907 .498 .207 .074



Comparison of S and R

Pearson and Haines (1935) plot S vs R for some real data for

n = and 10. They also compare some sampling results for

three populations with = 2 ° 5 , 4.1 and 3° 3 and find for n = 5

and 10 that there is no significant difference between S and R

in the number of points falling above the normal theory 5 and .5

percent points.

David (1954) compares the probability that S and R fall

beyond the normal theory 5$ points when the parent distribution

is log y
3

0

Cox (1954) compares the standard errors of estimate and the

coefficient of variation of the average range and the pooled stan-

dard deviation, and finds, for sufficiently large numbers of

samples that for

small and moderate values of the root-mean-

square estimate is the better one, but that for

larger values of the estimate based on the

range, even though biased, is to be preferred.

The reason is essentially that for populations

with large ^ very extreme observations are

common, and these have relatively less effect

on the range than the other estimate

„

Further comparisons are now possible and will be discussed

in more detail below

»



4. 4 PROPERTIES OF THE RANGE 3N SAMPLES FROM SYMMETRIC TUKEY

RANDOM VARIABLES

In this section we derive some properties of the sample range

for samples from a family of random variables introduced by Tukey

(see Hastings, et al. , 19^7 ). First we give some general prop-

erties of this family of random variables, then derive closed

form expressions for the first two moments of R. We then compute

the expected value and coefficient of variation of R for a number

of members of the family. These results are compared with those

available from other distributions in Section 4.6. We conclude

this section with a discussion of the '’robustness” of E(R ) as
n

a scale parameter in the sense described in Section 4.1. This

family has also been discussed briefly by Tukey (1962).

Introduction

where U is uniformly distributed on (0,l) . Then Z is said to

be distributed as a symmetric Tukey random variable. A limiting

and then Z is distributed according to the logistic distribution.

This can be seen by noting that

Let

(it. 4.1) Z = i (U
X

- (l-U)
X

) \ ft 0

form of the transformation (4.4.1) as \ -* 0 is^ Z = log ~~
,

\-o
lim v (u^ - (l-u)

X
) = lim

1-0



A location and scale parameter can be added to the transfor-

mation if desired, but are unnecessary for present purposes. The

family can be generalized to the non- symmetric case

z = au
x

- B(l-U )
7 + c

but we restrict attention to the symmetric case outlined above.

The non- symmetric family Z = AU^ - (l-U)^ has been used by

Hogben (1963) and Shapiro and Wilk (1965 ) in sampling studies.

Parent Properties

The range of variation of Z is

-i<Z<i X > 0
X A.

-»<Z<® X < 0 .

The density function of Z is defined implicitly by

g(z(u)) = Q u
^ 1

+ (l-u )

X ‘ 1
)

and the ordinates at the extremes of the range of variation of Z

are given by

g(z( 0 )) = g(z(l)) =1 X > 1

= i x = i

= 0 x < 1 .

When X =1 or 2 , the transformation is linear so the distribution

of Z is uniform. The density of Z is slightly U-shaped for

1 < X < 2 having a minimum value of = ^4 / ^
2
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approximately 1.75 at approximately X =1.45. The density has a

single mode for X < 1 or X > 2.

Tukey ( 1960a) and Van Dyke ( 1961 ) have found that this family

of distributions can be used to give useful approximations to the

percentage points of the normal, and t distributions. Some

results based on their approximations are given below.

An important property of Tukey random variables is that the

percentage points are available directly from the definition.

That is, the 100 p*th percent point of Z is given by z(p) where

z(u) is defined in (4.4.1).

In the remainder of this discussion, the case X=0 for which

Z has the logistic distribution is omitted.

The odd moments of Z (which exist) are zero by symmetry and

the even moments are

m-1

E(Z
k

) = Y (-l) j (
k
) B(jX + 1, X(k-j) + 1)

X
3=0

+ (-1)“ k
J B(mX + 1, mX + 1)

m = k/2

B(p,q) =
[

xp
“ 1

(l-x)
q“ 1

dx .

J
0

Note that the moment of order k does not exist if X < -l/k .

where

and



The absolute moments are given by

m

e|z
3ki 2

k I (
* ) [

2V a,b) B(a >b) j

i =

o

where

and

2m + 1 = k, a = jX + 1, b = (k-j )X + 1

B|(p,q) = J
xP

"1
(l-x)q

’1
dx .

0

The formulas above simplify for the lower moments to

6 = E
I
ZI= nfnjt1 - (*

)X

J

2 2
<x =

X (2X+l)

[l - $XB(X,X)]

[l - 3XB(3X,X) + 3XB(2X,2X)J .

For large X the asymptotic formula

b
2
« i(X + I)

may be derived from the formulas above and for -.23 < X <

the emperical formula

= (X + .246)'
1

is accurate to within about 2 percent.



The flexibility of the symmetric TRV family is demonstrated

by the inclusion of such diverse distributions as :

1. Rectangular

2. Logistic
;

3. A very good approximation to the normal

4. Very good approximations to t-distributions

5. Distributions for which Plackett's upper bound on

E(R
n
/cr) is attained. (This will be shown below. )

Moments of R

The V th order statistic in a sample of size n is distributed

as Z ,
= Z(U . ) where U . is the i'th order statistic in

n y
V n yt

a sample of size n from the uniform distribution. Hence, per-

centage points of Z . are available by using the defining
n ,

t

relation (4.4.1) in conjunction with tables of the incomplete beta

function or tables of percentage points of order statistics from

a uniform distribution (see Govindarajulu and Hubacker, 1964).

The moments of the order statistics are

k

E(Z
n
k
' }

= -T (?) I ( * ) \(k-;j)+n-t+l) .

X
0=0

The product moment of smallest and largest is
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2
• E(Z

n>1
Z
n>n ) = ^ B(X+l,n-l) + ((-l)

n
-l)B(Un,X+l)

• B(X,l,n-!) - 1 (-1)3 •

0=0

Other formulas for the expectation, variance and covariance of the

order statistics were given by Hastings, et al. (1947).

We are particularly interested in the sample range R, its

expectation E(r) and its squared coefficient of variation

CV^R) which may readily be obtained from the expressions (4.4.2)

and (4.4.3). In particular

E(R) = XW t
1 - •

Plackett (1947) has given an upper bound on the ratio

E(R /a) that holds for all parent distributions. He notes that

this upper bound is attained for a sample of size n if the dis-

tribution function of X is defined implicitly by

u 3. n 1
X = F - (l-F)

,
where F is the cumulative distribution

function of the random variable. X. Thus E(R
n
/a) attains its

upper bound for a symmetric Tukey random variable with X = n-1 .

!
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Results of Computations

Let d^ denote the value of E(R
n / cr) for samples from a

normal distribution. Then Table 4. 4. 1 gives computed values of

E
n

= E(R^ / d^cr). Results are given for n = 3(1)6(2)12,15,20 and

= 2,3,4.2,6,8,10,15. It is not necessary to give E^ since,

as has been pointed out in Section 4.1,

E(R
2 / dgff) * ECRj / d^cr)

for all distributions. Two entries are given for each (6^,n)

combination since there are two values of X corresponding to any

given value of . The upper entry corresponds to the smaller

value of X . The upper entries for ^ = ^*20 correspond to \=0

(the logistic distribution) and were computed using the relation

n

E(R
n

) =2^1/3 .

d=i

The values of X that have been used are indicated below :

P
2 2 5 4.2 6 8 10 15

Small .585 .135 0 -.0802 -.1223 -.1466 -.17875

Large 2.82 5.20 7.64 11.25 15.25 19-25 29.25

Table 4. 4. 2 gives the corresponding values of

C = CV^R ) / [CV
2
(R
n ) from normal distribution] . The upper

entries for
{3^

= 4. 20 were obtained from the covariances of order

statistics for the logistic distribution tabulated by Shah (1966)

and Gupta, Qureishi, and Shah (1967).
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Table 4.4.1

E(
'

R
n
/,d

n
a ^ for samPles from symmetric Tukey random variables.

where d
n = E(R /a) for

is for the smaller value

value of X.

5 2 = 2 3 4 . 2

2,v5 1.0217
1.0216

. 9997

. 9874
,9772
, 9278

4 1.01 1

o

1.0121
.9999

. 9934
.981

9

. 9461

5 1 , 0 0 0 1

1.0006
1.0001
1.0007

.9876

, 9682

6 .038 5

. 980Q
1 . 0 0 0 4

1 , DO 73
, 9934
. 9 o 95

3 .0668
. 96 7 4

1,0008
1 .0169

1,0042
1.0280

10 .0484
.9484

1 . 0 011
1.0219

1,0136
1 .0611

1 2 .9826
. 0 3 1 9

1.0013
.1 .0238

1.2Q19
1 . 0 7 0 0

1 3 .9126
.910 7

1.0016
1 .0 228

1.0327
1 . 0890

?0 .8368
, 8823

1.0018
1 .0162

1.0474
1 ,1.0 55

normal distribution. Upper entry

of X and lower for the larger

6 8 10 1 5

.965 I. .
9394

. 9287 .9123
,8422 ,7654 . 7048 .5983

, 9628 . 9488 .9390 . 9239
.8712 . 80 02 . 7423 .6373

, 9722 .960 1 .9515 .9379
,9063 , 6424 .7878 . 6 0 4 7

. 9816 .9716 . 9642 .9521

. 940 7 , 8842 . 8 3 3 3 . 7 3 2 6

. 9993 . 9932 . 968Q .9769
1,0006 . 959? . 9165 . 8228

1 . 0151 1 .0124 1 ,0093 1 . 0 029
1 , 0483 1 .0214 . 9rt 74 .9031

1 . 0290 1 . 0295 1.0263 1 . n 2 £ 4

1. . 0659 1,0727 1.0474 .973 9

1.0473 1.0520 1 .0533 1 . 92 9

1.1284 1.1336 1.1212 1.0651

1 ,0 724 1 .0 632 1 . 0 8 8 2 1 . 0927
1 . 1.7^7 1,2057 1.212o 1 . 1861



55

Table k.b.2

= CV (R ) / [CV (R^) from normal distribution]

for samples of size n from symmetric Tukey

random variables . Upper entry is for the smaller

value of and lower for the larger value of X.

' n V 2 3 4.2 6 8 10

2 • 8 8 4 6 1.0018 1 . 1299 1.2649 1.3663 1.4385
.8846 1.0708 1.4451 2. 1277 2.9459 3.7888

3 .7709 1.0037 1.2100 1.4158 1 . 5665 1.6726
.7720 1.1155 1.6690 2.6293 3.7653 4.9318

4 .6805 1.0047 1.2769 1.5444 1.7391 1 .8757
.6818 1 . 1284 1.7785 2.8708 4.1519 5.4658

5 .6089 1.0050 1.3332 1.6547 1.8884 2.0523
.6085 1.1139 1.8102 2.9600 4.3043 5.6843

6 .5512 1.0048 1.3813 1.7507 2.0193 2.2S79
.5477 1.0821 1.7958 2.9648 4.3317 5.7375

8 .4646 1.0034 1.4598 1.9109 2.2402 2.4718
.4528 .9952 1.7009 2.8545 4.2100 5.6105

10 .4026 1.0013 1.5219 2. C411 2.4219 2.6903
. 3823 .9021 1.5752 2.6833 3.9949 5.3573

12 .3561 .9988 2. 1506 2.^761 2.8767
.3283 .8148 1.4474 2.4998 3.7563 5.0683

15 . 3044 .9947 1.6350 2.2875 2.7710 3.1135
.2679 . 7013 1.2721 2.2380 3.4066 4.6371

20 .2466 .9878 1.7140 ' 2.4676 3.0308 3.4313
.2006 .5561 1.0355 1.8688 2.8987 3.9984

15

1.5544
5.9365

1.8412
7.8999

2.0923
8.8110

2.3122
9.2062

2.5070
9.334^

2.8397
9.2130

3.1173
8.8798

3.3557
8.4788

3*6605
7.8621

4.0732
6.9209
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Table 4 . 4.

3

gives E and C for the distributions that
n n

Tukey (1960a) and Van Dyke (1961) have suggested may be used to

approximate the normal and t-distributions. Van Dyke obtained the

values of X used in the approximations to the t-distributions by

choosing X so that the ratio of the 5 and .

5

percent points is

correct. The column in Table 4 . 4.3 headed "d. f. meaning degrees

of freedom, is used to identify the t-distribution being

approximated.

The true values of E and C for the t-distribution with
n n

d. f . = and 13 ,
and n=5 ,

have been given by Moses (1956)

and are outlined below :

E
n

c
n

d.f. 5 8 13 5 8 13

True .966 .986 -993 1.702 1. 344 1.181

TRV -970 .987 .994 1.699 1.343 1.186

Two approximations to the normal distribution (d. f. = 00
) are

indicated in Table 4 . 4 . 3 - Tukey (1960a) obtained the approximation

4. 91 (V - (i-p)-
14
)

to the 100 P'th percent points of the normal distribution by "cut

and try methods/' and the approximation

5.05 (V 155
- (1-P

)' 15
^)

is such that correct values are given for the 5 and .5 percent
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points. Some comparisons between these two approximations are

given in Tables 4.4.3 (a) and (b), and in Table 4.4.4.

Table 4. 4. 4

Percent error in approximation to the P’th

percent point of the normal distribution.

& o 00o 8 95 99 99.5 99*9

.14 -.4 -.4 -.2 -.0 •
i0•1«H• -1.5

.135 -.9 -.8 -.6 -.5 O•CVJ•o• .9

The agreement between the true and TRV-approximate values

for E,- and for the t-distributions is sufficient to indicate
5 5

that the approximations may have wider applicability. Computations

by Van Dyke indicate that the approximation to the percent points

of the t-distributions is fairly good provided the degrees of

freedom is not too small.

There seems to be little difference between the X = . 14

and X - . 135 approximations to the normal distribution. To the

accuracy indicated in the tables, X = .135 gives the correct

value of p and gives slightly more accurate values for
;

X = . l4 gives better values for E^ . The percent points given

by X = . 14 are more accurate for P between 60 and about 99 but

the values for X = . 135 are more accurate for P=99* 5 and 99* 9-
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Table 4.4.5 gives E and C for the values of \ for which
n n

Plackett's (1947 ) upper bound on E(R^ / <0 is attained. There is

no apparent manner in which these distributions are otherwise

unusual or extraordinary.

All of the results given in this section are believed to be

accurate to as many places as given.

Discussion of the "robustness" of E(R) as a Scale Parameter

The principal summary and analysis of the results on the

range is deferred to Section 4.6 where the results of cox (1954),

Burr ( 1967 ) and others (summarized in Section 4.5) are compared

with those obtained here and in the following section.

It is convenient here to discuss the concept of the

"robustness” of E(R) as a scale parameter for symmetric Tukey

random variables in the sense introduced in Section 4.1 above.

More specifically consider the following. For a normal distribution

u + 1 . 96 E(R / d )- x n ' n'

covers the central 95 percent of the distribution. For any other

symmetric distribution, define to be such that

4 + K E(R / d )— n n ' n

covers the central 95 percent of the distribution. Then the ratio

Pn
=1.96 / may be considered a measure of the robustness of
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1

E(R^) as a scale parameter for the central 95 percent of the

distribution. More precisely the amount by which this ration

differs from 1. 0 is an index of the non-robustness of E(R ) as
n'

a scale parameter for that distribution.

A similar quantity may be defined for a as p - 1. 96 / K

where K is such that 4 + Kcr covers the central 95 percent of the

distribution. Then p and p^ may be compared over a class of

distributions for varying values of n and whichever deviates least

from 1.0 (ratio-wise) could be said to be the more robust scale

parameter for the central 95 percent of the distribution.

For Tukey random variables X may be computed quite simply

as

K = z(.975) / E(R / d ) ,n ' x n ' n' 9

where z(u) is defined in (4.4.1).

Table 4. 4. 6 gives computed for the same values of n and

60 (i.e. X) as in Table 4.4.1. The value of p for these same

values of p is also given. The values of p and p^ give an

indication of the robustness of E(R
n ) with respect to the central

95 percent of the distribution for symmetric Tukey random variables.

These results may be compared with those given in Table 4.4.1 which

may be interpreted as giving an indication of the robustness of

E(R
n / d ) with respect to <j.
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Table 4.4.6

"Robustness" of E(R ) as a scale parameter for

the central 95 percent of the distribution. For details

see text. Upper entry corresponds to the smaller value of

e
2

= 2 5 4.2 6 8 10 15

a
1.1164
1.1187

.9958

.9350 .8335 .7602
.9679
.7266

.9716

.7180
.9796
. 7536

rt\
•\

OJII£ 1.1406
1.1429

.9954

.9232 .7733 .6402
.9093
.5561

.9024

.5060
. 8937
.4508

4
1.1297
1.1223

.9956

.9288 .7886 .6623
.9184
.5814

.9124

.5330
.9050
.4803

5
1.1165
1.1193

.9959

.9357 .8070 .6890
.9293
.6121

.9245

.5657
.9188
.5159

6
1.1034
1.1063

.9961

.9419 .8248 .7151
.9405
.6425

.9368

.5983
.9327
. 552 1

8
1.0794
1.0822

.9965

.9508 .8543 .7607
.9613
.6969

.9600

.6580
• 9590
.6201

10
1.0588
1.0610

.9968

.9555 .8761 .7969
.9799
.7422

.9806

.7089
.9825
.6805

12 1.0412
1.0425

.9971

.9572 .8919 .8255
.9965
.7794

.9991

.7521
1.0035
.7339

tr\rH 1.0190
1.0187

.9973

.9563 .9077 .8578
1.0182
.8237

1.0234
.8050

1.0314
.8026

20 .9900
.9870

.9975

.9501 .9215 .8930
1.0485
.8761

1.0573
.8706

1.0704
.8938



From Table 4 . 4.6 it appears that for small values of n (less

than about 8), 1 . 96a would be a more robust scale parameter than

I.96 E(R
n / ) whereas for larger values of n (about 8 to 15 ),

the situation is reversed. All such conclusions are, of course,

predicated on the class of distributions under consideration. If

the only allowable shapes are restricted to those corresponding to

(
3^ equal 2 or 3 then E(R

n / d
R

) is better than a for n larger

than about 5 *

In Table 4.4.1 it is interesting to note that for the values

of \ included, E varies least for sample sizes of about 7 or 8 .

n

If only values of £ in the interval (3*9) are allowed then

variation is least for n = 9 or 10 . When the only allowable

shapes correspond to small \ and p in the interval (1.75* 4.20),

E varies least for n = 5 -

n

We make the empirical observation that E^ is a decreasing

function of n for = 2 and is an increasing function of n for

(3o 5* 3- It may be noted that the relation

a* = — (1 + \)(2 + x)
n

n n + \

“ 1 / v 1

^
- B(n, X)

|

where

, 3(8 - 7 d) + J 9o
2 + 96o - 128

X ~
2(3p -4)

2
0 - — arccos

TT

and
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gives d exactly for n = 2(l)5j is accurate to within 0.024

for n = 6(l)l0; and is accurate to within 0.14, for n = ll(l)20.

This value of \(~0. I4l6l35) was found by identifying the relations

for E_, and E, .

3 4

In Table 4.4.1 E^ differs substantially from 1.0 only for

large values of \ and small values of n. Plackett’s upper bound

on E^ seems to increase indefinitely with n and for n = 1000

the upper bound on E is approximately 6.

These results on R are compared with those of Cox (1954) and

others in Section 4.6.
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4.5 PROPERTIES OF S, M, AND R FOR SOME DISCRETE DISTRIBUTIONS

We now direct attention to a type of non-normal distribution

for which properties of S and M, as well as R, may readily be

obtained for small samples. It has been indicated in Section 4.5

that there is virtually no information available on the properties

of S and M in small samples from non-normal distributions. In

this section we select a number of discrete distributions with

from 5 to 11 equally- spaced possible values and compute the ex-

pectation and coefficient of variation for S, M, and R for samples

of size 5> and 10 . These results are summarized at the end of

the section and it is shown that the modified degrees of freedom

approach due to Le Roux (1931 ) provides a good approximation to

the expectation and coefficient of variation of S for the distri-

butions considered here. For samples of size 5 and 5 this approach

also gives a reasonably good approximation to the expectation of

M and R; and for samples of size 3> 5, and 10 gives a good

approximation to the coefficient of variation of M and R. The

results on R obtained here sire compared with those from other

sources in Section 4. 6.
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Introduction

It is widely appreciated that reetl data are never truly

continuous, but are in reality always discrete. Frequently the

actual readings are so coarse that only 5 to 10 distinct values

are ever obtained. Studies by Eisenhart (l$&7) and Taguti (1951 )

have investigated the effect of rounding on the distribution of

2
S . The results of such investigations are ordinarily used to

justify the using of "continuous” techniques on "discrete" data.

However, it would seem that they could also be used to partially

justify the extrapolation of results on discrete populations to

continuous populations. Even if this were not possible the

properties obtained based on studies of discrete populations should

certainly be applicable to real data. It would seem that the

electronic computer could effectively be used to examine the

properties of real-life data directly rather than using the

digital computer to approximate a continuous function which in

turn was only an approximation to discrete real-life data.

Discrete distributions have been used by a number of people

to investigate the effect of departures from normality on the

sampling distribution of various statistics. Rider (1929)

investigated the behavior of X, X/S, the sample median, and R

in samples from various discrete distributions with 5 and 10

categories for samples of size 2 , 4. Shone (19^9) computed

by hand the mean and variance of the sample range in samples from
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18 discrete populations. Eleven of these had 7 categories; one

had eight; two had nine; and four had ten. Burr (1955) gave a

simplified method for computing the exact distribution of the

range in samples from discrete populations and worked out two

examples : an eleven category analogue of the normal distribution,

and a twelve category analogue of a Pearson Type III distribution.

Tukey (19^8) has even suggested that clues to the effect of

non-normality T, can probably be found by studying that extremely

non-normal distribution in which all the probability is concen-

trated at two points.
I! For such a random variable with k=2

distinct values it is easy to obtain rather simple analytic

expressions for the expectation and coefficient of variation of

S, M, and R. For larger values of k the analytic evaluation of

these properties becomes much more difficult and it is more

convenient to use the computer to systematically construct all

possible samples, compute the designated statistics and probability

for each sample and sum over all possible samples. Results on

the expectation and coefficient of variation of S, M, and R were

obtained for samples of size n = 3>5> and 10 .

The enumeration of all of the possible k
n

samples is

feasible for small values of n and k but to extend the present

investigation to larger values of n and k, methods for the



reduction of the number of computations would have to be investi-

gated. For symmetric distributions, for example, one could halve

the computing time by taking advantage of symmetry.

In total 114 distributions were chosen for study although it

was not economically feasible to do the computations for n=10

for the larger values of k. Thus for n=10 results were obtained

for only 45 distributions all with k < 7 except for one with

k=8 . The distributions actually used are listed in Table 4.5.1

and some parent properties of the distributions are listed in

Table 4.5.2. Table 4.5*3 lists the results of the computations

on the expectation and coefficient of variation of S, M, and R.

The distributions numbered 37, 40, 42, 43, 45, 53, 60, 64, 66

67, 88, 91, 92, 99, 100, 101, 103 and 106 are the ones for which

Shone (1949) computed the expectation and standard deviation of

the sample range for n =3, 4, and 5 • (There appear to be a

number of minor errors in his results, calculated on board ship

by hand.) Distribution number 7*+ is Burr’s (1935) discrete

analogue of the normal distribution and number 108 is a modified

version of his discrete analogue of a gamma distribution.
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Table ^-.5*1

Discrete Parent distributions:. Relative frequencies

for each of the k equally spaced categories.

(Symmetric distributions)

ID k relative frequencies

1 3 3.13 16 6 6 16

2 3 3.50 1 5 1

3 3 4.0 0 i 6 1

4 3 4.50 1 7 1

5 3 5.00 1 8 1

6 3 5.50 1 9 1

7 3 6.00 1 10 1

8 4 2.44 11 39 39 11

9 4 2.67 1 15 15 1

1 0 4 2.71 7 43 43 7

1 1 4 2.75 1 7 7 1

12 ' 4 2.76 1 11 11 1

13 4 2.77 1 8 8 1

1 4 4 2.77 1 10 10 1

1 5 4 2.78 1 9 9 1

1 6 5 1 . 70 1 1 1 1 1

17 5 2.53 67 242 382 242 67
18 5 2.79 1 10 20 10 1

19 5 2.85 1 5 10 5 1

20 5 2.94 12 215 546 215 12
21 5 3.52 1 15 50 15 1

22 5 4.15 1 5 20 5 1

23 5 4.59 1 15 75 15 1

24 5 4.78 1 10 50 10 1

25 5 6.74 1 5 40 5 1

26 5 8.04 1 5 50 5 1

27 6 1.73 1 1 1 1 1 1

28 6 2.59 1 1 3 3 1 1

29 6 2.74 2 14 34 34 14 2

30 6 2.86 1 10 30 30 10 1

31 6 3.33 1 10 50 50 10 1

32 6 3.37 1 5 20 20 5 1

33 6 3.67 1 10 90 90 10 1

34 6 3.82 1 5 30 30 5 1

35 6 4.20 1 5 50 50 5 n
1

36 7 1.75 143 143 143 142 143 143 143
37 7 1.78 9 9 9 10 9 9 9

36 7 2.17 100 120 150 260 150 120 100
39 7 2.32 60 130 180 260 180 130 60
40 7 2.49 2 7 15 16 15 7 2



k

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

8

9

10
10
10
10
11
11

11

11

11
11

11
11
11

11

11
11

11

11

11

4

1

1

1

1

4

3

1

3

30
3

40
1

1

30
40
2

3

4

1

4

5

6

1

8

12
1

30
20
10
9

25
897
195
200
33

125
859
800
160
190
120
100
100
50

Table 4.5*1 (Continued)

(Symmetric distributions, for k > 8 only the

first 7 frequencies are given)

^2 relative frequencies

2.58 4 11 21 28 21 1

1

2.57 1 6 16 18 16 6

2.67 1 6 15 20 15 6
2.88 1 10 240 498 240 10
2.91 1 5 15 22 15 5

3.01 4 50 240 412 240 50
3.08 3 40 240 434 240 40
3.19 1 10 220 538 220 10
3.21 3 30 240 454 240 30
3.33 30 70 200 400 200 70
3.33 3 20 240 474 240 20
3.44 40 60 200 400 200 60
3.50 1 4 13 28 13 4
3.56 1 10 200 578 200 10
3.78 30 70 150 500 150 70
3.87 40 60 150 500 150 60
3.94 2 10 199 578 199 10
4.28 3 10 198 578 198 10
4.57 4 10 197 578 197 10
4.63 1 3 10 36 10 3

4.65 4 10 194 584 194 10
4.90 5 10 193 584 193 10
5.18 6 10 190 588 190 10

6.67 1 2 7 44 7 2

2.58 4 8 15 23 23 15
2.71 1 4 12 2 ] 24 21
1 . 78 1 1 1 1 1 1

2.87 1 8 15 30 50 50
3.50 1 3 8 20 40 40
4.09 1 2 5 10 30 30
2.03 5 6 7 8 9 10
2.89 1 4 9 16 25 36
2.99 1 24 2 24 1109 2897 3989
3.02 5 15 50 115 195 240
3.08 6 14 55 110 200 250
3.26 1 2 9 18 33 50
3.31 1 8 27 64 125 216
3.39 1 64 729 2744 6859 13824
6.21 2 20 100 500 800 6000
9.40 1 4 20 100 160 2000
10.07 3 6 8 10 190 588
13.28 3 6 8 10 120 700
16.87 1 2 3 10 100 800
20.13 1 2 3 10 100 1000
29.72 1 2 3 10 50 1000
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Table 4.5.2

Some properties of the discrete parent distributions.

\k denotes E | X- pi.
|

J
- ^)

ID k ^2 6/a v^/(P v^/a
5

i

—

1

<n p a

1 3 3.13 .5657 1.768 5.5 .000 2.000 . 566
2 3 3.50 .5345 1 .871 6.5 .000 2.000 .535
3 3 4.00 .5000 2.000 8.0 .000 2.000 . 500
4 3 4.50 .4714 2.121 9.5 .000 2.000 .471
5 3 5.00 .4472 2*236 11.2 .000 2.000 .44 7

6 3 5.50 .4264 2.345 12.9 .000 2 . 000 .426
7 3 6.00 .4082 2.449 14.7 .000 2.000 .40 8

8 4 2.44 .8668 1.466 4.3 . 000 2.500 .831
9 4 2.67 .9186 1.429 5.9 .000 2.500 .612

10 4 2.71 .8791 1.503 5.3 .000 2.500 .728
11 4 2.75 .8839 1.503 5.5 .000 2.500 .707
12 4 2.76 .9037 1.472 5.9 .000 2.500 .645
13 4 2.77 .8893 1 .498 5.7 .000 2.500 .687
14 4 2.77 .8992 1.482 5.9 .000 2.500 .657
16 5 1.70 .8485 1.273 2.3 .000 3.000 1.414
17 5 2.53 .7446 1.510 4.5 .000 3.000 1.010
18 5 2.79 .6999 1.575 5.5 .000 3 . 000 .816
19 5 2.85 .7035 1.597 5.6 .000 3.000 .905
20 5 2.94 .6591 1.630 6*0 .000 3.000 .725
21 5 3.52 .6091 1.778 7.8 .000 3.000 .681
22 5 4.15 .5833 1.926 9.7 .000 3.0C0 .750
23 5 4.59 .5332 2.031 11.7 .000 3.000 . 596
24 5 4.78 .5345 2.062 12.4 .000 3.000 .624
25 5 6.74 .4576 2.455 20.2 .000 3.000 . 588
26 5 8.04 .4191 2.681 26.3 .000 3.000 .539
27 6 1.73 .8783 1.280 2.4 .000 3.500 1.708
28 6 2.59 .8087 1.540 4.5 .000 3.500 1.360
29 6 2.74 .8393 1.538 5.4 .000 3.500 1.025
30 6 2.86 .8430 1.559 5.8 .000 3.500 .940
31 6 3.3 3 .8473 1.640 7.6 .000 3.500 .822
32 6 3.37 .8269 1.672 7.5 .000 3.500 .930
33 6 3.67 .8687 1.661 9.5 .000 3.500 .712
34 6 3.82 .8333 1.740 9.4 .000 3.500 .833
35 6 4.20 .8539 1.765 11.7 .000 3.500 .732
36 7 1.75 .8576 1.285 2.5 .000 4.000 2.001
37 7 1.78 .8504 1.296 2.5 .000 4.000 1.984
38 7 2.17 .7889 1.424 3.5 .000 4.000 1.749
39 7 2.32 .7874 1 .454 3.9 .000 4.000 1 . 575
40 7 2.49 .7922 1.484 4.5 .000 4.000 1.381
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Table 4.5*2 (Continued)

^2 &/

a

V^/ cT
^

/ 5
v
5
/a Pi a

2,55 .7740 1.512 4.6 .000 4.000 1.421
2.57 . 7829 1.501 4.9 .000 4 . 000 1.237
2.67 .7655 1.531 5.1 .000 4 .000 1.225
2.88 .6919 1.5 79 6.3 .000 4 .000 . 760
2.91 .7462 1.589 5.9 . 000 4.000 1.173
3.01 .7215 1.611 6.4 . 000 4.000 .976
3.08 .7120 1.624 6.7 .000 4.000 .924
3.19 .6626 1.657 7.4 .000 4 . 000 .733
3.21 .7025 1.648 7.3 .000 4 .000 . 880
3.33 .7022 1.709 7 . 1 .000 4 .000 1.225
3.33 .6938 1.664 8 .

0

.000 4.000 .833
3.44 .6957 1.739 7.3 .000 4 .000 1.265
3.50 .6882 1.739 7.8 .000 4 .000 1.090
3.56 .6320 1.747 8.7 .000 4.000 .706
3.78 .6423 1.835 8.3 .000 4 .000 1.183
3.87 .6369 1.862 8.6 .000 4 .000 1.225
3.94 .6277 1.807 10.6 . 000 4 • 000 .717
4.28 .6236 1.861 12.2 .000 4 . 000 .728
4.57 .6198 1.909 13.5 .000 4.000 .739
4.63 .6033 1.999 11.8 .000 4.000 .964
4.65 .6151 1.925 13.9 .000 4.000 .735
4.90 .6115 1.968 15.0 .000 4.000 . 746
5.18 .6050 2.018 16.2 .000 4 .000 .754
6.67 .5052 2.406 20.1 .0 00 4.000 .866
2.58 .8171 1.518 4.7 .000 4.500 1.664
2.71 .7842 1.535 5.3 . 000 5.000 1 .556
1.78 .8704 1.292 2.5 .000 5 .500 2.872
2.87 .8034 1.586 5.6 .000 5.500 1.676
3.50 .7870 1.717 8.0 .000 5.500 1 . 500
4.09 .7570 1.857 9.9 .000 5.500 1 . 486
2.03 .8332 1.372 3.2 .000 6.000 2.850
2.89 .7636 1.593 5.7 .000 6.000 1 .884
2.99 .7540 1.597 6.3 .000 6 . 000 1.250
3.02 .7698 1.607 6.3 .000 6 .000 1.715
3.08 .7649 1 .622 6.5 .000 6 .000 1.720
3.26 . 7454 1 .667 7.

1

.000 6.000 1.662
3.31 .7294 1.688 7.2 .000 6 . 000 1.528
3.39 .7050 1.709 7.5 .000 6 .000 1.212
6.21 .5162 2.313 18.9 .000 6.000 .959
9.40 .4273 2.825 35.9 .000 6 . 000 .803
10.07 . 5553 2.736 42.7 .000 6 . 000 .962
13.28 .4536 3.238 60.8 .000 6 . 000 .900
16.87 .4177 3.483 98.7 .000 6.000 .659
20.13 .3823 3.805 128.7 .000 6.000 .603
29.72 .2932 4.810 211.5 .000 6.000 . 554



Table 4.5*2 (Continued)

ID k e2
CP Q V

3

86 3 2.61 .8299 1 .

87 6 2.52 .8289 1 .

88 7 2.70 .8189 1 .

89 7 3.17 .8183 1 .

90 7 3.21 .8152 1 .

9 ] 7 3.22 .8287 1 .

92 7 3.44 .7824 1 .

93 7 3.59 . 75^4 1 .

94 7 3.61 .8196 1 .

95 7 4.20 .8032 1 .

96 7 5.39 .7458 2 .

97 7 11.71 .7213 2 .

98 8 2.55 .8163 1 .

99 8 3.05 .8158 1 .

100 9
.

2.99 .8189 1 .

101 10 2.76 .7798 1 .

102 10 4.49 .7700 1 .

103 10 4.54 .7528 1 .

104 10 4.99 .6614 1 .

105 10 5.41 .7742 2 .

106 10 6.98 .7318 2 .

107 10 8.88 .6880 2 .

108 11 3.59 .8008 1 .

109 11 6.17 .7632 2 .

no 11 6.47 .7566 2 .

111 1

1

7.44 .8062 2 .

112 11 8.15 .7453 2 .

113 11 8.54 .6769 2 .

114 11 19.45 .4090 3 .

/ 5
v
5
/a M- a

4.8 .001 2.240 . 568
4.5 • 000 3 .370 1.230
5 . 1 .060 4.547 1 . 369
7.0 1.147 4.940 1.468
6.9 .4 56 4.350 1.276
7.5 .850 5.500 1.490
7.9 . 579 4.719 1.231
9.0 .519 4.920 1.146
8.7 1.

5

35 5.7 30 1.648
10.9 . 799 4.360 .985
16.0 2.931 6.040 1 . 442
52.8 7.169 6.426 1.056
4.6 .001 4.670 1.662
6.7 .258 3.340 1.289
6.5 .231 3.646 1.416
5.4 .001 5 . 995 . 1.577

12.5 1.290 7.225 1.617
13.4 1.270 3.035 1.592
14.8 .039 5.994 1.220
17.0 2.469 2.466 1.797
26.8 3.317 8.966 1.405
37.3 3 • 5 ] 6 7.8 38 1 • 2 7 5

8.9 .737 4.480 1.957
21.1 2.911 2.500 1.872
22.4 3 . 131 2.452 1.836
36.1 2.006 8.367 1.006
41.6 1.241 7.766 .881
36.1 2.680 7.913 1.276
111.2 .042 6.029 .707

/a5

519
498
54 ]

613
648
611
697
70 ]

698
830
043
891
510
595
580
549
874
856
992
012
211
503
697
124
175
122
240
442
874
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Table 4. 5 . 3a

The standardized expectation and coefficient of

variation of S, M and R for samples from

the discrete distributions,

n = 3

es
*

n E(S) e(m) E(M/6) E(R) c(s) c(m)

7.17 7.0? ,8 06 . 909 1.78? .84? 2.146 1 .997
7.60 7,71 .866 .88 1 1.316 .8 11 2.537 7.788
4 • 00 7.50 .831 .847 1.35? .776 3 .096 7.971
4.60 3 .77 . 708 .817 1.78? .743 7,667 7 . 6Q0
5. 00 2.20 .768 .788 1.405 .7 14 4.235 4.059
5 . 50 2 ,09 .74? .76? 1.425 .688 4.811 4.636
6.00 2 • 00 .71 7 .777 1.441 • 6 6 4 5.406 5.718
2.44 7.46 .90 1. .99? .917 .951 1.089 1.074
7.67 7.75 . 96 6 ,,990 .860 .8 99 1.737 1.749
2 . 71 3,71 .975 . 9 8 .897 .926 1 . 2 3 R 1 . 156
7 . 75 7.18 .977 .98 4 .888 .971 1.767 1 .1 79
7 . 76 7.17 , 968 .986 .871 .906 1.717 1.73?
3 . 77 7,17 .97] .984 .887 .916 1.286 1 .10 8

7 . 77 7.17 .968 ,08 6 .874 .909 1.714 l.??7
7 , 78 7.16 . 969 .986 ,878 .911 1 .707 1.213
1 . 70 4.57 1,077 1 ,031 .969 1.003 .73 5 .771
7 . 67 7.87 .998 .996 1.067 .969 1.02? .009
7 . 79 7.15 ,981 .987 1.120 .941 1,184 1.13 0

7.86 7.11 .981 .98] 1.112 .94 7 1.185 1.135
2 . 94 3,04 .967 .967 1.170 .916 1.380 1 .296
3 .67 2.70 .977 .936 1.226 .880 1 ,758 1 . 649
4.15 7.46 .906 ,9] 7 1 .249 .867 2.077 1.971
4. 50 7.31 .867 .87 6 1.310 .8 11 7.61 7 7.479
4.78 7.76 .867 .875 1.706 .813 7.617 2.480
6 . 74 1 .89 .777 .794 1.784 .779 4,050 7.9?1
8 . 04 1 .75 .778 .746 1 .420 .679 5*176 4 . Q 7 8

1 . 77 4.47 1.038 1.07? .937 1.009 .749 . 767
2 . 69 7.3? .997 .996 .987 .977 1.0?8 1.014
2 . 74 3.19 .9 97 .99? .943 .9 65 1.067 1 .077
X) . CD 0^ 3 , 1 0 . 988 .987 ,935 .9 55 1.117 1.083
3 . 77 2.80 .970 .975 ,918 .928 1.296 1.234
3.77 7.78 .97? .974 .940 .937 1.274 1.228
3.67 7.67 .967 .971 ,892 .903 1.428 1.344
7 .8? 3.67 ,968 .965 .924 .915 1.42? 1 .358

c(r)

2 . 7 1 7

7 . 7 7 7

3.784
7 . 867
4.417
5 . 07 ?

1*610
1.208
1 .466
1.381
1 . 40 0

1 ,464
1.411
1.468
1.448
.787

1.17 3

1 . 37 ?

1.305
1 . 53 ?

1.973
3.108
7.801
7.707
4.76 1

6.717
. 767

1.10 7

1.16 7

1.777
1.446
1 . 41 ?

1 . 60 ?

1 . 56 ?
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Table 4. 5- 3a (Continued)

e2

*
n E(S) E(M) e(m/s) E(R) c(s) c(m) C(R)

4. 70 7.43 .947 .96? .899 . R94 1.540 1 .450 1.707
1 . 7ft 4.4 3 1.079 1 .037 .960 1.013 .744 .762 .756
1 . 7ft 4.37 1.07ft 1.031 .968 1.013 .747 .766 • 763
2.17 3.76 1.016 1.01ft 1.026 1.003 .855 .859 .896
?.?7 3. ft 9 1.017 1.010 1.023 .998 .891 .893 . 93R
7. 4Q 3.41 1.007 1 .00ft l.oi? .990 .935 .933 .996
7 . ftft 3.3ft 1.00 ft 1 .007 1 .033 .989 ,9ft6 .95 7 1.07?
7.57 3.33 1 .004 1.007 1.07? .983 .960

(

.950 1.038
7.67 *5.36 1.000 .99ft 1 .040 .979 .007

*

.98 8 1 .03ft

7.R8 3. OR .977 .981 1.131 .93? 1.770 1.151 1.357
7.01 3.06 .997 .090 1 .Oftft .969 1.074 1.057 1.16?
O.oi 7*99 .9ft ft .984 1.08ft .9 54 1.146 1.111 1.258
3.0ft 7.9ft .9ft 1. .981 1.1 no .94R 1.17 8 1.139 1 . 30?
3. 19 7. ftft .967 .967 1 .16ft .917 1.374 1 .796 1 .577
3.7 1 7 • ft 7 .077 .978 1.110' .940 1.227 1.176 1.363
3 .33 7 • ft 0 .974 .973 1.106 .957 1.750 1 .776 1.34 8

3 .33 7.80 .973 .97ft 1.177 .933 1.763 1 .706 1 . 39ft

3.44 7.74 .970 .969 1.117 .948 1.79ft 1 .779 1 ..396

3 # ft 0 7.71 .Oftft .Oftft 1.177 .94? 1.314 1.781 1 .490
3 . ftft 7.60 .947 .949 1.19 8 .8 96 1.590 1.491 1 . 74 6

3 . 7ft 7 . ft 0 .94ft .94 8 1.17ft .919 1.557 1.519 1 . 67R
3 . ft 7 7. ftft .94 0 .944 1.18? .9 14 1.611 1 .568 1.77ft
3.94 7. ft 7 .938 • 9 4 4 1.701 .89? 1 .64? 1 .549 1.80?
4.7ft 7.40 .93 3 .940 1.703 .888 1 .693 1 .603 1 .866
4 . ft 7 7.31 .979 .936 1.70ft .8 84 1.743 d .654 1 .906
4.63 7.30 .91ft .921 1.718 • ft 87 1.901 1 .848 2.06?
4.6ft 7.79 .97ft .933 1.210 .880 1.783 1.692 1.947
4.9 0 7.77 .971 .979 1.212 .877 1.833 1.741 1.996
ft. 1ft 7.16 .91ft .973 1.717 • 8 7 1 1.90ft 1 .815 7.069
6.67 1.00 .876 .839 1 .3?6 .786 3.166 3 . 0R3 3 # 3 A ft

7 . ftft 3.33 l.ooft 1.003 .979 .993 .96 3 .967 1 .096
7 .71 3.71 1 .003 1 .001 1.018 # 9R9 .07? .97 9 1.076
1 . 7ft 4.37 1.039 1.033 .047 1.018 .740 .759 • 74 1

7 . «7 3 .09 .007 .994 .987 .985 1 .033 1 .079 1 .086
3 . 60 7.71 .980 .978 .992 .965 1.1Q1 1 .186 1.266
4.09 7.47 . 9 ft 9 . 9ft9 1.011 .941 1 .409 1.396 1 .497
7 . Oft 3.96 1 .073 1.074 .981 1.016 .79? .805 . 80 ?

7 .89 3.0 ft .997 .995 1.039 .987 1.029 1 .o?7 1 .074
7.99 3.01 .993 .991 1.049 .973 1 .064 1 .053 1 . 143
3.0? 7.99 .996 .993 1.030 .984 1.040 1 .040 1.091



ID

7 6

76
77
78
7 °

Rn

81

8 ?

88
84
88

86
87
88
89
°0
91
07
OR
04
08
° 6
07
9R
QQ

1 00
101
102
103
104
108
1 06
107
108
109
110
111
112
113
1 14

77

Table 7. 5* 3a (Continued)

n = 3

k ^2
*

n E(S) E(n) e(m/&) E(R) c(s) c(m) C(R)

11 ! 3.08 2.95 .994 .997 1.034 .987 1.056 1 .068 1.110
11 3.26 2.84 .988 .986 1.055 .975 1.116 1.113 1.174
11 3.R1 2.81 .983 .981 1.073 .968 1.163 1.153 1.231
11 3 .39 2.77 .976 .975 1.103 .9 54 1.230 1.714 1.773
11 6.21 1.97 .840 .857 1.317 .801 2 . °4 2 2.868 7.110
n 0.40 1 .64 .736 .754 1 .408 .697 4.931 4.827 5.114
1

1

10.07 1 .60 .853 .863 1 .740 .8 14 2.947 7.770 7.901
1

1

13.78 1.45 .736 .772 1.357 .714 4.504 4,461 4,670
IT 16.87 1 . 36 .716 .73 4 1.407 .671 6.417 6 . 77 O 5.607
11 ?0. 1 3 1 .30 .670 .689 1.437 .6 24 6.719 6.611 6.907
11 29.72 1 .34 .671 .584 1.590 .57714.71513.89614.855
? 2.61 3.30 .935 .957 .970 .871 1 .668 1 .666 1.800
6 2.62 3.38 1.003 1.001 .963 .983 .969 .963 1 .047
7 2.70 3.22 . OOQ .996 .971 .981 1.014 1 .007 1 .080
7 3.17 2.89 .948 .959 .936 .9 13 1 . ^28 1 . 540 1.568
7 3.21 7.87 .956 .963 .047 .925 1.443 1.476 1.533
7 3.22 2.86 .979 .98 4 .947 .053 1 .707 1.217 1 . 247
7 3.44 7.74 .970 .972 • °91 .946 1.789 1 .783 1 .360
7 3.80 7.67 .976 .977 1.077 .949 1.731 1,376 1.333
7 3.61 7.66 .938 .948 .923 .899 1.671 1 .684 1.701
7 4.7 0 7.43 .034 . 944 .0 38 .395 1.678 1.643 1,70*7

7 8 . 39 7.11 .877 .804 .056 .837 7.401 7.407 7.436
7 11.71 1.51 .784 .803 .888 .736 3.927 7.976 3.900
8 2 . 88 3.35 1.006 1.00 3 .981 .994 .946 .947 ,90 6

8 3 . 08 7.97 .997 .991 .960 .9 71 1.076 1 .079 1—

»

. 1—

'

l—

4

9 2.99 3.01 .995 .994 .968 .977 1.046 1 .060 1.10 6
1 o 2.76 3.17 1.007 .999 1.022 .988 .986 .985 I.O 30
10 4.49 2.34 .957 .955 .990 .932 1.480 1.503 1.573
1 0 4.84 7.32 .959 .961 1 .019 .9 39 1 .409 1 .432 1.460
10 4.99 7.70 .947 . 943 1.138 .9 18 1 .592 1.570 1.606
10 5.41 7.11 .918 .929 .957 ,890 1 . 869 1 ,8Q5 1 .897
1" 6.08 1 .86 .897 .908 .987 .856 7.101 7 . 306 7.276
1 o 8.88 1 .68 .893 .899 1 .043 .863 2.185 7.271 2.758
1 1 3.89 7.67 .08 0 .981 .978 .967 1.19 7 1.712 1.210
11 6.17 1 .97 .90 7 .918 .960 .879 2 .000 7.971 2.017
11 6.47 1 .93 .901 .913 .962 .872 2.077 7.110 2.006
11 7 . 44 1.81 .974 .937 .923 .885 1.792 1.787 1.880
11 8.15 1.74 .923 .928 .993 .884 1.817 1 .780 1 .947
11 8 . 54 1.70 .904 .909 1.071 .877 2.036 2.062 2.111
1 1 19.45 1.31 • 66 0 .679 1.325 .616 7.029 6.944 7.204
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Table 4. 5* 3b
i

The standardized expectation and coefficient of

variation of S, M and R for samples from

the discrete distributions.

n = 5

ID k
*

n E ( S ) e (m ) E (M/5) E (R ) c(s) c (m ) C (R )

1 3 3.17 4.80 .930 .915 1.291 .884 1.930 1.949 2.701
7 3 3.30 4.77 .078 .889 1.727 .864 7.386 2.757 2.768

3 4 . 00 3.86 .001 .839 1.370 .838 7.909 7.935 7.477
4 3 4.3 0 7.30 .873 .831 1.406 .813 3.679 3.641 4.001
5 3 3.00 3.77 .840 .803 1.435 .788 4.776 4.168 4.771
6 3 3 . 30 7.00 .876 .781 1.467 .765 6.007 4.817 5.438
7 3 6 • 00 7.8 7 .803 .759 1.487 .74 3 5.719 5 .464 6.151
8 4 7.44 6.13 1.006 1.014 .934 .042 • 89 7 .976 1.167
Q 4 2.67 3.61 1.003 1 .046 .900 .865 .960 .914 1.467

10 4 2.71 3.37 1.001 1.017 .923 .913 .989 .976 1 .409
1 1 4 2.73 3.44 1.000 1 .020 .920 .906 .997 .974 1 .448
1 ? 4 2.76 3.47 1.001 1.034 .017

/
.880 .981 .946 1 -40 6

13 4 2.77 3.41 1.000 1.02 7 .018 .898 1.000 .969 1.476
14 4 2.77 3.41 1.000 1.030 .914 .885 .907 * 954 1 .406
13 4 7.78 3.30 .000 1.026 .016 .891 1.000 .962 1.401
16 6 1.70 0.77 1.076 1.055 .992 .063 .565 .683 .57 1

1 7 3 2 • 33 3 .07 1 .OCA 1.007 1.079 .064 .807 .061 1 .
Oao

1 8 3 2.79 3.37 1.000 # 9 9 7 1.137 .041 1 .OOR 1 .076 1 . 277
1 o 6 7 .83 3.76 .007 .088 1.121 .0 37 1.057 1 .794 1 . 786
70 6 7.04 3.10 .090 .974 1.170 .027 1.179 1 #747 1 .486
21 3 3 . 37 4.7 1 .967 .040 1.232 .on 1 .597 1.617 1.951
7 2 3 4.13 7.74 .049 .017 1.235 .000 1 .047 1 *076 7 .370
78 3 4 . 39 3.44 .071 .887 1.377 .867 2.670 2.487 2.964
74 3 4.78 3.74 .920 .887 1.317 .860 7.658 2.407 2.983
26 3 6.74 7.60 .837 .810 1.412 .8 05 4.240 4.078 4.708
26 3 8.04 7.37 .800 .767 1.460 .761 5 • 5 ? o 5.763 6.966
77 6 1 .73 0.1 7 1.073 1.064 .058 .0 77 .578 .680 .527
78 6 7 . 3 Q 3.78 1.007 .906 .083 .080 .047 1 .004 1 .048
?o 6 2 . 74 3.46 1 .007 1 . 00 ^ .064 .067 .067 .982 1.141
80 6 7 . 86 3.74 1.001 1.001 .948 .063 .087 1 .01

1

1.741
81 6 3 .33 4.33 .097 . 995 .037 .926 1.144 1.095 1 .556
87 6 3.77 4.48 . 090 .985 .061 .047 1.179 1.178 1.618
78 6 7.67 4.13 .988 1.006 .924 .891 1.211 1.090 1 .774
34 6 3.82 4.01 .983 .983 941 .918 1.307 1.194 1.785



ID

7 8

7 A

77
3 8

3 9

40
4 ]

4 ?

40
44
4 5

44
47
48
49
80

51
57
80

84
88

84
57
58
50
40
41

6 7

40
64
65
66
67
68
60
7n

71
77
70
74

79

Table 4, 5* 3b (Continued)

k
*

n E(S)

n = 5

e (m ) e (m/s ) E(R) C(s) c (m ) C(R)

6 4.00 0.70 .979 .997 . 9?8 .885 1.774 1.179 1 . 98 ?

7 1 .75 o .00 1.07 5 1.054 .980 .978 . 58 ? .690 .5 74
7 1.78 8.81 1.075 1.051 .986 .979 .590 .699 . 558
7 2.17 6.90 1.015 1.02? 1 .034 .990 .750 .835 .756
7 2 . 0 ? 6.40 1.017 1.018 1.031 .Q 89 .800 .867 . 8^5
7 2.40 6.00 1 .009 1.015 1.022 .981 .8 48 .894 .929
7 2.55 5.88 1.007 1.008 1 .079 .°85 .880 .933 . 967
7 2 . 57 5.80 1.008 1.014 1 .033 .974 .861 .910 .987
7 2.67 5.61 1.005 1.006 1.049 .075 .914 .951 1 .076
7 2 . 88 5.20 .999 .991 1 . 147 .9 30 1.071 1 .088 1 .289
7 2.01 8.15 1.000 .996 1.065 .970 1 .007 1 .024 1 . 163
7 0.01 4.98 .997 . 99 ? 1 .097 .956 1.046 1 .067 1 . 266
7 0 . 08 4.88 .996 .990 1.109 .950 1.06 5 1 . 09 ? 1 .714
7 0.10 4.77 .089 .974 1 .175 .926 1.185 1 .747 1 .493
7 o.?l 4.69 .994 .986 1.170 .947 1.110 1.127 1 .375
7 0 ,00 4.80 .987 . 97 ? 1.104 .969 1.227 1 .724 1 . 40 4
T
1 0 . oo 4.50 . 99 ? .984 1 . 13 ? .935 1.170 1.15 3 1 .417
7 0.44 4.40 .98 4 .966 1.10 8 .968 1.287 1.277 1 ,468
7 0 . 50 4.0 0 • 9 8 4 .968 1.122 .960 1.281 1.771 1 . 500
7 0 , 56 4.77 .976 .954 1.204 .917 1 .477 1 .453 1 .760
7 0.78 4.05 .970 . 944 1 . 17 ? .954 1 .540 1.551 1 .763
7 0.87 0.97 .966 ,938 1.175 .952 1.617 1.590 1 .876
7 0.04 0.91 . 97 ? .949 1 .206 .914 1 . 504 1.517 1 .856
7 4.78 0.65 . 968 .944 1 .708 . 91 ? 1 .580 1 .578 1 .945
7 4.57 0.46 .964 .959 1 .709 .910 1.656 1 .656 2 .0 28
7 4 . 60 0.47 .950 .919 1.716 .926 1 . ° 7 0 1 .869 7 • 2?5
7 4.65 0.41 . 96 ? .986 1.214 .908 1.701 1.676 2 .077
7 4.00 0.77 .958 .931 1.715 .90 5 1 . 7?6 1.751 7 .154
7 5.18 0.14 .950 .975 1.220 . 90 ? 1 . 87 ? 1.817 2 . 269
7 6.67 7 . 6 ? .886 .845 1.735 • 8 55 3.348 3.194 7 . 770
8 2 . 58 5.8 1 1 .006 1.007 .983 .991 .894 . 94 ? . 95 ?

0 2.71 5.57 1.00 5 1.007 1 .025 .985 .919 .945 .99 7

10 1.78 8.81 1.975 1.058 . 96 ^ .986 .589 .695 . 5?1
10 2 .87 8.7 7 1.000 .995 .988 .988 1.005 1.923 1 .077
1 o 0 . 50 4.08 .98 8 .977 .990 .976 1.711 1.18 2 1 .34 8

10 4. OQ 0.79 . 97 ? .95 7 1.006 .963 1.481 1.411 1 • 66 4

n 2 • 00 7.54 1.019 1.075 .991 .996 .683 .770 . 647
n 7 . 80 5.18 .999 .995 1 .039 .991 1 .

0

1 0 1 .026 1 .065
n. 2.00 8.07 .999 .997 1.055 .973 1 . 01 ? 1 . 0?1 1 .150
li 3.02 4.97 .999 .996 1.032 .986 1.025 1.027 1 . 101



Table k. 5. Jb (Continued)

ID k ?2
*

n E(s)

n =

e (m )

5

e (m/&) E (R ) c(s) c (m ) C (R )

7 6 1 1 8.08 4.88 .007 . 098 1 .086 .086 1.046 1.048 1 . 1

76 11 8. ?6 4.6? .99? .086 1.064 .083 1.121 1.112 1 .213
77 1

1

8.8 1 4.66 .000 .079 1 .071 .080 1.167 1.166 1 .277
7 8 1 1 8.80 4.46 . 0 R 8 .076 1.108 .060 1 . ? o ? 1 .208 1 . 386
70 11 6.21 ? • 7 6 .808 .86 R 1 . ??7 .870 3.063 ?.04? 3 .413
80 1 1 9.40 ?. 1 ? .814 .771 1.441 .776 6.388 5.111 6 .786
8 1 1

1

10.07 ? . 04 • 8 ° 6 .860 1.286 .868 3 . 1 ? 9 2.843 3 .68 8

8 ? 11 18.?8 1 .78 . R ?0 .776 1.866 .786 6.183 4 • 8 ? 8 5 . 678
88 11 16.87 1.61 .701 .748 1.430 .747 6.141 5.757 6 .361
84 11 2 0 . 1 8 1.61 .760 .708 1.477 .704 7.607 7.2 34 8 .08 0

88 11 20.7? 1.20 .688 .857 1.616 .40712.45312.33112 .631
86 8 2.61 6.74 .987 .094 .066 .867 1.317 1.318 1 .730
87 6 ? • 6 ? 6.06 1 .OOP 1.009 .07? .078 .87? • 0? 8 .98 3

88 7 ? . 70 6.65 1 . DO * 1.00? .076 .080 .050 .088 1

80 7 8.17 4.76 .076 .009 .068 .903 1 .4?7 1 .471 1 .488
00 7 8 • ? 1 4.60 .080 .081 .060 .035 1.360 1 .387 1 .40 8

0 1 7 8 . ?? 4.68 .000 1 .00? .064 .937 1.17? 1.17 3 1 .220
0? 7 8.44 4.40 .0 R 4 .978 .097 .963 1 .274 1 .703 1 . 30 3

08 7 8 . 60 4. ?4 .08 8 .986 1.086 .94 8 1.206 1.103 1 . 370
04 7 8.61 4.?? .066 .98? .066 .886 1.618 1 .600 1 .64 4
06 7 4. ?0 8.70 .966 .968 .067 .001 1.64? 1 .637 1 .061
06 7 6 .89 8.04 .0?? • 0? 7 .09? .84? 2 • 5 ? 4 2.412 ? • 671
07 7 n .71 1.80 .846 • 84 6 .036 .767 4.463 3.964 4 .720
08 8 ? . 66 6.88 1.007 1.008 .086 .0 00 .886 .029 .036
00 8 8 .06 4.0? .008 1.000 .078 .067 1.0?6 1 .061 1 .144

1 OO 9 7.00 6.0? l.ooo 1.00? .076 .07? 1 .004 1.025 1 .
nor

;

101 10 7.76 6.4? 1 .004 1.004 1 • 0 ? 8 .086 .030 .06? 1 .01 ?

10? 10 4.40 8.6 1 .067 .960 .096 .043 1 . 603 1.654 1 . 644
1 08 10 4.64 8.4 8 .07? .068 1 .0?6 .04 4 1.611 1 .46? 1 .661
104 10 4.09 8.78 .96? .989 1 .138 .045 1.688 1.501 1 .908
1 06 10 6.41 8.04 .944 .947 .076 .880 ? • 04

?

1.03] ? .084
106 lo 6.08 7.64 • 9 ? 7 .031 1.016 .857 2.407 2.200 2 .536
1 07 lo '8.88 2.19 .910 .90? 1.046 .882 2.583 2.338 2 .776
108 11 8.69 4.24 .087 .988 .984 .065 1 . 2 3 3 1.221 1 .26?
1 no 11 6. 17 2.76 .086 .086 .978 .881 2.236 2.000 2 .276
110 1

1

6.47 ? . 6 8 .080 .0?0 .080 .876 2.341 2.176 ? . 3 o ?

1 1 1 1

1

7.44 ? . 44 .96^ .969 .040 .886 1.863 1.710 ? . 11 ?

11? 11 8.16 7.81 .961 .986 1.00? .003 1 .006 1 .788 ? . 2 ? 7

1 1 8 1

1

8.64 2 • ? 4 . 9?8 .910 1.073 .807 2.388 2.181 2 .688
114 11 19.46 1.68 .789 .697 1.360 .696 8.156 7.654 8 .480
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Table k.^. ^c

The standardized expectation and coefficient. .
. , etc.

ID k ^2
*
n E(S)

n = 10

E(M) E(M/5) E(R) c(s) c(m) C(R)

1 8 3 • ] 7 9.5 * 9 8 9 . 88 ] 1.247 .948 1.405 2.261 1 .477
8 4 £•44 13.0 1 .

0

0 6 1.078 .956 . 9 ? 9 .787 .850 1 .071
1 n 4 7.71 U.7 1 .007 1 .049 .0 53 .906 .88 5 .823 1 . 724
1 7 5 7 . 87 17.4 1 .005 1 .003 1.077 .949 .823 .975 ,95 5

?o 5 7.94 10 .? .999 .98 3 1.154 .970 1.019 1.415 1 . 240
77 6 1 . 77 77.0 1.015 1 . 07 ? .9 74 .883 .4 59 . 6?9 . 740
7 8 6 7.59 17.0 1 .000 .99 3 .980 .976 . 38 ? 1 . 03 ? . 765
70 6 7.74 11.7 1,008 1.014 .964 .956 .904 .944 1 . 106
78 7 1 . 75 71.6 1 .015 1.071 .997 .8 9 ? • 46 6 .632 . 249
^ 7 7 1 .78 ? 1.0 1.014 1.067 1 .oni .897 .480 .647 . 260
38 7 7.17 15.7 1 .009 1 .024 1.036 .950 .670 . 844 .477
3 9 7 7.7? 14.0 1 • 0 0 7 1.071 1.035 .961 .730 .867 .635
40 7 2.49 12.7 1.006 1.023 1.030 .962 .794 .871 .855
41 7 2 .55 12.3 1 .004 1.010 1 . 04 ? .972 .835 .935 .877
4 7 7 2.37 17.1 1.005 1.020 1 .040 .956 .824 .886 . 96 C

47 7 2.67 11.6 1.008 1 . 00 ° 1.052 .964 . 87 ? .949 .989
44 7 2.88 10.5 1.007 .978 1.127 .905 . 9?1 1 .700 1 .191
48 7 7.91 10.4 1.001 .996 1 .065 . 97 ? .980 1 .078 1 .164
48 7 3.01 10.

0

1.000 .987 1.091 .9 55 l.on 1 . 1 1 0 1 .716
4*7 7 7 . 08 9.7 ,QQQ . 98 ? 1 . 1 01 .949 1.033 1 .1 5 ^

1 ,337
48 7 7.19 9.7 . 9 Q 8 .955 1.150 .924 1.066 1 .406 1 . 745
49 7 7.?1 9.7 .994 .99 7 .970 .0 30 1 .720 1 . 4 7 9 1 . 761
80 7 7 .37 8 .

8

.994 .961 1 . 09 ? 1.001 1 . 21 ? 1 .795 1 .3 76
81 7 3.37 8.8 .997 .973 1.118 .928 1 .097 1.245 1 . 549
87 7 7 . 44 8.5 .997 .954 1.094 1.006 1.278 1 .7 54 1 . 379
53 7 3 . 50 8.3 .997 .956 1.108 .993 1.269 1.360 1 . .472
54 7 3.56 8 .? . 993 .930 1.174 .940 1.751 1.661 1 . 547
55 7 7.78 7.7 .987 .971 1 . 1 44 1.070 1.481 1 . 69 ^

1 .51 3

56 7 3.87 7.5 .986 .914 1.14 5 1.024 1 . 548 1 .757 1 . 56 ?

37 7 3.94 7.3 .990 .975 1 .1 76 • 94 ? 1.777 1 .778 1 . 741
38 7 4.78 6.7 .987 .920 1.177 .9 45 1.485 1.791 1 .913
50 7 4.57 6.3 .984 .°1 5 1.178 .947 1.588 1.851 7 .96 6
60 7 4.60 6.7 .977 .897 1.180 1.015 1.873 2.079 ? ,08 6

64 7 6.67 4.4 • °46 .811 1 .280 1.000 3.160 3.516 7 .49 4

86 7 2.61 11.9 1 . 00 ? 1 .008 .969 . 8 54 .9 34 1.710 1 .787
87 6 2 . 5 ? 17.5 1.005 1.015 .977 .963 .818 .918 . 849
88 7 2 . 70 11.4 1.007 1 .004 .978 .9 74 .903 1.000 . 899
8 ° 7 3.17 9.4 . 998 1.015 .990 .8 85 1.778 1.418 1 .186
90 7 3.71 9.2 . 908 .977 1.110 .941 1.070 1.203 1 .48
oi 7 7.72 9.7 .996 1.013 .975 . 899 1.158 1.171 1 .18 1

0 7 7 3.44 8.5 • 997 .975 . 994 .964 1 .271 1 .394 1 • 700
07 7 3 • *9 8 .

1

,008 .986 1.036 .947 1 .749 1 . 77 ? 1 . 507
04 . 7 3.61 8.1 .987 1 .004 .9 77 .858 1 . 504 1.554 1 .791
93 7 4.70 6.8 .983 .976 . 96 Q .927 1 .640 1 .478 ? . 1.90

99 8 3.05 9.8 .999 1.004 .981 .958 1.029 1.057 1 .156
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Discussion

In this section we use E(T ) as shorthand notation for the
n

’’normalized” expectation E(T
n / cr) / [E(T / cr) from normal

distribution] and C(T ) for the normalized squared coefficient
n

of variation cv2 (^n ) / (CV^(T
n ) from normal distribution], where

T represents S, M, or R as appropriate. Thus E (^
r / d^cr) is

denoted by E (En ) •

A number of attempts were made in trying to find properties

of the parent distributions that could be used to summarize the

variation in the expectation and coefficient of variation of S,

M, and R. However, of the parent properties considered only k

and £ seem to have any merit. Other properties considered

were : 5/cr, / o
3

, vV .

For any given value of po it appears that the normalized

expectation of the three estimators is considerably less for small

values of k (say less than five or six) than it is for larger

values of k even for the small sample sizes considered here.

The normalized coefficient of variation, on the other hand, is

considerably larger for small values of k. These very discrete

distributions (with k less than five or six) would seem to be of

little practical importance and since the properties of S, M,

and R are substantially different for such distributions and

would require separate treatment, only distributions with k > 7

will be considered further.
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An interesting approach to describing the variation in the

properties of S is due to Le Roux (1931)* This method, which has

been mentioned briefly in Section 4.3 above, is based on the use

of a modified "degrees of freedom." The method suggests that the

distribution of S based on a sample size n from a distribution

with standardized fourth moment is approximately the same as

*
that of an S from a sample of size n from a normal distribution,

where v = n-1.

v v x + i

and
n

*
s= V + 1

This approach gives CV^(s^) exactly for all distributions and

2
Le Roux has shown that the third and fourth moments of S also

agree quite well for samples from a subset of the Pearson family.

Table 4.5.4 gives values of E(S^) and C(S ) based on this

modified degrees of freedom approach. A comparison between these

approximate values and the results for E(S ) and C (SR ) given

in Table 4.5.3 shows good agreement for k > 7 • The agreement

seems to improve with increasing sample size. For n=3 and small

values of ^ (say 2 to 4) the values of E(S ) for discrete

distributions tend to be slightly less than would be indicated by

the approximation. Consequently, for the same values of ,

C(S^) tends to be slightly larger than the approximation.
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It is convenient to compare all of the results obtained here

on S, M, and R with a single approximation. The modified degrees

of freedom approximation wets chosen as a standard since it gave very

good results for S and consequently might give reasonably good

results for M and R because of their high correlation with S in

small samples.

For n=3 the three agree quite well with the approximation.

The least satisfactory agreement is for E(R) where the discrete

results are about four percent lower on the average than the

approximation. The results on E(S) are about two percent lower

on the average and those of E(M) are about one percent lower.

Most of the results on the coefficient of variation are slightly

larger than the approximation for all three estimators.

For n=5 the E(s) and E(M) are in good agreement with

the approximation except that the discrete results are on the

average about one percent lower than the approximation. The E(R)

is again about four percent less than the approximation on the

average. However, for k=7 the values of E(M) and E(R) seem

to be less in agreement with the approximation than do those for

the larger values of k. It appears that smaller values of k tend

to give smaller values of E(M) and E(R) for any given value

of .
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For n = 10 results are only available for k ^ 8 and there

is essentially no agreement between E(M), E(r) and the approxi-

mation while the agreement between E(s) and the approximation

seems to have improved. There is still reasonably good agreement

between C(m), C(R) and the approximation, but the agreement is

not as good as for n = 3 and 5. All but three of the values for

C(m) are larger than the approximation and all but five of the

values for C(r) are larger than the approximation. The values

for C(m) seem to average about ten percent larger than the

approximation while the values for C(r) are smaller than the

approximation for low values of & and larger than the approxi-

mation for high values of p .

It seems that for samples of size 10 or more the individual

natures of S, M and R begin to assert themselves. The modified

degrees of freedom approximation, derived by equating variances

2
of S ,

continues to behave well in providing approximations for

the lower moments of S, but begins to fail for M and R.

The E(m/$) does not seem to be any more stable than

E(m/ct) for the distributions considered here. The E(m/§) tends

to be larger than its normal theory value and increases with (30 ,

while E(m/q) is more often below its normal theory value and

decreases with (3



Johnson (1958) has given values for E(M) for samples from

a Pearson Type III distribution with parameter Ot. For n = 3 and

5> his values are about the same as the largest discrete results

for the corresponding values of (3 , The value for a = 1 ,

corresponding to the exponential distribution with = 9 , is

about ten percent larger than the approximation for n = 3 ; about

five percent larger for n = 5 1 and about one percent smaller for

n = 10 . In all cases the difference between the values for the

type III distribution and the approximation decreases with

increasing C£ (decreasing
(3^ ) until complete agreement is attained

for the limiting normal distribution.

In the same paper in which Le Roux suggested the modified

2
degrees of freedom approximation to the distribution of S ,

he

2
also reported some results on S obtained from sampling studies.

These results have been summarized in Section b. 3. Very good

agreement exists between his results for E(Sj-) and E(S^
q ) and

the approximation but for the larger value of p his results for

C(S
tr ) and C(S, ~) are considerably smaller than those given by
3 -LU

the approximation.

The bounds given in Section t. 3 for E(s) appear to be quite

conservative with respect to most of the distributions used here

except for the distributions with very small values of k.



In Chapter 7 we make use of the information gained here on

the behavior of the coefficient of variation of the estimators;

in particular we use the modified degrees of freedom approach to

compute the approximate effect of non-normality on four Cochran-

type tests. We note here that for all three estimators the rate

of change of the coefficients of variation with f30 is roughly

of the same order of magnitude as indicated by the Le Roux

modified degrees of freedom approximation to the coefficient of

variation of S. However, there is still considerable residual

scatter for all three estimators and the quality of the approxi-

mation varies from estimator to estimator.

The approximation is best for S and seems to improve with

n, while for M the approximation is almost as good but tends to

underestimate C(m) and not increase quite as rapidly with (30

as it should.

For R the rate of change of C(R) with is significantly

underestimated by the approximation for these discrete distribu-

tions. Fortunately other results on R are available and

comparisons made in the following section seem to indicate that R

may be better behaved for other classes of distributions than it

is for these discrete distributions.

For these discrete distributions there is considerably better

agreement among the actual coefficients of variation of all three

estimators, than there is with the approximation. Thus it is not
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possible to compare with any certitude a value for C(r) from

a particular distribution with the approximate value of C(S)

used here. There is some evidence that as the sample size and/or

k increase the C(s) tends toward better agreement with the

approximation.
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4.6 SUMMARY OF RESULTS ON R

In this section we compare our results on the expectation and

coefficient of variation of range in small samples from non-normal

populations with those available in the literature. This section

may be viewed as an updating for n = 5j 5 and 10 of Cox's (195M

summary of these same properties. Throughout this section we use

the notation E to denote E(R /d a) and C to denote
n n n n

0V(R )/rcv(R ) from normal distribution!. Thus, for the normal
n n

distribution E and C would be 1. 0.
n n

The comparisons made here are based on results that may be

found in the following places:

1. Cox (1954)

2. Burr (1966)

5. Tukey random variables - Table 4.4.1 and 4.4.2

4. Miscellaneous exact results - Tables 4.5*5 and 4.5*6

5* Discrete distributions - Table 4. 5* 5

6. Gephart sampling study - Table 4.5*5

From Cox's (1954) results we use only his "average" values

for E and C since there are no published tables for his
n n

individual points. Cox obtained his "average" by plotting a

number of results on E and C as a function of . He
n n 2

drew smooth curves through the points and read off "average" values
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as a function of . This was done for n = 2 ( 1 )

5

. The values

used here for were obtained by averaging his readings for

E0 and E^ since the two should theoretically agree.

We use the terminology TRV-small and TRV-large to distinguish

the Tukey random variable results for the smaller and larger

values of } , respectively. For more details see Section 4 . 4 .

We consider only distributions having values in the

interval T2^9]
•

Comparisons on the Expectation of R

For the expected value of R there is good agreement between

the Burr and TRV- small results for n = while the miscellaneous

results are very slightly lower on the average. Cox’s ’’average"

is roughly 1 or 2 units lower than the Burr and TRV- small results.

The overall scatter of points from these four sources is about

2 units for any given value of p^ . For convenience these four

sources will sometimes be referred to as "the four.
"

For n = 5 the Burr and miscellaneous results agree fairly

well. The TRV-small results are about 1 unit higher than the

above two for larger values of p^
while Cox’s "average" is about

1 or 2 units lower for very small values of p^
. The overall

scatter of these points is again about 2 units for any given value

of P
2

.
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In almost all cases the results for discrete distributions

lie considerably below M
the four,

M
expecially for small values of

k. For n = 5 and 5 there is virtually no overlap between the

discrete results and the "Burr, miscellaneous, TRV-small ,T

results.

Some discrete results are larger than Cox’s average for small

values of p (less than about 3) but there is no overlap for

larger . For n = 10 about one-third of the discrete results

for distributions with k = 7 or 8 overlap the "Burr, miscel-

laneous, TRV-small ,: results. Overall the Cox, Burr, miscellaneous

and TRV- small results on are slightly higher than those of

Cox (195^). This may be because of the bimodality of many of the

distributions used by Cox. We have noted here and in Section k. 5

that for a given value of p0 the expectation of the range tends

to decrease with increasing discreteness. Heuristically, it

seems reasonable that a bimodal distribution should exhibit some

of the tendencies of that extremely bimodal distribution whose

probability is all concentrated at two points, that is, a

discrete distribution with k = 2 .
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Comparisons on the Coefficient of Variation of R

For the coefficient of variation (denoted by C ) there are
n

very few results available for miscellaneous distributions. In

most cases where results do exist they agree quite well with the

TRV-small results. Hence, they will not be explicitly mentioned

in the following discussion, but most of the commentary applicable

to TRV-small results will also be applicable to the few miscel-

laneous distributions for which results are available.

It is well known that the expectation of the range is in

general quite stable while the coefficient of variation of the

range varies considerably from distribution to distribution.

Consequently "good" agreement here will mean that the results on

C differ by about 3 units or less implying that the squared

coefficients of variation agree to within roughly 5 to 10 units,

whereas for the expectation good agreement meant that the results

on E differed by less than 1 unit,
n

For n = 3 the Burr results are about 2 to 5 units lower

than the TRV-small results while Cox’s average agrees with the

TRV-small results to within about 2 units for p less than about
cL

4.5- For larger values of p Cox's average gradually becomes

larger than the TRV-small results until, at p - there is

about a 10 unit discrepancy.



95

For n = 5 the Burr results agree quite nicely with the

TRV-small results for £3 less than about 4, while for larger

f3
the Burr values average about 5 units less than the TRV-small

values. Cox's average is larger than the above two for (3
2

greater than about 3 and. becomes about 10 units larger than the

TRV-small values for f30 greater than 5*

For n = 10 there is good agreement between the Burr and

TRV-small and large results for less than about Aj-. For

larger values of f3 the Burr results become smaller then the

TRV-small results and the TRV-large results become larger, the

difference being about 10 and 20 units respectively for £ = 6.

There is again considerable scatter in the Gephart empirical

results but on the average they tend to agree with the Cox, TRV-

small and Burr results.

The discrete results are almost universally larger than the

Cox, TRV-small and Burr results especially for the smaller values

of k. For the larger values of k the discrete results approach

the above three but the values for k = 11 still average about

15 or 20 units larger for large values of
(3^

. For smaller

values of f3 the agreement for k = 11 is within about 5 units.
2

For the larger values of f3 the Cox, TRV-small, Burr and

miscellaneous results have C^ values that are slightly lower

overall than Cox's "average" values, suggesting that for these

distributions the coefficient of variation of R is slightly more



stable than indicated by Cox's average. For the TRV- large and

discrete distributions the coefficient of variation of R is

considerably less stable than Cox's average.
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4.7 MODIFIED SAMPLE SIZE APPROXIMATIONS FOR R

In Section A. 5 we have described. Le Roux's method of approxi-

mating properties of an estimator for non-normal samples by its

properties in normal samples of a modified size. We have also

given some evidence that this method seems to work fairly well for

the expectation and coefficient of variation of S. In this

section we suggest a similar approach for R and give values for

the modified sample size as a function of f3 and n for several

classes of distributions.

Le Roux's expression for the modified sample size n* is

simply

n - 1 = (n-l) fl + i^ (p - 3)
-1

where n is the sample size and is the standardized fourth

moment of the parent distribution. This formula is such that

the CV(S ) is given exactly. Here we continue to use the

coefficient of variation as the basis for determining the modified

sample size.

Table A. 7» 1 gives values for the modified sample size n*

determined so that CV(R) is given exactly. Three classes of

distributions are included: TRV- small, TRY- large, and Cox'x

"average. " Thus, for example, a sample of size 5 from a TRV-small

distribution with = k.2 has the same CV(R) as a sample of

size k from the normal distribution. Other properties of R for
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samples of size 5 from a TRV-small distribution with (3 = 7.2

should also be at least roughly the same as the corresponding

properties of R for samples of size 7 from the normal distribution.

Table 7.7*2 gives similar results presented in a slightly

different manner. Here values of p are given corresponding to

combinations of n and n* . This table facilitates interpretation

of the results of Section 7*2.

These tables essentially echo the discussion given earlier

in this section and emphasize the finding that the behavior of

the coefficient of variation of R, and consequently the modified

sample size, depends considerably on the class of non-normal

distributions considered. The CV(R) may be either more or less

stable than CV(S
t
”).

The three approximations for the distribution of R, corre-

sponding to the TRV-small and TRV-large families and Cox’s

"average," will be used in Section 7*2 to describe the dependence

of the robustness of the Bliss, Cochran, Tukey (1956) test on the

class of non-normal distributions considered.
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5. GENERAL PROPERTIES OF COCHRAN-TYPE TESTS

In this chapter we consider some general properties of tests

of the null hypothesis

of the form

Y = max V. /
l^i^k

1

where the V\ are independent estimates of dispersion. The tests

are such that H
Q

is rejected if Y is significantly large.

In the first section we give a brief outline of the historical

development of Cochran-type tests and in the second section we

introduce some notation and give some general properties of the

tests. In the third section we describe ways for obtaining

approximations to the distributions of the tests.
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5.1 HISTORICAL DEVELOPMENT

The following brief outline of the development of Cochran-

type tests is not intended to be exhaustive, but is included in

order to summarize the major stages in their development. Other

works of interest will be cited at other points as the need arises,

k
Fisher (1929) gave the distribution of Y = max V. / Z V,

J ' j=i J

where the V. are independently distributed as o^Xo / 2 where
0

2
Xv

denotes a random variable distributed as chi-square with V

degrees of freedom. He proposed the test as a means for testing

whether the largest amplitude in a harmonic analysis was signifi-

cantly large. He included exact and approximate percent points

for OL = . 05 and k = 5(5)50, and later (1950) gave exact

results for a = .05, .01 and k = 5(1)50.

Cochran (l94l) extended Fisher’s results to the more general

o2/
case where the V. are independently distributed as x^ j V for

general V and gave approximate 5 percent points for

V = 1(1)6(2)10 and k = 3(l)l0. He also noted that the method

"is occasionally helpful in testing one of a group of estimates of

variance which appears to be anomalously large. " This latter

statement appears to be the reason that the test bears his name

rather than Fisher’s.



103

Eisenhart and Solomon (1947) used the same methods as

Fisher and Cochran to calculate approximate 1 and 5 percent

points for v = l(l)l0,l6,36,144,® and

k = 2(1)10,12,15,20,24,30,40,60,120,® .

Bliss, Cochran and Tukey (1956) introduced a test in which

the V. are independently distributed, each as the range of a
<3

sample of size n from a normal population. They gave approximate

5 percent points for n = 2(l)l0 and k = 2(l)l0,l2,15 ,20,50.

Darling (1952) gave, in integral, form, the characteristic

function of l/Y when the V have an arbitrary distribution. He
J

also obtained the exact distribution of l/Y when the V are
3

distributed uniformly on (0,a), and when the V\. are distributed

as chi-square with even degrees of freedom.

Truax (1953) showed that when the V. are distributed as
3

2 2
cr"X^ / v the test based on Y is optimal in a decision

theoretic sense. That is, under mild restrictions, this test

maximizes the probability of the correct decision when the k+1

possible decisions are

2 2
B
0

: (J

i
* cr all i, j

2 2 2
D2- = maxCcC , ... ,

cr
k )

and for some i.



Doornbos and Prins (1956) have given expressions for bounds

on the power of Cochran's test and have also given a way of

2
generalizing the test to include S • s based on different degrees

of freedom.

Siotani (1955) has compared, two approximations to the

percentage points of Cochran's test and has given some properties

of an analagous test for the two largest variances.



5.2 MATHEMATICAL STRUCTURE OF THE TESTS

A Cochran-type test (CTT) has been defined to be a test
k

based on the statistic Y = max V / Z V, where the V are
j=l 0 J

independent estimates of dispersion and the null hypothesis,

H
o

;

is rejected when Y is significantly large.

We assume that the V. are always positive and that they may

be considered to be estimates of some power of o\ . That is,

if a linear transformation of the form

X = a + bX

is applied to the underlying observations, then the resulting

V*'s will be related to the V. by
J 0

where p does not depend on a or b. We also assume that under the

null hypothesis the V. are identically distributed and that under

an alternative hypothesis the distributions are the same except

for a scale factor which is a power of <r. Under these assumptions

Cochran-type tests are invariant when the same linear transfor-

mation is applied to the observations from each population.

Hence, when considering the properties of Cochran-type tests we

may assume that under the null hypothesis the scale parameters
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cr are all unity and that under alternatives hypothesis one or
J

more of the a are different from unity.
J

The distribution of Y is usually intractable and it is

usually most convenient to approximate it through the distribution

of one of its components defined by

1-V Iv
0=1

It is desirable to have another quantity, say W^, which is a

raonotonic transformation of Y^ but with independent numerator and

denominator. Such a quantity is

W. = V. / E*V
41 1 lj

where
n

;*V = Y V - V.
i .1 L .1 i0 L* j

0=1

Then

Y. = (1 + l/W.)
1 1

~1

is a monotonic increasing transformation and a test on Y is

equivalent to a test on W where W = max .

It is convenient to introduce the notation

U. = V. / B.
i l ' l

where the are appropriate divisors that make the IT identically

distributed. For the four tests considered in this study, B^ is
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2 2
proportioned to cr^ for the test based on S

,
and is proportional

to o\ for the other three tests.

Let the cumulative distribution function of the be given

by F(u) for u in the interval [0,«>). Then the joint probability

element of the is

k
dF(u_ ,u . . u ) = IT dF(u ) 0 < u. < ® for all j.

i k
j

J 0

The probability element of any one of the may be expressed in

integral form as

CO ,00

dG(w. ) = f ... f (£*u.)dF(u.£*u ) dF(u ) 0 < w < ® ,
1 J

0
1 ^ 1 1 J 1 J -i

(k-l)fold

where L
^

has been defined above and is analogously defined

to be

* k

il x. = n x./x. .

1 J j=i J 1

When the are distributed as chi-square, the distribution of

W^ reduces to a scaled F-distribution, but in general the dis-

tribution of W^ does not have a simple form and the distribution

of W = max(W^) is usually even more complex. Ways to obtain

approximate percentage points of the distribution of W from

those of W
±
will be discussed in Section 5*3*

The probability element of may be written as

J
0

•
•

•

J

0
0 * yi * 1 •

(k-l)fold
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2
This bee©me§ a §eal§4 beta when the are distributed as x .

When the VI
^

are uniformiy distributed on (0,9) Darling (1952) has

shewn that the distribution of l/Y is the same as that of

1 + + X„ + ... + ^
where the X^. are uniformly distributed

on (0,l). No other non-trivial situation in which the distribu-

tion of or Y is simple, appears to be known.



5.3 COMPUTATION OF APPROXIMATE PERCENTAGE POINTS

In this section we show that for small values of k and a,

percentage points of Cochran-type tests may be obtained without

error from the distribution of W^. For larger values of k and a ,

approximate mehtods such as those given by Fisher (1929) and

Bliss, Cochran, and Tukey (1956), nrust be used. These two similar

methods of approximation use percentage points of to approximate

percentage points of W. This seems to be the most convenient

approach even when the distribution of is not known exactly.

The distribution of VL may be obtained from those of its indepen-

dent numerator and denominator by quadrature when they sire known

or when good approximations are available.

Proceeding more formally, let w be such that under the null
\JL

hypothesis H^,

P(W > w ) = a ;- a

then this section is concerned with general methods for the deter-

mination of w . First it is convenient to introduce some more

notation. Let

P(w) = P(W > w)

P
1
(w) = P(W^ > w) preselected i

p (w) = P(W. > w and W . > w)
2 1 - 0

- i ^ j preselected



Now we prove the following theorem which was stated by

Cochran ( 19^1 )

THEOREM :

P (w) =0 if w > 1

and in general

P^(w) =0 if w > .

PROOF : Noting that

P
2
(w) = P(W > w

|
W
i
> w) • P(W,, > w),

let i=l and j=2 for definiteness. Then

U. U.

u u

i IL
< =

i u.+u +. . .+u
K 1 < W

J
1 13k

To show P_ (w) = 0 if w > i? consider the following:
j

i u>u,+. +uT
> * and u+u+. . ,+u

> ^ /
2 3k 13 k

= ,

U
3
< »l

- u
2

\
3 :

l u_ < -u., - +2u ) - l a,
3
<U

i
fM312

u.

The general argument is clear and holds for all t - 2,...,k.

This completes the proof.
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It is true in general by Bonferroni's inequalities (see

Feller 1957> David 1956, or Hume 1965 ) that

(5.3-1) kP^w) > P(w) > kP^w) - Q ^ )p2 (w ) •

Hence when w > 1, P^(w) = 0 by the preceding theorem, so

kP-
L
(w) = P(w) .

It follows that for values of k and a such that w > 1, percentage

points of W may be obtained exactly from the distribution of by

solving for w in the relation
a

(5. 3 . la) P
1
(w
a ) = a/k .

Thus for small values of k and a, percentage points of Cochran-

type tests may be obtained without error if the distribution of

is known exactly. For larger values of k and a such that

w^ < 1, approximate methods must be used.
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Fisher 's Method

The first method of approximation for values of w
Q < 1,

which is apparently due to Fisher ( 1929 ), is based on the use of

equation ( 5 . 3. la) even though it does not hold exactly. Fisher

was interested in the 5 and 1 percent points of what is here

called a "Cochran-type test" with the distributed as a multiple

of a chi-square with two degrees of freedom. He compared exact

and approximate 5 percent points for this test and showed that

the above method of approximation based on ( 5 . 3* la) gave results

that were accurate to within a unit in the fourth decimal for

k < 50.

Letting w be such that

good approximation to .

Cochran ( 19^+1) used the same method of approximation in the

computation of approximate 5 percent points for the test based

on IK distributed as chi-square with v = 1(1)6(2)10 degrees of

freedom and k = 3(l)l0 • In the evaluation of the accuracy of

^(w*) = a/k ,

it follows from equation (5.3*1) that

w ) is small, Fisher's approximation w will be a



the approximation, Cochran makes use of some exact results and

apparently uses the inequality (which does not hold in complete

generality)

(5.3.2) p
2
(w) 5 pf (w) •

When this inequality holds, the following inequalities hold for

all k:

.10 > P(v
10

*) > .095

.05 > p(w *) > . 04875

.01 > P(w.
01

*) > .00995 .

These hounds would seem to indicate that the approximation should

he sufficient for many purposes.

It seems "intuitively obvious" that inequality (5-3*2) should

hold for all f(u), hut a counterexample given hy Kesten (see

Doornhos 1956) has shown that this is not true. Doornhos, and

Prins (1956) have, however, shown that the inequality does hold

when the IP are distributed as chi-square (with arbitrary degrees

of freedom).

The counterexample given hy Kesten may he outlined as follows

Let k =s 3 and U^, U
p , U, , independently take on the values 1

and 2 with probability p and q = i-p respectively. Then for

2 2
values of w in the interval (|, f ] ,

P^(w) = p q + 2pq^ and
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P^(w) = pq^ so for q in the interval £(*/5 - l) < q < 1, it

p
follows that P^(w) > P^ (w) contrary to (5* 3*2)* For such

3 3
values of w and q, P(w) = 1 - p^ - q so the counterexample can

be shown to hold for any a in the interval 0 < a < 3*/5~- 6 = 0. 7083

for appropriately selected p and with = 3 . The interval on

w originally given by Kesten seems to correspond to the interval

(4, 4] in the present notation. However, the interval (4, f]

is preferable here since a=l for the former.

Bliss, Cochran, Tukey Method

A second method of approximation has been used by Bliss,

Cochran, and Tukey (1956) in their tabulation of approximate

percentage points of the ratio R / LR. where the R's are
max j

ranges of samples of size n from normal populations. If we let

P (w ) = a', then their method is based on the following inequality
X LC

(which also does not hold in complete generality):

(5.3.3) |
< a

'

< l - (i-a)
1/,k

.

Bliss, et al. used a weighted average of the two bounds as a basis

for their approximation. Let

(5.3.4) a° = £ [
2(a/k) + 1 - (l-a)

1,/k

J ,

then cP is ” approximately" equal to a' since (when the inequality

5.3*3 holds) they are bounded by the same quantities. Defining
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wo to be such that P (w o) = a . yields wo as an approxi-
a 1 a ’ * a

mation to .

a

Some examples of the ratio of the bounds in this inequality-

are listed in Table 5*3.1 for a = . 10 , .05, and .01 and several

values of k. It would seem that when the inequality holds, these

bounds would be satisfactory for most purposes. The left in-

equality in (5.3*3) follows immediately from ( 5 . 3 . 1 ) "but the right

inequality is not true in complete generality. Kesten's

counterexample to the assertion of Cochran (19^1) may be used as

a counterexample here as well.

Table 5-3.1

Ratio of the bounds given by inequality (5*3.3).

k^
u

.10 *05 .01

2 . 974 .987 .997

5 .959 .980 ON

10 .954 .977 •995

20 *952 .976 •995
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COUNTEREXAMPLE :

Let U, , U and U be defined as in the previous counterexample

and let p assume some value in the interval (0, . 5218 ). Then for

3 3 s / 3
a = 1-p - q , w = S' and 1 - a = p + q making

VAr

(l - a) > (l - a')
k

contrary to (5.3*3)*

Approximate percentage points may be computed by the Bliss-

Cochran-Tukey method in any case but there is at present no

easily computable bound on the errors unless the inequality

( 5 * 3 * 3 ) can be shown to hold. Conditions under which the right

inequality of (5*3*3) holds, would seem to be similar to those

under which the inequality (5*3*2) would hold.

Lehmann (1966) has recently discussed such inequalities in

some generality and has termed inequalities of the type (5*3*2)

"negative quadrant dependence." He suggests that the chain of

conditions

:

(i) P(WQ < wo |

= w^) is non-decreasing in w^,

(II) P(W
2
< w^

|
W
x < w

1
) < P(W

2
< w

2 |

W
1 < w

1
') for all

w^ < w^ and all w
2

(III) P(W
g
< w

2 I
W
x < w

x
) < P(W

g
< w

g
) for all w

g
,

may sometimes be used to prove negative quadrant dependence

(Condition III is equivalent to inequality 5 * 3 * 2 ). In the above

chain the conditions are linked by, Condition I implies Condition

II, which implies Concition III.
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Lehmann used this chain of inequalities to obtain a simple

proof that (5*3*2) holds for the case where the tL axe distributed

2
as X by using Condition I and an explicit formula for the joint

distribution of Y., and Y,. However, all three of the conditions
i J

are difficult to prove for most of the possible Cochran-type

tests, and a general theorem would be useful. It would seem that

a simple condition such as unimodality of the distribution of the

Ih should be sufficient, but a number of such approaches have

been tried without success.

Distribution of Not Known

Sanetimes the distribution of W. is not known exactly,
l

though the distributions of its component numerator and denomi-

nator are. When this is the case it may be convenient to integrate

the following relation by quadrature:

on

(5-3.5) P(W, >w)=
[
G(y/w)dF(y)

1 J
0

or equivalently

( 5 . 3 . 5 a) p(w
i
> w) = J

dF(-iog t)

where G(y) is the c.d. f. of the denominator of and dF(y) is

the probability element of the numerator of W^.
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Quadrature may also be convenient when the distributions of

the numerator and/or denominator are not known exactly, but good

approximations are available.

Error Analysis

There are in general two possible sources of error in the

computation of approximate percentage points of CTT by the

methods discussed in this section. Errors are introduced by

(l) the approximation of w by w* or w o
, and ( 2 ) by imperfect

v* v>v

knowledge of the distribution of W^. These two sources of error

tend to be relatively unimportant from a practical point of view,

compared to the general sensitivity of the tests to non-normality.

A more detailed discussion of this third point is given in

Section 7*2. Here we restrict attention to an analysis of the

relative contribution of the first two types of error. An error

analysis for the two new tests is given along with their computed

percentage points in Chapter 6.

Fisher (1929)> Cochran (l9*+l), and Eisenhart and Solomon

(1947) have used Fisher's method in the tabulation of approximate

2
percent points of the test based on S ' s from a normal population.

The distribution of is well known in this case being a simple

transformation of the F or incomplete beta distributions, both

of which have been extensively tabulated. An error analysis by

.g.

Cochran indicated that the approximation based on w gave values
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for that were correct to four decimal places for a = . 05 and

v and k less than 10. For a = . 01 the results should be even

more accurate.

For v = 2, a comparison is possible between some of the

approximate results given by Eisenhart and Solomon (1947) using

"Fisher's method" and the exact results given by Fisher (1950)-

This comparison showed that the tables of Eisenhart and Solomon

had an error in the fourth decimal place of : 1 for a = . 05

and k = 20 and 24; 2 for a = . 05 and k = 30 and 40; and 1

for a = .01 and k = 4c . The k = 5 > a = . 01 value of

Fisher should be .78853 rather than .78874 as printed.

The conclusion drawn here is that the error introduced by

. *
the approximation of w^ by w^ or w^o is at most about half a

unit in the third decimal place for a = . 05 and less than that

for a « .01 . In three of the four CTT considered here the

#
uncertainty in the computation of w

Q or wo is enough larger as

to make the former source of error relatively unimportant.

A spot check of Eisenhart and Solomon's table indicated an

occasional difference of 2 in the fourth decimal between the

values tabled and the correct values of the approximation. A

similar spot check indicated that the BCT approximation gives

values, for Cochran’s test, that differ from the values given by

Fisher's approximation by at most 4 in the fourth decimal.



Harter’s (1963) tables of percent points of the ratio of

two ranges makes possible the computation of more accurate values

of Bliss, Cochran, and Tukey's statistic for k = 2 . These

results are given in Table 5*3* 2.

Table 5-3.2

Corrected values for k = 2 in Bliss, Cochran,

Tukey (1956) table obtained from Harter's (1963) tables.

n 4 _5_ _6_ _7_ J3_ _9_ 10

Corrected .799 -759 -733 .714 .699 .688 .678
Value
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6. APPROXIMATE PERCENT POINTS OF TWO NEW TESTS

In this chapter approximate percent points of two new

Cochran-type tests are computed. The first of the two tests was

suggested by Churchill Eisenhart and is based on the standard

deviation. The second test is believed to be a new one and is

based on the mean deviation.

The primary motivation for suggesting these two new tests

has been to obtain a test that is less sensitive to non-normality

than those currently available. Some properties of these tests

are given in Chapter 7 and approximate results obtained there

indicate that there is little difference between the robustness

of these tests and the tests of Cochran (1941) and Bliss, Cochran,

and Tukey (1956). However, these tests may occasionally be useful

for other reasons.
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6.1 EISEKHAJRT'S TEST

Eisenhart' s test is the Cochran-type test based on the

statistic

E = max

where the S. are standard deviations, each having the same

number of degrees of freedom and each based on an independent

sample. Churchill Eisenhart has suggested this test in an

attempt to obtain a more robust test than those currently avail-

able, and also because it may sometimes be more readily computable.

The reasons behind his conjecture that this test may be

more robust than Cochran' s may be outlined as follows :

the square root of Cochran’s test statistic is proportional to

max S/S
p

where S denotes the pooled standard deviation defined by
P

k

Eisenhart' s statistic analogously is proportional to

max S/S

where
k

I 7 k •S
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Written in this form, it is apparent that the two differ only in

the manner in which the information in the denominator is combined.

Eisenhart reasoned that S would be ’less sensitive'' to non-

normality than S so the test based on S should be more robust.

A more detailed comparison of the tests is given in Chapter 7

below.

In this section we are concerned with the tabulation of

approximate percent points of E under the null hypothesis H,

and under the basic assumption that each sample is independently

drawn from a normal distribution. We use the Bliss -Cochran-

Tukey method of obtaining approximate percentage points of E

from those of a component defined by

This method of approximation has been discussed in Section 5*3

above.

k

Let y^ be such that (under the above assumptions)

F(E > ya ) = a

and. let



124

Let w be such that
P

P(W
i > w

p
) = p .

Then it has been shown in Section 5*3 that when y„ > 4 ,
Q*

y = w / (l+w )a p p

where

p = a/k .

For cases where , let aP be defined by equation (5*3**0

then it has also been shown in Section 5*3 that

y * w / (l + w o) .

We now make use of the results obtained in Appendix A which

show that the distribution of

*
T. = £. S

.

i i o

can be : (l) evaluated exactly in certain cases, (2) approximated

quite well by the distribution of a fractional powered scaled chi

with the same first three moments (Cadwell approximation), and

(3) reasonably well approximated by a scaled chi with the same

first two moments. We first compute approximate values of y^

from the chi approximations then evaluate the accuracy of these

where k and v are such that exact results are available. We then

show that the Cadwell approximation agrees quite well with the

exact values and use it to obtain slightly more accurate values

of for other values of m and v where the chi approximations

are not sufficiently accurate.
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Let the distribution T. be approximated by the distribution

of

(k yj / 5)*
,

where x^ denotes a random variable distributed as chi, the

positive square root of a chi-square variate with q degrees of

freedom. Then the distribution of VL may be approximated by that

of

( \ / «/v ) / (K x| / 1)^,

where v is the degrees of freedom associated with each S,. Since

the ratio of two independent chi variates is proportional to the

square root of an F variate, the approximate distribution of

may be expressed as a simple transformation of the incomplete

beta distribution. Let (3 (a,b) be the p'th fractile of the

incomplete beta distribution with parameters a and b. That is,

let £^(a,b) be defined by

(6 - i - i) p = ££)?(£! I
p ’

t
a* jd-t)b

‘- dt

.

o

Then w^ L */(l-A) / (vKA) where

a = p (4?, h>)

The goodness of this approximation depends on the accuracy of the

*
approximation to the distribution of S_. by that of a scaled

chi. Approximate values for y^ were computed using the chi(T)



approximation (defined in Appendix A) for (k~l)v less than 30

and the chi(T ) approximation for larger values of k and v.

When the exact distribution of can be expressed in

simple form, the true probability associated with a given value

of w^ can be obtained by quadrature using the relation in

equation (5*3.5) or (5* 3* 5a)* This was done for v=l with

k=3 5 4 and for k=3 with v=2,4,6,8 by using quadrature on

(5* 3* 5a)* The interval (0,l) was cut into 4 equal subintervals

and 7 point Gaussian quadrature was used on each. This procedure

was sufficient to give the required accuracy.

The Cadwell approximation can also be implemented through

quadrature using the relation (5* 3* 5a). Let the distribution of

be approximated by that of H"X^ where H, y, and X are defined

in Appendix A. Also let

V*
2

)

2

^0

ia-1
y

r(Ja)

-b
3T dy
2

denote the cumulative distribution of chi-square with a degrees

of freedom. Then for the Cadwell approximation (5* 3* 5a) becomes

(6.1.2) p =
j

(2(-log x/wH)
1^ g^-log x)dx

where w is a trial value for w and v denotes the Cadwell
a

approximation to the probability associated with w. Here g (x)
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denotes the distribution of / */\T given by

g
v
(x) = 2( | )

v/2 x^1 e-^
2

/ r(
| ) .

Seven point Gaussian quadrature on 4 equal subintervals was again
'

i

found sufficient to give the integral (6.1.2) to the required

accuracy. The results of this computation are given in Tables 6.1.1

and 6. 1. 2.

Bliss, Cochran, and Tukey (1956) have shown for v=l that

it is also possible to compute percentage points of the range

test (and therefore for the standard deviation test) from Lord's

(1947) table. The results obtained by the " exact” and ''Lord"

procedures are compared with those based on the "Cadweir 1

approximation in Table 6.1.1. Where a comparison is possible,

it appears that the values based on the Cadwell approximation are

slightly more accurate overall than those obtained by interpolation

in Lord's table. In only three cases is the value given by the

Cadwell approximation in error by as much as 2 units in the third

decimal place. Evidence has been given in Appendix A that the

region covered by Table 6.1.1 is the region in which the Cadwell

approximation is least accurate, so it is believed that the

Cadwell approximation gives values that are accurate to within

2 units in the third decimal over the entire table.



128

Table 6.1,2 gives the differences between the chi and

Cadwell procedures. The chi approximation does not give satis-

factory accuracy for v=l and k less than 15 or for v=2 and

k less than. 6 or 7. However, in other regions of the table the

chi procedures appear to be accurate to within 1 or occasionally

2 units in the third decimal, which is considered sufficient

accuracy for present purposes.

Table 6.1,3 gives approximate values for the percentage

points of Eisenhart's test obtained from a combination of these

three procedures. The exact values have been used for k=3 with

V=l,2,4 and k=4 with v=l . The values given by the Cadwell

approximation have been used for v=l with k=5 ,6,7,8,9,10,12,15

and for v=2 with k=4,5 . In all other cases the values

obtained from the chi approximation have been used. The use of

results obtained by several different methods makes the accuracy

of the table uneven, but enables the most accurate value available

to be used for each entry.

Bounds on the error introduced in y^
due to the approxi-

mation of a' by cP (when y < J ) can also be given if it can
oc

be assumed that the inequality (5*3*3) holds. Values for y
LX

were computed from and from the two extremes of the inequality.

If the inequality holds, the error in the third decimal of y^

is at most : 2 for a = .10, 1 for a = . 05 and 0.3 for a = .01.
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The difference between y^ and the supposed bounds is greatest

for small values of v and k such that y is slightly less than
Q*

0 . 5 .

The errors introduced in the values reported in Table 6. 1.

3

due to the approximation of ot

'

by Qp apparently are greatest for

a = . 10, while those introduced thru imperfect knowledge of the

distribution of the denominator of VL are greatest for a = . 01.

We conclude that the combined error in Table 6.1 .

3

is less than

a unit in the third decimal over much of the table, but for small

values of v and k some values may be in error by as much as 3

units in the third decimal.

The percent points of the incomplete beta distribution and

the probability integral of the chi-square distribution were

computed using the programs of Bargman and Ghosh ( 1963 ).
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Table 6. 1.

1

A comparison of approximations to the percentage points of

Eisenhart's test using the "Cadwell/' ’’exact/' and

"Lord" procedures.

a = . 01 .05 .10

k V C E L C E L C E L

3 1 .905 .907 .908 .810 .812 .813 .760 .751 .751
4 1 .786 .788 .784 .679 .679 .681 .621 .621 .622
5 1 .683 .681 .581 .581 .530 .530
6 1 .600 .599 .507 • 508 .462 • 46 2

7 1 .533 .535 .4]0 .410
10 1 .399 .398
3 2 .754 .754 .663 .663 .616 .616
3 4 .62 1 .621 .557 . 557 .524 .524
3 6 . 564 . 564 .512 .512 .436 • 486
3 8 .530 .530 • 4 8 6 .486 .464 .464

Table 6. 1. 2

Difference between the "Chi” and "Cadwell" approximations to the

percentage points of Eisenhart’s test. Entries are

(Chi-Cadwell)XlOOO and are for

a = . 01 , .05 and .10 respectively.

k v - 1

8 8 6

13 8 6

12 7 6
10 6 A

7 9 A. 3

8 0 3 3

9 6 3*?
10 A a 1

15 2 1
1

2

A 3 1 2

4 2 2 2

3 1 1

2 1 1

1 1 0

1+5 6

201 100 000
1 1 0

9

1

3

1 0

1 1

0 0

8

0 0 0
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6. 2 The Mean Deviation Test

The mean deviation test is based on the statistic

k

Z = max ^
0=1

where the M' s are defined by

n

M = £ |
X. - X| /n .

i=l

This test is proposed since some (e.g. Tukey i960 ) believe that

the properties of the mean deviation axe less affected by

departures from normality (especially in the direction of heavier

tails) than those of either the standard deviation or the range.

The effect of non-normality on the expectation and coefficient

of variation of the mean deviation is considered in some detail in

Chapter 4 3 and the effect of non-normality on the Cochran-type

test proposed here is considered in Chapter 7 below.

The use of the mean deviation in tests for homogeneity of

variance has been suggested by Cadwell (1953 and 1954). He has

given approximate percentage points of a Hartley (1950) type

test based on max M / min M, and has also given a procedure by

which Bartlett's (1937) test can be applied to mean deviations.
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In this section we compute approximate percent points of the

mean deviation test under the null hypothesis H
Q , and under the

basic assumption that each sample is independently drawn from a

normal distribution. More formally, let z
Q

be such that

P(z > z
a I

H
0

) = a ,

then we are concerned here with the determination of approximate

values for z . Let
a

k

d-1

and

W = M, /
£* M. = M/M*

i i ' i o

where
* *
M = E. M,

i i

The computation of approximate percent points of this test

is much more difficult than for Eisenhart’s test since here it is

necessary to approximate the distributions of both the numerator

and denominator of W., whereas in Eisenhart’s test the distribu-
l

tion of the numerator was known. Cadwell (195*0 has, however,

*
shown that the distributions of M and M can be reasonably well

approximated by those of scaled chi-squares raised to the

l/(l. 8) power and having the same first two moments. That is,

*
the distributions of M and M are approximately the same as those
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of random variables distributed as

K( xf )

1/(1 ’ 8)

where K and § axe chosen so that the approximations have correct

mean and variance.

Let the distribution of M be approximated by that of

^ 3^3 -the distribution of M by that of

K,. ( Xf ^ Then the distribution of W. may be approx
d ^>2 1

simple transformation of the incomplete beta distribution.

distribution (defined in equation 6.1.1) with parameters

a = 5^/2 and b =

where p = a/k if \ and

mated by that of (K^/K^) ( Xg / Xg )

1 2

2 vl/(l.8)

,
which is a

= a if za < % ,

and 0^ is defined by equation ( 5 . 5.h).

Then

z.a
- D/(D + 1)

D = (K
x / K

2
) [(1-A) / A]

1^ 1 - 8 )

where
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Values of z for k = 2(l)l0, n = 4(l)l0 and a =» .05
VR

were computed using this procedure. The values of K and § used

were computed by the method outlined by Cadwell (1954). He has

given 3 and 4 significant figure tables of § and K, respectively,

but it was felt that more accurate values might improve the

approximation. The results of these computations for z^ are

given in Table 6. 2. 1.

The percentage points of the incomplete beta distribution

were computed using the computer programs of Bargman and Ghosh

(1965).

The error introduced in z due to the approximation of

, 0
a by a should be of the same order of magnitude as in

Eisenhart's test where the error is believed to be at most 1 in

the third decimal place for a = . 05 .

An assessment of the error introduced through imperfect

knowledge of the distributions of the numerator and denominator

of is much more difficult. An investigation by Cadwell (1954)

indicated that the approximation was in error by at most 1. 5 in

the third decimal in the same sense as discussed in Appendix A of

this work. Since a maximum error of half this amount in the

approximation to the denominator of Eisenhart’s test produced an

error of at most 2 units in the third decimal place in the Cadwell

approximation to y , one is led to conjecture that the error

in z caused by the imperfect knowledge of the denominator of

is at most 4 units in the third decimal.
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Table 6. 2.

1

Approximate percentage points for the mean deviation test

k
for homogeneity of variance, max M. / Z M. .

J j=i J

Each M is based on n independent observations

from the normal distribution.

a = . 05

3 I! PO 3 k 5 6 7 8 9 10

2 .962 .862 .798 .760 .733 .713 .697 .685 .674
3 .812 • 667 .600 .563 .537 .519 .505 .493 * 48

4

k .679 .538 .479 • 446 .424 .408 .396 .386 .378
5 .581 .451 .400 .371 .352 . 337 .327 .318 .311

6 .507 . 389 .344 .318 .300 . 288 .278 .271 .264
7 .450 .342 .302 .278 .263 .251 .243 .236 . 230

8 .40 5 .305 .269 .248 .234 . 223 .215 .209 .204
9 .^68 .276 .243 .22 3 .210 .201 .194 . 1 88 .18 3

10 .387 .253 .222 .2 04 .192 . 183 .176 .171 . 167
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As a partial check on the accuracy of the present approxima-

tion, we computed values for z^ for n=3 using Cadweli‘s (1954)

approximation. Table 6. 2. 2 gives the results of this computation

and also gives the values of the approximation to the percent point

of the range test computed by Bliss, Cochran, and Tukey (1956)

•

Table 6.2.2

Approximate values of z ^ for n=3 from Bliss,
.Up

Cochran, Tukey (1956) table and from method used

here based on Cadwell's (1954) approximations.

k JLJL^_LJLJL_2- 10

BCT .667 .556 .451 .589 .542 .505 .276 .255

Cadwell .665 .557 .451 .569 -545 . 507 . 278 . 254

Since it has been shown in Section 4.2 that the distributions of

M and R are identical (except for a scale factor) for samples of

size 5 from a normal distribution, the amount of disagreement

between the two approximations should give some indication of the

error in the methods. The two methods agree to within 2 units in

the third decimal place for k = 4(l)l0 while for k=3 they

differ by 4 units in the third decimal place. The values of

should be somewhat more accurate for larger n since Cadwell (1954)

indicated that the approximation used here gives reasonable



accuracy for values of n greater than J, but does not recommend

its usage for n = 3 •

In Table 6.2.1 the Bliss, Cochran, Tukey values have been

used for n = 3 while for n = 2 the values obtained in Section

6.1 for Eisenhart's test have been used since in this case the

tests based on the standard deviation, mean deviation and range

are identical.

We believe that the values of z given in Table 6. 2.

1

should certainly be accurate to within 1 unit in the second

decimal place and are probably accurate to within 5 units in the

third decimal.
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1

7. SOME SPECIFIC PROPERTIES OF THE FOUR TESTS

This chapter consists of two sections, the first of which

constitutes an investigation of some power-type properties of

the four Cochran-type tests under the basic assumption that all

samples are independently drawn from normal distributions. The

second section is concerned with the determination of some

properties of the four tests when the samples are independently

drawn from identical but non-normal distribution. Much of the

notation used here has been introduced in Section 5‘2-

In Section 7- 1 we prove that for samples of equal size from

normal distributions, Cochran's test is the likelihood ratio

test of against alternatives of a certain family H . We
0 0

consider only this family of alternatives and show that for samples

of size 5 and 5 there is little difference in the power-type

properties of the four Cochran-type tests. However, for n - 10,

Cochran's and Eisenhart's tests do seem to have a slight edge
i

over the BCT and mean deviation tests in this respect.

In Section 7*2 we give evidence that the four tests under

consideration here (and a few others) appear to have somewhat dif-

ferent robustness properties for samples from various non-normal

distributions. None of the tests appears to be significantly

more robust overall than the others, although this possibility



has not been ruled, out. However all of the tests considered are

sufficiently non-robust to make the differences among the tests

a second order consideration.



7. 1 PROPERTIES UNDER NORMALITY

In this section we consider some properties of the four tests

under the basic assumption that all samples are independently

drawn from normal distributions. A single class of alternative

hypotheses is chosen for study in which (an unknown) one of the

populations has greater dispersion than the others which all have

identical dispersion. Since computations based on the power

function are somewhat intractable for Cochran-type tests, two new

functions closely related to the power function are introduced

and some numerical values of these functions are computed.

Other information on the power function of tests for

homogeneity of variance has recently been given by Pearson (1966)

and Leslie and Brown (1966). Their results are concerned with

Bartlett’s test and the S / S . and R / R . tests due
max mm max min

to Hartley (1950) and Cadwell (1955) > respectively.

Although no accuracy claim is made for the results given in

this section, it appears that the four tests are ranked with

respect to relative power in the same order as the ranking with

respect to efficiency of the estimators upon which they are based.

That is, they appear to be ranked in the following order (equiva-

lent test statistics are given in parenthesis):

(l) Cochran's test (S /S ), (2) Eisenhart's test (S /S),
max p * max'

(5) Mean deviation test (M /m), and (k) B-C-T test (R /r).
max max
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An Alternative Hypothesi

Cochran-type tests of

•• =
°k

2

would, seem to be at their ’’best” against alternatives of the form

where i, p and <j are unknown and 0 > 1 . This class of alterna-

tives is favorable to Cochran-type tests since in this situation

they should compare favorably with other types of tests for

homogeneity of variance. In fact Cochran’s test is the likelihood

the are independently distributed as q xVv> • Before

stating this formally as a theorem we note the following lemma

which is useful in proving the theorem.

cL"hC
LEMMA: Given a > b > 0, c > 0, k > 1, and b > —— ; then

J£— _L

PROOF: The proof is immediate on noting that R = 1 in the

limiting case a = b and that

2 2 2 2 2
H : or. = 0 a > a. = a ,

for j = 1,2, . . . ,i-l,i+l, . . . ,k
V -L J

ratio test for H against alternatives in the class H when

for all a > b .
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THEOREM : Cochran’s test, which is an upper tailed test based on

2
k

2
Y = S / £ S

. , is the likelihood ratio test of
max max . n j 0

J=1
2

against alternatives of the form H if the S.’s are indepen-
0 J

2 2 /dently distributed as a.X / v •

J

PROOF: Let H „ denote the special case of H in which
0^ 0

2 2 2
= 0 a . The proof consists of four steps in which we show:

(1) max L(Hn ) = L* = K ( E S
2
^

a 0 v j=b1 j y

rkV k V-2
ns.

j=i J

(2) max L(H ) = L*
,
where

0, ct
^ 1

-Vs* 2n -i(k-l)V k V-2 2 * 2 / / N

L„ = KS.(Z
f
S^) 2V ;

• nS< * if S
8 > ZX / (k'l>
l - i j

= L otherwise

-v f ^* o2 > - -J-V(k-l)/ \ * -Vs * 2 N
(3) max L = K S (E S.

)
l l max v max j y

V-2
n s

j0=1 J

and

(4) the likelihood ratio X is a monotonic function of Y
max

*
The notation denotes summation over all indices except l and

*
£ denotes summation over all indices except the one corre-
max

sponding to the largest S



First we state for reference the unrestricted likelihood

functi on.

VS
2

J

L = K n a
.' VS I"

2
e

2tJ
j

J=1
J J

Step 1 . The maximum likelihood estimate of g under is

readily found to he

-2 k
2 ,

a = E S / k

and the likelihood function evaluated at its maximum is therefore

•X"

L as defined above.

2
Step 2 . For any given £ the maximum likelihood estimates of g

and Q are g = y; S . / (k-1; and 9 = S / g when 9 is
x J x

not restricted to be greater than or equal to 1 . Thus for values

of £ such that

( 7 . 1 - 1 )

2. *2 / /, \
s

* ^ hb / (k - 1}

the value of the likelihood at its maximum is

-J'(k-l) v k
K S

-1

C« ) n s
V-2

2 * 2 /

However, for values of l such that S „ < ThS . / (k-l) the
£ ~ i j

likelihood is maximized under the constraint 0 > 1 at

^2
k

2 A 2
(j~ ~ £ S^ / k and 0=1. This may be seen by showing

J=1
J

2 2
that the likelihood for given @ is maximized over g for



/ 0^
, and then showing that the resulting

0 * J !

^ 2
likelihood evaluated at cr is a monotonic decreasing function

•x- 2

0

of 0^ whenever 0^ > 1 and < £*s|t / (k-l) . Thus the

2
maximum is assumed when 0=1 which is identical with the

case under Hq for any £.'

Step 3 - Among the values of l such that inequality (7. 1 . l) is

satisfied, the largest may he shown to he the one corresponding

to the largest S This may readily he accomplished using the

* 2 2
above lemma and comparing any two L ’ s such that and

showing that

.*
J

m

= ;

v 4(k ' 1,v

2 N - i(k-l)v
> 1

-V

m C*j)
The likelihoods for all values of i such that (7. 1. l) is not

A 2
satisfied are identical since 0 = 1 in those cases. In fact

2
all of the k likelihoods are identical at 0 = 1 . Now it is

e

readily seen that the likelihood corresponding to the largest S*

2
(indeed any S such that 7 * 1-1 is. satisfied) must he at least

- 2
as large as those with 0=1 since it is maximized for a

value of 0 other than 1, and at 0=1 is identical with the

others.
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aP-x-P A o P A _

Thus a =11 S./(k-l) and 0 = S / cr , and the
unax J max

-)(-

value of the likelihood at its maximum is max L„ as defined
l l

above

.

Step 4

.

(I s
2 t

S=i 3 J

- ikV

-V
J

max ( L* S
2 ')

V max j y
2 - iv(k-l)

2/V s
2

max

“ *

^nax
S
j

k
a 2

k
a 2£ S .

j=i J
j >1 J

= Y
max;

1 - Y
'max

k-1

which is monotonic in Y since Y > 1/k always. This
max max — '

completes the proof.

It has already been noted in Section 5-1 that Truax (1953)

has shown that Cochran's test is optimum in a decision theoretic

sense where selection of the population with the largest variance

is important.
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Rejection for the Correct Reason

An important aspect of this particular class of alternative

hypotheses is the relative ease with which computations of two

functions closely related to the power function may be made. Let

P C Y
max - ya ^ 0 }

denote the power function of a Cochran-type test of size a for a

given alternative H . Then for the class of alternatives con-
9

sidered here it is convenient to break the power function down into

two components

:

P(RC) = P(Y. > ya I 0 )

and

P <NC ) = P C Y
ma:c S ya Y . <

yJ « ) ,

where the i’th population is the one with the inflated variance.

Then P(RC) is the probability that H is rejectable for the
U

i-m rarrffini*m«ir

"correct" reason and P(NC ) is the probability that H„ is

rejectable but not for the correct reason. Note that we say

"rejectable" not "rejection, " since the occurrence of the event

RC = { > Yq, ]
does not necessarily imply = Y^ y j*

.

Others (Truax 1953 ) ,
and Doornbos and Prins 1956 ) have described

what could be termed rejection for the correct reason. They have

considered the "probability of making a correct decision" where

the k+1 possible decisions are: to accept H
Q ,

or to indicate

which of the populations has the inflated variance.
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The two components RC and NC are mutually exclusive and

exhaustive and for reasonably distant alternatives P(RC) con-

stitutes the bulk of the power, as the following theorem indicates.

THEOREM : Let y^
be the critical value for a Cochran-type test

of size OL. Then for P(RC) defined as above, the power of the

test under H bounded by
0

P(RC) < P Y
max > yQ |

0 i < P (RC ) + a(k-l)/k .

PROOF: The left-hand inequality holds trivially since the event

that constitutes the power properly contains the event RC.

The right-hand inequality may be deduced by considering the

events

A. = / Y. > y^;
and V. = V \ .

1 1 l - J
OL i max J

(Here and elsewhere in the proof we use the notation V., U., Y.,
l i i

7

B, and II as described in Section 5*2.) There are k such

events which under are equally likely, each having

probability a/k . We now assume for definiteness that under

H , the first population has the larger variance. (This is, of
0

course, unknown to the experimenter and is merely a notational

convenience. ) Then the event RC has the representation

RC = A
n + \ Y > y and V < V \
1 1 1 — a 1 max J

so

p(rc|h
0 ) > a/k .



Hence

P(NC|H ) < a(k-l)/k .

0

We now show that P(NC) is maximized under H
Q .

First note that

NC
{ 2 yo “1 *1 ' }

{ u
max

BU.

E, U + BU
1

> ya
and

* < y.

L U. + BU,
1 3 1

a}

Hence

NC = K < (Vx/ya
- u

j)
and BU

i
< s

i V - h}

which shows that P(NC) is a monotonic decreasing function of B,

completing the proof.

The probability of rejection for the correct reason defined

by

c
P ( Y > y„ and V, = V

max — a 1 max 1 o
assuming again that the first population has the inflated variance

is slightly smaller than P(RC) but the numerical difference

between the two appears to be slight. The new concept is intro-

duced only because computations are simplified considerably. The

difference between the two decreases with @ since it is equal to

the probability of the event J y < Y n < Y L which is con-
[ a - 1 max J

tained in the event \ BU, < U \ , and the probability of the
[ 1 max J

latter event must decrease with 0 .
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Results on P(RC)

Table ’7. 1. 1 gives the result of some computations of the

P(RC) for the four tests under consideration. Also given are

approximate values for the power function of Bartlett's test. The

significance level . 05 is fixed throughout all comparisons. The

alternatives were selected to give P(RC) equal to . 05, .10, . 50,

.90 and .95 lor Cochran's test.

The approximate values of the P(RC) for the four Cochran-

type tests were computed using the methods described in Chapters

5 and 6 for the computation of approximate percentage points. In

particular the values for Eisenhart's test were computed using

the scaled chi approximations described in Section 6. 1 and the

values for the mean deviation test were computed using the

approximation described in Section 6.2. The values for Cochran's

test were computed in the manner outlined by Cochran (19^+1) and

Eisenhart and Solomon (19^7) except that a° was approximated

using (5 . instead of (5. 5- la). For the Bliss, Cochran, Tukey

(1956) test we used method (A) as outlined in their paper. In

all cases we have used approximate nominal critical values computed

using the same method of approximation as used here, except

possibly for the BCT test where it appears that for k = 10 their

tabled value is based on a combination of their methods (A) and

(b). The values for the power of Bartlett's test were computed

using Wilks approximation as outlined by Pearson (1966).
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No error cheeks have been made for the entries in Table 7 . 1.

1

A comparison of the entries for the mean deviation test and the BCT

test for n = 3 indicates discrepancies of about 1 unit in the

second significant figure except for two cases where the differences

are 2 and 3 respectively. These entries should theoretically agree

by virtue of the theorem in Section 4.2.

The entries for k = 10 for the BCT test are somewhat less

reliable than the others since a different method of approximation

was used in obtaining those critical values.

Discussion

The alternative (i.e., value of 9 ) needed to produce a given

P(RC) for Cochran's test decreases with k for moderately large

P(RC), probably for any P(RC) greater than about .20 or . 30;

and always decreases with n.

The p(RC) for Eisenhart's test is not appreciably lower

overall than that of Cochran's test. As k increases from 3 to 5 j

P(RC) for Eisenhart's test increases for all 3 values of n but as

k increases from. 5 to 10 the P(RC) increases for n = 3 but

decreases for n = 5 and 10. These changes are very slight and

may indeed be due to error in the approximation. The relative

efficiency of S with respect to S. decreases with k (see Table
P

4.2.1) much faster than does the P(RC) of Eisenhart's test

relative to Cochran's test.
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The difference between the P(RC) for the mean deviation

test and that of Cochran's test increases with n, and for n » 10

the P(RC) for the mean deviation test is as much as 1;>$ less

than that for Cochran’s test for P(RC) = . 05, 11$ for P(RC) = ,^0 ,

and 2 for P(RC) = . 95 .

The P(RC) for the BCT test decreases slightly more rapidly

with n than does that of the mean deviation test and for n = 10

appears to be roughly Vfl, or so below that for the mean deviation

test. (The n = 10, k = 10 values for the BCT test given here are

apparently quite unreliable.

)

The values for the power function for Bartlett's test are

appreciably below those for the Cochran-type tests for n = 3

and higher values of P(RC) . For small values of P(RC), the

power function of any test is considerably larger than its p(RC)

so comparisons between the power of Bartlett’s test and the

P(RC) of the Cochran -type tests are not justified for these

values. For n = 5 and 10 the values for the power function of

Bartlett's test are more nearly the same as the P(RC) for the

Cochran-type tests with Bartlett's test apparently being more

powerful for distant alternatives than the BCT test for n = 10

and k = 3 •
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Modified Median Significance Level

Another property closely related to the power function may he

called the "median significance level" (MSL) . The MSL has been

introduced and discussed in some detail in Appendix B and may

briefly be defined here as the median of the distribution of the

observed significance level of a test for a given alternative.

It has been shown in Appendix B that for one-sided tests the

MSL may be computed from the median of the distribution of the

test statistic under the given alternative. Thus in the present

notation, the MSL of a CTT for an alternative H could be com-

It has also been shown in Appendix B that the MSL may be considered

given alternative. In light of this relation and since it was

shown in the preceding theorem that for moderately distant

alternatives the P(RC) constitutes the bulk of the power, the

relative simplicity of P(RC) computations leads us to suggest a

modified version of the MSL based on P(RC) . That is, let p be

the solution of the implicit equation

puted as the solution p of the implicit equation

the significance level for which there is power equal to \ for a

where we again assume for notational convenience that the first
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population is the one with the inflated, variance. Then the solution

p may be termed the "modified median significance level 1
' (MMSL/

.

The MMSL may be interpreted as an approximation no the MSL,

or as an answer to the question "at what significance level is

there a 50-50 chance of having rejectable for the correct;

reason? 11 Small values of the MMSL are. of course, more desirable.

Table 7-1-2 gives some computed values of the MMSL which were

obtained by using the same approximations described earlier in

this section. The alternatives were chosen no give MMSL values

of . 25j .05. .01, .001 and .0001 for Cochran's test. No error

checks have been made for Table 7-1-2 but the results seem some-

what erratic suggesting that comparisons should be made with

caution. For n = 3 the entries for the mean deviation test and

the BCT test should be identical but discrepancies as large as 6-

units in the second significant figure may be noted. The larger

error in these results as compared with the error in Table 7. 1.

1

is probably due to the fact that MMSL computations depend more

sensitively on the tail of the approximating distribution.
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Discussion

The alternative (i.e.

,

value of 0 ) needed to produce an MMSL

of .25 is roughly constant for fixed n (in the range 5 to 10) as k

increases from 3 to 10; and is a decreasing function of n over the

range of the table. The alternative needed to produce smaller

values of the MMSL decreases both with n and with k.

There do not appear to be any appreciable differences among

the four tests for n = 5 and 5 but for n = 10 the BCT and

mean deviation tests seem to fall sufficiently far behind Cochran's

and Eisenhart’s tests to possibly make a practical difference.

The MMSL and P(RC) results by and large seem to provide pretty

much the same impressions as to the relative behavior of the four-

tests.

To sum up briefly it seems that for the small sample sizes

considered here there is little reason to choose one or the other

of the four tests on the basis of statistical efficiency.
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7.2 PROPERTIES UNDER NON -NORMALITY

In this section we give some results concerning the properties

of the four Cochran-type tests and Bartlett’s test when all samples

are from identical hut non-normal distributions. Most of these

results are based on a modified degrees of freedom approximation

originally suggested by Le Roux (1931)* This approximation has

been used by Box ( 1953a) in assessing the non-robustness of

Bartlett's (1937) test and Hartley's (1950) test. In addition the

results of a limited sampling study are given for the above tests

and several others, for samples from four non-normal distributions.

Most results on the effect of non-normality on tests for

homogeneity of variance have been obtained by Box and co-workers.

See for example, Box ( 1953a, 1953b), Box and Andersen (1955), and

Box and Tiao (1962, 1964a, 1964b). The asymptotic effect of non-

normality on a general class of tests has also been considered by

Laue (1965). This class of tests includes Stevens’ (1936) test,

Bartlett's (1937) test, Cochran's (l94l) test, Neyman's (1941)

test, Hartley's (1950 test, Bartlett and Kendall's (1946) test,

and Eisenhart's test. Laue shows that all tests in this class

are asymptotically (in n) equally effected by non-normality.

Our approach differs in that we have considered only small

samples and have attempted to apply "modified degrees of freedom"

approximations to the tests based on the mean deviation and range.

Our conclusions are basically the same as Box's and Laue's in



that all of the tests appear to be quite sensitive to non-normality.

However, there do appear to be some differences, at least in small

samples, in the extent to which the various tests are affected by

different types of non-normality. These results are summarized

below.

Concept and Importance of Robustness

Before beginning a detailed discussion of the properties of

Cochran-type tests for homogeneity of variance, it seems important

to digress for a moment and discuss briefly the basic concept of

robustness and its relevance in situations where one might consider

testing the equality of variances.

The term "robust” was first applied to the properties of

statistical tests by Box (1953a), but the basic concept was not

new since Pearson and Adyanthaya (1928) and others had investi-

gated the properties of certain tests when the underlying

assumptions were not fully satisfied. Fridshal and Posten ( 1966 }

have recently given an extensive bibliography of the literature

on robustness, and Hatch and Posten ( 1966 ) have given a com-

prehensive survey of results on the robustness of the Student

procedure for testing means. In their survey many concepts are

discussed which are pertinent in a more general discussion of the

robustness problem.
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A test is said to be "robust" with respect to a particular

type of departure from assumptions if the probability that the

null hypothesis is rejected does not vary "too much" under

"moderate" departures from the assumptions. The "too much" and

"moderate" have not yet been quantitively defined. In this work

we are only concerned with the robustness of the Cochran-type

tests when the null hypothesis is true and when all assumptions

except the assumption of normality are satisfied.

With respect to tests for homogeneity of variance, it has

been argued that robustness with respect to non-normality is not

necessarily a desirable property. For example, in an industrial

or calibration situation where one is striving to bring a process

under control the argument has been advanced (by Ellis R. Ott,

and others in personal communication) that departures from

normality frequently indicate that the process is not fully

debugged, and that if one looks for the source of trouble, one is

usually rewarded. This feeling seems to be prevalent in the

quality control literature. The legendary success of statistical

quality control which has been achieved partially through the use

of S and R charts (which are usually considered to be basically

tests for homogeneity of variance) can be interpreted as a strong

practical argument against the desirability of robustness with

respect to non-normality in this context.
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However, from a theoretical point of view it seems important

to distinguish formally (a) underlying assumptions that one does

not wish, to test, and (h) the full null hypothesis which is to

he tested. In the analysis of data from well-controlled hut non-

normal distributions, it may sometimes he preferable to use a

robust test instead of trying to find a normalizing transformation.

It may he remarked that in the ideal case of perfect

robustness to a subset of assumptions, that is, complete indepen-

dence from these assumptions, the so called assumptions cease to

be assumptions and become irrelevant considerations. One would

then be in the fortunate situation of having a "similar region"

test with respect to that subset of "assumptions. "

Basic Method of Approximation

Here as in most cases, assessing the effect of non-normality

on the properties of statistical tests is very difficult and one

must resort to fairly rough approximations. The basic approxi-

mation used here stems from the observation of Le Roux (1931)

2
that the distribution of S in samples from certain non-normal

2
distributions is very nearly like that of S in samples of a

modified size from a normal distribution.

In this section we use a slightly "modified-generalized"

version of his approximation. We assume that the distribution of

an estimator T in samples of size n from a non-normal distribution



is the same, to a first order of approximation, as that of T in

samples of size n* from a normal distribution, where n* is

such that CV (T) is given correctly. Since we assume through-

out that the component estimators in any given test all have the

same distribution, the expectation of T is irrelevant to the

properties of the tests and the first integral moment of T that

can influence the properties of the test is equivalent to

cv
2
(t).

When the component estimators are sample variances (Cochran*

test) the value of n* is a simple function of p and is given

exactly by

n* - 1 = (n-1) [l + i (P2 - 3)]

We have also given some evidence in Section 4. 5 that this same

modification of the sample size also seems to provide a fairly

good approximation to the coefficient of variation of S for

samples from a number of discrete distributions.

I

In Tables 4.7*1 an(l 4.7*2 we have given three different

modifications of the sample size for R, depending on whether the

observations came from TRV-small, TRV-large, or Cox's "average"

distributions. Different conclusions may be drawn for samples

from the different classes of distributions.

2
No relationship between and CV (M) is available at

2
this time, although we have seen in Section 4. 5 that the CV (m)

2
behaves much like CV (s) in small samples from non-normal

distributions

.
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Results Based on the Approximation

Table 7*2.1 gives approximate values for the true significance

levels of the four tests corresponding to a nominal significance

level of .05. Values are given for n and k equal to 3* 5, and 10

for several values of n . These approximate values were computed

using the same approximations as were used in the previous section.

The values for Bartlett’s test were computed using Bartlett's

(1937) approximation based on a scaled chi-square with k-1

degrees of freedom. Let L and be defined by

L = (n-l) k in s
2
5!j y J

and

C
n = 1 + [ k+1

] / [ 3k(n-l)
]

.

O
Under normality L/C^ is approximately distributed as yl

,

2
but in a non-normal situation where the S 1

s behave as if they

were based on a sample size n*, L/C^ is approximately

distributed as

/ n \ C *
(n-lj n

(n*-l)
u
n

xk-l *

No accuracy claim is made for the results given in Table

7.2.1, but it seems certain that the error in the computed values

for- a given n is minor compared to the error involved in

extrapolating these results to a population described essentially

only by a given value of . Spot checks using the results of

a sampling study based on the approximation indicate that the
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reported values for the Bartlett, Cochran, and Eisenhart tests

are accurate at least within two units in the second significant

figure.

Interpretation of Results Based on the Approximation

For any given value of n there seems to he virtually no

difference in the results for the four Cochran-type tests for

k = while for k = 10 and the smaller values of n there is

a slight difference with Cochran's test appearing to he most stable.

However, all four of the tests deviate considerably from the nominal

"X*

. 05 value for values of n different from n, suggesting severe

overall non-robustness.

Supposing for a moment that the coefficients of variation of

2
S , S, M and R were always equally affected by non-normality,

these first order results would seem to Indicate that there was

little difference in the robustness of the tests, but that if a

2
choice had to be made Cochran's test based on S would seem to

have the edge. However, we have shown in Sections 4.5 and 4.6

that the coefficients of variation are not all equally affected by

non-normality and the interpretation of these results based on the

modified degrees of freedom approximations is not nearly so clear.

For example, in samples from TRV-small distributions these results

indicate that R should be slightly better than since we see

from Table 4 . 7*2 that for n and k = 5 and larger 6^ (say j30 = 9)>
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•x 2
n would be 3 for R but about 2 for S giving significance levels

of roughly .25 and .5

0

,
respectively. For TRV-large distributions

the situation would be reversed since for n and k = 5 and

p = 8, n would be 2 for R and about 2. 5 for S giving

significance levels of roughly .55 and .40 respectively.

Thus we have two related families of distributions, TRV-small

and TRV-large, for which the Bliss -Cochran-Tukey test based on R

appears bo have substantially different robustness properties.

The TRV-small family has been shown in Section 4.6 to have a

CV(r) much like the Burr and miscellaneous distributions while

the TRV-large family has a CV(R) that is quite different, being

more like that of the discrete distributions. It seems that to

the validity of the approximation, the Bliss-Cochran-Tukey test

should be somewhat more robust than Cochran's test for small

samples from most "reasonable" continuous distributions (i.e.,

those similar to the TRV-small distributions) while for samples

from distributions where discreteness is a real problem (say less

than about 8 distinct values) Cochran's test would be preferred.

The approximation suggests that all of the tests become

increasingly non-robust as the number of sample increases. It

appears from these results that Cochran's test always becomes

increasingly non-robust as the sample size increases, and that the

BCT test becomes increasingly non-robust with n for TRV-small

samples but becomes slightly more robust with n for TRV-large

samples.
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Box (1953a) has given approximate values, computed in an

analogous manner, for the true significance level of Bartlett’s

test for (3 = 4 and a nominal significance level of . 05 with
d

n = 12 . From Table 3*1, n* = 13 . 55 • The values given by the

approximation are . 175 ;
- 252 ,

and .373 for k = 5; 10 and 20

respectively. The corresponding results for Cochran's test are

. 130, . 155; and .

I

85 . (These differences were not borpe out by

the sampling study.

)

Results of the Sampling Study

A limited sampling study was undertaken in order to assess the

validity of the modified degrees of freedom approximations. The

results of this study are reported in Tables 7*2.2 and 7*2.3*

Results have been obtained for samples from chi-square distributions

with 2, 4 and 12 degrees of freedom and from the TRY- small dis-

tribution with \ = .0802 (see Section 4.1 for more details on

the TRV distributions). Table 7*2.4 lists the critical values

used in obtaining the various results.

The chi-square distribution with 12 degrees of freedom was

chosen as being a "reasonable" and convenient distribution having

a f3n value of 4, the value used by Box ( 1953a) in his illus-

tration of the non-robustness of Bartlett's test. Samples of

size n = 21 were drawn from this distribution for k = 5; TO

and 20. We then counted the number of sets in which was
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Talkie 7.2.2

Approximate probabilities of rejecting at the . 05

level for samples of size n=21 from parent

distributions having p Upper entry gives

the "modified degrees of freedom" approximation and

lower entry gives result of sampling study based

2
on samples from the X-^ distribution.

k Bartlett Cochran Eisenhart Hartley
No. of
Samples

2a
limits

5 .175
. 1 *

« 1 3 0

. 14 .13 .14 1200 .02

10 .252
.20

.155

.19 .18 .19 400 .04

20 .370
. 31

*
.185
.28 .23 900 .03

* 400 samples; 2a = . 05
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Table 7 . 2.3

Empirical’ sampling estimates of the true significance

level corresponding td a nominal significance level of . 05 .

Parent No. of Tests

Distr. n k samples a b c d

5 3 1000 .26 .23 .23 .25
5 3 1000 .36 .29 .31 .32

•2 5 10 1000 .33 .42 .39 .47
X0 9
2

10 3 1000 .31 .26 .31 .27
10 5 2000 .48 .38 .46 .42
10 10 1000 .71 • 3 1 .30 .55

e f g h

5 3 1000 .14 .15 .12 .14 .14 .12 .11 . 13
5 5 1000 .18 .17 .14 .18 .17 .14 .15 .16
5 10 2000 .29 .27 .18 .30 .24 .16 .16 .25

2
6
10 3 1000 .18 .17 .17 .17 .15 .15 .14 .13
10 5 1000 .28 .25 .25 .26 .23 .22 .18 . 19
10 10 1000 .41 .33 .31 .35 .32 .29 .23 .24

TRY ( 5 5 1000 .17 .18 .13 .19 .19 .14 .11 .15

X = .0802
0

10 3 1000 .17 .17 .16 .18 .18 . 18 . 12 . 13
10 10 1000 .36 .30 .27 .31 .30 .30 . 16 . 19

(a) Bartlett (e) Bliss -Cochran -Tukey

(b) Cochran (f) R-Max

(c) Hartley (g) M-Max

(a) Eisenhart (h) Mean deviation test
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rejected by Bartlett's test, Cochran’s test, Eisenhart's test

and Hartley's test. These results are given in Table 7-2.2. For

Eisenhart's test the critical value corresponding to n = 20

rather than 21 was used probably causing a slight distortion of

the result^. The value for n = 21 is smaller by roughly 1 unit

in the third decimal place so the observed counts are smaller than

they should be. There do not appear to be any significant dif-

ferences among the results for the four tests in this situation,

except for a possible indication of a slight increase in robustnes

for Eisenhart's test. However, this discrepancy is more likely

due to the use of inappropriate critical values for Eisenhart's

test.

However, when these sampling results are compared with the

results from the modified degrees of freedom (mdf) approximation,

serious discrepancies are apparent. The two methods are in rough

agreement for k = 5 "but for k = 10 the mdf value for Bartlett'

2
test is .05 larger than the ^ result while the mdf value for

2
Cochran's test is . 05 smaller than the )(_

result. For k = 20

the discrepancy has increased. to .

0

6 for Bartlett's test and .10

for Cochran's test. Thus the difference between the two tests is

indicated to be much larger by the mdf approximation than is

2
borne out for the distribution. This discrepancy may be
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a parent distribution that would give rise to a distribution of

2 2
S s similar in nature to a y distribution with 13-55 degrees

of freedom.

Table 7- 2. 3 gives the results of the sampling study for n and

k equal to 3, 5* and 10. For samples from a chi-square distri-

bution with 2 degrees of freedom (i.e. the exponential

distribution) there does not appear to be any clear cut ranking

of the tests except that Bartlett's test appears to be slightly

less satisfactory overall than the Cochran, Eisenhart and Hartley

2
tests. The distribution is quite an extreme departure from

normality having a p value of 9 and being extremely skew. For

2 *
the tests based on S the n values are found from Table 3- 2

to be 2.18 for n = 5 and 3-^3 fan n = 10 . Rough interpolation

in Table 7-2.1 shows that for n = 5 the mdf values would be

approximately (sampling results are given in parentheses)

k = 3 5 10

Cochran

Bartlett .50 (. 26 ) .70 (. 36 ) .85 (. 55 )

.35 (. 25 ) .40 (. 29 ) .50 (.42)

and for n = 10 would be approximately

k = 3 5 10

Cochran

Bartlett . 50 (. 31 ) . 70 (.78) . 90 (.71)

.40 (. 26 ) .45 (- 38 ) .60 (. 51 ) -
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A comparison between these values and the results of the sampling

study again shows serious disagreement. Here both the Bartlett

2
and Cochran mdf values are larger than the values, with the

disagreement being greatest for Bartlett’s test. However, the mdf

2
and results do agree as to the ranking of the tests with

respect to robustness.

Results for samples from the chi-square and TRV-small dis-

tributions both having a p value of 6 are also given in Table

7«2.5* II seems here that for n = 5 the three tests of the form

max V^ / min are less affected by non-normality .while for

n = 10 the two tests based on the mean deviation appear to have

a slight edge over the others. The remaining tests appear to be

pretty much alike here except that for k and n equal 10, Bartlett's

test appears to be slightly worse than the others.

The results for the two different parent distributions seem

to agree quite nicely overall. Possible exceptions are Bartlett's

test for n = k = 10 and the two tests based on the mean deviation.

The TRV-small distribution seems to be more favorable toward the

mean deviation tests (and possibly all of the tests) for

n = k = 10 .

Wo have given in Table 4.7-1 the necessary modification of

the sample size for the range in samples from the TRV-small dis-

tribution with = 6 . This modification is n = 5* 5 for

* 2
n - 5 and n = 5 for n = 10 . For the tests based on S ,



176

Table 5-1 indicates that n* = 2.82 for n = 5 and n* = 7 . 83

for n = 10 . Thus interpolating roughly in Table 7 . 2. 1 we find

that the mdf approximation gives for n ~ 5 ‘

3 3 10

Bartlett

Cochran

BCT

and for n = 10 :

Bartlett

Cochran

BCT

.3? (.14)

.24 (.15)

.15 (.14)

k = 3

• 31 (.18)

• 24 (.17)

.21 (. 18 )

.44 (.18)

.26 (.17)

• 17 (.17)

5

.64 (.29)

• 32 (.27)

— (-24)

10

.44 (.28)

.28 (.25)

.25 (.23)

.64 (.38)

.36 (.32)

- (.30)

In this situation the mdf results are again considerably

2
larger than the sampling results for the two tests based on S ,

particularly for Bartlett's test. The results for Cochran's test

tend toward agreement as k increases from 3 to 5 to 10. The

agreement between the two types of results for the BCT test is

quite good.
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Discussion

It appears that for the situations considered here there is

little evidence of any appreciable difference in the robustness of

the four Cochran-type tests. Insufficient evidence is available'

at the present time on the properties of the mean deviation to in-

terpret the modified degrees of freedom results for the mean

deviation test but the few sampling results that are available do

indicate that it might have a slight advantage over the other

Cochran-type tests.

Among the whole group of' tests considered, Bartlett’s test

appeared to be the most non- robust overall. The max V_. / min V

tests appear to be relatively more robust overall than one might

intuitively expect. For n = 5 they seemed to be uniformly

superior for the two distributions considered. Whether or not

these results would carry over in any systematic manner to other

parent distributions is not readily apparent. It does appear at

this time that a knowledge of (3 alone is not sufficient to give

precise results, but by and large a knowledge of the value of

does seem to be sufficient to provide qualitatively correct infor-

mation on the types of departures one might expect.

i
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APPENDIX A: APPROXIMATIONS TO THE DISTRIBUTION OT' Pv
V

Introduction

Let X,, denote a random variable distributed as chi, the

positive square root of a chi-square variate. That is, let the

distribution of be given by

v-1 -Jx3

t (x) = — -r •

V -p>/ l \ ~ — I
p(sV)2

In this appendix we consider approximations to the distribution

of m

T = I ’

where the X^
j

are independently distributed as chi, each with

v degrees of freedom.

Four approximations are compared and it is shown that the

approximation based on a. scaled chi-square raised to a fractional

power provides very good accuracy. It is also shown that the

simple approximation provided by a scaled chi with the same

expectation and variance, jjrovides fair accuracy for values of

m and v that are not too small. These approximations are used

in the computation of approximate x>ercentage points for

Eisenhart ' s test for homogeneity of variance discussed in

Section 6.1.
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All four approximations are based on Pearson curves with the

same lower moments as T, since experience has shown (see for

example, Pearson 19&3) that this general method often provides

useful approximations to the distributions encountered in

practice. The basis for the particular distributions chosen as

approximations, is outlined below.



Moments

Let 4 = / Jv ) = /27^ r ( ) / T (

m

Then the lower moments of T « / (\^ / '/v

i=l

are given by:

196

E(T )
- mju

v

E(T
S

) = m 1 + (m-l)n
s
^"]

V(T) = m(l - M
V
S

)

E(T 3
) = inn, 3m -2 + l/v + (ra-l)(m-2)ju

N

3

j

l/v - 2 + 2nv

d-7^7^' V

V(T
a

)
= 2m l/v + (m~l)(l + 2 (m - 2 + l/v)/i^

- (2m - 3)nv
4

) j

role



Equate First Two Moments of T and HX. / J%~

In the first approximation, the distribution of T is

approximated by that of a scaled chi with the same first two

moments. The coefficients for this approximation are determined

by equating the first two moments of T and those of HX* / .

This method requires the solution for H and 5 of the pair of

simultaneous equations

my = HU;,

and

H~ = m + m(m-l)/i
3

.

v

The second equation may be solved for H explicitly then the

implicit equation

4^
= mv / H

must be solved for Here £ was found by Lagrangian

interpolation.
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Equate First Two Moments of T and H
2 c.

The second approximation is also based on the use of a

p
scaled chi, this time with the same first two moments as T It

is the easiest approximation to use since solutions may be

2 2
obtained in closed form. Equating E(T ) and V(T ) to

E(H
2
;x^) and V(H^xf) and solving for H and r\ yields

H
2

® m + m(m-l)jt/~

and

T) = SO* / V(T
2

).

The value of H is the same for both approximations.

Equate First Three Moments of T and K(x^)P

Cadwell (1953) 5ms found that the distributions of a

number of measures of dispersion can be approximated with improved

accuracy by the distribution of a fractional, power of a scaled

chi-square with the same first three moments. Let the moments of

(XJP he denoted by

r (SL±£\

\ = e L<V
P

r(f

)

Then the use of this method requires the solution of a pair of

non-linear equations in two unknowns, p and 7. The equations
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suggested by Cadwell are

cv^t) + i = -
rl

|
£.tirZ(iz.

)

^(p + ir)

and

*/p. (T )
• CV5 (T) + jSCV^T) + 1 = 13?)

1 r5 (p + iy)

where

cv(t) = v(t) / e
2
(t) .

A FORTRAN program was written to solve this pair of equations and

the coefficients obtained are outlined in Table A. 1. The constant

K was then obtained by identifying expectations of T and K(\^)^ .

Equate First Three Moments of T and Type I Fixed-Start Curve

The (0^,p o ) points of T fall in the Pearson Type I region

(see Figure A. l) so this type of curve was also considered. The

Type I fixed- start three-moment curve was used rather than the

Type I four-moment curve with floating terminals, since experience

has shown that the fixed- start curve generally provides a better

fit when the probability in the left tail is not neglegibly small.

(See editorial footnote, p. lk-3 to Le Roux, 1931*)

Let the Type I curve be defined by

g(y) = Cya
'1

(b-y) p
' 1

0 < y < b .

The following solution for the parameters a, p, and b was given

by Le Roux (1931, p.14?).
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Figure A.

1

Beta diagram showing the basis for the approximations. The points
for X fall on the curved line while those for fall on the
straight line on the lower left. The points for EXV fall along the
line connecting the point for a single Xv with the normal point

(0,3). The dashed lines connect the points of the scaled chi used
in the first approximation and those of the EX being approximated.
(The second chi approximation falls within plotting error of the
first.

)

The Type I area lies to the right of the X^ line.
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Let Y = E(T
2

) / E
2
(T)

and Y = E(T5 ) / [E(T) • E(T
2
)] .

Then the solution is given by

a =
2(Y

1
- Y

g
)

oy “ 7 Ti/ _ *y >

^ 2 * 1‘2 1

2(Y„ - Y )

P = - I
'

-T--1 * a >* T
1 2

and

t = e(t) .

a

Some Exact Results

For certain values of m and v it is possible to obtain rather

simple forms for P(T < t) . These results are outlined below.

v = 1, m - 2 Bland, et al. (1966 )

r =»£

F(T < t) = I 2§(t/*/2~) - 1 I

where as always

»y _i
r 1 pi

$(y) = (2tt) exp^-'gx
f
dx
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y = 1 , m = 3 Bland, et al. (1966)

p(t < t) = 8#(t/JT ) - 1 - uas (tAIT, l/XT, JT )

where s(h,a,b) is a function related to the trivariate normal

distribution. This function has been tabulated by Steck ( 1958 )

but the results given here based on the S function were actually

independently computed using the same method that Steck used in

the original computation of his tables. This procedure obviated

the need for three-way interpretation which would otherwise have

been necessary. His tables were used as a check on the program.

m = 2, v even

. y ( ^ x-dV^- 2* ,2n-2o-lx 2n-2j-2-t-l
( 21

)a

k=0 t=0

where a = "h/ v/2

and
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ni one larger than that for which closed form is available— — —^ ~— ... .... .. — . ..

When the c. d. f. is known for m-1, say H(z) where

m-1

the convolution formula

P(T < t) = H(t-y)g(y)dy
J 0

may be integrated by quadrature to obtain results for m. Here

g(y) denotes the p. d. f. of / */v~ . Theoretically this pro-

cedure could be carried on indefinitely, but practical limits are

soon reached.

Computations

The first four moments of T and of the approximations were

computed as well as several values of the cumulative distribution

function. Let \i = E(T) and cr
c

= V(T), then P(T < M + acr)

was computed for a = 1.5, -1.0, -.5, 0, 1, 2 for each of the

four approximations and for the true distribution where possible.

The results of these computations are summarized in the tables

below.
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Error Analysis for Cadwell Approximation

Computation of exact values of the cumulative distribution

function was feasible only in a few cases so in the evaluation of

the overall goodness of the Cadwell approximation we have had to

resort to a comparison of differences and an appeal to the

central limit effect. The following paragraphs outline the

basis for our conclusion that the Cadwell approximation improves

with m and gives at least four decimal place accuracy for most

of the values of m and v considered.

Pearson (1963) has observed that when the first four moments

of an approximation are set equal to the. corresponding true

moments, "the values of the standardized 5 ’ th and 6'th moments

do provide some guide to the degree of correspondence" of the two.

Since the moments become less reliable indicators as the order of

moment increases, it may be argued that if only the first two (or

three) moments of an approximation are identified, the values of

the standardized 3*2*1 and 4’th moments should provide an even

better guide to the degree of correspondence. In the Cadwell

approximation the first three moments were identified and the

standardized fourth moment, was used as a guide. The computed

values of p fell within . 04 percent of the true values for v = 2

through 10 and m less than 20. Most of this difference is due to

roundoff error and one would be forced to resort to double pre-

cision methods to reduce this figure significantly. For v = 1
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the (3,. differences were somewhat larger but decreased monotonically

with m, as is shown in Table A. 2 . There is reason to believe that

due to the central limit effect, the quality of the fit should im-

prove according to
,

as it appears to do when measured by the

R differences in Table A. 2 .

Table A. 2

Difference between the value of £L. for the Cadwell

approximation and the true value, for \; - 1 - The value

for the approximation was always the smaller.

in 2 4 5 10 20

Absolute . 0l4 .011 .009 • oo —

j
.003 .001

Percent . 40 .34 .27 .22 .11 .05

It is more difficult to directly evaluate the error in the

approximation to the cumulative distribution function. However

Table A. 3& does show that where the exact distribution of T is

known, the fit does improve with increasing m and v and at about

the same rate as indicated by the differences for v = 1.

On the basis of the above information it seems reasonable to

proceed on the assumption that the Cadwell approximation improves,

or at least does not get worse, with increasing m. If this

assumption is justified, the Cadwell approximation is sufficiently

accurate to serve as a basis for an evaluation of the three other

less accurate approximations included in this appendix.
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Error Analysis for Type I Approximation

It was originally hoped that the Pearson Type I curve would

provide a sufficiently accurate approximation to serve as a basis

for the evaluation of the chi approximations. However, such was

not the case. This approximation actually gave errors of roughly

the same order of magnitude as the chi approximations. Tables

A. 3b and A. 4 give an indication of the accuracy of this three-

moment approximation.

Error Analysis for the Scaled Chi Approximations

Two chi approximations were considered, one, denoted by

chi(T), in which the first two moments of T are identified with

the corresponding moments of the approximation, and the other,

2 2
denoted by chi(T ), in which the first two moments of T^ are

identified. The former proved to be slightly more accurate

especially in the lower tail which is important in the application

considered in Section 6.1. Tables A. 3c, A. 3d, A. 5, and A.

6

give

an indication of the accuracy of these two approximations.
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Table A. 4

Difference (X1000) between the Pearson Type I and Cadwell

approximations for the P(T < + ao).

a

m V - 1.5 -1 -.5 0 1 2

6 1
- l.o 1.1 2.5 1.4 -1.7 ca.01

10 1
- 0 .? .8 1.3 .5 -0.0 - 0.1

1
-0.0 .6 .<5 .2 -0.6 .

7

4 2 *ci 1.1 1 .R .8 -1.4 - o.i
1 o 7 c•c1 .7 .7 . 7 -o

. ^ A

70 7 .0 .0 .0 . 1 -0.7 •

7 0 - 0.7 1 .4 2.6 1 . 7 -1 .o -o .
*>

9 4 .0 .4 .7 . 1 -0.4 . o

2 5 •c1 1 . 1 1.6 .6 -1 . 7 - 0.0
4 6 .0 .6 .8 . 7 r

-•ci A
•

10 9 .0 .0 .0 . 1
-0.7 A

20 5 .0 .1 .2 .0 - o.i . 0

4 TO .0 .0 . 4 . 1 -0.4 I A.

1 o 1.0 .0 . 1 .2 .0 -0.1 .
O
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Table A. 5

Difference (X1000) between the chi(T) and Cadwell

approximations for the P(T < (j, + ao)

a

m V -1.5 -1 -.5 0 1 2

3 1 3.8 1.8 -2.4 1 . o -1.2 1.7
in 1

- 2.6 .0 -2.4 -4.3 -0.7 1.8
20 1 1.8 .8 -2.0 -3.3 -0.4 1.2
4 2 1 .6 . 6 -1.4 -2.6 -0.4

10 2 1.1 .7 -1.2 -2.0 rv.cl .8
7n ? .7 -0.9 -1.8 -0.1 .6
7 2 .0 .4 -0.7 -1.4 -0.7 .8
fl 4 • 4 . 1 -0.3 -0.9 -0.1
7 3 .4 .1 -0.4 -0.7 -0.1 .7

4 3 . 4 .1 -0.8 -0.8 -0.1 .7
10 5 .2 .0 -0.4 -0.6 c.c1 .2

3 .2 .0 -0.3 -0.4 -0 .

0

.2

4 10 .7 .1 -o.i -0.3 -o.l . 1

10 10 .1 .0 -o.l -0.2 -0 . 0 . 1

Table A.

6

p
Difference (X1000) between the chi(T ) and Cadwell

approximations for the P(T < p, + acr)

m V -1.5 -1.0 -.5 0 1 2

6 1 6.7 6.0 1 .4 — 7.? -2.8 .8
10 1 4.7 7.3 -0.3 -3.3 -1.0 . 8

2n 1 7.6 1.7 -0.9 -3.0 -1.1 .8
4 7 7.6 7.7 -0.0 -7.0 -1.2 .4

1 o 7 1 .6 1.0 -0.6 -1.8 -0.7 .8

70 7 1 .0 .8 -0.6 -1.4 -0 .

4

• 4

7 8 1 .6 1 .4 .7 -1.0 -0.7 . 7

8 4 .6 . 3 .c1 cc
.cl rv.cl . 7

3 6 .7 .8 -0.1 -0.6 -0.3 . 1

4 3 .6 .4 -0.3 -0.7 -0.3 . 7

10 8 .4 .7 -0.3 -0.6 -o.l .7
70 3 .2 . 1 -0.3 -0.4 -o.l . 1

4 10 .7 .1 -o.l -0.3 -O.l . 1

10 10 . 1 .0 -0.1 -0.2 -0.0 . 1

vC

if

P

P
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Discussion

Four approximations tc the distribution of T = / W
have been compared and it has been shown that the fractional

powered scaled chi approximation in which the first three moments

are identified with those of T provides a very good fit. The other

three approximations are an order of magnitude less accurate. Of

these three the Pearson Type I approximation based on a three-

moment fit is slightly more accurate but it would seern to be

significantly less tractable. For small values of rn and v the

o
chi(T) approximation is slightly more accurate than the chi(T )

approximation but its parameters are more difficult to compute.

Thus the choice between these two chi approximations each based

on an identification of two moments, would have to be made on the

basis of the needs of a particular problem.
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APPENDIX B. ALTERNATIVES TO THE PCWER FUNCTION

Abstract

There has recently been a rekindling of interest in non-

asymptotic alternatives to the power function as a means of

judging the relative goodness of statistical tests. Hogben,

Pinkham, and Wilk (1962), Hogben (1963) and Dempster and Schatzoff

(1965) have proposed the use of the expected significance level

and Geary (1966) has recently proposed the average critical value

and the median critical value. The purpose of this appendix is to

introduce two more criteria termed the ’’median significance level”

and the "significance level of the average” and to illustrate by

means of some simple examples the relationships among the various

measures.
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Introduction

The power function (Neyman and Pearson, 1936) of a test of

Hq

:

0 = for fixed sample size n, is usually expressed as a

function of the parameter 0 for fixed size of test Oh Let T be a

test statistic for testing such that is rejected if T is too

large and let t be such that P(T > t
j
0 )

= Q! . Then the power
LX v_X

function for the test of size o: is equal to P(T > fi) . We

assume throughout that the test statistic has a continuous dis-

tribution and that the set of alternatives is indexed by a scalar

parameter^ .

If the power function is thought of as a family of curves,

one for each cc, then the power function contains "all" of the

information about a test. The most important defect in the power

function is, however, a practical one. It is usually very diffi-

cult to compute the distribution of the test statistic 'under the

alternative hypotheses and a large 2-way (or multi-way) table is

required if information about more than one value of OL is needed

«

When 0 is a vector parameter the problem is usually compounded

(except when the alternative reduces to a single non- centrality

parameter as, for example, in certain y
3 tests).
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Asymptotic approaches to the comparison of tests, which do not

require the whole power function, have been suggested by Pitman

(19^+8), Chernoff (1952), and Bahadur (i960). These have proven

useful in certain contexts, though by their very nature are not

fully satisfactory in others s In the framework of decision theory,

other approaches to the comparison of tests have been suggested

(Wald, 1939) but are beyond the scope of the present work.

Average Critical Value

Geary (1966), continuing in the "Neyman- Pearson" framework,

introduced the average critical value (ACV) concept as a simple

practical means of comparing tests whose power functions art: not

known. The ACY of a test for a given a is the value of 0 for

which the expectation of the test statistic is equal to the

critical value under the null hypothesis. That is, for an nope -

.

-

'X- -X-

tailed test of of size a9 the ACY = 6 ,
where 0 is the

solution of the implicit equation

Figure B.l illustrates this definition if one imagines the al-

(3 ,1)

where = e(t|9) .

ternative being chosen so that \i is identical to t .
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The ACV is a function of a and takes on values 9 in the

parameter set. It is a single-valued function only for tests

that are essentially one-sided. It is not uniquely defined for

hypothesis testing problems in which the set of alternatives

corresponds to a vector parameter.

Geary also suggested another measure which may be called the

median critic al value (MCV). The MCV is analogously defined to

be the value of 9 for the alternative under which the median

of the test statistic equals the a critical value. In functional

notation, the MCV is defined as the solution 0 of the implicit

equation,

(B.2) = t ,^9 a 9

where is such that
9

p(t > s
0
|e) = |

.

This definition is illustrated in figure E.i if one imagines the

alternative being chosen so that is identical to t .

u CX
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Figure B.

1

An illustration of the definitions of Geary’s "average critical
value" and the "median critical value. " Imagine the alternative H

-

being chosen so that jig or coincides with t^ . Then uhat value’

of 0 is the ACV or MOV, respectively.

Figure B.

2

A hypothetical example showing the distribution of the "observed
significance level" under H~ and under a given H Q . The values of

u 0

the "expected significance level" and the "median significance
level" are also shown.

S S

L L



Expected Significance Level

For "those statisticians who regard tests of significance as

tools for statistical inference rather than procedures for accept-

ing or rejecting hypotheses," Hogben, Pinkham, and Wilk (1962),

Hogben (1963), and Dempster and Schatzoff (1965) have suggested

that the distribution of the "observed significance level" can

serve as a complete alternative to the power function „ To quote

Hogben; "This point of view, which is independent of a prechosen

probability of Type I error, provides a means other than power

for describing and assessing the properties of a test of

significance <>

"

Let T denote a test statistic with continuous density f^(t)

under the null hypothesis H^, and suppose that is such that an

unusually large observed value of T would cast doubt upon the

validity of H . For an observed value of the test statistic T,
/-VN

let X

T

f^(t)dt o Then X is the observed significance level ,

and is a random variable » Under the null hypothesis, H^, X is

distributed uniformly on (0,l) but under an alternative hypothesis

Hg ,
smaller values of X are more probable. Figure Bo 2 illustrate

how the distribution of the significance level might look for a

given alternative
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Since the distribution of the significance level is difficult

to manage and leads to the same problems of tabulation as the

power function, Hogben proposed that the expectation and variance

of the significance level be used as partial characterizations of

its distribution.

Dempster and Schatzoff, following essentially the same

argument as Hogben but emphasizing the problem of the choice of a

test statistic rather than the assessment of the properties of a

single test, note that a comparison of the distributions of the

significance levels of two competing tests does not always force

the choice of a test statistic . Whereas Hogben had suggested

that the first two moments might serve to partially characterize

the distribution of the significance level, they suggest that if

a single criterion is desired, the first moment or expected

significance level (ESL) might be a good choice.

Convenient expressions for the ESL are given by

(B.3) ESL = 1 -
J

F
0
(x)fg(x)dx

and

(B.4) ESL = P(T > Tj
U u

where T„ is distributed according to f. and T Q is independently

distributed according to fg ,
the density of the test statistic

under the alternative 9. F^(x) is the cumulative distribution
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function of T . Dempster and Schatzoff also showed that 1 - ESL

was equivalent to an unweighted average of the power function over

all values of a.

The Median Significance Level

The median significance level (MSL) for a given alternative

hypothesis, , is analogously defined to be the median of the

distribution of the significance level under the given alternative.

That is, if X is defined as in the previous section and if is

such that

P(X < s„|h
9

) = \ ,

then the

MSL = C
0

•

This definition is illustrated in figure B.2.

The concept of the MSL is a natural outgrowth of the concept

of the ESL and seems to have at least one important advantage over

the ESL procedure, namely ease of computation. It is shown below'

that for one-sided tests, computation of the MSL requires a

knowledge of the alternative distribution only to the extent of

knowing the median of the test statistic. The MSL like the ESL

is a function of the parameter 9 and the values it assumes are

probabilities (significance levels).
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One important advantage that the ESL and M8L have over the

ACV, MCV and power function is the use of the '"built-in-metric'
1

intuitively available to those who are accustomed to thinking in

terms of observed significance levels. The hope is that this

method of thinking will be more closely akin to that actually

used by many practicing statisticians.

The M3L also has all the advantages (and disadvantages) rel-

ative to the ESL that the median has relative to the mean as a

measure of location of a highly skewed distribution. Since the

distribution of the significance level is typically highly skewed

for even moderately distant alternatives, this is no small point.

Some of the examples below illustrate this quite dramatically.

The following theorem is relevant.

THEOREM: If

(I) f
o (V y) -Wy)

and

(ix) Wy) -Wy)

hold for all y > 0, then

ESL(9) > MSL(B) .
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Figure B.

3

The ESL is greater than the MSL if P(A) > P(d) since the

ESL = P(A) + P(B) + P(C) and the MSL = P(b) + P(c) + P(d).

i

(

t
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PROOF: The proof is immediate by noting in figure B.3

that ESL = P(a) + P(B) + P(c)

and MSL = P(B) + P(C) + P(D),

so ESL > MSL if P(A) > P(D).

But by condition (II) above, P(B) > P(D) and by condition (i),

P(A) > P(B).

Condition (i) holds, for example, when f,_ is unimodal and

symmetric. From the examples it would seem that a much more

general result could be established, but this has not yet been

done.

The ESL and MSL are completely general in the sense that

investigations based on them may be applied to any test, whereas

the ACV and MOV are single valued functions only for one-sided

tests, and are not uniquely defined for vector-valued parameters.

However, one-sided tests of scalar-valued parameters occupy an

important position in statistical methods, so this is not a

prohibitive constraint.

Defining X, and Cq as before, and continuing to restrict

attention to upper- tailed one-sided tests, it follows that

MSL = C
9

= 1 - F
q (?g

) = P(T > B
9
|H

0 ) .

Thus, the median of the test statistic rather than the median of

the significance level may be used in MSL computations, and the

more troublesome distribution of the observed significance level
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can be avoided entirely. This is true for one-sided tests since

medians (and other percentiles) are preserved under monotonic

transformations, though means are not.

The following computational procedure for the MSL for one-

sided tests may be found useful:

1. Specify H^, Hq, n, and test statistic T.

2. Find the median of T under the alternative Hn .

3. Then the MSL - PjT > (for lower-tailed test

reverse inequality)

.

It is now seen that the MSL (function), even though arrived

at by an entirely different argument, is in reality the inverse

function of Geary's MCV (function). That is, the value of the

MSL for an alternative 9, is the significance level that has a

value of the MCV equal to 9. The implicit equation §L = t is
u cx

solved for 9 to find the value of the MCV for a given a or solved

for a to find the value of the MSL for a given 9.

This observation leads us to suggest the following compromise

criterion.

Tiie Significance Level^ of the Average

The median significance level (function) of the preceding

section is seen to be more readily computable than the ESL

(function) at least for one-sided tests, while sharing the ESL’s

jjrincipal advantage of the use of the ’’built-in-metric .

” However,
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the MSL (or equiva-lently the MCV) is still more difficult compu-

tationally than the ACV since, as Geary has pointed out, the

median of the test statistic under an alternative is usually more

difficult to obtain than the mean.

Let the significance level of the average (SLA) be defined as

the inverse function of the ACV (function). That is, the implicit

equation - t is solved for oc to find the value of the SLA for

a given G or solved for 9 to find the value of the ACV for a given

a. Alternatively, the SLA may be thought of as the significance

level attained by a test when its test statistic T assumes the

value Uq ,
the expectation of T for a given alternative hypothesis

H
e

•

Then the SLA. has the computational simplicity of the ACV while

making use of the "built- in-metric” of the ESL and MSL. The MSL

and SLA are identical for situations where the test statistic has

identical mean and median for all 0 (e.g., symmetrical distribu-

tions) and the MSL is greater than the SLA when the distribution

of the test statistic under the alternative is skewed toward the

rejection region (e.g., for upper-tailed tests, when p^ > §q).

Examples are given below showing some relationships among the

measures for some common tests.
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1. The following expressions are interesting to compare:

ESL = P(T
0 > T

fl
)

MSL = P(T
0 > 5

q
)

SLA = P(T
q > ju

fl
) .

2, The ACV end its inverse function, the SLA, are not invariant

under non-linear transformations of the test statistic,

though the ESL and MSL are.

5 . The MSL may be thought of as answering the question*

'at what significance level do I have a 50-50 chance of

rejecting the hypothesis if the true situation is as given?"

That is, the MEL is the signific ance level for which there is

power b at .

4. Similarly the MCV may be thought of as answering the question:

"for which alternative do I have a 50-50 chance of rejecting

the hypothesis at the a level?"

That is, the MCV is the alternative (parameter value) for which

there is power J at level a.

5. The MCV concept is formally the same as Hamaker's (1950)

"point of control 1 or "indifference quality" concept in

acceptance sampling. He has proposed that sampling plans be

classified according to the percent defective that has

probability of acceptance equal to i.
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If fn is symmetric and fQ differs only by a location
u y

parameter, then 1 - MSL(9) is equal to the power at 9 for

a . 5 .

7. Let and denote the test statistics of two competing

tests and let E(T^^|9) = 9 for all 9, j = 1,2. Then if

t < t^^ for all OL the ACV (or SLA) criterion will

always indicate that the test based on is superior to

the test based on T' . However, Sundrum (1954) has shown

that, under the above conditions, the test based on T^
1 '

is not necessarily always more powerful than the test based

on for all a. If ^ 2
^ = 9 for all 9, an

analogous result holds for the MCV (or MSL) criterion.

8. Generalization: Any other percentile (say the p’th) of the

distribution of the significance level could be used to

obtain the ”p’th percentile significance level.” That is,

the significance level that would be exceeded p percent of

the time.

Examples

The following examples are given to indicate the general

methods involved and as a means of comparing the several criteria.

They are stated in terms of the ESL, MSL, and SLA but may be

readily interpreted in the ACV and MCV framework as will be

illustrated.
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Example 11 (Figure B.4)

f
T
(x) = t”

1
exp{-x/T} 0 < x < *

V T = 1

H
9

: t = 9 > 1

Choose n = 1 and upper-tailed test based on X. Then the relations

exp
{ -*0 }

= a

U
e

= 0

and

exp{-?
0
/ 0

} = \

define t
,

and . Using (B.l)
Oi o u

and solving 9 = -/n(a)

-9
for Oi yields SLA = e

and for 9 yields ACV = -tn(a) .

Now using (B.2) end solving

9 tn(2) = -tn(a)

A

for a yields MSL = ( ^ ) ,

and for 9 yields MCV = -£n(a)/*bn(2) .

Equation (B.4) me.y be used to find

ESL = 1/(1 + 9) .
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Figure B.4-

Upper tailed test for scale parameter of exponential distribution

( n= 1 )

.
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These results are shown graphically in figure 33.4 and may be

interpreted in the ESL-MSL-3LA framework by fixing 0 and reading

the significance level (a) or in the ACV-MCV framework by fixing

a and reading 9.

Example 2: (Figure B.5)

fv
(x) = (2n)“k expj-t(x-v)3

j
< x < 00

H
q

: v=0

H : v = e > o .

Choose n =1 and an upper-tailed test based on X.

pX

Let $(x) = f (x)dx
J u

then t = $ ^(l-a), where F
1

in general denotes the inverse

function of F.

Here 4 u
8

9 •

So the MSL = SLA is found by solving

9 = §~ 1 (l-a) for a.

Hence MSL = SLA = 1 - $(9) = $(-9) .

We now need the following well known

Lemma: If X,A and X., are independently distributed as cr^
)

and N(m 1?
CTp

3
), i.e., X. has p.d.f.

(2rra 3 )"" exp{-^'
}

i

-» < x < 03



Figure B.

5

Upper tailed test for mean of normal distribution (n=l).



then,
- u •

p(x
o
> x

i) = <TT= ) •

^o
+ *1

(The lemma is an immediate consequence of the fact that a linear

combination of normal random variables is normally distributed.)

Since ESL - P(X^ > Xg), we in the present example that

ESL = <
- 0 ^

J 2
J

These results are shown in figure B.5.

Example 3: (Figures B .6 and B.7)

1 r . v v> 3^

f(x) = ( 2rr<f
3 y* exp|-i(^~)

j
-® < X < ®

Hp : cr = f) > 1 .

Choose n - 5 and upper- tailed tests based on:

5

(1) s
3

= l<x
i

- X) 3
/ (n-l)

i=l

( 2 ) 3 = Vs s

(3) R = X
max

X .

min
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Figure B. 6

Upper tailed test for a from normal distribution (n~5)



234

Figure B.

7

Upper tailed test for a from normal distribution (n=5) : a

comparison of S and R.

. 001 . 005 .01 . 05 . 10 . SO

Significance levels of R
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Then

-Oft®
SIA(S

2
) = (1 + 2Q

3
)e

SLA(S) = (1 + 1.76792 )e
" 1,767e3

SLA(H) = P(B > 2 . 3260
!
or = l)*

MSL(S3
?
S) = (1 + 1.6789s

)e
-1, 67898

MSL(R) = P(R > 2.25791 <T = 1)

ESL(Sa ,S) = P(S^ > S a
) = P(F^ > 9

s
) = (1 + 39

s
)/(l + 9

3
)

3

R
^ ^

ESL(R) = P(R
Q > R

0
) = P(^ > 0)

The different type of plot shown in figure B.7 was obtained

by plotting the ESL(S3
) vs. ESL(R); MSL(S3

) vs. MSL(r); etc.

Example 4: (Figure B.8)

f^(x) = (2rr)~~ exp|-^(x-v) 3

|
< x < 03

V v = 0

H
0

: v = 9 > 0 .

Choose upper-tailed tests based on

n

(1) X = ^ X^/n

i=l

(2) X = median X

* Table look-up in Harter and Clemm (1959)*

** Table look-up in Harter (1963).
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Figure B.

8

MSL(x) vs. MSL (median) for normal distribution. From top to

totton n = 3* 5; 11; 00 .
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Since both test statistics have symmetric distributions the

MSL ^ SLA. The details of computations are not included here but

the method may be outlined as follows:

(1) Eisenhart, et al. (1963) table of percentage points

of the sample median was used to find the alternative

corresponding to a given MSL (its MCV), for the test

based on the median.

(2) Tables of the normal probability integral were then

used to find the MSL corresponding to that alternative,

for the test based on the mean.

(3) The asymptotic values for the MSL and ESL were found by

using the limiting normal approximation to the distribu-

tion of the median.

The two tests may also be easily compared for large sample sizes

using the ESL criterion. In this example (for large n) the ESL

curve fell within plotting error of the MSL curve. The asymptotic

expressions for the ESL and MSL are:

ESL(X) = * (oik )

MSL(X) = $
r -9/r >
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Discussion

Two relatively simple means of assessing the properties of

statistical tests have been introduced and some examples have been

given illustrating their usage. In many cases where it is imprac-

tical to compute a substantial portion of the power function, the

MSL-MCV or SLA-ACV curve may be a useful, compromise. It is

believed that the use of the ''built-in-metric,” made possible by

the ESL, MSL, or SLA, may provide a useful alternative way of

looking at the properties of statistical tests.

The entire distribution of the observed significance level is

in general unmanageable and if one chose to use the distribution of

the significance level approach, rather than the traditional power

function approach, one would likely be reduced to a tabulation of

its percentage points. This is seen to be equivalent to tabulating

the significance level for which there is power P. If F = .50 the

MSL is obtained.

In the examples given, the ESL behaved in a different manner

from the MSL or SLA, The ESL is known to be equivalent to an un-

weighted average of the power function and its interpretation is

difficult.

On idiots of the type depicted in figures B.7 and B.8, the

behavior of the ESL is more nearly like that of the MSL suggesting

that for comparative purposes, the two measures would tend to give

more similar results.
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Figure B.8 provides an interesting look at the behavior of the

MSL for two competing tests. Perhaps the most striking feature of

the plot is the rapidity with which the results become asymptotic. :

Put another way, in this example, asymptotic results are seen to be

applicable to relatively small sample sizes.

Figure B.9 provides a way of looking at the relationships be-

tween the power, MSL and MCV functions. The MCV value for a given

value of a is the 9 corresponding to the intersection of the Q

curve and the power = .50 horizontal line. The MSL value for a

given value of 9 is the value of a for the power curve that passes

through the intersection of the power = .50 and 9 lines. The

same probability scale may be used to plot the MSL curves and

power as shown.
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Figure B.

9

Relationship between power, MSL and MOV for a hypothetical example.

MCV
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The Median Significance Level and Other Small
Sample Measures of Test Efficacy

Handout for IMS Meeting, Washington, D. C. 12/28/67
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Figure la

An illustration of the definitions of Geary’s ’’average critical
value" and the "median critical value." Imagine the alternative Hq
being chosen so that

pg
or coincides

.
with tg . Then that value

of 0 is the ACV or MOV,, respectively.
j

— _Figurec-lb--— 1
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A hypothetical example shoving the distribution of the "observed
significance level" under Hq and under a given The Values of

the "expected significance level" and the "median significance
level" are also shown. !
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Figure 2

Upper tailed test for a from normal distribution (n=5)
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Figure 3

Upper tailed test for a from normal distribution (n=5) : a

comparison of S and R.





Figure 1+

MSL(x) vs. MSL '(median) for normal distribution. From top to
botton n = 3, 5, 11, « .








