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I. SUMMARY

Specimens of alumina, thoria, magnesia and zirconia were prepared
for measurement of total normal emittance by the center post and deep

cavity methods. Specimens of boron nitride were prepared for measure-
ment by the shallow cavity method. Graphite susceptors were prepared
for use with the center post and deep cavity methods.

The equations used for computing diffuse radiant heat transfer
have been expressed in terms of vectors and transformations in a finite
dimensional vector space. The equations can be written very compactly
in this form, and certain theorems can be used to simplify the computa-
tions.

A computer code for calculating the temperature distribution in a

specimen is being perfected. This code should be capable of computing
the thermal gradients in the shallow cavity, graphite post and deep
cavity specimens. In this code the geometric view factors are computed
automatically; this permits the dimensions of the specimen, cavity and
post to be varied easily.

The design of the laser-sotrr ce integrating sphere refl ectometer has
been modified to eliminate errors due to flux reflected by the specimen
impinging directly on the detector, and to permit operation in the com-
parison mode. A radio-frequency heater was designed to heat specimens
to temperatures in the 1800-2500°K range.

II. SHALLOW CAVITY PROCEDURE FOR MEASURING TOTAL NORMAL
EMITTANCE OF NONMETALS AT TEMPERATURES ABOVE 1800“K.

1. Background . Tests described in the last quarterly report indi-
cated that measurements on a specimen of alumina were in error by about

+51 percent. An error analysis indicated that there was an error of
about -8.5 percent due to the thermal gradient normal to the surface of
the specimen, and an error of about +60 percent due to translucent
specimens. Use of a graphite post to replace the shallow cavity reduced
the error by about one half, and use of a deep cavity with a graphite
bottom reduced the error to about +10 percent.

2. Preparation of Specimens . Specimens of alumina, thoria, magnesia
and zirconia were prepared for measurement of total normal emittance by
the center post method and by the deep cavity method. Normal spectral
emittance data at temperatures up to 1600“K have been obtained on these
materials by the rotating cylinder method.

Specimens of boron nitride were prepared for measurement by the
shallow cavity method. This material is essentially opaque over the
spectral range where most of the thermal radiation is emitted at high
temperatures, and hence should not have any appreciable translucency
error

.
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The total normal emittance of all of these specimens will

be measured at temperatures up to the highest that the specimens or
equipment will withstand.

Graphite susceptors were fabricated for use with the center
post and deep cavity methods. The fabrication necessitated very pre-
cise machining of graphite, particularly for the susceptors for the
center post method. If the method is to work successfully, it is

necessary that good thermal contact be maintained between the susceptor
with a 0.040-in. center post and the hollow cylindrical specimen which
surrounds it.

3. Repairs to Equipment . A relay timing device on the radio
frequency generator burned out, and had to be replaced. As a result,
the equipment was inoperative for several weeks.

After the radio frequency generator was repaired, the entire
equipment was thoroughly checked and serviced. The detector-amplifier
system was rechecked for linearity of response and adjusted for peak
performance. All optical elements were cleaned and realigned, to give
a clearly focused image of uniform intensity.

4. Error Analysis . The analysis of the scattering error presented
in the report for the period November 1, 1964 through January 31, 1965,
was reviewed in the light of the planned measurements with the graphite
susceptors by the center post and deep cavity methods. Because of the
fourfold increase in area of the reference surface (from about 0.020 to

about 0.040 in. diameter) and the higher emittance of the graphite sus-
ceptor as compared to the platinum susceptor used in previous measurements,
it was thought possible that there might be significant amounts of flux
that originated from the reference surface or susceptor and v^e scattered so
that they contributed to the specimen reading. Experiments are planned
to measure the contributions of scattered flux to both the specimen and
reference measurements.

5 . Computation of Thermal Gradients .

a. Interreflection Algebra . Various schemes have been used
in the past for calculating the heat transfer within a diffusely reflect-
ing and emitting cavity. All of these methods somehow reduce to the
solution of N linear equations in N unknowns—or its equivalent—the

inversion of an N x N matrix. The procedures Involved in radiant trans-
fer calculations are well known; however, the clarity of the concepts
involved may perhaps be enhanced when they are expressed in terms of
transformations on an N-dimensional vector space.

There are three basic types of relations that must be expressed.
They are given in the following equations

.
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(1 )B(^) = P(^) HCi)

% = H(iS) Q^(i) dA(£) (2)

=“ Jc
K(2Efl,^)dA(^o)

^3)

where B(^) is the flux per unit area leaving an element of area dA(x)
located at x, p(x) is the reflectance of the surface at x, H(x) is "the

flux per unit area Incident on the surface at x, Q is the amount of flux
absorbed in a cavity when the incident flux per unit area H(x) falls
on each point 45 on the cavity surface, orCx) is the absorptance ol the

cavity surface at the point x , and J indicates the integral over the

cavity. k(x , x) is the diffuse ang?e factor or "geometric factor"
between an e"teme^t of area dA(x ) from which flux is diffusely radiating
and the element of area dA(x) wSich receives the flux.

Each one of the functions H(x)
, P(x), B(x), and ^k'(x) can be

thought of as vectors in an infinite dimensional vector space, and each
can be expressed in terms of some complete set of basis functions (basis
vectors) in that space. Since this functional vector space has an in-

finite number of dimensions, an Infinite number of basis vectors are
required to span the space. Thus, a given function may require an infinite
number of component basis functions for its expression. Obviously no one
can do a practical calculation with an infinite number of components for
each vector, so it has been customary to reduce the number of dimensions of the
space to some finite number N when any practical calculation is done. This
is a familiar procedure in physics and engineering. For example, if one
wants to express a complex periodic function in terms of its Fourier com-
ponents, one, in general, must use an Infinite number of components. If,

however, one has some practical calculation to do, it is necessary to stop
with some finite number of components.

An interreflection calculation is very similar. Strictly
speaking, equations ( 1 ), ( 2 ), and ( 3 ) are statements about each one of
the infinite number of mathematical points on a cavity surface; but, to

get practical results, it is customary to express the infinitely fine-

grained information in the function B(^) in terms of a coarse-grained N
dimensional vector B, and instead of considering the infinitesimal sur-

face element dA(x)"7 we consider a nximber of finite surface areas AA^
arranged in vecto"r form Aa. It is the same with H(x), PQ3)9
any function of x .

f' y

h AA^

H(^)-

«2

•

• = B(^)-

h
•

• = B dA^)-

AA^

•

•

• • •

< J ^ 4

(4 )
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In the following we will denote the N-dlmensional column vector cor-
responding to any function wQc)by the vector symbol 'W. The component w
is an average value of the function w(x) on the are^AA^; mathematically
it is just

M.
wQc) dA(x)

IT, (5)

With these kinds of vectors in the vector space, it is desired that the
theory be a complete analogue of the functional theory. Thus equations
(1), (2), and (3) must be expressible in a vector form. In order to do
this, it will be very helpful if we first consider the set of basis vec-
tors that will be used.

The most convenient set of N basis vectors is the one

sentation
1

0

X 1 1
'0

1

^0

0

f

•

•
•

0
V ^

J12
=

t

3i
=

and the vector B has (for example) the following form.

B =
®2l

y
The vector space analogy of Equation (1) is B =» ^ H

( 6 )

(7)

( 8 )

(9)

In the above equations a vector valued multiplication operates in

the vector space. This type of vector multiplication must be commuta-
tive, distributive and associative, because it must be the analog of the
ordinary multiplication of fimctions. In addition the multiplication
operation must be linear in the sense that if a and b are any real nvm-
bers and if u, v, and w are any vectors.

( 10 )

then u (w + bw) = a ^ v) + b Qjw)

and (av + W) ^ = a ^^) + b Q|ju)
(11)

A vector space having a vector valued multiplication operation which is

linear, associative, and distributive is known as a linear algebra.
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A linear multiplication operation in a vector space can be specified
by giving the rule for the multiplication of the set of basis vectors
amongst each other; that is

-s -1,^ *1 % yj h i5 ^ 1, ( 12 )

and if all the vectors known then the multiplication operation is

completely specified. In the case which we have under discussion the
multiplication table for the basis vectors is quite simple (Table 1).

The rule is

\ =
'ijli (13)

where is the Kronecker delta

6. = 1 iff i = j

= 0 iff i j.
( 14 )

Table 1.

0 Hi 52 h-
0 0 0 0 0

il
0 ^1

0 0

32
0 0 32

0

e

0

1

0 0

Also there exists a vector 1 analgous
vector w

^ 1
1 W “ w 1 = w

/-s^ --S/

Written out longhand the vector 1 is

to the scalar 1 such that for any

( 15 )

(16)

For every vector w such that none jf the component
j

of w is

eg^*-! to zero, there ^ists a vector w such that w w =1."^ The vector
^j^can be easily constructed when w is known. If w = ^

^ (1/Wj^) It is easy to s"ee that if anyw~i« equal to zero, no
'finite inverse vector for w exists, since the magnitude of one of the
components of w would be 1/0.

5 -



One of the more Important theorems that one can prove about a

linear algebra is that for each N-dimenslonal linear algebra there
exists an isomorphic set of N x N linear transformations (matrices)
such that the operations of vector addition and multiplication and

also multiplication by a scalar (real number) are preserved under the

isomorphism-. (An Isomorphism is a one-to-one correspondence between
two sets such that the structure of certain operations In those sets

is preserved).

It Is not difficult at all to find the set of matrices which Is

Isomorphic to the set of vectors under consideration.

The vector eqixation (In long form) Is:

(17)

This can be represented equally well by a product of diagonal matrices

^“i
f ^

Pi SI
•>2®2

=
P2

•

«2

•
e

s y

r s
1

0 ... 0 * 0 ... 0 0 . . 0

?
P2^2 = CMQ.O

i

•
CM

o

**. ^ : *. 0
• • •

•

• s •

0 . . . Op 0

(18)

It Is easy to see that the matrix multlpll^tlon In equation (18)
does essentially the same thing with the 1 diagonal elements of the
m^grices as the vector multiplication In equation (17) does with the

1 components of the vectors. One can see Intuitively that an Isomor
phlsm exists and the proof of this Is quite easy also.

It Is easy to show that vector addition and scalar multiplication are
We can denote the Isomorphlsm'by t

w, w, 0 0

preserved under t^s Isomorphism,
and Its Inverse r such that

W-

w.
N (19)

—
^ G. Birkhoff and S. MacLane, A survey of Modem Algebra, p. 216
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and
r > <

^

o
•

o w
1

0 w_
2

•

2

0 . . .-w^

1

w
V

(20 )

If we denote vector by a vector symbol w, then we can denote the

diagonal matrix which corresponds to w ^y t(w); however, the notation
would be somewhat simplified if one simply denoted the operator by
removing the vector symbol, for example

T (w) = w. (21)

It is a useful property of these diagonal matrices that the

operation of one, say w, by ordinary matrix multiplication on a

vector V gives the same result as the multiplication of the original
vector w on the vector v, i.e, for any vectors v, w

wv = wv = t(w)v (22)

The next operation for which we wish to find an analogue is shown
in equation (2). In this equation two functions H(x) and p^),(or
three functions if we consider dA(x) as a function) are operated on so
as to give a scalar (single numbery result

In vector space language this is denoted by [^, Bj

\ = [a. AA] (23)

This is called a trilinear form because it maps three vectors

,

g,, and 4^, into a scalar in a linear fashion, i.e., linear in-

the sense that for any scalars Y, X, and vectors w, x, and z,

fXS + Xx, j., = Ylw, z] + X[x, z]

[;w, Yx + X^, z] = y[w, X, z] + X[w, z] (24)

[.S’ yZ + = Y[w, X, + X[w, X, £]

In addition the trilinear form that is considered here has the special
property that it is equivalent to a bilinear form on two vectors, one
of which is the vector product of the other two.

0 = [a, HAA] (25)
Tar

Also it can be considered as a linear functional of the one triple
product vector

- 7 -
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This final operation— the linear functional shown in equation (26)

—

is perhaps the most useful and most easily understood operation,
is just the sum of all of the components of the vector (o'HZ^).

The set of all possible linear functionals on a vector space
constitutes a vector space, which is closely related to the original
vector space. The vector space of linear functionals is known as

the dual space of the original vector space, and each vector in
the original vector space has a conjugate vector (or linear func-
tional) in the dual space. In quantum mechanics this is symbolized
by the famous bra or ket notation of Dirac. A bra is the symbol <|,
and a ket is the S 3rmbol [ >. A ket stands for a vector; and if the

vector has a name, say a, then the ket is written as |o'>. Similarly
a bra stands for a linear functional or a vector in the dual space
to the original vector space. The vector isomorphic to the ket [ef->

is the bra <oi |. Since the scalar field onto which these linear
functionals map the vectors is the field of real numbers, we do not
have to worry about the complications that ordinarily arise in

quantum mechanics because a complex scalar field is used. In order
to construct the basis oif the dual space, one constructs the set of
linear functionals |^<Y£ which are such that any one of these
operating on its conjugate Dasis vector IT]|> gives the value 1 and
operating on any other basis vector gives the value 0. Thus the

set of basis vectors the dual space is constructed such
that

^ ^ ^

(27)

where 6,. is the Kronecker delta function. In terms of these opera-
tors then we have

=<1| = (|<V^|) (S a H, iA |11>) (28)

= fiW “i “i ""/ij = ^ “j '•j

In terms of the operators corresponding
equation is

= <l|aHAA|l>

since a, H and dA are symmetric (Hermetian)
w.< a| H

I
aa?*

to the vectors , this

(29)

operators

C30)

- 8 -



A second way of expressing equation (2) is completely in terms
of the operators a, H and dA and the trace operation.

= trace (aHAA) (31)

where the trace of a matrix is the sum of its diagonal terms, for
example

trace M = trace

“l2
“
13

]
i

f—

1

CM
s “22 “23

<

1

= “11 +“22 -^“33
(32)

“31 “32 “
33/

thus

= trace

0 0
N

0
^

0 0 ’.0
0 . . . . 0

i=5 ^«iAA, (33)

Finally we want to express equation (3) in vector form. This
is not difficult since the operator J KQcQ^)dA(^Q) acting on the
function BQc.) is a linear transformation; that "is, it obeys the
following relation;

+ (34)

For any numbers a, 3, and functions

The function BQc) is of course represented by the vector JB

and the operation
J

BQCq) KQCq,^) dA(x ) is represented by performing
a linear transformation on B. 'k the<^em states that any linear
transformation on a vector Tn an N-dlmensional vector space may be
represented by the multiplication of the vector by an N x N matrix.
One method of calculating the elements of this matrix is to consider
the case in which each area AAj is uniformly radiating a constant
diffuse flux per unit area B . Then the cavity; surface integral is

broken into N Integrals over-^the sub areas
“I
AA>4“^ of the cavity.

Equation (3) becomes; ^ ^

"jEl liA 'jSl ®j JiA

9 -
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If we evaluate the average flux incident on each we have

Im H(-»)dA(*)

This gives us

N
H. = E B,

1 j=i j

(36 )

(37)

If we define the matrix K by

'J'm.J'm KC^S^,ii)<lAC!S^)dA(=S)

K = (K,j) =
'M/M,

M.AA.
i J

then we have, from equation (37),

H = ^
and since K(~^,~) = K(~, ~q) >

have K^j = Kj^

(38)

(39)

There is another useful way to look at this problem. Under the
above conditions the total flux leaving the J*th sub area is AA.,

Bj
and

the amount of flux reaching the i-th area from the j-th area is'^just

AA..K, ,AA .B, ; so the fraction F, . of the flux leaving aA. and arriving
i ij J J j-i j

at aA^ is given by

and

"j-i
=

F = /\A K = * F
"^i-j aAj,

(40)

AA

In matrix form this is

F = KaA

And equation (3) has the analogue

H = FB

(41)

(42)

The net local heat loss
q^

at each AAj^on the cavity surface must
be knownfor the thermal gradient calculation. One has the following
equations:

H

4
ecrj + PH (43)

4
saT - eja (44)

KAA b (45)

- 10 -



(46 )

Combining (43) with (45), we obtain

B = SCTT^ 4- PKaAB .

This gives

(1 - PKM)B = eoT^ (47)

Physical reasoning tells us that the inverse matrix (1 - PKA4)~^
must exist, so we can write

^ = (1 - PKM)“^eor'^ (48)

4
The above equation is the solution for in terms of ^ and geometry.
To complete the derivation, we need an expression for ^ in terms of JB

and ^4. Equation (43) gives us

H = P“^(B - (49)

Substituting this result into equation (44) one obtains

^ = eor'^ - ep“^(B - eorS (50)

Taking ^ from equation (48) ,
one obtains

ecT^ - ep“^((i-pKM)"^eo-T'^-eaT^) = [l-ep“^ ( (l-pKM)‘^-l)]eoT^

=:"$ eor'^

where

? = [l+ep~^(l-(l-PKM)“^)l (52)

Thus we can obtain the complete transfer solution matrix^ from a knowledge
of K and e. Equivalent prescriptions for obtaining this matrix have been
given numerous times in the literature. In the present development the

roles of matrix multiplication and inversion have been emphasized and
the isomorphism between the vector -£« and the matrix operation e(or t(-€-))

were described. This may help to clarify the mathematical situation be-

cause any equation involving expressions like those in equations (1), (2)

or (3) can be written down quickly in terms of vectors, linear transfor-
mations, linear functionals, or traces.

- 11 -



b. Angle Factors in a Cylindrical Cavity . The angle factors
between various areas on the surface of a cylindrical cavity are
relatively easy to evaluate. An expression for the fraction of
the diffuse flux leaving a given area, which falls directly on any
other area,

j ,
is needed. The cavity base is divided into a series of

annular rings and the wall is divided into a series of cylindrical rings
(Figure 1)

.

The angle factor between any two cylindrical rings of equal width,
h, can be expressed as

F3(d,R,h) = F2(d^h,R,h) - F2(34j5h,R,h) (53)

where d is the distance between the centers of the two rings, and R is

the radius of the cylinder.

In the above equation, the function F
2
(d,R,h) is given by

F2(d,R,h)= F^(d,R,h) (54)

where

F^(d,R,h) = F^(d-^h,R) - F^(d+,5h,R) (55)

and

F^(d,R) = {d^2R^-[(d^+2R^)^ - 4R^]?-^^}(2R^)’^ (56)

The derivation of the above series of functional relationships
proceeds as follows. Fo(d,R) gives the fraction of the diffuse flux,
leaving a circular disc of radius R, which is incident on a parallel
circular disc of equal radius when the two discs are a distance d apart
on the same axis (Figure 2). This equation is given by Walshii'for discs
of unequal radii.

Fi(d,R,h) is the fraction of the flux leaving disc 1 of radius
R and reaching cylindrical ring 2 of radius R and width h whose center
is located a distance d above the center of disc 1 (Figure 3) . This
fraction can be considered to be the difference between the fraction
reaching disc 3 and that reaching disc 4 (Figure 3) ,

and this is expressed
in equation (55). The fraction F 2 (d,R,h) of the flux leaving ring 2 and
falling directly on disc 1 (in Figure 3) is easily calculated from equa-
tion (40). Finally, the fraction of the flux leaving cylindrical ring 1

and reaching cylindrical ring 2 is given by F3 (d,R,h) in equation (53)
above; F3 (d,R,H) is expressed as the difference between the fraction
leaving ring 1 and arriving at disc 3 and the fraction leaving ring 1

and arriving at disc 4 (Figure 4)

.

J. W. T. Walsh, Proc. Phys. Soc
.

(London) 59 (1920).

- 12 -



Similar reasoning gives the following series of functional
relationships for the fraction F3

‘* (R.,h,d,r) of the flux leaving an

annular ring 1 of width h and mean radius r on the base of a cylindri-
cal cavity and falling incident on cylindrical ring 2 of width h located
a mean distance d above the cavity base (Figure 5).

F3"(R,h,d,r,h) =. F2"(R,d,5h,r,h) - F
2
^R, d+^h,r ,h) (57)

rV '(R,d,r,h)

F/(R,h,r,h) ^ ^ (58)

((r4i5h) -(r-.5h) )

F^'(R,d,r,h) = F^'(R,r+.5h,d) - F^ '(R,- .5h, d) (59)

F^'(d,R,r) = {d^+R^+r^-[(d^+r^+R^)^-4R^r^]^'^^}(2R^)"^ (60)

The fraction F^^ (R,h, d,r ,h) of the flux leaving cylindrical
ring 2 of width h located a mean distance d above the base of the

cylindrical cavity and incident on an annular ring of width h and mean
radius r on the cavity base is given by

F^'(R,h,d,r,h)
((r+.5h)^-(r-.5h)S

2Rh
F3^(R,h,d,r,h) (61)

These functional relationships have been incorporated into a

subroutine of the computer program that will calculate the temperature
distribution in the cylindrical specimen. This subroutine is currently
under development.

c. Radiant Heat Transfer . The computer code mentioned in the

previous quarterly report was developed further and some results were
obtained. The code is not completely satisfactory because it does not
yet yield good agreement with hand-calculated results. The geometry of
the calculation is that of Figure 6. The temperatures of volumes 5

through 10 are all fixed at a temperature of 2000®K and the temperatures
of volumes 1 through 4 are permitted to come to an equilibrium tenqjerature

in these surroundings. The temperatures of volumes 1 through 4 are deter-
mined by the condition that the total heat flux into each volume equals
the total heat flux leaving that volume. This condition gives us four
equations in four unknowns.

A^e^a
4

P T +
j=i J j-i

kA,

ij

(Tj-Tp (i-l,...,4) (62)

Where is the difference between the heat dH-owing into the i-th volume
element and that flowing out of it, s is the emlttance of the material, p

is the reflectance of the material, O is the Stefan-Bol tzmann constant.

- 13 -



is the temperature of the i-th volume, k is the conductivity of the

material, is the exposed surface area of the i-th volume element,

hij is the distance between the center of the i-th volume to that of

the j-th volume. is the (i,j)th element of a matrix P which is

similar to the T matrix discussed elsewhere in this report.

The method of solving these equations is a relaxation procedure.
The first step is to guess a set of T^'s; then the s^'s are evaluated.
The Sj^'s describe the imbalance in the amount of heat flux entering or

leaving a volume, and they are called residues. A positive s^^ means that
too much heat is flowing into the i-th subvolume and that the temperature
of this subvolume must be too low for its environment. Conversely a

negative s^ implies too great a heat loss and hence too high a temperature
for the i-th volume. The volume having the largest|sj^| is the one farthest
from thermal equilibrium. The temperature of this volume is then changed
in uniform steps until the magnitude of the residue is made as small as

possible. Then all of the residues are recalculated using the new Tj^ for
the i-th volume and the old T^'s for the others. The volume having the
largest residue for this new set of temperatures is again singled out and
the procedure is repeated. After this process is repeated many times,
the magnitude of each residue reaches some very small value. At this
point changing any of the temperatures by the uniform step used will
only increase the magnitude of the thermal imbalance in the system. It
is highly probable that when this condition is achieved, each of the
temperatures is within a few uniform steps of the value it would have
when they are all picked to satisfy equation (1) exactly.

This procedure has been used both in a hand and computer calcu-
lation of the heat transfer described in equation (1). The results of
the two calculations are shown in Table 2.

Table 2

Hand Code Computer

1958'"K 1957*K
1981°K 1980®K
1993^K 1992“K
1987®K 1979“K

The agreement is good for T^ , T
2

and T^. However the variation
in T^ is appreciable. Further checks are being made on both the hand
calculation and on the computer code to try to achieve better agreement.

d. Conductive Heat Transfer in the Cylinder . The conductive
heat transfer within the cylindrical specimen must be known in order to

determine the temperature distribution at the specimen's surface. The
equation of steady state heat transfer within the specimen is

d^T ^ 1 ST ^+ 0 (63)
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where T is the temperature. The solution of equation (63) Is deter-
mined by the boundary eondltlons at the specimen's surfaces. The solu-
tion will be calculated by a code now being developed which uses the
finite difference method for solving equation (63), This code will be
In such a form that It will be able to handle all three cases of Inter-
est, the shallow cavity, the deep cavity, and the graphite post config-
urations. In order to perform this finite difference calculation, a
series of node points must be located throughout the specimen, and the
equation for the temperature at each node must be written In terms of
the temperatures at the neighboring nodes. It Is natural to divide the
specimen Into different regions such that the same equation holds for
all of the nodes In a given region. The distribution of the nodes
throughout the specimen, the division of the specimen Into regions,
and the equations corresponding to each region will be described in

the following.

The nodes are distributed throughout the specimen and cavity In a

square lattice spaced a distance h apart from each other in the z and r

directions (Figure 7). Each node is labelled with a pair of indices

(1, j) such that 1^ Ijhqx c, and l^^^ax as 0i^-z5-b.

The possibility that the radius, c, and length, b, of the specimen may not
be evenly divisible by the distance h between nodes is taken into account
by letting the distances between the nodes on the exterior surface of the
specimen and those immediately beside or above them inside the specimen
become a fraction 0^1 of the usual distance h.

After the nodes are distributed in the specimen, the specimen must
be divided into regions which have the same nodal equations. There are

eleven such regions in a shallow cavity specimen. In order to describe
these regions mathematically, we need to make the following definitions:

1 = The i-index of the column of nodes on the cavity wall surface
cav

J = The j- index of the row of nodes on the cavity base
cav

max
The i-index of the column of nodes on the specimen wall surface

^max
** j-index of the column of nodes on the specimen base surface

The regions are described by the following:

Al: i<i and J jmax max

A2: l<i<l -land J = J -1
max ** max

A3: 1 = 1 and J <J<J -2
•'cav '

•'max

A4: 1^1 and j »* j or 1
cav cav

1 and
cav cav
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A5

A6

A7

A8

A9

i<l and j<j
cav cav

i <i<l and j = 1
cav max

i = i and l<J<jmax —
^max

i = i -1 and l<j<j -2
max max

i <i<i -1 and l<j<j -1
cav max ® max

or l<i<i and j <j<j -1“ cav cav max

AlO: i « i -1 and j = j -1
max max

All: i = 1 and J - j -1
max

The nodal equations that hold in these regions are as follows:

A1 : No equation— fixed temperatures assumed.

A2:
X'^i-l,j’^^i+l,j+ 2R^C^i+l,j“^i-l,j)

^
Q^lCo'l+l) C^^i^i J-l'^^iJ+l))

A5:

A6:

A7:

St
A4: k = ear

A8: T.

No equation—fixed temperatures assumed.

^i,2 V h ^i,iy V® "i,i h "i,2y

No equation - fixed temperatures assumed.

'^2^1 r_ _ 2

{^ij+l'^’^ij-l’^ OiAaM CVi.ij 4a2^+4R-h(Q^2”l> «^2(Viy

2Q?2hR^C"“2'^i-l
, j'''^i+l ,

j)}

+T
1,J 1+1,
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A9;

AlO: T

2c/ CX R

.

12 i

i
, j ^R^(o/^+ot^) -ha^ (o/^-l ) L c/^ (1+a^ ) 0/^ (l+a^

+ <^,^2 (“l+l >’^1+1
, J-^“2

(1+“2)’^1
. J+l)

+ 0“2“i)'H-Vl-l.J+’^H-l,j}.

All- T =.CA_X2T +

In the above equations
j
designates the temperature at the node

found on the previous iteration.

An iterative solution to this set of equations is found as follows.
A set of trial j's is guessed at. The trial Tj[^j's are inserted into

the above equations, and a new set of Ti^j's is calculated from the trial

set. This procedure is repeated until a "self-consistent" or steady state
is achiefed, i.e., the input and output T^^ j ' s are nearly the same each
time. When the set of Tj^ j's has reached a stationary value, it is taken
as the temperature distribution within the specimen. This method of solving
the conductive heat transfer problem has been used many times in the past
with good results.^'

III. LASER SOURCE INTEGRATING SPHERE REFLECTOMETER

1. Background . The laser source integrating sphere reflectometer was
designed to measure reflectance of specimens at high temperatures under
conditions approximating normal illumination and hemispherical viewing.
The sphere that was built and is described in previous reports was designed
for operation in the substition mode. Tests with both first reflection
only and lined shallow cavities and comparative reflectance measurements
indicated that under the most favorable conditions this sphere measured
reflectance to about ±0.02. The error appeared to depend upon the geometric
distribution of flux reflected from specimen and standard, and was believed
to be due to flux reflected from the specimen or standard reaching the

detector or the area viewed by the detector on the first reflection.

3_/ Daniel D. McCracken and William S. Dom, Numerical Analysis and Fortran
Programming.
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2. Modifications to Sphere Design . In order to discuss the sphere
design it is first necessary to describe its geometry. The sphere Is

made up of two hemispheres, which are joined by bolted flanges with an

o-ring seal. The principal axis of the sphere is defined as the diameter
normal to the plane through the joint connecting the hemispheres. The
primary plane of the sphere is defined as the plane through the principal
axis and the center of the entrance port, and the secondary plane of the
sphere is the plane through the principal axis and normal to the primary
plane.

In the original sphere the specimen port was located in the lower
hemisphere and centered on the principal axis. The entrance port was
centered 14® from the principal axis, and by definition was in the primary
plane. There were two detector ports, one located in the lower hemisphere
and centered 60® from the principal axis, and one identified as No. 3,

located in the upper hemisphere and centered 45* from the principal axis

in the primary plane. The two hemispheres could be rotated relative to

each other, so that the detector port in the lower hemisphere could be
located in the primary plane, where it was identified as No. 1, or in the
secondary plane, where it was Identified as No. 2.

In the modified sphere shown in Figure 8, only the No. 3 detector
port was used, and the field of view of the detector was restricted to

a small area of the sphere wall diametrically opposite the detector port.
The single specimen port was replaced by two ports, one for the specimen
and one for the comparison standard. These ports were centered in the
secondary plane, 20® on either side of the principal axis. They are

thus located symmetrically with respect to the entrance and detector
ports

.

In addition to the change in the detector ports, shields were
introduced into the sphere to screen the area viewed by the detector from
the specimen and comparison standard ports. Since the area viewed by the
detector is located near the specimen ports, the shields are small in

size and do not appreciably disturb the sphere configuration. The effect
of the shields is to ensure that all of the flux reaching the detector
has been reflected by the diffuse sphere lining at least twice. As a

result the area viewed by the detector should be uniformly Illuminated,
and all problems arising from differences in the geometric distribution
of flux reflected by the sample and comparison standard should be elimi-
nated.

By operating the integrating sphere in the comparison mode, in

which both the sample and comparison standard form part of the sphere
wall during both measurements, the sphere corrections Involving the re-
flectance of the sample and comparison standard are eliminated. Also,
with the sphere operating in the comparison mode, it will be possible
to make measurements at a number of different temperatures, and perhaps
even at different wavelengths, without moving either the specimen or
standard. The separation of the sample and comparison ports by 40®,

about 4.8 in. on the 14- in. diameter sphere, leaves adequate space for
incorporation of a specimen heater and cooling colls for the surrounding
sphere wall.
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3. Specimen Heater . So far, the specimen has been heated by means
of resistance heating elements mounted in the specimen holder. They have
been satisfactory for operation at temperatures up to about 1800®K, with
heating elements that are stable in an air atmosphere. Resistance heat-
ing elements for use at higher temperatures generally require use of a

non-oxidizing atmosphere surrounding the heating elements and special
refractories to support the heating element and specimen. Such re-
fractories must not only be stable at the operating temperature in the
non-oxidizing atmosphere, but must also be non-reactive with the heating
element and specimen. Such refractories are not readily available particu-
larly for use at the higher temperatures. Induction heating eliminates
many of these problems, and has been selected for us e at the higher
temperatures

.

The induction heater should not disturb the sphere configuration,
should be capable of heating the specimen to at least 4000®F, and should
not heat the sphere wall appreciably.

Tests were made with an induction heater comprising a 3-in.
diameter copper disc with a center hole just large enough to clear the
susceptor, and a water cooled coil below the disc. The disc was slotted,
to reduce heating and concentrate the field around the susceptor, and
the first turn of the coil was soldered to the disc, to provide some
cooling. A stainless steel plate with a 3-ln. diameter hole was mounted
above the heater, and a nickel susceptor mounted in the heater was held
at about 1400'^K for several minutes. Only slight heating of the stain-
less steel plate was observed, and this amount of heat could be easily
removed by the water cooling. In the final design of the sphere, there
will be a 1/2-in. wide ring of a dielectric material between the edge
cf the heater disc and the sphere wall. This electrical insulation
should reduce the pickup of the radio-frequency power by the sphere wall.
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Figure 1. Cylindrical cavity with subdivided walls and base.

Figure 2, Coaxial discs of equal radii.

•20 '



h- R -H

Figure 3. Section through a cylindrical cavity; areas 1, 3, and 4
are discs stretched across the cavity; area 2 is a

cylindrical ring on the cavity wall.
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Figure 4. Section through a cylindrical cavity; areas 1 and 2

are cylindrical rings on the cavity wall; areas 3
and 4 are circular discs stretched across the cylinder.
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Figure 5> Section through a cylindrical cavity; area 1 is an annular
ring on the base of the cavity; area 2 is a cylindrical
ring on the cavity wall.
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Figure 6. Cylindrical geometry used in trial calculation of heat
transfer in a cavity.
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SHALLOW CAVilY SPECIMEN

Figiire 7. Cylindrical specimen of radius d and length c containing
a shallow cylindrical cavity of radius R and length Lj

nodes are distributed evenly throughout the specimen except
at the edge and base of the specimen.

Figure 8. Schematic views of sphere geometry sectioned along the
secondary plane of the sphere, view A-B, showing the location
of sample and comparison standard ports, and sectioned along
the primary plane of the sphere, view C-D, showing the loca-
tion of entrance port, detector, area viewed by detector,
and shields. The sphere is 14~in. in diameter. The line A-B
or C-D is the principal axis of the sphere.
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