NATIONAL BUREAU OF STANDARDS REPORT

9034

Photoelectric Filter Measurements of Solar Ultraviolet Irradiances at Los Angeles, California, October 1965

by

Ralph Stair William R. Waters John K. Jackson

Metrology Division National Bureau of Standards Washington, D.C.

Report of Solar Radiation Project

Sponsored by Department of Health, Education, and Welfare Public Health Service

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its three Institutes and their organizational units.

Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Physics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data.

Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.* Materials Evaluation Laboratory. Office of Standard Reference Materials.

Institute for Applied Technology. Building Research. Information Technology. Performance Test Development. Electronic Instrumentation. Textile and Apparel Technology Center. Technical Analysis. Office of Weights and Measures. Office of Engineering Standards. Office of Invention and Innovation. Office of Technical Resources. Clearinghouse for Federal Scientific and Technical Information.**

^{*}Located at Boulder, Colorado, 80301.

^{**}Located at 5285 Port Royal Road, Springfield, Virginia, 22171.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

2120418

NBS REPORT

9034

Photoelectric Filter Measurements of Solar Ultraviolet Irradiances at Los Angeles, California, October 1965

by

Ralph Stair William R. Waters John K. Jackson

Metrology Division National Bureau of Standards Washington, D. C.

Sponsored by Department of Health, Education, and Welfare Public Health Service

IMPORTANT NOTICE

NATIONAL BUREAU OF STAN for use within the Government. Bet and review. For this reason, the pu whole or in part, is not authorized Bureau of Standards, Washington 2 the Report has been specifically pre

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015 ccounting documents intended jected to additional evaluation ting of this Report, either in lfice of the Director, National Government agency for which s for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

-

Photoelectric Filter Measurements of Solar Ultraviolet Irradiances at Los Angeles, California, October 1965

Ъy

Ralph Stair, William R. Waters, and John K. Jackson

I. INTRODUCTION

The literature of the past fifty years contains much data on the total solar irradiances at various locations and for the different seasons of the year. These data have usually been obtained with some type of pyrheliometer in the form of a blackened horizontal receiver housed in a glass envelope. As a result, the short-wave ultraviolet and long-wave infrared are not included in the measurements. Furthermore, the uncertainty in the measurements has been of the order of a few percent -- a magnitude approximating that of the total ultraviolet irradiance. Hence, the great amount of available data gives little information concerning the solar ultraviolet irradiance present in any locality. Only in those researches wherein special equipment has been employed are any quantitative ultraviolet data available. Measurements of this type have usually been made at high altitudes or in locations having relatively unpolluted atmospheres. Since the primary purpose of the present investigation was to evaluate the available solar ultraviolet in both a polluted area and a nearby area relatively free of polution, special instrumentation and techniques were required.

II. INSTRUMENTATION AND METHOD

HEW-PHS is interested primarily in photochemical processes to which suspended material in the atmosphere are subjected. Although these processes are directly related to absorption of radiation incident from any direction (a volume effect)," it is to be noted that our instrumentation set up in down-town Los Angeles and on Mt. Wilson measures the solar ultraviolet irradiance (at selected wavelengths) on a horizontal surface. For best results, this requires the use of a detector having sensitivity over its surface in accordance with the cosine law for all angles from 0° (the horizon) to 90° (the zenith). No such commercial ultraviolet detector exists. If it did, a further difficulty would be encountered in devising spectral filters which would separate narrow spectral bands and at the same time not upset the cosine law response for angular elevation of source (the sun and sky). Hence, equipment of special design was required and was built.

In figure 1 is shown a layout diagram of the photoelectric equipment as assembled for this work. The solar irradiance (sun and sky) was collected in the integrating sphere which was coated with a thick layer of BaSO₄. The entrance and exit ports were each 1/2 inch in diameter, the sphere diameter being 4 inches. The entrance port was fashioned with a "knifeedge" opening, which was in the plane of the topmost section of the box, and was adjusted precisely to a horizontal position. The exit opening was placed to the East or West, (so that at no time did the sun or its primary reflection, fall directly into its view) and was covered by a shield and Corning filter 9863 having high opacity within the visible spectral region.

A filter wheel carrying 9 narrow-and 1 wide-band interference filters and 2 blanks (zero transmittance) was set at about 6 inches from the sphere exit port so that a narrow beam of ultraviolet flux passed (near perpendicularly) through each of the filters onto a type RCA-935 photoelectric cell as the filter-wheel was step rotated by a synchronous motor and genevadrive mechanism. In this manner each filter and each blank (zero transmittance) was set in position for a period of about 10 seconds (sufficient time for the pico-ammeter and recorder to register on a strip chart a definite value). Thus the magnitude of each spectral irradiance was registered once in each interval of approximately two minutes (about 30 times per hour). For purposes of calibration at intervals during each day a 1000 watt quartz iodine lamp standard of spectral irradiance mounted in a special carriage to eliminate all sun and sky irradiance was placed above the integrating sphere (at a measured distance) and the output through the 10 filters was recorded over a period of several minutes (2 to 3 rotations of the filter disk.).

The spectral transmittance of each of the 9 narrow-band interference filters employed at Mt. Wilson is depicted in figure 2. Each filter has a half-band width of approximately 10 nm, and its centroid is situated near even 10-nm intervals from 310 nm to 390 nm.

In table I are tabulated (in column 2) the relative response of our RCA type 935 phototube (#5) when irradiated by a 1000-watt quartz-iodine lamp standard of spectral irradiance #131 through Corning filter 9863 and each interference filter in turn, (in column 3) the wavelength centroid under these same conditions and (in column 4), as an example, the correction that should be applied when the spectral energy distribution of the irradiating, source is that of the sun as determined at Sacramento Peak, New Mexico $\frac{3}{}$, for air mass 1.0 rather than that of lamp standard #131. The spectral data on these sources, this detector, and Corning filter 9863 are also included in Figure 2. Because corrections as listed in column 4 of table I are smaller than the uncertainties in this type of measurement they were not made in computing the values reported in Section III of this Report. Other small corrections that are worthy of note, but which have been neglected in this Report arise from the following considerations: (1) the data herein reported in detail apply to the Mt. Wilson instrumentation, a "duplicate" of which with filters cut from the same stock was set up and operated in down-town Los Angeles (at 300 South Pedro Street); the differences between the instruments are considered to be minor, and (2) an additional correction of approximately one percent could be applied to cover loss of sky irradiance passing directly through the two sphere openings and missing the detector entirely (see fig. 1); however, a nearly equal but opposite error occurs for sky irradiance reflected on first reflection from the sphere wall directly onto detector (it is to be noted that all of the flux from the quartz-iodine standard and nearly all of the sky flux is multiply reflected in the sphere before it is incident on the detector).

The instrumentation required little attention since all operations, except for setting up and operating the standard lamp for calibration, were automated. The usual service consisted of keeping the quartz hemisphere cover clean, the recorder pen cleaned and filled, and time indications and other pertinent weather and air pollution information noted on the recorder strip chart or associated notebook.

An examination of column 2 of table I discloses that there is a factor of more than 10 between the highest and lowest integrated instrumental reading at one total irradiance. A further variation of nearly 10 occurred between the early morning (or late afternoon) readings and those obtained near the noon hour. Since it is impractical to change instrumental sensitivity either between the interposition of filters or during the day, another method was employed to keep all data on a reasonable chart scale. This consisted of placing (permanently) perforated metal screens (of various transmittances) over most of the filters so that in all cases the short-wave spectral regions produced readable deflections while the other spectral regions produced deflections not exceeding the chart limits or the fatique level for the phototube. The transmittance values for these screens were not required and have not been obtained in the reduction of the data.

III. Results.

Ultraviolet spectral solar and sky irradiances on a horizontal surface were made daily over a period of about one month between about September 20 and October 20, 1965, at Mt. Wilson (altitude 5710 feet) and down-town Los Angeles (altitude about 500 feet). During this time supplementary aeroplane flights were made on 6 days in which other ultraviolet instrumentation was employed. During 5 of these days data were obtained employing the herein described instrumentation. Some of the data obtained with the narrow-band interference filters is plotted on charts Nos. 3 to 12. These data as well as some obtained for the wide-band spectral region of 300 to 380 nanometers are summarized in tables II and III. It is to be noted that precise values of spectral response of the particular phototube (set up at Mt. Wilson) as well as of the spectral irradiance of the NBS standard lamp and of the spectral transmittance of the wide-band filters used at that station were employed in the reduction of the measurements on Mt. Wilson made with the wide-band filters. Under these conditions the two sets of data for the spectral region of 300 to 380 nm are in agreement to about 1 percent which may be considered unexpectedly good considering the fact that a solar curve for M = 1 for Sacramento Peak, New Mexico (rather than the true curve) was employed as a basis for the reduction of the measurements with the wide-band filter.

A wider disagreement (2.5 to 3.0 percent) occurs in the case of the down-town Los Angeles measurements for the wide-band spectral region of 300 to 380 nanometers. Possibly wider divergencies exist between the true and the solar curve (M = 1.0 for Sacramento Peak) employed. Or the greater discrepancy results because of our assumption that the two photogetubes had the same relative spectral responses. A difference of 2.5 to 3.0 percent is small--but since all measurements fall within the range of 2.5 to 3.0 percent, the indication is that the error is contained in some

of the basic factors common to all the measurements. Possibly the wideband filter transmittance was significantly different at Los Angeles from what it was when measured following the work in the field. As a matter of fact, all the interference filters employed in this work solarized significantly during the course of the investigation, but since lamp calibrations were made at least twice daily any error resulting because of filter solarization is considered insignificant except possibly for the wide-band unit.

The development of the instrumentation employed in this investigation was sponsored jointly by the United States Public Health Service and the National Aeronautics and Space Administration.

The authors acknowledge with appreciation the aid and cooperation furnished at the Mt. Wilson Station during the course of these measurements. Special thanks are due Mr. Edward Swanson of the Mt. Wilson Resort for making a protected area on that property available for the work; and to Television station KCET T-V (for the use of their facilities during the course of the investigation. Mr. James Mead and other members of the station staff spared no effort in giving us assistance in many ways.

IV. Miscellaneous Notes on Weather & Smog

October 6 -

Sky clear on Mt. Wilson during most of the day but with a very slight haze. Little or no wind at both stations. Smog layer appearing early over basin. Overcast and smoggy in down-town Los Angeles all day. Some clouds on Mt. Wilson after 2:00 p.m. A very smoggy day.

October 12 -

Sky very clear on Mt. Wilson in early morning. Thin layer of reddishbrown smog present at about 1000 feet below Mt. Wilson station. No wind. By 2:30 p.m. smog layer reached Mt. Wilson station. Ozone meter responds to incoming oxidants. Down-town overcast all day. Intermediate smog.

October 16 -

Sky clear on Mt.Wilson all day. Good visibility down-town. Northwest wind at both stations-about 30 mph. on Mt. Wilson. A clear and windy day. Little smog.

October 18 -

Sky clear on Mt. Wilson all day. Light haze and smog over basin. Little or no wind at both stations. A relatively clear and calm day.

October 20 -

Sky clear on Mt. Wilson all day except for a few thin scattered clouds in afternoon. Some cloudiness and haze over basin all day. Little or no wind at either station. Light to moderate smog in down-town Los Angeles.

- 1. IGY Instruction Manual, Part VI, Radiation Instruments and Measurement, Pergamon Press, (1958). (The glass envelope of pyrheliometers is opaque to the infrared of wavelengths longer than about 4 microns and to some of the ultraviolet; new instruments have higher transmittances at 300 nm.)
- Ralph Stair, William E. Schneider, William R. Waters, John K. Jackson, and Roger E. Brown, Some developments in improved methods for the measurement of the spectral irradiances of solar simulators, NASA Contractor Report, CR-201, (1965).
- 3. Ralph Stair and Russell G. Johnston, Preliminary spectroradiometric measurements of the solar constant, J. Res. NBS 57, 205 (1956).

Interference Filter nm	Filter Tr x lamp energy x Phototube Resp. <u>x Corning 9863</u>	Wavelength Centroid nm	Percent Correction when measuring solar <u>irradiance</u> (air mass 1.0)
310	1172	309.42	+2.9
320	3345	322.29	-3.0
330	4663	331.58	+1.4
340	5145	340.65	+0.8
350	9759	352.70	+3.2
360	12500	360.22	+0.2
370	10539	371.80	+2.5
380	8805	381.33	+1.9
390	7609	392.10	-2.7

Table I

Table IIa - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface at Mt. Wilson, California in μW/cm² for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also total irradiance for spectral region of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wide-band filter.

a.m. Time											
Wave- length (nm)	Date Oct. 1965	8:00	8:30	9:00	9:30	10:00	10:30	11:00	11:30	12:00	
310	6	4.5	13.4	35.8	58.2	76.1	102.9	116	139	148	
	12	5.8	17.5	26.3	43.8	64.2	78.8	105	117	131	
320	6	49.7	90.6	139	189	234	278	316	345	364	
	12	41.0	76.3	118	163	208	249	288	316	332	
330	6	102	171	248	324	395	459	512	558	585	
	12	84.2	146	213	283	350	411	467	508	534	
340	6	114	182	261	338	401	468	521	563	588	
	12	99 . 2	164	233	305	374	434	491	534	559	
50	6	117	185	264	343	411	471	572	572	595	
	12	102	168	238	311	379	443	4 98	540	566	
360	6	114	182	263	342	408	474	526	573	598	
	12	103	170	242	320	389	455	513	558	582	
370	6	136	221	314	409	489	567	626	680	708	
	12	118	197	279	368	447	517	588	635	664	
380	6	131	215	307	399	474	548	609	663	689	
	12	117	197	277	364	443	513	581	630	655	
390	6	140	231	329	424	504	583	644	701	727	
	12	121	207	289	378	457	529	600	650	674	
300-380	6	704	1156	1485	2209	2660	3106	3449	3779	3951	
	12	612	1040	1491	1981	2441	2854	3254	3538	3712	
300-380	6	717	1154	1658	2174	2611	302 5	3384	3697	3877	
(W.B.F.)	12	629	1060	1513	1996	2434	2844	3224	3487	3655	

Table IIa - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface at Mt. Wilson, California in μ W/cm² for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also total irradiance for spectral region of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wide-band filter.

1

	p.m. Time												
Wave- length (nm)	Date Oct. 1965	12:30	1:00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00		
310	6 12	143 131	152 134	143 131	139 111	94.0 102	102.9 75.9	40.3 58.4	40.3 32.1	22.4 14.6	8.8		
320	6 12	364 338	368 341	360 334	342 311	250 279	300 242	164 203	161 155	117 110	63		
330	6 12	584 540	590 545	581 536	552 503	419 456	495 398	221 346	284 271	213 201	125		
340	6 12	590 565	595 572	585 560	558 528	418 483	510 424	219 367	294 292	222 218	140		
350	6 12	592 567	603 577	594 567	568 536	423 489	527 433	204 375	302 301	226 223	143		
360	6 12	592 585	602 594	598 585	571 549	474 500	534 441	199 383	304 304	228 2 2 4	143		
370 •	6 12	703 665	718 677	706 665	672 628	541 575	636 509	232 437	363 348	270 259	163		
380	6 12	681 656	694 671	684 661	658 623	466 571	625 504	228 • 433	356 344	264 257	162		
390	6 12	720 674	731 694	723 684	697 637	447 588	671 519	254 447	375 351	280 264	165		
∑300 - 380	6 12	3929 3735	3995 3792	3926 3725	3747 3491	2864 3182	3429 2784	1387 2393	1932 1879	1435 1380	868		
300-380 (W.B.F.)		3843 3677	3888 3750	3821 3684	3664 3436	2633 3114	3361 2749	1647 2361	1905 1857	1434 1367	855		

Table IIb - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface at Mt. Wilson California in μ W/cm² for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also Total irradiance for spectral regions of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wide-band filter.

						a.m. Time			
Wave- length (nm)	Date Oct. 1965	8:15	8:45	<u>9:</u> 15	9:45	10:15	10:45	11.15	11:45
310	16	5.8	17.5	35.0	56.0	73.2	93.4	105	120
	18	5.8	17.5	32.1	46.7	73.0	88	102	114
	20	5.8	20.4	32.1	49.6	73.0	87.6	108	114
320	16	51.5	91.6	135	178	222	259	286	310
	18	50.6	89.7	133	176	219	255	282	298
	20	49.6	87.8	130	174	216	252	280	303
330	16	107	171	239	307	370	423	464	499
	18	105	168	237	306	370	422	461	485
	20	102	165	231	300	361	415	461	492
340	16	129	199	274	343	411	469	512	548
	18	122	194	265	336	402	455	493	514
	20	1 9 9	186	256	327	391	446	493	524
350	16	129	199	268	342	407	464	510	545
	18	124	193	267	338	403	455	495	518
	20	120	189	260	332	397	451	497	529
360	16	131	207	282	356	428	486	531	571
	18	127	200	274	351	419	473	516	539
	20	124	196	270	344	413	471	518	552
370	16	148	234	319	405	484	544	598	638
	18	143	225	312	398	472	536	580	608
	20	138	220	304	390	464	529	581	618
380	16	147	229	314	399	476	538	590	630
	18	142	224	311	394	468	531	574	601
	20	135	220	300	384	461	524	578	615
390	16 18 20	$151 \\ 121 \\ 141$	242 235 227	331 324 311	420 410 400	504 489 474	561 546 538	618 590 593	657 620 630
300-380	16	776	1236	1713	2194	2642	3019	3314	3561
	18	749	1201	1680	2155	2601	2961	3229	3391
	20	727	1177	1637	2115	2555	2905	3241	3454
300-380 (W.B.F)	16 18 20	789 760 738	1213 1206 1184	1696 1689 1637	2171 2142 2105	2610 2580 2529	2968 2924 2902	3275 3180 3202	3494 3341 3421

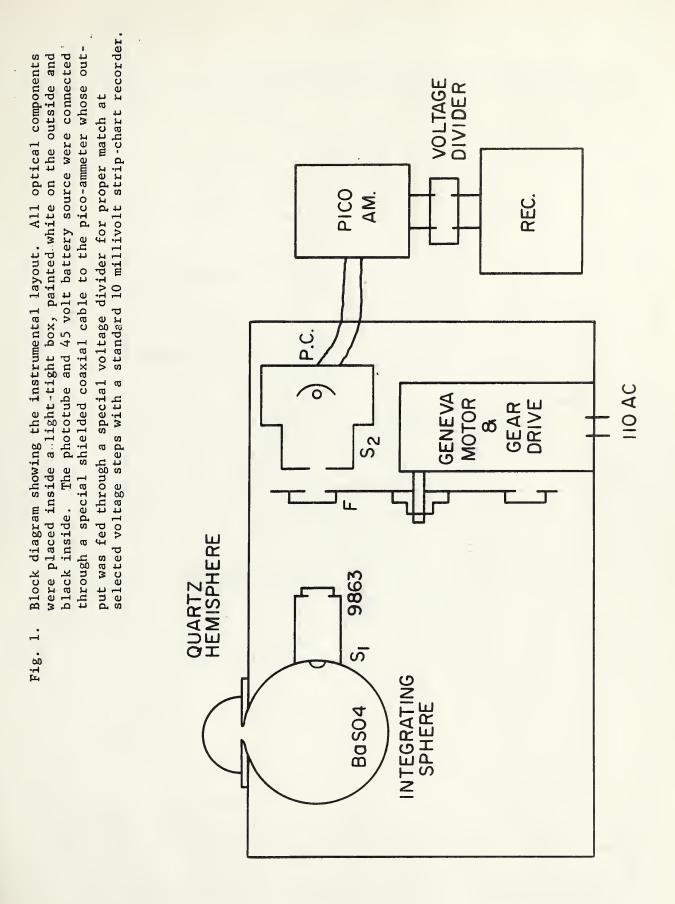
Table IIb- Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface at Mt. Wilson California in $\mu W/cm^2$ for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also Total irradiance for spectral regions of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wide-band filter.

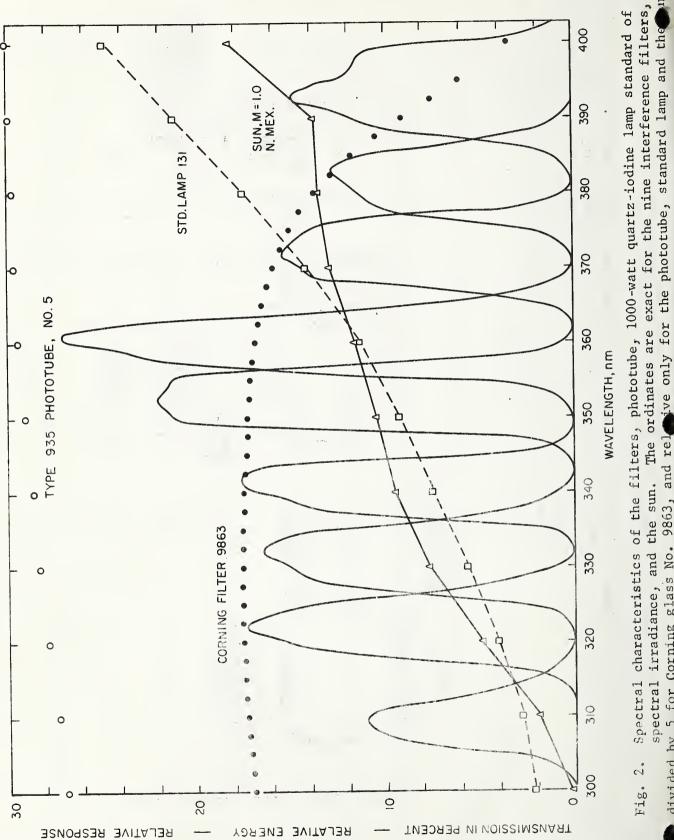
						P.M. Ti	me				
Wave- length (nm)	Date Oct. 1965	12.15	<u>12:45</u>	1:15	1:45	2:15	2:45	3:15	3:45	4:15	4:45
310	16 18 20	123 120 117	120 120 114	120 114 111	114 108 96.0	99.3 88.2	84.7	7 61.3 0 58.0	40.9 35.1	26.3 23.0	8.8 5.8 8.8
320	16	320	318	317	304	281	249	206	162	115	72.5
	18	312	313	308	290	266	235	196	155	111	65.0
	20	309	303	297	2 77	254	205	172	135	93.5	57.2
330	16	513	509	507	490	456	411	350	283	213	145
	18	504	505	498	474	440	392	336	274	204	129
	20	501	490	483	455	420	345	299	241	172	112
340	16	561	558	557	536	500	448	383	315	242	166
	18	536	536	530	506	470	421	364	299	226	148
	20	533	518	513	482	446	371	326	263	191	125
350	16	558	552	554	534	500	447	382	311	245	169
	18	535	538	532	510	476	428	369	305	229	152
	20	541	526	524	488	455	376	334	271	200	129
360	16	578	576	578	556	521	473	404	327	252	173
	18	560	559	552	529	494	444	381	313	236	154
	20	560	543	543	509	475	393	343	281	207	130
370	16	647	643	647	623	585	531	455	371	289	198
	18	630	628	620	598	551	504	435	354	269	176
	20	633	610	610	571	536	444	386	316	237	144
380	16	638	636	640	616	578	523	449	367	284	195
	18	621	620	613	596	553	501	431	3 52	267	175
	20	630	606	605	568	534	443	382	317	237	142
390	16	664	664	667	645	600	543	467	385	299	203
	18	637	640	630	613	566	516	444	366	272 °	183
	20	635	618	618	578	546	452	393	324	247	143
∑300 - 380	16 18 20	3634 3 522 3524	3609 3524 3421	3615 3475 3397	3479 3327 3174	3243 3073 2949	2916 2757 2428	2474 2362 2200	1916	1528 1443 1 2 39	1031 918 778
300-380 (W.B.F.)	16 18 20	3582 3472 3465	3575 3487 3392	3567 3428 3370	3436 3290 3136	3202 3056 2953	2880 2756 2456	2442 2354 2083	1923	1528 1418 1257	1045 936 789

Table IIIa - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface in Down-Town Los Angeles, California in μ W/cm² for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also total irradiance for spectral region of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wideband filter.

					a.m. '	Fime					
Wave- length (nm)	Date Oct. 1965	8:00	8:30	9:00	9: 30	10:00	10:30	11:00	11:30	12:00	
310	6 12	4.8 4.8	11.3 8.1	20. 9 1 2. 9	29.0 16.1	40.3 25.8	46.7 3 3.8	48.3 45.1	51.5 56.4	74.1 62.8	
320	6 1 2	31.1 22.4	5 2. 8 39.1	77.6 5 2. 8	97.5 65.2	128 9 1. 9	137 103	131 133	140 158	197 172	
3 30	6 1 2	60.1 44.6	94.4 70.9	133 92.1	1 6 3 110	20 9 141	224 167	21 0 211	223 251	314 270	
340	6 1 2	68.9 53.4	107 8 1.5	146 104	176 1 2 2	224 154	238 181	225 228	238 272	338 293	
35 0 ·	6 1 2	67.5 56.8	11 3 86.8	154 110	186 129	237 162	249 190	240 243	256 287	3 6 4 311	*
36 0	6 12	75.3 59.5	11 5 90.2	156 114	190 [.] 133	2 42 167	255 197	247 251	273 300	384 325	
370	6 1 2	87.7 69.1	1 3 5 105	184 132	221 156	285 193	298 229	291 292	331 348	450 380	
380	6 1 2	86.1 67.2	132 103	179 130	217 153	279 189	290 223	288 28 6	328 342	448 371	
390	6 12	88.6 69.2	1 34 105	184 134	221 156	285 192	296 225	285 290	332 3 48	449 380	
∑300- 380	6 12	434 340	696 534	964 684	1175 811	1 6 10 1032	1 59 9 1220	1542 1558	1683 1851	2354 2007	
300-380 (W.B.F.)	6 12	473 362	731 564	988 710	1211 842	1552 1044	1 6 29 1246	153 8 1594	1608 1886	2359 2053	

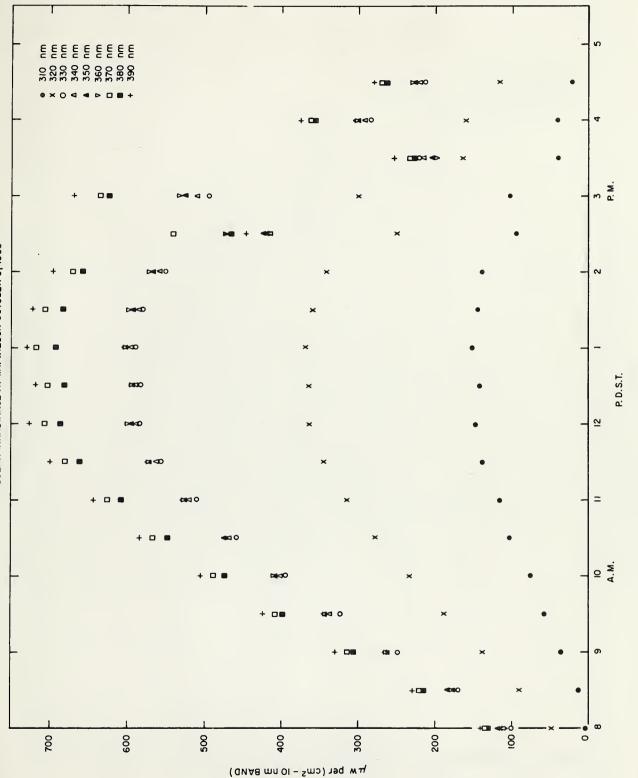
Table IIIa - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface in Down-Town Los Angeles, California in μ W/cm² for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also total irradiance for spectral region of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wideband filter.


					p.m.	Time					
Wave- length (nm)	Date Oct. 1965	12:30	1.00	1:30	2:00	2:30	3:00	3:30	4:00	4:30	5:00
310	6	82.1	86.9	88. 6	80.5	70.8	56.4	43.5	24.2	17.7	6.4
	12	64.4	72.5	75.7	70.8	66.0	51.5	40.3	27.4	12.9	4.8
320	6	212	230	231	221	200	158	142	95.6	77.0	46.0
	12	175	193	209	197	193	163	132	103	72.0	42.2
330	6	335	367	368	351	321	272	235	142	133	85.8
	12	276	303	330	312	309	265	217	173	126	78.9
340	6	355	393	391	374	346	315	265	153	148	96
	12	298	328	357	337	338	290	237	191	141	91.1
350	6	377	421	416	395	369	337	284	170	156	103
	12	316	349	380	359	360	308	253	204	150	104
360	6	395	433	427	402	380	334	301	164	163	105
	12	331	377	395	366	370	319	261	211	154	99.5
370	6	467	513	503	475	450	387.	364	187	192	124
	12	382	429	460	430	428	370	304	247	180	117
380	6	460	505	495	466	444	380	362	176	188	122
	12	376	422	454	419	418	362	298	241	175	113
390	6	469	515	504	480	454	383	357	172	195	122
	12	382	428	461	430	420	364	303	245	176	111
∑ 300-38 0	6	2463	2707	2683	2542	2368	2061	1821	1027	983	628
	12	2039	2272	2243	2290	2281	1954	1598	1280	925	595
300-380	6	2506	2749	2735	2575	2408	2123	1970	1281	1030	654
(W.B.F.)	12	20 6 0	2311	2520	2346	2290	1977	1643	1329	954	606

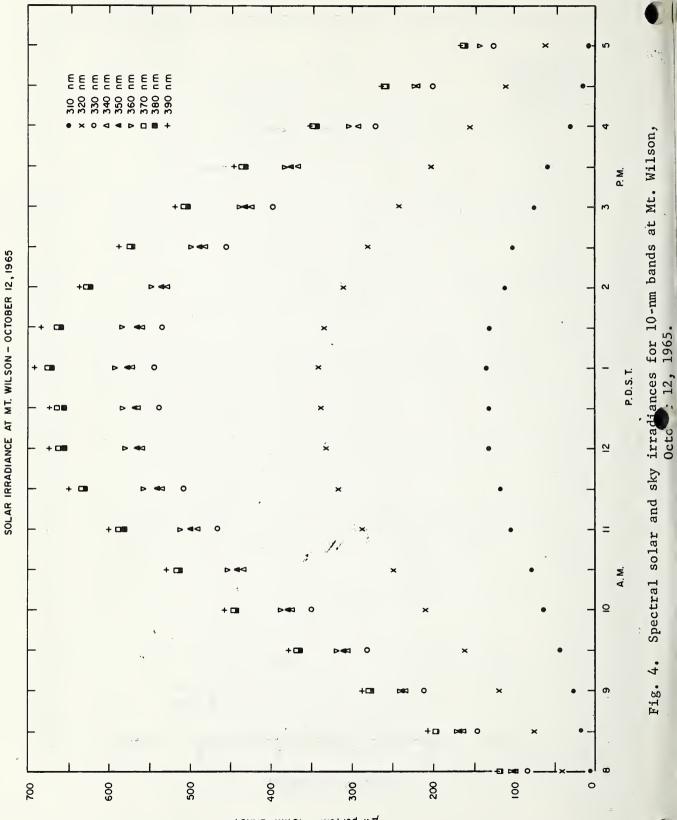

Table IIIb - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface in Down-town Los Angeles, California in μW/cm² for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also total irradiance for spectral region of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wide-band filter.

a.m. Time											
Wave- length (nm)	Date Oct. 1965	8:15	8:45	9 : 15	9:45	10:15	10:45	<u>11:15</u>	11:45		
310	16	6.4	17.7	25.8	40.3	54.7	69.2	80.5	93.4		
	18	6.4	12.9	24.2	35.4	49.9	61.2	74.1	78.9		
	20	6.4	14.5	25.8	38.6	51.5	66.0	72.5	8 2. 1		
320	16	42.2	68.3	110	145	183	212	238	259		
	18	38.5	64.6	91.9	120	157	186	212	221		
	20	39.1	69.6	103	136	163	192	202	224		
330	16	83.5	136	191	246	302	345	383	411		
	18	74.9	116	157	197	255	298	334	347		
	20	75.5	124	175	222	263	305	324	349		
340	16	100	156	216	276	337	382	421	451		
	18	88.9	134	178	219	282	330	365	376		
	20	89.7	143	196	245	292	333	351	375		
350	16	106	167	232	296	359	406	448	481		
	18	95.5	142	190	234	304	-353	387	402		
	20	95.5	154	212	261	313	357	383	406		
360	16	110	174	242	308	376	424	467	503		
	18	99.5	150	199	247	323	368	410	425		
	20	100	161	222	286	331	379	402	441		
370	16	127	203	281	357	437	489	539	581		
	18	115	170	229	283	372	421	470	487		
	20	115	185	254	324	377	429	455	503		
380	16	122	197	275	351	425	476	524	566		
	18	110	167	223	276	362	411	457	475		
	20	113	184	254	320	372	422	451	489		
390	16 18 20	$122\\108\\113$	200 169 184	279 229 254	356 280 320	428 370 372	483 419 422	528 467 451	573 481 489		
∑300 - 380	16	637	1023	1439	1849	2268	2574	2849	3074		
	18	575	855	1184	1478	1930	2230	2481	2584		
	20	579	945	1318	1677	1983	2280	2422	2615		
300-380 (W.B.F.)	16 18 20	668 599 612	1072 919 981	1489 1232 1364	1907 1524 1754	2325 1984 2032	2659 2283 2318	2916 2596 2464	3167 2666 2652		

Table IIIb - Ultraviolet Spectral Irradiance of Sun and Sky on a Horizontal Surface in Down-town Los Angeles, California in $\mu W/cm^2$ for 10nm Wavelength Intervals on Selected Days at 30 Minute Intervals (P.D.S.T.); also total irradiance for spectral region of 300 to 380 nm evaluated as sum of narrow bands and as measured through the use of a wideband filter.


					<u> </u>	n. Time					
Wave-	Date										
length	0ct.	10.15	10.45	1.15	1.45	0.15	0./F	2.15	2.45	4.15	1.1.5
<u>(nm)</u>	1965	12:15	12:45	1:15	1:45	2:15	2:45	3:15	3:45	4:15	4:45
310	16	95.0	93.4	91.8	90.2	77.3	64.4	49.9	35.4	17.7	8.1
	18	77.3	67.6	53.1	49.9	46.7	38.6	33.8	25.8	14.5	6.4
	20	91.8	93.4	83.7	72.5	59.6	46.7	40.3	25.8	12.9	4.8
320	16	267	255	255	253	229	199	165	130	88.8	57.8
	18	215	191	157	151	145	129	119	102	73.9	46.6
	20	2 50	2.53	235	209	184	152	139	103	75.1	46.6
3 30	16	423	405	405	407	367	322	270	219	154	108
0.0	18	336	303	249	243	235	209	197	172	131	88.1
	20	386	392	366	330	292	246	226	172	130	85.8
340	16	463	443	442	446	403	355	300	245	173	123
340	18	367	329	273	270	258	231	219	191	149	101
	20	415	422	394	358	317	268	248	187	145	97.8
250	16	492	470	468	474	430	378	320	261	184	131
350	18	492 389	470 355	468 297	4/4 295	430 279	378 247	238	201	184 160	109
	20	389 448	455	426	389	344	247	258	207	157	109
360	16	512	489	490	495	451	395	333	272	191	135
	18	409	375	313	313	294	260	250	217	167	114
	20	487	478	451	412	366	312	284	212	166	111
370	16	590	562	561	569	520	455	375	313	220	157
	18	475	427	363	363	339	300	290	250	192	129
	20	553	544	515	469	417	357	324	237	188	125
380	16	575	550	542	553	507	445	376	304	214	151
	18	460	424	361	357	333	293	284	244	188	126
	20	543	536	506	465	414	356	324	234	184	122
390	16	580	557	544	557	510	452	383	309	217	153
	18	467	432	370	364	341	300	291	251	190	127
	20	543	536	506	465	414	356	324	234	184	122
T200 200	16	3136	3004	2995	3022	2741	2399	2007	1632	1138	796
∑ 3 00-380	18	2508	2268	1802	1870	1769	1566	1493	1290	983	658
	20	2914		2734		2194	1859	1696	1258	968	639
000 000				3076	3069	2805	2464	2081	1691	1176	828
300-380	16	3209 2554	3083 2276	1928		1817	1594	1531	1336	1030	689 🛡
(W.B.F.)) 18 20	2554 3014		2171		2255	1907	1740	1308	1009	668
	20	3014	0000	5-1 + 1	1. 2. 2. 2				an to the second processing and		

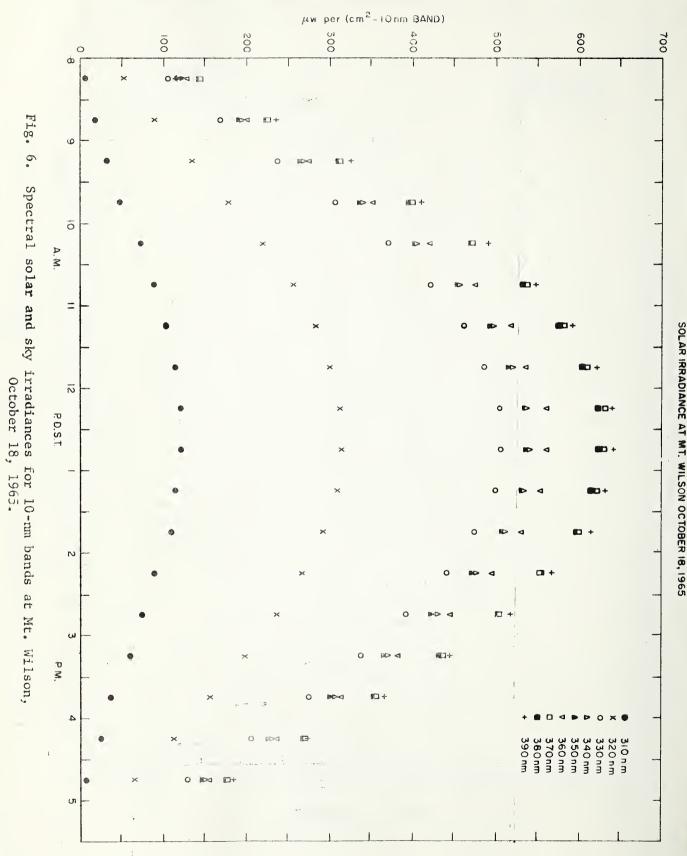
In.

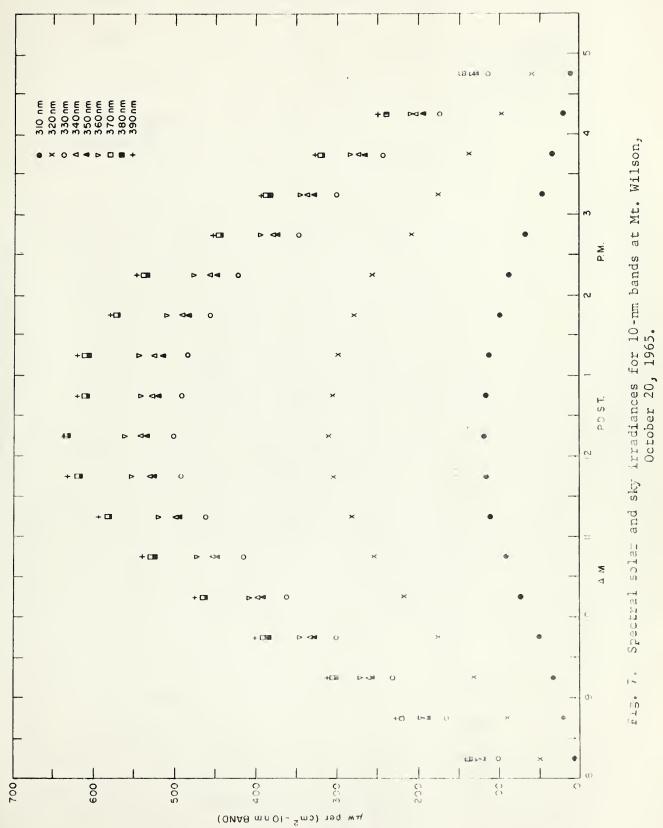

divided by 5 for Corning glass No. 9863, and rel

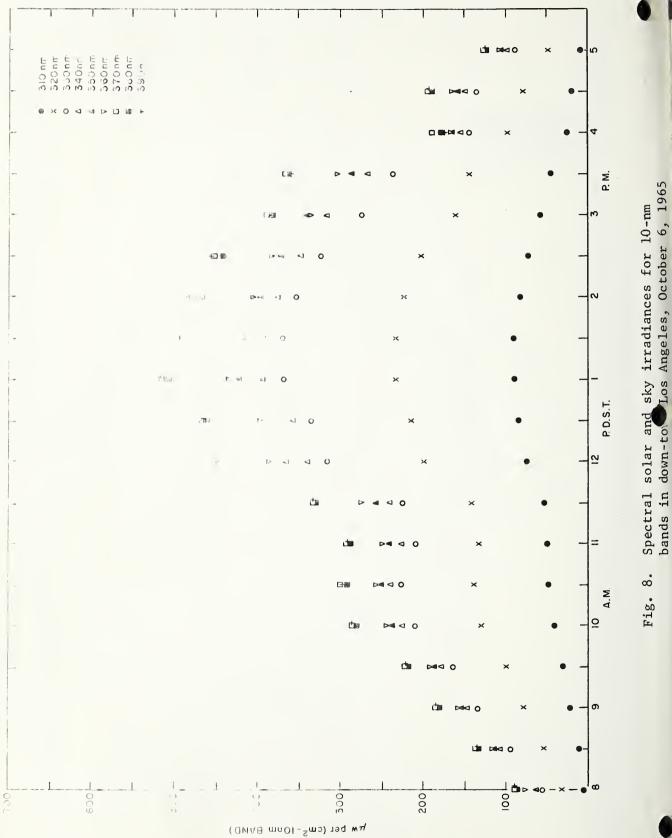
Spectral solar and sky irradiances for 10-nm bands at Mt. Wilson, October 6, 1965.

Fig. 3.

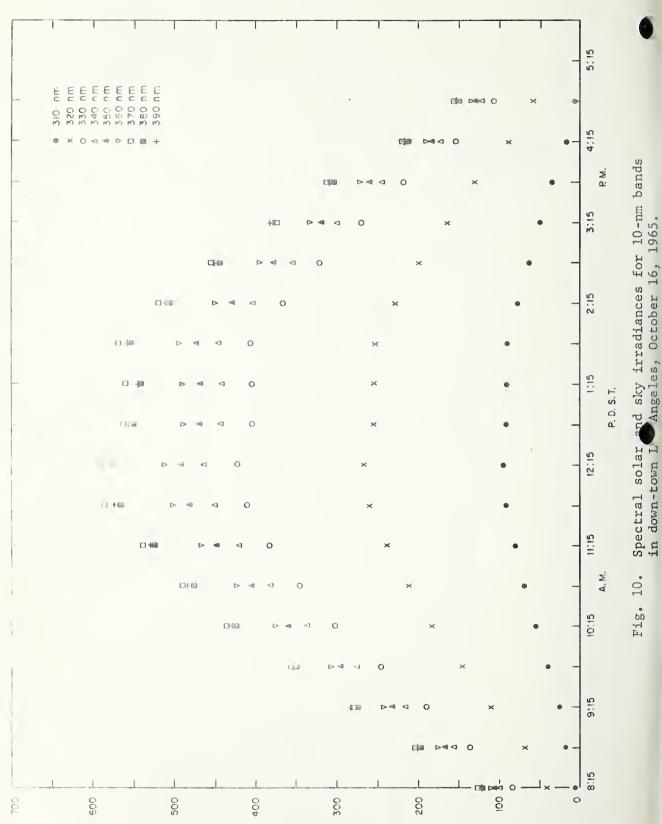
SOLAR IRRADIANCE AT MT. WILSON OCTOBER 6, 1965

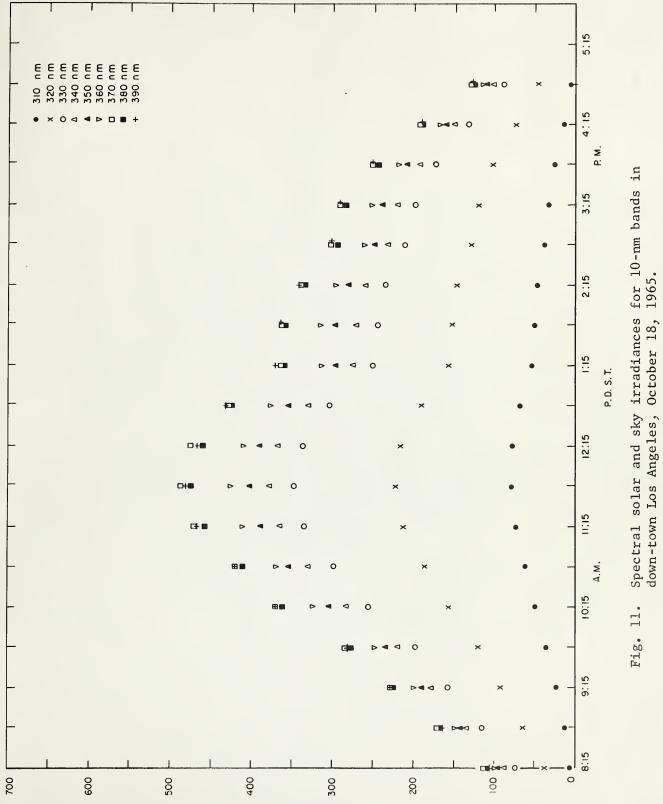



μw per(cm² - IOnm BAND)

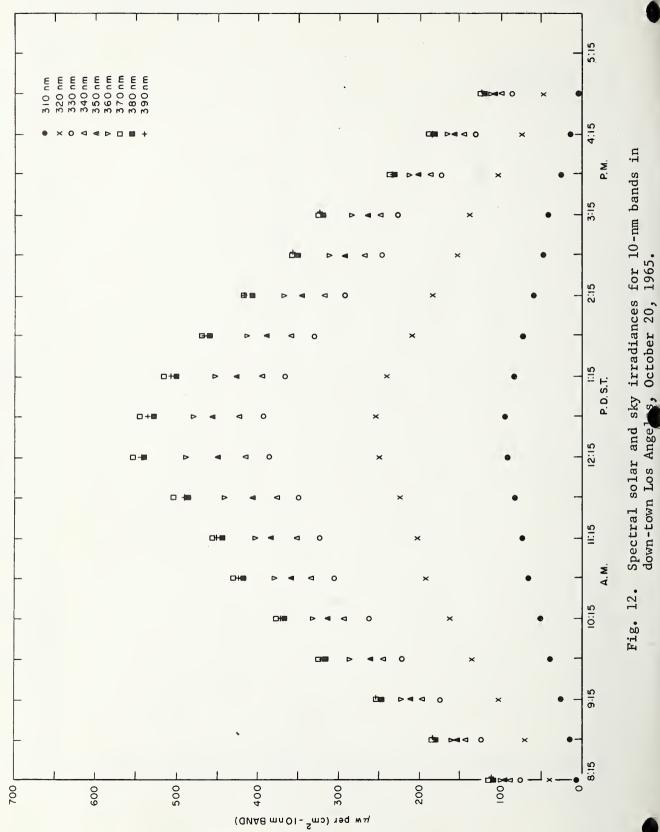

SOLAR IRRADIANCE AT MT. WILSON - OCTOBER 16, 1965

• 1


SOLAR IRRADIANCE AT MT. WILSON OCTOBER 20, 1965


SULAR IRRADIANCE AT DUWINTOWN L.A. DCTOBER 6, 1965

SOLAR IRRADIANCE AT DOWNTOWN L.A. OCTOBER 12, 1965



SOLAR PERDIANCE AT DOWNTOWN L. A OCTOBER 16, 1965

μw per (cm² - 10 nm 8AND)

SOLAR IRRADIANCE AT DOWNTOWN L. A. OCTOBER 18, 1965

SOLAR IRRADIANCE AT DOWNTOWN L.A. OCTOBER 20, 1965

1.

2

.

