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ijiBoTItiCT

The "lav^ of propagation of error" is a tool which

physical scientists have conveniently and frequently used

in their work for many years, yet an adequate reference

is difficult to find. In this paper an expository review

of this topic is presented, particularly in the light of

current practices and interpretations. Examples on the

accuracy of the approximations are given. The reporting

of the uncertainties of final results is discussed.
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Notes on the Use of Propagation of Error Formulas

H. H. Ku
National Bureau of S tandarvis

In troduction

In the December, 1939, issue of the American Physics

Teacher , Raymond T. Birge wrote an expository paper on

"The Propa,^ation of Errors.” In the introduccory paragraph

of his paper, Birge remarked;

"The question of what cons ti tute* the most reliable

value to be assigned as the uncertainty of any given

measured quantity is one that has been discussed for

many decades and, presumably, will continue to be

discussed. I t is a question that involves many con-

siderations and by its very nature has no unique

answer. The subject of the propagation of errors, on

the contrary, is a purely mathematical matter, with very

definite and easily ascertained conclusions. Although

the general subject of the present article is by no

means nevj many scientists still fail to avail them-

selves of the enlightening conclusions that may often

thus be reached, while others frequently use the theory

incorrectly and thus arrive at quite misleading

conclusions ,

”

^ See, for instance, M, Merriman, Method of Least Squares,
(ed. 8, 1910), pp. 75-79.
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Biri_:.e's remark twenty-se\en years a^'O still sounds fitting

today. In what follows, a review of this topic will oe

made, particularly in the lii,dit of current practice and

interpretations. Some examples on the accuracy of the

approximations will also be ^^iven.

In Section I, we consider che two distinct situations

under which the propai^ation of error formulas can be used.

The mathematical manipulations are the same, yet the

interpretations of the results are entirely different. In

Section II the notations are defined and the general

formulas ' iven. A i^roup of frequently used special for-

mulas are listed at the end of the section for convenient

reference. In Section III the accuracies of the

approximations are discussed, to[,etner v/ith suggestions

on the use of the errors propagated. Section IV contains

su^.^estions on the reporting of final results.

I . Statistical Tolerancing vs Imprecision of a Derived

Quantity .

1,1 Propagation of error formulas are frequently used by

engineers in the type of problem called "Statistical

tolerancing, " In such problems, we are concerned with

the behavior of the characteristic W of a system as

related to the behavior of a characteristic X of its com-

ponent. For instance, an engineer may have designed a

circuit, A property W of the circuit may be related to

-2-



ciie value X oi tlie resistance used. As the value ol X is

chan^.ed, W changes
y
and the relationship can he expressed

k.y a matiieinatical iunction

W = F(X)

within a certain range of the values of X.

Supuose our en ;inecr decides on = v/ to be the

desired property oi the circuit, and specifies X =

for this purpose. do realizes, however, that there will

be vai'iations amonj^-j the larj^.e lot of resistors he ordered,

no matter how tiiht his specifications are. Le t x denote

the value of any one of the resistors in the lot, then
while at

some of the time x will be below x^j,^other times x will be

above Xq. In other words, x has a distribution of values

somewaat clustered about x^. As x varies with eacn resistor,

so does w with each circuit maiiufactured

.

If our engineer knows the mean and standard deviation

(or variance) of x
,
based on data from the

history of their manufacture, then he can calculate the

approximate mean and variance of w by the propagation of

error formulas:

mean (w)

variance (w)

F(raean x), and

dX .
var (x)

,

( 1 . 1 )
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where the square brackets signify that the derivatives

within the brackets are to be evaluated at the mean of x.

The approximations computed refer to the mean and variance

of an individual unit in the collection of circuits that

will be manufactured from the lot of resistors. The dis-

tribution of values of w, however, is still far from being

determined since it depends entirely on the functional form

of the relation between W and X, as mathematical variables,

and the distribution of x itself, as a random variable. This

type of approach has been used frequently in preliminary ex-

aminations of the reliability of performance of a system,

where X may be considered as a multi-dimensional variable.

1.2 Let us consider now the second situation under which

propagation of error formulas are used. This situation is

the one considered in Birge’s paper, and is the one that will

be discussed in the main part of this paper.

A physicist may wish to determine the ’’true" value w^

of interest, for example, the atomic weight of silver. He

makes n independent measurements on some related quantity x

and calculates

X = i(x, + x„ + . . . + X ) as an estimate of the
n n i 2 n

true value x and
o

s 2 1

n^T

n

V (x. - X )n
as an index of dispersion

of his measured values.

-4 -



The physicist is mainly concerned in obtaining an estimate
standard

w of and of the^devia tion of w as a measure of precision

of his result. He therefore computes by the propagation of

error formulas:

A
w * F(x^)

var (w)
fdF]a s2

J n
(1.2)

Oa
w har (w)

Often he assumes that w is distributed at least approximately

in accordance with normal law of error and gives probability

limits to the statistical uncertainty of his estimate w based

on the standard deviation calculated (oa) and this assumption,
w

Cramer (1946) has shown that under very general condi-

tions, functions of sample moments are asymptotically normal,

with mean and variance given by the respective propagation of

error formulas, Since is the first sample moment, the

estimate w will be approximately normaly distributed for large

n. Hence our physicist is interested in the variance (or

the standard deviation) of the normal distribution which the

distribution of F(x^) approximates as n increases. (Note

that both estimators w and var(w) are functions of n.) For n

large, the distribution of w can be assumed to be approximately

normal and probability statements can be made about w,

1/ A brief summary is given in paragraph 2.2 below.
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1.3 Hence, we have the two cases:

(1) The problem of determining the mean and variance (or

standard deviation) of the actual distribution of a

given function F(x) of a particular random variable

X, and

(2) The problem of estimating the mean and variance (or

standard deviation) of the normal distribution to

which the distribution of F(x^) tends asymptotically.

As examples of problems studied under the first case,

we can cite Fieller (1932) on the ratio of two normally

distributed random variables, and Craig (1937) and Goodman

(1962) on the product of two or more random variables. Tukey,

in three Princeton University reports, extended the classical

formulas through the fourth order terms for the mean and

variance, and propagated the skewness and elongation of the

distribution of F(x) as well. These reports present perhaps

the most exhaustive treatment of statistical tolerancing

to date.

From now on we shall be concerned in this paper with

the second case only, i.e., the problem of estimating the

mean and variance, or standard deviation, of the normal

distribution to which the distribution of F(x^) tends as n

increases indefinitely, and hence also the problem of using

approxima tiers to the mean and variance computed from a

finite number of measurements. Since the mean and standard

-6 -



deviation are the parameters that specify a particular

normal distribution, our problem is by its very nature less

complicated than that of statistical tolerancing where the

actual distribution of the function may have to be specified.

We shall, however, utilize formulas given in Tukey’s reports

to check on the adequacy of some of the approximations.

-6a-
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II, Propagation oi Error Formulas

2.1 Definitions and Notations

1. X, Y, Z in capitals stand for the mathematical

variables to be measured; x, y, z in lower cases stand for

the measured values of these variables; x., y., z, with

th
subscripts stand for the particular values of the i

measurement on x, the j on y, and the on z, respec tively

.

2. V/
= f(X,Y,Z) is a continuous

variables X, Y, Z , with derivatives

BW
dX ^

3. All derivatives appearing in

example
1 bx_ ,

1
,

stand for the
L, n i J and

derivatives evaluated at the means of x/^ y, if known, or at
and

the sample averai;es of x/sy, if the means are not known.

4. In order to emphasize the fact that the mean M,

variance and other population parameters are usually

not known, we list here symbols for both the estimators of

population values and the population values. For a par-

ticular set of values of x, the values computed from these

estimators are estimates, or computed values of

these estimators.
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Estimators of parameters
Corresponding Population

Parameters

- 1 5X = — 2 X

.

n . , 1

2 1 . -.2
- JTTT >1=1

1 I

-ir
^

n-1 L 1 n

n
s = s
xy yx

1 = 1

, (2x. ) (2y .

)

— Zx . y .
-

n-1 w 1 n

M„(mean * first moment)

(variance = second
central moment)

^xy
^

^yx
(covariance)

r
xy

s s
X y

r
yx p (correlation coeffi-

cient)

s
X

s~
X

1

^A^
s
X

V
X

a (standard deviation of
^ X about M )

a (standard devia-
o- = tion of the
X " —

average x, or
standard error)

a (coefficient of varia-
M tion or relative

standard deviation)

In addition, we use [ Axj to denote the bound for possible

systematic errors on the measurea^nts of x. The bound of

these errors, unknown in sign, is usually established or

conjectured by the experimenter and its value is not based

on the measurements in hand.
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2.2 General Theorem and Remarks

AS mentioned briefly in paragraph 1.2, the propagation

of error formulas are special applications of results

obtained in the study of properties of distributions of

functions of sample moments. Ooob (1935), Hsu (1949),

and others have investigated the limiting distribution of

functions of sample means relating to hypothesis testing.

Curtiss (1943) derived the limiting means and variances of

the several functions of variables in connection with trans-

formations used in the analysis of variance. Cramer, in

Chapters 27 and 28 of his classical treatise, proved two

theorems and also discussed the asymptotic properties of

distributions of functions of sample moments in detail.

For convenient reference we shall phrase his theorems and

remarks in terms of functions of sample averages, to serve

as a basis of justification for the use of propagation of

error formulas.

Theorem (Cramer, pp,366, 352-356)

If, in some neighborhood of the point X - M ,A

Y - My, the function F(X, Y) is continuous and has con-

tinuous derivatives of the first and second order with

respect to the arguments X and Y, the random variable

w - F(x,y) is asymptotically normal, the mean and variance

of the limiting normal distribution being given by:

- 9-



(2 . 1 )

A
mean w F(M^,

A
var w

^F
lT?J

a 2

JL. + 2
r^F‘'r^F"i
L:;^JLT?j (2 . 2 )

Remark 1. (Cramer, p,367)

It follows from this theorem that any function of

sample averages is, for large values of n, approximately

normally distributed about the value of the function

determined by the mean values of the basic variables, with a

variance of the form C/n, provided only that expressions

(2.1) and (2.2) yield finite values for the mean and the

variance of the limiting distribution.

Remark 2. (Cramer, pp.367, 415, also doob, IIsu)

In general, the constant C in the expression of the

variance will have a positive value. However, in exceptional

cases C may be zero, which implies that the variance is of a

smaller order than n”^ . Then some expression of the form

n^|w - F(M^,My)| , P > t ,

may have a definite limiting distribution, but this is not

necessarily normal.

Remark 3. (Cramer, pp.366, 213-214)

The function F(x,y) may be asymptotically normal even

though the mean and variance of F(x,y) do not exist, or do

not tend to the mean and variance of the limiting norraal form.

Generally, if the distribution of a random variable w depends

on a

- 10-



parameter n, and if two quantities M and a can be

found such that the distribution function of the variable

tends to 4i(t) (normal distribution function with mean
CJ

zero and standard deviation one) as , we shall say

that w is asymptotically normal (M, o) , This does not

imply that the mean and the standard deviation of w tends

to M and a, nor even that these moments exist, but is

simply equivalent to saying that for any interval

(a,b) not depending on n,

lim Prob. (M4-ao<w<M-f bCJ) ” -S(b) - iCa) .

n eP

Example: If x is from a normal population the function

In X is not even defined for all values of x >,

In R
and therefore the mean of the function^does not exist/ yet

when the mean of x has a positive value, (2.1) and (2,2)

give the mean and variance of the limiting normal distri-

bution of In X ,

2,3 Propagation of Error Formulas

Fortified with the general theorem stated in the pre-
the traditional propagation of error

ceding paragraph, we shall proceed to derive
^

' formulas

in an elementary manner, naking some comments and assumptions

that may be of interest. It will be helpful, however, to

explain first what is meant here by the term ’^random error*’

in a measurement process.

- 11 -



2.3.1 Jrtandom Errors

In a measurement situation, we consider random errors

typically to be the sum total of all the sma 11 neglifjible

independent errors over which we have no control - inter-

pola t ion in reading scales, slight fluctuation in environ-

ment conditions, imperfection and non-constancy of our

senses, etc . Thus for a stable measurement process, we

find that:

1 0 The measured values do follow a distribution ,

with sma 11 errors occurring more frequently

than larger ones, and with positive and neg-

ative errors about balancing one another, and

2 . There is no onvious trend or pattern in the

sequence oi measurements.

Let us denote the i-th measurement of x to be

X .
^ M.. -!- e .

i X ^
.

where M, is the mean oi all measurements for the measure-

ment process, and e
^

the random error of measurement .

Then for condition 1, we assume ? The distribution of

errors is symmetrical ani bell-shaped, with mean zero and

standard deviation a , or

mean e .
= 0

1

mean x . = M
X X

var X = var e
^

= mean =* q^2

- 12 -



And for condition 2, we assume ^
2

: The errors in the measure

ments of x^(i = 1,2, ...,n) are statistically independent; in

particular these errors are not correlated or associated in

any way, i.e..

mean(e • e ) = 0 , i j .
i J

Thus for X = — (x, + x^ + ... + x ), the mean of
1*1 X ^ n

Furthermore,

By definition,

mean(x - M
X

€ + e

X _ M =
X

the variance of x

/€i + £2 + .

.

mean',
n

• • • 4- £
n

X is M .

n

= Imeanf" ^ meah
n^ . ^

z'

i=l

If ^ 1= jn mean(£.)2 + \ mean(£.£.)r
2 L X / -( X J

n

Using assumption and A
2 ^ we obtain

var(x) = i 0^2

or the variance of the average of n independent measurements

is i of the variance of an individual measurement. If,

however, the measurements are not independent, then this

formula is incorrect since the means of products (£^£j) are

not equal to zero. In tnat case let

mean
j

Q ^

var(x) = |l + (n-l)p| .

Here the average x is a linear function of the

individual x’s, and the exact expression of mean

)
= p . . o

^13 X
and z Pj,j/n(n~l) , then

- 13 -



and variance of an averaj^c in term of that of the individual

values are well-Icnown . For functions that are not linear

in the x’s, we expand the function about the mean of x

by the Taylor series, and assume that the function in the

ne iffhborhood of the mean can ,be approximated by the lower

order terms. For example, let

W - F(X,Y),

X i\i 4- £ ,X X

M -I- £ y

'J 3'

where each of £ and £ satisfies assumptions a, and
X y 1

then we can write

F(x,y) - F(M^,M ) +

hif^her orders in £ and £ . (2.3)
^ y

', neslecting ter?ns of hiy;her order than ^

F(x,y) - F(M ,

. rriF'i r^Fd 1 2 ^ oT 2’;-

and are
Since the means of £ £ a 0, if we take mean on both

r ?i2jr-

s ides.

y

!• IjT^^Fl dF
mean |_F (x, y ) -F M^) j- j

.

?iY2

(2.4)
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r

Thus the mean of function of values always differs from

the value of function of means by a quantity represented

by (2.4), approximately , If the function of means

F (M ,M ) is the value of interest, then to approximate
X y

F(M ,M ) by the mean of F(x, y) would introduce an error,
X y

or bias, the magnitude of which depends on the functional

form, the variances of and the covariance between x and y.

If, however, we use the function of averages, F(x,y),

then

mean w = mean F(x,y)

F(M ,M )
y

1 ;r?^2F-|^ X _,«P^F "^xy

?)y2
(2.5)

and the bias is only 1/n times that of the mean of function

of individual values. When n becomes large, this bias

tends to zero, and (2,1) results.

This bias can be calculated by (2.5) and compared to

the standard deviation of w. In practice, if and

are small, the bias is often of a magnitude that is

negligible

.

To propagate the variance, we note that if and

are small in the sense that the second and higher order

terms in (2.3) can be collectively neglected in comparison

to terms involving and only, then

-15-



F(x,y) - F(M^,RI )

and the variance of F(x,y)

r
'' 2

mean|F(x,y) - F(M^,My)| =

i ^ r^F
L^J^y '

is, approximately.

me a “{[
^F ^;^F‘ ^ 2

^ o '“^F"2^2 o''?F‘ir?*F-|

L^j 0 ^ ^X L^J xy (2.6)

nnd for w F(x,y), the variance of
A
w IS

var(w) =
i- > - - o CT

A . •
'

L^J
x
rT”

+ I

a
1
n

+ 2 !

^F'
! xy

'XJu^J n
(2.7)

the limiting form of which is (2.2).

Finally, if o o ^ and a are not known, we

substitute their estimators in formulas (2.5) and (2.7),

resulting in:

2

m^an(w) - F(M ,M ) + —1|
OjC\.

n
-h

xy
n .

and

^ A
var (w)

r^F'|2

L^j n
r^Fi2
L^J a 2[^JL^j

xy
n

(2.3)

(2.9)

If we assume further that the random errors in measure-

ments of x and y are independent, then = 0, and

the terms involving in (2.5), (2.6) and (2.7) vanishes.

If this is the case, the terms involving s in (2.8) and
xy

(2.9) should also be dropped. This reduced version of the

formula for independent x and y.
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X
n

a 2

y
( 2 . 10 )

is of the form given in Eirge’s paper and in other textbooks

on statistical analysis of data (Mandel, 1964, pp, 72-76),

For W “ F (X, Y, Z) , there will be three variance and

three covariance terms in (2.5) and ( 2 . 7 ). Extension to

more than three variables presents no new problems.
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2.3.2 Extension to more than one function of the variables

Let

U - g(X, T, Z), and

V - h(X, Y, Z) .

Then in addition to the above formulas, we have

a
uv

I 2 i‘?^u c>v 2 2

c^x ;^XJ X 1.9Y WJ y ^^Z ^Zj i:

^ IjY'W.y

^ rr^u hY
] ,

;“ou sv n
i I ^Y* ;^zj L-z' ;^yJ

'

.
rr?^U >Y~] ^ r?^U ?^Y \^.

^
j

^Z* ^x.j 'T'X* c'Z j

D rr n
^xy X y

p n n
' yz y z

p r rr

ZX % X

(2.1L)

I

Expression (2. 11) may be convenient to use to get a(w)

where W = F(U,V), and U and V are known functions of

X,Y, and Z .

2.3*3 Some Frequently Used Formulas

For convenience, a few special formulas for commonly

encountered functions are listed in table 1 with x,y

assumed to be independent. These may be derived from the

above formulas.
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1 / It is assumed that the value of w is finite and real,

y 0 for ratios with y as denominator, x > 0

for Vx and In x .

2/ Weighted mean as a special case of ax + By , with a

and Oy considered known,

3/ Distribution of w is highly skewed and normal approxi-

mation could be seriously in error for small n.

4/ See, for example. Statistical Theory with Engineering

.ipplica tions , p,301, by A. Ha Id, John Wiley and Sons,

1952.
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2.4 oy sterna tic Errors

By a systematic error we mean a iixeci deviation that

is inherent in each and every measurement oi' x in a par-

ticular sequence of measurements. If the magnitude and

direction of the systematic error are Known, a correction

can be made such that M = x , or the mean of the
X o'

sequence of inea surements is equal to the value sough after.

If the sign of the systematic error is not known and the

magnitude of the error can be only estimated to be within

some reasonable bound |Axj
, perhaps hy experience or

judgement, t len M is within the limits x - Ax and

X + Ax .

o

For a function of two variables v; = F(X,Y) then, a

oound 1Aw| for the systematic error in ;v is given by:

I

Aw
j

+ (2 . 12 )

assuming, as before, that Ax and Ay are small such that

second and higher order terms in Ax and Ay are collectively

negligible in the Taylor series - expansion. Since ordinarily

we do not know the signs of Ax and Ay, we have no choice

but to add the absolute values of the two terms together,

even though the signs of the values of the partial de-

rivatives evaluated are known. (If the signs of either

Ax or Ay is known, this information, of course, should not

be ignored.) If these derivatives are evaluated at the

point X and y, then the random components of error of x

and y are required to be small so that these derivatives

take approximately the same
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values as when evaluated at and .

When there are a number of systematic errors to be

propagated, one approach is to take
| |

as the square

root of the sum of squares of terms on the right-hand side

of (2.12), instead of adding together the absolute values

of all the terms. This procedure presupposes that some of

the systematic errors may be positive and the others

negative, and the two classes cancel each other to a certain

extent.

The treatment of inaccuracy due to systematic errors

of assignable origin but of unknown magnitudes is dis-

cussed in detail in section 4.2 of Eisenhart (1963).

Since there is no generally accepted standard method for

combining several systematic errors, Eisenhart advised and

we quote

’’Therefore, anyone who uses one of these methods

for the * combination of errors’ should indicate

explicitly which of these (or an alternative method)

he has used.”

Information on the source and magnitude of each contributing

elemental systematic error is, of course, also essential.
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Ill Practical Accuracies at the Various Staj^es of

Approxima t ions

3.1 From the preceding sections we observe that there are

three stages of approximations:

1. In the Taylor series expansion (2.3), terms higher

than the first partial derivatives are considered

to be negligible.

2. w is approximately normally distributed for large

n. Is the normal distribution still a good

approximation for small n?

3. If a 2 and a ^ are known, we obtain from (2.7),X y w

and we can use this value to construct a confidence

intervali^ about w with the desired level of con-

fidence (approximate) based on normal theory. If

o 2 and o 2 are not known, and s ^ and s ^ are
X y X y

calculated from a small number of measurements,

what can we say about w using var(w) calculated

from (2.9)?

To get some numerical feeling for the closeness of

these approximations, we shall simplify matters by making

the following assumptions which do not seem to be too re-

strictive in measurement situations;

B, ; X and y are normally and independently distributed,
2 /with the ratio M/o not less than 10.—

T7~~Seen!TaTrFrTa (1903) , Section 1-7, also Chapters 2 and 3.

2/ For notational convenience, the symbols w,x,y,<7 .rr ,
“ etc. are used in this and the subsequent sections.^ The

corresponding symbols for the average could be used by
straight substitution. .
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B
2

: The functional forms used are the well-behaved ones

that do not possess derivatives assuming unreason-

ably large values when evaluated at the averages

of the individual variables.

Thus for linear functions, such as

VV = riX + BY ,

the second and higher derivatives vanish, and (2 . 6 ) is exact.

The adequacy of these approximations are studied in

paragraphs 3.2 and 3.3 below. In paragraph 3.4 suggestions
A

are made on the use of standard deviation calculated for w

when the standard deviations of x and y are not known.

Readers may wish to go directly to paragraph 3.5 for a sum-

mary of the conclusions.

3.2 For x,y independently distributed and arbitrary F(x,y),

the first correction terms to (2 . 6 ) are:

r^F 1 r?Fip2p I
(3.1)

1/where 7 is a measure of skewness of the distribution.—'

Therefore these terms equal zero for x, y symmetrically dis-

tributed, a condition satisfied by assumption B^^,

The next order of correction terms involve o
X

a

and a 2 qj^q usually negligible compared to terms in
X

(2.6). These terms are:

. r?F ^^F
?!YJLb y'^j^y^y’J

4I ^ X2j^
a ‘^ +
X

rpsSp
1

2

y J
(3.2)

jpF ?®F
I

. i'

B^f 'ir^F _ ,
’J Ux^^Y_P ^x "^y

For functions involving powers of x and y

1/ For definition of 7 and T see (3.3),
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less than three, some ox the partial derivatives also

vanish, , For example, if W “ XY, the only non-zero term

Ox this order is n ^

,

or
X y

^

Var(w) = M ^ 2 ^ 2 ^ 2 ^ 2

y X X y X y

Tne contribution ox o ^ is less than 1 in 200 if
X y

M/<r is larger than ten.

For functional forms such as quotients, roots and loga-

rithms, the accuracy is usually adequate since powers ox

the means ox the variables appear in the denominators ox

the partial derivatives.

For the exponential function W =• e
,

the variance

of w as j^iven by (2.6) is

2M^
Var(w) “ e a^,

whereas the exact formulai^

for the variance of w, when x is norma ly distributed,

is

Here tne variance of w as given by (2.6) underestimates

the true variance by the factor given in the brackets, and

the approximation could be seriously in error. (Note,

1/ See, for example. The Lognormal Distribution, p.B, by
7 . Aitchison and J.A.CT drown, Cambridge University Press,
1957.
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however, the”exac t” lormula is correct only ii x is

exactly normally distributed. If x is only

approximately normally distributed, then both formulas are

approximations ,

)

(3.1) and (3.2)
For specific functions, formulasy^given in Tukey’s

report can be used to check on the adequacy of the approx-

imation. We quote 'fukey's conclusion in this respect:

"The most important conclusion is that the

classical propagation formula is much better than

seems to be usually realized. Examples indicate

that it is quite likely to suffice for most work."

3.3 Next we look into the adequacy of the normal approxi-

mation. For this purpose we will define the first four

central moments of the distribution of w as follows:

mean (w 0II!

mean (w - M )^ =
w

mean (w - M )® = 7aw '

mean (w - M )4 » Fa^
w

If w is normally distributed, 7 =“ 0, and r “ 3 .

Following Tukey, we .ihall define

skewness “ 7^® , and

elongation = - 3a* ,

then both skewness and elongation are equal to zero when w

is normally distributed.

-25-



If X and y are normally distributed as assumed under

then in i^^eneral w = F(x,y) is not normally distributed

unless the function form is linear. By a procedure similar

to that used in the last section, the coefficients of

skewness and excess of w can be calculated where:
J. /u

Pi

^2

[skewiiess w]^

[
var w

e Ionisation w _
g- + .5

[
Var w

]

If is close to i:ero and p., is close to 3, tlie normal

approximation may be considered as adequate,

Tiie terms up to order of in the propagation of

skewness for w = F (x
, y ) ,

wi th x,y indexjendent ,
are

,
• r^F 1'^ ^ 1

?^Fskewness w =
' —

! y rr
\ y a

1 *^x X '^y y

: ?^Xj ^ X2j^^x~^^' x 2:.^Yj lO^J^^y

r ^F ir^F~i' ^2p
2 T 2^

'

>,xj’ >Y IlBX^Y J'^x
^ (3.4)

For x,y normally distributed, only terms of order

remain. If we take w = xy again as an example, then

skewness w = 6MM o 2 rr 2
X y X y
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p-

3u M 2-1 2 ^ 4 ^'!
X y X y

[M 2^ 2 4. 2^ 2
*• y X X y

+ a 2 rf 2
X y

Ne^'lecliii' ^o ^ X

and taking M/a =

2

y

10,

in the brackets in the denominator^

is computed to be ,045. deuce

^

tor vv = xy, where x ani y are avera es of tour^ the

coetticient OjJ skewness is reduced by a xacuor ox four or

equals ,011 approximately.

Similarly^ terias up to order tor the elon^.a-

tion ox w = i(x,y), with x,y independent^ are:

elon ,ation w = (r 3) 4 + riF'!” (T-^ »Yj
3)- ^

y

(3.5)

which is ^ero tor x^y normal.

r o elongation w „ „ anddeuce Po = -7^ T!r- +3 = 3 f
^ 2 (Variance w)2

no correction tor eloipation is necessary lie re

,

1/It \ve look up a table

the
dis tribu tioL ox ^s tandardized variate

of percentage points ox

vv - M

r ^
W'

w v/ith given

values aref3^ and we note that the changes ox

ratner sensitive to p.. and much less so to p^. Thus the

coetticient ot elongation is usually not as much a source
is

ox worry in the normal approximation as^the coetticient ot

skewness

,

1/ See Table 42, Biometrika Tables tor Statisticians
,

Vol.l, edited by E.3. Pearson and d.O, Hartley, The

University Press, 195S. Also pp.7D-d4.
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Table 2. Departures From Normal A pproxima cions

x,y independently
,
dis tr ibu ced^ with

7=0, r = 3
^
and (M/g) = 10 ,

w - M

^1

Percentage point of

S 1 ro (a; ID c: G \v

V/ Irom (3.4) compu ted lower 2 , 3% upper 2.3/o

Ax+By 0 0 -1.96 + 1 . Su —

xy 6M M
X y

a 2 ^ 2

y 4,

3

n^
lOOn

11=1 .043 -1.84 +2 . Od

n=4 .011 -1.91 +2 . 01

11=10 . 0043 -1.93 + 1.99

_2
X 9 AM 2 9

^ '^xiU

ll2
~100n

11=10 . 009 -1.90 +2.00

X 1G2M®
n4
"§
11

36
lOOn

11=4 , 09 -1.80 +2.09

_ *

y

. iVl

X
^

9 O 2

y
,

X
rr

2

y Id
-M y V

y y X
M lOOn
y

n=10 .018 -1.89 +2.03

_ *jf

In X

n=10

3 9-
ll2 ^9 -1.90 +2.00

X
e

9rt2

n
depends on a and n (both
skewness and p, under-

es timated lor o/^/lT > .2)

y > 0

** X > 0

1/ Exact when x and y are normally distributed.
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Formulas (3.4) and (3,5) and the table of percentage

points allow us to check how good the normal approximation

is for a given number of measurements in the variables x

and y. Table 2 gives some examples of results of such

calculations.

3.4 The third approximation concerns the use of the sample

variance s^ as an estimate of the population variance .

If we know the precision of the processes for the measure-

ments of X and y, i.e,, we know a and o , a can beX y w

computed from (2.7) and a confidence interval about w can

be constructed with the desired confidence coefficient 1-a

by using the table of the normal probability integral. If

A
a and a are not known, then even if qa can be computed

from (2,9), the constants to be used for constructing a

confidence interval with confidence coefficient 1-a will be

different from those for known a ,

To offer some guideline to the solution of this problem,

we again assume measurements on x and y to be independently

and normally distributed. If the number of measurements

is large (a rule of thumb could be n > 30 ) , then (2.7)

can be



used assuming o ^ , a ^ and a are known.

Of course one can always compute the half-widths of

the respective 100 (1-a) percent confidence intervals for

and for by the use of the Student’s t statistic, and

use (2.12) to get the half-width of the interval for

i.e., set

Ax = t and Ay =t
(1 -g), k-1

and use (2.12) to get Aw. Then the interval w + Aw is a

confidence interval for M for a confidence coefficient of
w

at least (1-a). This procedure, Iiowever, may be criticized

on the ground of gross inefficiency in using the data.

V/e may write (2.9) as

var(w) = X^s 2 2

lx 2 y

•where i
I

''I n ?XJ
and X_ = -

2 k

r^F 2

i
are two cons tan ts .

;YJ

For given degrees of freedom for s
,

n-1, and s
,
k-1,

x y

and given ratios of
X , S

2
1 X values of a ”v"

X^s 2+;. s 2
lx 2 y

.
2/statistic have been tabulated— ior confidence coefficients

of .99,.9S,.95, and .90 . The interval

^ t V '2^0^ (3.6)

2/ See Table 11, Biometrika Tables for Statisticians
,

Vol.l; also Further critical values for the two-means
problem, V/.H. Trickett, B.L. Welch, and G.S. James,
Biometrika 43, 1956, pp. 204-5.
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is a coni’ idonce interval v/itii coniidence cocj.xicienc

1 - a .

These tables, however, do not contain values ior "v"

for n and k less than 10,10,d, and d ior the respective

coniidence coefficients, and hence cannot be used for

smc-ller samples. In addition, they are useful only for two

independen t variables x and y

Alternatively vVelch (1947) nas proposed the use of

”efj.ective de^_,rees of freedom” for the es ciraa ted vai’iancc ox

/s

w of the form

var Cw) = Z > . s .
2

11
The oxfective de,,ree of freedom f is computed from

X —

20,^sp/x.)
(•5.7)

v/here f. is the decrees of freedom fori'^s 2
1 " i

In general f will be fractional. The t value

with f degrees of xreedom can oe found or interpolated

from the t table and the confidence interval computed as

w + t
^ a \

V -L “ IT ) )
W

The approximate confidence intervals computed by the

use of effective de.,rees of freedom were found to check

the exact confidence intervals given by (3.6) very well

over the range of the latter,

1/ If is computed from n^ measurements, the degrees

of freedom is n^ - 1 .
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3.5 In sumiaary, the iollov/in^; may be concluded lor

practical purposes:

1. Terms ol order hi^^Iier than rr2 in the propagation oi

error lormulas lor variance, (2.5) and (2.7)^ can be

ne^,lected ii (a) the standard deviations are small in

comparison to their respective means, and (b) the

second and hit^iier order partial derivatives evaluated at

tne means do not ;^ive rise to abnormally large numbers.

This is usually true in the field oi' physical science,

since errors of measurements are usually of the order of

1 part in 1000, or parts per million; furthermore, the

functional forms used are usually the well-oe laved ones.

2. The normal approximation will be adequate for laig,e n,

or if, in addition to (a) and (b) above, (c) the

individual variables can be assumed to be normally

distributed. For particular functions, the approximate

values of the coefficients of skewness and elongation may

be calculated and Pearson’s table can be used to check

the adequacy of the approximation.

3. For the case where the standard deviations of the

individual variables are unknov/n, and are estimated

from the data, confidence intervals for the estimate w

can be constructed either by the use of tabulated values
the

oxa'^v" statistic or by the use of effective degrees of

freedom. These confidence intervals can be considered
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as a Xorm of ’'precision limits ’ in the sense that if

one makes the same sets of measurements a large number

of times under the same conditions, and constructs the

confidence intervals each time by the same procedure,

then a large proportion of the intervals so constructed,

100(l-a)%, will bracket the mean of all these sets of

measurements. When only one set of measurements will be

made, the probability is 1-a that this interval will

bracket the mean,

IV. Reporting of Results

4.1 Suppose a set of measurement data is available, and,

by using the appropriate propagation of error formulas, the

following are obtained for the quantity of interest, w^

:

1. The estimate of w , w, based on n values of x,y, etc.;
o

A /\

2. The estimated standard error of w, oa, and associated
w

degrees of freedom f;

3. Limits to the systematic error in w. Aw .

A
The estimated standard error of w gives a measure of

precision of the experimental results, or a measure of

scatter of the values of w from the average value of M for
w

repeated performance of the particular experiment. But this

measure of precision does not indicate at all how close this

average value is to the value w^ intended to be measured.

The estimation of limits to the systematic error is an

essential part of an experiment and need not be discussed
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here (Youden, 1961). One may remark generally that system-

atic errors usually do not pose a serious problem when the

’’imprecision” is large, since these systematic errors are,

so to speak, ’’swallowed up” by the random errors. The

systematic errors, however, play an important role when the

precision is excellent and is of about the same order of

magnitude as the systematic error. In that case, it is

essential that the systematic error, or errors, be reported

separately from the imprecision part of the reported value,

as measured by the standard error, or the confidence intervals,

computed

.

In scientific literature, it is not uncommon to come

across expressions of results in the form of M + e, where

”M” is an average of some kind and ”e” represents the un-

certainty of ”M” in some vague sense. This type of reporting

proves to be most frustrating from the reader's point of

view. From the context alone the reader cannot possibly

infer whether ”e” represents probable error, 3-sigma limits,

systematic error, or some combination of random and system-

atic errors. As a consequence, the quality of the results,

and the validity of inference drawn from these results, are

to a large extent left to the judgment and guesswork of the

reader. Hence, the writer owes to himself, and to his

reader, to specify clearly the meaning of ”e” as he uses it.

In particular, the number
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of measurements from which the measure of random error was

computed and the manner in which the systematic error was

estimated are both essential elements of the reported value

and need to be included.

A footnote explaining the role of ”e’' is often very

helpful. Several examples are given below;

’*In the expression of the form M + e, M is the

average and e is the standard error v of M

based on n measurements (or based on v degrees

of freedom).”

”The indicated uncertainty limits for M are

over-all limits of error based on 95% confidence

limits for the mean and on allowances for effects

of known sources of possible systematic error— .”

”The uncertainty given represents 3-sigma limits

based on the current accepted value of the standard

deviation, known sources of systematic errors

being negligible.”

Chapter 23 of Natrella (1963) "Expressions of the

Uncertainties of Final Results” gives a thorough discussion

on this topic, and is an excellent reference for all

physical scientists who have occasion to report numerical

results of their experiments.
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