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PREFACE

The material contained in this report was prepared originally as two chapters

of a textbook on metrology. It deals with basic statistical concepts as related to

a measurement process and gives certain selected statistical techniques for the

analysis of measurement data. Its sole aim is to introduce to metrologists and

physical scientists some of the possible applications of statistical methodology

in the field of measurement science, and to do so in a minimum number of pages.

Beginning with the differentiation between arithmetic and measurement

numbers, the properties of the latter are developed and described, leading to a

discussion of precision and accuracy at the end of the first chapter.

A basic kit of tools for the comparison and manipulation of means and

variances is given in the second chapter, including a collection of propagation of

error formulas. The use of control chart techniques lor monitoring stability is

emphasized. Examples are given using actual calibration data of the Bureau.

Selected references are given for topics introduced but not treated in detail.

Encouragement and helpful comments from all the members of the Statistical

Engineering Laboratory are gratefully acknowledged.

Harry H. Ku
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AN INTRODUCTION TO THE STATISTICAL TRELiTMENT OF
MEASUREMENT DATA

Harry H. Ku

Chapter I. Statistical Concepts of a Measurement Process

1 . Arithmetic numbers and measurement numbers

In metrological work, digital numbers are used for different purposes and

consequently these numbers have different interpretations. It is therefore

important to differentiate the two types of numbers which will be encountered.

Arithmetic numbers are exact numbers. 3, ^/T, 1/3, e, or n are all exact

numbers by definition, although in expressing some of these numbers in digital

form, approximation may have to be used. Thus, n may be written as 3.14 or

3.1416, depending on our judgement of which is the proper one to use from the

combined point of view of accuracy and convenience. By the usual rules of

rounding, the approximations do not differ from the exact values by more than

+0.5 units of the last recorded digit. The accuracy of the result can always

be extended if necessary.

Measurement numbers, on the other hand, are not approximations to exact

numbers, but numbers obtained by operation under approximately the same con-

ditions. For example, three measurements on the diameter of a steel shaft

with a micrometer may yield the following results:

no . diameter in cm.

1 .396

2 .392

3 .401

Sum 1.189

Average .3963

Range .009

general notation

x.

I =-1

i=l

i Yx.
n L 1

1

R = X - X ,

max. min.
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There is no rounding off here. The last digit in the measured value depends on

the instrument used and our ability to read it. If we had used a coarser instrument,

we might have obtained 0.4, 0.4, and 0.4; if a finer instrument, we might be able

to record to the fifth digit after the decimal point. In all cases, however, the

last digit given certainly does not imply that the measured value differs from the

diameter D by less than +0.5 unit of the last digit.

Thus we see that measurement numbers differ by their very nature from arithmetic

numbers. In fact, the phrase "significant figures" has little meaning in the manip-

ulation of numbers resulting from measurements. Reflection on the simple example

above will help to convince one of this fact.

(a ) Computation and Reporting of Results

By experience, the metrologist can usually select an instrument to give him

results adequate for his needs, as illustrated in the example above. Unfortunately,

in the process of computation, both arithmetic numbers and measurement numbers are

present, and frequently confusion reigns over the number of digits to be kept in

successive arithmetic operations.

No general rule can be given for all types of arithmetic operations. If the

instrument is well-chosen, severe rounding would result in loss of information. One

suggestion, therefore, is to treat all measurement numbers as exact numbers in the

operations and to round off the final result only. Another recommended procedure

is to carry two or three extra figures throughout the computation, and then to round

off the final reported value to an appropriate number of digits.

The "appropriate" number of digits to be retained in the final result depends

on the "uncertainties" attached to this reported value. The term "uncertainty" will

be treated later under Precision and Accuracy, our only concern here is the number

of digits in the expression for uncertainty.

A recommended rule is that the uncertainty should be stated to no more than

two significant figures, and the reported value itself should be stated to the last

place affected by the qualification given by the uncertainty statement. An example

is

:

"The apparent mass correction for the nominal 10 g. weight is +0.0420 mg.

with a overall uncertainty of + 0.0087 mg. using three standard deviations

as a limit to the effect of random errors of measurement, the magnitude of

systematic errors from known sources being negligible."

2



The sentence form is preferred since then the burden is on the reporter to

specify exactly the meaning of the term uncertainty, and to spell out its components.

Abbreviated forms such as a + b, where ’’a” is the reported value and ''b” a

measure of uncertainty in some vague sense, should always be avoided.

2 . Properties of Measurement Numbers

The study of the properties of measurement numbers, or the Theory of Errors,

formally began with Thomas Simpson more than 200 years ago, and attained its full

development in the hands of Laplace and Gauss. In the next sections some of the

important properties of measurement numbers will be discussed and summarized, thus

providing a basis for the statistical treatment and analysis of these numbers in

the following chapter.

(a ) The Limiting Mean

As shown in the micrometer example above, the results of repeated measurements

of a single physical quantity under essentially the same conditions yield a set of

measurement numbers. Each member of this set is an estimate of the quantity being

measured, and has equal claims on its value. By convention, the numerical values of

these n measurements are denoted by Xj^, x^, ..., x^, the arithmetic mean by x,

and the range by R, i.e., the difference between the largest value and the

smallest value obtained in the n measurements.

If the results of measurements are to make any sense for the purpose at hand,

we must require these numbers, though different, to behave as a group in a certain

predictable manner. Experience has shown that this is indeed the case under the

conditions stated in italics above. In fact, let us adopt as the Postulate of

Measurement [2] a statement due to N. Ernest Dorsey;

"The mean of a family of measurements - of a number of measurements

for a giVen quantity carried out by the same apparatus, procedure and

observer - approaches a definite value as the number of measurements is

indefinitely increased. Otherwise, they could not properly be called

measurements of a given quantity. In the theory of errors, this limiting

mean is frequently called the 'true' value, although it bears no necessary

relation to the true quaesitum, to the actual value of the quantity that

the observer desires to measure. This has often confused the unwary.

Let us call it the limiting mean."

3



Thus, according to this postulate, there exists a limiting mean '*m" to which

X approaches as the number of measurements increases indefinitely, or, in symbols

X -* m as n . Furthermore, if the true value is "t", there is usually a

difference between m and t, or A = m - t, where A is defined as the bias or

the systematic error of the measurements.

In practice, however, we will run into difficulties. The value of m cannot

be obtained since one cannot make an indefinite number of measurements. Even for

a large number of measurements, the conditions will not remain constant since

changes occur from hour to hour, and from day to day. The value of t is unknown

and usually unknowable, hence also the bias. Nevertheless, this seemingly simple

postulate does provide a sound foundation to build on toward a mathematical model,

from which estimates can be made and inference drawn, as we shall see later on.

(b) Range, Variance and Standard Deviation

The range of n measurements, on the other hand, does not enjoy this desirable

property of the arithmetic mean. With one more measurement, the range may increase

but cannot decrease. Since only the largest and the smallest numbers enter into its

calculation, obviously the additional information provided by the measurements in

between is lost. It will be desirable to look for another measure of the dispersion

(spread, or scattering) of our measurements which will utilize each measurement made

with equal weight, and which will approach a definite number as the number of

measurements is indefinitely increased.

A number of such measures can be constructed, the most frequently used are the

variance and the standard deviation. The choice of the variance as the measure of

dispersion is based upon its mathematical convenience and maneuverability. Variance

is defined as the value approached by the average of the sum of squares of the

deviations of individual measurement from the limiting mean as the number of meas-

urements is indefinitely increased, or in symbols:

The positive square root of the variance, g, is called the standard deviation (of

a single measurement); the standard deviation is of the same dimensionality as the

limiting mean.

as n -• CD
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There are other measures of dispersion such as average deviation and probable

error. The relationships between these measures and the standard deviation can be

found in reference [l].

(c) Population and the Frequency Curve

We shall call the limiting mean m the location parameter and the standard

deviation n the scale parameter of the population of measurement numbers

generated by a particular measurement process. By population is meant the con-

ceptually infinite number of measurements that can be generated. The two numbers

m and n describe this population of measurements to a large extent, and specify

it completely in one important special case.

Our model of a measurement process consists then of a defined population of

measurement numbers with a limiting mean m and a standard deviation a . The

result of a single measurement, X, can take randomly any of the values belonging

to this population. The probability that a particular measurement yields a value
/

of X which is less than or equal to x is the proportion of the population that

is less than or equal to x', in symbols

P = proportion of population less than or equal to x' .

Similar statements can be made for the probability that X will be greater than

or equal to x", or for X between x' and x" as follows:

For a measurement process that yields numbers on a continuous scale, the

distribution of values of X for the population can be represented by a smooth

curve, for example, curve C in figure 1. C is called a frequency curve. The area

between C and the abscissa bounded by any two values (x^^ and X
2 ) is the proportion

of the population that takes values between the two values, or the probability

that X will assume values between Xj^ and Xg . For example, the probability

that X s X ', can be represented by the shaded area to the left of x'; the total

area between the frequency curve and the abscissa being one by definition.

1/ We shall follow here the convention in using the capital X to represent the
value that might be produced by employing the measurement process to obtain a

measurement (i.e., a random variable), and the lower case x to represent a

particular val.ue of X observed.

p|x s x"]-
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Figure 1 A symmetrical distribution.

+CT + 2 0-

Figure 2a The uniform distribution.

2b The log-norinal distribution.
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Note that the shape of C is not determined by m and a alone. any curve

C' enclosing an area of unity with the abscissa defines the distribution of a

particular population. Two examples, the uniform distribution and the log-normal

distribution are given in figures 2a and 2b. These and other distributions are

useful in describing certain populations.

(d) The Normal Distribution

For data generated by a measurement process, the following properties are

usually observed:

i. The results spread roughly symmetrically about a central value,

ii. Small deviations from this central value are more frequently found than

A measurement process having these two properties would generate a frequency

curve similar to that shown in figure 1 which is symmetrical and bunched together

about m . The study of a particular theoretical representation of a frequency

curve of this type leads to the celebrated bell-shaped normal curve (Gauss error

curve). Measurements having such a normal frequency curve are said to be

normally distributed, or distributed in accordance with the normal law of ei’ror.

The normal curve can be represented exactly by the mathematical expression:

where y is the ordinate and x the abscissa and e = 2.71828 is the base of

natural logarithms.

Some of the important features of the normal curve are:

(i) It is symmetrical about m .

(ii) The area under the curve is one, as required.

(iii) If o is used as unit on the abscissa, then the area under the

curve between constant multiples of cr can be computed from

tabulated values of the normal distribution. In particular,

areas under the curve for some useful intervals between m - ko

and m + ko are given in table 1.

large deviations

y ( 1 . 1 )
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Table 1

Area under normal curve between m - ko and m + kcr

k: .6745 1.00 1.96 2.00 2.58 3.00

Percent
(appr

area under curve:
ox.

)

50.0 68.4 95.0 95.5 99.0 99.7

Thus about two thirds of the area lies within one a o f m. more

than 95 percent within 2a of m. and less than 0.3 percent beyond

3a from m .

(iv) From expression (1.1), it is evident that the frequency curve is

completely determined by the two parameters m and a .

The normal distribution has been studied intensively during the past century.

Consequently, if the measurements follow a normal distribution, we can say a great

deal about the measurement process. The question remains: How do we know that this

is so from the limited number of repeated measurements on hand?

The answer is that we don'tl However, in most instances the metrologist may

be willing:

(A) To assume that the measurement process generates numbers that follow a

normal distribution approximately, and act as if this were so,

(B) To rely on the so-called Central Limit Theorem, one version of which is

the followingi'^: "If a population has a finite variance and mean

m, then the distribution of the sample mean (of n independent measure-

ments) approaches the normal distribution with variance a^/n and mean

m as the sample size n increases." This remarkable and powerful

theorem is indeed tailored for measurement processes. First, -every

measurement process must by definition have a finite mean and variance.

Second, the sample mean x is the quantity of interest which,

according to the theorem, will be approximately normally distributed for

large sample sizes. Third, the measure of dispersion, i.e., the standard

1/ From Chapter 7, Introduction to the Theory of Statistics , by A.M. Mood,

McGraw-Hill, 1950.
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deviation of the sample mean, is reduced by a factor of 1/J~n I This last

statement is true in general for all measurement processes in which the

measurements are "independent” and- for all n . It is therefore not a con-

sequence of the Central Limit Theorem. The Theorem quarantees, however,

that the distribution of sample means of independent measurements will be

approximately normal with the specified limiting mean and standard

deviation oA/^ for large n .

In fact, for a measurement process with a frequency curve that is symmetrical

about the mean and with small deviations from the mean as compared to the magnitude

of the quantity measured, the normal approximation to the distribution of jc

becomes very good even for n as small as 3 or 4 . Fig. 3 shows the uniform and

normal distribution having the same mean and standard deviation. The peaked curve

is actually two curves, representing the distribution of arithmetic means of four

independent measurements from the respective distributions. These curves are

indistinguishable to this scale.

A formal definition of the concept of "independence” is out of the scope

here. Intuitively, we may say that n normally distributed measurements are

independent if these measurements are not correlated or associated in any way.

Thus, a sequence of measurements showing a trend or pattern are not independent

mea surements

.

There are many ways by which dependence or correlation creeps into a set of

measurement data; several of the common causes are the following:

(i) Measurements are correlated through a factor that has not been considered,

or has been considered to be of no appreciable effect on the results.

(ii) A standard correction constant has been used for a factor, e.g.,

temperature, but the constant may overcorrect or undercorrect for particu-

lar samples.

(iii) Measurements are correlated through time of the day, between days,

weeks, or seasons.

(iv) Measurements are correlated through rejection of valid data, when the

rejection is based on the size of the number in relation to others of

the group.

The traditional way of plotting the data in the sequence they are taken, or

in some rational grouping, is perhaps still the most effective way of detecting

trends or correlation.

9



Figure 3

Figure i

-.6 -.4 -.2 0 .2 .4 .6

Uniform and normal distribution of individual measurements

having the same mean and standard deviation, and the corresponding

distribution (s) of arithmetic means of four indenendent measurements.

Computed 90% confidence intervals for 100 samples of size 4

di’awn at random from a normal population with m = 10, a = 1.
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(e) Estimates of Population Characteristics

In the above section it is shown that the limiting mean, m, and the variance,

rr^, completely specify a measurement process that follows the normal distribution.

In practice, m and are not known and cannot be computed from a finite number

of measurements. This leads to the use of the sample mean, x, as an estimate of

the limiting mean, m, and s^, the square of the computed standard deviation of

the sample, as an estimate of the variance. The standard deviation of the average

of n measurements, o/^/n~ , is sometimes referred to as the standard error of the

mean, and is estimated by sA/TT .

We note that the making of n independent measurements is equivalent to

drawing a sample of size n at random from the population. Two concepts are of

importance here:

First, the measurement process is established and under control, meaning

the limiting mean and the standard deviation do possess definite values

which will not change over a reasonable period of time.

Secondly, the measurements are randomly drawn from this population, implying

that the values are of equal weights, and there is no prejudice in the

method of selection. Suppose out of three measurements the one which is

far apart from the other two is rejected, then the result will not be a

random sample.

For a random sample we can say that x is an unbiased estimate of m and s^

is an unbiased estimate of i.e., the limiting mean of x is equal to m; and

of s^ to rr^, where

n

i=l

In addition , we define s = = computed standard deviation.

3. Interpretation and Computation of Confidence Interval and Limits

By making k sets of n measurements each we can compute and arrange the k

values of x and s in tabular form as follows:

11



Set

1

2

Sample

X

X

1

2

Mean Sample Standard Dev,

j X
j

s .

J

In the array of x's no two will be likely to have exactly the same value.

From the Central Limit Theorem we deduce that the x*s will be approximately

normally distributed with standard deviation <!/^,^ . The frequency curve of x

will be centered about the limiting mean m and will have the scale factor .

In other words, x - m will be centered about zero, and the quantity

X - m
z -

cAHT

has the properties of a single observation from the "standardized" normal distribu-

tion which has a mean zero and a standard deviation of one.

From tabulated values of standardized normal distribution we know that 95% of

z values will be bounded between -1.96 and +1.96 . Hence the statement

-1.96 «
~

s +1.96 ,

or its equivalent,

X -1.96 s m < X +1.96 -2_
,

.AT ./rT

will be correct 95% of the time in the long run. The interval x -1.96 —^ to

_
X +1.96 is called a confidence interval for m . The probability that the

./n-

confidence interval will cover the limiting mean, 0.95 in this case, is called the

confidence level or confidence coefficient. The values of the end points of a

confidence interval are called confidence limits. It is to be borne in mind that

X will fluctuate from set to set, and the interval calculated for a particular

Xj may or may not cover m .

12



In the above discussion we have selected a two-sided interval symmetrical about

X . For such intervals the confidence coefficient is usually denoted by 1 - a,

where a/2 is the proportion of the area under the frequency curve of z that is

cut off from each tail.

In most cases, a is not known and an estimate of a is computed from the

same set of measurements we use to calculate x . Nevertheless, let us form a

quantity similar to z which is:

t = X - m

s/^/n"

and if we know the distribution of t, we could make the same type of statement

as before. In fact the distribution of t is known for the case of normally

distributed measurements.

The distribution of t was obtained mathematically by William S. Gosset under

the pen name of "Student'', hence the distribution of ”t" is called the Student's

distribution. In the expression for t, both x and s fluctuate from set to

set of measurements. Intuitively we will expect the value of t to be larger

than that of z for a statement with the same probability of being correct. This

indeed the

degrees of

case, the values of

A Brief

freedom

t are listed in table 2

Table 2-^

Table of Values of t

Confidence Level ; P = 1 - a

V .500 .900 .950 .990-

1 1.000 6.314 12.706 63.657

2 .816 2.920 4.303 9.925

3 .765 2.353 3.182 5.841

4 .741 2.132 2.776 4.604

5 .727 2.015 2.571 4.032

6 .718 1.943 2.447 3.707

7 .711 1.895 2.365 3.499

10 .700 1.812 2.228 3.169

15 .691 1.753 2.131 2.947

20 .687 1.725 2.086 2.845

30 .683 1.697 2.042 2.750

60 .679 1.671 2.000 2.660

OD. .674 1.645 1.960 2.576

Adapted from Biometrika Tables for Statisticians, Vol.I,

and H.O. Hartley, 1958, The University Press, Cambridge.

Edited by E.S. Pearson
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To find a value for t, we need to know the "degrees of freedom” (v) associ-

ated with the computed standard deviation s . Since x is calculated from the same

n numbers and has a fixed value, the n^^ value of x^ is completely determined by

X and the other (n-1) values. Hence the degrees of freedom here are n-1 .

Having the table for the distribution of t, and using the same reasoning as

before, we can make the statements that:

X - t
s

s m < X + t
s

and our statements will be correct 100(l-a)% of the time in the long run. The value

of t depends on the degrees of freedom v and the probability level. From the

table, we get for a confidence level of .95, the following lower and upper confidence

limits

:

V
- X - t L == X t

u
s/J~n

1 X - 12.706 sA/ir X + 12.706 sA/lT

2 X - 4.303 s/./ir X + 4.303 sArn"

3 X - 3.182 s/.rsr X + 3.182 s/,rtT

The value of t for v = ® is 1.96, the same as for the case of known n . Notice

that very little can be said about m with two measurements. However, for n

larger than 2, the interval predicted to contain m narrows down steadily, due to

both the smaller value of t and the divisor ,/lT

It is probably worthwhile to emphasize again that each particular confidence

interval computed as a result of n measurements will either include m or fail to

include m . The probability statement refers to the fact that if we make a long

series of sets of n measurements, and if we compute a confidence interval for m

from each set by the prescribed method, we woi’ld expect 95% of such intervals to

include m .

Fig. 4 shows the 90% confidence intervals (P = .90) computed from 100 samples

of n = 4 from a normal population with m = 10, and a = 1 . Three interesting

features are to be noted:

(i) The number of intervals that include m actually turns out to be 90, the

expected number.

(ii) The surprising variation of the sizes of these intervals.

(iii) The closeness of the mid-points of these intervals to the line for the mean

does not seem to be related to the spread. In samples no. 2 and no. 3, the

four values must have been very close together, but both of these intervals

failed to include the line for the mean.

14



From the widths of computed confidence intervals, one may get an intuitive

feeling whether the number of measurements n is reasonable and sufficient for the

purpose on hand. It is true that, even for small n, the confidence intervals will

cover the limiting mean with the specified probability, yet the limits may be so far

apart as to be of no practical significance. For detecting a specified magnitude of

interest, e.g., the difference between two means, the approximate number of measure-

ments required can be solved by equating the half-width of the confidence interval

to this difference and solving for n using a when known, or using s by trial

and error if o is not known. Tables of sample sizes required for certain pre-

scribed conditions are given in reference [l] of the next chapter.

4. Precision and Accuracy

Index of Precision

Since ct is a measure of the spread of the frequency curve about the limiting

mean, we can speak of o as an index of precision. Thus a measurement process with

a standard deviation is said to be more precise than another with standard

deviation Og if is smaller than O2 •
fact, (j is really a measure of

imprecision since the imprecision is directly proportional to a .)

Consider the means of sets of n independent measurements as a new derived

measurement process. The standard deviation of the new process is o/J~^ . It is

therefore possible to derive from a less precise measurement process a new process

which has a standard deviation equal to that of a more precise process. This is

accomplished by making more measurements.

Suppose m^ = m
2 , but = 2cj2 • Then for a derived process to have

w® need

= !i_ = !f2
^

,/TT ^rr

or we need to use the average of four measurements as a single measurement. Thus for

a required degree of precision, the number of measurements, n^^ and needed for

measurement processes I and II is proportional to the squares of their respective

standard deviations (variances), or in symbols

15



If a is not known, and the best estimate we have of a is a computed standard

deviation s based on n measurements then s could be used as an estimate of the

index of precision. The value of s, however, may vary considerably from sample to

sample in the case of a small number of measurements, as was shown in figure 4, where

the lengths of the intervals are constant multiples of s computed from the samples.

The number n or the degrees of freedom v must be considei’ed along with s in

indicating how reliable an estimate s is of o . In what follows, whenever the

terms standard deviation about the limiting mean (cr) or standard error of the mean

(i7-) are used, the respective estimates s and s/./TT may be substituted, by

taking into consideration the above reservation.

In metrology or calibration work, the precision of the reported value is an

integral part of the result. In fact, precision is the main criterion by which the

quality of the work is judged. Hence, the laboratory reporting the value must be

prepared to give evidence of the precision claimed. Obviously an estimate of the

standard deviation of the measurement process based only on a small number of measure-

ments cannot be considered as convincing evidence. By the use of the control chart

method for standard deviation and by the calibration of one's own standard at

frequent intervals, as described in sections 4 and 3(a) of the next chapter, the

laboratory may eventually claim that the standard deviation is in fact known and the

measurement process is stable, with readily available evidence to support these

claims.

Interpretation of Precision

Since a measurement process generates numbers as the results of repeated

measurements of a single physical quantity under essentially the same conditions, the

method and procedure in obtaining these numbers must be specified in detail. However,

no amount of detail would cover all the contingencies that may arise, or cover all the

factors that may affect the results of measurement. Thus a single operator in a

single day with a single instrument may generate a process with a precision index

measured by o . Many operators measuring the same quantity over a period of time

with a number of instruments will yield a precision index measured by or ' . Logically

a' must be larger than c, and in practice it is usually considerably larger.

Consequently modifiers of the words "precision” are recommended by ASTM^^ to qualify

1/ Use of the Terms Precision and Accuracy as Applied to the Measurement of a

Property of a Material, ASTM Designation: E177-61T, 1961.
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in an unambiguous manner what is meant. Examples are "single-operator-machine",

"multilaboratory", "single-operator-day" etc. The same publication warns against

the use of the terms "repeatability" and "reproducibility" if the interpretation of

these terms is not clear from the context.

The standard deviation a, or the standard error o/-v/TT can be considered as

a yardstick, with which we can gauge the difference between two results obtained as

measurements of the same physical quantity. If our interest is to compare the results

of one operator against another, the single-operator precision is probably appropriate,

and if the two results differ by an amount considered to be large as measured by the

standard errors, we may conclude that the evidence is predominantly against the two

results being truly equal. In comparing the results of two laboratories, the single-

operator precision is obviously an inadequate measure to use, since the precision of

each laboratory must include factors such as multi-operator-day-instruments.

Hence the sd-action of an index of precision depends strongly on the purposes for

which the results are to be used or might be used. It is common experience that three

measurements made within the hour are closer together than three measurements made on,

say, three separate days. However, an index of precision based on the former is

generally not a justifiable indicator of the quality of the reported value. For a

thorough discussion on the realistic evaluation of precision see section 4 of ref. [2].

Accuracy

The terra "accuracy" usually denotes in some sense the closeness of the measured

values to the true value, taking into consideration both precision and bias. Bias,

defined as the difference between the limiting mean and the true value, is a constant,

and does not behave in the same way as the index of precision, the st;andard deviation.

In many instances, the possible sources of biases are known but their magnitudes and

directions are not known. The overall bias is of necessity reported in terms of

estimated bounds that reasonably include the combined effect of all the elemental

biases. Since there are no accepted ways to estimate bounds for elemental biases,

or to combine them, these should be reported and discussed in sufficient detail so as

to enable others to use their own judgment on the matter.

It is recommended that an index of accuracy be expressed as a pair of numbers,

one the credible bounds for bias, and the other an index of precision, usually in the

form of a multiple of the standard deviation (or estimated standard deviation). The

terms "uncertainty" and "limits of error" are sometimes used to express the sura of

these two components, and their meanings are ambiguous unless the components are

spelled out in detail.
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Chapter II. Statistical Analysis of Measurement Data

1. Introduction

In the last chapter the basic concepts of a measurement process were given in

an expository manner. These concepts, necessary to the statistical analysis to be

presented in this chapter, are summarized and reviewed below; By making a measure-

ment we obtain a number intended to express quantitatively a measure of "the

property of a thing." Measurement numbers differ from ordinary arithmetic numbers,

and the usual "significant figure" treatment is not appropriate. Repeated measure-

ment of a single physical quantity under essentially the same conditions generates

a sequence of numbers x^^, x^, . . . , x^ . A measurement process is established if

this conceptually infinite sequence has a limiting mean m and a standard

deviation o

For many measurement processes encountered in metrology, the sequence of

numbers generated follows approximately the normal distribution, specified com-

pletely by the two quantities m and a . Moreover, averages of n independent

measurement numbers tend to be normally distributed with the limiting mean m and

the standard deviation o/./^ , regardless of the distribution of the original

numbers. Normally distributed measurements are independent if they are not cor-

related or associated in any way. A sequence of measurements showing a trend or

pattern are not independent measurements.

Since m and o are usually not known, these quantities are estimated by

calculating x and s from n measurements where.

n

1

(1 . 1 )

( 1 . 2 )

The distribution of the quantity t - — (for x normally distributed) is

sA/n~

known. From the tabulated values of t (see p. 13), confidence intervals can be

constructed, to bracket m for a given confidence coefficient 1 - a (probability

of being correct in the long run).
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The confidence limits are the end points of confidence intervals defined by

L. =

L =
u

X -

X +

t

t

s

/rr

s (1.3)

where the value of t is determined by two parameters, namely, the degrees of freedom

V associated with s and the confidence coefficient 1 - a .

The width of a confidence interval gives an intuitive measure of the uncertainty

of the evidence given by the data. Too wide an interval may merely indicate that

more measurements need to be made for the objective desired.

2. Algebra for the manipulation of limiting means and variances

(a ) Basic Formulas

A number of basic formulas are extremely useful in dealing with a quantity

which is a combination of other measured quantities.

(i) Let m and m be the respective limiting means of two measured
X y

quantities X and Y, and a, b be constants, then

m

m

x+y

x-y

'"ax+by

m
y

and

= am + bm
X y

(2 . 1 )

(ii) If, in addition, X and Y are independent, then it is also true that

m = m m . (2.2)xy X y

For paired values of X and Y, we can form the quantity Z with

Z = (X - m^) (Y - m^) . (2.3)A y

Then by formula (2.2) for independent variables,

z (x-m^) (y-ray)

= - nij^) ("ly - ffly) - 0 .

Thus m^ =* 0 when X and Y are independent.

(iii) The limiting mean of Z in (2.3) is defined as the covariance of X

and Y and is usually denoted by cov(X,Y), or a . The covariance,
xy

similar to the variance, is estimated by
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xy ^ J (X. - x)(y. - y) . (2.4)

Thus if X and Y are correlated in such a way that paired values

are likely to be both higher or lower than their respective means,

then s^y tends to be positive. If a high x value is likely to

be paired with a low y value, and vice versa, then s^^ tends to

be negative. If X and Y are not correlated, s tends to zeroxy

(for large n ).

(iv) The correlation coefficient p is defined as:

P
=

and is estimated by

xy

'^x'^y

(2.5)

r
xy

s s
X y

Z(x^ - x) (y^ - y)

yz(x. - 5)2 2 (y. - y)^

(2 . 6 )

(v)

Both p and r lie between -1 and +1 .

Let a 2
X

and Oy2 be the respective variances of X and Y, and

®xy the covariance of X and Y, then

'^^x+y
= + Oy2 2a^y

'^'x-y
- + Oy2 - 2a^y

(2.7)

If X and Y are independent, = 0, then

= c^+cr2 = _.2
x+y '"x "y ^ x-y (2 . 8 )

Since the variance of a constant is zero, we have

ax+b = ^ and

axfby a^Ox^ + + 2ab(j^y
(2.9)

In particular, if X and Y are independent and normally

distributed, then aX + bY is normally distributed with limiting

mean ara^ + bm^ and variance ‘

For measurement situations in general, metrologists usually strive

to get measurements that are independent, or can be assumed to be

independent. The case when two quantities are dependent because
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both are functions of other measured quantities will be treated

under propagation of error formulas (see formula (2.13)).

(vi) Standard errors of the sample mean and the weighted means (of

independent measurements) are special cases of the above.

Since x = i 2x. and the x.’s are independent with variance
n 1 1

,
it follows, by (2.9),

’I - (DM, - (DM„ -(D^ (2 . 10 )

as previously stated.

If x^ is an average of k values, and is an average of

for the overall average, x, it is logical to compute

X,Xi + X, + X, , +
k k+1 k+n

k + n

values, then

2 1 2 —
and a — = Cjj . However, this is equivalent to a weighted mean of x^^ and

x^ where the weights are proportional to the number of measurements in each average

i.e.,

Wj^ = k, Wg = n, and

Wf + W2 y 1 V w, + w„ y i

k --

n+lc ^1
n

n+k ^2

Since
2

g^/k

g^/n

the weighting factors w^ and vi^ are therefore also inversely proportional to the

respective variances of the averages. This principle can be extended to more than

two variables in the following manner.

Let x^, ^2 * * * t Xj^ be a set of averages estimating the same quantity. The

overall average may be computed to be

= 1

Wi + W2 +

where

[wi^i + W2X2 + ... +

g- 2

^1
t- 2 T- 2
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The variance of x is, by (2.9)

+ "'2 + • • •

"'k

(2 . 11 )

In practice, the estimated variances s-^ will have to be used in the above formulas,

and consequently the equations hold only as approximations.

(b) Propagation of error formulas

The results of a measurement process can usually be expressed by a number of

averages x, y ..., and the standard errors of these averages

s- =
X

X

,nr
s-
y

^

etc. These results, however, may not be of direct interest, whereas the quantity of

interest is in the functional relationship m^ = f (m^^^ "'y^ * desired to

estimate m^ by w = f(x, y) and to compute s- as an estimate of a-

It has been shown that under certain general restrictions, the propagation of

error formulas work surprisingly well. The 0~^ and that are used in the

following formulas will often be replaced in practice by the computed values

The general formula for is given by;

o _2
V/

r^f]2 2
+ L^J ®y l.'SyJ

0 CT-CT-xy X y
(2 . 12 )

where the partial derivatives in square brackets are to be evaluated at the averages

of X and y . If X and Y are independent, p = 0 and therefore the last

term equals zero. If X and Y are measured in pairs, s-- (2.6) can be used as

an estimate of p-- 0 -0-xy X y

If W is functionally related to U and V by

m =f(m,m),
w ' u^ V '

and both U and V are functionally related to X and Y by

m = g (m , m )u ^ x' y

m =h(m,m),
V x' y

’

then U and V are functionally related. We will need the covariance

o__ = D-- d-o- to calculate o-^ . The covariance ct-- is given approximately by:
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(2.13)- 4 fjgIV

^b~| 2 f
1 2

^J^X I-3y
*

?»h
1

, ^11
LL^x 3y-J

^
L?y axJj

The square brackets mean, as before, that the partial derivatives are to be evaluated

at X and y . If X and Y are independent, the last term again vanishes.

These formulas can be extended to three or more variables if necessary. For

convenience, a few special formulas for commonly encountered functions are listed in

table 3 with X,Y assumed to be independent. These may be derived from the above

formulas as exercises.

Table 3

Propagation of Error Formulas for Some Simple Functions

(X and Y are assumed to be independent)

Function Form Approx. Formula for s-^

m = Am + Bm
w X y

A^s-2 + b^s-2
X y

m = —
w m

m = —
w m„

2 c 2 c 2

(4) (-fj
^
-fj)

W
^x

+ my

X
n “ 1—:

w 1 + m

w -2 2 -2 2 >,

Cy ^ ®y J

(1 +

*"*w
”

™x™y

5-2

*m = m 2

w X

-2 94X s-2

m = ./m
w X

1

*m = In m„
w X

s-2
X
-2
X

* ,
a bm = k m m

w X y
-2
w

^ S-^ S-2.

y
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Function Form Approx. Formula for s-^

m
*m = e

^
w e2^s-2

s
w = 100 — (= coefficient of

X variation)

w^ (not directly derived^ ,

2(n-l) from the formulas) —

* Distribution of w is highly skewed and normal approximation could be seriously

in error for small n .

1/ See, for example. Statistical Theory with Engineering Applications , p.301,

by A. Hald, John Wiley and Sons, 1952.
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In these formulas, if

(a) the partial derivatives when evaluated at the averages are small and

(b) Gy are small compared to x, y,

then the approximations are good and w tends to be distributed normally (the ones

marked by asterisks * are highly skewed and normal approximation could be seriously

in error for small n ).

c. Pool ing estimates of variances

The problem often arises that there are several estimates of a common variance

which we wish to combine into a single estimate. For example, a gage block may

be compared with the master block n^^ times, resulting in an estimate of the

variance s^ . nnother gage block compared with the master block ri2 times, giving

rise to , etc. As long as the nominal thicknesses of these blocks are within a

certain range, the precision of calibration can be expected to remain the same. To

get a better evaluation of the precision of the calibration process, we would wish

to combine these estimates. The rule is to combine the computed variances weighted

by their respective degrees of freedom, or

2 = . 1 "!

Vf + V2 +

V, s
k k

(2 . 14 )

The pooled

example

estimate of the standard deviation, of course, is ^/ 2 = In the

= Hi - 1, V
2 ’^2 ~ Vj^ =” - 1 , thus the expression reduces to

(n^ - l)s^2 + (n^ _ Dsg^ + ... + (Hj^ - l)Sj

+ U
2 + . . . + - k (2 . 15 )

The degrees of freedom for the pooled estimate is the sum of the degrees of freedom

of individual estimates, or + V2 + . . . + U2 + . . . + - k . With the

increased number of degrees of freedom, Sp is a more dependable estimate of g

than an individual s . Eventually, we may consider the value of Sp to be equal

to that of rj and claim that we know the precision of the measuring process.

For the special case where k sets of duplicate measurements are available,

the above formula reduces to:

k

V - w
1

where d^ = difference of duplicate readings. The pooled standard deviation Sp has

k degrees of freedom.
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For sets of normally distributed measurements where the number of measurements

in each set is small, say less than ten, an estimate of the standard deviation can

be obtained by multiplying the range of these measurements by a constant. Table 4

lists these constants corresponding to the number n of measurements in the set.

For large n, considerable information is lost and this procedure is not recommended.

Table 4

Estimate of a from the range 1 /

n

2

3

4

5

6

7

8

9

10

Multiplying factor

.886

. 591

.486

.430

.395

.370

.351

,337

,325

If there are k sets of n measurements each, the average range U can be

computed. The standard deviation can be estimated by multiplying the average range

by the factor for n .

(d ) Components of variance between groups

In pooling estimates of variances from a number of subgroups, we have increased

confidence in the value of the estimate obtained. Let us call this estimate the

within-group standard deviation, . The within-group standard deviation is

a proper measure of dispersions of values within the same group, but not necessarily

the proper one for dispersions of values belonging to different groups.

If in making calibrations there is a difference between groups, say from day to

day, or from set to set, then the limiting means of the groups are not equal. ffe

could think of these limiting means as individual measurements and assume that the

1/ Adapted from Biometrika Tables for Statisticians , vol.l. Edited by E.S. Pearson

and H. 0. Hartley, 1958, The University Press, Cambridge.
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average of these limiting means will approach a limit which we will call the limiting

mean for all the groups. In estimating ^he differences of individuals from the

respective group means are used. Obviously does not include the differences

between groups. Let us use to denote the variance corresponding to the dif-

ferences between groups, i.e., the measure of dispersions of the limiting means of

the respective groups about the limiting mean for all groups.

Thus for each individual measurement x, the variance of x has two components.

and

For the group mean x with n measurements in the group, we have

a ^

®x '^b n

If k groups of n measurements are available giving averages • . . X,

2then an estimate of <j“ is

4 “ y (x. - X):

i=l

with k - 1 degrees of freedom, where x is the average of all nk measurements.

The resolution of the total variance into components attributable to identifiable

causes or factors and the estimation of such components of variance are topics

treated under analysis of variance and experimental design. For selected treatments

and examples see reference [2], [3], and [5].

3

.

Comparison of means and variances

Comparison of means is perhaps one of the most frequently used techniques in

metrology. The mean obtained from one measurement process may be compared with a

standard value; two series of measurements on the same quantity may be compared; or

sets of measurement on more than two quantities may be compared to determine homo-

geneity of the group of means.

It is to be borne in mind that, in all the comparisons discussed below, we are

interested in comparing the limiting means. The sample means and the computed

standard errors are used to calculate confidence limits on the difference between

two means. The "t" statistic derived from normal distribution theory is used in

this procedure since we are assuming either the measurement process is normal, or the

sample averages are approximately normally distributed.
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(a ) Comparison of a mean with a standard value

In calibration of class M weights at the National Bureau of Standards, the

weights to be calibrated are intercompared with sets of standard weights having

"accepted” corrections. Accepted corrections are based on years of experience and

considered to lie exact to the accuracy required. For instance, the accepted cor-

rection for the NB' 10 gram weight is -.4040 mg.

The NB' 10 is treated as an unknown and calibrated with each set of weights

tested using an intercomparison scheme based on 100 gm standard weight. Hence the

observed correction for NB' 10 can be computed for each particular calibration. Table

5 lists eleven observed corrections of NB' 10 during May 1963.

Calculated 95% confidence limits from the eleven observed corrections are

-.4041 and -.3995 . These values include the accepted value of -.4040, and we

conclude that the observed corrections agree with the accepted value.

What if the computed confidence limits for the observed correction do not cover

the accepted value? Three .explanations may be suggested:

1. The accepted value is correct. However, in choosing a = .05, we

know that 5% of the time in the long run we will make an error in oui*

statement. By chance alone, it is possible that this particular set

of limits would not cover the accepted value.

2. The average of the observed corrections does not agree with the accepted

value because of certain systematic error, temporary or seasonal,

particular to one or several members of this set of data for,which

no adjustment has been made.

3. The accepted value is incorrect, e.g., the mass of the standard has

changed

.

In our example, we would be extremely reluctant to agree to the third expla-

nation since we have much more confidence in the accepted value than the value based

only on eleven calibrations. We are warned that something may have gone wrong, but

not unduly alarmed since such an event will happen purely by chance about once every

twenty times.

The control chart for mean with known value, to be discussed in section 4 would

be the proper tool to use to monitor the constancy of the correction of the standard

mass

.

1/ Illustrative data supplied by Robert Raybold, Metrology Division,

National Bureau of Standards.
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Table 5

Computation of Confidence Limits for Observed Corrections, NB' 10 gm.

Date Observed Correction to std. lOg. wt. in mg.

5-1-63

5-2

•t

5-3

5-6
t|

5-7

s2 = ^ (.00011744) = .000011744

-.4008

-.4053

-.4022

-.4075

-.3994

-.3986

-.4015

-.3992

-.3973

-.4071

-.4012

2x. = -4.4201
1

X = -.40183n^.

Zx.2 = 1.77623417
1

(2X )2
—— = 1.77611673

diff. = .00011744

s = .00343 = computed std. dev. of an observed correction about the mean.

= .00103 = computed std. dev. of the mean of eleven corrections
' = computed std. error of the mean

For a two-sided 95% confidence interval for the mean of the above sample of

size 11, a/2 = 0.025, v = 10, and the corresponding value of t is equal to

2.228 in the table of ”t" distribution. Therefore,

L = X - t = -0.40183 - 2.228 x 0.00103 = -0.40412 and
^

• .rsr

L = X + t -2- = -0.40183 + 2.228 x 0.00103 = -0.39954
u /tr-
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(b) Comparison among two or more means

The difference between two quantities X and Y to be measured is the quantity

x-y
m - m ,X y

’

and is estimated by x-y, where x and y are averages of a number of measure-

ments of X and Y respectively.

Suppose that we are interested in knowing whether the difference m^
^

could be

zero. This problem can be solved by the technique introduced in section 2, i.e., we

could compute confidence limits for if the upper and lower limits bracket

zero, we could conclude that m^
^

may take the value zero; otherwise, we conclude

that the evidence is against
*"x-y

^ ^ *

Let us assume that measurements of X and Y are independent with known

variances q ^ 3nd q ^ respectively.
X y

By (2.10)

n
for

IT for

then by (2.8)

g- -
X-y n

^ j

TT •

Therefore the quantity.

7. — (x - y)

X +
n

(3.1)

is approximately normally distributed with mean zero and a standard deviation of one

under the assumption m = 0 .X—

y

If q^ and q^ are not known, but the two can be assumed to be approximately

can beequal, e.g., x and y are measured by the same process, then and s^
X y

^
(n - l)s^2 + (k _ l)Sy2

’n n + k - 2

31
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This pooled computed variance estimates

= ay^, so that

^x-y
y ^ n+k

-JT nk

Thus, the quantity

t = (x - y) - 0

/n+k
V hk ^p

(3.2)

is distributed as Student’s "t", and a confidence interval can be set about m
x-y

with V = n + k - 2 and P = 1 - a . If this interval does not bracket zero, we

may conclude that the evidence is strongly against the hypothesis m^ = my.

As an example, we continue with the calibration of weights with NB' 10 gram.

Data for the observed corrections during the months of September and October are

listed in Table 6. It is desired to compare the means of observed corrections for

the two sets of data in the two tables.

Here n = k = 11

X = -.40183 y =

s 2 = .000011669 s 2 =
X y

Sp2 = (.000035482) = .000017741

n+k
"ST

11 + 11

121

2

11

y/~ Sp = 7-^ X .000017741 = .00180

For 1 + a = .95, v = 20, t = 2.086 .

Theref oi’e.

-.40454

.000023813

= (J _ y) + tj^- Sp = .00271 + 2.086 x .00180

= .00646

h - -y> - Sp - --ooiM

Since < 0 < L^, we conclude that there is no evidence against the hypothesis that

the two observed average corrections are the same,, or m^ = my . Note, however, that

we would reach a conclusion of no difference wherever the magnitude of x-y
(.00271 mg.) is less than the half-width of the confidence interval (2.086 x .00180

= .00375 mg.) calculated for the particular case. When the true difference ra
x—

y

is large, the above situation is not likely to happen; but when the true difference is
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Table 6

Computation of Confidence Limits for Observed Corrections,

NB' 10 gm.

Da te

9-3-63

9-24

9-25

9-

25

10

-

8

10-9

10-14

10-16

10-16

10-18

10-22

s2 = X .00023813 = .000023813

Obs. Corr., mg.

-.4020

-.4035

-.4051

-.3924

-.4070

-.4063

-.4028

-.4084

-.4039

-.4069

-.4116
Zy^ = ”4T?5'9'9“ = 1.80038449

y = -.40454 (2y .

)

2

i— = 1.80014636
n

diff.= ,00023813

an observed correction about the mean.s = .00488 = computed standard deviation of

s

.nr
= .00147 = computed standard deviation of the mean of eleven corrections

t = 2.228 for

= -.40454 -

= -.40454 +

a= .05 and v=

.00328 =-.40782

.00328 =-.40126

10
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small, say about .003 mg., then it is highly probable that a conclusion of no differ-

ence will still be reached. If a detection of difference of this magnitude is of

interest, more measurements will be needed.

The following additional topics are treated in reference [l]:

i. Sample sizes required under certain specified conditions - Tables A-8

and A-9.

ii. cannot be assumed to be equal to - Section 3-3. 1.2.X y

iii. Comparison of several means by Studentized range - Sections 3-4, 15-4.

(c) Comparison of variances or ranges

As we have seen, the precision of a measurement process can be expressed in terms

of the computed standard deviation, the variance, or the range. To compare the

precision of two processes a and b, any of the three measures can be used,

depending on the preference and convenience of the user.

Let s 2 be the estimate of with v degrees of freedom, and s, ® be the
3 3 3 D

2
estimate of o, with v. degrees of freedom. The ratio F = s ^ / g 2 jjgs a

D D 3D
distribution depending on v and v, . Tables of upper percentage points of F are

3 D

given in most statistical textbooks, e.g., ref. [l], table A-5 and section 4.2.

In the comparison of means, we were interested in finding out if the absolute

difference between m^ and m^^ could reasonably be zero; similarly, here we may be

interested in whether ^ / oH = 1 . In practice, however, we are

usually concerned with whether the imprecision of one process exceeds that of another

process. We could, therefore, compute the ratio of s^* to Sj^^ ^ gsk the

question: If in fact , what is the probability of getting a value of the

ratio as large as the one observed? For each pair of values of and , the

tables list the values of F which are exceeded with probability a, the upper

percentage point of the distribution of F . If the computed value of F exceeds

this tabulated value of F then we conclude that the evidence is against
a , Vg, v^,

the hypothesis if it is less, we conclude that could be equal to

.2

For example, we could compute the ratio of s ^ to s ^ given in section 3b
y X

immediately following Table 6. Here the degrees of freedom
''y

" ^

tabulated value of F which is exceeded 5% of the time for these degrees of freedom

is 2.98, and

.000023813

.000011669
= 2.041
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Since 2.04 is less than 2.98, we conclude that there is no reason to believe that the

precision of the calibration process in September and October is poorer than that of

May. (Note that the observed correction of -.3924 on September 25 contributed to

more than half of the total sum of squares. This point, no. 63, falls outside of the

control limits in Figure 5, and would have been cause for rejection of the calibrated

values in practice.)

For small degrees of freedom the critical value of F is rather large, e.g.,

for ^ Cl = .05, the value of F is 9.28. It follows that a

small difference between and a? is not likely to be detected with a small
2 D

number of measurements from each process. The table below gives the approximate

number of measurements required to have a four out of five chance of detecting

whether a is the indicated multiple of
a ^b (while maintaining at .05 the

probability of incorrectly concluding that >
'^b

when in fact
'^a

= ).

Multiple No. of Measurements

1.5 39

2.0 15

2.5 9

3.0 7

3.5 6

4.0 5

Table A-11 in reference [l] gives the critical values of the ratios of ranges,

and Tables A-20 and A-21 give confidence limits on the standard deviation of the

process based on computed standard deviation.

4 . Control Charts Technique for Maintaining Stability and Precision

A laboratory which pei’forms routine measurement or calibration operations

yields, as its daily product, numbers—averages, standard deviations, and ranges.

The control chart techniques therefore could be applied to these numbers as products

of a manufacturing process to furnish graphical evidence on whether the measurement

process is in statistical control or out of statistical control. If it is out of

control, these charts usually also indicate where and when the trouble occurred.

(a ) Control Chart for Averages

The basic concept of a control chart is in accord with what has been discussed

thus far. A measurement process with limiting mean m and standard deviation a is
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assumed. The sequence of numbers produced is divided into "rational” subgroups, e.g.

by day, by a set of calibration, etc. The averages of these subgroups are computed.

These averages will have a mean m and a standard deviation o/./TT where n is

the number of measurements within each subgroup. These averages are approximately

normally distributed.

In the construction of the control chart for averages, m is plotted as the

center line, m + k -2— and m - k -2_ are plotted as control limits, and the
Jir

averages are plotted in an orderly sequence. If k is taken to be 3, we know that

the chance of a plotted point falling outside of the limits, if the process is in con

trol, is very small. Therefore, if a plotted point falls outside these limits, a

warning is sounded and investigative action to locate the "assignable” cause that

produced the departure, or corrective measures, are called for.

The above I’easoning would be applicable to actual cases only if we have chosen

the proper standard deviation a . If the standard deviation is estimated by pooling

the estimates computed from each subgroup and denoted by rr^ (within group),

obviously differences, if any, between group averages have not been taken into

consideration. When there are between-group differences, the variance of the

individual x is not —jj- , but, as we have seen before,
“cT ^ where og

represents the variance due to differences between groups. If ig of any con-

sequence as compared to many of the x values would exceed the limits con-

structed by using alone.

Two alternatives are open to us—either remove the cause of the between-group

variation'; or, if such variation is a proper component of error, take it into

account as was disucssed under 2(d).

As an illustration of the use of a control chart on averages, we use again the

NB* 10 gram data. One hundred observed corrections for NB* 10 are plotted in fig. 5,

including the two sets of data given under comparison of means (points 18 thru 28,

and points 60 thru 71). A 3-sigma limit of 8.6 was used based on the "accepted"

value of standard deviation.

We note that all the averages are within the control limits, excepting numbers

36,47,63,85, and 87. Five in a hundred falling outside of the 3-sigma limits is

more than predicted by the theory. No particular reasons, however, could be found

for these departures.
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Since the accepted value of the standard drviation was obtained by pooling a

large number of computed standard deviations for within sets of calibrations, the

graph indicates that a "between-set” component may be present. A slight shift

upwards is also noted between the first 30 points and the remainder.

(b) Control Chart for Standard Deviations

The computed standard deviation, as we have seen, is a measure of imprecision.

For a set of calibrations, however, the number of measurements is usually small, and

consequently also the degrees of freedom. These computed standard deviations with

few degrees of freedom can vary considerably by chance alone, even though the

precision of the process remains unchanged. The control chart on the computed

standard deviations (or ranges) is therefore an indispensable tool.

The distribution of s depends on the degrees of freedom associated with it,

and is not symmetrical about m^ . The frequency curve of s is limited on the left

side by zero, and has a long tail to the right. The limits, therefore, are not

symmetrical about m^ , Furthermore, if the standard deviation of the process is

known to be a, ni^ is not equal to o> but is equal to '^

2 ^’
where Cg is a

constant associated with the degrees of freedom in s .

The constants necessary for the construction of 3-sigma control limits for

averages, computed standard deviations, and ranges, are given in most textbooks on

quality control. Section 18-3 of ref. [l] gives such a table. A more comprehensive

treatment on control chart is given in ASTM Manual on Quality Control of Materials,

Special Technical Publication 15-C.

Unfortunately, the notation employed in quality control work differs in some

respect from what is now standard in statistics, and correction factors have to be

applied to some of these constants when the computed standard deviation is calculated

by the definition given in this chapter. These corrections are explained in the foot-

note under the table.

As an example of the use of control charts on the precision of a calibration

process, we will use data from NBS calibration of standard cells.— Standard cells

in groups of four or six are usually compared with a NBS standard cell on ten

separate days. A typical data sheet for a group of six cells, after all the

1/ Illustrative data supplied by Miss Catherine Law,

Electricity Division, National Bureau of Standards.
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necessary corrections, appears in Table 7. The standard deviation of a comparison is

calculated from the ten comparisons for each cell and the standard deviation for the

average value of the ten comparisons is listed in the line marked SDA. These values

were plotted as points 6 thru 11 in figure 6.

Let us assume that the precision of the calibration process remains the same.

We can therefore pool the standard deviations computed for each cell (with nine

degrees of freedom) over a number of cells and take this value as the current value

of the standard deviation of a comparison, o . The corresponding current value of

standard deviation of the average of ten comparisons will be denoted by o' = a/JTo .

The control chart will be made on s ' = s/./To .

For example, the SDA's for thirty-two cells calibrated between June 29 and

August 8, 1962, are plotted as the first 32 points in figure 6. The pooled standard

deviation of the average is 0.114 with 288 degrees of freedom. The between group

component is assumed to be negligible.

Since n = 10, we find our constants for 3-sigma control limits on s' in

section 18-3 of ref. [l] and apply the corrections as follows:

Center line = ^ C
2
O ' = 1.111 X .9227 x .114 = .117

Lower limit = ' = 1.111 x .262 x .114 = .033

Upper limit = J B^o ' = 1.111 x 1.584 x .114 = .201

The control chart was constructed using these values of center line and control limits

computed from the thirty-two calibrations. The standard deviations of the averages of

subsequent calibrations are then plotted.

Three points in figure 6 far exceed the upper control limit. All three cells,

which were from the same source, showed drifts during the period of calibration. A

fourth point barely exceeded the limit. It is to be noted that the data here were

selected to include these three points for purposes of illustration only, and do not

represent the normal sequence of calibrations.

The main function of the chart is to justify the precision statement on the

report of calibration, which is based on a value of a estimated with perhaps

thousands of degrees of freedom and which is shown to be in control. The report of

calibration for these cells (a =” .117 = .12) could read:

39



Table 7

Calibration Data for Standard Cells

Day Corrected EMF^ and Standard Deviations, Microvolts

1 27.10 24.30 31.30 33.30 32.30 23.20

2 25.96 24.06 31.06 34.16 33.26 23.76

3 26.02 24.22 31.92 33.82 33.22 24.02

4 26.26 24.96 31.26 33.96 33.26 24.16

5 27.23 25.23 31.53 34.73 33.33 24.43

6 25.90 24.40 31.80 33.90 32.90 24.10

7 26.79 24.99 32.19 34.39 33.39 24.39

8 26.18 24.98 32.18 35.08 33.98 24.38

9 26.17 25.07 31.97 34.27 33.07 23.97

10 26.16 25.16 31.96 34.06 32.96 24.16

R 1;331 1.169 1.127 1.777 1.677 1.233

nVG 26.378 24.738 31.718 34.168 33.168 24.058

SD 0.482 0.439 0.402 0.495 0.425 0.366

SDA 0.153 0.139 0.127 0.157 0.134 0.116

Position

1

2

3

4

5

6

EMF (Volts)

1.0182264

1.0182247

1.0182317

1.0182342

1.0182332

1.0182240
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"Each value is the mean of 10 observations made between and

Based on a standard deviation of 0.12 microvolts for the means, these values

are correct to 0.36 microvolts relative to the volt as maintained by the

national reference group."

5. Linear Relationship and Fitting of Cons.tants by Least Squares

In using the arithmetic mean of n measurements as an estimate of the limiting

mean, we have, knowingly or unknowingly, fitted a constant to the data by the method

of least squares, i.e., we have selected a value m for m such that

n n

^ (yi - ^
1 1

is a minimum. The solution is m = y . The deviations d^ = y^
- in = y^ - y are

called residuals.

Here we can express our measurements in the form of a mathematical model

Y = m + e (5.1)

where Y stands for the observed values, m the limiting mean (a constant), and c

the random error (normal) of measurement with a limiting mean zero and a standard

deviation rr . By (2.1) and (2.9), it follows that

and

m = m + m = m,
y e ’

«2 =O
y

O

The method of least squares requires us to use that estimator in for m such that

the sum of squares of the residuals is a minimum (among all possible estimators). As

a corollary, the method also states that the sum of squares of residuals divided by

the number of measurements n less the number of estimated constants p will give

us an estimate of
, i.e..

2(y. - m)2
52 = i

n-p

2(y. - y)'

n-1
(5.2)

It is seen that the above agrees with our definition of s^ .

Suppose Y, the quantity measured, exhibits a linear functional relationship

with a variable which can be controlled or measured accurately; then a model can be

written as

Y = a + bX + G , (5.3)

where, as before, Y is the quantity measured, a (the intercept) and b (the slope)

are two constants to be estimated, and e the random error with limiting mean zero
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and variance . We set X at x^, and observe . For example, might

be the change in length of a gage block steel observed for n equally spaced

temperatures x^ within a certain range. The quantity of interest is the coefficient

of thermal expansion b .

For any estimates of a and b, say a and b, we can compute a value y^

for each x^, or

y^ » a + b x^ .

If we require the sum of squares of the residuals

n

I O’! -

i=l

to be a minimum, then it can be shown that

n
2 (x^ - x) (y^ - y)

b = i-i
, and (5.4)

- 2
2 (x. - x)^

a ” y - bx

The variance of Y can be estimated by

(5.5)

2(y. - y^)=*

(5.6)
n - 2

with n-2 degrees of freedom since two constants have been estimated from the data.

The standard errors of b and a are respectively estimated by sg and s>

where

(5.7)
2

% -
2(x^ - x)3

- s*r I
a L n

2(x^ - x)*
]• (5.8)

With these estimates and the degrees of freedom associated with s^, confidence

limits can be computed for a and b for the confidence coefficient selected If we

assume that errors are normally distributed.
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Thus, the lower and upper limits of a and b respectively:

a-ts~ atts«,
a a '

b-ts^ b+ts^,

for the value of t corresponding to the degree of freedom and the selected con-

fidence coefficient.

The following problems relating to a linear relationship between two variables

are treated in reference [l] section 5-4.

a. confidence intervals for a point on the fitted line,

b. confidence band for the line as a whole,

c. confidence interval for a single predicted value of Y

for a given x . ^

Polynomial and multivariate relationships are treated in Chapter 6 of the same

reference.
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