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ABSTRACT

In this paper, dynamic programming algorithms are developed for

scheduling a single vehicle to operate over simple networks. The algo-

rithms are designed to calculate schedules which confoim closely to

traveler preferences. The traveler preferences are represented by utility

functions over the scheduling variables, the departure times and

arrival times of trips.

The paper also presents and discusses a set of computer results

obtained for the simple case of scheduling a vehicle over a single link

(origin to destination) network. The results provide insights into the

sensitivity of schedule characteristics to vehicle capabilities and

traveler behavior parameters.

Finally, the paper includes a preliminary analysis of the multi-

vehicle scheduling problem, and a general discussion of future efforts

to be made in this research.

The paper documents research done in the Technical Analysis Division

of the National Bureau of Standards for the Northeast Corridor Trans-

portation Project. The research is intended to serve in (1) evaluating

alternative transportation systems -- by comparing alternate systems,

each in conjunction with its own best schedule (2) developing a comput-

erized scheduling process in an automated system (3) analyzing trade-

offs in the transportation system such as that between speed and capacity

of vehicles. The contents of the paper should not be interpreted as



representing policies of the Northeast Corridor Project.

Key Words: utility functions, optimal scheduling, iterative equation,

computer algorithm, parametric analysis, transportation
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1. INTRODUCTION

The research described in this paper centers on the issue of efficient

use of existing or proposed transportation systems. It focusses on the

following question:

Given a transport network, and the number and characteristics of the

transportation vehicles, how should the vehicles be scheduled in order

to attain a high level of passenger satisfaction?

Of interest, therefore, is that element of passenger satisfaction that

is sensitive to schedules --the timing of trips. Thus, the measure of a

traveler’s satisfaction for a particular trip is the value he has for

the pair of numbers (t^, t ) ,
where

t^ = time of departure (from traveler's origin)

and
t = time of arrival (at traveler's destination).

It is assumed that each prospective passenger is associated with a

utility function U(t^, t ) which describes his level of satisfaction for

any set of values of the variable pair (t^, t ). U(t^, t
&) will, in

general, be different for different individuals.

For any set of schedules, and rules for assigning passengers to

vehicles, an aggregate utility can be calculated by summing the utilities

of the individual passengers. Hence, the problem is to determine

schedules (and passenger assignment rules) which maximize the aggregate

utility, subject to constraints imposed by the capacities and speeds of

the vehicles.
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Several remarks are worthy of note, relative to the perspective in

which this study has been formulated.

First, the deliberate choice to maximize a measure of "public satis-

faction" seems especially appropriate in view of the heavy emphasis

accorded to public interests in the Northeast Corridor Transportation

Project. This is in contrast to the more usual type of analysis which

attempts to minimize costs subject to "level of service" constraints.

Secondly, it should be noted that there are well known theoretical

difficulties associated with adding together the utilities of different

individuals. This issue is the underlying factor in the discussion of

Section 2 concerning normalization of the utility functions. In that

discussion, the commensurability of passenger utilities is resolved in

terms of the influence that different individuals are allowed to exert on

the determination of the schedule.

Third, the formulation here has been greatly influenced by the concept

of an adaptive transport system which would be responsive to changes in

patterns of demand. In particular, a hypothetical automated system is

envisioned in which passengers would "call in" information describing their

departure and arrival time preferences, subsequent to which the satisfaction-

maximizing schedules would be calculated, and each passenger informed of

his assignment to a particular vehicle departure.

Fourth, such an analysis makes possible the evaluation of alternative

transportation systems on a consistent basis. That is, if for each

alternative system separately the optimal schedule is calculated, then



the alternative systems can be compared properly, each in combination with

its own particular best schedule .

Finally, the study is formulated so that it may prove well -suited for

use with demonstration projects because it involves constructing schedules

on the basis of individual preferences represented by data obtainable in

interviews. Utilization of individual opinion data to construct schedules,

rather than historical "demand over time" data, while involving possible

difficulties with regard to veracity, seems essential to satisfying

"intrinsic" demand, unmodified by adjustment to existing schedules .

Returning to the technical aspects, the problem posed here is of a

sequential nature - -e. g.

,

the time at which a vehicle is scheduled to

depart a network node affects when it is next available for service. Hence,

dynamic programming is a natural analytic tool; this paper is based on a

dynamic programming formulation of the problem.

This report is confined mainly to the scheduling of a single vehicle

along simple networks. Computer algorithms based on the dynamic programming

approach have been developed, and have been utilized in illustrative

parametric analyses for the simple case of a vehicle traveling on a single

link, origin to destination network. A short list of references to other

recent work in passenger scheduling is given at the end of the paper.
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2. THE UTILITY FUNCTIONS

As noted in the introduction, an aggregate utility function, of the

form

U = l UW (2.1)

i

( ll th
where U v ^ is the utility of the i potential passenger, is to be maximized.

U^
X

'^ is a function of the two schedule -dependent variables t^^ , the

f il th
departure time, and t '

,
the arrival time, for the i traveler. This

section discusses the proposed form of U^; the superscripts on
,

t^"^
,
and t ^ will be dropped for simplicity so that U(t^, t ) will

henceforth refer to an individual utility function.

Admittedly it is rather presumptuous to assume that the utility

functions are "given”, and further that enough information is available

with which to determine their functional forms. But the actual proposal

of such forms is necessary, in order that the analysis may proceed.

The forms outlined below are proposed on the basis of their simplicity,

and correspondence to seemingly reasonable assumptions. Although the

specific forms affect the numerical results, they are not essential to

the general considerations of this study.

The general form assumed for U(t-,, t ) involves five parameters, each
cl a

of which has a behavioral interpretation. It may be possible, therefore,

to estimate the distribution of utility functions in the traveling public,

via interviews and questionnaires. The first parameter, w, is a weighting

coefficient which specifies the relative importances, to the traveler, of

his departure time and his arrival time. For some travelers and some types
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of trips, commuters on their way to work in the morning for example, it is

more important to adhere closely to a preferred arrival time than to a

departure time. To the contrary, a businessman with an appointment in a

distant city the next day may be much more concerned about when his flight

departs than when it arrives at his destination. If w is defined such

that 0 <w<l
, the morning commuter to whom arrival is important has a value

of w close to zero, and the businessman has a w value near one. Specifically,

the following general form is assumed:

U(t
d , t

a)
= w U

d
(t
d) + U-w)U

a
(t
a ) (2.2)

where U
d
(t
d) and U (t ) are component utilities which account for the

contributions of departure time and arrival time, respectively.

This seems the simplest way to represent the spectrum of travelers

whose attitudes range from completely departure -oriented to completely

arrival -oriented.

UiftJ and U (t ) are taken to have identical functional forms; each
d v a v

s.
J

is to be represented by two parameters. The formulation of U
d
(t
d) and

U (t, ) is based on the following plausible assumptions:
a a

a) A traveler has a certain interval of departure which he considers

acceptable; similarly, he has an acceptable interval of arrival time.

Hence if t_

d
and t

d
are the upper and lower limits respectively, of the

departure interval, and t
+

and t are the corresponding arrival time
a a

quantities, then
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U
d
(t
d) > 0 only if t

d < t
d < t

d

U (t ) >0 only if t < t < t
+

a a^ J a— a— a

and (2.3)

U(t., t )
= 0 if (t, < tA or t, > t

or t or t > t ) .

a a a'

b) Within the interval he has a most preferred time of departure

t*, and a most preferred time of arrival t*. His distribution of departure

preferences is such that

U
d
(t
d) is non-decreasing for t

d < t
d < tj

U
d
(t

d) is non -increasing for tj| <_ t
d <_ t

d
.

The analogous remark pertains to U
g
(t )

.

c) For simplification, rather than for reasons critical to methods

developed later, it is assumed that preferences are symmetric about the

preferred values t* and t*. That is, a one-minute deviation from t*j on

the "early side," for example, is as serious as a one-minute deviation on the

"late side."

Accordingly, the parameters o
d

and o
&

are defined:

a
d = half-width of the acceptable departure interval.

= half-width of the acceptable arrival interval

Thus,

H = -

°d>
t
d

= t
d

+
°d

(2.4a)

t" = t* - o , t = t* + a .

a a a* a a a
(2.4b)
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The function U(t,, t J is then fully specified by the five parameters
q a

(w, tj, t*, a
a , o^) . See Figure 1 for an illustration of the general form

Of U(t
d , t

a
)

.

In the following work, the two simplest forms which satisfy the

preceding conditions will be used. Both involve a "peak height parameter"

£ unmodified by w, which however is subject to a normalization described

below. These forms are the triangular and uniform functions.

The triangular function, shown in Figure 2, is given algebraically by

(2.5)

or,

(2.6a)

Similarly,

(2.6b)

H ence

,

d
u. u. u

a

(2.7)

otherwise

.
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FIGURE 1. INDIVIDUAL UTILITY FUNCTION U (t
, ,

t )v cr
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In order to investigate the sensitivity of results to the assumption

of ’’peaked” utility functions, such as the triangular one, the uniform

function, illustrated in Figure 3, will also be employed:

U
d
(t
d) = ? (constant) if |t

d
-t£| £ a

d

( 2 . 8 )

U
a
(t

a) = t (constant) if |t
a
-t*| <_

where £ is again subject to normalization. Both U
&
and are taken equal

to the same constant (c)

,

within the ’’acceptable” interval, since it is w

that accounts for the relative importances of arrival and departure times.

Thus, for the rectangular function

U(t
d
,t

a )
= w c + (1-w) C = C

for Itj-tJI < aA and It -t*| < a ,
1 d d 1 — d 1 a a 1 — a*

(2.9)

U(t
d
,t )

= 0 otherwise.

Note that adopting the uniform function eliminates the parameter w,

and the corresponding degree of freedom (in representing individuals’

preferences) that w represents.

The function U(t^, t ) must be normalized in some way, to fix the

relative intensity of preferences of one individual to another. Unless

fjp
some normalization is imposed on all functions U \ certain travelers

might exert disproportionate influence over the schedule calculations

relative to others . While one can conceive of a normalization based on a

deliberate policy of giving more weight to some travelers than others,

this would involve political and ethical problems. Thus the "egalitarian”

assumption, that each individual should have equal influence, is made
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FIGURE 2. TRIANGULAR UTILITY FUNCTION

U (t-,, t )^ d’

wC

t
d

FIGURE 3. UNIFORM UTILITY FUNCTION
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here. Two different procedures have been chosen with this purpose in

mind: volume normalization and mean-height normalization.

surface is required to be the same. This corresponds intuitively to

the idea that each individual is allocated the same "mass” of utility

which he can distribute over the (t£,t ) plane so that the relative

densities at various points reflect his preferences.

For the uniform utility function, the volume is that of a rectangular

parallelopiped; normalizing the volume to a value of 1 results in the

condition.

Volume Normalization . The volume under each traveler's U(t^,t )

V = £*2 a *2 a, = 4 a a, £ = 1
^ a d a d

(2.10a)

or

1
(2.10b)

In the triangular case, the volume is (by symmetry) given by

V = 4 e

(2.11a)

o, o
„ d , a

(w x + (1-wj y} dy dx = 2 c Oj = 1 (2.11b)

0 0

or

(2.11c)
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Mean -Height Normalization . The mean height of each individual's

U(t
d
,t ) surface, over its projection (base) on the (t^,t ) plane, is

assumed the same. This means that the expected utility for a point (t,,t ),
cl a

chosen at random from an "acceptable rectangle" in the (t
d
,t ) plane, is

to be the same for all individuals . Since

mean height = (volume/area of base)

it follows that for the uniform case, the normalization condition is

U - Vol/Area =
4 o o j C

a d

4 o o
a a

= 1 (2.12a)

or

C ~ 1 •

For the triangular case,

(2.12b)

2 o j a

u = rtn= i
4

°d °a
(2.13a)

o r

C = 2.

Table 1 summarizes the forms of the function U(t
d
,t ) in its various

shapes and normalizations.
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UTILITY FORMULAS

TABLE 1

Shape Normalization U(t
d
,t ) for and

jt -t*|< a
1 a a 1 — a

Triangular Volume 7— ( w(l jtl-tj)
2
°a °d

a
d

d d

+ (l-w)(l- |) }
a a a
a

Triangular Mean-Height 2w^- ^It§-t
d |)

+2(l-wj(l-
d a

Uniform Volume
1

4
°a °d

Uniform Mean-Height 1
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3. DYNAMIC PROGRAMMING

This study is concerned with optimizing the operating policy of a

"system" of transport vehicles. The essential properties of such a system

can be described by its states
,

its decision variables
,
the stage to which

it has progressed, and the criterion function to be extremized:

(a) The stage variable is an index of how far the system operation

has proceeded; it might in the present context refer to the

progress of time, or perhaps to how many potential travelers

have either been assigned to vehicle departures or rejected.

(b) The state describes the system’s current configuration, which

here might be the location and load of every vehicle.

(c) The decision variables describe the possible actions to be

taken, causing a transition of the system to a new state at

the next stage. In the present case these might be the "hold

or dispatch" decisions for all vehicles currently at network

nodes

.

(d) The criterion function is a sum of values accrued, or cost

incurred, at the individual stages; at any stage the value or

cost depends on the state of the system and the chosen levels

of the decision variables. For this problem, the criterion

function is the total utility derived by all of the passengers.

The following notation will be used to denote these concepts:

(0,T) = the time period over which the system is to operate.

K = stage variable - here a discrete time variable assuming

values (0, 1, . . . . ,
K )

•
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K = last stage in the process - corresponding to T; therefore

KAt = T where At is the size of each stage increment.

x(K) = vector describing the state of the system at stage K.

£(K) = vector of decision variables at stage K.

g(x, £, K) = state at stage K+l if decision £ is made at stage

K when the state is x.

b(x, £, K) = immediate benefit, if decision vector £ is chosen

at stage K when the state is x.

K
J=E b(x(K), £(K) ,K) = criterion function.

K=0

I(x, K) = maximum total benefit it is possible to derive in

stages K, K+1,...,K, beginning in stage x at

stage K.

The concept behind I(x, K) lies at the heart of the iterative equation

(’’principle of optimality") that is the basis of dynamic programming:

I (x , K) = max (b(x, £, K) + I (g(x, £, K)
,
K+l)}

, (3.1)

c

where the maximization is over all decisions £ which are possible when

the system is in state x at stage K. This equation, which holds for K<K,

is supplemented by the "boundary condition,"

I(x, K) = max {b(x, £, K) }
. (3.2)

In (3.1), b(x, £, K) is the immediate gain obtained by choosing £,

while I (g(x, £, K)
,
K+l) is the long term benefit derivable by being in

the resulting state g(x, £, K) at the next stage. Therefore, the equation

states that the maximum possible benefit is obtained by executing (at
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every stage) that set c_ of decisions which maximizes the sum of immediate

and long-term benefits.

Using (3.2), one can set K=K-1 in (3.1) and carry out the maximization

to determine the function I (x, K-l). Using I(x, K-l)
,
and setting K=K-2,

I(x, K-2) can be obtained in the same way. Proceeding from K=K to K=0

in this manner leads ultimately to

I(x, 0) = max { J} (3.3)

where the maximum in (3.3) is over all possible sequences [£(0), c(l) , . . .

.

c(K)] of decision vectors. For each of the maximizations in this process,

the maximizing decision vector £(K) is recorded. Once these backwards

proceeding calculations reach K=0, the optimal schedule (or "trajectory"

or "policy") can be found by proceeding in the "forward" direction, from

K=0 to K=K, following the set of optimal decisions.
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4. SINGLE-LINK ONE-WAY FLOW SCHEDULING FOR ONE VEHICLE

The problem of optimally scheduling a single vehicle, for N potential

passengers between a single origin and a single destination, during a

specified time period, is considered in this section. See Figure 4.

The time axis over the time period (0, T) is finely divided into

equal intervals, whose demarcation points (denoted by 0, 1,..., K) form

the "discrete" time axis which will be employed; the stage variable,

denoting the "discrete" time, is K.

Let

<p
= duration of forward trip from origin to destination,

p = duration of return trip.

<p is assumed to be independent of the vehicle load, and p is defined

to include minimum required turn-around times at both ends of the route.

Corresponding to
<J>
and p let

F = duration of forward trip measured in discrete time units,

R = duration of return trip measured in discrete time units,

where F and R are integers.

Passengers departing at time t will arrive at time t+<j>; also, 0+p is

the minimum possible time separation between successive departures of the

vehicle from the origin. Equivalently, passengers departing at the stage

K corresponding to time t, will arrive at stage K+F, while F+R is the

minimum number of stages separating successive departures from the origin.
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ft.

FIGURE 4. SINGLE LINK, ONE VEHICLE, ONE-WAY FLOW PROBLEM
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To obtain a dynamic programming formulation, it is necessary to suitably

define the state and decision variables, and to specify the transition

function g(x,£,K) and the immediate -benefit function b(x,c_,K). There is

just one state variable,

x = the stage at which the next departure from the origin

is possible. (Thus, x(K) £ K)

.

Similarly there is a single decision variable c; if x>K the only possible

decision is c=l, signifying continued movement along the route, but if

x=K, two possibilities exist: c=l means the vehicle is to be dispatched,

and c=0 means the vehicle is to be held over at the origin, to (at least)

the next stage.

The transition function is given by

g(x,l,K) = x if x>K

g (K , 1 , K) = K+F+R (4.1)

g(K, 0,K) = K+l

.

The immediate benefit function is

b(x,l,K) =0 if x>K

b (K
, 0 ,

K) = 0 (4.2)

b(K,l,K) = U
(l)

(K,K+F)

where the sum (Jh) is over all passengers i who at stage K will leave the

origin in the vehicle, and (K,K+F) is the equivalent in discrete time

of U« (t,t+4)

.
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The descriptions of c and b(x,c,K) are incomplete because c should

also specify which potential travelers, among those whose intervals of

acceptable departure and arrival times include stages K and K+F respectively,

are to be dispatched. Making this specification involves two questions:

(a) If the capacity of the vehicle, C, is limiting, which of the

eligible travelers should be boarded?

(b) If a traveler is eligible for more than one departure, which one

should he take?

Question (b) is eliminated here by assuming that

2 min Od ,
g
& ) < <|>+p. (4.3)

Under this condition, a traveler will be eligible for at most one vehicle

departure. For example, if a traveler is eligible for a departure scheduled

at t, in the sense that

|t-t*| < o j

,

I t+4>-t* I
< a ,

1 d 1 — d’ 1
y a 1 — a

he will no longer be eligible at the earliest possible start of the next

round trip.

If there are more than C eligible individuals, the C with the highest

values of (t,t+<j>) are clearly the optimal ones to assign to the vehicle

departure at t. Thus, question (a) is also answered.

These assumptions imply that a traveler will be "left behind” if a

scheduled departure fails to fall within his acceptable interval or if

capacity limitations prevent him from boarding at an acceptable time. It

should be noted that condition (4.3), which precludes travelers from being
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eligible for more than one departure, might be dispensed with, at consider-

able expense in the dimensionality of the problem; but such a step was

believed unwarranted at this stage of the analysis. The aforementioned

assumptions will be made in all that follows.

The basic dynamic programming equation (3.1) reads,

I(x,K) = 0+I(x,K+l) if x>K, (4.4)

T (v ,0+I(K+l, K+l)
I(K,K) = max { r-^

Luuj (K,K+F) + I (K+F+R,K+1)
(4.5)

The equations may be simplified by invoking (4.4) to show that

I(x,K) = I(x,x) for x>K. (4.6)

Hence states for which x^K (where the vehicle is not at the origin

node) can be ignored and the iterative equation is reducible to (4.5);

defining I(K,K) = I(K) and using (4.6), (4.5) becomes

TfY, ,0+1 (K+l)
I(K) = max {

LU (l
fK,K+F) + I (K+F+R) .

(4.7)

With the assumption that the vehicle is ready to depart from the origin

at K=0, the desired maximum l(x,0) is just 1(0) as obtained using (4.7).

Because this recursion equation involves stages F+R units apart, the "set"

of boundary conditions,

I (K) =0 for K<K<K + F+R (4.8)

will be used.
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The other significant quantities are simplified in notation as follows

c(x,K) c(K)

g(x,c,K) * g(c,K)

b(x,c,K) > b(c,K)

A block diagram for the scheduling calculation is given in Figure 5.

A sample problem is worked out in detail, below.

Example 4.1 . Suppose that five people, each with a triangular utility

pattern, wish to go from origin to destination during the time interval t=0

to t=T=10. Their utilities are characterized by the following table:

Traveler w
t*
a °d

t*
a

a
a

1 0.7 1.5 1.0 3.0 1.5

2 0.2 3.0 1.0 5.0 1.0

3 0.5 2.0 1.0 4.5 0.5

4 0.4 5.0 0.5 7.0 0.5

5 0.1 9.0 1.0 11.5 0.25

Let the vehicle capacity C=2, the one way trip time 4>=2 ,
and assume

negligible turnaround time so that <f>=p=2. Further, let the time axis be

divided into intervals of At=0 . 5 ;
hence K=20, and F=R=4. Finally, assume

volume normalization for the utility functions.

Figure 6 shows the distribution of utility over the (t^, t ) plane.

The line t =t^+<|) is the travel line
,
on which any feasible departure

-

arrival pair must lie. The bounded regions are the "acceptable rectangles"
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Set K=K -

1

I

r V
Calculate (K,K+F)

,
with the

sum over the C highest summands if
there are more than C.

r r

'

Calculate I(K) by (3.2) and record
optimal decision.

> f

Reduce K by 1

*

^ n

No

Incr(

by 1

sase K
—

Record departure
at time K

E

Increase K by (F+R) I

FIGURE 5. SCHEDULE CALCULATION
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0.8

* * * 1

6 7

0.2

FIGURE 6. DISTRIBUTION OF UTILITY IN THE (t
, t ) PLANEd 3.
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of (t^, t ) pairs for each of the travelers. The value of
,
for any

point in the 1
1

traveler's rectangle, is given by the sum of the heights

of that traveler's triangles drawn along the axes.

The values of

U(K) = b(l,K) = ^U^CK.K+F) (4.9)

are calculated as follows:

K
ft

d’
t )
a'

Traveler Utility
Total

Utility
U(K)

'

1 2 3 4 5

0 0, 2.0 . . 0

1 0.5, 2.5 0.067 - - - - 0.067
2 1.0, 3.0 0.217 - - - - 0.217
3 1.5, 3.5 0.300 - - - - 0.300
4 2.0, 4.0 0.150 0 0.5 - - 0.65
5 2.5, 4.5 0 0.25 0.75 - - 1.0

6 3.0, 5.0 - 0.50 0 - - 0.5
7 3.5, 5.5 - 0.25 - - - 0.25
8 4.0, 6.0 - 0 - - - 0

9 4.5, 6.5 - - - 0 - 0

10 5.0, 7.0 - - - 2.0 - 2.0
11 5.5, 7.5 - - - 0 - 0

12 6.0, 8.0 - - - - - 0

13 6.5, 8.5 - - - - - 0

14 7.0, 9.0 - - - - - 0

15 7.5, 9.5 - - - - - 0

16 8.0, 10.0 - - - - - 0

17 8.5, 10.5 - - - - - 0

18 9.0, 11.0 - - - - - 0

19 9.5, 11.5 - - - - 1.9 1.9
20 10.0, 12.0 - - - - - 0

The entries (-) above indicate traveler ineligibility at the particular

stage K. Note that at the edge of the acceptable rectangles
,
travelers are

eligible but may have zero utility.
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The algorithm proceeds as follows. At any stage, if either value of

decision variable c yields the same value of I(K), c is taken to be 0 (no

dispatch)

:

K IQC+l) U(K) + I (K+8) 1 00 Optimal c

19 0 1.9 + 0 1.9 1

18 1.9 0 + 0 1.9 0

17 1.9 0 + 0 1.9 0

16 1.9 0 + 0 1.9 0

15 1.9 0 + 0 1.9 0

14 1.9 0 + 0 1.9 0

13 1.9 0 + 0 1.9 0

12 1.9 0 + 0 1.9 0

11 1.9 0 + 1.9 1.9 0

10 1.9 2.0 + 1.9 3.9 1

9 3.9 0 + 1.9 3.9 0

8 3.9 0 + 1.9 3.9 0

7 3.9 0.25 + 1.9 3.9 0

6 3.9 0.5 + 1.9 3.9 0

5 3.9 1.0 + 1.9 3.9 0

4 3.9 0.65 + 1.9 3.9 0

3 3.9 0.3 + 1.9 3.9 0

2 3.9 0.217 + 3.9 4.117 1

1 4.117 0.067 + 3.9 4.117 0

0 4.117 0 + 3.9 4.117 0



27

Thus 1(0) = 4.117 and, following the optimal decisions from K=0 on,

the schedule is:

Departure No. K ^d ^a Passengers

2

10

19

1

5

9.5

3

7

11.5

Passengers 2 and 3 are unaccommodated.

The departures are indicated with *'s in Figure 6. By coincidence, the

same schedule results in this example, if mean height normalization is

used. This is not generally the case, however. A full discussion of the

effects of alternate normalizations is deferred until Section 8.
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5. SINGLE-LINK TWO-WAY FLOW SCHEDULING FOR ONE VEHICLE

In this section, the simplicity of a single link (with end nodes 1

and 2) and one vehicle of capacity C, is retained. Rather than having one

node exclusively a traffic origin and the other a destination, however, it

is assumed that in the time interval t=0 to t=T, there are

N
^2

potential passengers from 1 to 2,

N
21

potential passengers from 2 to 1.

Let the trip durations be denoted by

X
-^2

= length of trip from 1 to 2,

^
2 i

= length °f trip from 2 to 1,

with and L^ the corresponding trip durations measured in discrete

time units. The turn-around times are treated as negligible, but could

easily be incorporated.

Recall that in the last section, a formulation was found for which

it was necessary to consider only those states in which the vehicle was

at a node, available for dispatch. Such a formulation is chosen here at

the outset.

The condition

2 min (o
d>

o
a ) < X

12
+ X

21 (5.1)

analogous to (4.2), is assumed to hold. There is a single state variable,

x = node at which vehicle is currently located (1 or 2)

,

and a single decision variable c, with values 0 and 1 signifying ’'hold

vehicle” and "dispatch vehicle,” respectively. The iterative equations,

analogous to (4.7), are
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1(1, K) = max {
0 + I (1 ,K+1)

U
2
W + I(2,K+L

12 )

"hold"
"dispatch"

1

1(2, K)
0 + 1(2, K+l) "hold"
U
2

(K) + I(1,K+L
21

). "dispatch"

(5.2)

(5.3)

r ( i

)

Here U-^ (K) = ^ ' (KjK+L^)^ w^ere the sum i-s over all passengers

at node 1 who are eligible to leave for node 2 at stage K; if more than C

are eligible, the C with highest values of Up^ (KjK+L-^) are included in

the sum. (K) is defined similarly. The "boundary conditions” are

1—
1

V.
vS

II o if K £ K < K + L
21

(5.4a)

1(2, K) = 0 if V|1 <k + Li 2
. (5.4b)

Figure 7, the analog to Figure 5 of Section 4, shows the overall process.

The notation

• r X. X X .A. L,

X T = o -r i
2 if X = 1

x
Q

= node at which vehicle resides at K = 0,

is used in the figure.

The following example illustrates the use of the algorithm. Mean-

height normalization on triangular utilities is employed.

Example 5.1 Assume the following parameter values:

T = K = 20 (At=l)

A
12

= A
21

= L
12

= L
21

=

N-, 7 = N?1 =3

C = 2
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FIGURE 7. SCHEDULING CALCULATION, TWO-WAY FLOW
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Node Traveler w t*
_d °_d

t*
a

G
a

1 la 0.5 5 1 8 2

lb 0.2 11 3 15 2

lc 0.9 17 2 19 1

9 2a 0.01 3 2 6 0.5
2b 0.4 10 1 12 3

2c 0.7 12 2 16 1

Figure 8 illustrates the utility distributions for travelers from

nodes 1 and 2, respectively.

Utilities

(v' V Node 1
U
X
(K)

Node 2
u
2
(K)

K la lb lc 2a 2b 2c

0 0, 3 0 0

1 1, 4 - - — 0 — — — 0

2 2, 5 - - - 0 — - — 0

3 3, 6 - - - 0 2.0 — — 2.0
4 4, 7 0.5 - — 0.5 — — — 0

5 5, 8 2.0 - — 2.0 — — — 0

6 6, 9 0.5 - - 0.5 — — — 0

7 7, 10 - - - 0 - — — 0

8 8, 11 - - - 0 — — — 0

9 9, 12 - - — 0 — 1.2 — 1.2
10 10, 13 - 0.267 - 0.267 - 1.6 — 1.6
11 11, 14 - 1.2 — 1.2 — 0.4 — 0.4
12 12, 15 - 1.867 - 1.867 — — 1.4 1.4
13 13, 16 - 0-933 - 0.933 — — 1.3 1.3
14 17 - 0 — 0 — — 0 0

15 15, 18 - - 0 0 — — — 0

16 16, 19 - - 1.1 1.1 — — — 0

17 17, 20 — — 1.8 1.8 — — — 0

18 18, 21 - - — 0 — — — 0

19 19, 22 - - - 0 — — — 0

20 20, 23 - - - 0 - - - 0

CaI

-Cr

-Cr

CT\

TO
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1.0

5

1.8

Q.4

+

10 15 20

Figure 8. UTILITY DISTRIBUTIONS:

K
—

v

(a) NODE 1, (b) NODE 2

xf
^
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Iterating with equations (5.2) and (5.3) yields the results below.

Again, c=0 is chosen if both values of c yield equal benefit.

K X I (x,K+l) U
x
(K) + I(x',K+3) I(x,K) Optimal c

19 1 0 0 + 0 0 0

2 o 0 + 0 0 0

18 1 0 0 + 0 0 0

2 0 0 + 0 0 0

17 1 0 1.8 + 0 1.8 1

2 0 0 + 0 0 0

16 1 1.8 1.1 + 0 1.8 0

2 0 0 + 0 0 0

15 1 1.8 0 + 0 1.8 0

2 0 0 + 0 0 0

14 1 1.8 0 + 0 1.8 0

2 0 0+1.8 1.8 1

13 1 1.8 .933 + 0 1.8 0

2 1.8 1.3 + 1.8 3.1 1

12 1 1.8 1.867 + 0 1.867 1

2 3.1 1.4 + 1.8 3.2 1

11 1 1.867 1.2 + 1.8 3.0 1

2 3.2 0.4 + 1.8 3.2 0

10 1 3.0 0.267 + 3.1 3.367 1
o 3.2 1.6 + 1.8 3.4 1

9 1 3.367' 0 + 3.2 3.367 0

2 3.4 1.2 + 1.867 3.4 0

8 1 3.367 0 + 3.2 3.567 0

2 3.4 0 + 3.0 3.4 0
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K X I(x,K+l) U
x
(K) +I(x',K+3) I(x.K) Optimal c

7 1 3.367 0 + 3.4 3.4 1

2 3.4 0 + 3.367 3.4 0

6 1 3.4 0.5 + 3.4 3.9 1

2 3.4 0 + 3.367 3.4 0

5 1 3.9 2.0 + 3.4 5.4 1

2 3.4 0 + 3.367 3.4 0

4 1 5.4 0.5 + 3.4 5.4 0

2 3.4 0 + 3.4 3.4 0

3 1 5.4 0 + 3.4 5.4 0

2 3.4 2.0 + 3.9 5.9 1

2 1 5.4 0 + 3.4 5.4 0

2 5.9 0 + 5.4 5.9 0

1 1 5.4 0 + 3.4 5.4 0

2 5.9 0 + 5.4 5.9 0

0 1 5.4 0 + 5.9 5.9 1

2 5.9 0 + 5.4 5.9 0

Coincidentally, 1(1,0) = 1(2,0) = 5.9; the benefit incurred by using

an optimal schedule is indifferent to the node at which the vehicle resides

at K=0. However, it should be noted that if the initial node is node 1

then the optimal decision is to depart (with the vehicle empty) for node 2

immediately. Figure 9 shows the trajectories found by applying the optimal

decisions

.

The passengers are accommodated by the schedules as follows:

i) Vehicle Initially at Node 1. ii) Vehicle Initially at Node 2

Depart

Station Time Passengers

Depart

Station Time Passengers

1 0 None 2 3 2a
2 3 2a 1 6 la
1 6 la 2 10 lb

2 10 2b 1 17 lc

1 17 lc •

Passengers lb and 2c are unaccommodated.
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6. SCHEDULING ONE VEHICLE OVER AN EXTENDED NETWORK

The algorithms described heretofore, for optimal scheduling of a single

vehicle along one link to match (one-way or two-way) passenger preferences,

can be extended to a class of more complex networks for which few new ideas

or computational requirements are necessary.

The basic premises for such generalization are these:

(a) That the analog of equation (4.3) hold, i.e. that any traveler is

eligible for just one vehicle departure.

(b) That the routing sequence in which the vehicle visits nodes of

the network, is specified a priori
,
and is cyclic in nature. Thus no

attempt is made here to determine optimal routing of the vehicle.

(c) That the ’’hold or dispatch” decisions are required only at a

limited number of the nodes, called dispatching points . All other nodes,

to be called stopping points
,
are characterized by fixed stopping times

for the vehicle. Thus travel time along the route, between any two

successive dispatching points, is a constant of the model.

(d) That passengers travel within or between consecutive dispatching

points only; thus, the longest trips are those from one dispatching point

to the next along the route. In order to be more general a "through passenger'

traveling past one or more dispatching stations might be regarded as being

discharged and replaced by a fictitious new passenger, at each dispatch

point in his journey. Such an assumption involves certain difficulties,

however. In particular, schedules may result which fail to accommodate

all the fictional passengers along the segments of the total trip. Hence,
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the "real" passenger would be accommodated for only a portion of his full

j ourney

.

The generalization of the earlier algorithms involves some preliminary

steps with regard to the traveler utilities and capacity limitations.

First, the utility functions U l^(t ]5 t ) for persons wishing to arrive or
cl a

depart at intermediate stopping points, must be "referred" to dispatching

point coordinates. Secondly, utilities must be aggregated in such manner

as to make full use of capacity. These two matters are discussed below.

The specifics of "referring" a potential traveler to dispatching points

is as follows. Let A and D be consecutive dispatching points, between

th
which lie the 1

1

traveler’s origin B and destination C (in that order);

perhaps B=A and/or C=D. A time t^ of departure from B implies that the

vehicle departed from A at time (A^g is the travel time from A to

B along the route, including stopping times at stopping nodes up to and

including B .) A time t of arrival at C implies that the vehicle will

reach D at time t
a
+A
Qy Thus the traveler can be replaced by a fictitious

one with origin A and destination D, whose utility function is

v<‘ htd .
t
a ) d )

(td
+x
AB > t

a
"'

>laP (6 . 1 )

Once all travelers have been so referred, the utilities must be

aggregated at each dispatch node in a manner analogous to that in the

earlier algorithms:
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The state variable will be

x = dispatching point at which the vehicle is currently located.

Also let

= dispatching point next after x in the routing sequence.

L_ = length of trip from x to D_, measured in discrete time units,
x x

Then the aggregated utility is

VK) = qv (i)
(K,K+L

x) ,

where the sum is over the (fictitious) set of travelers eligible to leave

node x at stage K.

The utility aggregation procedure used previously must be modified to

ensure best use of vehicle capacity. The original procedure was to count

the C highest utility travelers at each node. Here, however, this is

inadequate because travelers, in general, ride only a portion of the route

segment between dispatching points. Hence, if a passenger travels only

part of the route between two dispatching points, he leaves an empty seat

which might well be utilized by someone else, during the remaining part of

the route.

The situation can be illustrated by considering the route segment

A-B-C-D where A and D are the consecutive dispatching points. Suppose all

travelers riding between A and D in the A-*D direction have been referred,

and the aggregated utility V^(K) is to be calculated for use in the dynamic

programming routine for ’’hold or dispatch” decisions from node A. V^(K)

should be the maximum sum of utilities resulting from an optimal assignment
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of passengers to the vehicle along the route. Calculation of V^(K) is

complicated by the fact that certain travelers are in competition for

seats while others are not. For example, travelers from A to B and A to

C are in competition, but travelers from A to B and B to D are not. Hence

passenger trip segments must be "meshed” together, to derive a passenger

assignment list which maximizes the sum of utilities of passengers assigned

to the vehicle.

The problem of optimally assigning passengers to the vehicle along the

route between dispatching nodes is analogous to the problem of finding a

"minimal -cost flow" between a source node and a sink node in a graph. A

graph is comprised of a set of nodes, and a set of edges which connect the

nodes. In the present context, the nodes are the stations (A, B, C, and D)

.

The source node (A) is the dispatching node from which the trip emanates;

the sink node (D) is the dispatching station at which the trip terminates.

The edges are the travelers
,
each of whom can be thought of as a connecting

edge between his origin node and his destination node. Each edge (traveler)

is associated with a cost and a "flow capacity." The cost is equal to

the negative of the utility that the traveler holds for his trip. A flow

capacity value of one is assigned to each edge. Thus a unit flow from

source to sink is equivalent to a set of "connecting" travelers whose trip

segments combine to make up a total trip between the successive dispatching

nodes (A and D) . Zero cost edges are included in the graph, between each

pair of consecutive nodes, to represent potentially empty seats on each

of the trip segments. Figure 10 illustrates the graph which represents

travelers along the A-B-C-D route.
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Using the graph representation, the problem of optimally assigning

passengers to the vehicle is equivalent to the problem of finding that

flow from source to sink, of magnitude C (the vehicle capacity)
,
which

has minimum cost (maximum utility) . The minimal -cost flow problem is

readily solved using established algorithms.'*' An illustrative solution,

for a vehicle capacity C=2, is shown in Figure 10. The aggregate utility

V^(K) is equal to the negative sum of costs on the edges which are included

in the minimal -cost flow solution.

Finally, the basic iterative equation is

I(x K) = max {° + Z (X ’
K+1 ) ("hold”)

1 , j max 1V
x
(K) + I(D ,K+L ). ("dispatch") ( 6 . 2 )

Examples of networks which are of the type discussed in this section,

are illustrated in Figure 11. A variety of other configurations can easily

be imagined. Thus the methods of this section make it possible to schedule

a single vehicle on a fairly general array of networks.

The section concludes with a brief example to illustrate some of the

ideas put forth here.

1
See for example Busacker, R. G. and Saaty, T. L., "Finite Graphs and
Networks," McGraw Hill, 1965, pp. 225-260.
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Minimal -Cost Flow: C=2

Passengers : Seat #1: Passengers 3 and 4

Seat #2: Passengers 2 and 6

Total Utility : V.(K) = 16.

FIGURE 10. GRAPH REPRESENTATION OF PASSENGER ASSIGNMENT PROBLEM

HO

NO

m

N
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(a) Loop B

(b) Line of stations

1 A _ B

Dispatching Points: node 1

Routing: 1-B-C-D-l

x = l

D = 1
x

L
x

= L
1B

+L
BC

+L
CD

+L
D1

Dispatching Points: nodes 1, 2

Routing: 1-A-B-C-2-C-B-A-1

n (
2 if x=l

x 4 if x=2

(c) Hub

L = ,

L
1A

+L
AB

+L
BC

+L
C2

lf x 1

x L
2C
+L

CB
+L
BA

+L
A1

lf x=2

Dispatching Points: Nodes 1, 2, 3

Routing: 1-H-2-H-3-H-1

D
2 if x = 1

{3 if x = 2

1 if x = 3

L
1H

+L
H2

{L
2H

'3H

+L
H3

if x = 1

if x = 2

if x = 3

FIGURE 11. EXAMPLES OF EXTENDED NETWORKS
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Example 6 .

1

Given the network

with routing 1-A-2-A-1, and dispatching points 1 and 2, and the following

set of travelers wishing to depart over the interval t=0 to T=20:

Traveler Origin Destination w
t*r
d !d

t*
a

0
a

1 1 2 0.5 5 1 8 2

2 1 A 0.2 11 3 13 2

3 A 2 0.9 18 2 19 1

4 2 1 0.01 3 2 6 0.5

5 2 A 0.4 10 1 11 3

6 A 1 0.7 14 2 16 1

Assume K=T=20 (At=l)
,
and

L
1A
=L
A1

=1
’

I =1 =2L
2A

L
A2

C=2

.

Travelers 2, 3, 5, and 6 must be referred to the dispatching stations.

Hence, the following fictious set of travelers is to be considered:

Traveler Origin Destination w
t*
Id

t*
a

0
a

1 1 ? 0.5 5 1 8 2

2' 1 2 0.2 11 3 15 2

7 »J 1 2 0.9 17 2 19 1

4 2 1 0.01 3 2 6 0.5
5’ 2 1 0.4 10 1 12 3

6’ 2 1 0.7 12 2 16 1

From this point, the two-way algorithm as discussed in Section 5 can be

employed directly to schedule between nodes 1 and 2. It will be noted

that the 'new' set of traveler parameters above corresponds exactly to

those in Example 5.1. The solution is the one calculated there, but
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illustrated in the present context in Figure 12. Note that the algoritlim

does not allow for an initial departure from an intermediate stopping

point such as node A.
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7. MULTI -VEHICLE SCHEDULING

The bulk of this paper is devoted to scheduling of a single vehicle --

a starting point for the study of more general scheduling problems. The

purpose of the present section is to describe some possible approaches to

scheduling a fleet of several vehicles, with (possibly) different speeds

and capacities. To date this research effort has not included much work

in the multi -vehicle area, so that what follows is more indicative of

likely future work than of accomplished analysis.

The natural inclination, in proceeding to the case of several vehicles,

is to extend the one-vehicle formulation. Thus, let

s . = dispatching station (node) from which the next departure

of vehicle j can occur,

IC = next stage at which vehicle j can depart from s ^

,

V = total number of vehicles.

Then the state of the system is described by the vector

x = (s_, K)

where

— ^ 1 > ^ J f > Sy),

K = (Kr K
2
,-~ .Ky).

It will be shown shortly that the size of the state space in the dynamic

programming formulation will offer great difficulty in computational

requirements. To alleviate the problem somewhat, the following modification

is made in the definition of x:

Let x = (s, T)
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where

and

= (Tr T
2
,--,T

v)

T . = IC-K = number of stages until the j

1 ' 1

vehicle could be

dispatched from Sj

.

Using T. rather than K. results in a considerable reduction, since K.6
J 1 1

has K+l possible values, whereas Tj lias at most only (L
Jinx

+l) possible

values, where L is the largest number of stages separating any two
max

consecutive (dispatching) nodes. It should be noted that this definition

of state could have been used in the single vehicle algorithms, but to no

particular advantage.

The decision vector £ is given by

£— ^ o > >
Cy)

where

Cj = $ (null decision for vehicle)

c. =0 if "hold” is ordered for j

t^ vehicle
J

J

th
Cj = 1 if "dispatch" is ordered for j vehicle.

Clearly,

c.(K) = $ if T. / 0,
J 1

c
.
(K) = 0 or 1 if T . = 0

.

3 J

Using the notation

Lj = niimber of stages required, by vehicle j ,
to go from

its most recent dispatching node to the next one>
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s

!

3

dispatching node next after the current one, for the

vehicle,

the transition vector g(x, K) has components
g^

(x^
,

c^
,

K) given by

gj
(Xj

> *’ K) = (sj> T
j
-U’

gj(Xj, 0 ,
K) = (Sj

, 0)

,

gj(
xr 1 , K) - (si, L ).

The "immediate benefit" function b(x, c, K) would be defined in terms

of a set of aggregate utility functions, classified by station (node) and

by vehicle speeds and capacities. Obvious complications arise regarding

the assignment of particular travelers to particular vehicles. No definitive

treatment has been devised up to now to deal with these complexities.

Turning to the basic computational problem, consider the amount of

computation and computer storage required by the basic dynamic programming

equation (3.1), repeated here for convenience:

I(x, K) = max {b(x,<s,K) + I(g(x,c,K), K+l)}. (3.1)
c

The amount of computation depends primarily on the number of terms to

be calculated and compared in finding the maximum. If there are V(x)

vehicles at dispatching points when the system is in state x, then the

number of different decision vectors in (3.1) is 2^®. While V(x) could

be as great as V, in reality it may be only a small fraction of V for most

states

.
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As is generally the case for dynamic programming calculations, computer

storage requirements are particularly heavy. The results of the maximization

(3.1) for each x need to be recorded, and to obtain them, it is necessary

to store all I(g(x,£,K), K+l) at the succeeding stage, K+l. Thus the

dominant storage requirement is twice the number of different states x, in

the state space. Suppose for simplicity that the number of dispatching

nodes S is the same for each of the V vehicles. Then there are S possible

values for each s ^ ,
and hence possible choices for the "next dispatching

node" vector £. (Recall x = (£, T).) Further, T_. takes on one of (Lj+1)

values, 0 through inclusive. Suppose any two successive dispatching

nodes are at least L* stages apart; then a lower bound on the number of

states is

S
V
(L*+1)

V
.

If for example S=10, L*=2, and V=5, a fairly modest network, the storage

7
requirement exceeds 2 x 10 !

While this general mode of analysis still seems well worth pursuing,

the need to explore a variety of other tools is clear. There are a number

of techniques within the dynamic programming context which may prove useful

in dealing with the difficulties of multi -vehicle scheduling. These include

the use of Lagrange multipliers to reduce the dimensionality of the problem,

and the application of polynomial approximations to reduce computer memory

?
requirements for storing functions (e.g. I(x, t)).“

2
See Bellman and Dreyfus, "Applied Dynamic Programming," Princeton
University Press, 1962.
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A rather different approach, in which attaining the true optimum is

sacrificed for computational simplicity, is that of sequential optimization .

In the present context, this would involve using the single -vehicle algorithm

to schedule vehicles one at a time. The procedure would be to schedule a

vehicle, "remove" the accommodated passengers and revise the aggregate

utility functions accordingly, schedule the next vehicle, and so on.

The quality of the solutions obtained by this method will of course

depend on the order in which the vehicles, characterized by speed, capacity,

and routing sequence, are scheduled. It should be interesting to analyze

the comparative merits of different ordering rules. The performance of the

methods as a whole can at least be indicated by comparing results with those

from a full multi-vehicle dynamic programming formulation, on systems simple

enough for the latter to be computationally feasible.

Finally, it may be worthwhile to seek an iterative procedure for

successively improving an initial "guess" at a good schedule. This starting

schedule might be found by sequential optimization or by some other means.

The determination of a suitable "improvement routine" is yet to be studied.
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8. NUMERICAL RESULTS AND SENSITIVITY ANALYSES

The algorithm for scheduling a single vehicle over a single link with

one-way demand has been implemented in a FORTRAN computer program. The

details of the computer code are presented in Appendix A. This section

presents a discussion of the results of its application to investigate the

sensitivity of optimal schedule characteristics to changes in the important

problem parameters.

The single link, one-way, one vehicle case, although extremely simple,

provides a format in which to study some of the fundamental aspects of a

transportation system, such as capacity limitations, variable vehicle speed,

and passenger preference characteristics. Accordingly, it is hoped that

results obtained here have some general significance.

Several parameters are to be studied. The (one-way) trip time, c}>, is

of prime importance as a measure of vehicle speed. Capacity, C, is a second

quantity basic to studying system operation. The trade-cff between speed

and capacity is a subject of obvious importance and will be investigated

here

.

The properties of the traveler utility functions are also to be studied

for their influence on the optimal schedules. The effects of the half-

width parameters (a) and the weighting parameter (w)
,
as well as the

functional form and normal ization criterion, are of interest here.

Finally, the question of variability of results with changes in tiie

precision of calculation (size of the stage increments in the dynamic

programming calculation), and with different sets of input travelers, will

be addressed.
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Design and execution of the experiments by which to perform the

analyses involved some preliminary preparation; additional assumptions

had to be made and data had to be generated from which meaningful results,

based on estimates of '’realistic" traveler behavior, could be obtained.

The following assumptions were made with regard to traveler behavior:

(a) Each traveler is either totally departure -oriented or totally

arrival -oriented, e.g., w^=0 or 1. For each traveler, w^ is generated

from a binomial distribution with parameter p, where

p = Probability {w^=0} = 1 - Probability {w^'=l}.

(b) The half-width parameters for each traveler's utility function

are selected such that if a traveler is departure -oriented, his acceptable

arrival interval is sufficiently wide so that, over the full range of trip

times considered in this experiment, if a vehicle departed within his

acceptable departure interval it would arrive within the acceptable arrival

interval. Analogously, for arrival -oriented travelers, if a vehicle arrives

within the acceptable arrival interval, it must necessarily have departed

within the acceptable departure interval. Assumption (b) is implemented

as follows:

(i) Each traveler is assigned a value w^=0 or 1.

(ii) If w^=l, is generated as a random number between 0

and some specified maximum value If w^=0, a ^ is so

generated instead. It is assumed that the same value of is

app] icable for departures and arrivals

.
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( 8 . 1 )

( 8 . 2 )

where

(iii) Assuming w^=l, assumption (b) translates into the

inequalities:

z
d MAX yf- a a

’

t*‘
1
'+a,,. y+<f <t*

fi
^+a

d MAX s— a a

cj)£ = trip time for fastest trip considered,

= trip time for slowest trip considered.

Inequality (8.1) requires that if a vehicle departs at the earliest

possible time within the widest possible interval of departure, on the

vehicle of highest speed, then arrival will not occur earlier than the

earliest acceptable arrival time. Inequality (8.2) requires tliat if

departure occurs as late as possible, within the widest possible departure

interval, on the slowest vehicle considered, then arrival will still occur

before the end of the acceptable arrival interval.

Corresponding to (8.1) and (8.2), for the arrival -oriented traveler,

are the inequalities

. (8.3)

(8.4)

a

>t*
(i)

-a
(ii

MAX *s- d
’

a MAX 's- d d

Following assumption (4.3), the following additional inequality is

required to ensure that no individual is included on more than one vehicle

departure

:

Max-V (8.5)
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Hence, in generating a set of traveler parameters, (8.1) through (8.5)

was assumed to hold. The following steps were actually taken to generate

the data:

(a) Table 2, taken from the Port of New York Authority report, MNew

York’s Domestic Air Passenger Market,” 1965, gives the percent of total

passengers leaving in any hour, between 7 a.m. and 12 midnight, from New

York airports on holidays, and the same data for weekends. For the purpose

of this study, time t=0 was taken as 7 a.m. and t=T=17 was taken as 12

midnight; further, each percentage point was regarded as a single traveler,

yielding a total of 100 travelers desiring to leave over the interval

(0, T) . The distribution for holidays was used as the basis for the input

data throughout most of the analysis; the weekend distribution was used

for a comparison of results, given at the end of this section.

(b) A range of trip times (<(>£, (J>

s
) was selected, over which sensitivity

to the parameter <p would be tested. <j>

c ,
the trip time for the sloivest

vehicle to be considered, was set at 3 hours; <j>£, the fastest considered

trip time, was set at 1 hour. The nominal trip time in this 3:1 range of

trip duration is

<f>

= —
2
— = ^ hours. (8.6)

(c) The parameters t^^ and tj^
lj

,
for each traveler i, were

generated as follows: Within each hourly interval, the travelers desiring

to depart in that hour, as given by Table 2, were assigned desired departure

times t*^ randomly over that hour, using the random number generating
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Table 2. PERCENTAGE BREAKDOWN OF FLIGHT'

DEPARTURE TIMES FOR PASSENGERS DEPARTING NEW YORK

Departure Time t Holidays Weekends

7 - 8 a.m. 0-1 3 4

8 - 9 a.m. 1-2 6 5

9 - 10 a.m. 2-3 16 9

10 - 11 a.m. 3-4 3
r
0

11 - 12 noon 4-5 8 5

12 - 1 p.m. 5-6 6 6

1 - 2 p.m. 6-7 2 6

2 - 3 p.m. 7-8 3 5

3 - 4 p.m. 8-9 9 8

4 - 5 p.m. 9-10 11 9

5 - 6 p.m. 10-11 3 7

6 - 7 p.m. 11-12 3 11

7 - 8 p.m. 12-13 10 8

8 - 9 p.m. 13-14 1 3

9 - 10 p.m. 14-15 12 5

10 - 11 p.m. 15-16 0 1

11 - 12 p.m. 16-17 __4 3

Total 100 100

"New York’s Domestic Air Passenger Market", 1965, Port of New York

Authority, Table 30, page 80.

Source

:
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function on the CDC 3100 computer. Subsequently, each traveler was assigned

the desired arrival time

t*^ = t*^+cj) =t*^ + 2.0. (8.7)
a d Yn d

Of course, since w'
x^=0 or 1 and assumption (b) holds, concerning the half-

width parameters, only one of the numbers tj
1;

,
t*^J has significance for

ci a

any particular traveler. Hence (8.7) does not imply any (strict) functional

relationship between travel time and the way an individual specifies his

desired departure and arrival times.

(d) Next, the parameter p was chosen, subsequent to which each

traveler was assigned a value of w® according to the binomial distribution

with parameter p.

(e) The value of was specified in accordance with (8.5). Then,

for each traveler,the half-width parameter of the stressed interval (a^^

if w^=l, and o ^ if w^=0) was picked as a random number between 0 and
a

°MAX*
^he half width parameter of the unstressed interval was then set at

a
('
1

'^ = 4> = 2 if w fl) = 1, (8.8)

oS 1 ^ =
<|> = 2 if = 0.

d n

Note that (8.8) in conjunction with (8.7) and (8.5) satisfies the require-

ments (8.1) and (8.2) if w^=l, and (8.3) and (8.4) if w^=0. The effects

of changing the half-width parameters were studied by varying .

A computer print-out of the set of traveler parameters, using p=0.5

and the holiday travelers of Table 2, is shown in Figure 13. This set was

used through the bulk of the experiments.
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FIGURE 13. TRAVELER UTILITY PARAMETERS
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One interesting statistic by which to characterize the traveler set

is the "maximum benefit it is possible to derive if every traveler were

accommodated at his most desired time of departure (if w^=l) or arrival

(w^=0.)" For the set of travelers of Figure 13, this quantity, denoted

MPB = maximum possible benefit,

is calculated to be:

Triangular Utility Rectangular Utility
Volume Mean -Height Volume Mean -Height

MPB : 177.6 200 88.8 100

A flow diagram of the program which was designed to facilitate study

of parametric variations, is shown in Figure 14. The program exhibits five

distinct branches, each of which carries out variation of a particular

parameter. The mode of variation for any particular run is "read in" by

giving the appropriate "M" parameter the value 1:

Ml = 1 -* variation of trip time, <j>.

M2 = 1 -* variation of capacity, C.

M3 = 1 -* variation of

M4 = 1 -* variation of binomial parameter, p.

If none of the M’s are specified to be 1, the program executes a single

schedule calculation, with all the parameter values read in, and no parametric

variation performed. The subroutines ADUTIL, SCHED1, and ASSIGN, alluded to

in Figure 14, are described in Appendix A.

An example of the output from a single schedule calculation is exhibited

in Figure 15, for the case of <j>=3.0, C=10, triangular, volume -normalized

utilities, and K=340. (K=340 corresponds to stage increment size At=3 minutes
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FIGURE 14. SENSITIVITY TEST PROGRAM
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The "STANDING TIME" print-out gives the amount of time, during the optimal

schedule, that the vehicle is not in motion.

In the remainder of this section, results of the computer runs will

be illustrated and discussed. Unless otherwise noted, the following

inputs were used:

K = 340; hence At=T/K= . 05 hrs. = 3 minutes.

Traveler set, generated from Table 1, holiday column.

N = 100 travelers.

Triangular utility functions.

p
= °* 5,

°MAK
1 *°*

Variation of 1(0) with trip time . Figures 16 and 17 display the behavior

of 1(0), the benefit attained by the optimal schedule, as a function of

trip time, 4>. Figure 16 shows the volume -normalized case, and Figure 17

the mean-height normalized case. The right-hand ordinate gives 1(0) as a

percent of the MPB.

These graphs display several interesting properties. 1(0) is generally

decreasing with increased trip time, as should be expected. A faster

vehicle is able to make more trips per time period than a slower one, or

at least able to make the same number of trips at more opportune times.

However, it will be noted, in Figures 16 and 17, that 1(0) is not always

invariably decreasing with increasing <j>, a fact that is somewhat disturbing.

For example, in Figure 16, a trip time of 2.25 incurs more benefit than a

trip time of 2.0, at capacities greater than 6.
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The reason for this anomalous behavior is that the immediate benefit

function (for the ’’depart" decision at stage K)
,

b(l,K) = £.U
(l)

(K,K+F) = U(K)

,

changes with changes in the value of F. In certain instances, changes in

U(K) compensate for increases in trip time, and lead to increases in benefit.

The source of variation in U(K) lies in the structure of the individual

utilities:

U^Fk.K+F) = w(
1bl 1

hK) + (1-W
(1) )U ^(K+F). (8.9)

cl a

Since it has been assumed here that all travelers are either completely

departure -oriented or completely arrival -oriented,

U(K) = l U,
(l)

(K) + l U
(l)

(K+F) (8.10)
ieD

a
ieA

a

where

D = set of departure -oriented travelers

A = set of arrival -oriented travelers.

Hence, U(K) can be divided into two parts such that

U(K) = U
a
(K) + U

d
(K+F). (8.11)

Now suppose that all travelers were departure -oriented (p=0) . Then

U(K) = U
d
(K) would be unaffected by changes in F. On the other hand, if

all travelers were oriented towards arrival (p=l)
,
then U(K) = U (K+F)

a

would respond to a change in F by shifting along the time axis, while

maintaining its shape.

However, if p=0 or 1, the shape of U(K) is not maintained when F is

varied; hence it is a priori possible that increases in benefit, via
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modification of U(K), can result from increases in trip duration, in a

traveler population of mixed orientation. If p=0, U(K) is unchanged with

changing F, and 1(0) should monotonically decrease with increasing F; if

p=l, U(K) shifts with changing F, leading to shifting schedules, but not to

non -monotonic behavior of 1(0). These contentions are bom out in Figures

18 and 19, which shows the curves of 1(0) versus trip time, corresponding

to the parameter values p=0 and p=l, for volume and mean-height normali-

zations respectively. The curves are indeed monotonic.

The details of the process by which 1(0) deviates from monotonicity

are illustrated by comparing the results of the schedule calculations, as

trip time is increased from 2 to 2.25, in the volume -normalized case,

capacity C=10, p=0.5. Figure 16 shows that the decrease in trip time results

in a decrease in 1(0). Table 3 summarizes what happens.

Departures 1 and 2 takes place at the same times in the optimal schedules

for either value of trip time. Thus t, =2.40, and t, =9.10 remain the
d
l

d
2

best times to depart, despite the added flexibility of a faster vehicle;

but marginal changes in U(K) preclude the vehicle from incurring as much

benefit at the faster speed (4=2.0) as at the slower one (4=2.25). Departure

3 is more complicated; decreasing the trip time has two effects here: it

affects U(K) so as to make the old departure time t^ = 14.30 less

advantageous at 4=2.0 than it was at 4=2.25. However, the smaller trip

time allows the vehicle to leave at an earlier
,
more beneficial departure

time, t, =13.35.
d
3

The lists of passengers on each trip is informative. Consider departure

1. Passengers 15, 18, and 23 are all arrival -oriented travelers who are

eligible if 4=2.25, but become ineligible if trip time is decreased to 4=2.0.
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TABLE 3. SCHEDULING CHANGES AS TRIP TIME DECREASES FROM
<J>
=2 .25 to <(>=2.0

Volume - normalization, Capacity = 10, p=0.5.

I. (j> = 2.25 1(0) = 26.484

Departure t^ Passengers

1 2.40 10, 14, 15, 18, 19, 20, 21, 22, 23, 25

2 9.10 48, 53, 57, 58, 59, 61, 62, 65, 66, 67

3 14.30 85, 86, 87, 88, 89, 90, 91, 92, 93, 96

* = 2.0 1(0) .= 25.407

Departure
. M Passengers

1 2.40 10, 13, 14, 16, 17, 19, 20, 21, 22, 25

2 9.10 48, 52, 53, 57, 59, 61, 62, 65, 66

,

67

3 13.35 76, 79, 81, 84, 93

Passengers at <(>=2.25 replaced by Passengers at<j>=2.0

Departure

1 15, 18, 23

2 58

13, 16, 17

52

«3 85 thru 92, 96 76, 79, 81, 84
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Passengers 16 and 17 are departure -oriented, and are therefore eligible

regardless of trip duration. However, they are ’’marginal" travelers whose

utilities are the smallest of all those included on the trip when 4>-2.0.

(This is verified by the fact that passenger 17 is not included on the

departure when capacity is reduced to 9, and both 16 and 17 are excluded

if capacity is lowered to 8.) Passenger 13 is arrival -oriented; he is

eligible if <j>=2.0 but ineligible if <t>=2.25.

All other passengers on departure 1, are included for both values of <f>

.

When the transition from <t>=2.25 to 4> =2 . 0 is made, the following occurs:

Passengers 15, 18, and 23 are dropped, and replaced by the low priority

travelers 16 and 17, plus the newly eligible passenger 13. The result is

a net loss in utility derived from this passenger exchange on the first

scheduled departure.

Consider departure 2. Passenger 58, included on the slower trip, is

exchanged for passenger 52 on the faster trip. Both 52 and 58 are arrival-

oriented but eligible for both trips. The utilities of these two travelers

are such that they exchange positions of priority as changes from 2.25 to

2.0. Further, passenger 58 's utility for the slower trip is greater than

52 ’s utility for the faster one; hence a net loss in utility is again

realized from the passenger exchange.

Of course, those other arrival -oriented travelers who are accommodated

at either value of <f> ,
such as passenger 14, 19, and 21, also exhibit net

changes in utility; the overall effect is the pathological behavior of

1(0) currently under discussion.
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A second interesting property of the variation of 1(0) with trip

time can he identified clearly in Figure 18 and 19. The curves of these graphs

exhibit "plateau” regions in which decreases in <P yield zero incremental

benefit. This effect is quite separate from the previous discussion on

monotonicity since the traveler populations under present discussion are

uniformly departure -oriented (p=0) or uniformly arrival -oriented (p=l)

.

The plateau merely indicates that, in certain ranges of vehicle speed

capability, there is just one best schedule, the benefit of which cannot be

exceeded unless a certain "threshold" trip time is achieved. This phenomenon

could have interesting policy connotations with regard to decisions on

vehicle capability. Although somewhat hidden in the case where p^O or 1,

the "plateau" effect is still noticeable; see Figures 16 and 17, where

p=0 . 5

.

Variation of I (0) with Capacity . Figures 20 and 21 display 1(0) versus

C, for the volume -normalized and mean-height normalized cases, respectively.

In both cases smooth asymptotic increasing behavior is observed. A striking

difference in the range of variation between the two graphs is observed,

however. A large variation in 1(0) over the capacity range C=1 to C=10,

is observed in the mean-height case, Figure 21 ;
however, a small variation

over that range occurs in the volume case, Figure 20. This behavior is

attributable to the ranges of variation in the "heights" of the individual

utility functions under each mode of normalization. Under volume

normalization, the maximum height of any utility surface varies inversely
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with the area of the acceptable interval; hence travelers exhibit utilities

varying from those that are low in height and spread over a large area, to

those that are very tall and confined to a narrow acceptable interval. As

a result, the aggregate utility is composed of components of widely varying

magnitude. According to the algorithm developed here, the major component

utilities are accommodated first. Hence at low capacities it is probable

that the major portion of the ’’available" utility will be collected, and

that additional capacity will accommodate only minor components.

Under mean-height normalization, however, one can expect that the

component utilities for all travelers eligible for a given departure are

commensurate with one another. Hence it can be expected that vehicles of

larger capacity will achieve substantially more benefit than ones of lesser

capacity.

Trade-off of Capacity and Trip Duration . Figures 22 and 23 show the contours

of constant 1(0) in the plane of <f> and C, for the volume -normalized and

mean-height normalized representations, respectively. Figure 22 displays

some deviate points which result from the non-monotonicity in Figure 16.

Similar points occur under mean-height normalization, but not at the

values of 1(0) plotted in Figure 23. A comparison of these two graphs

reveals that the contour lines are considerably "steeper” in Figure 22,

indicating that capacity has less import relative to speed under volume

normalization than under mean-height normalization.

However, the same general trend appears in both figures: the

steepness of the curves decreases as 1(0) decreases. This means that in
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a "high benefit" system more is to be gained by increasing vehicle speed,

than by increasing capacity. To the contrary, in "low-benefit" systems,

increases in capacity are more valuable than increases in speed.

Figures 24 and 25 exhibit the contours of constant 1(0) for uniformly

oriented populations; Figure 24 corresponds to the departure -oriented,

volume normalized population (p=0) of Figure 18, and Figure 25 corresponds

to the arrival -oriented (p=l)
,
mean height normalized population of Figure

19. These figures are not plagued with deviate points of the kind shown in

Figure 22, because non-monotonic variations of 1(0) with
<f>

do not

occur for uniformly-oriented populations.

The contour 1(0) =21. 73 of Figure 24 does, however, exhibit some rather

strange behavior as a result of the "plateau" effect discussed previously.

The range of points from <{>=2.25 through <j>=2.75, at capacity value C=5, all

lie on the same contour, 1(0) =21. 73. The same behavior occurs at other

values of 1(0) (not plotted) in both Figure 24 and Figure 25, and is merely

another manifestation of the plateaus of Figures 18 and 19.

Variation of Schedules with <p and C . Figures 26 and 27 exhibit sets

of optimal schedules, for vehicle capacity C=5, for the volume and mean-height

normalizations, respectively. Each line segment represents a scheduled

departure in the optimal schedule for the particular value of <{> shown at

the extreme right. The digit printed to the immediate right of each line

segment is the number of passengers included on that trip.

In Figure 26, the volume -normalized case, one characteristic of the

schedules --their stability- -is particularly striking. Over broad ranges
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of 4>, the schedules remain relatively fixed; further, particular departures,

such as the ones at t^=2.40 and t^=9.10 remain unchanged throughout even

larger ranges.

This behavior is explained by the fact that, under volume -normalization,

the benefit derived by a schedule is made up substantially of a few major

components. The trips in a schedule tend to center around accommodation of

a few high utility (narrow-acceptance interval) travelers. Hence the

schedule remains unaffected by changes in
<f>
uiJess such changes affect

accommodation of these major components. For example, the departure at

t^=2.40 is tailored to the preference of traveler 25, while departure at

t^=9.10 accommodates the preferences of traveler 66. Both 25 and 66 are

departure -oriented, with very narrow acceptance intervals centered at the

above mentioned departures. On the other hand, passenger 33 is also a

high utility (narrow interval) traveler, but is arrival -oriented. Traveler

33 provides an example of how a change in <j> affects accommodation of a

major utility component, which in turn affects the schedules. Traveler 33

supplies the principal utility contribution toward the departure at t^=5.95,

in the case where <j>=1.0 in Figure 26. As 4> is incremented in steps of 0.25,

up to 4>=1 . 75 ,
the corresponding departure shifts to the left on the

departure time axis, in steps of 0.25, so that traveler 33 's preferred

arrival time is adhered to. Another situation in which a change in
<f>

is

likely to affect the schedule is when such change permits accommodation of

either an extra, or a different, more '’beneficial' 1

,
principal component

utility. (A more beneficial principal component is one which is located at

a preferred time at which the aggregate utility is greater.) Examples of
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such situations occur at the transitions from 4>=2 . 2 5 to cf>=2.0, and from

<J>=2.0 to <j>=1.75. In the former instance, passenger 95 is replaced by the

more ''beneficial” passenger 84. In the latter instance, major utility

component traveler 99 is added to the schedule.

In contrast to the volume case, the mean-height normalized case of

Figure 27 exhibits considerably less regularity. The large discrepancy

in the magnitudes of the individual utility components which comprise the

benefit derived by the schedules under volume normalization, does not exist

here. Hence the stability phenomenon does not occur.

Figures 28 and 29 exhibit the sets of optimal schedules obtained by

varying the capacity from 1 to 10, at 2.0, in the volume and mean-height

normalizations, respectively. Notice that under volume normalization, the

schedule remains completely unchanged throughout the entire range! On the

contrary, there is considerable fluctuation in Figure 29. This is just

a further illustration of the contrasting stability effects of

the alternate normalization procedures.

It is interesting that, under mean height normalization at least,

similar changes occur in the schedules from increasing capacity or from

decreasing speed. This can be seen by comparing Figures 27 and 29.

Increased capacity tends to favor schedules with fewer trips, at times

preferable to many travelers. Decreases in vehicle speed (increases in $)

,

although degrading with respect to overall benefit attained, tend to have

the same effect on the schedules simply because the vehicle becomes less

capable of making many trips in the specified time period.
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Variation with Figure 30 exhibits the variation of 1(0) with

parameter under the alternate normalizations. Recall that is

the upper limit of the uniform distribution from which the value of

is picked if w^=l, or a ^ is picked if w^=0. From the mean-height
a

curve the absolute value of 1(0) may be read off the left-hand ordinate,

and 1(0) as a percent of MPB may be read off the right-hand ordinate. For

volume normalization there are two curves because the value of the

MPB varies with a..AV . The solid curve shows the behavior of the absolute

value of 1(0) (read from the left-hand ordinate) while the dotted curve

exhibits 1(0) as a percent of MPB (read from the right hand ordinate).

The solid volume normalization curve in Figure 30 reflects the fact

that under volume -normalization, the benefit is principally derived from

relatively few "tall and narrow" component utility surfaces. Thus, as Oj
v^.

is increased, the heights of the principal utility components decrease, and

so does the overall (absolute) benefit. However, the dotted curve and the

mean-height curve demonstrate that relatively greater benefit can be achieved

by increasing o^^., since widening of the intervals over which travelers are

willing to travel, enables the accommodation of a larger number of

passengers

.

Figures 31 and 32 show the effects of changes in on the schedules,

under both normalizations. Before analyzing these figures it is important

to note the manner in which the traveler half-width parameters were modified

during the computer runs (see Figure 14)

.

For each traveler (i) the pertinent half-width parameter (a^^ if

w^=l, a ^ if w^=0) was initially generated as a random number
a

between zero and q
m/\x

=0.2. Following each complete scheduling calculation,
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°MAX
was incremented by 0.4; accordingly, the appropriate half-width

parameters were multiplied by the expansion factor,

new value of ax .AV
e = . ,—^ . (8.12)previous value of ^ J

Hence, the values for the travelers become distributed between zero

and the new value of o*,AV1 but the travelers maintain their relative
MAX’

preferences with respect to one another.

In Figure 31, the volume normalized case, except for the third departure,

the schedule is unaffected by varying o^(. The shift in departure 3 points

up the way in which the variation in the can affect the schedules. It

has been noted before that, under volume normalization, the schedule tends

to center about a few major utility components. In the third departures of

Figure 31, there are several such components; which is MchosenM depends on

the value of largely as a result of the degree of precision with which

the time axis is divided into stages. With K=340 in the current runs

(At=3 minutes)
,
the departure decision can be considered only at each 3

minute demarcation point. At small values of it is entirely

possible that some very tall, narrow utility components fall entirely or

almost entirely between successive grid points on the time axis, and

are, therefore, overlooked in the calculation..

This is the case with travelers 95, 84, and 99. With Qj^.=0.2,

departure 3 falls at the preferred time for traveler 99, although the

maximum utilities of travelers 84 and 95 each exceed 99*

s

utility.

However, the utilities of 84 and 95 fall between grid points. When

is increased to 0.6, traveler 84 replaces 99 as the principal component

in the third departure, which is now rescheduled for 84 ’s preference.
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Although traveler 95'

s

utility exceeds 84 f s, it still lies substantially

between grid points until is augmented to 1.4, at which point the

schedule switches to 95 f s departure preference.

In Figure 32, the mean-height case, variation of causes somewhat

more shifting than in Figure 31. The primary reason for the modifications

here is the increased benefit that results from accommodating the greater

number of travelers that become eligible for departures at various points,

as a result of increased a,,AV .

MAX

Variation of 1(0) with p . Figure 33 exhibits the random- like variations

of 1(0) (expressed in percent of MPB) as the binomial parameter p, which

determines the mixture of departure and arrival orientations in the traveler

population, is varied from 0 to 1. However, the results of Figure 33 may

not entirely be the result of changes in p since it will be recalled from

Figure 14 that the generation of the and a ^ parameters is performed

subsequent to the generation of the w^ parameters. Thus, after each

increment in the value of p in the computer runs, new values of w^ and

were generated for each traveler. The fact that a different set of

g^, generated from a common distribution, was used at each value of p

may have affected the results despite the fact that benefit is plotted as

a percent of MPB in the figure, to ’’normalize" the benefits attained at

different values of p.

The random behavior of the curves in Figure 33 is reasonable, however;

there is no a priori reason to expect a functional relationship between

p and I (0)

.

The greater range of fluctuation under volume normalization

is attributable to the fact that the changes which occur in the magnitude
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FIGURE 33. VARIATION OF BENEFIT WITH BINOMIAL PARAMETER p



- 94 -

and distribution of the principal utility components as a result of

changing p (via the parameter generating mechanism of Figure 14) can be

expected to be more radical than the changes that take place in the

overall distribution of utility under mean-height normalization.

Use of Uniform Utilities . Figures 34 and 35 compare the curve of

1(0) versus trip duration <j>, using uniform and triangular utilities, under

the volume and mean-height normalizations, respectively. The ordinate in

each figure measures 1(0) as a percentage of the maximum possible benefit

(MPB) . This facilitates a better comparison of the magnitudes of the

benefits resulting from each utility scheme since the MPB for triangular

utilities is twice that for uniform utilities; the latter results from

having normalized both the triangular and uniform functions to the same

values

.

The two figures show contrasting effects that result, under the

different normalizations, from switching from triangular to uniform

utilities. In Figure 35, the mean-height case, the substitution of

uniform utility functions has a "smoothing" effect; the curve is transformed

into one that is monotonic and reasonably smooth. The phenomenon whereby

the immediate benefit function b(l,K) varies with 4> , discussed earlier, is

apparently mitigated by eliminating the "peakedness" of the utility

components. This is reasonable since a change in <p, under uniform utility,

will have no effect on a traveler’s value for departure at some stage K

unless the variation is sufficient to cause that traveler to become
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ineligible at that stage (or to become eligible if he were not) . Further,

under mean-height uniform utility, if a passenger becomes ineligible at

some K, he is likely to be replaced by another traveler, of equal utility,

who becomes eligible.

However, in Figure 34, the volume -normalized case, the behavior of

1(0) versus <j> with uniform utilities is very much like the behavior with

triangular functions. Here, although they are non-peaked, the rectangular

utility components still have widely varying magnitudes. Hence, the

modification in b(l, K) which results from varying <}>, via the change in

eligibility of the individual travelers, remains substantially as it was

under the triangular formulation.

Figures 36 and 37 show comparisons of the optimal schedules obtained

with the two utility shapes, for the alternate normalizations. In each

figure the line segments below the axes represent the schedules under

uniform utility, while the segments above the axes represent the triangular

utility schedules.

It will be observed that, under both normalizations, there is consider-

able similarity between the schedules obtained using rectangular and

triangular formulations. However, the nature of the deviations between

the uniform and triangular schedules, is different under different

normalizations . In Figure 36 (volume normalization)
,
the scheduled

departures for the uniform and triangular cases frequently coincide, but

when they do not coincide they are usually substantially apart. For

example, at <|>=1.0, the third, fourth, fifth, sixth, and seventh departures
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in the schedules are coincident, or nearly so. However, the first and

second departures in either schedule occur at very different times. On

the other hand, under mean -height normalization in Figure 37, the departures

scheduled under the triangular and uniform for.'? .ions are almost never

coincident, but almost always in fairly close proximity to each other.

This behavior is in keeping with the observations that have been made

before regarding the effects of particular normalizing procedures. Under

volume normalization, for both the triangular and rectangular forms, the

schedules tend to center around principal component utilities. Hence

departures under either formulation are frequently coincident about the

same travelers. However, the use of rectangular utilities does cause some

difference. It sometimes happens that "tail, narrow” utility components

are located substantially between two stage grid points on the time axis.

Under triangular utility, the magnitude of these utilities at the grid

points are much smaller than the peak values. However, with uniform

utilities this is not the case. Hence, under the uniform formulation,

departures in the schedule might center around travelers whose utilities

become considerably reduced at the stage interval points, when the

triangular form is used.

Cases in point (at <J>=1, Figure 36) are travelers 6 and 15 about whom

departures 1 and 2 center under uniform utility, but whose preferred

departure times lie midway between successive stage points. (Refer to

Figure 13.) From evidence found thus far, it is reasonable to conjecture

that, under volume -normalization, generally closer agreement between
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uniform and triangular schedules would obtain if the time axis were more

finely divided.

Under mean-height normalization, the effect of peakedness in the utility

functions is more noticeable. Changing from triangular to uniform utilities

significantly modifies the localized variations in the aggregate utility,

although the general shape is preserved. Thus, although there is normally

a one to one correspondence between departures in the schedules under the

two utility forms, there is always some difference in schedule times.

Sometimes, however, as when <j>=2 in Figure 37, the deviation between the

triangular and uniform aggregate utility functions is sufficient to affect

the schedule more radically.

Lastly, it will be noted that generally more passengers are accommodated

in the schedules derived under rectangular utility functions. This follows

from the fact that these schedules are less geared to the particular

preference times of individual travelers, but more to departure times for

which a substantial number of travelers have positive value.

Effect of Stage Increment Size . Figure 38 shows the variation of 1(0)

with <j>, under volume -normalization, for four different stage increment

sizes. The solid curves (K=85, 170 and 340) result from using stage

increment sizes of At=0.2, 0.1, and 0.05 hours, respectively. Note that

all grid points on the time axis corresponding to K=85 are included in

the set of grid points corresponding to K=170 and K=340. Similarly, all

grid points corresponding to K=170 are included in the set of grid points
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for K=34Q. The dashed curve (K=425, At=0.04 hrs.) is the only case in

Figure 38 which has grid points not in common with the others.

It is obvious from Figure 38 that the stage increment size has

significant impact. For example, as illustrated by the solid curves, a

decrease in precision (K) exaggerates the non-monotonic behavior. The

reason for this is rooted in the mechanisms by which a change in <}> affects

the overall derived benefit of an optimal schedule. Recall that a

decrease in <j> has two, sometimes conflicting effects. First, it modifies

the immediate benefit function b(l, K) in a way that sometimes reduces

the overall derivable benefit. Second, it increases the vehicle flexi-

bility so that trips can be made at more opportune times. Now, decreasing

K reduces the number of grid points on the time axis at which departure

decisions may be considered, thus restricting the flexibility with which

the vehicle can be scheduled. Hence, reducing the precision in this

way hampers the mechanism by which benefit -reducing changes in b(l, K)

can be compensated for.

A case in point is the transition from <f>=2.25 to <f>=2.0. The schedules

are shown in Table 4, for two values of K. The differences occur only

in the third departure. When <(>=2.25, the calculation using K=340 schedules

departure 3 at t^=14.65; since the latter is not a grid point with K=170,

an inferior departure, at 1^=14.30, is scheduled in this case. This

accounts for the small difference in the magnitude of 1(0) at 4>=2 . 25 ,
in

the curves of Figure 38. When <j> is reduced to 2.0, the schedule calculated
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TABLE 4

COMPARISON OF SCHEDULES USING TWO DIFFERENT VALUES OF K

4

2.25

2.0

K = 170

Jid Passenge^rs

2..40 18, 19, 22,

9..10 59, 61, 65,

14,.30 86, 89, 90,

2..40 10, 13, 20,

9..10 57, 59, 65,

16..90 97, 99, 100

23, 25 2.40

66

,

67 9.10

91, 92 14.65

22, 25 2.40

66, 67 9.10

13.35

K = 340

Passengers

18, 19, 22, 23, 25

59, 61, 65, 66, 67

85, 88, 91, 95, 96

10, 13, 20, 22, 25

57, 59, 65, 66, 67

76, 79, 81, 84, 93

Volume -nomalized Triangular Utilities

Vehicle Capacity C=5
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with K=340 yields a new (superior) departure time of 13.35, yielding an

over all increase in benefit. But t^=13.35 is not a valid grid point

when K=170; the best time for the third departure here, t =16.90, leads— d

to an overall benefit less than that incurred when <{>=2.25. The major

source of discrepancy in the benefits at <{>=2.0, is the fact that the

major utility traveler 84 has a preferred departure of t^=13.34, with

half-width parameter a^=0.04. Hence, his utility is completely confined

within the grid points of the K=170 calculation.

The dashed curve of Figure 38 points up the fact that not only is

the number of grid points (i.e. the size of the stage increments)

important but also the location of these points along the time axis. The

value K=425 indicates greater precision than K=340. Yet schedules computed

using grid points at every 0.04 hour interval attain less benefit than

those computed on the basis of 0.05 hr. intervals. The reason for this

is that the preferences of high utility travelers, in the population used

here happen to fall more closely to grid points for K=340 than to those

of K=425, and since the utility components can be very ’’tail and narrow”

under volume normalization, the differences can be significant.

Figure 39 shows the comparison of benefit curves, under mean-height

normalization. Here, the stage increment size has much less import.

Although the same mechanisms are at work here as <{> is varied, the effects

are substantially eliminated because the aggregated utility is much more

"regular”. In particular, there are no tall, narrow peaks (which

sometimes fall between grid points under volume -normalization) to make

the size of the stage increment crucial.
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Table 5 compares the schedules generated with the different increment

sizes. The columns for volume normalization display substantial differences,

particularly where departures in a schedule corresponding to higher

precision (K) fall between the grid points of a lower precision schedule.

However, in the column for mean-height normalization, the schedules are mostly

very similar. The case of <j>=2.0 is an exception in which the more precise

calculation finds a five trip schedule of greater benefit than the four

trips scheduled with K=170.

In summary, the extreme effects of volume normalization make the

precision of calculation crucial; in contrast, schedules based on mean-

height normalization are less sensitive to the size of the stage

increment

.

Use of Alternate Input Data . As mentioned earlier, the results here

have been based on the distribution of "holiday" travelers shown in the

first column of Table 2. For purposes of comparison, several computations

were performed using a new passenger distribution, derived from the

"weekend" travelers in column two in that table. The new set of travelers

were assigned, by the program illustrated in Figure 14, a set of and

w^ parameters identical to those of the original travelers, using the

values and p=0.5. The sets of parameters for the new (weekend)

and old (holiday) travelers differ only with respect to the distributions

of [tj^] and [t*^] along the time axis.
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TABLE 5

COMPARISON OF SCHEDULES

VOLUME MEAN-HEIGHT

^d ^d

4
K=85 r=i7o K=340 K=85 K=170 K=340

1 .20 0.20 0.20 1.40 1.40 1.35

2.40 2.40 2.40 3.60 3.60 3.65

4.40 4.40 5.95 5.80 5.80 5.85

6.40 6.60 9.10 8.20 8.20 8.25

8.40 9.10 11.25 10.40 10.30 10.35

10.40 11.10 13.35 12.40 12.50 12.50
12.60 13.10 15.55 14.40 14.50 14.50
14.60
16.80

16.90 16.40 16.90 16.85

2 2.40 2.40 2.40 0.40 1.30 0.35
8.40 9.10 9.10 4.80 5.30 4.80

13.00 16.90 13.35 8.80 9.30 8.80

12.80 14.20 12.80
16.80 - 16.85

3 2.40 2.40 2.40 1.60 1.60 1.65

10.40 9.10 9.10 8.20 8.30 8.25
16.80 16.90 16.85 14.40 14.40 14.40

= departure time from origin
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Figure 40 shows the curves of 1(0) versus trip time <j>. The solid

curves represent the results from the new (weekend) data source, while the

dashed curves are the results with the old (holiday) data. It is apparent

that for the new distribution of travelers, decreases in vehicle speed

are generally more serious. The fact that the old travelers were

distributed somewhat in widely separated "clumps" (see Table 2) permitted

the vehicle, even at the slower speeds, to accommodate large groups of

travelers. The new travelers are more evenly distributed, however; the

longer trip durations therefore present a greater disadvantage here.

Although the specific traveler distributions have an important effect

on the curves of Figure 40, it is also apparent that the general properties

by which these curves have been previously characterized under either

normalization, are retained. The same comment applies to Figure 41, which

displays the variation of benefits with vehicle capacity. In this graph,

the fact that benefits under the old traveler distribution exceed those

for the new distribution increasingly at the higher values of capacity,

again is directly related to the greater uniformity of the weekend traveler

distribution.

Concluding Comment . This section has presented some of the highlights

of a substantial number of computer computations, intended to study the

parametric variations of the one-way, single-link system. Valuable

information has been obtained to facilitate choice of the structure of

the utility functions to be used in future work. For instance, it has
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been learned that the question of normalization is critical. On the

basis of the results obtained, volume -normalization appears to be

unacceptable. The normalization procedure was intended to lend equal weight

to each traveler, in the schedule calculation. Volume -normalization

seems to have done the opposite. Also, volume normalization seems to have

under-represented the trade-off value of capacity for speed by promoting

a large discrepancy in the relative importances of the individual travelers.

Another feature of volume normalization, which does not reflect on its

validity but tends to make it unattractive, is that it tends to exaggerate

the computational difficulties associated with choosing the stage

increment. Hence of the two alternative procedures, mean height normali-

zation is superior. But the fact that results are so sensitive to normali-

zation warrants further scrutiny of the utility representation.

Insights have been obtained here, which may be useful toward policy

decisions with regard to schedules and vehicle characteristics. The

effects of traveler arrival -departure orientations, and the observed

characteristics of the 1(0) contours are examples of this. Finally,

computational experience has been obtained which will be helpful toward

extension of this research.
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9. SUMMARY AND OUTLOOK

This report covers an exploratory phase of a research effort in

passenger scheduling. Results obtained here will be useful primarily for

the insights they provide toward future development of the analysis. The

work has had several interesting aspects . Effort has been directed toward

formulation of traveler utilities as functions of the scheduling variables.

Analysis of scheduling one vehicle has been substantially advanced.

Numerical results have been obtained for the single link, one-way problem,

which point out the effects of various representations of traveler utility,

and the ramifications of changes in system characteristics such as speed

and capacity. Finally, preliminary methodology has been put forth for

the analysis of multi-vehicle systems.

Avenues for future research lead in several directions. First,

future development of the concept of traveler utility is necessary;

additional research into the form that the utility functions should take,

and into the question of relative magnitudes of utility among individuals,

is needed to enhance the usefulness of the utility concept. In particular,

an '’economic” interpretation of utility, such as a person's "willingness

to pay" for a trip, might provide insights into the utility questions.

A second area for development is the incorporation of costs into the

scheduling model. The present formulation takes no account of operating

expenses. Further, a model which combines an economic concept of traveler

utility with an accounting of costs would be useful toward economic

evaluation of alternative systems

.
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Extension of the analysis to deal with a fleet of several vehicles is

of obvious practical importance. In addition, the question of routing is

highly significant. Future effort will be directed toward the development

of algorithms to schedule vehicles optimally over the*dimens ions of time

and space.

Finally, all the analysis here has been deterministic in nature.

Incorporation of uncertainties in variables such as trip times and

passenger preference parameters would be a highly valuable asset. Although

computationally difficult, an effort in this direction should eventually

be made.
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APPENDIX A: THE COMPUTER PROGRAM

This appendix contains the documentation of the FORTRAN computer
program, for single -vehicle one-way demand problems, that was operated
to produce the results presented in Section 8.

The bulk of the program consists of three subroutines:

ADUTIL (for utility aggregation)
SCHED1 (for schedule calculation)
ASSIGN (for assigning passengers to departures)

.

These will be discussed, in turn, below. The "main frame" program
coordinates these subroutines; it reads the input data, calls the subroutines
in order, and prints the desired information. See Figure 42.
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FIGURE 42. THE MAIN FRAME
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A listing for ADUTIL, for the triangular, volume normalized case is

given in Figure 43. The following is a list of variables and their
definitions:

K

T
KFIN

N
ICAP

TRTIM

W(I)
SIGD(I)

SIGA(I)

TDSTAR(I) =

TASTAR(I) =

V(I) =

J =

UTIL =

= w
= a

= a

stage variable
upper limit of scheduling interval
K, last stage of process
total number of travelers
vehicle capacity, C

4>, one way travel time
(i)

(i)

l

(i)

*(i)

a
th

value of utility for i traveler, at current K.

index tallying eligible travelers

I X
U (1) (K,K+F)

,
aggregate utility

R=R1/R2 = expresses K/KFIN as real rather than integer; R*T converts K
to real time

.
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Q = an array of eligible traveler utilities; the first C elements in Q
comprise UTIL in the case of capacity limitations

.

TEM = an intermediate variable in the loop that determines the smallest
value in the array Q.

The flow diagram of ADUTIL is shown in Figure 44. ADUTIL is called
to calculate aggregate utility (UTIL) at a stage K. During the operation,
travelers are called and processed one at a time. The process, for each
traveler, begins by determining whether, at the specified K, a departure
falls within his acceptable intervals of departure and arrival time. If
not, the value of traveler utility V(I) is set to zero, and the next
traveler is called. If departure at K is acceptable, V(I) is calculated
according to the appropriate utility function (and normalization criterion)

.

Then the index J, which counts the number of eligible travelers, is increased
by one. A determination is then made to see if J has exceeded the vehicle
capacity. If J has not exceeded capacity, the traveler utility, V(I)

,
is

assigned the next place in the array Q; Q fills from Q(l) through Q(ICAP)
during the time that J is less than capacity. Once V(I) is assigned to an
element of Q, the aggregate utility UTIL is increased by V(I)

,
and the

next traveler is called.

Suppose, however, that for the current traveler J exceeds capacity.
In this case, V(I) is assigned to the last element in Q, Q(ICAP+1) . Now

Q consists of C+l components, only C of which can make up UTIL, because of
the capacity restriction. Following the rule that the travelers will be

boarded, highest utilities first, and thus a vehicle leaving at stage K
will accrue the sum of the C greatest component utilities, the array Q is

now scanned to find the smallest component. That component is placed in

the Q(ICAP+1) position. The value of UTIL is then modified by adding
V(I) and subtracting Q(ICAP+1) . It is possible, of course, that V(I)

remains in the Q(ICAP+1) position during the scan, in which case UTIL is

left unchanged.

The routine ends after the last traveler (I=N) is processed, leaving
UTIL at its final value.

The schedule calculation subroutine, SCHED1, applies the dynamic
programming algorithm to determine the optimal schedule. A listing is

shown in Figure 45. Variable definitions not previously given are:



3200 FORTRAN ( 2 , 1 ) / /

ERRORS

GURE 43.
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SUBROUTINE ADUTIL(K,T,KF1N,N,ICAP,TRTIM,W,SIGD,TDSTAR,SIGA,TASTAR,
1 V # J # UT I L

)

SUBROUTINE TO AGGRFGATE UTILITY AT STAGE K

DIMENSION W(?00)>SIGD(200)»TDSTAR(?00),SIGA<200)»
1 TASTAR ( 200 ) , V ( 200 ) , Q( 200

)

I = 1

j = 0

JTIL = 0 .

R 1 = K

R2 = KF I

N

R = R1/R2
10 IF ( ( T D S T A R ( I

) - S I G D ( I ) ) . G T , T * R ) 20,16
16 IF ( (TDSTAR( I ) <*S I GD ( I ) ) .LT.T*R) 2 0,17
17 IF((TASTAR(I)-SIGA(I)).GT,(T*R+TRT!M)) 20,18
IS IF((TASTAR<I)*SIGA(I)).LT.(T*R*TRTJM)> 20,91

10 THRU 18 TAKE CARF OF PERSONS WITH ZERO UTILITY WITHIN
CURRFNT INTERVAL

91 V ( I ) = W( I )*(2.-(2./SIGD( I > )*ABS(TDSTAR( I )-T*R)

)

1 (i,-W(I))*(2.-<2./SIGA(I))*A8S<TASTAR(l)-(T*R*TRT!Mm
V(I) = V( M/(4,*SIGA( I )*S!GD( I ) )

ABOVF STFP USED IN NORMALIZED VOLUME CASE
J IS AN INDEX TALLYING TRAVELERS WITH NONZERO UTILITY
J = J + l

I F ( J.LF. TCAP) 25,35
35 Q( I C A P 1 ) = V ( I )

DO 68 NN = 1 , ICAP
I F ( Q ( NN ) ,LT,Q(NN + 1) ) 62,68

6? TEM = O ( N N

)

D ( NN ) = O ( NN'*- 1

)

3 < N N 1 > = TEM
68 CONTINUE

JTIL = UTIL*V( I ) - Q ( ICAP*-1 )

GO TO 30

20 V ( I ) = 0

.

GO TO 30

25 UTIL = UTIL V ( I )

3( J) = V ( I )

30 IF(I-N) 32,40,32
3? I = !!.

GO TO 10
40 RETURN

END

3200 FORTRAN diagnostic results - FOR adutil

SUBROUTINE ADUTIL (FORTRAN)
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FIGURE 44 SUBROUTINE ADUTIL
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3200 FORTRAN (2,1) / /

SUBROUTINE SCHE Dl ( HE A D W A Y )

N PERSONS * 1 WAY, SINGLE VEHICLE AND LINK
DIMENSION IMAX(5nO)*C(500),TlMDEP(300).INTDEP(300),TEMP(2),

1 UT I L ( 5 0 0 )

REAL IMAX
INTEGER C

COMMON IMAX,C,KFIN,TRTIM.LASnEP,TlMDEP.T#UTIL, INTDEP
IMAX(K) IS THE MAX BENEFIT FUNCTION, C(K) IS THE DECISION VECTOR
Hi = K F I N

H 2 = H1*HEADWAY/T
L = H?*0,5
L IS THE HEADWAY (OR SINGLE VEH. RND , TRIP TIME) EXPRESSED IN
DISCRETE UNITS, ROUNDED TO AN INTEGER

KK = K F I N

1

THE DFVICE KKsK*l IS USED TO ENABLE STORAGE AT KsO IN ARRAYS
I MAX, C, etc .

IMAX(KF IN*1 ) s 0 .

c(kfin +d = n

111 KK = KK - 1

JC = 1

121 IF ( JC . FQ . 1 ) 131,135
131 9 r n .

<K Nf X T = KKM
30 TO 141

135 IF(KK.FQ.l) 136,137
136 3 r o

,

30 TO 138
137 3 = UTIL(KK-l)
133 KKNEXT = KKL
141 I F ( KKNFXT , GT . KF I NM ) 143,145
143 KKNEXT = KFIN+I
145 TEMP ( JC ) = B+ IMAX ( KKNEXT

>

3 IS THE IMMEDIATE BFNEF I T , TEMP ( 1 ) IS THE MAX BENEFIT F C N AT K

IF C(K)=0,TEMP(2) FOR C(K)=1
IF (JC-2) 147,151,147

147 JC = 2

30 TO 121
1 5 1 I F ( TEMP ( 1 )

- TF MP ( 2 ) ) 157,1 55,155
1 5 5 IMAX(KK) = TFMP(l)

C ( KK ) = n

30 TO 159
157 IMAX(KK) s T E M P ( 2 )

C ( KK ) =1

159 IF(KK.NE.l) 111,161
WHFN KK = 1 AT 159 ALGO. PROCEEDS TO TRAJECTORY CALC. BE I OW

161 NUMDFP s 0

163 IF(C(KK)-1)171,165,171
165 NUMDFP = NUMPlE P 1

I NTDFP ( NIIMDEP ) s KK -

1

K K = K K + L

IF ( KK , LE , ( KF I N + l ) ) 163,175
171 < K = K K 1

IF(KK.LE. (KFIN*1) ) 163,175
175 LASDFP = NUMPEP

DO 179 NUMDEPal , LASDEP
179 TIMDFP(NIJMDEP) s ACT I ME ( T NTDEP ( NlJMDEP ) , KF I N , T )

LASDEP IS THE TOTAL NUMBER OF DEPARTURES , T I MDEP ( NUMDEP ) GIVES
TIME OF EACH DEPARTURE, INTDFP(NUMDEP) THE DISCRETE INTERVAL OF
EACH DEPARTURE

RETURN

FIGURE 45. SUBROUTINE SCHED1 (FORTRAN)
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HEADWAY =

L =

KK=K+1;

IMAX(KK) =

C(KK) =

H1,H2 =

JC =

TIMDEP =

TEMP =

LASDEP =

B =

KKNEXT =

NUMDEP =

minimum time between successive departures. (HEADWAY =

cj>+p; see Section 3)

HEADWAY expressed as an integer number of stage units

in order to store values at K=0, this index is used as a
substitute stage variable

maximum benefit function

decision variable

variables intermediate to the conversion of HEADWAY to
an integer

intermediate value of C(KK)

the array of departure times in the optimal schedule

a two component array, the elements of which represent
tentative values of IMAX(KK)

the total number of departures in the optimal schedule

the immediate benefit b ( 1 , K)

rKK+1 if c (KK) = 0
1 KK+L if c(KK) = 1

index which tallies the number of departures, as they are
determined

ACTIME(K,KFIN,T) - a function subprogram, listed in Figure 47, which
converts the stage value to actual time units.

A flow diagram for SCHED1 is shown in Figure 46 . The first step is

a conversion of HEADWAY into stage interval units; the converted value is

denoted by L. Stage index KK is initialized at KFIN+1, and IMAX(KFIN+1)
and C (KFIN+1) are also initialized, to 0.

The program proceeds backwards towards KK=1. At each stage the

benefit is calculated for each possible decision, subsequent to which
IMAX(KK) is set equal to the maximum benefit, and C(KK) to the
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Continued
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FIGURE 46
. SUBROUTINE SCHED1
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3200 FORTRAN (2,1)

«
FUNCTION ACT|ME(K,KFIN,T)
ACTIME CONVERTS INTERVAL INDEX TO ACTUAL TIME
R1 s K

R2 = KE I

N

ACTIME = T»R1/R?
return
END

3200 FORTRAN DIAGNOSTIC RESULTS - FOR ACTIME

NO ERRORS

FIGURE 47. FUNCTION SUBPROGRAM ACTIME
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3200 FORTRAN (2.1) /

SUBROUTINE AS$IGN( ICaP)
DIMENSION MPASS (200) , NUMPAS(300) #WAIT(100)»V(200)#

1 INTDEP(300),w(200),SIGn(200).TDSTAR(200),SlGA(200),
2 TASTAR(200),UT1L(500) *C(300) » IMAX(500 ) #TIHDEP(300)
COMMON

I
m a x, c, KF I N, TRT

I M^aSdeP.T I MDFR,T,UTlL, INTqfP,
1 n.w.sigd* tdstar,$iga,tastar*nump as# mpass
VIJMDEP s 1

DO 303 1=1,

N

30 3 MRASS( I )s0
301 CALL ADUTIL< I NTDEP ( NUMD6P ) #T,KFIN,N * GAP , TRT 1 M, W , S I GO , TDST AR , S

I

1 TASTAR, V, J,UTFMP)
JPOS = 0

JFULL = J-ICAP
I si
MPAS=0

30 4 I F ( V C I ) ,GT.0, >305,310
305 I F < JFULL. GT.O) 325, 309
309 MRaSS ( I

J

sNuMpEP
313 NPAS " NP A $ * 1

GO TO 310
310 I F ( I , EQ , N > 317,315
315 I = 1*1.

GO TO 304
317 NUMPAS (NUMDFP) = MPAS

IF(NUMDEP,EQ,LASDEP) 375,319
319 NUMDFP s NUMDEP * 1

GO TO 301
325 JPOS = JPOS * 1

IF< JPOS, GT. JFULL) 329,327
327 rfA I T < JPOS ) = V ( I

>

30 TO 315
329 *IAIT( JFULL*1> * V( I )

DO 333 MMsl, JFULL
IF (WAIT(MM) #GT«WAIT(MM*1)) 331,333

331 X=WAIT(MM)
J A I T ( MM ) sMA I T ( MM * 1 )

JA I T ( MM* 1 ) =X
333 CONTINUE

DO 337 I I si , I

IF (WAIT (JFULL* 1) ,EO.V< I I ) >335,337
335 I F ( MPASS ( I I ) , Eft • 0 ) 341,337
337 CONTINUE
341 MPASS ( I I > ^NUMDEP

GO TO 313
375 RETURN

END

3200 FORTRAN DIAGNOSTIC RESULTS - FOR ASSIGN

NO ERRORS

FIGURE 48. SUBROUTINE ASSIGN (FORTRAN)
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corresponding decision value (0 or 1) .
(At KK=1 the immediate benefit B

is (arbitrarily) set to zero, since no value is stored for UTIL(O) .)

The completed maximization process yields IMAX(l)
,
the maximized

total utility. Next, calculations proceed from KK=1 toward KK=KFIN+1,
to recover the optimal schedule by following the optimal decisions. The
array INTDEP stores the stage values at which departures take place. These
are converted to an array TIMDEP of successive departure times by function
subroutine ACTIME.

The listing of subroutine ASSIGN is shown in Figure 48. The variables
which have not been defined yet, are:

MPASS(I) = departure number to which passenger I is assigned; a

value of zero indicates no accommodation.

JPOS = index tallying the number of eligible passengers encountered
thus far.

JFULL = the number of eligible passengers in excess of capacity

th
NPAS * index tallying number of passengers boarded on the NUMDEP

L

departure

WAIT = array, which in case of capacity limitations, stores
prospective passenger utilities

M4 * index used in ordering elements of WAIT

II = index used in procedure which picks out passengers of
highest utility in WAIT.

The flow diagram for ASSIGN is given in Figure 49. This routine is

entered for each of the successive departures in the optimal schedule
(NUMDEP=1 through LASDEP) . The stage INTDEP (NUMDEP) corresponding to the
current departure is found; using this stage, ADUTIL is called to produce
J, the number of passengers eligible for departure, from which is

calculated JFULL, the excess of demand (J) over capacity (ICAP) . Each
passenger (1=1,..., N) is treated in turn; V(I) is calculated, and if it is

positive, that (I-th) passenger is assigned to the current departure if
JFULL<0, and put on a waiting list if JFULL>0. In the latter case, the

array WAIT is first filled, from WAIT (1) through WAIT(JFULL). As each subsequent
traveler with V(I) > 0 is identified, his V(I) is entered as a WAIT(JFULL+1) and
the elements of WAIT are permuted so that the largest becomes WAIT(JFULL+1) ; the
traveler corresponding to the maximum is then assigned to the departure.
When the process is complete (I=N) all but the JFULL eligible travelers
left on the waiting list, will have been assigned to the departure.
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FIGURE 49. SUBROUTINE ASSIGN
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The running time of one full schedule calculation, involving the three

subroutines, including print-out time but excluding compilation, using

K=340, N=100 , on the GDC 3100 machine is approximately 25 seconds.








