

NBS REPORT
40 82.3
4135
8812
N66 13084

A COMPILATION OF THE PROPERTY DIFFERENCES OF ORTHO AND PARA HYDROGEN OR MIXIURES OF ORTHO AND PARA HYDROGEN
J. G. Hust and R. B. Stewart

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials. mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics." Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering." \% Office of Standard Reference Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics." \% Office of Standard Reference Materials.
Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.
Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 NBS REPORT

31502-40-3150420
May 20, 1965
8812
31502-40-3150400

A COMPILATION OF THE PROPERTY DIFFERENCES OF ORTHO AND PARA HYDROGEN OR MIXTURES OF ORTHO AND PARA HYDROGEN

by

J. G. Hust and R. B. Stewart

IMPORTANT NOTICE
NATIONAL BUREAU OF STANDAF… progress accounting documents intended for use within the Government. Before Approved for public release by the d it is subjected to additional evaluation and review. For this reason, the public Director of the National Institute of rature listing of this Report, either in whole or in part, is not authorized un Standards and Technology (NIST) im the Office of the Director, National Bureau of Standards, Washington, D.C. on October 9, 2015. ever, by the Government agency for which the Report has been specifically prepare ...onal copies tor its own use.

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

CONTENTS

Page
ABSTRACT 1
1.0 INTRODUCTION 1
2.0 FORMAT 3
3.0 DATA SHEETS 3

A COMPILATION OF THE PROPERTY DIFFERENCES OF ORTHO AND PARA HYDROGEN OR MIXTURES OF ORTHO AND PARA HYDROGEN*

J. G. Hust and R. B. Stewart

Abstract

The experimental property differences of ortho and para hydrogen and their mixtures as reported in the world literature for temperatures below $300^{\circ} \mathrm{K}$ are tabulated. Properties included are specific heat, velocity of sound, thermal conductivity, density, viscosity, vapor pressure, saturated liquid and saturated vapor densities, and latent heat of vaporization. Pertinent comments regarding the experimental methods employed, the pressure and temperature range of the data, and the accuracy of the data are included when available.

1.0 INTRODUCTION

This compilation presents the results of a literature search for ortho and para hydrogen property differences up to $300^{\circ} \mathrm{K}$. The literature file of the Documentation Unit of the Cryogenic Data Center was searched and approximately 900 references containing ortho and para hydrogen data were obtained. These in turn were searched for additional documents containing experimental data. The objective was to obtain thermophysical property data which could be used to determine the differences in these properties for any mixture of the ortho and para modifications of hydrogen.

The hydrogen properties can be separated into two groups; the first group of properties exhibits relatively large changes in value, while the second group of properties exhibits very small changes in value, with differences in ortho-para composition. The properties with significant ortho-para dependency include specific heat and properties related to specific heat, such as velocity of sound, entropy, enthalpy, and thermal conductivity. The properties which are almost independent of ortho-para concentrations include density and viscosity. Information is also included on the vapor pressures, densities of saturated liquid and saturated vapor, and on latent heat of vaporization for normal and para hydrogen.

Property value differences due to ortho-para composition of hydrogen for specific heats, velocity of sound, entropy, enthalpy, and thermal conductivity, from about 50° to $300^{\circ} \mathrm{K}$ are significantly larger than the experimental errors in their measurement. Therefore, data of various ortho-para mixtures, from different sources which may not have the same systematic experimental errors, may be compared in temperature ranges where these large differences occur, to ascertain the variation of the property as a function of ortho-para concentration. For this group of properties, selected data from the literature are listed from which these differences may be obtained.

Property value differences due to ortho-para composition for density and viscosity may be expected to be of the same order of magnitude as the systematic experimental errors in their measurement. Therefore, independent alternate sets of data for a given property of different ortho-para composition cannot generally be regarded as a sufficient measure of property differences due to ortho-para composition. For this reason, the data sources referenced in this report for this group of property data have been limited to (1) direct measurements of property differences due to ortho-para concentration (2) data sets of differing ortho-para composition which have been measured in the same laboratory and which may be regarded as having the same systematic errors, and (3) data which are regarded as having a probable uncertainty which is smaller than the differences in the property values.

[^1]The equilibrium concentration of ortho and para hydrogen in the ideal gas state has been calculated by Woolley, Scott, and Brickwedde (1948), J. Res. Nati. Bur. Std. 41, 379-475. The effect of pressure on these equilibrium concentrations is considered to be negligible. These values are tabulated and illustrated graphically below. The NBS-1939 Temperature Scale was used in this table.

Ortho-Para Composition at Equilibrium	
Temp. ${ }^{{ }_{\mathrm{K}}} \mathrm{K}$	Percentage in para form for H_{2}
10	99.9999
20	99.821
30	97.021
40	88.727
50	77.054
60	65.569
70	55.991
80	48.537
90	42.882
100	38.620
120	32.959
150	28.603
200	25.974
250	25.264
300	25.072

This report is a collection of independent data sheets on each of several properties for which information has been compiled. For each data sheet the following information is listed: Data Sources, Comments, and Data. All references containing data pertinent to this report are listed under Data Sources. The Comments Section includes a general summary for each property and in addition, pertinent comments about each reference. The type of experimental apparatus, indicated accuracy of results and range of data are included whenever available. The original data as tabulated in the data sources are listed in the Data Section. If sufficient data are available they are also illustrated graphically.

3.0 DATA SHEETS

Page
3.1 ZERO PRESSURE PROPERTIES (IDEAL GAS) 5
3.2 SPECIFIC HEAT 11
3.3 THERMAL CONDUCTIVITY 13
3.4 VISCOSITY DATA 17
3.5 VELOCITY OF SOUND 21
3.6 P-V-T AND VIRIAL COEFFICIENT DATA 27
3.7 SATURATION DENSITIES 29
3.8 VAPOR PRESSURE 33
3.9 LATENT HEAT OF VAPORIZATION 39

Data Sources:

Woolley, H. W., Scott, R. B., and Brickwedde, F. G. (1948), Compilation of Thermal Properties of Hydrogen in its Various Isotopic and Ortho-Para Modifications, J. Res. Natl. Bur. Std. 4l, 379-475, RP-1932.

Haar, L., Friedman, A. S., and Beckett, C. W. (1961), Ideal Gas Thermodynamic Functions and Isotope Exchange Functions for Diatomic Hydrides, Deuterides, and Tritides, Natl. Bur. Std. Monograph No. 20, 271 p.

Comments:

Both Woolley, et al. (1948) and Haar, et al. (1961) have computed ideal gas thermal properties for normal and para hydrogen from $10^{\circ} \mathrm{K}$ to above $300^{\circ} \mathrm{K}$. The values of Haar, et al. have been obtained with spectroscopic data as recent as August 1958. The orthopara differences from these sources are the same. Therefore, only the values of Haar, et al. are listed. Values for orthohydrogen are also included by Woolley. These additional tables are not given here, however, ortho-para differences are illustrated graphically.

Ideal gas properties for mixtures other than those tabulated may be calculated by the following equations. The specific heat and enthalpy of a given constant mixture of ortho and para hydrogen are obtained by,

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{P}(\text { mix })}=X_{(p)}{ }^{C_{P(p)}}+X_{(0)} C_{P(0)} \\
& H_{(\text {mix })}=X_{(p)} H_{(p)}+X_{(0)} H_{(0)}
\end{aligned}
$$

where the subscripts (p) and (o) refer to para and ortho and X is the relative amount of each component present. The entropy of a mixture, however, is also dependent upon the entropy of mixing as follows:

$$
S_{(\operatorname{mix})}=X_{(p)} S_{(p)}+X_{(0)}^{S}(0)-R\left[X_{(0)} \ln X_{(0)}+X_{(p)} \ln X_{(p)}\right]
$$

(Note that $X_{(p)}=1-X_{(o)}$ for a mixture of ortho and para hydrogen.) Since orthohydrogen properties are not tabulated here these equations are rewritten in terms of normal and para hydrogen properties as,

$$
\begin{aligned}
& C_{P(\text { mix })}=C_{P(p)}\left(X_{(p)}-\frac{X_{(0)}}{3}\right)+\frac{4}{3} X_{(0)} C_{P(n)} \\
& H_{(\text {mix })}=H_{(p)}\left(X_{(p)}-\frac{X_{(0)}}{3}\right)+\frac{4}{3} X_{(0)} H_{(n)}
\end{aligned}
$$

$S_{(\text {mix })}=S_{(p)}\left(X_{(p)}-\frac{X_{(0)}}{3}\right)+\frac{4}{3} X_{(0)}\left(S_{(n)}-R 0.562336\right)-R\left(X_{(0)} \ln X_{(0)}+X_{(p)} \ln X_{(p)}\right)$.

Haar, et al. (1961)									
Zero Pressure Properties									
Temp. ${ }^{\circ} \mathrm{K}$	Specific HeatC_{p}° / R			$\begin{gathered} \text { Enthalpy } \\ \left(\mathrm{H}^{\circ}-\mathrm{E}_{\mathrm{O}}^{\circ}\right) / R T \end{gathered}$			EntropyS° / R		
	Normal	Para	Equilibrium	Normal	Para	Equilibrium	Normal	Para	Equilibrium
10	2.50000	2.50000	2.50010	15.28092	2.50000	2.50001	6.46742	4.25717	4.25718
20	2.50000	2.50000	2.62977	8.89040	2.50000	2.51526	8.20027	5.99002	6.00707
30	2.50002	2.50006	3.43279	6.76031	2.50000	2.66925	9.21393	7.00368	7.20317
40	2.50059	2.50238	4.31745	5.69528	2.50019	2.98045	9.93317	7.72307	8.32294
50	2.50488	2.51943	4.56668	5.05666	2.50191	3.28362	10.49150	8.28283	9.32523
60	2.51868	2.57365	4.35857	4.63234	2.50868	3.48370	10.94922	8.74623	10.14337
70	2.54678	2.68123	4.03311	4.33221	2.52498	3.58552	11.33938	9.15032	10.79089
80	2.59041	2.84128	3.74645	4.11160	2.55403	3.62284	11.68214	9.51828	11.30997
90	2.64746	3.03790	3.53296	3.94564	2.59663	3.62404	11.99042	9.86402	11.73819
100	2.71388	3.24810	3.38559	3.81909	2.65125	3.60707	12.27274	10.19495	12.10227
110	2.78512	3.44947	3.28948	3.72183	2.71480	3.58223	12.53471	10.51411	12.42009
120	2.85715	3.62491	3.23131	3.64678	2.78356	3.55519	12.78014	10.82202	12.70359
130	2.92697	3.76456	3.20084	3.58875	2.85390	3.52895	13.01161	11.11793	12.96086
140	2.99268	3.86528	3.19034	3.54385	2.92277	3.50504	13.23096	11. 40084	13.19758
150	3.05332	3.92900	3.19402	3.50916	2.98792	3.48412	13.43953	11.66988	13.41775
160	3.10860	3.96082	3.20742	3.48242	3.04789	3.46637	13.63837	11.92464	13.62428
170	3.15860	3.96719	3.22716	3.46193	3.10188	3.45169	13.82836	12.16505	13.81929
180	3.20360	3.95470	3.25062	3.44635	3.14968	3.43986	14.01019	12.39153	14.00440
190	3.24394	3.92931	3.27586	3.43465	3.19143	3.43056	14.18450	12.60472	14.18082
200	3.27998	3.89600	3.30144	3.42604	3.22751	3.42346	14.35183	12.80544	14.34950
210	3.31206	3.85865	3.32637	3.41986	3.25847	3.41825	14.51265	12.99464	14.51119
220	3.34048	3.82013	3.34995	3.41562	3.28487	3.41461	14.66740	13.17325	14.66648
230	3.36555	3.78243	3.37177	3.41291	3.30732	3.41228	14.81645	13.34222	14.81587
240	3.38754	3.74686	3.39161	3.41140	3.32637	3.41102	14.96015	13.50244	14.95980
250	3.40673	3.71419	3.40937	3.41084	3.34252	3.41060	15.09884	13.65472	15.09862
260	3.42339	3.68480	3.42510	3.41101	3.35624	3.41086	15.23279	13.79981	15.23265
270	3.43778	3.65877	3.43889	3.41174	3.36792	3.41165	15.36226	13.93838	15.36218
280	3.45016	3.63605	3.45086	3.41290	3.37789	3.41284	15.48751	14.07101	15.48745
290	3.46074	3.61642	3.46120	3.41437	3.38644	3.41434	15.60877	14.19825	15.60874
300	3.46977	3.59962	3.47006	3.41607	3.39382	3.41605	15.72626	14.32057	15.72624

TEMPERATURE , ${ }^{\circ} \mathrm{K}$

TEMPERATURE, ${ }^{\circ} \mathrm{K}$

3.3 THERMAL CONDUCTIVITY

Data Sources:

Farkas, A. (1935), Ortho-Para Hydrogen and Heavy Hydrogen, Cambridge University Press.
Ubbink, J. B. (1948), Thermal Conductivity of Gaseous Hydrogen and of Gaseous Deuterium, Physica 14, 165.

Powers, R. W., Mattox, R. W., and Johnston, H. L. (1954), Thermal Conductivity of Condensed Gases. II. The Thermal Conductivities of Liquid Normal and of Liquid Parahydrogen from 15 to $27^{\circ} \mathrm{K}$, J. Am. Chem. Soc. 76, 5972-73.

Heinzinger, K. (1960), Die Wärmeleitfähigkeiten von Normal und Para - Wasserstoff bei $20^{\circ} \mathrm{K}$. (The Heat Conductivity of Normal and Para Hydrogen at $20^{\circ} \mathrm{K}$), Z. Naturforsch. 15a, 1022.

Heinzinger, K., Klemm, A., and Waldmann, L. (1961), Die Wärmeleitföhigkeit von Gasformigen Para-Ortho Wasserstoffgemischen bei $20^{\circ} \mathrm{K}$. (The Thermal Conductivity of Gaseous Ortho-Para Hydrogen Mixtures at $20^{\circ} \mathrm{K}$), 2. Naturforsch. 16a, 1338-42.

Comments:

Based upon the available experimental data it may be concluded that at liquid hydrogen temperatures the differences of thermal conductivity of ortho and para hydrogen are small. The differences for liquid hydrogen are less than 2%, while the differences for gaseous hydrogen near $20^{\circ} \mathrm{K}$ are about 0.5%.

Because of the large differences in low pressure specific heats of ortho and para hydrogen at intermediate temperatures, it is apparent that the thermal conductivities must also differ appreciably. These differences have apparently never become the object of experimental investigation. The ratio of the low pressure specific heats has, however, been calculated by Farkas (1935). This data source still seems to be the best available. The ratio of para to normal thermal conductivity as tabulated here was calculated, as indicated by Farkas using zero pressure specific heats by Haar, et al. (1961) [See Section 3.1].

$$
\frac{K_{p}}{K_{n}}=\frac{C_{V p}+2.25 R}{C_{V n}+2.25 R}
$$

Ubbink (1948) measured the thermal conductivity of gaseous hydrogen at temperatures ranging from 14 to $273^{\circ} \mathrm{K}$. At $17^{\circ} \mathrm{K}$ he measured the thermal conductivities of para and normal hydrogen but could not detect any differences.

Powers, et al. (1954) used a parallel plate cell to measure the thermal conductivity of liquid normal and para hydrogen. Within their estimate of a probable error of 2%, no differences between normal and para hydrogen were observed. These results were represented by Powers, et al. by $K=(1.702+0.05573 \mathrm{~T}) 10^{-4} \mathrm{cal} /\left(\mathrm{cm} \mathrm{sec}{ }^{\circ} \mathrm{K}\right)$, with a rms deviation of 1.6%.

Heinzinger (1960) experimentally determined the thermal conductivity of gaseous parahydrogen to be $0.57 \pm 0.07 \%$ higher than normal hydrogen at $20^{\circ} \mathrm{K}$. A year later Heinzinger, et al. (1961) reported measured values of thermal conductivity differences as a function of ortho-para hydrogen composition at $20^{\circ} \mathrm{K}$.

Calculated Values of the Ratio of Thermal Conductivity of Gaseous Para to Normal Hydrogen, using the Equation by Farkas (1935) T, ${ }^{\circ} \mathrm{K}$ $\mathrm{K}_{\mathrm{p}} / \mathrm{K}_{\mathrm{n}}$	$\mathrm{T},{ }^{\circ} \mathrm{K}$	$\mathrm{K}_{\mathrm{p}} / \mathrm{K}_{\mathrm{n}}$	
10	1.000	160	1.196
20	1.000	170	1.183
30	1.000	180	1.169
40	1.001	190	1.152
50	1.004	200	1.136
60	1.015	210	1.120
70	1.035	220	1.104
80	1.065	230	1.090
90	1.100	240	1.077
100	1.135	250	1.066
110	1.165	260	1.058
120	1.187	270	1.047
130	1.200	280	1.040
140	1.206	290	1.033
150	1.203	300	1.028

Powers, et al. (1954)			
Liquid Normal Hydrogen		Liquid Parahydrogen	
Temp. ${ }^{\circ} \mathrm{K}$	Thermal Conductivity $\mathrm{cal} /\left(\mathrm{cm} \mathrm{sec}{ }^{\circ} \mathrm{K}\right)$	Temp. ${ }^{\circ} \mathrm{K}$	Thermal Conductivity $\mathrm{cal} /\left(\mathrm{cm} \sec ^{\circ} \mathrm{K}\right)$
$\begin{aligned} & 16.81 \\ & 16.84 \\ & 17.00 \\ & 18.16 \end{aligned}$	$\begin{aligned} & 2.62 \times 10^{-4} \\ & 2.69 \\ & 2.59 \\ & 2.70 \end{aligned}$	$\begin{aligned} & 16.83 \\ & 17.85 \\ & 18.97 \\ & 19.66 \end{aligned}$	$\begin{aligned} & 2.81 \times 10^{-4} \\ & 2.76 \\ & 2.81 \\ & 2.86 \end{aligned}$
$\begin{aligned} & 18.58 \\ & 19.08 \\ & 19.88 \\ & 21.46 \end{aligned}$	$\begin{aligned} & 2.68 \\ & 2.70 \\ & 2.83 \\ & 2.93 \end{aligned}$	$\begin{aligned} & 21.16 \\ & 21.69 \\ & 23.23 \end{aligned}$	$\begin{aligned} & 2.87 \\ & 2.84 \\ & 3.05 \end{aligned}$
$\begin{aligned} & 22.72 \\ & 22.79 \\ & 23.84 \\ & 24.29 \end{aligned}$	$\begin{aligned} & 2.94 \\ & 3.02 \\ & 3.02 \\ & 3.02 \end{aligned}$		

Heinzinger, et al. (1961)	
(Gas at $\mathrm{T}=20.5^{\circ} \mathrm{K}$)	
Percent Parahydrogen	$\left(\mathrm{K}-\mathrm{K}_{\mathrm{n}}\right) 100 / \mathrm{K}_{\mathrm{n}}$
100%	0.584%
86	0.540
70	0.404
61	0.363
53	0.315
50	0.250
47	0.203

temperature, ${ }^{\circ} \mathrm{K}$
100
1.00
入1IヘIIJПONOJ 7VW

Data Sources:

Becker, E. W., and Stehl, O. (1952), Ein Zähigkeitsuntershied von Ortho- und ParaWasserstoff bei Tiefen Temperaturen. (Viscosity Difference between Ortho and Para Hydrogen at Low Temperatures), 2. Physik 133, 615-28.

Webeler, R., and Bedard, F. (1961), Viscosity Difference Measurements for Normal and Para Liquid Hydrogen Mixtures, Phys. Fluids 4, 159-60.

Diller, D. E. (1965), Measurements of the Viscosity of Parahydrogen, J. Chem. Phys. 42, 2089-2100.

Comments:

The viscosity differences of gaseous ortho and para hydrogen determined by Becker and Stehl (1952) are small, approaching 1\% near the triple point. Liquid values, however, differ by larger amounts with differences of about 5% at saturation near the triple point. Diller (1965) points out that the liquid differences are nearly zero when compared at the same densities rather than the same temperature. The results of Becker and Stehl (1952) indicate the viscosity of gaseous para hydrogen to be larger than gaseous normal hydrogen; while the results of Diller show the normal hydrogen values to be larger than the para hydrogen values in the liquid region.

Becker and Stehl (1952) measured the difference in viscosity between various mixtures of ortho and para hydrogen with a capillary bridge arrangement.

Webeler and Bedard (1961) measured a quantity equal to the product of viscosity and density of liquid para and ortho hydrogen with a piezoelectric alpha quartz torsional oscillator. They found that the value of ηp for 69% orthohydrogen at temperatures from 13.8 to $14.5^{\circ} \mathrm{K}$ is about 4% larger than the corresponding values for 28% ortho hydrogen. The precision of the values of $\eta \rho$ is given as 0.2%.

Diller (1965) also used a torsional crystal method to make extensive measurements on para hydrogen. He included a few points for normal hydrogen along the saturated liquid line. All of the data are analytically represented with a mean deviation of 0.7%. An accuracy of 0.5% is claimed. The tables that follow include Diller's saturation data only.

Becker and Stehl (1952)				
Gaseous Hydrogen$\left(\eta_{\mathrm{x}}-\eta_{\mathrm{n}}\right) 100 / \eta_{\mathrm{n}}$				
T, ${ }^{\circ} \mathrm{K}$	Percent Para Hydrogen			
	99.8	62.2	50.2	42.7
90.1	0.116	0.075	0.055	0.039
77.3	0.139	0.089	0.065	0.049
63.2	0.175	0.110	0.079	0.058
20.3	0.561	0.323	0.231	0.162
15.0	0.712	0.376	0.258	0.182
$\eta_{\mathrm{x}}=$ Viscosity of ortho-para hydrogen mixture $\eta_{\mathrm{n}}=$ Viscosity of normal hydrogen				

Diller (1965)			
Viscosity of saturated liquid (Micropoise)			
$T,{ }^{\circ} \mathrm{K}$	Normal	Para	Difference
14	264.3^{*}	250.7	13.6
15	230.2	221.3	8.9
16	203.9	197.5	6.4
17	182.9	177.7	5.2
18	165.6	160.5	5.1
19	151.5	147.0	4.5
20	139.2	135.4	3.8
21	128.4	125.3	3.1
22	118.7	116.1	2.6
23	110.5	108.1	2.4
24	102.6	100.8	1.8
25	95.7	93.5	2.2
26	89.0	87.2	1.8
This value has been corrected for a typo-			
graphical error.			

TEMPERATURE, ${ }^{\circ} \mathrm{K}$

3.5 VELOCITY OF SOUND

Data. Sources:

Van Itterbeek, A., Van Dael, W., and Cops, A. (1961), Velocity of Ultrasonic Waves in Liquid Normal and Para Hydrogen ($14-20^{\circ} \mathrm{K}$), Physica 27, 111-16.

Van Itterbeek, A., Van Dael, W., and Cops, A. (1963), The Velocity of Sound in Liquid Normal and Para Hydrogen as a Function of Pressure, Physica 29, 965-73.

Younglove, B. A. (1965), Ultrasonic Velocity in Fluid Parahydrogen, Manuscript submitted for publication.

Comments:

The velocity of sound of liquid normal and para hydrogen has been accurately determined by both Van Itterbeek, et a.l. (1961,1963) and Younglove (1965) below $20^{\circ} \mathrm{K}$. The agreement of these differences from these sources is excellent. The differences in the gaseous states are not, however, well known. One may estimate these differences from the thermodynamic relationship, $C^{z}=\gamma(\partial P / \partial \rho)_{T}$ where $C=$ velocity of sound, $\gamma=C_{p} / C_{V}$, and P, T, and ρ are pressure, temperature and density, respectively. It is known from $P-V-T$ measurements that the values of $(\partial P / \partial \rho)_{T}$ of normal and para cannot be much different. Thus in regions where the differences in $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}$ are large such as around $150^{\circ} \mathrm{K}$ one can estimate the percentage difference in velocity of sound as one half the percentage difference in the specific heat ratio of normal and para hydrogen.

Van Itterbeek, et al. (1961) measured the velocity of sound in saturated liquid normal and para hydrogen at temperatures from 14 to $20.5^{\circ} \mathrm{K}$ using a variable length interferometer. Their data indicate the velocity of sound in normal hydrogen to be $8 \mathrm{~m} / \mathrm{sec}$ greater than in para hydrogen at frequencies of 1,2 , and $5 \mathrm{mc} / \mathrm{sec}$. They estimate the uncertainty at 0.2%.

Van Itterbeek, et al. (1963) extended the above work to pressures of $240 \mathrm{~kg} / \mathrm{cm}^{2}$. The difference between normal and para hydrogen at low pressures is less then in the previous article by the same authors.

Younglove (1965) made velocity of sound measurements on fluid para hydrogen with a pulsed sound technique. Measurements were made from 15 to $100^{\circ} \mathrm{K}$ and up to 350 atmospheres, and are claimed to be accurate to 0.05%.

Van Itterbeek, et al. (1961)					
Velocity of Sound in Saturated Liquid Normal Hydrogen					
$0.996 \mathrm{mc} / \mathrm{sec}$		$1.945 \mathrm{mc} / \mathrm{sec}$		$4.904 \mathrm{mc} / \mathrm{sec}$	
Temp. ${ }^{\circ} \mathrm{K}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	Temp. ${ }^{\circ} \mathrm{K}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	Temp. ${ }^{\circ} \mathrm{K}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
20.37	1120.7	20.42	1119.2	20.44	1119.4
19.97	1131.7	20.10	1128.6	19.08	1156.8
19.67	1140.3	19.85	1136.0	18.42	1171.6
19.37	1149.9	19.58	1142.6	18.04	1182.3
18.93	1159.7	19.32	1150.4	17.45	1194.5
18.61	1166.7	19.02	1157.4	17.04	1203.1
18.18	1176.9	18.70	1165.8	16.57	1214.7
17.72	1187.9	18.35	1173.9	15.98	1227.6
17.15	1200.3	17.95	1183.5	15.32	1240.2
16.61	1211.5	17.52	1193.2	15.23	1241.2
16.04	1224.3	17.50	1203.9	14.59	1254.3
15.15	1242.8	16.49	1214.9	14.13	1262.3
14.59	1254.4	15.92	1227.3		
14.13	1263.6	15.44	1237.4		
		14.89	1247.8		
		14.52	1255.0		
			1262.6		
Velocity of Sound in Saturated Liquid Para-Hydrogen					
$0.987 \mathrm{mc} / \mathrm{sec}$		$1.937 \mathrm{mc} / \mathrm{sec}$		$4.869 \mathrm{mc} / \mathrm{sec}$	
Temp. ${ }^{\circ} \mathrm{K}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	Temp. ${ }^{\circ} \mathrm{K}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	Temp. ${ }^{\circ} \mathrm{K}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
20.36	1114.3	20.41	1110.9	20.40	1115.3
20.08	1122.5	19.91	1125.3	19.46	1137.9
19.77	1130.8	19.53	1134.8	18.92	1151.1
19.55	1136.9	19.06	1146.2	18.24	1168.1
19.29	1144.4	18.62	1157.9	17.66	1182.1
18.87	1154.6	18.13	1168.5	16.99	1196.9
18.48	1164.1	17.53	1183.1	16.52	1204.3
18.02	1175.4	16.91	1196.5	15.88	1220.5
17.52	1186.3	16.38	1208.7	15.33	1230.1
16.91	1200.1	15.76	1221.7	14.83	1240.7
16.20	1214.9	15.08	1234.3	14.38	1249.2
15.29	1232.5	14.63	1243.2		
14.06	1255.9	14.17	1250.8		
		20.40	1111.8		
		19.76	1128.2		
		19.43	1138.7		
		19.00	1149.0		
		18.55	1159.0		
		17.96	1174.3		
		17.43	1188.5		
		16.93	1199.6		
		16.32	1208.5		
		15.59	1225.4		
		14.85	1240.4		
		14.06	1253.6		

Van Itterbeek, et al. (1963)							
Velocity of Sound in Liquid Hydrogen							
$\mathrm{T}=20.50^{\circ} \mathrm{K}$				$\mathrm{T}=19.17^{\circ} \mathrm{K}$			
$\mathrm{n}-\mathrm{H}_{2}$		$\mathrm{e}-\mathrm{H}_{2}$		$\mathrm{n}-\mathrm{H}_{2}$		$\mathrm{e}-\mathrm{H}_{2}$	
P $\mathrm{kg} / \mathrm{cm}^{2}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
236.0	1742.1	240.0	1748.6	177.5	1647.4	188.5	1667.6
230.0	1732.7	229.0	1729.3	170.3	1633.3	183.5	1658.4
220.3	1715.4	221.0	1714.9	160.9	1615.6	175.0	1642.4
210.4	1697.3	211.5	1698.7	150.5	1594.0	170.0	1631.8
200.9	1679.9	202.3	1680.5	139.7	1571.4	161.0	1614.4
190.6	1660.7	192.5	1663.1	130.0	1549.6	151.0	1593.7
180.5	1641.6	181.5	1641.3	120.3	1528.0	140.5	1571.4
170.6	1622.0	171.5	1622.5	110.0	1500.0	130.2	1549.6
160.2	1601.0	161.2	1601.1	100.3	1480.6	120.0	1526.1
150.6	1580.9	150.5	1578.6	90.8	1456.4	109.5	1502.3
141.2	1560.4	141.0	1558.4	80.5	1429.7	100.5	1479.5
130.8	1537.1	131.5	1537.6	70.00	1400.6	90.7	1455.3
120.7	1513.0	121.5	1513.6	60.50	1327.5	80.5	1428.4
110.6	1489.4	109.7	1485.2	50.50	1341.3	71.50	1403.2
100.7	1465.3	100.7	1463.1	40.50	1309.5	61.00	1372.6
90.5	1438.5	91.0	1437.1	29.20	1270.2	51.25	1342.4
80.7	1411.6	79.0	1404.7	21.60	1241.1	42.90	1314.6
70.50	1382.1	68.75	1374.5	12.95	1206.3	34.20	1285.0
61.05	1353.6	50.00	1347.6	6.25	1177.3	26.10	1254.9
50.85	1320.7	50.40	1315.7	1.70	1155.5	18.10	1224.1
41.15	1287.2	40.50	1281.6			10.30	1192.6
31.10	1250.0	30.75	1245.5			6.20	1173.2
23.00	1218.1	20.85	1205.4			2.05	1153.9
17.25	1193.4	12.05	1166.4			1.50	1151.3
11.80	1169.4	7.10	1142.3				
8.40	1152.6	2.75	1119.6				
4.95	1135.4	1.20	1111.5				
1.40	1117.5						
$T=18.25^{\circ} \mathrm{K}$				$\mathrm{T}=16.74{ }^{\circ} \mathrm{K}$			
$\mathrm{n}-\mathrm{H}_{2}$		$\mathrm{e}-\mathrm{H}_{2}$		$\mathrm{n}-\mathrm{H}_{2}$		$\mathrm{e}-\mathrm{H}_{2}$	
$\begin{gathered} P \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	P $\mathrm{kg} / \mathrm{cm}^{2}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	P $\mathrm{kg} / \mathrm{cm}^{2}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
127.0	1575.3	146.4	1592.0	90.4	1486.6	85.0	1468.2
135.5	1571.9	137.0	1571.9	88.7	1481.2	78.0	1450.9
128.5	1556.7	129.0	1553.9	84.0	1469.4	68.90	1426.7
118.5	1535.1	118.5	1531.1	74.80	1446.0	60.25	1403.2
108.0	1510.9	108.5	1507.7	65.40	1420.9	50.75	1375.8
$97 \cdot 3$	1485.3	99.5	1486.8	55.40	1393.2	41.40	1347.6
87.2	1459.3	90.0	1462.8	45.90	1365.4	31.50	1316.3
87.0	1459.3	79.5	1436.5	37.00	1338.0	21.35	1282.3
78.7	1437.7	70.40	1410.7	26.85	1305.6	13.10	1252.6
69.30	1411.2	60.50	1382.6	19.60	1280.5	8.30	1234.4
60.55	1387.4	50.50	1352.7	13.50	1259.1	2.60	1211.7
50.55	1357.3	40.70	1321.0	6.80	1233.8	1.40	1207.0
40.40	1325.1	30.60	1287.4	1.60	1212.9		
31.00	1294.4	20.45	1250.6				
22.20	1263.6	12.75	1221.2				
15.00	1235.9	6.60	1195.3				
8.30	1208.5	2.40	1177.4				
2.30	1183.3	1.50	1173.1				

Van Itterbeek, et al. (1963) (cont.)							
Velocity of Sound in Liquid Hydrogen							
$\mathrm{T}=16.09^{\circ} \mathrm{K}$				$\mathrm{T}=15.35^{\circ} \mathrm{K}$			
$\mathrm{n}-\mathrm{H}_{2}$		e- H_{2}		$\mathrm{n}-\mathrm{H}_{2}$		$\mathrm{e}-\mathrm{H}_{2}$	
$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} P \\ \mathrm{gg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \\ \hline \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
60.50	1416.5	65.40	1426.8	20.55	1308.9	38.50	1360.7
55.00	1402.4	60.50	1413.6	17.50	1298.6	36.20	1353.9
49.90	1387.7	55.45	1400.1	14.90	1290.0	32.15	1341.5
45.10	1373.7	50.30	1385.0	12.50	1282.2	28.05	1329.1
35.30	1344.5	40.60	1356.6	7.40	1263.0	21.40	1308.2
30.15	1328.4	35.60	1341.6	5.45	1256.8	17.30	1293.9
25.10	1312.6	30.60	1326.0	3.95	1251.1	15.05	1286.4
20.35	1296.2	25.35	1309.1	2.10	1244.6	12.00	1276.1
15.10	1278.4	20.70	1292.8	1.40	1241.5	9.85	1268.7
10.20	1261.6	15.60	1275.4			6.55	1256.7
5.95	1245.3	10.60	1257.2			4.10	1247.3
2.05	1230.4	$\begin{aligned} & 5.50 \\ & 2.05 \end{aligned}$	$\begin{aligned} & 1238.3 \\ & 1224.8 \end{aligned}$			1.70	1238.2
$\mathrm{T}=15.14^{\circ} \mathrm{K}$							
$\mathrm{n}-\mathrm{H}_{2}$		$\mathrm{e}-\mathrm{H}_{2}$					
$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~kg} / \mathrm{cm}^{2} \end{gathered}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$				
28.70	1338.9	29.70	1336.5				
26.70	1332.3	26.90	1327.7				
23.40	1322.7	23.10	1315.6				
20.15	1313.0	20.10	1305.6				
17.20	1302.2	17.00	1295.8				
14.00	1291.7	14.05	1285.0				
11.10	1281.3	11.25	1275.7				
8.50	1272.3	8.90	1267.2				
5.90	1263.2	6.15	1257.2				
3.80	1255.1	3.00	1246.0				
1.50	1247.1	0.25	1235.2				

Younglove (1965)				
Velocity of Sound in Saturated Liquid Hydrogen				
T, ${ }^{\circ} \mathrm{K}$	Density, $\mathrm{g} / \mathrm{cm}^{3}$		Velocity of Sound, m/sec	
	Para	Normal	Para	Normal
14.5	0.07641		1241.9	
15	0.07599	0.07632	1232.6	1241.8
16	0.07510	0.07543	1212.8	1221.8
17	0.07417	0.07449	1191.7	1200.6
18	0.07319	0.07350	1169.0	1177.9
19	0.07216	0.07246	1144.6	1153.5
20	0.07108	0.07137	1118.5	1127.0
21	0.06992	0.07020	1090.3	1099.3
22	0.06870	0.06896	1060.0	1069.1
23	c. 06739	0.06764	1027.3	1036.5
24	0.06599	0.06622	992.0	1001.3
25	0.06447	0.06469	953.6	963.1
26	0.06282	0.06302	911.8	921.7
27	0.06100	0.06120	866.0	876.3
28	0.05897	0.05917	815.2	826.1
29	0.05665	0.05687	758.2	770.0
29.5	0.05536	0.05559	726.6	739.0
30	0.05394	0.05420	692.6	705.6
30.5	0.05236		655.3	
31	0.05058	0.05095	613.2	629.2
31.5	0.04849	0.04898	566.5	583.8
32	0.04592	0.04661	509.2	530.4
32.25	0.04433		470.5	
32.5		0.04353		490.2

Velocity of Sound in Liquid Parahydrogen							
$\mathrm{T}=15.00{ }^{\circ} \mathrm{K}$		$\mathrm{T}=17.000^{\circ} \mathrm{K}$		$\mathrm{T}=19.000^{\circ} \mathrm{K}$		$\mathrm{T}=20.50{ }^{\circ} \mathrm{K}$	
P atm	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	P atm	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	$\begin{array}{r} P \\ \mathrm{~atm} \end{array}$	Velocity of Sound $\mathrm{m} / \mathrm{sec}$	P atm	Velocity of Sound $\mathrm{m} / \mathrm{sec}$
$\begin{array}{r} 34.52 \\ 22.01 \\ 8.81 \end{array}$	1351.6	81.36	1458.3	174.39	1648.3	229.88	1739.8
	1311.4	51.68	1375.3	135.67	1567.2	195.49	1676.7
	1265.3	30.15	1306.3	99.56	1481.6	150.62	1585.5
		6.04	1215.8	73.99	1413.0	124.12	1525.3
				44.23	1321.1	91.73	1442.8
				40.72	1309.7	63.51	1360.2
				22.94	1243.4		

3.6 P-V-T AND VIRIAL COEFFICIENT DATA

Data Sources:

Long, E. A., and Brown, O. L. I. (1937), A Comparison of the Data of State of Normal and Para Hydrogen from the Boiling Point to $55^{\circ} \mathrm{K}$, J. Am. Chem. Soc. 59, 1922-24.

Beenakker, J. J. M., Varekamp, F. H., and Knaap, H. F. P. (1960), The Second Virial Coefficient of Ortho and Para Hydrogen at Liquid Hydrogen Temperatures, Physica 26, 43-51.

Goodwin, R. D. (1961), Apparatus for Determination of Pressure-Density-Temperature Relations and Specific Heats of Hydrogen to 350 Atmospheres at Temperatures above $14^{\circ} \mathrm{K}$, J. Res. Natl. Bur. Std. 65c, 231-43.

Goodwin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1963), Pressure-DensityTemperature Relations of Fluid Para Hydrogen from 15 to $100^{\circ} \mathrm{K}$ at Pressures to 350 Atmospheres, J. Res. Natl. Bur. Std. 67a, 173-92.

Comments:

The difference in the P-V-T surfaces of ortho and para hydrogen are very small. Thus only measurements of high accuracy or direct difference measurements are useful to predict these differences. Most of the published experimental P-V-T data have been omitted from this tabulation because the systematic errors appear to be at least as large as the ortho-para differences. These data will be examined in a continuation of this study of ortho-para hydrogen properties in an attempt to determine the actual differences, or at least to establish an upper limit for the ortho-para differences. The following extensive data sources have been omitted from this tabulation:
(1) Johnston, H. L., et al. (1953), Ohio State University, Cryogenics Laboratory Tech. Rept. No. TR 264-25.
(2) Johnston, H. L., et al. (1954), J. Am. Chem. Soc. 76, 1482-86.
(3) Michels, A., et al. (1959), Physica 25, 25-42.

Long and Brown (1937) determined the second virial coefficients of normal and para hydrogen with a constant volume gas thermometer from 20 to $56^{\circ} \mathrm{K}$. They concluded that there is no essential difference in the second virial coefficients of the two forms of hydrogen.

Beenakker, et al. (1960) measured the difference between the second virial coefficients of normal and para hydrogen. They reported differences of about 1% at 20.5 and $18.3^{\circ} \mathrm{K}$ with a sensitivity of the order of 3×10^{-6} amagat. Their results indicate that the difference in second virial coefficient is a linear function of composition.

Goodwin (1961) measured seven P-V-T state points of normal hydrogen as a check of his apparatus which was used for extensive measurements of parahydrogen density. The parahydrogen data included below for comparison were linearly interpolated from the values reported by Goodwin, et al. (1963). The parahydrogen data extend from 15 to $100^{\circ} \mathrm{K}$ and to pressures up to 350 atmospheres. These para and normal hydrogen P-V-T data are comparable because of their high precision, and the probability that any systematic errors in the two sets are essentially the same, since these measurements are made from the same apparatus and by the same experimenters. These data have a reported accuracy and precision of 0.1 and 0.02%, respectively. (The NBS-1955 Temperature Scale was used.)

Long and Brown (1937)			
Second Virial Coefficient, B, in Amagat Units as Defined by $P V_{A}=A+B / V_{A}$ where $V_{A}=V / V_{0}$ and $V_{O}=$ Volume at $0^{\circ} \mathrm{C}$ and 1 Atm			
T, ${ }^{\circ} \mathrm{K}$	Second Virial Coefficient		
	Normal	Para	Difference
20.87	-465×10^{-6}	-473×10^{-6}	-8×10^{-6}
24.11	-434	-435	-1
27.65	-407	-407	0
32.43	-371	-377	-6
37.08	-339	-343	-4
41.49		-316	
41.64	-310	-315	-5
43.95		-301	
46.45	-282 $\begin{array}{ll} \\ & -265 \\ -235 \\ -216\end{array}$		
48.45			
52.51			
56.21			

Beenakker, et al. (10,60)	
Second Virial Coefficient, B, In Amagat Units as Defined by	
$\mathrm{PV}_{\mathrm{A}}=\mathrm{A}\left(1+\mathrm{B} / \mathrm{V}_{\mathrm{A}}\right)$	
$\mathrm{T},{ }^{\circ} \mathrm{K}$	Difference
	Para-Normal
20.5	64×10^{-6}
20.5	66
20.5	68
20.5	64
20.5	68
20.5	71
20.5	66
20.5	72
20.5	69
20.5	67
18.3	95
18.3	115
18.3	75

Goodwin, et al. (1961) and (1963)				
Pressure-Volume-Temperature Data (NBS-1955 Temperature Scale)				
T, ${ }^{\circ} \mathrm{K}$	P,atm	Volume, $\mathrm{cm}^{3} / \mathrm{mole}$		
		Normal	Para	Difference
28	30.869	30.52	30.63	0.11
30	45.357	30.54	30.63	0.09
32	59.738	30.56	30.64	0.08
36	88.443	30.59	30.65	0.06
40	116.969	30.62	30.68	0.06
45	151.884	30.65	30.69	0.04
50	186.213	30.69	30.70	0.01

3.7 SATURATION DENSITIES

Data Sources:

Scott, R. B., and Brickwedde, F. G. (1937), The Molecular Volumes and Expansivities of Liquid Normal Hydrogen and Parahydrogen, J. Chem. Phys. 5, 736-44.

Goodwin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1961), The Densities of Saturated Liquid Hydrogen, Cryogenics 2, 81-83.

Knaap, H. F. P., Knoester, M., and Beenakker, J. J. M. (1961), The Volume Change on Mixing for Several Liquid Systems and the Difference in Molar Volume between the Ortho and Para Modifications of the Hydrogenic Molecules, Physica 27, 309-18.

Comments:

The saturation density differences in ortho and para hydrogen are small (about 0.5\%), therefore only measurements of high accuracy or direct measurements of differences are reviewed here. Further analysis will be required to determine if their selection has been prudent.

The effect on density of the change in vapor pressure between ortho and para hydrogen has been examined. The change in liquid density corresponding to the observed difference in vapor pressure is less than 0.01% except within $2^{\circ} \mathrm{K}$ of critical temperature. Thus the differences in liquid saturation densities of ortho and para hydrogen are indicative of the differences in the P-V-T surfaces of ortho and para hydrogen near the saturated liquid line. However, the effect of the vapor pressure differences on the saturated vapor densities is as much as 6% near the triple point and decreases to less than 1% at $30^{\circ} \mathrm{K}$. The differences in ortho-para saturation densities are thus not indicative of the differences in ortho-para P-V-T surfaces near the saturated vapor line.

Scott and Brickwedde (1937) measured the densities of saturated liquid normal and para hydrogen with a fused quartz dilatometer at temperatures from 14 to $20.4^{\circ} \mathrm{K}$. The amount of hydrogen was determined from the pressure of the gas after expansion into a calibrated flask at a measured temperature. Their data is represented to within its precision by the equations

$$
\begin{aligned}
& \mathrm{V}\left(\mathrm{n}-\mathrm{H}_{2}\right) \mathrm{cm}^{3} / \mathrm{mole}=24.747-0.08005 \mathrm{~T}+0.012716 \mathrm{~T}^{2} \\
& \mathrm{~V}\left(\mathrm{p}-\mathrm{H}_{2}\right) \mathrm{cm}^{3} / \mathrm{mole}=24.902-0.0888 \mathrm{~T}+0.013104 \mathrm{~T}^{2} .
\end{aligned}
$$

They measured the vapor pressure and calculated temperature from a vapor pressure equation, therefore their temperatures are not tabulated here. These authors indicate a probable error of 0.03% in their experimental volumes.

Goodwin, et al. (1961) presents a comparison (using the NBS-1955 Temperature Scale) of the available saturated density data for liquid para and normal hydrogen. The normal hydrogen data are taken from Scott and Brickwedde (1937) and the parahydrogen data were measured by Goodwin, et al. (1961). These density determinations were reported to have a precision of two parts in 10,000 and an accuracy of 10 parts in 10,000 .

Knaap, et al. (1961) determined the volume change on mixing of normal and para hydrogen for compositions ranging from 0.27 to 0.70 mole fraction normal hydrogen at $20.4^{\circ} \mathrm{K}$. The accuracy is claimed to be of the order of $5 \mathrm{~mm}^{3} / \mathrm{mole}$.

Scott and Brickwedde (1937)	
Saturated Liquid Normal Hydrogen	
Vapor Pressure	Volume
mm Hg	cm $^{3} /$ mole
749.8	28.395
65.0	26.179
754.1	28.386
65.4	26.207
220.0	27.000
335.3	27.383
518.8	27.870
751.4	28.390
752.4	28.389
81.7	26.313
108.7	26.488
201.8	26.930
308.9	27.308
410.2	27.594
571.8	28.009
751.7	28.387
758.7	28.383
79.5	26.284
111.2	26.492
186.7	26.862
290.7	27.239
450.6	27.696
550.9	27.943
756.9	28.382
Saturated Liquid Parahydrogen	
	Volume
Vapor Pressure	cm
mm Hg	mole
68.5	26.330
117.9	26.649
221.8	27.121
374.0	27.625
754.7	28.267
140.5	26.729
314.7	27.449
567.8	28.121
748.3	28.514

Goodwin, et al. (1961)			
Saturated Liquid (NBS-1955 Temperature Scale)			
$\mathrm{T},{ }^{\circ} \mathrm{K}$	Density (moles/liter)		
	Para	Normal	Difference
13.803	38.1998		
13.947		38.3038	
14	38.1191	38.2819	0.1628
15	37.6987	37.8609	0.1622
16	37.2586	37.4190	0.1604
17	36.7970	36.9546	0.1576
18	36.3119	36.4656	0.1537
19	35.8010	35.9498	0.1488
20	35.2615	35.4045	0.1430
20.268	35.1115		
20.380		35.1889	
21	34.6898	34.8263	0.1365
22	34.0821	34.2114	0.1293
23	33.4330	33.5549	0.1219
24	32.7363	32.8506	0.1143
25	31.9835	32.0908	0.1073
26	31.1635	31.2650	0.1015
27	30.2610	30.3590	0.0980
28	29.2534	29.3522	0.0988
29	28.1060	28.2131	0.1071
30	26.7588	26.8889	0.1301
31	25.0921	25.2776	0.1855
32	22.7821	23.1238	0.3417
32.984	15.2672		
33.		19.0252	
33.180		14.9365	

Knaap, et al. (1961)	
Mole fraction of $\mathrm{n}-\mathrm{H}_{2}$	Volume change on mixing for mixtures of $\mathrm{n}-\mathrm{H}_{2}$ and $\mathrm{p}-\mathrm{H}_{2}$ at $20.4^{\circ} \mathrm{K}$ $\mathrm{cm}^{3} / \mathrm{mole}$
0.27	0.017
0.28	0.014
0.44	0.016
0.50	0.018
0.70	0.010
0.70	0.011

TEMPERATURE, ${ }^{\circ} \mathrm{K}$

3.8 VAPOR PRESSURE

Data Sources:

Woolley, H. W., Scott, R. B., and Brickwedde, F. G. (1948), Compilation of Thermal Properties of Hydrogen in its Various Isotopic and Ortho-Para Modifications, J. Res. Natl. Bur. Std. 4l, 379-475, RP-1932.

White, D., Friedman, A. S., and Johnston, H. L. (1950), The Vapor Pressure of Normal Hydrogen from the Boiling Point to the Critical Point, J. Am. Chem. Soc. 72, 3927-30.

Hoge, H. J., and Arnold, R. D. (1951), Vapor Pressures of Hydrogen, Deuterium, and Hydrogen Deuteride and Dew-Point Pressures of their Mixtures, J. Res. Natl. Bur. std. 47, 63-74.

Grilly, E. R. (1951), The Vapor Pressures of Hydrogen, Deuterium and Tritium up to Three Atmospheres, J. Am. Chem. Soc. 73, 843-46.

Weber, L. A., Diller, D. E., Roder, H. M., and Goodwin, R. D. (1962), The Vapor Pressure of $20^{\circ} \mathrm{K}$ Equilibrium Hydrogen, Cryogenics 2 , 236-38.

Barber, C. R., and Horsford, A. (1963), The Determination of the Boiling and Triple Points of Equilibrium Hydrogen and its Vapor Pressure-Temperature Relation, Brit. J. Appl. Phys. 14, 920-23.

Van Itterbeek, A., Verbeke, O., Theewes, F., Staes, K., and De Boelpaep, J. (1964), The Difference in Vapor Pressure between Normal and Equilibrium Hydrogen. Vapor Pressure of Normal Hydrogen between $20^{\circ} \mathrm{K}$ and $32^{\circ} \mathrm{K}$, Physica 30, No. 6, 1238-44.

Comments:

Vapor pressure data published prior to the research paper by Woolley, et al. (1948) were not considered in this report. The earlier values are assumed to be well represented by the results of Woolley, et al. Vapor pressure differences calculated from the equations presented by Woolley, et al. (1948) agree well with more recent data al though the vapor pressures themselves above $20^{\circ} \mathrm{K}$ are not in good agreement with recent data. Hoge and Arnold (1951) suggest that Brickwedde and Scott (unpublished data cited by Woolley, et al. 1948) actually measured these differences rather than the vapor pressures. The vapor pressure differences of Woolley, et al. (1948) and the measured values of Van Itterbeek are illustrated graphically. To obtain best values of the differences in the vapor pressure of normal and para hydrogen, in a continuation of this study, the vapor pressure data from the other sources listed here will be corrected for temperature scale and interpolated. No attempt has been made to include isolated vapor pressure values such as normal boiling point and triple point determinations; only measurements over extended temperature ranges are included. The reader is cautioned that best values of vapor pressure are not indicated; the differences in ortho and para vapor pressures are of primary interest here.

Woolley, et al. (1948) examined the experimental vapor pressure data and selected the unpublished data of Brickwedde and Scott. The NBS-1939 Temperature Scale was used.

White, et al. (1950) measured the vapor pressure of normal hydrogen from 21 to $33^{\circ} \mathrm{K}$. White, et al. indicated an accuracy of $0.02^{\circ} \mathrm{K}$, and 0.03 mm of Hg below 2.5 atmospheres and one part in 30,000 above 2.5 atmospheres. The temperature scale used is not reported.

Hoge and Arnold (1951) measured the vapor pressure of equilibrium ($20.4^{\circ} \mathrm{K}$) hydrogen at temperatures from $17^{\circ} \mathrm{K}$ to $33^{\circ} \mathrm{K}$. These data are based on the NBS-1939 Low Temperature Scale (below $90^{\circ} \mathrm{K}$). They point out here that the results of Brickwedde and Scott, unpublished but cited in Woolley, et al. (1948), differ systematically from their results because of temperature scale differences. Most of the data of Brickwedde and Scott were taken before the NBS-1939 scale was established. It is also indicated that the Brickwedde and Scott data are based on equilibrium hydrogen data and differences of vapor pressures of the various modifications of hydrogen.

Grilly (1951) measured the vapor pressure of normal hydrogen from 14 to $24.5^{\circ} \mathrm{K}$. The data from 14 to $20^{\circ} \mathrm{K}$ are well represented by the Brickwedde and Scott equation but above $20^{\circ} \mathrm{K}$ a different equation was required. The NBS-1939 Temperature Scale was used. The estimated average uncertainty is 0.1% in pressure or $0.004^{\circ} \mathrm{K}$ in temperature.

Weber, et al. (1962) measured the vapor pressure of $20^{\circ} \mathrm{K}$ equilibrium hydrogen at temperatures from 20 to $33^{\circ} \mathrm{K}$. The NBS-1955 Temperature Scale was used. An uncertainty of $\pm 0.003 \mathrm{~atm}$ is indicated.

Barber and Horsford (1963) report vapor pressure values for equilibrium hydrogen for temperatures from 13.8 to $20.2^{\circ} \mathrm{K}$. The NPL (National Physical Laboratory) Temperature Scale with an ice point of $273.15^{\circ} \mathrm{K}$ and an oxygen point of $90.177^{\circ} \mathrm{K}$ is used.

Van Itterbeek, et al. (1964) measured the difference in vapor pressure of normal and para hydrogen and the vapor pressure of normal hydrogen, simultaneously. The normal boiling points of normal and para hydrogen were determined to 20.389 and $20.269^{\circ} \mathrm{K}$, respectively. The results were reported as accurate to within $\pm 0.004 \mathrm{~kg} / \mathrm{cm}^{2}$. The vapor pressure differences of the Brickwedde and Scott equations are illustrated graphically by Van Itterbeek, et al. to $31^{\circ} \mathrm{K}$ and appear in good agreement with these data.

Woolley, et al. (1948)			
(NBS-1939 Temperature Scale)			
T, ${ }^{\circ} \mathrm{K}$	Vapor Pressure (mm of Hg)		
	Normal	Para	Difference
13.813		52.8	
13.957	54.0	57.4	3.4
14	55.4	58.8	4.4
15	95.0	100.4	5.4
16	153.3	161.2	7.9
17	235.2	246.2	11.0
18	345.9	360.6	14.7
19	490.8	510.1	19.3
20	675.7	700.3	24.6
20.273	733.9	760.0	26.1
20.390	760.0	786.8	26.8
21	906.4	937.0	30.6
22	1189.0	1226.6	37.6
23	1529.6	1574.9	45.3

White, et al. (1950)	
Vapor Pressure of Normal Hydrogen	
Temp.	Vapor Pressure
${ }^{\circ} \mathrm{K}$	atm.
27.31	4.8956
28.85	6.4144
32.00	10.6090
20.90	1.1596
21.81	1.4844
22.65	1.8155
23.72	2.3493
24.73	2.9510
25.70	3.6126
26.74	4.4178
28.20	5.7618
29.56	7.2763
30.19	8.0645
30.79	8.8359
31.40	9.6981
32.36	11.2065
33.07	12.3553
33.140	12.620
33.244	12.797

Hoge and Arnold (1951)			
Vapor Pressure of $20.4{ }^{\circ} \mathrm{K}$ Equilibrium Hydrogen			
$\begin{gathered} \text { Temp. } \\ { }^{\circ} \mathrm{K} \end{gathered}$	Vapor Pressure mm Hg	$\underset{{ }_{\mathrm{o}}^{\mathrm{o}} \mathrm{~K}}{\mathrm{Temp}} .$	Vapor Pressure mm Hg
$\begin{aligned} & 17.8294 \\ & 18.5812 \\ & 19.1245 \\ & 20.0401 \\ & 20.4069 \end{aligned}$	$\begin{aligned} & 338.4 \\ & 442.1 \\ & 530.7 \\ & 707.7 \\ & 789.6 \end{aligned}$	$\begin{aligned} & 31.4021 \\ & 16.9752 \\ & 15.8414 \\ & 22.2604 \\ & 22.9058 \end{aligned}$	$\begin{array}{r} 7660.2 \\ 243.1 \\ 149.7 \\ 1308.4 \\ 1534.9 \end{array}$
$\begin{aligned} & 20.5118 \\ & 16.9549 \\ & 20.2648 \\ & 20.5167 \\ & 20.8655 \end{aligned}$	$\begin{aligned} & 813.7 \\ & 241.4 \\ & 757.1 \\ & 815.2 \\ & 900.7 \end{aligned}$	$\begin{aligned} & 25.0473 \\ & 27.8744 \\ & 29.9173 \\ & 30.9020 \\ & 31.8910 \end{aligned}$	$\begin{aligned} & 2488.5 \\ & 4299.6 \\ & 6080.2 \\ & 7102.8 \\ & 8255.1 \end{aligned}$
$\begin{aligned} & 21.2046 \\ & 20.9513 \\ & 21.3379 \\ & 23.6441 \\ & 24.4501 \end{aligned}$	$\begin{array}{r} 989.8 \\ 922.1 \\ 1026.8 \\ 1827.1 \\ 2189.4 \end{array}$	$\begin{aligned} & 22.2800 \\ & 22.5792 \\ & 28.8797 \\ & 31.0820 \\ & 20.9534 \end{aligned}$	$\begin{array}{r} 1313.8 \\ 1416.1 \\ 5121.5 \\ 7302.5 \\ 922.5 \end{array}$
$\begin{aligned} & 24.9003 \\ & 25.5711 \\ & 26.1980 \\ & 26.7811 \\ & 27.4083 \end{aligned}$	$\begin{aligned} & 2414.1 \\ & 2773.5 \\ & 3142.6 \\ & 3517.5 \\ & 3952.7 \end{aligned}$	$\begin{aligned} & 21.6873 \\ & 25.8955 \\ & 32.8933 \\ & 32.8936 \\ & 32.8926 \end{aligned}$	$\begin{aligned} & 1127.2 \\ & 2960.3 \\ & 9566.2 \\ & 9564.4 \\ & 9559.3 \end{aligned}$
$\begin{aligned} & 28.3858 \\ & 29.3956 \\ & 30.3776 \end{aligned}$	$\begin{aligned} & 4705.7 \\ & 5583.9 \\ & 6544.6 \end{aligned}$	$\begin{aligned} & 32.6457 \\ & 32.3853 \\ & 32.1392 \end{aligned}$	$\begin{aligned} & 9219.5 \\ & 8875.1 \\ & 8557.7 \end{aligned}$

Grilly (1951)	
Vapor Pressure of Liquid Normal Hydrogen	
Temp. ${ }_{\mathrm{K}}$	Vapor Pressure mm Hg
19.560	587.8
20.092	694.7
21.323	986.6
22.047	1196.8
22.803	1445.9
23.412	1675.0
23.941	1897.4
24.445	2125.7
24.445	2125.7

Weber, et al. (1962)			
Vapor Pressure of Parahydrogen			
$\overline{\mathrm{o}_{\mathrm{K}}} \overline{\operatorname{Temp}} .$	Vapor Pressure atm.	Temp. ${ }^{\circ} \mathrm{K}$	Vapor Pressure atm.
$\begin{aligned} & 20.268 \\ & 22.000 \\ & 23.000 \\ & 25.000 \\ & 26.000 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 1.6124 \\ & 2.0688 \\ & 3.2462 \\ & 3.9826 \end{aligned}$	$\begin{aligned} & 31.500 \\ & 32.000 \\ & 32.000 \\ & 32.000 \\ & 32.500 \end{aligned}$	$\begin{aligned} & 10.2539 \\ & 11.0502 \\ & 11.0516 \\ & 11.0522 \\ & 11.8988 \end{aligned}$
$\begin{aligned} & 27.000 \\ & 28.000 \\ & 29.000 \\ & 30.000 \\ & 30.000 \end{aligned}$	4.8285 5.7920 6.8863 8.1162 8.1169	$\begin{aligned} & 32.500 \\ & 32.500 \\ & 32.600 \\ & 32.600 \\ & 32.600 \end{aligned}$	$\begin{aligned} & 11.8976 \\ & 11.8989 \\ & 12.0749 \\ & 12.0742 \\ & 12.0751 \end{aligned}$
$\begin{aligned} & 30.000 \\ & 30.500 \\ & 30.500 \\ & 30.500 \\ & 31.000 \end{aligned}$	$\begin{aligned} & 8.1171 \\ & 8.7873 \\ & 8.7885 \\ & 8.7886 \\ & 9.5023 \end{aligned}$	$\begin{aligned} & 32.700 \\ & 32.700 \\ & 32.700 \\ & 32.800 \\ & 32.800 \end{aligned}$	$\begin{aligned} & 12.2526 \\ & 12.2520 \\ & 12.2536 \\ & 12.4326 \\ & 12.4330 \end{aligned}$
$\begin{aligned} & 31.000 \\ & 31.000 \\ & 31.000 \\ & 31.500 \\ & 31.500 \end{aligned}$	$\begin{array}{r} 9.5029 \\ 9.5005 \\ 9.5003 \\ 10.2525 \\ 10.2535 \end{array}$	$\begin{aligned} & 32.800 \\ & 32.900 \\ & 32.900 \\ & 32.900 \\ & 33.000 \end{aligned}$	$\begin{aligned} & 12.4352 \\ & 12.6168 \\ & 12.6187 \\ & 12.6183 \\ & 12.8043 \end{aligned}$

Barber and Horsford (1963) Equilibrium Hydrogen (NPL Temperature Scale) Temp. Vapor Pressure ${ }^{\circ} \mathrm{K}$	
20.2705	mm Hg
19.0503	760.0
18.4474	519.527
17.4286	423.277
16.2885	291.293
15.3485	183.031
11.0053	119.379
14.5236	100.845
13.9768	78.618
13.8157	58.278
	52.948

Van Itterbeek, et al. (1964)		
(NPL Temperature Scale)		
T, ${ }^{\circ} \mathrm{K}$	Vapor Pressure, $\mathrm{kg} / \mathrm{cm}^{2}$	
	Normal	Difference Para-Normal
$\begin{aligned} & 20.555 \\ & 20.560 \end{aligned}$		$\begin{aligned} & 3.89 \times 10^{-2} \\ & 3.89 \end{aligned}$
21.023	1.236	4.30
21.298	1.334	4.71
21.607	1.452	4.72
21.835	1.546	4.86
22.089	1.635	5.30
22.242	1.715	5.40
22.331		5.35
22.772	1.965	5.85
23.085	2.117	6.30
23.537	2.355	6.67
24.680	3.051	7.84
24.929	3.221	8.45
25.209	3.418	8.73
26.025		10.03
26.323	4.280	10.29
26.721	4.624	11.00
26.791	4.704	10.60
27.072	4.940	11.54
27.256	5.121	11.89
27.479	5.343	11.91
27.540	5.382	12.40
27.964	5.829	12.71
27.964		12.92
27.970	5.837	12.99
28.201		13.20
28.289	6.189	13.39
28.301	6.186	13.47
28.464	6.366	13.71
28.888	6.842	14.83
28.888		14.38
29.178	7.195	14.98
29.207	7.223	15.39
29.238	7.264	15.03
29.500	7.586	15.52
29.771	7.932	16.06
29.979	8.236	16.38
29.996	8.224	
30.137	8.452	16.88
30.172	8.476	16.71
30.601	9.086	17.64
30.971	9.604	18.46
31.119	9.817	18.55
31.146	9.864	19.07
31.238	10.011	19.02
31.352	10.172	19.23
31.720	10.758	20.52
32.276	11.679	22.05

3.9 LaTENT HEAT OF VAPORIZATION

Data Sources:

Woolley, H. W., Scott, R. B., and Brickwedde, F. G. (1948), Compilation of Thermal Properties of Hydrogen in its Various Isotopic and Ortho-Para Modification, J. Res. Natl. Bur. Std. 41, 379-475, RP-1932.

Goodwin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1961), The Densities of Saturated Liquid Hydrogen, Cryogenics 2, 81-83.

Roder, H. M., Diller, D. E., Weber, L. A., and Goodwin, R. D. (1963), The Orthobaric Densities of Parahydrogen, Derived Heats of Vaporization and Critical Constants, Cryogenics 3, 16-22.

Goodwin, R. D., Diller, D. E., Roder, H. M., and Weber, L. A. (1964), Second and Third Virial Coefficients for Hydrogen, J. Res. Natl. Bur. Std. 68a, 121.

Stewart, R. B., and Roder, H. M. (1964), Chapter 1l, Properties of Normal and Para Hydrogen, p. 379-404 in Technology and Uses of Liquid Hydrogen, Pergamon Press, New York.

Comments:

The values for the latent heat of vaporization of para hydrogen are from Roder, et al. (1963).

The latent heat of vaporization of normal hydrogen was calculated from data compiled by Stewart and Roder (1964) from the Clausius-Clapeyron equation. The original data are as follows from the following sources. The saturated liquid densities were obtained from Goodwin, et al. (1961). The saturated vapor densities were calculated by Stewart and Roder using the para hydrogen virial coefficients by Goodwin, et al. (1964) under the assumption that the virial coefficients of normal and para hydrogen differ only slightly. The vapor pressure values and slopes were from the equation given by Woolley, et al. (1948)。

Stewart and Roder (1964)			
$\mathrm{T},{ }^{\circ} \mathrm{K}$	Latent Heat of Vaporization, cal/g mole		
	Normal	Para	Difference
14	219.9	217.1	2.8
15	220.7	218.3	2.4
16	221.1	218.5	2.6
17	221.1	218.4	2.7
18	220.6	217.9	2.7
19	219.6	216.8	2.8
20	218.0	215.2	2.8
21	215.7	212.5	3.2
22	212.7	209.5	3.2
23	208.9	205.6	3.3
24	204.2	200.8	3.4
25	198.5	195.0	3.5
26	191.5	187.8	3.7
27	183.1	179.2	3.9
28	173.0	168.7	4.3
29	160.6	155.8	4.8
30	145.2	140.1	5.1
31	125.4	119.8	5.6
32		90.8	

$T-09312$
14
$12 / 116 \mathrm{~s}$

[^0]: * NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
 ** Located at Boulder, Colorado.

[^1]: *This compilation is a result of a study made under contract with the National Aeronautics and Space Administration.

