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ANALYSIS OF A MAEKET-SPLIT MODEL

A.J. Goldman, J.M. McLynn

P.R. Meyers, R.H. Watkins

ABSTRACT

A mathematical analysis is given for a class of models describing
how the market might divide its patronage among p competing products

(p > l) . The distinctive feature is that the elasticities of the

split fractions, with respect to changes in the parameters characterizing
the products, are assumed equal to linear or separable functions of

the split fractions themselves. (The permitted functional forms are
actually somewhat more general.) The self-consistent models of this
type are determined (for p > 2 they are linear), and their solutions
derived.





ANALYSIS OF A MARKET SPLIT MODEL

by

( 2 )
A.J. Goldman, J.M. McLynn'' '

(2)
P.R. Meyers, R.H. Watkins^ '

I . INTRODUCTION

This paper is concerned vith a class of mathematical models for
how the "market" (i.e., the consuming public) might divide itself
among several (p > l) competing products. For j=l, 2 ,...,p, we set

w. = fraction of market which selects the j-th product, (l)
J

SO that

w. > 0 ( j=l,2, . . .,p) ,

J
( 2 )

r
j=i

w .=1 . ( 3 )

The choice -influencing attributes of the j-th product are described by
the numerical values of certain parameters x, .,x„.,...,x /

.

Since the market share of the j-th product d.epends on the relative
attractiveness of the other products, the split fraction w. is a

function not only of the

i.e. of all the x * s .

X. . s
ij

but also of the X., s
ik

J

for

(1) Supported by the Office of High Speed Ground Transportation,
Department of Commerce. No official endorsement implied.

(2) Davidson, Talbird and. McLynn, Bethesda, Md.
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We assume that the x's have been redefined (if necessary) so that

X,
ij

> 0 (M

and so that increasing x. . makes the j-th product less attractive (or
at least no more attractiv^), thus tending to decrease w. and increase
the other ^ ’ Formally,

Sw /^x . < 0 , (5)
J -L J

9v^/dx^^ > 0 for . (6)

Let X denote the ensemble of x's, while w=(w^,,.,,w ) , An— I p
additional assumption about w(x) is that, for each j , there exists
at least one x for which

= 1 ,
w^(x) = 0 for k ^ j . (T)

The intended interpretation is that none of the products has a guaranteed
minimum market share, nor is any of them artificially precluded from
gaining the entire market if its superiority would lead to this result

o

We shall also need the stronger hypothesis, that for any w with

0 < w < 1 and any ( j,k) with j^k there exists at least one x such that

w (x)=w , w (x)=l-w , w (x)=0 for q/j,k . (8)

(it suffices to assume that x's can be chosen so as to bring w
arbitrarily close to satisfying (T) or (8)0

It is traditional in economics to consider the elasticities

( 9 )

E. is the rate of relative change in w , (dw /w ) ,
per unit relative

X J K. K. K. K.

change in x. .,(dx. ,/x. .) , for either k=j ( self-elasticity of j-th

product) or k^^j ( cross-elasticity) . We introduce the variables

2



( 10 )

in order to simplify (9) to

®ijk
“ • (11)

Note that (5) and (6) imply

/Sy . < 0 ,

J J
(12)

(13)

The elasticities are (initially unknown) functions of the .y n(j)

comp orient s of x ^ but it would clearly be much more convenient ^
they could be determined by observing only the p split fractions (the
components of w ) . This suggests examining models of the form

E. = F. .. (w)
,ijk ijk^

which by (ll) is equivalent to the sysLem

( 14 )

of partial differential equations.

It is natural to begin with the simple case in which each F- is

linear, so that (l4) becomes

/3y. . = V b . w w
k' ij ijkm k m

m=l
( 15 )

where the b's are constants. We shall deal with a generalization

Sv, /^y. . = F b. „ f. (w. )g (w ) ,k ij ijkm k k m m
m=l

(16)
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where the functions f and g (k=l,2, . . . ,p) , defined on 0 < w < 1 ^

satisfy

f^(0) = gj^(O) = 0 (IT)

and have continuous derivatives f',g' such that

T > 0 , > 0 . (18)

These last two conditions are of course satisfied for the particular
choices

fk(^) = ^

which specialize (l6) to (15) • It will be clear from the proofs to come
that ( 18 ) need only he required to hold on a "sufficiently large" subset
of 0 < w < 1 .

There are three reasons for passing from the linear model (I5) to
the (possibly) nonlinear (16) . One Is simply Intellectual curlouslty
as to how the generalization will affect the analysis. Second Is the
possibility that some special Insight Into the competitive situation
will strongly suggest that linearity Is Implausible. Third, If It should
prove Impossible to obtain a satisfactory "fit" to empirical data using
the linear model, then perhaps more parameters (which can be adjusted
to Improve the fit) can be smuggled In via the and Our
conclusions, however, will show that the second and third of these hopes
are 1^ vain (for p > 2) «

In the application motivating this work, the "market" In question
Is to consist of a single "cell" In some stratification of the population
of travellers between a particular origin and a particular destination.
The "products" are the services offered by the various transport alter-
natives; the latter might be taken as the traditional transportation
"modes" (air, rail, bus, private auto) plus whatever novelties social
and technological -change may produce, or might reflect a finer classification
(e.g. particular auto routes, particular airlines, first-class vs. coach
service). The components of x might be measures of trip time, trip cost,

variability from published schedules, trip fatigue, frequency and severity
of accidents, etc. Validation and subsequent use (for prediction) of

such a model would of course require operationally meaningful specifications
of the transport alternatives (more generally, the products) and of the
x's, and also appropriate "calibration" based on empirical data. In the

present paper, however, we are solely concerned with the mathematical
consequences of the model’s assumptions.

- 1+ -



It will be shown in what follows that among the models described by

(l6) and the other assumptions listed above ^ the only ones which are

consistent (have a solution w(x)) are a subclass of the linear models
given by (15) • For this subclass, the general solution will be derived

in closed form. The principal results appear in displays (U2) and

(It5)-C48).

These conclusions only hold for p > 2 , however. For p=2, the class

of consistent models is shown in Section k to contain many nonlinear ones,

and for these the general solution is derived in semi -explicit form.

Call two of the p products connected if, roughly speaking, the
parameters of the first Influence the elasticities of the second. The
analyses of Sections 3 h are carried out under a "connectivity
hypothesis" which requires that each pair of products is connected. In
Section 5 the results of dropping this hypothesis are investigated. For
p=2, there is no essential change in the nature of the consistent models
or their solutions. For p > 2 ,

it is shown that the hypothesis must
hold; disconnectedness would lead to a contradiction of our previous
assumption (T). This suggests that it may be desirable to analyze the
effects of replacing (j) and (8) by weaker assumptions about what
market splits are theoretically "attainable".

- 5 -



2 . PRELIMINARIES

We observe first that the g's can be assumed normalized so that

g.(l) = 1 .

J

For, (it) and (l8) imply that all g (l) > 0 , so that in (l6) we could
replace each g by g /g (l) and eacS b. „ by g (l)b.^ °m' m ijkm m ijkm

( 19 )

From ( 3 ) "we have

P
r /3y . . (v w )/^y. .

= 0S k' ij \ k ' 1,1
k=l

Substituting (16) into this, we obtain

rzl'-i f‘n('w)g(^)=0^

^

ijkm k f^^m^ m'
k m

By (T), X can be chosen so that w (x)= 1 and therefore

w^(x)= 0 for m^^k . Applying this and ( 1T) to (20) gives

and since ( 1T) and (I8) imply f, (l) >0 , it follows that
K.

(20)

b. „ = 0
ijkk

( 21 )

Next, for any w with 0 < "w < 1 and any (k,m) with k^m , we

can by (8) choose x so that

w, (x)=w, w (x)=l-w, w (x)=0 for q.7^k,m

It follows from (20) that

b. f (w)g (l-w) + b. . f (l-w)g (w)= 0
ijkm k ' m ijmk m' k ( 22 )

- 6 -



By (21) this also holds for k=ni.

Suppose now that distinct. By (13) and (16),

b
.

("w^ )g (w ) > 0 .^ ijkm k k m m' —
m

Choosing x as in (8), we see from this and (1T) that

b • -V > 0
ijkm — (j/k,m) .

Thus both b's in (22) are non-negative^ while for 0 < w < 1 the f-values

and g-valuesiln (22) are positive. So (22) implies

hjkm = ° f

We conclude this section by remarking that

a(a^i^/dyij)/dyij = ^(‘^\/ayij)/ayij • (2^)

As is well-known, to prove this it suffices to show that the two

second partial derivatives exist and are continuous. For the derivatives

in (16) to exist, w(x) must be continuous. Since the f's and g’s

are continuous, it follows from (l6) that all the first partial

derivatives of w(x) are continuous. We can evaluate the left-hand

side of {2k) by applying the chain rule to (l6):

d(a''k/3yij)/3yiJ = 2;'=ljkm
m

+ f, (w )g'(w )^W /syTr]k k m m ,m ° IJ-*
(25)

- T -



Since the f's and g's and their derivatives are continuous^ and the

first-order partial derivatives were just proved continuous, it follows

that the left-hand side of (2^) is continuous; similarly for the

right -hand s ide

.
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3. MAIN ANALYSIS

Throughout this section^, we shall Impose two additional restrictions.

The first is that at least three products are involved, i.e. p > 2 . The

second might be called a connectivity condition ; it asserts that for

each pair of distinct products P. and P ^ there is an index
J k

1 such that

b (26)

The situations in which these restrictions are not satisfied will be

discussed later.

Suppose (j,k,j) distinct. Then use of (23) simplifies (25) to

S(dWk/Ay.j)/syij =

By (l6) and (23)

SO that the expression for the left-hand side of {2h) becomes

- 9 -



The expression for the right-hand side can be obtained by Interchanging

(i, j) and (l, J)

:

Equating the two, we find that for w > 0 (and hence, by continuity,
K.

for w, = 0 as well)
k

Thus for w. > 0 and w > 0 ,

J J

The left-hand side is a function of w. , the right-hand one a function
J

(3)
of w^ . Hence each is constant.

d
'

¥e wish to deduce from this the existence of constants d. (necessarily
J

positive) such that for w. > 0
J

f •(w .)g'.(v .)/g .(w .) = d. ,

J J J 3 3 3 3
( 28 )

l.e. (by continuity for w. = 0 also)
J

"j = • ( 29 )

( 3 ) Note the implicit use of the hypothesis p > 2

- 10



This would not be justified if b. b =0 in (2j) could not be
IJKJ iJjJ

avoided. The connectivity condition ensures that i and I can be

chosen so as to pennit passing from (2j) to (28). Thus the f's are

uniquely determined by the g's (in a consistent model).

Now we return to (22), set m=j and assume (j,k) distinct, and

apply ( 29 ) to obtain

<hjkA®k^'')8j(l-v)/g;(»)) + Ajj^djgj(l-w)g5,(v)/g^(l-«)) = 0 .

Thus, for 0 < w < 1 , and hence by continuity for w=l as well.

Indefinite integration with lower limit zero gives

b. . .
d

.

ijjk j
gk(w) ( 31 )

Setting w=l, we have

^ijjk^j '^ijkj\ ( 32 )

Substitution into ( 30 ) and (3l)^ and use of the connefctivity

condition, yields

11



y (33)

g^(l-w) - g^(w) = 0

g^(l-w) + g^(w) = 1

for k^j . Since p > 2 , there follows from (33) "the existence of a

function g(w) such that

g (w) = g(w) for 1 < j < P . (3^)
J

That is, the g’s coincide. In some of the analysis below, however,

we shall keep subscripts on the g's to make the derivations easier

to follow.

- 12



So far (24) has been exploited with (j,k,j) distinct. Now we

apply it with j=k^J • The left-hand side is, by ( 25 ),

vb... ff’.(w.)ff (w )b f.(w.)g (w^)

^ ijjm ^ y IJjJ y J'

+ f.(w.)g'(w )7; b f (w )g (w )] .

j j m m
^

IJmn m m n n •*

The right-hand side, by ( 23 ), is

ij

hJj/j
(

“j j
^ “0 > ® h jJm8m(

Equating the two yields

y; 2 b... b^^ g’(w )f (w )g (v )
= b_ r^-r • t -(^ •)" ^ ijjm IJmn m m m' m n n IJjJ ijJj J J a J j jm n

Since, by (28),

w )f (w ) = d g (w ) ,m m m mm m

the last equation becomes

S S b. b d g (w )g (w )Him IJoin mm m n n
m n

- 13 -



Application of ( 23 ) reduces this to

m ^ • (35)

By ( 32 ), however,

and so (33) becomes

(36)

Choose k distinct from j and J , and choose x so that

w (x) = 1 . Then it follows from ( 36 ) that
K.

This and the connectivity hypothesis imply the existence of constants

b . . such that
ij

b. .
= b. . for all k / j .

ij

Next we employ (20), which by (2l) and ( 23 ) can be written

(37)

A neater form is



Application of ( 29 ) and ( 3S) yields

Sj(Vj) J {b.jd.gj^(w^)/g'(Vj) H. = 0
K-f J

which with the aid of ( 32 ) hecomes

hr J

Now d. > 0 ,
and the connectivity hypothesis permits choosing ^

J

so that h . .40 . Hence
ij

gk(\)fl/s'j(Wj) - l/gi^Cw^)] = 0
k" k' ( 39 )

Choose k and m so that (j^k^m) are distinct, and observe that

X can be chosen as in ( 8 ). Thus ( 39 ) implies that

g^(>?) [l/gj(0) - l/g^(w)} + g^(l-w) fl/g'(0) - l/g^(l-w)} = 0 .

By (33) and ( 3^)^ this can be rewritten as

g(w)[l/g'(0) - l/g'(w)} + (l-g(w)) [l//g\(0)) - l/g'(w)] = 0 ,

implying that g’(w) = g'(o). That is, g' is constant, and so g(w) is

linear . Since g(0) = 0 and g(l) = 1 , we have

g(w) = w . (40)

- 15 -



By (29),

f
.
(w) = d .w . (^1)

J J

We now return to the original model equations (16) . For k j ,

these become

= b . .d, V, w .

ijkj k k j
b . .d .w, w . ,
ij d k j

"

while for k = j we obtain

S'-j/dyu = L

b . .d .w .w
ij J 0 m

= b. .d.w. y w = b. .d.w.(l-w.) »

ij J 3jr. m ij J J J

Both forms can be combined in

jk
(42)

From (42) we have

(l/\)dWj^

= z
i. J

V
. ) dy . .

J ij

- 16 -



Therefore

V\ - V''! = V
J

= ? (>^3)

There is therefore a constant c such that
k

' ? ‘“ikVik - £ '’iiVii
^

=k ’

and hence such that

”k
= °k"iV«i ’ (UU)

vhere

\ = exp (Cj^) > 0 (C^=l) ,

W,
k

= (£ ^ikVik)

From the definition (lO) of y. . , we have
ij

T.T (
^Ikx^

\ = ‘'Ji ’'ik
^

1

(i^5)

By summing (44) over 1 < k < p and applying (3)^ we obtain

1 = («yw^) T GA ’

k

\ = W? ''/j
J

(46)

- IT -



We have shown that ^ the model (l6) Is to be consistent then

it must have the special form (^2), In which case Its solutions w(x)

must have the form given by (45) and (46) . The parameters of these

1 4-- (^)solutions are

dk > 0
. \ > 0 , b

.^ < 0 (M)

where the last Inequality comes from (12) » The connectivity hypothesis

takes the form

min b_ <0 for all k ;ik
1

(w)

If It were violated for some k, then from (45) and (46) we see that

w(x) would not depend on the x's of the k-th product.

Although (42) admits the singular solution w (x)=0 corresponding
K,

to C =0 , this Is ruled out by requirements (7) and (8).
K.

Conversely, consider any sets of b's, C's and d's satisfying (4t)

and (48), and define w(x) by (45) and (46). It Is readily verified

that (l),(2) and (42) are satisfied; hence (12) and (13) are satisfied.

For each there Is an ^ with b. . < 0 ; (t) can be satisfied as closely
^ J

as desired by letting the corresponding x. 0 and keeping all other x's

fixed. Similarly, (8) can be satisfied as closely as desired. So (45)

through (48) do give precisely the class of consistent models and their

general solutions

.

(4) Note from (45) that d^ appears only In the products ^

so that parameter-fitting to empirical data would deal with these

products

.

- 18 -



h. THE TWO-PRODUCT CASE

In this section we continue to impose the connectivity condition (26),

but now assume p=2. For this case the situation will be shown to be

quite different from that with p > 2 , in that there is an abundance

of consistent non-linear models.

It is convenient to introduce the functions

hi(w) = f^(w)g2(l-w)
,

h2(w) = f2(w)g^(l-w)
,

so that for j=l,2

(^9)

( 50 )

h.(0) = h.(l)=0 , h.(w) > 0 for 0 < w < 1 .

J J J

With the aid of (2l), the model (l6) is found to take the form

=
'=112l‘'2(«2> ’

= l>1221*'2(“2) ’

while ( 22 ) yields

( 51 )

( 52 )

( 53 )

(5^+)

( 55 )

ti.l2hi(v) ( 56 )

- 19 -



From ( 56 ) it follows that

b

b bijj_ghi(w)

}

Multiplying these two equations together leads to

^ijl2^1J21 ^ij21^1J12
' (57)

Take J = 1 ; then connectivity ensures the existence of an index I

with ^j221^^ ‘

"
^1112/^1121 "

it follows from (5T) that

ijl2
- \ t

ij21 (56)

Conditions (12), (l3)^ (52) and (5^) show that > < 0 , and the

connectivity condition (choose j=2 in ( 58 )) permits sharpening this to

> < 0 . ( 59 )

It v;ill now be shown that model consistency places no further

conditions on the b's, and no further conditions on the f’s and g's

except ( 51 ) and the relation

> h^(w) + h2(l-w) = 0 (60)

which folJows from ( 58 ), ( 58 ) and the connectivity condition.

20



For j=l,2, and 0 < w < 1 , let

H.(w) = an indefinite integral of l/h.(w) ( 61 )

Then H'.(w) = l/h.( w) > 0 , and so u = H.(w) has an inverse function
J J J

w = H.(u) defined for all real u and taking values between 0 and 1 .

J

H.(-co) = 0 and H.(®) = 1 • These inverse functions will be used
J J

in expressing the explicit solution of the model. Note that (60) yields

H^(w) - > H2(1 -v) = 0 ( 62 )

for a proper choice which we assume made of the integrals H. .

With the use of (58), the model (52) -(55) becomes

>Wl/Wii

^ ^
1221

^
1
^^

1 ^ "

^"2/"yi2 *’l221*'2^''2^

The simplifying substitutions

^Ij ^ij21^ij (63)

( 5 ) The choice is that H.(w .) = 0 (j = 1,2) where 0 < w . < 1 and

''01
^ "02 = 1

21



transform this into

^^l/^^il
" = X \(^q) ^ (6M

(65)

If all Independent variables except a particular one are held

fixed, then (6U) yields the separable ordinary differential equation

dw^/dz^^ = ,

whose general solution is

\{^
j

) = \ I 2^11) ^

where the arguments of the (so far arbitral^ function consist of all

^’s except z^^ . ¥e Invert this solution as

^1 "
^11 • (67)

If n(l) >1 , we go on to z^^ • It follows from (66) that

exists. By (67) ,

^w^Azg^ = (^K^/^Zg^) (X ^11 + Kq) •

Since

H^(u) = l/H^(H^(u)) = h^(H^(u)) ,

it follows from (67) and ( 68 ) that

= (^K^/^Z
2
^)h^(w^) .

22



Comparing this with the assertion of (64) that

= \ N (^1 ) ^IV "i;

we see that

^K /^z = X ^r ^ 21

so that there is a decomposition

K^(zfz^^) = X 21 2 " 11 ' 21 ^

Thus (6t) becomes

(69)

Repetition of this argument leads finally to

n ( 1 ) n ( 2 )

''l
=

"il ' t, "l2 =1
1=1 1=1

(TO)

where c^ is a constant. Working similarly with ( 65 ) leads to

n(l) n ( 2 )

w^ = ®
2l 2T "11 "12 <=2)

1=1 1=1
( 71 )

where c^ is a constant.

Conversely, for any choices of c^ and c^ , (TO) and (T1) are

easily verified to yield positive -valued solutions of (64) and ( 65 ).

It follows from ( 62 ) that

H^(Xu) + H2 (u) = 1 ,

and so choosing

= X=2 (T2)

- 23 -



1 to beis necessary and sufficient for the requirement
'^2. ^2

~

satisfied. The conditions ( 12 ) and (13) follow automatically from

(59) and the known signs of the h's in the display above (63)0 Satisfaction

of (t) and ( 8 ) is easily verified.

We continue this section by illustrating the solution with the

linear case

f.(w) = g.(w) = w {3=1,2) ,

J <J

leading to

h (w) =
d

w(l-w) .

Choosing w . with 0 < w . < 1 , we have
03 ^ 03

^ ’

H.(w) = [t(l-t)l"^dt
^ ' w .

OJ

= log rw/(i-w)i - log rw^y(i-w^j)]

Taking w^^ + w^^ = 1 guarantees (62) . Abbreviate

k. = log [w ./(l-w .)l .

3
® L oj /

^ oj " '

Then from

we obtain

u = H. = log [w/(l-w)] - k.
J J

w = H.(u) = w . exp(u)/ri-w . + w . exp(u)l
3 03 L oj oj
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Thus (to) and (Tl) yield

vhere

n(l) n(2)

^2 =
"il

" L \2 ^ "2 ^

1=1 1=1

Ui = .

From ( 63 ) and (lO) we find that

expCu^) = C^P

where = exp(c
2 ) > 0 ,

P =

n̂ ( 1 )
J . ^

Hence

exp(u^) = C^pA

where = cA and, by ( 58 ),

n(l) ^ill2
p^= n (\ j_

)

i=l

n(2) ^i212

.TT (^2 )

Taking w^^=w^2=l/2 for simplicity, we have

w^ = cApA/ [1+cApA^
^

Wg = CgP/Cl+CgPl .
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To relate this to the material of Section 3^ it is simplest to

compare model equations rather than solution forms. If (U2) of

Section 3 is specialized to p=2 (for which it was not proved necessary),

the result is

d^iAyii = ,

Bv^/3yi2 = - ^

Comparing these with the corresponding specializations Of the model

equations before (63), we have

^121 = ^

A ^1221 ^ 12*^2 "

^1121 il'^i
^

^1221 ^12^2 •

Thus the solution form of Section 3^ if applied to p=2, yields the

special category p^^=(-l) of the subclass of "linear" models among the

models considered in the present section.

One specific example of a nonlinear model for p=2 which is consistent

(since it satisfies the conditions given above) is characterized by

2
f^(w) - f

2
(w) = g^(w) = g^(w) = w ,

and ^ = (-1 ) .
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5. THE DISCONNECTED CASE

Recall that the connectivity condition (26) required, for each pair
of distinct products
such that

P . and P
( j^k) ,

the existence of an index i

b. ...rfO .

In this concluding section, we investigate the situations in which this
condition is violated. It is useful to observe in advance that

b. .. .

ijkj

b. .

ijjk

0 implies b . .

ijjk

0 implies b. .

ijkj

0 ,

0 .

(72)

(73)

These results follow from (22) with m=j if j^^k, or from (2l) otherwise

.

As before, the case p=2 will be considered separately. The model
is given by the previous equations (52)-(55)- Let us assume that the
connectivity condition is violated, in that

for all i. Then by (72) it follows that L = 0 for all i , so that
from ( 52j and (5^) we see that the values or the first products *s parameters
have no effect on the market split. (This makes the connectivity
condition an increasingly reasonable hypothesis, for p=2.)

We cannot also have

hi2i ' °

for all ^ , for this would make w^ constant, in contradiction of (8)

From ( 22 ), we have

bjigih^d-v) = - .

With I chosen such that ^j2.21^^ ^ proceed just as in Section k

except that the y^^ and hence'^the do not appear. The result is

w
1

n(2)

= (> T z.p c )

i=l

= "12-" =
2)'

1:=1
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where

We turn now to the case p > 2 .

pair (1, j), with 1 < j < P and 1 < i

It can be assumed that for each

< n(j), there is a k such that

4»l,/SXi . i 0 ,

for otherwise the parameter x. . would have no influence on the market
ij

split and so could (and should) have been omitted from the model. We
can choose k so that ky^j , for if ^w /gx. . vanished for all k^j ,

k 1 j

then so also would

By (16), (21) and (23), then,

k^j for which b. ^ 0 .

ij-kj

it follows that for each (i,j) there is a

Consider two products P. and P^. , . We will call P. weakly
<] J

(strongly) disconnected from P^ if b. = 0 holds for some i
J IJuJ

(for all ^) , 1 < i < n(j) . Clearly strong disconnectedness implies
weak disconnectedness. It will now be shown that, conversely, weak
disconnectedness implies strong disconnectedness, so that we can speak
simply of "disconnectedness” and its opposite, "connectedness". It

will also be shown that disconnectedness is a symmetric relation, l.e

if P . is disconnected from P^. then P^ is disconnected from P. .

0 J J J

For the proof, assume b. = 0 for some
ijJJ

with k^^j ,
such that b. 0 ; hence k?^J .

ijkj

^ . There is a k ,

Since (j,k,j) are

distinct we can apply ( 2j)--

condition to infer b-n-.xIJjJ

-whose derivation did not use the connectivity
= 0 for all I with 1 < I < n(j) , i.e.

P strongly disconnected from P.
^ J

Applying the same argument with j

and J interchanged, we have P. strongly disconnected from P .

J ^
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Since disconnectedness is symmetric, the same is true of connectedness.
We now show that connectedness is also a transitive relation, i.e. if P.

is connected to
distinct)

•

and P, to Pt , then P. is connected to P.(j,k,J
k J ' j

For this purpose we cite the equation, derived without use of the
connectivity condition, which appears several lines above (38);

^b... b g'(w )f (w )g (w )
= b b. g'(wT-)fT.(wT)g.(w.)^ ijjni Idmn^m^ m' m^ m'^n^ n UjJ ijJj J J J J j j

for distinct (j,J). By use of (2l) and (23 ), this can be written as

m^J
ijjm IJmJ^' m m m J J

and terms collected to obtain

m^d,j

Now choose x so that w(x) has w =0 for q ^ j,k,J . Then the

last equation becomes

If P. were disconnected from P ,
the right-hand side and(using(72)

)

J

the last two summands on the left would vanish, leaving
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0 (T^)

for V. + V + w = 1 . This is impossible since the connectedness of
j K J

P. vith P and P with P guarantees that the h's in (T^) are non-
J K, K (J

zero. So P. and P^ are connected.
J <J

From the fact that connectedness is both sytmietric and transitive,
it follows that unless the connectivity condition holds (i.e. unless
any two products are connected), the set of p products decomposes into
two or more subsets such that

(a) any two products in the same subset are connected, but

(b) no two products in different subsets are connected.

Suppose for example that products P^ and P^ lie in different
1 d

subsets and . Then by (l6) and (23) - = 0 unless

P^ is in , i.e. w^ depends only on the parameters of the products

in , and similarly for w^ and ^2 *
By (T) we can choose the

parameters of the products in so that w(x) has w^ = 1 . This is

impossible because it requires w^ = 0 , whereas the parameters of

products in cannot influence • It follows from this contradiction

that, for p > 2 , the connectivity condition must hold.
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