PHOTOMETRIC CHARACTERISTICS
OF U. S. CARRIER DECK LIGHTS
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards1 was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurements and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information,3 a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D.C. 20234.
2 Located at Boulder, Colorado 80302.
3 Located at 9255 Fort Royal Road, Springfield, Virginia 22161.
PHOTOMETRIC CHARACTERISTICS
OF U. S. CARRIER DECK LIGHTS

by

A. C. Wall

For

Naval Air Systems Command
Department of the Navy
Washington, D. C.

IMPORTANT NOTICE

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015

ACCOUNTING DOCUMENTS INTENDED
NOT FOR USE WITHIN THE GOVERNMENT. BEFORE REVIEW, FOR THIS REASON, THE REPORT HAS BEEN SPECIFICALLY PREPARED FOR THE GOVERNMENT AGENT FOR WHICH IT WAS PREPARED, FOR ITS OWN USE.
Photometric Characteristics
of U. S. Carrier Deck Lights

By
A. C. Wall

1. INTRODUCTION

The Photometry Section of the National Bureau of Standards has made photometric measurements of carrier deck lights since the early days of night flying. The results of these tests have usually been reported in NBS test reports. Many of these reports are no longer readily available although the lights described are still in service. This report has been prepared to present in readily available form intensity distributions of the carrier deck lights currently in use. Photographs of many of these lights have been included to assist in identification.
<table>
<thead>
<tr>
<th>Light Type</th>
<th>Figure Number</th>
<th>NBS Test Report Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresnel Lens Optical Landing System (one cell)</td>
<td>1, 2, 16</td>
<td>212.11P-27/65</td>
</tr>
<tr>
<td>Carrier Homing Beacon</td>
<td>3, 17</td>
<td>-</td>
</tr>
<tr>
<td>Night Vision Flood Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-inch hood, clear window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specular reflector, Type 328A</td>
<td>4, 19</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>Specular reflector, Type 325A</td>
<td>10, 18</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>14-inch hood, spread lens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated reflector, Type 325A</td>
<td>7, 18</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>Corrugated reflector, Type 328A</td>
<td>9, 19</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>24-inch hood, clear window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specular reflector, Type 326A</td>
<td>6, 18</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>Specular reflector, Type 329A</td>
<td>8, 19</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>24-inch hood, spread lens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specular reflector, Type 326A</td>
<td>5, 18</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>Corrugated reflector, Type 329A</td>
<td>11, 19</td>
<td>21P-49/63</td>
</tr>
<tr>
<td>AA-1 Glide Slope Indicator</td>
<td>12, 13</td>
<td>21P-4/59</td>
</tr>
<tr>
<td>Deck Guide Light 45-watt</td>
<td>14, 21</td>
<td>21P-65/61</td>
</tr>
<tr>
<td>Deck Guide Light 100-watt</td>
<td>15, 21</td>
<td>21P-65/61</td>
</tr>
<tr>
<td>Light Type</td>
<td>Operating Volts or Amperes</td>
<td>Power (watts)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Fresnel Lens Optical Landing System</td>
<td>21.5 V</td>
<td>3 at 150</td>
</tr>
<tr>
<td>Carrier Homing Beacon</td>
<td>32 V</td>
<td>150</td>
</tr>
<tr>
<td>Night Vision Flood Light</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-inch hood, clear window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specular reflector, Type 328A</td>
<td>6.6 A</td>
<td>2 at 250</td>
</tr>
<tr>
<td>Specular reflector, Type 325A</td>
<td>6.6 A</td>
<td>200</td>
</tr>
<tr>
<td>14-inch hood, spread lens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated reflector, Type 325A</td>
<td>6.6 A</td>
<td>200</td>
</tr>
<tr>
<td>Corrugated reflector, Type 328A</td>
<td>6.6 A</td>
<td>2 at 250</td>
</tr>
<tr>
<td>24-inch hood, clear window</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specular reflector, Type 326A</td>
<td>6.6 A</td>
<td>200</td>
</tr>
<tr>
<td>Specular reflector, Type 329A</td>
<td>6.6 A</td>
<td>2 at 250</td>
</tr>
<tr>
<td>24-inch hood, spread lens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specular reflector, Type 326A</td>
<td>6.6 A</td>
<td>200</td>
</tr>
<tr>
<td>Corrugated reflector, Type 329A</td>
<td>6.6 A</td>
<td>2 at 250</td>
</tr>
<tr>
<td>Type AA-1 Glide Slope Indicator</td>
<td>5.95 V</td>
<td>3</td>
</tr>
<tr>
<td>Deck Guide Light</td>
<td>6.6 A</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>6.6 A</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers</td>
<td>Lamp Type</td>
<td>Lamp Used</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1000</td>
<td>15, 21</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>14, 21</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>13, 20</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>12, 19</td>
<td>2000PAR6/6.6</td>
</tr>
<tr>
<td>1000</td>
<td>11, 18</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>10, 17</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>9, 16</td>
<td>2000PAR6/6.6</td>
</tr>
<tr>
<td>1000</td>
<td>8, 15</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>7, 14</td>
<td>2000PAR6/6.6</td>
</tr>
<tr>
<td>1000</td>
<td>6, 13</td>
<td>6A/6V/72% CL</td>
</tr>
<tr>
<td>1000</td>
<td>5, 12</td>
<td>2000PAR6/6.6</td>
</tr>
<tr>
<td>800</td>
<td>3, 11</td>
<td>150PAR6/1</td>
</tr>
<tr>
<td>10</td>
<td>1, 2</td>
<td>DCA</td>
</tr>
</tbody>
</table>

Additional information:
- Beam Spread (50% of peak)
Vertical intensity distributions through 0 degrees horizontal of one cell of a Source-Light Indicator System Assembly of the Mark 6 Fresnel-Lens Optical Landing System.

NBS Report 9350 Supplementary Figure 1
Horizontal intensity distributions through the vertical peak of one cell of a Source-Light Indicator System Assembly of the Mark 6 Fresnel-Lens Optical Landing System.
Vertical Intensity Distribution
of a
Carrier Homing Beacon
with a 32-volt, 150-watt 150PAR46/1 lamp
Reflector rotating at 40 rpm
producing 80 flashes per minute

Degrees Down
NBS Report 9350 Supplementary

Degrees Up
Figure 3
Vertical and Horizontal Incandescence Distributions of a "Night Vision Floodlight" Type 328-A with 14" Hood, Specular Reflector, and Clear Window

Lamp: Two Type 6.6/FAS6/4

6.6 amperes
250 units

Horizontal angles of traverse:
-0°
-3°
-6°
-9°
-12°

Degrees down

Vertical angle of traverse:
-6.5°

Degrees left

Degrees right

Figure 4
Vertical and Horizontal Intensity Distributions of a "Night Vision Floodlight" Type 326-A with 24" Hood, Corrugated Reflector, and Spread Lens Window:
Lamp: Type 200PAR46/6.6
6.6 amperes
200 watts

Horizontal angle of traverse:
-90°
-80°
-70°
-60°
-50°
-40°
-30°
-20°
-10°
0°
10°
20°
30°

Degrees down

Degrees left

Degrees right
Vertical and Horizontal Intensity Distributions of a "Night Vision Floodlight" Type 326-A with 26" Hood, Specular Reflector, and Clear Window

Lamp: Type 200PAR6/6.6

6.6 amperes
200 watts

Degrees down

Degrees left

Degrees right

Figure 6
Vertical and Horizontal Intensity Distributions of a “Night Vision Floodlight” Type 325-A with 16" Hood, Corrugated Reflector, and Spread Lens Window
Lamp: Type 200PAA6/6.6
6.6 amperes
200 watts

Horizontal angle of traverse:
0°
6°
12°
18°
24°
30°

Degrees down

Degrees left
Degrees right

Figure 7
Vertical and Horizontal Intensity Distributions of a "Night Vision Floodlight" Type 329-6 with 24" Hood, Specular Reflector, and Clear Window Lamps: Two Type 6.6/PAR36/4

6.6 Aspera 250 watts

Degrees down

Horizontal angle of traverse: 0°, 1°, 2°, 3°, 4°, 5°, 6°

Degrees left

Degrees right

Vertical angle of traverse: 0°, 1°, 2°, 3°, 4°
Vertical and Horizontal Intensity Distributions of a "Night Vision Floodlight" Type 328-A with 14" Hood, Corrugated Reflector, and Spread Lens Window.
Lamps: Two Type 6.6/PAR56/4 6.6 amperes 250 watts.

Horizontal angle of traverse: 0°, 5°, 10°, 15°, 20°, 25°, 30°, 45°, 60°, 90°

Vertical angle of traverse: -45°, 0°, 45°

Degrees down

Degrees left

Degrees right
Vertical and Horizontal Intensity Distributions of a "Night Vision Floodlight" Type 323-A with 14" Hood, Specular Reflector, and Clear Window

Lamp: Type 200PAR 4/6, 6, 6 ampere, 200 watts

Degrees left

Degrees down

Degrees left

Degrees right

Vertical angle of traverse: -4.5°
Vertical and Horizontal Intensity Distributions of a "Night Vision Floodlight" Type 319-A with 26" Hood, Corrugated Reflector, and Spread Lens Window

Lamps: Two Type 6.6/PAR36/4

6.6 amperes
250 watts

Degrees left
Degrees right

NBS Report 9350 Supplementary

Figure 11
HORIZONTAL INTENSITY DISTRIBUTIONS
of Angle-of-Approach Light
Type AA-1 Class II

Lamp: PR-12 operated at design current, 0.50 ampere

Location of Vertical Fiducial Line

Vertical Angle of Traverse

<table>
<thead>
<tr>
<th>Degrees</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Yellow</td>
</tr>
<tr>
<td>3.0</td>
<td>Green</td>
</tr>
<tr>
<td>-4.0</td>
<td>Red</td>
</tr>
</tbody>
</table>

NBS Report 9350 Supplementary

Figure 13
Vertical and Horizontal intensity Distributions of a Deck Guide Light, L.C.D. No. 366 with a 6.6-ampere, 45-watt Q6.6A/T2½/C1 lamp

NBS Report 9350 Supplementary Figure 14
Vertical and Horizontal Intensity Distributions of a Deck Guide Light, L.C.D. No. 366 with a 6.6-ampere, 100-watt Q6.6A/T3/Cl lamp

NBS Report 9350 Supplementary

Figure 15
Partial lens cell assembly, exploded view showing "egg crate" lens restraining device, of the Fresnel-Lens Optical Landing System.

NBS Report 9350 Supplementary
Carrier homing beacon.

Figure 17
Schematic diagram of the "Night Vision Flood Light" types 328-A and 329-A
Battery operated AA-1 glide slope indicator. Figure 20
A. Shear Ring Assembly
B. Guard Assembly
C. Baseplate (Lamps omitted)

Deck guide light, L.C.D. Co. No. 366