NATIONAL BUREAU OF STANDARDS REPORT

8989

on
Interlaboratory Intercomparison
of
100-Watt Incandescent Lamps

by
Velma I. Burns
Photometry and Colorimetry Section Metrology Division

U. S. DEPARTMENT OF COMMERCE

MATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Abstract

Th.. Naticual Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement. and the provisions of means for making measurements consistent with those tandards: determination of physical constants and properties of materials; development of methods for teating materials. mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and cimplified trade practice recommendations; administration of programs in cooperation with United State business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units. Institute for Basic Standards. Applied Mathematics. Electricity. Metrology. Mechanics. Heat. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radiation Physics. Radio Standards Laboratory:* Radio Standards Physics; Radio Standards Engineering. Office of Standard Reference Data. Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.* Materials Evaluation Laboratory. Office of Standard Reference Materials. Institute for Applied Technology. Building Research. Information Technology. Performance Test Development. Electronic Instrumentation. Textile and Apparel Technology Center. Technical Analysis. Office of Weights and Measures. Office of Engineering Standards. Office of Invention and Innovation. Office of Technical Resources. Clearinghouse for Federal Scientific and Technical Information.** Central Radio Propagation Laboratory." Ionospheric Telecommunications. Tropospheric Telecommunications. Space Environment Forecasting. Aeronomy.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 2120113
 October 15, 1965
 NBS REPORT
 8989

Interlaboratory Intercomparison

of
100-Watt Incandescent Lamps

by
Ve1ma I. Burns
Photometry and Colorimetry Section
Metrology Division

IMPORTANT NOTICE

NATIONAL BUREAU OF STA for use within the Government. I and review. For this reason, the whole or in part, is not authori Bureau of Standards, Washingto the Report has been specifically ।

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
; accounting documents intended ubjected to additional evaluation listing of this Report, either in Office of the Director, National the Government agency for which pies for its own use.

U. S. DEPARTMENT OF COMMERCE

Interlaboratory Intercomparison
 of
 100-Watt Incandescent Lamps

Abstract

A group of twelve 100 -watt incandescent lamps was measured by each of nine laboratories. The voltage across each lamp was held at 120.0 volts while the luminous flux and current were measured. The results of the measurements made by the individual laboratories and an analysis of the results are given in this report.

INTRODUCTION

This intercomparison was undertaken to determine the uniformity of measurements on 100 -watt incandescent lamps made at the participating laboratories. The laboratories participating and the order of reading are as follows:

```
    1. Duro Test
    2. Westinghouse
    3. Electrical Testing Laboratories
    4. General Electric
    5. Verd-A-Ray
    6. Sylvania
    7. Champion
    8. E1 Tronics
    9. National Bureau of Standards
    10. Duro Test
```

Duro Test measured the lamps first and again at the end of the intercomparison. Both sets of measurements are reported here.

Each laboratory followed its own customary procedure in making the measurements. In each laboratory the voltage across each lamp was held constant at 120.0 volts while readings of luminous flux and current were taken.

RESULTS OF THE MEASUREMENTS

The results are reported in tables 1 through 4. The averages reported for each lamp and for each laboratory are also given. The difference, Δ, between the average for each laboratory and the average for all the laboratories for all the lamps is also given in the tables.

ANALYSIS OF RESULTS

An analysis of the results of the measurements has been made following a modification of the method described by W. J. Youden (1), (2), and (3). The modification is described in National Bureau of Standards Report No. 6605, Interlaboratory Intercomparisons of 32 -watt Tl2 CoolWhite Circline Lamps, and Report No. 6698, Interlaboratory Intercomparisons of 40 -watt T12 Cool-White Fluorescent Lamps. The analysis is shown on the following graphs. The point representing the measurements of an individual laboratory is designated by the first or the first and second letters in the name of the laboratory. The point representing the average of all the laboratories is designated by the letter A.
(1) Graphical Diagnosis of Interlaboratory Test Results, Industrial Quality Control, Vol. XV, No. 11, May 1959.
(2) Product Specification and Test Procedures, Industrial and Engineering Chemistry, Vol. 50, page 914, October 1958.
(3) Circumstances Alter Cases, Industrial and Engineering Chemistry, Vol. 50, page 77A, December 1958.
Table 1.
Lumens

Lamp No.	Duro T 1964	West.	ETL	GE	VAR	Syl	Champ	E1 T	NBS	$\begin{aligned} & \text { Duro T } \\ & 1965 \end{aligned}$	Average
ET - 1	1228	1237	1222	1244	1232	1234	1230	1241	1218	1210	1230
ET - 2	1218	1240	1235	1243	1243	1224	1240	1248	1207	1220	1232
ET-3	1248	1264	1240	1265	1263	1259	1255	1268	1244	1245	1255
ET-4	1234	1246	1227	1245	1235	1.230	1230	1239	1228	1219	1233
ET - 5	1245	1260	1241	1262	1253	1250	1238	1254	1238	1234	1248
ET-6	1246	1251	1235	1248	1254	1236	1238	1249	1230	1223	1241
ET-7	1230	1241	1222	1243	1232	1232	1231	1239	1232	1218	1232
ET-8	1247	1248	1237	1256	1251	1241	1247	1263	1248	1233	1247
ET-9	1247	1255	1240	1263	1252	1247	1246	1256	1239	1240	1248
ET-10	1232	1246	1227	1245	1237	1228	1234	1239	1232	1219	1234
ET -11	1250	1246	1224	1247	1248	1240	1248	1251	1229	1230	1241
ET -12	1261	1260	1251	1262	1255	1247	1260	1249	1241	1230	1252
Ave	1241	1250	1233	1252	1246	1239	1241	1250	1232	1227	1241
\triangle	0	+ 9	- 8	$+11$	$+5$	- 2	0	+ 9	- 9	- 14	
$\% \Delta$	0	.73	. 64	.89	.40	. 16	0	. 73	. 73	1.13	

Table 2.
Amperes

Lamp No.	$\begin{aligned} & \text { Duro T } \\ & 1964 \\ & \hline \end{aligned}$	West.	ETL	GE	VAR	Sy1	Champ	E1 T	NBS	$\begin{aligned} & \text { Duro T } \\ & 1965 \end{aligned}$	Ave
ET - 1	. 821	. 822	. 820	. 8226	. 821	. 821	. 821	. 8215	. 8203	. 821	. 8211
ET - 2	. 822	. 824	. 824	. 8242	. 823	. 822	. 824	. 8236	. 8206	. 822	. 8229
ET-3	. 830	. 832	. 829	. 8313	. 831	. 832	. 831	. 8317	. 8308	. 832	. 8311
ET-4	. 820	. 820	. 818	. 8189	. 820	. 818	. 819	. 8179	. 8184	. 819	. 8189
ET - 5	. 827	. 828	. 825	. 8268	. 828	. 826	. 825	. 8256	. 8254	. 824	. 8261
ET-6	. 823	. 825	. 822	. 8233	. 822	. 821	. 824	. 8223	. 8225	. 823	. 8228
ET-7	. 829	. 829	. 826	. 8281	. 829	. 827	. 828	. 8274	. 8285	. 829	. 8281
ET - 8	. 828	. 828	. 826	. 8280	. 828	. 826	. 828	. 8282	. 8286	. 829	. 8278
ET - 9	. 822	. 824	. 822	. 8236	. 822	. 822	. 823	. 8220	. 8220	. 822	. 8225
ET - 10	. 821	. 822	. 820	. 8207	. 821	. 819	. 822	. 8197	. 8215	. 822	. 8209
ET-11	. 828	. 829	. 825	. 8273	. 828	. 826	. 829	. 8275	. 8268	. 828	. 8275
ET - 12	. 829	. 828	. 827	. 8275	. 829	. 827	. 829	. 8259	. 8263	. 826	. 8275
Ave	. 8250	. 8259	. 8237	. 8252	. 8252	. 8239	. 8252	. 8244	. 8243	. 8248	. 8248
Δ	+. 0002	+. 0011	-. 0011	+. 0004	+. 0004	-. 0009	+. 0004	-. 0004	-. 0005	. 0000	
\% Δ	. 02	. 13	. 13	. 05	. 05	. 11	. 05	. 05	. 06	0	

Table 3.
Watts

Lamp No.	$\begin{gathered} \text { Duro T } \\ 1964 \\ \hline \end{gathered}$	West.	ETL	GE	VAR	Sy 1	Champ	E1 T	NBS	$\begin{gathered} \text { Duro T } \\ 1965 \end{gathered}$	Ave
ET - 1	98.5	98.6	98.4	98.7	98.5	98.5	98.5	98.58	98.44	98.5	98.52
ET - 2	98.6	98.9	98.9	98.9	98.8	98.6	98.9	98.84	98.47	98.6	98.75
ET - 3	99.6	99.8	99.5	99.8	99.7	99.8	99.7	99.80	99.70	99.8	99.72
ET - 4	98.4	98.4	98.2	98.3	98.4	98.2	98.3	98.15	98.21	98.3	98.29
ET - 5	99.2	99.4	99.0	99.2	99.4	99.1	99.0	99.07	99.05	98.9	99.13
ET - 6	98.8	99.0	98.6	98.8	98.6	98.5	98.3	98.67	98.70	98.8	98.74
ET-7	99.5	99.5	99.1	99.4	99.5	99.2	99.4	99.28	99.42	99.5	99.38
ET - 8	99.4	99.4	99.1	99.4	99.4	99.1	99.4	99.38	99.43	99.5	99.35
ET - 9	98.6	98.9	98.6	98.8	98.6	98.6	98.8	98.64	98.64	98.6	98.68
ET - 10	98.5	98.6	98.4	98.5	98.5	98.3	98.7	98.36	98.58	98.6	98.50
ET - 11	99.4	99.5	99.0	99.3	99.4	99.1	99.5	99.24	99.22	99.4	99.31
ET - 12	99.5	99.4	99.2	99.3	99.5	99.2	99.5	99.11	99.16	99.1	99.30
Ave	99.00	99.12	98.83	99.03	99.02	98.85	99.05	98.93	98.92	98.97	98.97
Δ	$+.03$	+. 15	-. 14	$+.06$	+.05	- . 12	+.08	-. 04	-. 05	. 00	
$\% \Delta$. 03	. 15	. 14	. 06	. 05	. 12	. 08	. 04	. 05	0	

Lamp No.	$\begin{gathered} \text { Duro T } \\ 1964 \\ \hline \end{gathered}$	West.	ETL	GE	VAR	Sy1	Champ	E1 T	NBS	$\text { Duro } T$ 1965	Ave
ET - 1	12.47	12.55	12.42	12.60	12.51	12.53	12.50	12.59	12.37	12.28	12.48
ET - 2	12.35	12.54	12.49	12.57	12.58	12.41	12.55	12.63	12.26	12.37	12.48
ET - 3	12.53	12.67	12.46	12.68	12.67	12.62	12.59	12.71	12.48	12.47	12.59
ET - 4	12.54	12.66	12.49	12.67	12.56	12.53	12.51	12.62	12.50	12.40	12.55
ET - 5	12.55	12.68	12.54	12.72	12.60	12.61	12.50	12.65	12.50	12.49	12.58
ET - 6	12.61	12.64	12.53	12.63	12.69	12.55	12.51	12.66	12.46	12.38	12.57
ET - 7	12.36	12.47	12.33	12.51	12.38	12.42	12.40	12.48	12.39	12.24	12.40
ET - 8	12.55	12.56	12.48	12.64	12.58	12.52	12.53	12.71	12.55	12.39	12.55
ET - 9	12.65	12.69	12.58	12.78	12.69	12.65	12.60	12.74	12.56	12.57	12.65
ET - 10	12.51	12.64	12.47	12.64	12.56	- 12.49	12.50	12.59	12.50	12.36	12.53
ET - 11	12.58	12.52	12.36	12.56	12.55	12.51	12.52	12.60	12.39	12.37	12.50
ET - 12	12.67	12.68	12.61	12.71	12.62	12.57	12.68	12.60	12.52	12.42	12.61
Ave	12.53	12.61	12.48	12.64	12.58	12.53	12.53	12.63	12.46	12.40	12.54
Δ	-. 01	+. 07	-. 06	+. 10	+. 04	-. 01	-. 01	+. 09	- . 08	-. 14	
\% Δ	. 08	. 56	. 48	. 80	. 32	. 08	. 08	. 72	. 64	1.12	

FIGURE-I
LUMENS

50-

45- 30

1	
35	1
40	

1
50

FIGURE-2
AMPERES

828-

-S

- ET

$.824-$

1 .825

FIGURE-3
WATTS

FIGURE-4
 LUMENS PER WATT

FIRST 6 LAMPS

[^0]: * Located a* Poulder, Colorado 80301.
 ** Located at . 5285 Port Royal Road, Sprinafield, Virginia 22171.

