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MATHEMATICAL ANALYSIS OF TEMPERATURE RISE
IN THE HEAT CONDUCTION REGION

OF AN UNDERGROUND SHELTER

by

F. J. Jerome Drapeau and Neil V. Baggette

ABSTRACT

Six analytic solutions of the heat conduction equation
to predict interior surface temperatures in an underground
concrete shelter are presented In this report. Four solu-
tions employ one-dimensional, semi-infinite geometry and
are applied to the wall and floor heat conduction regions
of the small NBS test shelter. These solutions are not
applicable to the roof region. Two solutions use spherical
and cylindrical geometry, respectively, and are applied to
the entire shelter. These solutions are not applicable to
individual surfaces. The one-dimensional solutions were
used primarily to examine the importance of the initial
temperature distribution, the composite nature of the heat
c nduction regions, and in conjunction with the other two
solutions, the geometry of the model. Surface temperature
predictions for selected surfaces, together with the
observed performance, are presented for the one-dimensional
solutions in tabular and/or graphical form, covering a range
of assumed thermal properties. Similar results are pre-
sented for the spherical and cylindrical solutions in
graphical form, for two sets of thermal properties and two
values of equivalent shelter radius. The results show that
the one-dimensional solutions give high predictions, the
spherical solution low predictions, and the cylindrical
solution generally good agreement with observed performance
of the NBS test shelter.
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1. INTRODUCTION

1.1 Objectives

In February 1959, a study was begun to determine the
thermal characteristics of a family-size underground con-
crete shelter with simulated occupancy.

The first phase of this study was experimental, with
the objective of obtaining performance data on the environ-
mental factors of temperature, humidity, ventilation, and
heat exchange in an underground installation of this type
during fourteen-day periods of occupancy In summer and
winter. This objective was accomplished and the results
[l]

1 reported in March 1961.

The schedule of test conditions from which the NBS
performance data were obtained is presented in the follow-
ing table. This report will compare analytical predictions
of shelter surface temperatures with experimental data from
NBS Tests 3? and 5 only.

TABLE 1.1.1

SCHEDULE OF NBS TEST CONDITIONS [l]

Ventilation Air

NBS Test
Number

Date at
Start

Duration
of Test

Internal
Heat Input

Flow
Rate

Avg. Dry
Bulb Temp.

Dew Point
Temp

.

mo-da-yr days Btu/hr CFM 9F 9F

1 8-13-59 7 110 42 85 69

2 8-28-59 7 2500 0 — --

3 9-13-59 14 2500 42 85 69

4 10-6-59 14 2500 18 85 69

5 3-25-60 14 2500 18 35 33

Figures In brackets indicate literature references at
the end of this report.

i
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The experimental phase indicated that theoretical
approaches were desirable in order to provide methods for
predicting environmental conditions in a shelter of any
size or shape under various ambient conditions, and thus
to reduce the need for exhaustive testing under an empiri-
cal approach. Tests in a few representative shelters
could then be used to verify the applicability of those
methods. One such approach was to develop mathematical
equations which would predict air temperature and relative
humidity inside shelters characterized by the following
known parameters:

a) initial earth temperatures

b) thermal properties of earth and wall
materials

c) construction detail

d) shape and size

e) weather conditions

f) ventilation rate

g) internal heat sources

This objective would also include a comparison of the
theoretically predicted results with the performance data
obtained in the experimental phase, and with any other
data on shelters, when available.

When these equations were adequately substantiated by
experiment for sufficient ranges of the above-listed para-
meters. they would be used to develop a design manual,
including extrapolated ranges.

1.2 Scope

The scope of this report was confined to the presenta-
tion of mathematical solutions to the problem of transient
heat conduction in a certain class of shelter models, and
a comparison of predicted shelter temperatures with ob-
served temperatures in the NBS test series [1]. The class
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of models considered were those characterized by a single
space variable (linear distance* spherical radius, or
cylindrical radius)* and a constant heat flux applied at
the interior boundary of the heat conduction region.

This report* then* deals with only part of the whole
problem--the heat conduction region* and all solutions
begin at the interior boundary. They do not include the
parameters of heat generation and ventilating air inside
the shelter* the mechanisms of transfer from these sources
to the surfaces by convection* radiation* condensation*
and evaporation* or weather conditions above the shelter.
However* experience with prototype shelters has shown that
wall surface temperature is a good index of effective air
temperature* especially in small shelters* where they are
about equal.

This division of the problem was possible because the
rate of heal^flow to all of the interior surfaces as a func-
tion of tim^ determined experimentally during each test on
the shelter studied at the National Bureau of Standards.
This method had the obvious and important advantage of
isolating existing sources of error to those lying in the
heat conduction region. Poor agreement between observed
and predicted results could not be attributed to poor
assumptions associated with the parameters of heat genera-
tion or the coefficients of heat transfer from air to
surface.

In summary* therefore* this first attempt at obtaining
mathematical solutions to an inherently complicated problem
was simplified by dealing with available data measured at
the boundary* instead of undetermined heat exchange pro-
cesses inside the shelter. It provided a means of studying
some of the heat conduction aspects of this problem* such
as the importance of a prescribed initial temperature dis-
tribution in the region and the effects of the thermal and
physical properties of the materials comprising the region.
It also provided a means of determining the applicability
of the linear heat flow theory (i.e. temperature and posi-
tion Independent coefficients), to a problem of this kind.
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1.3 Types of Solutions

Pour solutions contained in this report were based
on the one-dimensional model. In this model, the heat
conduction region exterior to the wall and floor bound-
aries of the rectangular parallelepiped cavity was rep-
resented by a layer of infinite thickness and infinite
surface area. Each region was considered to be either
a single homogeneous layer of earth or a composite of
concrete and earth. The heat flux was presumed to be
applied uniformly over the entire surface so that heat
flowed in only one direction, normal to each plane sur-
face. The finite (roof) region is not treated in this
report

.

An infinitely thick layer, such as described above,
is called a semi-infinite region. This denotes a region
bounded on one side only, o £ x <®in the homogeneous case,
or - i <. x < o and o s x <« in the composite case.

One solution was based on the spherical model in which
the heat conduction region was represented by an infinite,
homogeneous mass of earth bounded internally by a spherical
cavity of radius a. The heat flux was presumed to be
applied uniformly over the entire surface so that heat
flowed radially in all directions.

In the cylindrical solution, the heat conduction
region was also represented by an infinite, homogeneous
earth medium, bounded internally by an infinitely long
cylindrical cavity of radius a. The heat' flux was presumed
to be applied uniformly over the entire surface so that
heat flowed only radially to the cylinder.

The assumption of uniform heat flux application over
the entire surface of each model permitted the mathematical
treatment of the Cartesian (x, y, z) model, the spherical
(r, ft, 0 ) model, and the cylindrical (r, 9, z) model as
simple models of only one (x or r) space variable.

Each mathematical model represents a simplification
of the actual physical shelter, and the effects of this
simplification will be discussed later in the report.
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2, SUMMARY OF PROBLEMS

Six mathematical solutions to study temperature
predictions in an underground shelter, as determined by
heat conduction into the surrounding wall and floor regions,
are presented in this report. The boundary conditions and
assumptions for each of the heat transfer models are summar-
ized for each solution. The initial temperature distribu-
tion and the heat conduction model are shown diagrammat ically
for each summary.

SOLUTION I — One-dimensional, homogeneous, semi-infinite
heat conduction region; uniform initial temperature; constant
heat flux across the surface.

This solution was used as a first approximation to pre-
dict NBS shelter performance.

SOLUTION II — Spherical cavity bounded by an infinite,
homogeneous heat conduction region; uniform initial tempera-
ture; constant heat flux across the surface.

This solution was used as a second approximation to
predict performance.

oo
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SOLUTION III — Infinitely long cylindrical cavity
bounded by an infinite, homogeneous heat conduction region;
uniform initial temperature; constant heat flux across the
surface

.

This solution was used as a third approximation to pre-
dict performance.

SOLUTION IV — One-dimensional, composite, semi-infinite
heat conduction region; uniform Initial temperature;
constant heat flux across the surface.

This solution was used to observe the effect of the
composite region assumption.

U

©,= 0

t = 0

©2=0

u,

-1 0
-*»- ©O

0 X
©o

TrvrT
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SOLUTION V — One-dimensional, composite, semi-infinite
heat conduction region; prescribed initial temperature;
constant heat flux across the surface.

This solution was derived on the basis of a prescribed
initial temperature distribution, and used to observe the
effect of such a distribution.

SOLUTION VI — One-dimensional, composite, semi-infinite
heat conduction region; prescribed initial temperature;
constant heat flux across the surface.

This solution is similar to the preceding solution,
differing only in the mathematical expression for initial
temperature distribution in the earth conduction region.

- ©o

0 \ X CO
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3. EVALUATION OF EXPERIMENTAL
PARAMETER DATA

The purpose of this analysis was not only to develop
mathematical solutions, but also to extract results from
those solutions for comparison with experimental
observations. For this reason, it was necessary to
establish numerical values for the several parameters
appearing in each solution. This section deals with
the selection of these values for each of the following
parameters, namely

1) average initial temperature

2) properties of concrete

3) properties of earth

4) heat flux.
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3.1 Average Initial Temperature

Solutions I through IV were based on the assumption that
the initial temperature distribution throughout each region
was constant (or zero for mathematical convenience). There-
fore., a single value of temperature had to be used for
computing numerical results.

Since the Initial temperature distribution for all
regions deviated to some extent from a constant value over
the domain in question (see Appendix A), the average Initial
temperature u

Q
was calculated for each composite region on

the basis of the following heat balance;

XiPiCi(u0-u0l ) = xs p?c 2 (u02 -u0 ) (1)

where the subscripts 1 and 2 denote concrete and earth.

uQ1 and u02 were calculated by graphically evaluating
the Integrals

ucu
_

1

x
i

u(x)dx

—X
-i

( 2 )

and uo?
1 f

Xs

u(x)dx (3)

using the Interface as the reference point. The functions
u(x) are the initial temperature profiles shown in Appendix A.

The values of average initial temperature obtained by
this method are listed in Table 3.1.1.

It will be noted In the graphs for Solutions I and
IV that the origins of the observed temperature curves
show© in Sections 4 through 7 are not necessarily the
same as those of the predicted curves. This is because
the Initial temperature of the observed curve Is the
actual value at the Interior surface (see Appendix A),
whereas the initial temperature of any predicted curve
is the average value shown In Table 3.1.1.
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TABLE 3.1.1

COMPUTED INITIAL TEMPERATURES

Average Region Temperature un , °F

NBS
Test
Number

Heat Conduction Region

North West South East Roof Floor

1 70.8 68.7 69 .

6

70.1 72.2 64.2

2 71.2 69.3 69.5 71.0 72.7 64.5

3 71.7 69.7 68.3 71.0 67.5 64.8

4 68.7 67.7 67.9 68.0 66.8 64.7

5 43.9 45.4 45.0 44.0 42.8 50.5

3.2 Properties of Concrete

The density of the shelter concrete was taken to be
145 lb/ft 3

. This value was based on the total weight of
cement and aggregates, approximately 63,200 pounds, an
estimated water of hydration content of 2,400 pounds, and
the purchased volume of 16.75 cubic yards.

The specific heat of mass concrete varies but
little with the type of aggregate and richness of mix.
and for practical purposes is usually taken as a constant
for a given concrete at about 0.22 Btu/lb-°F [2, p.585!»

A mean value of thermal conductivity was selected from
among several references [3,4, 5,6] as 1.15 Btu/hr-ft-°F,
based on an estimated moisture content and a physical
composition fitting that of the shelter concrete described
above.

The thermal diffusivity was determined from the

K,
,

.

relation eg = —
?

the subscript (1) denoting concrete,
Pi c

i
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and the computed value was 0,036 ft 3 /hr. These values of
thermal properties were thought to be representative of
those in the NBS test shelter, and will henceforth be
referred to as the "preferred' 1 concrete values.

The references consulted on this subject listed
widely divergent thermal property values for concrete in
the 140-155 lb/ft 3 density range. The values of specific
heat ranged from 0.156 to O. 23O, thermal conductivities
from 0.50 to 1 - 35 ,

and calculated thermal diffusivities
from 0.016 to 0.046. As a result, minimum and maximum
values were also used for analytical predictions.

3.3 Properties of Earth

During the excavation process, representative samples
of earth were removed for density and moisture content
determinations. Three distinct earth strata were found
and the average values of density and moisture content
were determined to be approximately 100 lb/ft 3 and 17
percent

.

A value of 0.17 Btu/lb-°F was selected as a repre-
sentative average specific heat for the three earth strata
in the dry state [7, P - 33 3

•

Since specific heat is known
to vary with moisture content, the selected value was
corrected for 17 percent moisture, giving a value of 0.29
Btu/lb-°F for specific heat of the moist earth [7, p. 89 ].

A determination of the thermal diffusivity was made
from experimental data obtained during the NBS test
series. The solution of the heat conduction equation for
a one-dimensional

,
homogeneous, semi-infinite region with

a simple periodic boundary condition at the surface yields
a convenient expression for determining the thermal diffu-
sivity, based on the time lag between the maxima of the
ground surface temperature wave and the corresponding wave
at any depth below the surface. (This phase-lag method is
more accurate than the temperature-amplitude method because
the values of amplitude are difficult to measure accu-
rately [8]).
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The expression is

a -£*La
4irt 2 ’

where P = period, hours

x = depth of temperature measurement, feet

t = time lag between maxima, hours

Although temperatures were measured at several depths
in undisturbed earth near the shelter, only two were use-
ful for this determination - those made at the six-inch
and one-foot depths . Measurements made at the two-foot
depth exhibited no clearly defined wave form, if any at
all. The amplitude of the daily cycle decreases rapidly
with depth and is almost completely damped out at the

two-foot depth [ 9 1 ® For this reason, thermal
diffusivity determinations in deeper ground are extremely
difficult on a diurnal cycle basis, and must be made on
averages of annual cycles.

Ambient temperatures were used because ground surface
temperatures were not recorded. However

f
ambient and

ground surface temperature maxima occur in phase, for
practical purposes. It was observed that the temperature
maxima at the six-inch and one-foot depths, during three
early consecutive days of NBS Test 3 ,

lagged the ambient
maxima by about 4 1/4 and 8 1/2 hours, respectively.
These phase-lags each indicate a thermal diffusivity of
0.026 ft a /hr.

A similar determination was based on data obtained
during three late consecutive days of NBS Test 5, with
exactly the same phase-lags and results. No precipita-
tion had occurred for at least six weeks prior to the
start of or during NBS Test 3? whereas two feet of snow
had completely melted a few days before th© start of NBS
Test 5*
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The thermal conductivity was determined from the
same relation K 2 = p 2 c2 as , the subscript ( 2 ) denoting
earth, and the computed value was 0,75 Btu/hr-ft- °P.

These values of thermal properties are likely to
be representative of at least the upper two-foot layer
of earth surrounding the NBS experimental shelter, and
possibly deeper. They will henceforth be referred to
as the preferred earth values. However, in order to
account for the likelihood of other values at greater

depths, and changes occurring in the upper layer during
the intervening times, minimum and maximum values were
again selected to form a range which would account for
reasonable variations.

3.4 Heat Flux

Although the term "constant heat flux" is used
throughout the discussion of Solutions I to VI, inclu-
sive, the actual value of the heat flux F0 was used for
each plotted value of time. The heat flux used for time
t was a cumulative average of heat flow meter readings,
averaged over the interval from o to t . This procedure
was intended to approximate, to some extent, the effect
of the observed exponential decay of the heat flux.
This is discussed more fully in Appendix B which also
contains a table listing the cumulative average values
used in each solution.

The west and north wall regions were selected for
analysis and graphical presentation of the results because
they were considered to be most and least closely approxi-
mated by the one-dimensional model. The reasons for these
selections will be discussed in greater detail in Section
10.5.
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4 . SOLUTION I

4.1 Statement of Problem

Semi-infinite homogeneous region. The heat flux F0 is
constant across the surface x = o. The initial temperature
is uniform.

4.2 Mathematical Summary

The differential equation to be satisfied by the
temperature rise q is

a9 a
2
e- = * >° , t> o (1 )

with the following initial and boundary conditions:

X > o t = o 0 = 0 (2)

X = 0 t > o 1 S07!a> II
o (3)

ax

X—> oo t > o 0 O
(4)

The solution of the Laplace transformed equation is

- F o
, ,0 _ exp (_qX )

qKp

and the inverse transformation yields the solution for
temperature rise

(5)

e =
2F0 r at

1
2

-
x2 I

T i
exp ^ »

tt Aat _

x x
” erfc
2 2yol } ( 6 )

For an initial temperature u0 , the temperature at any
distance x in the region is given by

u = uQ+ 9 (7)

At the interior surface x = o, Eq . *+.2(6) reduces to

'o at I5

; t it JK ( 8 )
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4.3 Assumptions

This solution [10, p. 75] was used as a first approxi-
mation for predicting shelter performance for all heat con-
duction regions except the roof region.

The assumptions used in this approximation are listed
and discussed below.

1 ) geometry - one-dimensional model

The NBS shelter deviated from the one-dimensional
model discussed in Section 1.3 in that the shelter
surfaces were finite in area with the result that
the solution, being one-dimensional, could not
account for heat lost to the corner regions.
Except for the floor, deviation from the one-
dimensional model was also caused by the addi-
tional boundary at the ground surface.

2 ) homogeneous heat conduction region

Since the region was considered to be homogeneous,
only one thermal conductivity and one thermal
dlffusivity appear in the solution, i.e. both
the concrete and earth media are assumed to have
identical thermal properties. These properties
are assumed to be invariant with position and
changes in temperature and moisture content.
For more detail, see Section 10.4.

3 ) uniform initial temperature

Figures 1 through 5 of Appendix A show that the
initial temperature distribution in each region
was not uniform for all tests. The assumed initial
condition 4.2(2) most nearly fitted the wall regions
of NBS Tests 1 and 5. but did not fit, for example,
the wall regions of fes Test 3 . In order to ob-
tain numerical results, the temperature u was
computed on the basis of the average initial
temperatures u0 listed in Table 3 . 1 . 1 .
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4.4 Results

Figures 4.4.1 and .2 show interior surface tempera-
tures versus time, predicted hy Solution I, for the
north and west wall conduction regions of NBS Test 3,
together with the observed performance. Figures 4.4.3
through .6 show similar temperature-time curves for NBS
Tests 4 and 5«

Curves 1, 2, and 3 show predicted performance based
on an estimated range of earth thermal properties, in-
cluding the preferred values. Curve 4 is based on the
preferred concrete properties, values which would be
reasonable if the concrete predominated in the heat
storage.

Table 4.4.1 shows predicted surface temperatures
for the five semi-infinite regions of NBS Tests 3? 4,
and 5* evaluated at elapsed times of one and two weeks,
together with the observed temperatures and the resulting
deviations. The predicted temperatures were computed
using the preferred concrete properties, the values pro-
ducing the best general agreement with the observed
performance

.

4.5 Discussion

Inspection of Figures 4.4.1 through 4.4.6 shows
that the lower thermal properties gave better agreement
for the north wall region, and that the higher properties
were better for the west wall region. The behavior of
the other three surfaces, in most cases, was similar to
that of the west wall region in this respect. This can
be seen from Table 4.4.1 which shows that in 11 out of
15 cases, use of the preferred concrete thermal properties
produced agreement to within 1.5°F at the end of a two-
week period.
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A comparison of analytical predictions with experi-
mental data from NBS Test 4 is included in this section
to show the effect on the observed curve of an adverse
ambient temperature change which occurred about halfway
through the test and continued for its duration. This
can be seen in Figures 4.4.3 and 4.4.4 where the value
of observed temperature at fourteen days is actually
lower than the value at ten days, producing an observed
performance impossible to duplicate with models of this
kind. For this reason, it will be discarded for dis-
cussion purposes in the succeeding solutions.

Further inspection of the figures for NBS Tests 3
and 5 shows that the predicted curves have a basically
different shape from the observed curve, which levels
off more rapidly with increasing time. The continuing
rise of the predicted curves is due to the one-dimensional
nature of the solution in which the heat flow is confined
to only one direction in space. The shelter itself could
lose heat in three dimensions, with the additional heat
sinks emanating from the corners becoming more important
with increasing time. This resulted in an observed curve
which leveled off rapidly, appearing to approach a con-
stant temperature.

These observations suggest a spherical model, which
conducts heat in three dimensions. This approximation
should accordingly produce a temperature-time curve of
more reasonable shape, since the solution is bounded in
time

.
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5. SOLUTION II

5-1 Statement of Problem

Infinite homogeneous medium bounded internally by a

sphere of radius a. The heat flux F0 is constant across
the surface r = a. The initial temperature is uniform.

5.2 Mathematical Summary

The differential equation to be satisfied by the
temperature rise 9 is

se _
aL

~ a
1 a

( r2
ae V

r 2 V / .
,
r ^ a t > o

( 1 )

with the

The

following

solution

initial and boundary conditions:

r ^ a
,

t = 0
, 9 = o

(2)

r = a
, t > 0

, -K - - Fo (3)

r — oo t > 0
, 0 O (4)

for temperature rise is

9
erfc

r - a

2/cxt
( 5 )

For an initial temperature u Q , the temperature at any
distance r in the region is given by

u = u0 + 9
( 6 )
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At the interior surface r = a, 5-2(5) reduces to

5*3 Assumptions

This solution is available on p. 248 [10] and was
used as a second approximation for predicting overall
shelter performance.

The assumptions used in this approximation are
listed and discussed below.

1) geometry - spherical model

The NBS shelter deviated from the spherical
model in that part of the system was actually
finite, bounded externally by the ground
surface. It also differed in the obvious
matter of shape, which would alter the local
heat flow pattern.

Since the solution depends only on radial dis-
tance and time, as discussed in Section 1.3?
it can make no distinction among the six
surfaces. Thus, it provides only a single
temperature prediction at a given radius in
all directions.

( 7 )

at
where T = “TF
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a) equivalent spherical radius

Since the assumed shape in this model
is a sphere, it was necessary to
choose a sphere of such radius as to
have heat transfer characteristics
similar to those of the actual shelter.
This was done in two elementary ways,
as follows:

i) by requiring the sphere to have
the same surface area as the
actual shelter, thus maintaining
the same total heat loss rate.
On this basis, the equivalent
radius is 5.7 feet.

ii) by requiring the sphere to have
the same volume to surface area
ratio as the actual shelter,
thus taking into account, to
some extent, the difference in
shape. On this basis, the
equivalent radius is 4.0 feet.

2) homogeneous heat conduction region

This assumption was discussed in Section 4.3.

3) uniform initial temperature

Since this model is spherically symmetric in
every respect, it follows that only one value
of initial temperature can be used. There-
fore, the six average region temperatures u0 ,

listed in Table 3-1* 1? were arithmetically
averaged to obtain a single overall initial
temperature

.
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5.4 Results

Figure 5.4.1 compares the observed interior surface
temperatures with predicted values using Solution II,
for the two values of equivalent spherical radius des-
cribed in the preceding section and for two sets of earth
thermal properties, including the preferred values. Fig-
ure 5*4.2 shows similar comparisons for NBS Test 5.

The observed temperatures shown in these figures are
arithmetic averages of the smoothed experimental data for
all surfaces, including the roof.

The values of heat flux F0 used in computing these
results were arithmetic averages of the cumulative aver-
ages, including the roof, listed in Table B.l of Appendix
B.

5-5 Discussion

Inspection of Figures 5*4.1 and 5*4.2 shows that
better agreement was achieved between observed and pre-
dicted values by using the estimated minimum values of
earth properties rather than the preferred values. It
can also be seen that the equivalent surface area radius
of 5*7 feet gave closer agreement than the volume to
surface area radius. For the minimum values, the 5.7 foot
radius gave agreement to within 1°F or less at t = 336 hours
for each test, whereas the 4.0 foot radius provided agree-
ment to about 2°F.

Of the two choices for equivalent spherical radius
described, the spherical cavity which provided an interior
surface area (a = 5*7 feet) equal to that of the parallel-
epiped shelter would be expected to give better agreement
between the predicted and observed surfaces temperatures
because the test shelter had a low aspect ratio and thus
the total amount of earth serving as a heat sink was more
nearly comparable in the two cavities.

Further inspection of Figures 5.4.1 and 5.4.2 shows
that the shapes of the predicted curves for the spherical
model leveled off more rapidly than those for Solution I,

as would be expected. The effect of the ground surface
boundary can b^ interpreted as a reduction in the volume
of earth available to the shelter for heat conduction, but may not,
in all seasons of the year, represent a reduction in the total heat

absorption capacity of the region.
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6. SOLUTION III

6.1 Statement of Problem

Infinite homogeneous region bounded internally by an
infinitely long cylinder of radius a. The heat flux F0
is constant across the surface r = a. The initial tempera-
ture is uniform.

6.2 Mathematical Summary

The differential equation to be satisfied by the
temperature rise 0 is

£§ = a
at

re + i ae

Sr
2 r

r > a , t > o
( 1 )

with the following initial and boundary conditions:

a
,

t = o
, 0 = 0 (2)

a ,
t > o ,

-K r = F° (3)

t > o ,
OD i o (4)

the Laplace transformed equation is

,Mq_
qKpKj (qa) (5)

An asymptotic series expansion of Eq. 6.2(5) yields the
solution for temperature rise for small values of time

9 =
2F,

F oat ll / . „ r - a (3r + a) r ..f _ „ t - a
L
—

1 \
ierfc iw - c dt i 1 erfc ^sr

9a2 + 6ar + 33r"

32a 2 r2^2
L at J i

3erfc
2/at

75as + 27a2 r + 33ar 2 + 249r3 s r - a \
[ at ] i erfc + . •

• J128a
3?”

(6)



-33-

For an initial temperature Ug, the temperature at
any distance r in the region is given by

u = uQ + 9 (7)

At the interior surface r = a, 6.2(6) reduces to

e = - t£ + t - -i- ^ + . . .1(8)
K ^ */tT 4 4/tF 32 J

where T = .

6.3 Convergence

The first two terms of this series solution, Eq.
6.2(6), were available on p. 339 [10], and were tried as
a third approximation for predicting overall shelter
performance. However, the contribution from the second
term was found to be considerable for moderate values
of the Fourier number T, suggesting that one or more
higher order terms might contribute significantly.

Two additional terms were obtained by expanding the
modified Bessel functions of the second kind,, which appear
in Eq . 6.2(5)* into asymptotic series, performing the
indicated division, and taking the inverse transform of
each term.

The expression in Eq . 6.2(8) converges for small
values of T, but will diverge for large values. The change
from convergence to divergence appears to occur at approxi-
mately T = 1. For values of T in the neighborhood of 1,
convergence may be quite slow, so that many terms of the
series would be needed to provide reasonable accuracy. In
this case, four terms of the series were sufficient to pro-
duce accuracy of the order of hundredths of a degree Fahr-
enheit .

A large time solution p. 339 [10] , would be required
to produce convergence for values T>1.
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6.4 Assumptions

The assumptions used in this approximation are
listed and discussed below.

1) geometry - cylindrical model

The NBS shelter deviated even more from this
model than it did from the previous spherical
model. In addition to the reasons given in
paragraph (l) of Section 5-3* the cylinder is
assumed to be infinite in length, as well as
circular in shape. However, as stated in
Section 5.5 j this model was introduced for
purely mathematical reasons.

Like the previous solution, this solution
provides only a single temperature at a given
radius, in all directions normal to the cen-
tral axis of the cylinder.

a) equivalent cylindrical radius

The cylindrical radius chosen to approxi-
mate the shelter was obtained by assuming
that the shelter was a cylindrical cavity
whose length (x) was equal to the longest
internal dimension of the shelter and
whose radius was such that the curved area,
2Trax, was equal to the total shelter sur-
face area. This method yielded an equiva*
lent radius of 6.0 feet. Only the curved
area was used to represent the total sur-
face area because no heat flows axially in
the cylindrical model.

2) homogeneous heat conduction region

This assumption was discussed in Section 4.3.

3) uniform Initial temperature

The same average initial temperature used in
the previous solution was also used here, for
the same reasons of symmetry.
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6.5 Results

Figures 6.5.1 and 6.5.2 show interior surface tem-
peratures versus time, predicted by Solution III, for an
equivalent cylindrical radius, a = 6.0 ft. These curves
together with the observed performance, were plotted for
NBS Tests 3 and 5 for two sets of thermal properties,
including the preferred earth values.

The observed temperatures shown on each figure are
the same ones used in Section 5.4, and the values of
heat flux F0 used in the computations are the same as
those used in the previous solution.

6.6 Discussion

Inspection of Figures 6.5.1 and 6.5.2 shows that
the preferred earth thermal properties gave better
agreement between predicted and observed temperatures
for an equivalent cylindrical radius of 6.0 feet. This
combination gave agreement to within less than 0.5°F
for both tests, for elapsed times of both 168 and 336
hours. The shape and position of the predicted curves
are an improvement over those produced by Solutions I

and II.

At this point, further improvement dealing with
models characterized by one space variable could prob-
ably be achieved by treating the composite case, or the
nonuniform initial temperature case. These refinements
would introduce considerable complexity into the mathe-
matics; however, treating the one-dimensional model will
avoid some of the complexity, and will give some indica-
tion of the magnitude of the effects. Since the compos-
ite nature of the heat conduction region is a fundamental
property applicable to all concrete shelters, it will be
treated in the following section.
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7. SOLUTION IV

7.1 Statement of Problem

Semi-infinite composite region. The heat flux F0 is
constant across the surface x = -1 . The initial tempera-
ture is uniform.

7.2 Mathematical Summary

The differential equations to be satisfied by the
temperature rise @ are

with the following initial and boundary conditions:

( 1 )

and
at a*3

= as o < x < e©
, t > o

( 2 )

£ < X < o , t = o, 0 =0
( 3 )

o < x < ©o
, t = o

( 4 )

( 5 )
X i ,

t > o

X = o t > o
, 9 (6)

X = o , t > o
( 7 )

X ©o
, t > o

» 2 o
(8)
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The solutions of the Laplace transformed equations are

g = F° f
exP [

- q
1 ( l + x)

3 - B exp
[
- q, (

l

- x)]
j

q a
K

tp t 1 + 8 exp (-2q
t £)

J

and 02 = /
exp [- q,(/ + xk)] 1

q^pCcr + 1) l 1 + 3 exp( - 2q
1 4)

J
( 10 )

The inverse transformations yield the solution for
temperature at any point in the concrete medium

Uo + ~ F 0T^Y (-l)
n
B
n

{ ierfc -^/A-
K

i
U 1

and the solution for temperature at any point in the earth
medium

U; = Uq + H (1-b)F 0T^ Y(-1)V ierfc
K . L 1 ( 12 )

n=o 2T

where T = .

At the interior surface x = - i , Eq .
7.2(ll) becomes

00

U, = U0 + IL F 0T^ Y(-1)V ; ierfc \ - B ierfc ^ } ( 13 )

K, l T5 Tf
>

1 n=o

At the concrete-earth interface x =o , either 7.2(ll)
or (12) may be used, giving

u un + — (1-0)FOT^ 7 (-l)
n
3

n
ierfc

K,
° L>

n=o

(2n+l)
T“

2T 2
(14)
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7.3 Convergence

Since o < ierfc(x) <; l//rr for all values of x, the
convergence of (-0)

n is sufficient to insure convergence
of Eqs. 7.2(ll) and ( 12 ). Therefore the series converges
whenever

| 0 |

< 1 . This condition is always satisfied, as
can be seen from an examination of the definition;

whence - 1 < 3 < 1 for o < a <

7.4 Assumptions

Similar solutions were published in references [ll]
and [12], using a different origin for the coordinate
system. This solution, Eqs . 7.2(11) and (12), was derived
with the origin located at the Interface for mathematical
simplicity.

The assumptions used in this approximation are listed
and discussed below.

1) geometry — one-dimensional model

This assumption is the same as for Solution I

and was discussed in Section 4-. 3 . It will be
listed in the following solutions without
further comment.

2) composite heat conduction region

The heat conduction region was a composite of
8 inches of concrete in perfect thermal contact
with an infinite earth medium, so that the
solution contains the thermal properties of
both media. This assumption will be listed
in the following solutions without further
comment

.

3 - and
a + 1
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3 ) uniform initial temperature

This assumption is the same as for Solution I

and was discussed in Section 4.3.

7.5 Results

Figures 7.5*1 through .4 show interior surface
temperatures versus time* computed from Eq. 7*2(13),
for the north and west wall conduction regions of NBS
Tests 3 and 5, together with the observed performance.

Curves 1 and 3 show predicted performance based on
the preferred concrete thermal properties and two sets
of earth properties, including the preferred values.
Curves 2 and 4 show performance based on estimated
’'maximum" concrete properties and two sets of earth
properties, namely, estimated maximum and preferred values.

Table 7.5*1 shows predicted surface temperatures
for the five semi-infinite regions of NBS Tests 3? 4,
and 5 ,

evaluated at elapsed times of one and two weeks,
together with the observed temperatures and the re-
sulting deviations. The computations were based on
the preferred concrete and earth thermal properties.

Table 7*5*2 is similar to 7*5*1, except that the
predicted surface temperatures were based on the maxi-
mum sets of thermal properties.

A numerical example for this solution is shown in
Appendix C.
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7.6 Discussion

Inspection of Figures 7.5-1 and .3 shows that the
preferred thermal properties of concrete and earth
(Curve 1) gave better agreement for the north wall
region. This region, as previously pointed out, was
selected as the least typical in the sense of conform-
ing least to the one -dimensional model. The maximum
values of thermal properties (Curve 4) gave better
agreement for the west wall region, as well as for the
other three regions, in most cases. These findings are
similar to those pointed out by Solution I, and can be
seen from Table 7-5*2 which shows that In 10 out of 15
cases, the maximum values produced agreement to within
1.5°F at the end of a two-week period. The preferred
sets, on the other hand (Table 7 - 5 - 1), produced agree-
ment to within the same amount in only 2 out of 15
cases. This lack of agreement for the preferred sets
of values is due to the one-dimensional nature of the
solution which has already been seen to cause high
predictions. However, it should be recalled that the
purpose of this solution is to examine the importance
of the composite assumption.

Curves 2 and 3* based on approximately equal frac-
tional increases in concrete values on one hand and
earth values on the other, indicate, when compared
with Curve 1, that the two media play about equal roles
in conducting heat away from the shelter for two-week
periods. However, since the earth is generally less
conductive than the concrete, and becomes increasingly
utilized for heat storage as time increases, it would
ultimately be expected to control the heat flow.

This tendency can be seen from further examination
of Curves 1, 2, and 3 in Figs. 7-5*2 and .4 which shows
that increasing the concrete properties lowers the tem-
perature more than increasing the earth properties in
the first week, but less in the second week. However,
the lower temperatures at the end of two weeks (Curve 3)
are not significantly lower than Curve 2. and the reason
that the greater mass of earth involved is not a dominant
factor by this time will b^\ discussed in Section 10.2.

This solution can be further improved, at the expense
of some increase in mathematical complexity, by consider-
ing the non-uniform initial temperature distribution -which
actually existed. (See Appendix A).
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8. SOLUTION V

8.1 Statement of Problem

Semi-infinite composite region. The heat flux F 0 is

constant across the surface x = - f . Each medium has
initial temperature u = f(x).

8.2 Mathematical Summary

The differential equations to be satisfied by the
temperature u are

and

Su. 3
a
u,

a. :.

x
L.

at *x2
9, < x <r o , t > o

^u3 = a s
^ u ?

,
o < x < oo

,
t > o

St rjx
2

( 1 )

(2)

with the following initial and boundary conditions:

-£<x<o,t = o,Uj=ax+b (3)

o < x oo , t = o
,

u? = c+ (b-c) exp (-mx) (4)

x = - l ,
t > o

,
-K

1
= F 0 ( 5 )

^x

x = o,t>o,u
t
=u2 (6)

X = o
,

t > o = K.

fix

dua

Sx
(7)

u-X oo
9

t > o
*

c ( 8 )
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The solutions of the Laplace transformed equations
are

_ _ f
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The inverse transformations yield the solution for
temperature at any point in the concrete medium

u, = 21

K,
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medium
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where
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At the concrete-earth interface x = o, either 8.2(ll)
or (12) may be used, giving

u = 21

uu

(F + aK,)T5 Y (-B)
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8.3 Convergence

The first two series in Eq. 8.2(11) are of the same form
as that of Eq

.
7.2(ll), and converge for the reasons given

in Section 7-3-

The third series contains complementary error functions
which are also bounded

o < erfc(x) £ 1

for all values of x. Therefore this series also converges
whenever

| g |

<r 1 .
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The remaining series converges for all values of T,

whenever a certain condition among the parameters 3 , m,

l , a
: j,

and aR is satisfied. This condition can be obtained
by use of the ratio test for convergence. The absolute
value of the ratio of the (n+l)^b term to the nth term of
the series is

p
n+1

erfc]
-

.

L

2(n+l)-x/ i ^ q|

2T# k T
J|

|excp|"Y*fj T + 2(n+l)^~ . EEJ
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n erfc

r2n-x^
+

_ 2T ® k 1 |

exI{(f

J

T
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( 1 )

3

erfcj^
2n-x/

l

,

T~
2T s

— +
k

41

r2n-x/i,
,

lm il
erfc -i-T*

<
L 2T^ k J

( 2)

The value of this expression must be less than one, in the
limit of large n, for convergence. The bracketed term
approaches one for large n, and thus the ratio of terms
reduces to

3 exp
( 3 )

The condition for convergence, then, is that (3) be kept
less than one. The smaller the value of T, the faster is
the convergence, and for T corresponding to about 14 days,
only a few terms are required.

Eq. 8.2(12) is similar to (ll), with two additional
terms which are not summed. These terms vanish for large T.
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8.4 Assumptions

A solution of this type was not available in any of
several apposite references examined, and was derived,
as in the previous solution, with the origin of the coordinate
system located at the interface.

The assumptions used in this approximation are listed
and discussed below.

1) geometry — one-dimensional model

2) composite heat conduction region

3) non-uniform initial temperature

In the previous solutions, the initial
temperature distribution throughout each
region, e.g., - l < x <r 00

, was assumed to
be uniform, and an appropriate average
value was used to represent the observed
distribution shown in Appendix A. The
figures in this appendix show that the
initial temperature distribution was
not uniform in most cases, especially
at the beginning of NBS Test 3. Even
though an initial condition such as that
of Test 3 would not be likely to exist
in an actual situation, especially one
in which the shelter had been unoccupied
for a long period of time, the kind of
unusual distribution which did exist
afforded an opportunity to observe its
maximum effect and significance.

In this solution, the initial temperature
was approximated in the concrete medium
by a linearly increasing function,
u, = ax + b, Eq. 8.2(3)* and in the earth
medium by the exponential function
u
2 = c + (b-c) exp (-mx), Eq. 8.2(4).
See Fig. 8.4.1 and Table 8.4.0.
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TABLE 8.4.0

VALUES OF CURVE-FITTING CONSTANTS
FOR SOLUTION V

Curve-Fitting Constants

Test Surface a b c m

3 No rth 2.40 66 .

6

78.0 0.50
West 1.65 65-2 74.0 0.60
South 1.00 61.7 76.0 0.50
East 1.00 65.0 77-0 0.55
Floo r 1.40 63.8 66.0 0.60

4 North 0.30 66.1 73.0 0.40
West 0.00 66.0 70.0 0.40
South 0.00 66.0 71.0 0.40
East 0.00 65.8 72.5 0.30
Floor -1.00 64.7 64.7 0.00

5 No rth 0.00 45.2 41.5 0.30
West 0.00 46.0 43.5 0.30
South 0.00 46.0 42.0 0.27
East 0.00 45.6 40.5 0.30
Floor 1.00 48.3 54.0 0.33
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This figure partly reproduces Fig. 3 of
Appendix A* showing the initial tempera-
ture distribution in the north and west
wall heat conduction regions* selected as
representative regions for detailed
analysis in this report.

8.5 Results

Figure 8.5.1 shows interior surface temperatures
versus time* predicted by Solution V* for the north wall
conduction region of NBS Test 3 , together with the ob-
served performance.

Curves 1* 2 and 4 in Figure 8.5.1 were based on the
preferred earth thermal properties while varying the con-
crete thermal properties to cover the range of values men-
tioned in Section 3.2.

Curves 1* 3 and 5 in Figure 8.5.1 were based on the
preferred concrete thermal properties while varying the
earth properties to cover an estimated range of values that
might occur at the NBS test site.

Figure 8.5.2 shows similar temperature-time curves for
the west wall conduction region of NBS Test 3.

Figure 8.5.3 shows a temperature-time curve for the
west wall conduction region of NBS Test 5. The figure
shows predicted performance* together with the observations*
based on the preferred thermal properties only.

The values of the curve-fitting constants used in the
computations are listed in Table 8.4.0.

The results of this solution were obtained on the IBM
7090 digital computer at the rate of 0.35 minutes per run.
Each run consisted of computing temperatures at four posi-
tions in the concrete medium and eight positions in the
earth medium* for the eight values of time shown in the
figures* a total of 96 calculations.
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8.6 Discussion

Comparisons of Curves 1 and 2 in both Figures 8.5.1
and 8.5.2 show that an increase of 14 percent in the thermal
diffusivity of the concrete decreased the inside surface
temperature 0.5-P or less throughout the l4~day period.
On the other hand* comparisons of curves 1 and 4 in Figures
8.5.1 and 8.5.2 show that a decrease of a little over 50
percent in the thermal diffusivity of the concrete from the
preferred value Increased the temperature about 1°F for the
north wall surface and about 2°F for the west wall surface.

Comparisons of Curves 3 and 5 in Figures 8.5.1 and
8.5.2 show that an increase in thermal diffusivity of the
earth from 0.02 to 0.03 ft2 /hr caused a change of less than
0.5°F at any time in the surface temperature of the north
wall and a maximum change of about 1°F in the surface tem-
perature of the west wall after 14 days. Thus it appears
that the thermal properties of the concrete in the composite
model affects the surface temperature of the walls more
significantly than the thermal properties of the earth.

Comparison of Figure 8.5.3 with Curve 1 of Figure 7.5.4
for Test 5 shows much similarity between the two* especially
after the first week* indicating that when the initial tem-
perature is reasonably uniform (See Fig. 5 of Appendix A)*
the predictions of Solution V approach those of Solution IV.

It was pointed out in Section 7.6 that Curves 2 and 3
of* e.g.* Figure 7.5.2* cross at about 7 days* showing the
tendency of the earth region to succeed the concrete as the
dominant medium. In Solution V* however* Curves 2 and 3 of
Figures 8.5.1 and 8.5.2 do not cross* even after 14 days*
Indicating that the concrete remained dominant throughout
this period. The reason is that in Solution V the concrete
was assumed to be initially colder than the earth* as shown
in Figure 8.4.1* and therefore dominated the heat flow for
a longer time than usual. This medel serves to illustrate
the fundamental interdependence of the composite nature of
the region and the nonuniform Initial temperature* which
could only be seen in a solution containing both assumptions.
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9 . SOLUTION VI

9.1 Statement of Problem

Semi-infinite composite region. The heat flux FQ is
constant across the surface x = - /, . Each medium has initial
temperature u = f(x).

9.2 Mathematical Summary

The differential equations to be satisfied by the temper-
ature u are

Bu
1

B
su

1— =
°S _ » - £ < x < 0

, t > 0 (1)
at Bx

2

Bu
2 B

2u 2
0 < X < ©O

, t > 0— = ag
Bt dx

2 ’ (2)

with the following initial and boundary conditions:

A X < 0 t — 0 a, = ax + b
( 3 )

0 < X < 00 t = 0 us = b + cx exp (-mx)
( 4 )
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The solutions of the Laplace transformed equations are

F 0 + aKj ^ f
exp

[
-g

1
(l+x)] - 0 exp

[
-g

t
(l-x)] |

1 + 8 exp (-2q
t
i)

^
u- =

L q,KlP
J L

r a
-J

r exp
[
-q

x
( 21 + x) ]

+ exp (q
1
x)

1 q, p ( a+1) J 1 '1 + R exp (-2q
1
/) }

+
{

cK«

q T
K

7
(cr+1) (p- a2m

s
)

H exp [-qj(2£ + x)] + exp (qjx)

1 + 8 exp (-2^/)
}

r 2agcmKg (q 8 -m)
^

r exp [ -q 1
(2/ + x)] + exp (q,x) 1 ax + b

l q^K
:

(o+l) (p - a2m
y

)
y

J l 1 + p exp (-2q
t X)

->

+ ( 9 )

and

u® =
F0 + aKj 'i r [1-3] ©xp [-q t (i + xk)

]

= {“}{
q,KlP 1+0 exp ( -2q x !,)

}

-
{

a
j

r exp [-q, (21 + xk)] + exp (-q^xk) 1

q,P (o+l) ^
1+fl exp (-2^/)

i

+
1

cK.

q 1
K

1
(o+l) (p - a 2m

a
)
}{

exp [-q a (21 + xk)
j
+ exp (-q

1
xk)

1+R exp (-2q
i
£) }

-{
20gCmKs (q 3 -m) -> r exp [-q

1 (21 + xk) ] + exp (-q
l
xk)

q t
K, (o+l)(p

—— } {a 2m
2

)
a ^ ^ 1+0 exp ( -2q,£)

}

^

2a 2cm
^+

J {
- exp(-mx)

}
+

( p-a 2 ra
2

)

cxexp( -mx) b

p - a2 rrr p
( 10 )



-65 -

The inverse transformations yield the solution for
temperature at any point in the concrete medium
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and the solution for temperature at any point in the
earth medium
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At the interior surface x = - i, Eq. 9.2(ll)
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At the concrete-earth interface x = o, either
9.2(ll) or (12) may be used, giving
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9.3 Convergence

Equations 9.2(ll) and (12) converge subject to the
same condition discussed in Section 8 . 3 , namely

3 ( 1 )

9*^ Assumptions

This solution was not available in the references
examined, and was derived like the previous one. It differs
from Solution V only in the form of the initial temperature.

The assumptions are:

1) geometry — one-dimensional model

2 ) composite heat conduction region

3 ) non-uniform initial temperature

As stated in Section 8 . 6 , the region beyond 4 feet
was expected to contribute to the surface tempera-
tures, resulting in the need for a better
approximation to the initial profile in this
region. In this solution, the initial tempera-
ture was approximated in the concrete medium by
a linear function u x = ax + b, Eq. 9-2(3),
as in Solution V, and in the earth medium by the
function u 2 = b + cx exp (-mx), Eq . 9-2(4), shown
in Pig. 9-4.1 (See Table 9-*+.0). This figure
is completely analogous to Fig. 8.4.1. It can be
seen that the function u

a has a maximum correspond-
ing to that suggested by the observed curve, and
subsequently decays exponentially to the value b
at infinite x. This is probably closer to the
actual situation for a much greater distance into
the earth, and should improve the solution for
times greater than one week.
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table 9.4; o

VALUES OF CURVE-FITTING CONSTANTS
FOR SOLUTION VI

Curve-Fitting Constants

Test Surface a b c m

3 North 2.40 66 .

6

5.23 0.20
West 1.65 65.2 5.96 0.30
South 1.00 61.7 6.85 0.20
East 1.00 65.0 5.79 0.20
Floor 1.40 63.8 2.99 0.50

4 North 0.30 66.1 2.09 0.10
West 0.00 66.0 1.46 0.15
South 0.00 66.0 1.57 0.10
East 0.00 65.8 1.83 0.10
Floor -1.00 64.7 0.00 0.00

5 North 0.00 45.2 -1.25 0.15
West 0.00 46.0 -0.60 0.15
South 0.00 46.0 -1.15 0.15
East 0.00 45.6 -1.39 0.10
Floor 1.00 48.3 -1.87 0.10
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9.5 Results

Figures 9.5.1 and 9*5.2 are exactly analogous to the
corresponding figures of Solution V. The curve for NBS
Test 5 is omitted, since it is almost identical with that
in Figure 8.5.3.

These results were also obtained with the aid of the
digital computer, at approximately the same running time.

The values of the curve-fitting constants used in the
computations are listed in Table 9.5.0.

9.6 Discussion

Inspection of Figures 9.5.1 and 9.5.2 shows the same
general results concerning thermal properties found in
Solution V, except that Curves 2 and 3 of Figure 9.5.2 do
cross near the end of the test, indicating that the earth
has begun to take over a little earlier than in Solution
V. Since Solutions V and VI were derived on assumptions
identical except for the initial temperature function u
wide variations in results were not expected.

Solution VT represents the last investigation of
one-dimensional, semi-infinite region, constant heat flux
shelter models. A general discussion and comparison of
all the solutions presented in this report follows in the
next section.
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The
cance of
for four

1 )

2 )

3 )

4 )

and also

3)

6 )

10. GENERAL DISCUSSION

purpose of this section Is to discuss the signifi-
the assumptions made in the Individual solutions
basic parameters, namely:

geometry

composition of region

initial temperature

thermal properties,

the questions of

shelter irregularities

treatment of the complete problem.

10.1 Geometry

The first three solutions provide a means of comparing
the effects of the basic geometries considered, since they
differ only in this respect. Figures 10.1.1, .2, and .3
show surface temperatures versus time predicted by Solu-
tions I, II, and III for NBS Tests 3 , and 5* based on
the preferred earth thermal properties. The equivalent
radii used in Solutions II and III were determined on the
basis of equal surface areas. Since Solution I, unlike
the other two, represents a one-dimensional model and is
applicable only to the individual surfaces, it could still
be included in this comparison by assuming all six surfaces
to be In one plane and using the same overall average
values of heat flux and initial temperature.

It can be seen from these figures that Solution III,
based on the cylindrical approximation, produces the most
accurate predictions for two-week periods. As stated in
Section 6.3* this solution might still be best for three-
week periods and even longer with increasing size. In the
case of large shelters, because of their shape and shallow
depth, spherical approximations would not be applicable.
With increasing size, the one-dimensional solutions become
Increasingly better.
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10.2 Composite Region

In order to examine the significance of the composite
assumption, it is necessary to compare Solutions I and IV.
This comparison, however. Is complicated by the question
of which set of thermal properties in Solution I corres-
ponds to which two sets in Solution IV. Figure 10.2.1 pro-
vides a comparison on the basis of the preferred concrete
and earth thermal properties. The west wall region of NBS
Test 3 was chosen as a typical case. This figure is a
reproduction of Curves 2, 3 > and 4 of Figure 4.4.2, and
Curve 1 of Figure 7.5.2.

Inspection of Figure 10.2.1 shows Solution IV, Curve
1, lying between two cases of Solution I, Curves 2 and 4.
The composite assumption lowers the predicted temperature
toward Curve 4 for small values of time, when concrete
dominates, and raises the prediction toward Curve 2 for
large values of time, when the earth properties are of more
significance. This effect is more clearly observed by com-
paring Solution IV with Solution I, Curve 3 , which is based
on an intermediate set of thermal properties.

It can be seen that some intermediate combination of
thermal conductivity and dlffusivity will translate Curve
3 into a position of optimum agreement with Curve 1, but
never into complete agreement, since the times under con-
sideration are neither small enough to approximate the
whole region by concrete nor large enough to approximate
It by earth. This result may or may not be true for the
cylindrical and spherical models. While it seems likely
that the effect of the concrete would be less in these
models, because of the increasing mass of earth per unit
surface area within a given distance from the surface, any
differences could only be determined by solving the appro-
priate composite models.

It was first pointed out In Section 7.6 that in the
one-dimensional geometry, the earth does not dominate the
heat flow sufficiently, after two weeks, for the whole
region to be treated as earth. This fact can be made
plausible by calculating the relative amounts of heat
stored in the concrete and earth, according to Solution
IV. The heat stored in each medium Is simply the integral
of the temperature rise over the medium. Thus, the heat
stored in the concrete is:
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o

Q*(t) PiCx e 1
(x,t)dx

-l

( 1 )

and the heat stored In the earth

Q 2 (t)

00

O

( 2 )

The temperature rise, e, and e a , can be obtained from Eqs.
7.2(11) and (12), giving

00

Q T ( t) = F0t V
( „Q)

n
|
49i2erfc + 4is erfc IL - 4{R+l)i2erfc

n '
r"^

1

n=Q
T 2

' (3)

and Q s (t) = FQt( 3+1) Y(-0)
n

4i2erfc
n+|

W w

Since F0 t is the total heat per unit area lost at time t,

it follows that the fraction stored in the concrete is the
coefficient of F0 t in Eq. (3)* giving 24 percent when
evaluated at t = 336 hours. It may be noted that this
agrees fairly well with an estimate made in reference [1]

,

based on measured temperatures in NBS Test 3- That estimate
established the fraction of heat stored in all the concrete,
including the shielding wall, at about 26 percent of the
total heat stored within 4 feet of the shelter.
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10.3 Initial Temperature

Figure 10.3.1 shows surface temperatures versus time
predicted by Solutions IV, V, and VI for the north wall
region of NBS Test 3* based on the preferred sets of thermal
properties. Figure 10.3.2 shows similar curves for the west
wall region. These figures facilitate a comparison between
observed performance and three one-dimensional solutions
which differ only in the form of the initial temperature.

Figures 10.3.1 and 10.3.2 show the effect of the par-
ticular temperature distribution which existed at the start
of Test 3 on the predicted surface temperatures. The assumed
temperature at the shelter surface for Solutions V and VI
were as much as 5.6°F lower than the average value used in
Solution IV, resulting in generally lower predictions from
these latter solutions for the first 6 to 8 days of the test.
However, the predicted surface temperature at the end of
14 days was higher from Solution VI than from Solution IV
and still higher from Solution V.

Solution V was derived with the simplest exponential
approximation to the initial temperature on the assumption
that the region beyond 4 feet would have little effect on
the surface temperature up to 14 days. The magnitude of
the difference in the predicted temperatures at 14 days’
time from Solutions IV and V, however, suggested that the
effect of the earth temperature beyond 4 feet might be sig-
nificant. It is probable that the initial temperature more
than 4 feet from the shelter surface for Test 3 decreased
as indicated in Figure 9. 4 , 1

.
[l]. The effect of this latter

assumption regarding the initial earth temperature beyond
4 feet is seen, from a comparison of Solutions V and VI, to
be a decrease in shelter surface temperature of a little
more than 0.5°F after 14 days.

Solutions V and VI represent successive refinements
in the assumptions regarding the initial earth temperature.
It appears that the effect of these refinements is not large
after the first week of occupancy. Since a more nonuniform
initial temperature distribution than that observed for Test
3 is not likely to occur in undisturbed earth, the initial
temperature can be considered uniform for design purposes,
unless the first week of occupancy is of comparable import-
ance to the second week.
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Since the composite nature of the region and the non-
uniform initial temperature have been taken into account
in Solutions V and VI, the steepness of the curves in
Figures 10. 3.1 and 10.3.2 after the first week is due
chiefly to the one-dimensional geometry.

10.4 Thermal Properties

It was observed in Sections 4.6 and 7.6, in discussing
one-dimensional Solutions I and IV, that higher thermal
properties for the conduction region produced better agree-
ment between predicted and observed temperatures in most
cases. The north wall region was an exception to this trend.
Since heat flows in one direction only in a one-dimensional
model, artificially high thermal properties were required
to produce reasonable temperature predictions.

It seems probable that the NBS family shelter, without
widely different width, length and height, would be best
represented by a spherical cavity, especially if it were
located deep in the earth. However, the comparison of
observed and predicted surface temperatures by Solution II,
(See. Fig. 5.4.1 and 5.4.2), indicate that the heat conduc-
tion region around the actual shelter was a less effective
heat sink than that assumed for the spherical model during
both the summer and winter tests. This was probably due to
the effect of the relatively thin layer of earth over the
shelter and the exposure to atmospheric conditions at the
earth's surface and also to the difference in shape of the
cavities. Thus, artificially low thermal properties were
required for Solution II to best approximate the observed
shelter surface temperatures.

Since the cylindrical model provided a larger heat sink
per unit shelter surface area than the one-dimensional model,
and a smaller heat sink per unit shelter surface area than
the spherical model, it tended to produce the best agreement
between predicted and observed surface temperature with the
preferred, or most probable, thermal properties of the heat
conduction medium.

In NBS Tests 3 and 4, significant absorption by the
concrete walls of existing condensation would have raised
the thermal properties; however, this possibility was mini-
mized by the application of two coats of rubber-base paint.
In NBS Test 5, due to the melted snow, the thermal properties
of the earth could have been higher than the preferred set,

but this was not indicated by the diffusivity determination
discussed in Section 3*3.
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The models used for this analysis implicitly assumed
that the heat conduction in the concrete and earth was linear
in nature, i.e., the thermal properties did not vary with
temperature, so the classical linear heat flow theory was
applicable. While it may be that the temperature dependence
of the thermal properties could be neglected for the gradi-
ents encountered in these tests, these gradients nevertheless
may have caused some moisture migration in the soil. This
migration would have acted both to transfer sensible and
latent heat directly, and to change the thermal properties,
which are much more sensitive to moisture changes than to
temperature changes [7]. The result is a problem of com-
bined heat and moisture flow which involves coupled, non-
linear, partial differential equations, amenable to solution
by numerical analysis [13]

Although a few measurements of moisture content of the
earth were made during the course of the five NBS tests,
the data did not indicate whether significant moisture
transfer occurred. It probably was not sufficient to cause
significant changes in the thermal properties of the earth.



10.5 Shelter Irregularities

Throughout this analysis, both heat conduction media
were assumed to be homogeneous, and in the case of the
earth. Infinite in extent. These conditions were not fully
met by the NBS test shelter and site, due to certain
irregularities In the walls and earth. The deviations for
each region are listed as follows:

1) north wall region — a concrete road was located
about ten feet from the wall, which might
actually have acted as a heat source, storing
heat from the sun. This additional heat source
would tend to make the surface temperature rise
faster, requiring lower thermal properties to
make predictions agree with observations (cf.
Sections 4.6 and 7.6). The hatchway exit,
adjacent to this wall, might have affected the
distribution of heat flux over the wall. The
shielding wall might also have affected the heat
flow distribution, by interfering with the radia-
tion component of the internal heat exchange.
This wall also contained the metal exhaust pipe,
which would tend to conduct some heat directly
to the air. It is for these reasons that this
region was designated the least typical.

2) west wall region — the south half of this wall was
probably exposed to more heat than the north half,
due to the arrangement of simulated occupants and
shielding wall, but since it faced uphill on a site
of 12 percent grade, it was exposed to more earth
than any other wall. This region was designated
the most typical.

3) south wall region — the ventilating air supply
system used during the NBS tests was located in
the shielding wall and aimed at the south wall.
Furthermore, three simulated occupants were located
near this wall. This arrangement possibly affected
the heat flux distribution. A spare ventilating
air supply and exhaust system, installed in this
wall, would tend again to conduct some heat directly
to the air.
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4) east wall region — this wall faced downhill and
thus was exposed to less earth than any other wall.
In fact, the original grade line was about one
foot below the top edge of this wall. It was
consequently the one most affected by weather con-
ditions. Also, the hatchway portion of this wall
received less heat than the rest.

5) floor region — this region had a truly infinite
exposure of earth. However, the hatchway portion
of the floor received less heat, and the arrange-
ment of the simulated occupants and the supply
air stream might have affected the heat flux
distribution.

10.6 Shelter Environment

In this report, the conduction problem has been treated
as separate from the rest of the shelter-environment system,
using the known heat flux at the surfaces. While this pro-
cedure is not invalid, it is Incomplete in the sense of
omitting that part of the heat transfer process between the
Internal heat sources and the walls. A more complete treat-
ment would take into account these sources, namely, venti-
lation and occupants. In such a problem, it would not be
possible to treat each surface separately, as was done in
the one-dimensional solutions, because the heat losses to
all the surfaces are interrelated through the common sources
In that case, the simplest approach would be to use a single
symmetrical model such as the cylinder or sphere, and
according to Section 10.1, the cylinder is the better choice

A cylindrical solution with heat source boundary condi-
tions is available [ 143, and has been expanded and applied
to the NBS shelter. However, the composite problem has not
been found in a literature search, and the composite assump-
tion may be important as seen in Section 10.2.
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When the conduction problem Is treated separately,
the roof region can be accurately represented by a one-
dimensional finite layer, with boundary conditions at both
ceiling and ground surfaces. (Three such solutions have
been developed, but are not included in this report.)
Because of the proximity of the ground surface, the heat
flow from the four walls is chiefly two-dimensional, ex-
cept near the floor. The floor is exposed to the most
earth of all the surfaces, and heat flow in that region
is truly three-dimensional. These facts suggest that the
overall effect might be two-dimensional, adding weight to
the choice of cylindrical geometry as the best simple
model

.

It should be noted that none of the one-dimensional
solutions in this report are really applicable to the
floor region, because of its three-dimensional behavior.
However, since the floor region was approximately semi-
infinite, the predicted temperatures were included in the
tables for the sake of completeness.

A variety of more elaborate models might be considered
which would explicitly take into account the asymmetry
caused by the ground surface. An example might be a closed
hemispherical cavity convex downward located at a finite
depth within a semi-infinite region. This model would
probably exhibit a more desirable heat flow pattern, approx-
imately one-dimensional in the roof region, two-dimensional
at the sides, and three-dimensional at the bottom. Models
of this type are, of course, mathematically complex.
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11. CONCLUSIONS

On the basis of the analyses covered by this report,
it is concluded that a cylindrical model provides the best
predictions of the surface temperatures in a small under-
ground shelter with limited earth cover, probably because
it most nearly compensates for the effect of the finite
region over the cavity. It is probable that a spherical
model would be better if the small shelter were considerably
deeper in the earth. The one-dimensional model was less
effective in predicting temperatures in such a small shelter,
but would probably be an adequate representation for larger
shelters in which corner effects were relatively of less
importance

.

The composite nature of a concrete shelter surrounded
by earth was shown to have a small effect on shelter surface
temperatures. The higher thermal properties of concrete as
compared to earth caused the shelter surface temperatures
to be a little lower than if the entire conduction region
was comprised of earth. This effect was slightly greater
during the first week of occupancy than during the second.
A heat conduction region comprised entirely of concrete
might reduce surface temperatures as much as 3°F in a small
shelter as compared to a shelter with only moist earth as a
heat sink. This disparity would be even greater if the earth
medium was essentially dry.

The initial distribution of temperature from the shelter
surface to a distance of 4 feet into the surrounding medium
was found to make an appreciable difference in the surface
temperature during the first week of occupancy, but the ef-
fect was of little significance after two weeks.

The solutions described in this report do not take into
account the effect of moisture migration on heat conduction,
but these effects were believed to be small in the test shel-
ter.

Further efforts toward fulfilling the overall objectives
of this analytical study should begin with models that take
into account heat generation and ventilation of the shelter,
the finite roof cover, and the composite nature of the shel-
ter surroundings

.
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appendix A

INITIAL TEMPERATURE DISTRIBUTION

IN

SHELTER CONCRETE

AND

SURROUNDING EARTH MEDIUM

FOR

FIVE NBS SHELTER TESTS

CONDUCTED BETWEEN

August 13, 1959 and April 8, i960
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NBS TEST 3

INITIAL TEMPERATURE DISTRIBUTION IN
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NBS TEST 4
INITIAL TEMPERATURE DISTRIBUTION IN

HEAT CONDUCTION REGION ON OCT. 6 ,
1959

DISTANCE IN

CONCRETE
INCHES

DISTANCE IN EARTH FROM EXTERIOR
SURFACE OF CONCRETE ,

INCHES
FI©. A 2
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MBS TEST '5

INITIAL TEMPERATURE DISTRIBUTION IN

HEAT CONDUCTION REGION ON MAR. 25, I960
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APPENDIX B

Heat Flux

The mathematical solutions in this report are based
on a constant ( time -independent ) heat flux, applied uni-
formly over the entire bounded surfaces of each mathe-
matical model. These are conditions which would appear
more readily applicable to a sealed-up shelter, and which
would fail to describe the case of ventilated shelters,
whose heat flux would not be expected to be either con-
stant or uniformly applied. Thus, in order to deal
properly with the constant flux parameter appearing in
each solution, it was necessary to extract numerical
values from the experimental data based on methods con-
sidered to be compatible with the constant flux assumption.
Three methods were considered and each is discussed below,
one of which required the derivation of a new solution.

Method 1 Constant Heat Flux

Each solution based on this assumption required that
a single value of heat flux be used for all values of
time. This value could reasonably be selected as the
overall average value, shown in Table B.l at 336 hours,
and which is close to the experimental value observed
during approximately the seventh day of each test, for
any surface. However, the observed performance diverges
from this value for ocher times.

Method 2 Cumulative Average Heat Flux

This is the method used throughout the report. The
values of heat flux were cumulative averages, values which
are essentially time-dependent, averaged over the interval
from o to t, and considered to be constant in that
interval. The smaller intervals gave a better overall
approximation than Method 1 because the values thus ob-
tained were distributed such as to incorporate the ob-
served exponential decay feature. Even though this
method was obviously a deviation from the models, it was
nevertheless considered to be a reasonable compromise
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between the mathematical assumption and the experimental
observations. The predicted curve determined on this basis
is then actually a curve drawn through points obtained by
solving each solution eight separate times, each time vary-
ing the heat flux in accordance with the cumulative average
values listed in Table B.l.

Method 3 Prescribed Heat Flux

This method would have required the derivation of
each solution on the basis of an actual time-dependent
heat flux boundary condition, but, as previously mentioned,
this was considered to be beyond the scope of this report.
However, in order to determine the effects of the mathe-
matical simplifications involved in Method 1, and of the
" compromise " made in Method 2, Solution I was reworked by
replacing Eq. 4.2(3)* the constant flux condition, by

a prescribed flux condition approximating the experi-
mental situation of exponentially decaying heat flux.
This solution is identified as Solution IA.

The temperature rise 0 at the interior surface x
is then

( 1 )

( 2 )

where D(//mt) represents Dawson's integral^ equal in this
case to the imaginary part of the complex error function.
Both functions are tabulated in [l 5]*



-97-

Figures B.l and B.2 illustrate predicted surface
temperatures obtained from Methods 1, 2, and 3* together
with the observed data, for the north and west wall regions
of NBS Test 3. In both cases, the prescribed flux solution.
Solution IA, yielded results in closer agreement with the
observed temperatures at fourteen days . Method 1 is gen-
erally better for the first seven days because the constant
flux value used was lower than or about equal to the ob-
served values for those times. At the end of fourteen
days, the deviations in temperature between Methods 2 and
3 were less than 1°F for the west wall and practically
negligible for the north wall. For times larger than 336
hours, results from Methods 2 and 3 will tend to merge,
that trend being already visible in Figure B.l, so that
the greatest deviation is probably encountered at times in
the neighborhood of fourteen days or less.

A similar improvement using Eq.(l) could be made to
the other solutions in this report, but the likelihood of
uncovering deviations much wider than those illustrated
by this solution appears doubtful.
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TABLE B.l

CUMULATIVE AVERAGE VALUES OF
HEAT FLUX FQ

Test 3

No rth West South East Roof

2.06 4.41 8.32 4.78 3.60
2.16 4.02 7.09 4.44 3.34
2.15 3.70 6.21 4.13 3.18
2.02 3.56 5-57 3.90 2.97
1.93 3.41 5.10 3.71 2.86
1.85 3.25 4.50 3.46 2.80
1.76 3.04 3.99 3.22 2.70
1.65 2.84 3.53 3.01 2.36

Test 4

North West South East Roof

2.65 4.78 5.49 4.71 3.96
2.63 4.61 4.97 4.42 3.45
2.53 4.42 4.64 4.18 3.15
2.48 4.34 4.40 4.02 2.93
2.45 4.28 4.26 3.90 2.77
2.31 4.10 3-98 3.74 2.41
2.07 3.87 3.63 3.42 2.27
1.83 3.69 3.35 3.18 2.36

Test 5

No rth West South East Roof

1.81 4.19 6.38 5.74 4.57
1.82 3.99 6 . 08 5.35 4.27
1.85 3.93 5.96 5.26 4.16
1.89 3.89 5 . 88 5.18 4.01
1.90 3.84 5.79 5.10 3.80
2.02 3.91 5.80 5.09 3.44
2.09 3.90 5.74 4.97 2.99
2.06 3.86 5.65 4.76 2.80

Floor

5.24
5.17
5.12
5.02
4.90
4.66
4.50
4.24

Floor

4.70
4.51
4.40
4.35
4,32
4.23
4.04
3.90

Floor

1.73
1.74
1.76
1.78
1.81
1.95
2.08
2.19
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APPENDIX C

Numerical Example

The example worked out below for Solution IV is the
type of computation necessary to obtain numerical results
from any of the first four solutions contained in this
report

.

To compute the interior surface temperature u a >
at x = -/

,

for the north wall of NBS Test 3 at 336 hours, Eq. 7.2(13)
is manipulated as follows.

Rewriting the summation portion of the equation in a

slightly more convenient form yields

The factor of 2 was brought inside the summation sign because
the integral error function of the first order is usually
tabulated in this form. Numerical values for this function,
as well as for those of higher order appearing in Solution III,
are tabulated in [15] and in Appendix II of [10].

Expanding summation (l) to produce sufficient convergence
for the desired accuracy for the particular values of time,
wall thickness, and thermal properties involved will require,
in this example, the first four terms, and a convenient
arrangement for listing these terms is shown below. At
n=o, 1, 2, 3 . .

.

,

the summation reduces to the following:

n

—

( 1 )

n = o

n = 1
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n = 2, 20
2 ierfc -2 1 „ 20

3
ierfc

^ T"5 ^

_3
-

n = 3 , -203 ierfc
! —y 1 + negligible terra

T 2

Eq. 7.2(13) can be rewritten* combining the above
terms* to read

u
i

= uo + — f 2 ierfc (o)

Ki
1

26
[

2 ierf0
(^)]

+ 202
[
2 ierfc

(fi)]

2P ^2 ierfc
^

+ • •
• j

-

(2)

The following substitutions can now be made in the above
expression to obtain the required numerical result:

Prom Table 3 • 1- 1?

From Table B. 1,

From Table 7.5.1*

Thickness of concrete.

u0 = 71.7

F0 = 1.65

K
l = 1.15

a
x

= 0.036
a = 0.767

l = 0.667

Therefore* = 27 ® 216

and B =— = -0.1316

cr+1
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Substituting in (2), we get

u a = 71.7 +
( I.65 )( O.667)

1.15

+ 0.03^6(0.5235) + 0.0046(0.3321) + ...

Uj = 71.7 + 6.76 = 78.46 or 78.5°F

,

the predicted value shown in Table 7-5.1.

It should be noted that Solutions V and VI are too
cumbersome for the type of manipulation shown in the above
example, especially when many computations are required.
Even when convergence is fairly rapid, the use of a digital
computer is almost a necessity. As indicated in Sections
8.5 and 9*5* these two solutions were programmed in
Fortran language for use on the IBM 7090 computer, and
these programs are available from the Mechanical Systems
Section of NBS.
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