NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT NBS REPORT
 3110107
 October 19, 1970

COMPLEX DIELECTRIC CONSTANT AND DISSIPATION FACTOR OF FOLIAGE

by
Martin G. Broadparst
Polymer Dielectrics Section, 311.01
Polymers Div sion
\section*{Report For}
U. S. Naval Ordnance Laboratory
Inter-Agency Project Order No. P.O.7-0011

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.

COMPLEX DIELECTRIC CONSTANT AND DISSIPATION FACTOR OF FOLIAGE
 A Report Prepared for the U. S. Naval Ordnance Laboratory Under Inter-Agency Project Order \# P. 0. 7-0011

by

Martin G. Broadhurst
Polymer Dielectrics Section, 311.01
National Bureau of Standards

$$
\begin{aligned}
& =\begin{array}{r}
1 \\
-1
\end{array} \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \begin{array}{c}
1 \\
1 \\
1 \\
1 \\
-\quad 1 \\
-\quad 1
\end{array} \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1
\end{aligned}
$$

DIELECTRIC CONSTANT AND LOSS FACTOR OF FOLIAGE

Introduction:

This report presents data on the dielectric properties of living foliage, plant material, and clay soil. This data is of potential value to investigators concerned with the effects of plant material and earth on electromagnetic radiation at radio and microwave frequencies. The report includes a description of the measurement theory and equations, experimental apparatus and techniques, a calibration check using water as a reference material, a discussion of sources of error and experimental data on a variety of specimens at $23^{\circ} \mathrm{C}$ and over a frequency range of $10^{5} \mathrm{~Hz}$ to $4.2 \times 10^{9} \mathrm{~Hz}$. Estimates of precision, calculated from experimental data, are presented at representative frequencies. Theory of Measurement:

The measurement of dielectric constant of a material at frequencies up to about $10^{10} \mathrm{~Hz}$ (cycles per second) is conveniently related to the measurement of the admittance of a coaxial cylindrical transmission line with a specimen of the material occupying some of the space between the coaxial conductors. The characteristic admittance of a section of the line filled with a material of relative complex dielectric constant $K^{*}=K^{\prime}-J K^{\prime \prime}$ and relative complex permeability μ^{*} is given by,

$$
\begin{equation*}
Y_{K^{*}}=2 \pi\left(\frac{\kappa^{*} \epsilon_{0}}{\mu^{*} \mu_{0}}\right)^{3 / 2} \quad(\ln B / A)^{-1}, \tag{1}
\end{equation*}
$$

and the propagation constant $\gamma_{K^{*}}$ of this section is given by,

$$
\begin{equation*}
\gamma_{\kappa^{*}}=j \omega\left(\kappa^{*} \epsilon_{0} \mu^{*} \mu_{0}\right)^{1 / 2}, \tag{2}
\end{equation*}
$$

where ϵ_{0} and μ_{0} are the permittivity and permeability of vacuum, A and B are the radil of the inner and outer conductors \because of the line, $j=\sqrt{-1}$, and ω is the angular frequency of the electromagnetic radiation which is assumed to be low enough to propagate in the TEM mode only.

The admittance Y_{M} at point M in the line (see figure 1) can be expressed in terms of the admittance Y_{L} at point L and the characteristic impedance and propagation constant of the line by the relationship [1] ${ }^{2}$:

$$
\begin{equation*}
Y_{M}=Y_{K *} \frac{Y_{L}+Y_{K}{ }^{*} \tanh \gamma_{K} *^{\ell}}{Y_{K *}+Y_{L} \tanh \gamma_{K *^{\ell}}} \tag{3}
\end{equation*}
$$

where l is the length of line between M and L.
Referring to figure 1 we assume a uniform line opencircuited on the right and with a sample of thickness ℓ_{s} inserted in the line. The fringing field at the end of the line must be taken into account either by assuming a load capacitance at the line end or by assuming that the open is located a short distance (determined by measurement) beyond the line end.

1 Numbers in brackets refer to references listed at the end of this report.

Using this latter approach we define ℓ_{1} to be the length from this effective open position to the front (left hand) face of the sample.

Using equation (3) for Y_{1}, with a load admittance of zero, and a characteristic admittance Y_{0} and transmission coefficient γ_{0} for air (same as equations (1) and (2) with $K^{*}=\mu^{*}=1$) we get

$$
\begin{equation*}
Y_{1}=Y_{0} \tanh \gamma_{0}\left(\ell_{1}-\ell_{s}\right) \tag{4}
\end{equation*}
$$

If we now transform this admittance Y_{1} through the sample, again using equation (3), we get

$$
Y_{L}=Y_{K} \frac{Y_{0} \tanh \gamma_{0}\left(\ell_{1}-\ell_{S}\right)+Y_{K} \tanh \gamma_{K * \ell}}{Y_{K *}+Y_{0} \tanh \gamma_{0}\left(\ell_{2}-\ell_{S}\right) \tanh \gamma_{K} \ell_{S}}
$$

Substituting $Y_{K^{*}}=Y_{0}\left(-\frac{K^{*}}{\mu^{*}}\right)^{1 / 2}$ and $\gamma_{K^{*}}=\gamma_{0}\left(K^{*} \mu^{*}\right)^{1 / 2}$ and simplifying,

$$
\begin{equation*}
Y_{L}=Y_{0} \frac{\tanh \gamma_{0}\left(\ell_{1}-\ell_{\mathrm{S}}\right)+\left(\frac{\kappa^{*}}{\mu^{*}}\right)^{1 / 2} \tanh \gamma_{0}\left(\kappa^{*} \mu^{*}\right)^{1 / 2} \ell_{\mathrm{S}}}{1+\left(\frac{\mu^{*}}{\kappa^{*}}\right)^{1 / 2} \tanh \gamma_{0}\left(\ell_{1}-\ell_{\mathrm{S}}\right) \tanh \gamma_{0}\left(\kappa^{*} \mu^{*}\right)^{1 / 2} \ell_{\mathrm{S}}} \tag{6}
\end{equation*}
$$

This equation becomes much more tractable if the arguments of the tanh can be kept small. Writing $\gamma_{0}=j \frac{2 \pi}{\lambda}$ where λ is the radiation wave length in air, consider the size of the arguments $f \frac{2 \pi}{\lambda}\left(\ell_{1}-\ell_{S}\right)$ and $\frac{2 \pi \ell_{S}}{\lambda}\left(\kappa^{*} \mu^{*}\right)^{1 / 3}$ in equation (6). The smallest wave length we will use in the measurements reported here is 7.1 cm (corresponding to the maximum frequency of 4.2 GHz). The value of ℓ_{S} is kept below 0.04 cm and ℓ_{1} is measured to be about 0.3 cm (measurement described on page 9). Hence the maximum values of the above arguments are

$$
\frac{2 \pi\left(\ell_{1}-\ell_{S}\right)}{\lambda} \left\lvert\, \max \cong \frac{2 \pi x 0.3}{7.1} \cong 0.26\right.
$$

and for $k^{*} \sim 50(1-0.3 \mathrm{j})$ (gotten from the measured high frequency data) and $\mu^{*} \sim 1$ (for non-magnetic materials)

$$
\frac{2 \pi \ell_{\mathrm{s}}}{\lambda}\left(\kappa^{*} \mu^{*}\right)^{1 / 2} \max \cong \frac{2 \pi \times 0.04 \times 7}{7.1} \cong 0.25
$$

It is true that k^{*} becomes larger at lower frequencies but λ becomes large much faster than $\sqrt{\kappa^{*}}$ and this latter argument becomes smaller than 0.25 . Letting u^{*} represent the complex quantity $(x+j y)$, we can expand the tanh u^{*} as follows:

$$
\tanh u^{*}=u\left(1-\frac{u^{* 2}}{3}+\ldots .\right)=x\left(1-\frac{x^{2}}{3}+y^{2}+\ldots\right)+j y\left(1-x^{2}+\frac{y^{2}}{3}+\ldots\right)
$$

We see that the largest error due to dropping all terms but the first in the tanh expansions in equation (6) is of the order of $(0.26)^{2}$ compared to 1 , or about 7%. This error is much less than the accuracy required of the se measurements and we can approximate equation (6) by,

$$
\begin{equation*}
Y_{L}=Y_{0} \frac{\gamma_{0}\left(\ell_{1}-\ell_{\mathrm{S}}\right)+\kappa^{*} \gamma_{0} \ell_{\mathrm{S}}}{1+\gamma_{0}^{2} \mu^{*} \ell_{\mathrm{S}}\left(\ell_{1}-\ell_{\mathrm{S}}\right)} \tag{7}
\end{equation*}
$$

By the arguments above we can also neglect the second term in the denominator (remembering $\mu^{*} \cong 1$ for the non-magnetic samples measured in this study), and introducing $K^{*}=K^{\prime}-j K^{*}$ we find,

$$
\begin{equation*}
Y_{L}=Y_{0} \quad \gamma_{0}\left[\left(\kappa^{\prime}-1\right) \ell_{\mathrm{S}}+\ell_{1}-j \kappa^{\prime \prime} \ell_{\mathrm{S}}\right] \tag{8}
\end{equation*}
$$

It may be comforting to the reader who is more familiar with lumped circult measurements to show a correspondence with our linearized transmission line equation. One can replace in equation (8) $Y_{0}=\sqrt{\frac{C_{0}}{L_{0}}}$ and $\gamma_{0}=j \omega \sqrt{L_{0} C_{0}}$ where L_{0} and C_{0} are the capacitance and inductance per unit length in air. This gives,

$$
\begin{equation*}
Y_{L}=j \omega C_{0}\left[\left(\kappa^{\prime}-1\right) \ell_{\mathrm{S}}+\ell_{1}-j \kappa^{\prime \prime} \ell_{\mathrm{S}}\right] \tag{9}
\end{equation*}
$$

Thus the admittance of the part of the line occupied by the sample is just the capacitive susceptance of the empty line enhanced by the relative complex dielectric constant K^{*}. This simplification results from being able to use very thin specimens in this case single thicknesses of leaves - and has been previously described under the name "thin sample method"[2].

We now go to the other part of the problem - getting Y_{L} in terms of measured quantities. We will consider the low frequency bridge measurements and the hign frequency slotted line measurements separately.

For a bridge measurement such as we have used from $10^{5} \mathrm{~Hz}$ to 250 MHz we actually measure the capacitance and conductance of the coax line at point M. We can calculate the capacitance and conductance at point L by using an inverted form of equation (3),

$$
\begin{equation*}
Y_{L}=Y_{0} \frac{Y_{M}-Y_{0} \tanh \gamma_{0} \ell}{Y_{0}-Y_{M} \tanh \gamma_{0} \ell} \tag{10}
\end{equation*}
$$

For a lossless Ine $\tanh \gamma_{0} \ell=j \tan \beta \ell$ where $\beta=2 \pi / \lambda$. Substituting $G+j \omega C=Y$ for both Y_{L} and Y_{M} and equating real and imaginary parts we find
$G_{L}=G_{M} \frac{1+\tan ^{2} \beta \ell}{1+2 \frac{\omega C_{M}}{Y_{0}} \tan \beta \ell+\frac{G_{M}^{2}+\left(\omega C_{M}\right)^{3}}{Y_{0}^{2}} \tan ^{2} \beta \ell}$
$C_{L}=C_{M} \frac{1-\tan ^{2} \beta l+\frac{\omega^{2} C_{M}^{2}-Y_{0}{ }^{2}+G_{M}^{2}}{Y_{0} \omega C_{M}} \tan \beta \ell}{1+2 \frac{\omega C_{M}}{Y_{0}} \tan \beta \ell+\frac{G_{M}{ }^{2}+\left(\omega C_{M}\right)^{2}}{Y_{0}{ }^{2}} \tan \beta \ell}$
For the slotted line, if we know the position of a minimum with an open circuit at I then we can calculate the admittance Y_{I} of any load at L from the shift in the minimum and the voltage standing wave ratio due to the load. See figure l. Again we can use equation (10) to get Y_{L} in terms of Y_{M}. Since Y_{M} is real (probe at a minimum) and equal to G_{M}, and $\&$ is some odd multiple of quarter wave lengths less the shift $x e$, and remembering that $\tan \left(\frac{\pi}{2}-x\right)=\cot x$ equation (10) reduces in this case to

$$
\begin{equation*}
Y_{L}=Y_{0} \frac{\frac{G_{M}}{Y_{0}}-J \cot \beta \Delta \ell}{1-J \frac{G_{M}}{Y_{0}} \cot \beta \Delta \ell} \tag{13}
\end{equation*}
$$

The ratio $\frac{G_{M}}{Y_{0}}$ is the measured voltage standing wave ratio, r. Multiplying through by tan $R \Delta l$ and separating real and imaginary parts we get for the conductance and capacitance at L,

$$
\begin{align*}
& G_{L}=Y_{0} \frac{r\left(1+\tan ^{2} \beta \Delta l\right)}{r^{3}+\tan ^{2} \beta \Delta l} \tag{14}\\
& C_{L}=\frac{Y_{0}}{\omega} \frac{\left(r^{2}-1\right) \tan \beta \Delta l}{r^{2}+\tan ^{2} \beta \Delta l} \tag{15}
\end{align*}
$$

Before writing the final working equations we shall introduce one further complication into equation (9). Because a leaf has such a high dielectric constant (similar to that of water) the effect of an air gap between the sample and holder is severe. That is, the sample can be considered a large admittance in series with a comparable size gap admittance and the series combination is a considerably smaller admittance. To reduce the air gap errors it was decided to measure the leaves immersed in water, thereby increasing the gap admittance by a factor of the order of 100 and also preventing the drying of the leaves during measurement. Considering the sample to be made up of leaf of thickness ℓ_{ℓ} and relative permittivity κ_{l}^{*} and water of thickness $\left(l_{S} l_{\ell}\right)$ and dielectric constant K_{W}^{*}, we can follow the procedure used in obtaining equation (9) using one additional transformation to account for the water and we obtain an expression analogous to equation (9) as follows:

$$
\begin{align*}
Y_{L}= & j Y_{0} \beta\left[\kappa_{\ell}^{\prime} \ell_{\ell}+k_{W}^{\prime}\left(\ell_{S}-\ell_{\ell}\right)+\left(\ell_{1}-\ell_{S}\right)\right] \tag{16}\\
& +Y_{0} \beta\left[\ell_{\ell} \kappa_{l}^{\prime \prime}+\left(\ell_{s}-\ell \ell K_{W}^{\prime \prime}\right]\right.
\end{align*}
$$

Again letting $Y_{L}=G_{L}+j \omega C_{L}$, separating real and imaginary parts, and solving for k_{l}^{\prime} and $\kappa_{\ell}^{\prime \prime}$, the real and imaginary parts of the relative permittivity of the leaf sample we have,

$$
\begin{equation*}
\kappa_{\ell}^{\prime}=\frac{\omega C_{L}}{Y_{0} \beta \ell_{\ell}}-\kappa_{W}^{\prime}\left(\frac{\ell_{S}}{\ell_{\ell}}-1\right)-\frac{\left(\ell_{1}-\ell_{S}\right)}{\ell_{\ell}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\kappa_{\ell}^{\prime \prime}=\frac{G_{L}}{Y_{0} \beta \ell}-\kappa_{\ell}^{\prime \prime}\left(\frac{\ell_{S}}{\ell_{\ell}}-1\right) \tag{18}
\end{equation*}
$$

The K_{W}^{\prime} and $\kappa_{W}^{\prime \prime}$ are gotten from tables of dielectric constants [8], ℓ_{S} is the constructed length of the coax chamber containing the water and leaf, G_{L} and C_{L} are the values of conductance and capacitance given by equations (11) and (12) at bridge frequencies and by (14) and (15) at slotted line frequencies, Y_{0} is taken as the nominal value for the GR line used (50 $\left.\Omega\right)^{-1}$, $\beta=\omega / c$ where ω is $2 \pi \times$ frequency determined either by measuring the wave length in the slotted line or measuring frequency directly with a counter and the leaf thickness ℓ_{ℓ} is the average of several measurements with an ordinary mechanical micrometer, and c is the velocity of light.

In equations (13) through (15), Δl is the difference between the measured minimum for the loaded Ine and the minimum for the line with an open at point L of figure l. This latter was measured by putting a copper shorting disk at the end of the line
and measuring two adjacent minima. The midpoint of these less the distance between L and the shorting disk was taken to be the minimum with an open at L. At lower frequencies where only one minimum could be measured, the minimum with the open at L was taken to be $\lambda / 4$ where λ was computed from the counter-measured frequency and the known velocity of light. The distance between this calculated minimum for the open at L and the actual measured minimum with the unloaded line equals ℓ_{1} in figure 1. Measurement Procedure:

The measurements st 100,200 and 400 kHz were made with a Cole-Gross type transformer bridge described previously [3]. From 2 MHz to 250 MHz a Boonton RX meter type 250A [4], fitted with a type N coax adapter terminal was used, and from 450 MHz to 4.2 GHz a Hewlett Packard model 805A slotted line was used with the HP model 612 A and 616 B signal generators and HP model 415.B standing wave indicator. The sample holder consists of about 10 cm of General Radio type 874 LIO air Ine [5] cut off at one end so that the inner and outer conductors are flush and connected to a type N male connector which permits rapid connecting and disconnecting with both the slotted line and the RX meter. The sample chamber in the cut off end of the air line was constructed as follows. A small wafer of polystyrene foam was fitted snugly into the line and the surface was coated with wax to prevent any water from getting inside the line. A piece of shim containing a rectangular step $\sim 0.04 \mathrm{~cm}$ deep was then used to remove the excess wax and create a sharp-cornered watertight pocket in the end of the line. A polystyrene cap was fitted
over the end of the line and served as the outer surface and seal for the sample pocket. This cap was secured by a locking nut on the line. The holder is illustrated in figure $2 a$ and b.

The leaf samples were cut to shape to fit snugly in the sample holder by means of a specially made "cookie cutter". Immediately after cutting, the sample was weighed and measured for thickness and then immersed in a dish of distilled water. With the sample holder also immersed and visible bubbles removed, the leaf wafer was placed in the sample pocket and the cap secured in place. The transparent cap permits inspection of the outer surface of the leaf for trapped air bubbles and if any were observed the load procedure was repeated. The unit was then taken to the various measurement systems for electrical measurements. The measurements generally took less than one half hour and the first measurement was always repeated at the end of a run to see what electrical changes if any had taken place. Also the sample was weighed after measurement to see what welght changes, if any, had occurred. For the measurement of tree branches the same type of wafer specimens were prepared and with clay the sample chamber was merely packed with the clay samples.

Densities were determined by taking the ratio of measured weight to measured volume (all specimens had the same area as determined by the sample holder and cookie-cutter dimensions). Moisture content was determined by weighing the leaf before measurement and after completely drying it at $110^{\circ} \mathrm{C}$. The weight loss divided by the initial weight was taken to be the

moisture content of the leaf during measurement and this figure was expressed as a percent of the total weight.

The leaf specimens were collected locally from living plants and measurements were made shortly after removal from the plants. Specimens A (Bamboo) included leaves newly formed this spring and leaves which had been formed last year and were in varying stages of yellowing. Specimens B (Tulip Tree) were all new leaves collected during the first month after their formation. The twig specimens were taken from growing tulip tree branches and sliced into appropriate sized samples. Checking Measurement System for Accuracy and Precision:

The system was first checked by measuring the empty holder with the sample chamber containing air and with the polystyrene end cap in place. The measured capacitance of the chamber plus fringing capacitance is given in table l. Then distilled water was placed in the chamber and a full range of measurements were made. In this case we have a water sample completely displacing air so that we understand the quantities in equations (17) and (18) to represent the following; $\kappa_{l}^{\prime}, \kappa_{l}^{\prime \prime}$ are for water, κ_{W}^{\prime} and $K_{W}^{\prime \prime}$ are for air ℓ_{ℓ} is the thickness of water, $\ell_{S}=$ thickness of sample $=\ell_{\ell}$. The resulting measured values of $k \prime$ and $k "$ are given in table 1. Values for water calculated from the literature for a temperature of $23^{\circ} \mathrm{C}$ are given in table 1 for comparison. It is apparent that the system gives a fairly

Numbers calculated from data by equations 11, 12, 14, 15. Numbers calculated by equations $17,18$.
Values calculated from ref [8] for $T \sim 23^{\circ} \mathrm{C}$. These values are approximate because of sensitivity of data to temperature and need to interpolate from data reported at 20 and $25^{\circ} \mathrm{C}$.
constant value for the empty holder capacitance and values for the dielectric constant of distilled water to within 10% accuracy. Thus we may conclude that as far as the equipment is concerned, we anticipate accuracies of the order of 10%. (We are here neglecting the sizeable differences between the measured and literature values for $\kappa^{\prime \prime}$.) This figure is probably optimistic at the highest frequencies where the error is greatest and pessimistic in the more accurate low frequency range.

A check of the precision of the leaf measurements was made as follows. Several leaves were collected from various parts of plant types A (Bamboo) and B (Tulip Tree). Samples were cut and measured at one bridge frequency (200 MHz) and one slotted line frequency (1.0 GHz). The sample was removed from the holder, replaced and again measured. Each sample was measured three separate times in this way and six separate samples were measured from specimen type A and five from specimen type B. The results are shown in table 2, together with the measured values of thickness, weight, density and moisture content. The scatter was analyzed as follows. For each of the three characteristics, $K^{\prime}, K^{\prime \prime}$, and D, and for each type of specimen and frequency, an analysis of variance was made to ascertain the components of variance for
e-II əโqe山

Leaf Number	Thick- ness (cm)	$\begin{aligned} & \text { Weight } \\ & \text { (gms) } \end{aligned}$	$\begin{aligned} & \text { Density } \\ & \left(\mathrm{gms} / \mathrm{cm}^{3}\right) \end{aligned}$	Moisture Content \%	k^{\prime}	Average K for each leaf	Std. dev.for each leaf	$\kappa^{\prime \prime}$	```Ave.k* for each leaf```	Std. dev.for each leaf	$={ }^{D} /{ }_{K}^{\prime}$	Ave. D for each leaf	Std. dev.for each leaf
A-1	0.0106	0.0111	0.804	66.	66.4	62.2	3.76	66.7	66.5	0.72	1.00	1.07	0.0700
					59.1			67.1			1.14		
					61.2			65.7			1.07		
A-2	0.0102	0.0105	0.795	64.	66.9	66.7	0.40	58.8	59.0	0.29	0.879	0.885	0.0051
					66.9			59.3			0.886		
					66.2			58.8			0.889		
A-3	0.0099	0.0103	0.798	63.	61.6	62.6	3.26	56.2	54.4	1.59	0.912	0.870	0.0526
					59.9			53.2			0.887		
					66.2			53.8			0.811		
A-4	0.0102	0.0105	0.795	64.	61.6	62.3	2.00	59.6	58.3	1.18	0.967	0.937	0.0426
					64.6			57.3			0.888		
					60.8			58.0			0.955		
A-5	0.0096	0.0100	0.800	62.	56.5	56.8	0.46	45.0	45.1	0.30	0.804	0.796	0.0066
					57.3			45.4			0.792		
					56.5			44.8			0.793		
A-6	0.0102	0.0104	0.789	63.	67.3	66.9	0.47	65.1	63.9	1.15	0.973	0.954	0.0173
					66.4			63.1			0.950		
					67.1			63.1			0.939		
Average value					62.9			57.8			0.919		
Std. dev. of combined random errors					4.13 (6.56\%)			7.61 (13.2\%)			0.098 (10.7\%)		
Std. dev. of instrumental errors only					2.21 (3.51\%)			0.99 (1.71\%)			0.040 (4.35\%)		
Std. dev. of errors due to leaf variability					3.49 (5.55\%)			7.55 (13.06\%)			0.090 (9.79\%)		

Table II-b

p-II әтqeu

Table IT _C

instrumental error and for variability between leaves [6]. From these components, standard deviations,as well as coefficients of variation (expressed in percent) were derived. Tables II include a summary of the statistical analysis. As anticipated the scatter due to the leaf alone was generally greater than scatter due to instrumental errors alone, a large part of the leaf scatter being due most likely to errors in thickness measurements rather than to variations in the biological structure of the leaf. A reasonable estimate of the uncextainty in the thickness is 0.001 cm . This amounts to about 5% for specimens B and 10% for specimens A. These estimates can account for most of the observed standard deviations of the measured quantities. At any rate there is no indication that uncertainties exceed the 20% value imposed on the measurements in the original measurement program request.

Anomalous values of k^{\prime} and $k^{\prime \prime}$ were measured above 1 GHz . For
a GR line higher order modes are expected above frequencies of
$9.5 / \sqrt{\kappa} \mathrm{GHz}$ [7]. In the leaf filled chamber this ratio falls between 1 and 2 GHz and could account for excessive scatter occasionally observed in the measurements above 1 GHz .

The Effect of Non-Ideal Contact Between Sample and Holder:

With a sample of high admittance the errors introduced by a low admittance contact between sample and holder can be severe. Let us assume that the sample admittance is adequately represented by a parallel conductance G_{ℓ} and capacitance C_{ℓ} giving a sample admittance $Y_{\ell}=G_{\ell}+j \omega C_{\ell}$. Assume that this sample admittance is coupled to the line by a gap admittance $Y_{6}=G_{8}+j \omega C_{6}$. Under these conditions the apparent admittance one measures for the series combination of sample plus gap is $Y_{M}=Y_{\ell} Y_{\ell} /\left(Y_{\ell}+Y_{\ell}\right)$ which by the usual manipulation reduces to

$$
\begin{equation*}
Y_{M}=\frac{G_{\ell} G_{s}\left(G_{\ell}+G_{\varepsilon}\right)+\omega^{2}\left(C_{k}^{2} G_{\ell}+C_{\ell}^{2} G_{s}\right)+j \omega\left[\left(C_{\ell}+C_{k}\right) \omega^{2} C_{\ell} C_{s}+G_{\ell}^{2} C_{\ell}+G_{\ell}^{2} C_{g}\right]}{\left(G_{\ell}+G_{s}\right)^{2}+\omega^{2}\left(C_{\ell}+C_{k}\right)^{2}} \tag{19}
\end{equation*}
$$

Normalizing this equation in terms of $\kappa^{\prime \prime}=G / \omega C_{0}$ and $K^{\prime}=C / C_{0}$ where C_{0} is an effective cell constant we get for the measured K_{M}^{\prime} and $K_{M}^{\prime \prime}$ in terms of the actual sample κ_{l}^{\prime} and $K_{l}^{\prime \prime}$ and the effective gap $k_{:}^{\prime}$ and $\kappa_{8}^{\prime \prime}$ the following equations:

$$
\begin{align*}
& \kappa_{M}^{\prime \prime}=\frac{\kappa_{l}^{\prime \prime} \kappa_{\ell}^{\prime \prime}\left(\kappa_{8}^{\prime \prime}+\kappa_{\ell}^{\prime \prime}\right)+\kappa_{8}^{2} \kappa_{\ell}^{\prime \prime}+\kappa_{\ell}^{\prime 2} \kappa_{B}^{\prime \prime}}{\left(\kappa_{l}^{\prime \prime}+\kappa_{\ell}^{\prime \prime}\right)^{2}+\left(\kappa_{\ell}^{\prime}+\kappa_{\ell}^{\prime}\right)^{2}} \tag{20}\\
& K_{M}^{\prime}=\frac{\kappa_{8}^{\prime} K_{l}^{\prime}\left(\kappa_{8}^{\prime}+\kappa_{l}^{\prime}\right)+\kappa_{8}^{\prime \prime} \kappa_{l}^{\prime}+\kappa_{l}^{\prime \prime 3} \kappa_{B}^{\prime}}{\left(\kappa_{8}^{\prime \prime}+\kappa_{l}^{\prime \prime}\right)^{2}+\left(\kappa_{8}^{\prime}+\kappa_{l}^{\prime}\right)^{3}} \tag{21}
\end{align*}
$$

TABLE III
Comparison of In-Air and In-Water Measurements
Sample B-6
Measured in Water Measured in Air
Calculated from (20) and (21)

Freq (MHz)	κ_{l}^{\prime}	κ_{l}^{\prime}	$\kappa_{M}^{\prime}(\exp)$	$\kappa_{M}^{\prime \prime}(\exp)$	$\kappa_{M}^{\prime}(c a l c)$	$\kappa_{M}^{\prime \prime}(c a l c)$
10	156	491	132	222	132	222
50	59	120	56	72	67	80
100	54	66	45	42	53	48
250	47	34	40	26	43	26
450	46	15	37	11	41	12
1000	41	9	35	6	37	7
2100	36	7.6	34	4	33	6

We have already mentioned that the measurements were made with the sample in water in order to lower the gap admittance and reduce gap errors. In order to quantify this statement, measurements were made on the same leaf (Tulip Tree, B-6,table 2) in water and in air. Assuming that k_{ℓ}^{\prime} and $k_{\ell}^{\prime \prime}$ are the values measured in water (1. e. the correct leaf values) we applied equations (20) and (21) to calculate the values we would get When the sample was measured in air assuming a fixed $K_{!}^{\prime}$ and $k_{g}^{\prime \prime}$. Using values of $k_{s}^{\prime}=340$ and $k_{s}^{\prime \prime}=3600 / f^{\prime}$ (where f is the frequency in MHz) we then calculated the values in table 3 .

The agreement in table 3 is very good considering the fact that it requires (1) that the contact of leaf and holder is the same for both in-water and in-air measurement and (2) that the conductivity and capacitance of the gap does not change with frequency. Thus the basic picture of the gap being an effective G-C pair in series with the leaf allows us to make the in-air and in-water data self-consistent, and we assume this model is correct.

Now let us examine the in-water measurements. Here we have a gap filled with water of a dlelectric constant of 80 , and we thus expect that k^{\prime} with water is roughly 80 times what we found for K_{s}^{\prime} with air or 27,000. Using a dc ohm meter we also observed that the dc conductivity of the holder containing leaf in water was roughly 5 times that of the holder containing leaf in air.

With this observation we assumed that $k_{8}^{\prime \prime}$ with water was $5 \times 36 \mathrm{f}$ or $180 \mathrm{f}(\mathrm{f}=\mathrm{frequency}$ in MHz$)$. We then used equations (20) and (21) to find what values of k_{l}^{\prime} and $k_{l}^{\prime \prime}$ would give the observed K_{M}^{\prime} and $K_{M}^{\prime \prime}$ for the in-water measurements. The largest error was found to be about 10% at $10^{5} \mathrm{~Hz}$ with specimen $\mathrm{B}-6$ and the error became less than 2% at and above 10 MHz .

These calculations (1) are consistent with our assumption that the in-water measurements are much more accurate than the in-air measurements (2) show that the in-air values of k_{ℓ}^{\prime} and $k_{l}^{\prime \prime}$ can be reduced to give the in-water values of k_{l}^{\prime} and $k_{l}^{\prime \prime}$ within 20% and (3) that the water-gap errors for the data reported here are probably less that 20% at $10^{5} \mathrm{~Hz}$ and negligible above $10^{7} \mathrm{~Hz}$.

Experimental Results:
The specimens used for the data presented in this report In addition to those in table 2 are listed in table 4 together with a brief description of the sample and some values for thickness, weight, density, moisture content and conditions of measurement. Specimens A (Bamboo) were collected from plants growing outside in Bethesda, Maryland on 5-2-67. Specimens B and C were gathered from several different Tulip Trees around Gaithersburg, Maryland from $4-26-67$ ($B-80$) to 5-8-67 (B-77) shortly after the new leaves were formed. Specimens D (clay soil) were gathered outside the NBS laboratories at
TABLE IV

Number	Type	$\begin{aligned} & \text { Thickness } \\ & \text { (cm) } \end{aligned}$	$\begin{gathered} \text { Weight } \\ \text { (gms) } \end{gathered}$	$\begin{gathered} \text { Density } \\ \left(\mathrm{gms} / \mathrm{cm}^{3}\right) \end{gathered}$	Moisture Content (Weight \%)	Temp. of Measurement ${ }^{\circ}$	$\begin{gathered} \text { Measured } \\ \text { in } \end{gathered}$
A-63	Bamboo - young leaf	0.0102	0.103	0.78	63	22.7	Water
A-52	Bamboo - older leaf, dull green	0.0102	0.0106	0.80	52	23.0	Water
A-38a	Bamboo - older leaf, yellowish	0.0132	0.0114	0.97	38	23.0	Water
$A-38 b$	Bamboo - older leaf, yellow1sh	0.0114	0.0161	0.94	38	23.0	Water
A-O	Bamboo - old leaf, woody, brown	0.0107	0.0068	0.49	0	23.0	Water
B-80	Tulip Tree - youngest leaf	0.0229	0.0237	0.80		24.0	Water
B-77	Tulip Tree - young leaf	0.0208	0.0219	0.81	77	24.0	Air and Water
B-68	Tulip Tree- young leaf	0.0157	0.0182	0.89	68	23.0	Air
B-49	Tulip Tree - young leaf	0.0114	0.0130	0.88	49	23.0	Air
B-0	Tulip Tree - young leaf	0.0152	0.0060	0.30	0	23.0	Air
C-58	Tulip Tree Branch - slice along branch, outer layer	0.0381	0.0402	0.81	58	24.1	Water
C-30	Tulip Tree Branch - slice perpendicular to branch, woody material	0.0356	0.0166	0.36	30	23.5	Water
C-42	Tulip Tree Branch - slice along branch, outer layer	0.0356	0.0332	0.72	42	23.0	Water
C-5	Tulip Tree Branch - slice along branch, outer layer	0.0356	0.0113	0.24	5	23.0	Water
$\mathrm{C}-\mathrm{O}$	Tulip Tree Branch - slice along braneh, outer layer	0.0356	0.0116	0.25	0	23.0	Air

CONTINUED
Description of Samples Measured

Number	Type	Thickness (cm)	Weight (gms)	$\begin{gathered} \text { Density } \\ \left(\mathrm{gms} / \mathrm{cm}^{3}\right) \end{gathered}$	Moisture Content (Weight \%)	Temp. of Measurement of	$\begin{gathered} \text { Measured } \\ \text { in } \\ \hline \end{gathered}$
D-34	Clay soil - soggy	0.0406			34	23.2	Air
D-22	Clay soil - wet	0.0406			22	23.3	Air
D-14	Clay soil - moist	0.0406			14	23.3	Air
D-0	Clay soil - dry	0.0406	0.0592	1.12	0	23.0	Air
E-1	Philodendron (varigated)	0.0251	0.0260			23.6	Water
E-2	Philodendron (green)	0.0305	0.0326			23.5	Water
F-1	Passiflora (young leaf)	0.0127	0.0130			23.6	Water
P-1	Passiflora (old leaf)	0.0203	0.0219			23.6	Air and Water
G-1	Dandelion (old leaf)	0.0305	0.0306	0.78		23.4	Water
H-1	Buckhorn Plantain (old leaf)	0.0343	0.0358	0.82		23.5	Water
I-1	Dogwood Blossom	0.0216	0.0168	1.03		23.5	Water
J-1	Sugar Maple (young leaf)	0.0114	0.0136	0.92		23.6	Water

Gaithersburg, Maryland on 5-11-67 and were either dried or moistened with distilled water to prepare the desired samples. Specimens E and F were of house grown plants and the remaining specimens were obtained outside around Gaithersburg, Maryland around the end of April.

The dielectric data for Specimens A, B and C are shown as a function of frequency in figures 3, 4 and 5. In figure 4 a second set of data is shown (dashed lines) for a leaf collected 2 weeks earlier than B-77, to show the sort of variation one might expect between leaves of different ages. The significant features of the results are the broad maxima in tan δ at about $10^{7} \mathrm{~Hz}$, the high frequency level of the K^{\prime} curve a little below the value for water, and the increases in $\tan \delta$ at 10^{5} and $4 \times 10^{9} \mathrm{~Hz}$ indicating additional maxima beyond both the highest and lowest frequencies reported here. Figure 5 for branch material shows similar results but with a somewhat lower tan δ maximum, a longer plateau in k, and a straighter $\kappa^{\prime \prime}$ curve. These features will be interpreted in the next section. Figures 6-13 show the effect on k^{\prime} and $\kappa^{\prime \prime}$ of differing moisture contents. Figures 6-9 are for leaves and in general, as one would expect, both κ^{\prime} and $\kappa^{\prime \prime}$ tend to be higher as the moisture content is higher. For bamboo there are in addition to moisture content differences, structural differences. The

 Figure 7. The loss index of four samples ($A-52, A-63, A-38 a$ and $A-38 b$) of bamboo leaves as a function of frequency at $23^{\circ} \mathrm{C}$. The sample number denotes the moisture content of the sample. The value at the lower left is for a dry sample.

Figure 13. The loss index of three samples (D-34, D-22, D-14) of clay soll as a function of frequency at $23^{\circ} \mathrm{C}$. The sample number denotes the moisture content of the sample. The value at the lower left is for a dry sample.
Figure 14. The relative dielectric permittivity and loss factor of leaf samples of eight different plants (o $\mathrm{E}-1$ philodendron (variegated), function of frequency around $23^{\circ} \mathrm{C}$. Samples are characterized more fully in Table IV.
leaves with less moisture were older leaves and contained more cellulose (larger dry weight) than the leaves with higher moisture content. For the tulip tree samples the same leaves were measured as they became drier and one notices in figures 8 and 9 that the differences for different moisture contents was not so great as in figures 6 and 7. This is to be expected because as a fresh leaf dries it also shrinks and tends to keep a fairly constant K^{\prime} and $K^{\prime \prime}$. The older bamboo leaves were drier without having shrunken. The results for tulip tree branch material are shown in figures 10 and 11.

The results for clay soll (figures 12 and 13) do not greatly differ from the results for plant material, except that there is a more striking dependence on moisture content. The K^{\prime} curves for soil are flatter than those for leaves and more like the curves for branch material.

The final figure 14 shows results for a wide variety of leaves and indicates the overall similarity in the dielectric properties of follage. There were no outstanding departures from the general dielectric behavior. The most unusual sample studied - the dogwood blossom - gave the greatest deviation from the average density and dielectric constant values for the leaves.
\because

The dry specimen measurements presented special problems because the K^{*} values were too low for the limited sensitivity of the equipment used. In each case the dry samples were measured with the low frequency Cole-Gross-type bridge and these results were included in captions on the graphs. The dry-sample values of K^{\prime} can be interpreted as maximum values over the entire frequency range, and k " values can reasonably be expected to be at least a factor of 10 below the k^{\prime} values. Interpretation of the Data:

Most of the observed features of the dielectric data on leaves can be explained by a rather reasonable model for the leaf which includes separate cells containing water with large concentrations of ionic impurities. k ' within a cell would be constant and close to that of water (~ 80) and $k "$ would be a straight line of slope -1 on the $\log \kappa^{\prime \prime}$ vs log frequency plot. The sap within the leaf cells would also reflect the high frequency drop in K^{\prime} and increase in $\kappa^{\prime \prime}$ due to the dipolar relaxation of the water molecules. If one includes the effect of the cell walls which partially block the flow of lonic charge then one expects interfacial polarization and a Debye-like relaxation region. At high frequencies the behavior would be similar to that described above, but at lower frequencies k^{\prime} values would increase, the slope of k " would decrease and $\tan \delta$ would exhibit a maximum. This essentially describes the results
observed for leaves except at the very low frequencies. Here the measurement procedure enters the picture and in the holder used in the se measurements we must include the effect of the gap between holder and specimen as discussed previously. The slight upturn in $\tan \delta$ at the lowest frequencies measured is to be regarded as an effect of the measurements and not a property of the leaf itself. Of course for any usual calculations the interface between a leaf and its surroundings must be taken into consideration and will usually be responsible for a low frequency relaxation.

The above model predicts that the position of the tan δ maximum is sensitive to the average size of the leaf.cells. The further the ions must travel to attain equilibrium the longer the time and hence the lower the frequency of the tan δ maximum. Thus the younger leaf in figure 4 could have a higher frequency $\tan \delta$ maximum because of smaller cells, and the considerably lower frequency of tan δ maximum in figure 5 would imply considerably larger water-containing chambers. The failure of figure 3 to show a distinct maximum in tan δ can be interpreted as due to an unusually wide spread in cell-sizes which broadens the relaxation down into the region where the gap effects enter. The effects of cell structure are much reduced in the case of branch material and clay. These results exhibit the flat K^{\prime} and near -45 degree $k^{\prime \prime}$ and $\tan \delta$ curves expected for a conduction mechanism without interfacial blocking effects.

In accord with the above considerations, a general equivalent circuit for a leaf is shown in figure 15. It should be mentioned that the single components shown are average values and (due to differences in cell structure and orientation throughout a leaf) we can expect a distribution of values for some components in this circuit, leading to relaxation broadening.

REFERENCES

[l] See for example Microwave Transmission Circuits, MIT Rad. Lab. Series Vol. 9, Edited by George L. Ragan, McGraw-Hill Book Co., Inc. (1948).
[2] E. E. Conrad, C. S. Porter, N. J. Doctor, and P. T. Franklin, J. Applied Phys. 27, 346 (1956).
[3] R. H. Cole and P. M. Gross, Jr., Rev. Sci. Inst. 20252 (1949).
[4] Hewlett-Packard Company, Palo Alto, California. ${ }^{2}$
[5] General Radio Company, West Concord, Massachusetts. 2
[6] John Mandel, The Statistical Analysis of Experimental Data, Interscience Publishers, (1964).
J. F. Gilmore, General Radio Experimenter, 40, No. 5, 12 (1966).
[8] A. A. Maryott and E. R. Smith, Table of Dielectric Constants of Pure Liquids, NBS Circular 514 (1951). F. Buckley and A. A. Maryott, Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions, NBS Circular 589 (1958).

2 Certain commercial materials and equipment are identified in order to adequately specify the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Bureau of Standards, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

