NATIONAL BUREAU OF STANDARDS REPORT

8628

Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds

(Supplement to NBS Reports 6297, 6484, 6645, 6928, 7093, 7192, 7437, 7587, 7796, 8033, 8186, and 8504)

1 January 1965

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific. technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.

Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.

Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.

Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.

Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

** Located at Boulder, Colorado.

^{*} NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

221-0495 221-0426A 221-0426B 221-0426C 221-0426D 221-0441 222-0423 223-0513 223-0513 223-0442 310-0496 313-0430

1 January 1965

8628

Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds

(Supplement to NBS Reports 6297, 6484, 6645, 6928, 7093, 7192, 7437, 7587, 7796, 8033, 8186, and 8504)

Thirteenth Technical Summary Report on the Thermodynamic Properties of Light-Element Compounds

Reference: ARPA Order No. 20

NATIONAL BUREAU OF STANDA for use within the Government. Befor and review. For this reason, the publ whole or in part, is not authorized t Bureau of Standards, Washington, D.C the Report has been specifically prepa IMPORTANT NOTICE

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015 counting documents intended cted to additional evaluation ig of this Report, either in ce of the Director, National Government agency for which tor its own use.

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS .5

ABSTRACT

This is the thirteenth semiannual report on the current experimental, theoretical, and evaluative program, at the National Bureau of Standards, on the thermodynamic properties of selected light-element and some related compounds of primary interest in high-temperature research. Included are new experimental results in several areas; and a number of tables of thermodynamic functions, heats of formation, ionization potentials, and electron affinities resulting from literature surveys and critical data evaluations.

New experimental work on the borohydrides of aluminum and beryllium is reported. The mean value found for the standard heat of formation of $A\ell(BH_{l_{1}})_{3}$ (298°K) is +2 kcal/mole for the gas and -5 kcal/mole for the liquid, with an estimated possible error as great as 17 kcal/mole. The infrared spectra of MgF₂ (in a krypton matrix), $A\ell(BH_{\mu})_{3}$, and $Be(BH_{\mu})_{2}$ were measured, and a new band system was discovered for F_{2}^{+} . The bending fundamental of MgF₂ appears to be 242 cm⁻¹, and continuing spectroscopic work is expected to provide additional molecular constants for the other substances. High-temperature mass-spectrometric data on the BeO-A ℓ_2O_3 system were treated thermodynamically, and lead to heats of atomization for 02, Al20, and the new molecule AlOBe (as well as the heat of vaporization of liquid BeO·Al₂O₃). The values for O₂ and Al₂O agree well with previously available values. Recent precise measurements of the relative enthalpy of graphite over the range 1200-2600°K are summarized. Liquid Alooz was vaporized in vacuum and the condensates subjected to varying programs of annealing. The progress from amorphous to the stable alpha crystalline form was followed in detail by X-ray and electron diffraction.

The report includes four appendices. The first is a formulaproperty index of the twelve preceding semiannual reports. The second comprises new tables of the standard thermodynamic properties of condensed phases of 17 substances, including 13 "mixed" oxides. The third appendix gives thermochemical values for additional compounds of several elements which have resulted from a current revision of NBS Circular 500 (Series I). The fourth appendix includes the table of ionization potentials and electron affinities of light-element atoms and molecules presented in the last report but now considerably revised and augmented by recent information.

Tromat Thomas B. Douglas

Project Leader

Church 11 13 we Hirts Charles W. Beckett

Charles W. Beckett Assistant Division Chief for Thermodynamics Heat Division

TABLE OF CONTEN	VI'S
-----------------	------

s ny jintaas

Page

	Abst	ract	٥	0	• •	•	•	0	•	9	٥	۰	•	0	٥	0	•	•	i
Chap.	1.	HEAT	C OF	CHL	ORII	TAT	ION	I OI	' AI	JUM	INUN	M BC	OROF	IYDI	RIDE	5			
			(by	A.	A. (lil	lil	and	l ar	nd 1) . I) . V	lagn	nan))	9	•	•	1
		I.	Inti	rodu	ctic	on		•	o	٩	•	•	•	0	•	٩	Q	•	1
	_	11 o	Mate	eria	ls			•	•	٥	٥	0	٠	0	٠	٩	•	•	Ţ
	1	11.	Proc	edu	re			•	•	٩	•	٩	٩	•	٠	٠	•	٩	2
		10.	Resi	ilts				0	٩	٩	٩	۰	٠	۹	٠	•	٩	•	3
			Refe	eren	ces		_	•	•	0	•	•	•	•	•	•	٩	•	4
			Ţ	abl	e 1.	•	Res Cal	ult ibr	us c Pati	of 1 ion	lea Exa	otri oeri	ica.	L nts		-			5
			1	labl	e 2,		Ana	lyt	tice	11	Rest	ults	s or	1		•	•		,
							Chl	ori	Inat	io	n E:	xpei	ime	ents	3	•	۰	٠	6
			ľ	labl	e 3.	2	Cal	.ori	Imet	ri	c Re	esu.	Lts	of					
							Chl	ori	inat	cio	n E:	xpei	rim€	ents	5	٠	٥	0	7
Chap.	2.	INFI	RAREI) SP	ECTI	RUM	í OF	' AI	LUMI	ENUI	M BO	OROF	IYDI	RIDE	3				
1 -		AND	BERY	TLI	UM 1	BOR	OHY	DR	DE						-				
						,													đ
						(by	Art	hur	r G	o Ma	aki,)		•	0	•	0	8
			Intr	codu	ctic	on			۵	۵		۵		۵	•	0			8
			Alun	linu	m Be	oro	hvd	lrid	le	0	0	0	0			•	٩	0	8
			Bery	7 1 1i	um I	Bor	ohy	dri	ide		•	٥	0	0	0	0	•	•	9
			Refe	eren	ces			۵	۵	0	0		0	0	0		•	•	10
			ſ	labl	e 1.		Inf	rai	red	and	i Ra	amar		bect	tra	of			
							Alu	mir	um	Bo:	roh	vdr	ide	and	1				
							Ber	vll	liun	a Ba	orol	hydı	ride	Э	_				
							Giv	ren	in	Wa	veni	umbe	ers	(cī	n-1))	•	0	11
Chan.	3.	<u> ም</u> ጽ ል፤	VIST/ITT	LONG	ΤN	VΔ	POF	۲ ۲_ ۲	2DU2	ነ ተጥ	ED		MT NL	۵					
onape	20	11011				V A			100				11111	<u>-</u>					_
		(1	oy J.	J	Dia	amo	nd	and	I A.	, L	• D:	rage	00)		٥	•	0	•	12
			Tntr	rodu	cti	าท		0		0	•	•	~	0			•	0	12
			Meth	nod	.001			č	č		č	0					õ		12
			Resi	ilts				•		Ĩ			č	č			0		14
			1.000	abl	e 1.		Tra	inst	it.ic	n.	Alın	ทว่าระ	as			•			15
			7	labl	e 2	· .	Ele	ecti	n	Di	ffr	act	ion	d_C	Snar	าากต	, s	Ŭ	-/
			-		- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		for	• A.	200-	F	ilm	чо 0- с	-	u .	pac	-			16
			The	Tra	ngi	tin	n A	וחור	20j	5 ± . a		5	0	5	•	0	•	•	17
			Refe	eren	ces					-	0	0			0	0			18
			F	Fig.	1	T	ran	sit	in	າຮ	of .	Amon	mh	2115	AL	000		0	10
			-		~0	F	ilm		d-9	รักย	zin	rs :	and	Int	ten	2~ 3 sit.*	es		19
			F	le.	2.	E	lec	tre	n N	lic	ros	cont	ic :	and	C GITY			•	-/
			-	-60		D	iff	rac	etic	n i	Stu	lvr	of .						
						V	apc	r-d	lepr	si	ted	AL	-02	Fil	Lms		0	0	20
							T. 4		1			f	5				-	-	

	TABLE OF CONTENTS (Continued)	Page
Chap. 4.	THE ENTHALPY OF GRAPHITE FROM 1200 TO 2600°K	
	(by E. D. West and S. Ishihara)	21
	Experimental••• <th< td=""><td>21 21 22</td></th<>	21 21 22
Chap. 5.	HIGH TEMPERATURE MATRIX SPECTROSCOPY	
	(by D. E. Mann)	24
	1. MgF ₂ : Magnesium Fluoride 2. Emission Spectrum of F_2^+	24 24
Chap. 6.	HIGH-TEMPERATURE, MASS-SPECTROMETRIC STUDY OF THE COMPOUND Al203.BeO	
	(by J. Efimenko)	25
	The Al203-BeO System	25 25 25 26 26 27 28
<u>APPENDIX</u>	I. FORMULA-PROPERTY INDEX FOR THE FIRST TWELVE PRELIMINARY REPORTS	
	(by Howard W. Flieger; Jr.)	30
	Introduction	30
	in the index	31 33

iv

TABLE OF CONTENTS (Continued)

- Andrew P

1212

-

1

- 1

1

1

Page

APPENDIX	II. THERMODYNA SUBSTANCES	MIC FUNCTIONS OF SOME SELF IN THE SOLID AND LIQUID S	ECTED STATES	
	(by George	T. Furukawa and Martin L.	Reilly) .	48
Table	Formula	Phases	Range •K	
B -116	Na3 ^{AlF} 6	Solid $(\alpha_{\boldsymbol{g}}\beta)$ and Liquid	0-1500	49
B -117	Na4Si04	Solid	0300	51
B -11 8	BaO	Solid	0-2000	52
B -119	CaC2	Solid($\alpha_{\mathfrak{s}}\beta$)	0-1500	54
B-120	$3Ca0 \cdot Al_2 O_3$	Solid	0-1800	56
B-121	12Ca0•7Al 203	Solid($\alpha_{\mathfrak{g}}\beta$)	0-1800	58
B-122	Ca0•Al 203	Solid	0-1800	60
B -123	Ca0.2Al 203	Solid	0-1800	62
B -124	3Ca0•2Si0 ₂	Solid	0-300	64
B -125	2Ca0•Si0 ₂	Solid(Y)	0-1120	65
B -126	2Ca0•Si0 ₂	Solid(β,α ^ι ,α)	0-2000	67
B-127	^{Ca0•Fe} 2 ⁰ 3	Solid and Liquid	0-2000	69
B-128	2Ca0°Fe203	Solid and Liquid	0-2000	71
B-129	^{Co0•Fe} 2 ⁰ 3	Solid	0-300	73
B -130	Fe0•Co203	Solid	0–300	74
B -131	Ni0•Fe203	Solid	0-300	75
B -132	Fe203	Solid (α ₉ β ₉ γ)	0-1600	76
B -133	K ₂ CrO ₄	Solid	0-300	78

۷

.

TABLE OF CONTENTS (Continued)

<u>Page</u>

APPENDIX III.	SELECTED THERMO	CHEMICAL VALUES							
	(by Donald	D. Wagman)	79						
	Introduction Table		79 80						
	As Sb Bi		80 81 82						
	C Si Sn		83 83 85						
	Miscella Ag, C, S	aneous compounds of Si, P, Sn	87						
APPENDIX IV.	LIST OF IONIZAT AFFINITIES OF L	ION POTENTIALS OR ELECTRON							
	(by Charles W	. Beckett and Esther C. Cassidy)	89						
	Introduction								
	(or readily References Table 1.	ionizable) substances	90 92						
		Compounds	99						
	D DOLOB	H • • • • • • • • • • • • • • • • • • •	99 99 00 01 02 02 02 02 07 08 09 10 10						
	Table 2.	Electron Affinity for III-Row Elements • • • • • 1	.11						

Chapter 1

HEAT OF CHLORINATION OF ALUMINUM BOROHYDRIDE

by A. A. Gilliland and D. D. Wagman

I. Introduction

Aluminum borohydride is a colorless volatile liquid, spontaneously flammable in air, and violently reactive with moisture. It is reported to react with hydrocarbon stopcock lubricants, but is inert with respect to Kel-F grease, although it does apparently dissolve and diffuse slowly through the grease.

Initial attempts to obtain a suitable calorimetric reaction involved bomb reactions with N₂ under pressure, Cl₂(g) and with water vapor. In all cases a mixture of unidentified reaction products were obtained, including strong odors indicating the probable presence of boron hydrides. Attempts to bubble Al(BH4)3 vapor into dilute hydrochloric acid solutions also failed to produce well-defined products. The reaction that was finally selected was the vapor-phase chlorination using a flow calorimeter designed to maintain a steady flame at the burner tip. The general procedure is similar to that used for the oxygen flame combustion of hydrocarbons [1]. No spark ignition is required as the chlorination reaction proceeds spontaneously.

II. <u>Materials</u>

The sample of A1(BH4)3 was obtained from the Union Carbide and Carbon Corporation, South Charleston, W. Virginia. It was stored in a steel cylinder at -20°C except during transfer operations. Samples for measurement, approximately 0.4-0.5 g, were transferred by vapor distillation into small glass bulbs and stored in a freezer chest until used.

The only information we have with respect to the purity of the Al(BH₄)₃ comes from the analysis of the reaction products as described in the Section on Procedure and shown in Table 2. A small amount of a black solid powder was formed during each calorimetric run and was carried by the gas stream out of the reaction vessel into the collecting line and traps. An analysis of this sample indicated it to contain approximately 15% carbon, and significant amounts of Si, Al, and B. No crystalline structure was detected. Attempts to determine the amount of hydrogen in the sample by evolution as H_2 did not prove satisfactory. Because of the excess of Cl₂ used in the reaction, the amount of HCl formed could not be determined.

Initially the chlorine used was obtained from Matheson Corp. Subsequently a highly purified sample was obtained through the courtesy of Dr. G. Sinke of the Dow Chemical Company, Midland, Michigan. Their analysis indicated a purity of 99.9% for the liquid phase. We were unable to notice any difference resulting from the different chlorine samples.

III. Procedure

The small bulb containing the sample was placed in a special glass vessel containing a glass hammer, flushed with He, and weighed. On shaking, the small bulb was broken and the vessel was placed in the calorimeter gas flow line. The vessel is so constructed that He gas may be allowed to flow through it, carrying the Al(BH₄)₃ vapor into the reaction vessel, at the beginning of the reaction period. At the end of the reaction time the He may be diverted around the vessel without removing it from the line.

The reaction vessel consists of a large diameter Pyrex tube 30 mm O.D., through one end of which enter two concentric tubes which form the burner tube. The mixture of borohydride and helium enters through the inner tube; the outer tube carries He gas used to prevent thermal cracking of the borohydride before it reaches the burner tip. A separate inlet tube in the side of the vessel is connected to the Cl2 supply cylinder.

The exit end of the vessel leads to a glass coil for thermal equilibration of the product gases with the calorimeter water. The gases then pass through two large traps cooled with liquid N₂ to condense the BCl₃ and HCl produced in the reaction as well as the excess Cl₂. A small amount of AlCl₃ is occasionally found in the second trap (possibly carried over by the solid residue previously mentioned); some BCl₃ is also retained on the AlCl₃ in the reaction vessel.

When the calorimetric measurement is completed, the traps are connected to two bubblers in series, each containing about 300 ml of H2O. Upon removal of the liquid N₂, the condensed HC1, Cl₂ and BCl₃ volatilize and bubble through the water, the excess Cl₂ being vented to the outdoors.

After the traps are emptied, the bubblers are titrated for H_3BO_3 produced by the hydrolysis of the BC1₃. The calorimeter vessel, exit tubes and the N₂-traps are washed with water. The washings are combined and four aliquots taken. In two, A1(OH)₃ is precipitated by adjusting to pH = 7, filtered, and the H_3BO_3 remaining in the filtrate determined by titration using Mannitol. The total amount of BCl₃ produced is obtained by combining the amount determined here with that found in the bubblers.

In the remaining aliquots, the Al is determined by precipitation as the 8-hydroxyquinolate.

The weight of A1(BH₄)3 reacted is obtained by weighing the large sample holder before and after the reaction. Because of the tendency of the borohydride vapor to diffuse through the grease, the final weighing usually had to be made rapidly, without waiting for the dissipation of static charge, etc.

IV. Results

Four electrical energy calibration experiments were performed, as indicated in Table 1. Helium gas flowed continually during the measurements, at the same rate as was used during the calorimetric runs.

The results of six calorimetric experiments are given in Tables 2 and 3. The results of several other experiments were discarded because of premature losses of sample, failures in the analytical train, etc. In Table 3, the values of q_{total} have been corrected for the energy supplied by the Cl₂ gas entering the system, the correction amounting to 5-9 joules for the various runs.

The values of \triangle Hf for A1(BH4)3 given in Table 3 are based on the following considerations. The weight of borohydride sample is used to calculate the total amount of HC1(g) produced, assuming 12 moles HCl per mole of borohydride. While this stoichiometry is not correct, since a small amount of carbonaceous residue is produced, we assume that metal alkyl impurities are present in the sample and that the heat of chlorination is comparable to that of the A1(BH4)3. In view of the fact that the solid residue also contained A1 and B, the amounts of A1Cl3 and BCl3 formed are computed from the individual analytical results for A1 and B respectively, as shown in Table 2. The heats of formation of the HC1, A1Cl3(c), and BCl3 formed are listed in columns 4, 5, and 6 of Table 3, based on the molar values of \triangle Hf from NBS Circular 500 [2].

On the basis of these assumptions, the value of $\triangle Hf$ for A1(BH₄)₃(g) at 25°C = 8.7±2.8 kj/mole (2.1±0.7 kca1/mole)

It is difficult to assess the validity of the assumptions made for these calculations. However it is possible to make an estimate of their significance. If we were to assume that the sample were of high purity and reacted stoichiometrically, we can obtain from the weights of sample a value of \triangle Hf° = -14.7±1.6 kcal/mole. On the other hand if we base our measure of the amount of reaction solely on the amount of boron recovered in the analyses, we obtain a value of \triangle Hf° = +15.9±1.6 kcal.

On the basis of these calculations we believe that the value for \triangle Hf of Al(BH4)3(g) is bracketed between the values $^{+16}$ and $^{-15}$ kcal/mole but that the most reasonable estimate is about 2 kcal/mole.

The vapor pressure equation of Schlesinger et al. [3] leads to a heat of vaporization of 7.2 kcal/mole at a mean temperature of -10°C. Correcting with an estimated $\Delta C_p = -15$ cal/deg to 25°C yields $\Delta H_v = 6.7$ kcal/mole. This corresponds to a value of ΔHf for Al(BH4)₃(liq) = -5 kcal/mole.

3

References

- 1. Prosen, Maron and Rossini, J. Research NBS 42, 269 (1949).
- NBS Circular 500, Selected Values of Chemical Thermodynamic Properties, Government Printing Office, Washington, D.C. (1952).
- 3. Schlesinger, Sanderson, and Burg, J. Am. Chem. Soc. <u>62</u>, 3421 (1940).

Results of Electrical Calibration Expts.

Expt. No.	△R _c ohms	.E. .j	j ^É ðhm	
1	.108695	17,697.06	162,813.9	
2	.129058	21,011.14	162,803.8	
3	.129036	21,008.07	162,807.8	
4	.115310	18,772.90	162,803.7	
Mean			162,807.3	

Standard deviation of the mean

199 - 199 -

3.85

.

Expt. No.	Moles Al(BH4) ₃ weighed x 103	Moles Al found x 10 ³	Moles B found as H ₃ BO ₃ x 10 ³	% Al	% B
1	5.076	4.944	14.456	97.39	94.94
2	5.955	5.839	17.347	98.06	97.94
3	5.328	5.153	15.394	96.71	96.30
4	6.735	6.520	19.382	96.82	95.93
5	5.594	5.379	16.025	96.16	95.53
6	7.761	7.531	22.213	(97.03) *	95.40

Analytical Results on Chlorination Experiments

*Based on the average of preceding 5 experiments.

•

- Sector

1 (Ja - 12 -

Calorimetric Results of Chlorination Experiments

- ^{∆Hf} A1(BH4) ₃ kj/mole	-15.6	-14.6	+ 2.6	- 4.4	-12.0	- 8.1	
^q BC1 ₃ kj	5.898	7.078	6.281	7.908	6.538	9.063	
^q AlCl ₃ kj	3.438	4.060	3,583	4.534	3.740	5.237	
q _H c1 kj	5.624	6.597	5.903	7.462	6.197	8.599	
qtotal kj	15.039	17.822	15.753	19.934	16.542	22.962	
∆Rc, J.	0.092404	.109521	.096803	.122494	.101660	.141094	
Expt. No.	1	7	ç	4	2	6	

7

Mean -8.7 kj(2.1 kcal/mole) Standard Deviation of mean 2.8 kj(0.7 kcal/mole)

INFRARED SPECTRUM OF ALUMINUM BOROHYDRIDE AND BERYLLIUM BOROHYDRIDE

By Arthur G. Maki

Introduction

We have measured the infrared spectrum of aluminum borohydride $(A1(BH_4)_3)$ and beryllium borohydride $(Be(BH_4)_2)$. Ultimately we would hope to be able to improve the assignments for the fundamental vibrational frequencies of the aluminum compound and to make a corresponding set of assignments for the beryllium compound. The present report, however, will be concerned with general observations regarding the spectra which have thus far been obtained. More spectral data will soon be available and at that time more detailed consideration will be given to the assignments.

Aluminum Borohydride

Emery and Taylor¹ have measured the Raman spectrum of $A1(BH_4)_3$ while Price² has reported the infrared absorption spectrum. The infrared work of Price was done with a low resolution instrument and it was hoped that higher resolution work would yield information on the band contours. Such information would be very helpful in making assignments.

We have observed the gas phase spectrum of $A1(BH_4)_3$ in the region from 4000 to 325 cm⁻¹ with a resolution of about 0.8 cm⁻¹. In addition, the B-H stretching fundamental bands have been observed (from 2400 to 2600 cm⁻¹) on a high resolution instrument capable of resolving two lines 0.08 cm⁻¹ apart.

In an ideal situation, a resolution of 0.8 cm⁻¹ would be expected to give different band contours for vibrations of different symmetry species. A rough calculation of the geometry of the molecule indicates that parallel bands should have a strong central Q-branch and P- and R-branches separated by about 16 cm⁻¹. Perpendicular bands, however, would be expected to be broad and featureless with a width of about 25 cm⁻¹. Under higher resolution the perpendicular bands would be expected to have a series of lines 0.16 cm⁻¹ apart while the P- and R-branches of a parallel band would have a line spacing of 0.30 cm⁻¹. The observed bands have no resolvable fine structure even under conditions such that lines 0.08 cm⁻¹ apart could be easily resolved. This means that the band contours are of no help in making the assignments for $A1(BH_4)_3$. The cause of this difficulty is apparently two-fold. First of all we know that there is at least one low frequency vibration and we can expect several others. As a consequence there will be a fairly large number of molecules in excited vibrational states thus giving rise to so-called hot bands which will overlap the fundamental bands. In addition, the normal isotopic ratio for boron is 18.8% B¹⁰ and 81.2% B¹¹. Consequently our sample contains 53% A1(B¹¹H₄)₃, 37% A1B¹⁰H₄(B¹¹H₄)₂, 9% A1B¹¹H₄(B¹⁰H₄)₂, and 1% A1(B¹⁰H₄)₃. The molecules containing both B¹⁰ and B¹¹ will of course be asymmetric rotors and their vibration-rotation spectrum will be rather complex.

We have also measured the low temperature infrared spectrum of solid $A1(BH_4)_3$. Since the sample was at a temperature near -150°C, the possibility of difference transitions (transitions originating in an excited vibrational state) is eliminated. The fact that the solid and gas phase spectra are very similar indicates that none of the strong absorption bands can be attributed to such difference transitions. The spectrum of solid $A1(BH_4)_3$ has only been obtained from 4000 to 625 cm⁻¹. Future work is planned which will extend the spectrum to longer wavelengths.

Table 1 gives tentative wavenumber measurements for the absorption bands of aluminum borohydride. The Raman measurements of Emery and Taylor are also given.

Beryllium Borohydride

Initial attempts at obtaining the gas phase infrared spectrum have not been successful. The difficulty is caused by the reactivity of this compound. In addition to attacking the usual infrared window materials (NaCl or KBr) we find that it rapidly attacks small amounts of impurities adsorbed on the walls of our absorption cells. At present, however, we feel that these difficulties can be overcome.

In spite of the fact that we were unable to obtain any helpful information from the band contours of the aluminum compound, we have hopes that the gas phase spectrum of the beryllium compound will be of aid in making the vibrational assignments. Since this molecule has fewer atoms and is lighter, it is expected to have fewer low-lying vibrations thus ameliorating the difficulty caused by hot bands. This gain could be off-set, however, if the torsional

9

frequency is lower. The presence of only two boron atoms per molecule also improves the difficulty caused by the mixture of isotopes. Finally, the smaller moment of inertia for the beryllium compound will cause the bands to be more spread out and the band contours should be better defined.

We have obtained the spectrum of solid $Be(BH_4)_2$ at about -150°C. The spectrum of $Be(BH_4)_2$ reported by Price et al³⁴ seems to be erroneous. Price later reported² that $Be(BH_4)_2$ reacts with the window material used in the infrared absorption cells. We have found that diborane is one product of this reaction. The spectrum reported by Price et al is evidently due to diborane and the solid product of the reaction between $Be(BH_4)_2$ and the window material. Since the reaction with the usual window materials is extremely rapid (the reaction goes to completion in times of the order of seconds or less), it is most unlikely that earlier workers could have observed the infrared spectrum of $Be(BH_4)_2$.

The spectrum for solid $\operatorname{Be}(\operatorname{BH}_4)_2$ is also given in Table 1. As expected there are striking similarities between the spectra of diborane, beryllium borohydride, and aluminum borohydride. As an aid to the assignments, however, we should still like to have the gas phase spectrum of $\operatorname{Be}(\operatorname{BH}_4)_2$. The band contours of this compound may be of immeasurable help in making the assignments. Work in this direction is continuing. Further work is also planned in order to extend the spectrum of solid $\operatorname{Be}(\operatorname{BH}_4)_2$ to wavelengths greater than 15 μ .

References

- [1] A. R. Emery and R. C. Taylor, Spectrochimica Acta <u>16</u>, 1455 (1960).
- [2] W. C. Price, J. Chem. Phys. <u>17</u>, 1044 (1949).
- [3] W. C. Price, H. C. Longnet-Higgins, B. Rice, and T. F. Young, J. Chem. Phys. <u>17</u>, 217 (1949).

Infrared and Raman Spectra of Aluminum Borohydride and Beryllium

l	Be(BH ₄) ₂					
Raman spectrum of liquid (see Ref. 1)	I.Rgas	I.Rsolid at -150°C	I.R. absorption of solid at ca150°C			
2549 2473 (polarized) 2226 (w) 2069 (polarized) 2010 1925 1884 (w) 1521 (w) 1495 (polarized)	3922 (w) 2966 (w) 2932 (w) 2890 (w) 2800 (w) 2556 (s) 2491 (s) 2219.6 (w) 2070 (w) 2031 (s) 1930 (w) 1523 (broad) Overlapped 1420 (broad)	2544 (s) 2474 (s) 2235 (m) 2065 (m) 2030 (s) 1920 (w) 1523 (s) 1455 (s) 1415 (s)	2515 (m) 2455 (m) 2340 (s) 2110 (s) 1998 (w) 1553 (s) 1456 (s) 1325 (s) 1131 (m) 1010 (w) 905 (w) 735 (s)			
1149 1116 (polarized)	1112 (s)	1104 (s)				
976 602	984 (m) 764 (w) 607 (s)	970 (w) 774 (m)				
510 (polarized) 318	-					

Borohydride Given in Wavenumbers (cm⁻¹)

w = weak

-

.

m = medium

s = strong

CHAPTER 3

TRANSITIONS IN VAPOR-DEPOSITED ALUMINA

by J. J. Diamond and A. L. Dragoo

In the course of vaporization studies in vacuum on a liquid alumina drop at the end of a polycrystalline $Al_{B}O_{3}$ rod, a transparent film developed on the pyrex flask surrounding the sample. When the deposition time exceeded 40 minutes, the film often peeled loose from the surface and tended to curl up evidencing the presence of some strain. The film was subjected to analysis with an x-ray diffractometer and with electron diffraction, neither of which gave any pattern, indicating an "amorphous" film within the limits of detectability.

In addition, petrographic examination showed an isotropic film with a refractive index of 1.614. Its surface area was 0.6 square meters per gram, as determined by N₂ adsorption in B.E.T. equipment. Infrared absorption showed the water band at 2.9 μ and several absorption "fringes" because the film was of the same order of thickness as the wave length of the incident radiation. The film was generally transparent from 1 to 8 μ ; the transmission fell smoothly to 10.5 μ and the film was essentially opaque beyond that to 16 μ . The material lost about 4% in weight when ignited to 1200°C. The material is thus a slightly hygroscopic, slightly porous, amorphous, essentially unhydrated alumina.

Stumpf et. al. [1] reported that an amorphous phase formed initially upon dehydration of hydrated aluminas, but their material showed a broad band at 4.5Å in contrast to ours which showed none. Amorphous films were reportedly formed on aluminum foils by oxidation in air and in oxygen and by anodization [2,3,4].

The manner of preparing the initial $Al_2 O_3$ -form is known to determine the path by which the material transforms to α -Al₂O₃. Since our method of preparing amorphous alumina differed from previous techniques, an investigation was undertaken of the transition of our film to α -Al₂O₃.

Method

To form the film, the end of a polycrystalline Al_2O_3 rod was melted in a vacuum of 1×10^{-6} torr using an A. D. Little arc image furnace, with the arc operated at 150 A. The specimen rod was held near the "cool" end in a spiral of platinum-rhodium wire and supported along the optical axis of the furnace in the middle of a 500-ml. pyrex round-bottomed flask. The specimens used were rods of Morganite alumina, 0.25 and 0.312 inches in diameter. The purity of the material as supplied was determined by emission spectroscopy to be about 99.7-99.9% Al_2O_3 , the major impurities being Si, Fe and Ga. The samples were further purified before use to 99.95-99.99% Al_2O_3 by preferential vaporization of the volatile impurities from the molten tip in vacuum. The flasks were rinsed several times with distilled water and dried in a drying oven at 125°C. Cleaning of the surface with dichromate or nitric acid solutions caused the film to bond too strongly to the flask. Flasks could not be reused after the crop of separated film had been removed because new layers bonded too firmly to the remaining uneven surface.

A sapphire disk, 0.75 inches in diameter, was cleaned in the same manner as the flasks and inserted in a flask during a series of runs to test the effect of the substrate on the formation of the film.

Samples of the film were pulverized in an alumina mortar, examined with x-ray diffractometer for crystallinity and subjected to the following heat treatment:

- Sample 1: 700° (16 hours), 800° (16 hours), 900° (16 hours), 1000° (16 hours), 1100° (16-1/2 hours), 1200° (17 hours) and 1300° (6 hours);
- Sample 2: 650° (16 hours), 750° (16 hours), 850° (16 hours), 950° (16 hours), 980° (16 hours) and 1200° (24 hours);
- Sample 3: at 700° for successive total annealing times of 1/2, 2-1/2, 10-1/2, 16 and 32 hours;
- Sample 4: 900° for successive total annealing times of 1/2, 2, 8, 16 and 32 hours;

Sample 5: same as 4 except at 600°C.

The anneals were carried out in an electrically-heated, box-type furnace, and the temperature of the furnace was read from the controller with an uncertainty of $\pm 10^{\circ}$ C. X-ray diffraction patterns were obtained after each anneal. As a check on the temperature readings, an additional sample was annealed at 50° intervals beginning at 650° (furnace temperature) for durations of 24 hours, and the temperature was measured with a Pt/Pt-Rh thermocouple. A correction $c^{-}-30^{\circ}$ C was found to be required over the temperature range of 650° to 1050°c. This correction must be applied to the heat treatment temperatures given above.

A thin film was prepared for examination by electron microscopy and diffraction by depositing the film on a section of microscope slide placed inside the flask. Deposition was discontinued once peeling of the film began, and a fragment of the film was mounted in a heating stage of the electron microscope. The film was observed before heating and at 400°, 620°, 630° and 760°. A sample of film obtained from deposition on a sapphire disk was also analyzed without heating the film.

Results

Representative d-spacings and line intensities are illustrated in Fig. 1 for x-ray diffraction analysis. The broad lines have been drawn to correspond with the diffuse peaks of the diffraction pattern. The diffuse lines common at temperatures below 970°C can be ascribed to small crystal size or to crystal imperfection.

A very weak line appeared first at d=1.39Å after anneal of one-half hour at 570°C; lines next appeared at 1.98 and 2.08Å after annealing for a total of 8 hours at 570°C (Fig. la). All lines obtained at 570°C were very weak and often nearly indistinguishable from background. The certainty of a line was determined by its presence in more than one pattern.

Sample 3 (annealed at 670°C, corrected) corresponded to Fig. la for an annealing time of 2-1/2 hours, except for the absence of the line at 2.08Å. Sample 3 showed a pattern similar to Fig. lb after 10-1/2 hours at 670° whereas sample 1 showed a less developed stage of this pattern after annealing for 16 hours at 670°. This suggests that the transition to the form of alumina giving the pattern lb occurs between 660° and 680°C and that sample 3 was above sample 1 in this range of temperature.

The form represented by Fig. 1b was present up to 900° for 16 hours annealing time. Its d-spacings and intensities are compared in Table 1 with those of the delta and theta aluminas reported by Stumpf [5], the delta alumina reported by Rooksby [6] and the results of Jellinek and Fankuchen [7] for alumina gel annealed at 800°C for one hour. Although many of Stumpf's delta and theta lines are absent from our form, his strongest lines are present. However, our transition alumina has a line at 2.39Å which is not present in either the delta or theta forms of Stumpf. The delta form reported by Rooksby shows little correspondence with our form. The d-spacings of Jellinek and Fankuchen correspond with ours for their strongest intensities although their relative intensities differ. Our transition alumina thus approximates most closely a mixture of the delta and theta aluminas reported by Stumpf.

Annealing of the film for 16 hours at 920° or for 32 hours at 870° resulted in the appearance of lines of α -alumina. Disappearance of the transition form was very nearly completed by 1070°. The patterns obtained at 950° and above began to show sharp lines indicating that the grain size was increasing.

Studies of the film were carried out along its edge with the electron microscope where the film was expected to be thinner. Fig. 2a shows the edge of the film (white area) which was deposited on the sapphire disk. Grain sizes in Fig. 2a are estimated to be on the order of 2200Å (28,000 magnification). Heating the film from the glass slide to 630°C produces the appearance of feathering along the edge due to areas of higher transmission having a breadth of ~11000Å (11,000 X).

TUDIC I	Та	Ъ1	.e	1
---------	----	----	----	---

Transition Aluminas

	Ţ
6.58 10	
5.2 3	
	8
4.07 2 4.05 20	Ű
3.90	4
	l.
	4
3.03 10	
2.839 4 2.87 4 2.85 8 2.82	8
2.732 4 2.73 8 2.72 8 2.737 50 2.737 50 2.58 3 2.56 3 2.593 70	
2.444 3 2.43 6 2.43 8 2.457 70	
2.393 2 2.38	24
	1.0
2.2/8 3 2.28 4 $2.2/1$ 30 $2.2/$	12
2.09	4
	()
1.974 6 1.99 8 1.989 70 1.98	62
1.80 2 1.80 3 1.793 7 1.81	1
	4
	/.
1.54 4 1.54 6 1.543 10 1.53	12
1.52 1 1.51 3 1.507 20	
1.49 4 1.49 4	
	100
1.394 10 1.39 10 1.39 10 1.392 100	100
1.34 1	
1.29 2 1.29 3	
1.14 2 1.134 10	

Heating to a higher temperature caused a fragment of the film to break off and larger crystalline areas to appear.

The film deposited on the glass slide showed no diffraction pattern before heating, faint rings at 620° to 630°C (2c) and sharp rings at 760°C (2d) after the larger crystalline areas had appeared. The film obtained from deposition on the sapphire disk showed one faint ring nearly masked by a diffuse halo (2e). The d-spacings are given in Table 2.

Table 2

Electron Diffraction d-spacings for Al_a O₃ Films

Alg Og	on Glass	Al_2O_3 on sapphire
<u>620°-630°C</u>	760°C	no heating
2.166 α 1.966 δ or θ	2.554 α 2.379 α 2.166 α 1.966 δ or θ 1.374 α	
		1.25 δ or θ
	1.190 α	
1.147 (?) α		

A designation has been placed opposite of each d-spacing to indicate the form of alumina to which it most closely corresponds.

In contrast to the x-ray analysis of the film deposited on glass, the electron diffraction showed a transition of the amorphous film to α -alumina without going through an intermediate form. On the one hand this could arise from different crystallization along the edge as opposed to the bulk of the film. On the other hand, although the film was only exposed to the intense electron beam used for diffraction during short intervals, some beam crystallization may have resulted in the heated film. An effective temperature for the electrons can be estimated to lie between 150° and 400°C, depending on the rate at which the film loses heat to its surroundings. Consequently, the additional heating produced by the beam may have been easily sufficient to cause the transition to α -alumina.

The film which separated from the sapphire disk did not grow epitaxially on the sapphire as evidenced by the small grain size. Although the crystallinity of the substrate appears to have induced some crystallization of the film, the single faint ring of a transition form suggests that the impinging vapor species, primarily Al and O [8], cool too rapidly to form the ordered α -alumina structure and possibly transfer enough energy to the atoms near the surface of the substrate to disrupt them.

The Transition Alumina

Ervin [9] suggested that the strongest line which occurs at 1.39Å in many of the transition aluminas arises because the oxygen atoms are in cubic close-packing and corresponds to the (440) line of the spinel unit cell. He also proposed that the strong line which occurs at 1.985-2.03Å corresponds to the (400) line of the spinel pattern. Our transition alumina had a strong line at 1.974Å, but this may be a combination of the 1.95 and 1.99Å lines of δ -alumina. Ervin explained, on the one hand, the formation of α -alumina directly from the monohydrate, diaspore, on the basis that both contain oxygen atoms in hexagonal closepacking. On the other hand, the monohydrate, boehmite, forms y-alumina because of a similar cubic close-packing among the oxygen atoms. The aluminum ions are assumed to be randomly distributed among octahedral and tetrahedral interstices in the metastable, transition forms. The transition aluminas result from an increased ordering of the aluminum ions. At a sufficiently high temperature the cubic close-packed oxide lattice shifts to the hexagonal close-packed lattice of corundum.

Plummer [10] carried Ervin's theory a step further in his study of the formation of metastable alumina by rapid cooling of droplets of molten alumina. Rapid quenching of particles of γ - or α -alumina, less than 15µ diameter, melted in an oxy-hydrogen flame, gave almost entirely a mixture of δ - and θ -aluminas. Slow cooling of molten alumina, however, produced α -alumina. A mechanism thus was required which gave the transition alumina in preference to the thermodynamically more stable α -alumina. He suggested that tetrahedral (T) and octahedral (O) groups of oxygen atoms tend to exist longer in the liquid due to their symmetry and mass and are held together by the more mobile aluminum atoms. At high temperatures, the T-groups are in the majority. If the melt cools rapidly, the aluminum atoms in T-holes will direct new aluminum atoms to positions above O-holes. These in turn will cause the next group of oxygen atoms to take the O-sites creating a spinel structure. If cooling proceeds slowly, the aluminum atoms have time to rearrange and oxygen groups are directed to sites above T-holes resulting in hexagonal close-packing.

The formation of the transition aluminas, which are metastable with respect to α -alumina, from the amorphous film possibly follows a mechanism similar to that outlined by Plummer. The oxygen atoms first group into T-groups with most of the aluminum ions in T-holes. These groups of oxygen are bound together by aluminum ions in O-holes which causes the cubic close-packing of the oxygen atoms. Since the oxygen atoms are not very mobile only small grains are formed at first resulting in the diffuse diffraction patterns of the transition forms. At 870°C or above transformation to α -alumina takes place in the manner proposed by Ervin. Above 900°C, the x-ray diffraction lines become sharper because the oxygen atoms have greater mobility resulting in detectable grain growth.

17

References

- H. C. Stumpf, A. S. Russell, J. W. Newsome and C. M. Tucker, Ind. Eng. Chem. <u>42</u>, 1398-1403 (1950).
- [2] G. D. Preston and L. L. Bircumshaw, Phil. Mag. 22, 654-65 (1936).
- [3] V. G. Hass, Optik 1, 134-43 (1946).
- [4] M. S. Hunter and P. Fowle, J. Electrochem. Soc. 103, 482-5 (1956).
- [5] J. W. Newsome, H. W. Heiser, A. S. Russell and H. C. Stumpf, Aluminum Company of America, Alcoa Research Laboratories, Tech. Paper No. 10 (revised, 1960), p. 12.
- [6] H. P. Rooksby, J. Appl. Chem. 8, 44-49 (1958).
- [7] M. H. Jellinek and I. Fankuchen, Ind. Eng. Chem. <u>41</u>, 2259-65 (1949).
- [8] J. Drowart, G. DeMaria, R. P. Burns and M. G. Inghram, J. Chem. Phys. <u>32</u>, 1366 (1960).
- [9] G. Ervin, Jr., Acta Cryst. <u>5</u>, 103-8 (1952).
- [10] M. Plummer, J. Appl. Chem. 8, 35-44 (1958).

Figure 1. Transitions of Amorphous Al_2O_3 Films, d-spacings and Intensities

Figure 2. Electron Microscopic and Diffraction Study of Vapor-deposited Alg O3 Films

a. Edge of Film, No Heating, (28,000 X)

c. Film from Deposition on Glass, 620° to 630°C

d. Film from Deposition on Glass, 760°C

e. Film from Deposition on Sapphire, No Heating

Chapter 4

THE ENTHALPY OF GRAPHITE FROM 1200 to 2600°K

by E. D. West and S. Ishihara

Experimental

Under a related NBS project, measurements have been made of the increase in the enthalpy of graphite between the temperature of a calorimeter near room temperature and a furnace operating at temperatures from 1200 to 2600°K.

The specimen was a solid cylinder machined from a larger piece of grade CCH graphite (National Carbon Company) density 1.6 g/cm³. According to the supplier, this grade is purified by the same treatment used for spectroscopic grades. After machining, it was heated in our furnace at temperatures up to 2700°K for several hours before measurements were begun. Spectrographic analysis showed less than 0.002% impurities.

The enthalpy data fit the equation

 $H_{T}-H_{298,15} = 28.9004T - 1.045 \times 10^{-4}T^{2} - 16126.2 \log_{10}T/313.15 - 8907.3$

where H is in absolute Joules per gram atomic weight (12.01115) and T is in degrees Kelvin. The estimated standard error for an enthalpy value calculated from the equation does not exceed 0.14%. Systematic errors in measuring the furnace temperature are estimated to be not more than 0.3% due to the pyrometer calibration and not more than 0.4% due to the difference between the observed temperature and the average temperature of the capsule.

Enthalpy differences calculated from the equation agree with those reported by Evans [1] in Table 2-39 in a previous report (NBS No. 6645); differences range from a maximum of 1% below Table 2-39 at 1200°K to 0.7% above at 2500°K.

This work is to be presented along with a description of the method at the Third Symposium on Thermophysical Properties at Purdue University in March 1965.

Discussion

In the case of carbon, two questions must be considered in a presentation of the thermodynamic properties of the standard state: (1) are the data sufficiently accurate in themselves? (2) Do they refer to a standard crystalline form of carbon? Enthalpy differences calculated from our equation lie consistently about 0.7% below the smooth data of McDonald [1] for spectroscopic grade SPK graphite (density 1.9). They agree with recent reviews of older data, maximum deviations being 1% below Dergazarian [3] et al. at 1200°K and 0.7% above Evans [1] at 2500°K. The heat capacity derived from our enthalpy equation are well within the scatter of the observations and the estimated accuracy of Rasor and McClelland [4] in the range 1500-2600°K. Since the older experimental work includes measurements on natural graphite, this consensus supports reasonable confidence that the enthalpy and heat capacity are known to a few percent from room temperature to 2600°K.

Regarding the second question, there is experimental evidence to indicate differences in the heat capacity of different graphites. DeSorbo [5] reports enthalpies at 298.15°K for Ceylon natural graphite and an Acheson graphite which differ by 88 J/gfw, almost twice the tolerance on the heat of formation of CO₂ set by Rossini and Jessup [6] in their paper recommending graphite as the standard state for carbon. The corresponding difference in heat capacity might be expected to extend at least to somewhat higher temperatures. There are obvious systematic trends amounting to several percent in the high temperature data for the four samples of Rasor and McClelland, but they state that these differences are not significant. The specific heat for pyrolytic graphite is reported to be from 10 to 50% above that of "ordinary" graphite in the temperature range 300 to 1300°K [7]. The difference in HT-H298 between our measurements and those of McDonald on Al203 near 1200°K is about 0.3%. Taking this to represent the systematic difference between the two methods, we have 0.5% difference between smoothed values at 1200°K to ascribe to random errors of measurement or to a difference in the samples. Considering our standard error of 0.14% and a slightly larger value for McDonald's data, the 0.5% difference is too large to claim no significant difference in samples, but too small to be reasonably sure of a significant difference.

References

- 1. W. H. Evans, Table 2-39, NBS Report 6645, 1 January 1960.
- R. A. McDonald, private communication. Smoothed data are given by H. Prophet and D. R. Stull, J. Chem. Eng. Data <u>8</u>, 78 (1963).
- T. E. Dergazarian, N. J. Dumont, L. A. du Plessis, W. E. Hatton,
 S. Levine, F. L. Oetting, H. Propher, G. C. Sinke, D. R. Stull, and
 C. J. Thompson, JANAF Interim Thermochemical Tables, The Dow Chemical
 Co., Midland, Michigan (March 31, 1961).

22

References (Cont.)

- 4. N. S. Rasor and J. D. McClelland, J. Phys. Chem. Solids <u>15</u>, 17 (1960); Wright Air Development Command Technical Report 56-400 (1956).
- W. De Sorbo and W. W. Tyler, J. Chem. Phys. <u>21</u>, 1660 (1953);
 W. De Sorbo, J. Am. Chem. Soc. <u>77</u>, 4713 (1955).
- 6. F. D. Rossini and R. S. Jessup, J. Res. Natl. Bur. Stds. <u>21</u>, 491 (1938).
- 7. High Temperature Materials, Inc., Revised Data Sheet for Pyrolytic Graphite, February 12, 1962.

23

Chapter 5

HIGH TEMPERATURE MATRIX SPECTROSCOPY

by D. E. Mann

1. MgF₂: Magnesium Fluoride: The infrared spectrum of MgF₂ isolated in a dilute solid krypton matrix at 20°K is presently being investigated in the apparatus described briefly below. Preliminary results in the region below 300 cm⁻¹ have revealed a moderately intense band at 242 cm^{-1*} , as well as a few weak features at lower frequencies. The matrix was warmed from 20°K to 60°K and the 242 cm⁻¹ band was found to <u>decrease</u> in intensity suggesting that it is monomeric rather than polymeric in origin. (Diffusion at the higher matrix temperatures would be expected to lead to increased band intensity if a di- or polymeric species was responsible for its occurrence.) Further experiments now in progress may provide corroboration of the assignment of the 242 cm^{-1} band to the v₂ bending fundamental of MgF₂.

The apparatus now in use comprises (a) a variable-temperature cryostat which employs a Cryo-Tip liquefier unit; (b) an electronbombardment furnace, and a Perkin-Elmer 301 far-infrared spectrometer.

2. Emission Spectrum of F_2^{+} : In the course of a recent investigation of the orange emission bands of F_2 (with Dr. T. L. Porter) a new band system was discovered which has now been assigned to the heretofore unrecorded species F_2^{+} . This is of special interest for the present program because F_2^{+} is isoelectronic with the molecule FO. Twelve bands in the region 5300-4300 A have now been analyzed and have led to the conclusion that a portion of $A^2_{\pi}-X^2_{\pi}$ system of F_2^{+} has been observed. It is expected that molecular constants for both states as well as estimates of their dissociation energies can be reported in the near future.

In agreement with Linevsky's results.

Chapter 6

HIGH TEMPERATURE, MASS SPECTROMETRIC STUDY OF

THE COMPOUND, Alg 03 · BeO

by J. Efimenko

I. The Al, 03 -BeO System

A mass spectrometric study of this system is being made by observing the vapor species in equilibrium with selected, well characterized initial compositions as given in the solid-liquid phase diagram (Lang, Fillmore and Maxwell, J. Res. NBS <u>48</u>, 301 (1952)).

Experimental

The Al₂O₃ BeO compound was synthesized from alumina, having a carbon content below 0.0034, and beryllia by fusion in an arc image hot spot by A. Dragoo at NBS. During the preparation the fused material did not come into contact with any metallic container. The solid was crushed in a diamond mortar and ground in an alumina mortar. A sample of the material was placed in a tungsten cup and inserted into a tungsten effusion cell. Temperature-intensity data were collected for the species: Be⁺, O⁺, Al⁺, O₂⁺, AlOBe⁺, Al₂O⁺ and (BeO)₃⁺ in the temperature range 2180°-2570°K.

Discussion

The reactions selected for consideration are the following:

(1) $A1(g) + Be(g) + O(g) \neq A10Be(g)$ (2) $2A1(g) + O(g) \Rightarrow A1_2 O(g)$ (3) $A1_2 O(g) + Be(g) \Rightarrow A10Be(g) + A1(g)$ (4) $1/2 O_{g}(g) \Rightarrow O(g)$ (5) $A1_2 O_3 \cdot BeO(1) \Rightarrow 2A1(g) + Be(g) + 4 O(g)$

Table 1 contains the partial pressures in atmospheres of the species considered.

	Atmospheres					
т °К	P _{Be}	^р о	P _{A1}	PA10Be	PAl 0	₽0₂
	x10 ⁻⁷	x10 ⁻⁷	x10-8	x10-10	x10-10	x10 ⁻⁸
2152	0.225	0.360	0.840	0.0152	0.207	
2211	0.513	0.914	2.09	0.162	0.593	
2290	1.27	2.15	6.26	0.700	2.27	
2179	0.275	0.394	0.980	0.0523	2.15	
2226	0.480	0.800	1.37 🐂	0.151	0.54	
2279	0.931	1.61	0.435	0.468	1.35	
2337	1.88	3.43	10.10	1.280	3.95	
2205	0.397	0.654	1.59	0.0952	0.0426	
2290	1.12	1.96	5.50	0.592	1.94	
2290	1.11	1.88	5.30	0.592	1.88	
2343	2.14	3.90	11.60	1.57	4.73	
2417	4.77	9.00	29.70	4.27	12.60	1.05
2470	8.20	16.70	53.50	8.26	24.80	1.84
2518	1.17	29.20	95.00	17.00	49.00	3.57
2567	17.80	42.40	135.00	19.30	50.80	4.35

Mass Spectrometric Temperature-Partial Pressure Data

These partial pressures were computed from the relation, $p = \frac{I^+T}{S_{\sigma\gamma}}$, where S is the instrument sensitivity for each specie; σ , relative ionization cross-section; γ , the multiplier efficiency for each specie; I^+ , the ion intensity. The instrument sensitivity for silver, the calibrating material, was converted to specie sensitivity by the relation:

$$s_x = s_{Ag} \cdot \frac{\sigma_x}{\sigma_{Ag}} \cdot \frac{T_{Ag}}{T_x} \cdot \frac{\gamma_x}{\gamma_{Ag}}$$

Table 2 lists auxiliary computation data.

Table 2

Auxiliary Computation Data

Specie	^σ (1)	Υ ₍₂₎	Т °К
Ag	34.8	2000	1275
Be	6.3	2800	
O	3.3	4200	
Al	15.4	2500	
O ₂	6.6	5000	
AlOBe	25.0	5000	
Al ₂ O	34.1	5000	

Sensitivity Values
Note: (1) J. W. Otvos and D. P. Stevenson, J. Am. Chem. Soc. <u>78</u>, 546-551 (1956)

(2) Average values obtained experimentally by the author

(3) Silver sensitivity SAg = 5.0×10^{-7} amp/mm Hg

Free Energy Functions

Be	Table A-4, NBS Report 6928, July, 1960
0	Table A-8, NBS Report 6928, July, 1960
Al	Table A-13, NBS Report 6928, July 1960
02	Table A-83, NBS Report 7437, January, 1962
Al _o 0	Table A-57, NBS Report 8186, January, 1964
AlOBe	Table A-90, NBS Report 8504, July, 1964

With the aid of free energy functions and equilibrium constants for the reaction (1)-(4), the enthalpies change at absolute zero were computed and listed in Table 3.

Table 3

Enthalpy Changes from Free Energy Functions

Reaction	(1)	(2)	(3)	(4)
Т °К	-△Ho® kcal/mol	-∆H° kcal/mol	+AH° kcal/mol	+∆H° kcal/mol
2152 2211 2290 2179 2226 2279 2337 2205 2290 2343 2417 2470 2518 2567	223.14 228.11 230.51 229.30 232.26 231.71 231.64 229.25 231.15 231.16 231.32 235.92 235.96 247.72* 235.91	260.65 248.05 249.36 260.39 253.79 250.51 263.22 250.88 250.34 250.69 251.00 250.16 251.00 250.01 250.38	37.51 19.94 18.85 31.09 17.10 18.80 31.58 21.63 19.19 19.53 19.68 14.24 15.04 2.29* 14.47	59.29 59.92 60.23 57.67
	<231.24>	<253.10⊳	<21.30>	<59.28>

Note (1) <> , the arithmetic mean value

(2) * enthalpy not included in mean value.

Experimental data permitted graphical derivation of the ΔH values also and a summary is presented in Table 3A.

	Encharpre	es changes-Summary	/
Method	van't Hoff	Free Energy Functions	
Reactive	^{△H} <2350> kcal7mol	∆H° kcal/mol	∆H ° kcal/mol
(1) (2) (3) (4)	-228.0 -275.0 +24.8	-221.8 -269.5 + 25.5	-231.2 ± 3.3 -253.1 ± 4.6 + 21.3 ± 6.2 + 59.3 ± 1.0
(3)	+020.0		

Table 3A

Enthalpies Changes-Summary

Note: (a) The error shown is the mean square deviation

Reactions (2) and (4) permit a check on the reliability of the data since both reactions have been already studied. The enthalpy for dissociation of O_2 (g) is 58.983 kcal/mol (NBS Report 8504, p. 165, July, 1964)) and the value from this study is $\Delta H_0^{\circ} = 59.28$. The enthalpy change for reaction (2), $\Delta H_0^{\circ} = -253.1$ kcal/mol, is within experimental error of other reported values, -254 ± 7 kcal/mol (R. F. Porter, P. Schissel and M. G. Inghram, J. Chem. Phys. 23, 399 (1955)) and -243.4 ± 7 (J. Drowart, G. De Maria, R. P. Burns and M. G. Inghram, J. Chem. Phys. 32, 1372 (1960)). These comparisons indicate that the present data may be somewhat high.

For reaction (5) the enthalpy change could be obtained only by use of the van't Hoff relation since free energy functions are lacking for $Al_{2}O_{2}$. BeO liquid in the experimental range of temperatures.

Various sources of errors must be considered in the experimental data. At the conclusion of some runs, it was observed that the initial orifice area was decreased by a deposit of crystals about the perimeter. Under the microscope they had a metallic appearance and very likely were tungsten. The effect occurred in spite of the fact that the orifice half of the cells appeared approximately 50° hotter than the bottom half of the effusion cell. The magnitude of error this effect caused is uncertain but assumed to be small or negligible since the sampling area of the beam was less than the orifice image area. Experimentally the beam intensity was noticed not to decrease until the orifice closed to a very small size.

An analysis of systematic errors will not be made at the present time since one assumes that they remain constant throughout an experiment. Evidence is being accummulated on the effect of temperature, ion-intensity, multiplier efficiency and instrument sensitivity. For the enthalpy changes for reactions (1), (2), (3) and (4) are computed the Mean-Square Deviations, σ .

$$\sigma = \left(\frac{\Sigma d^2}{n}\right)^{1/2}$$
, where $d = Xn - \overline{X}$ and \overline{X} is the

arithmetic mean.

Preliminary measurements were made on the $3Al_2O_3$ BeO compound in the temperature range 1800° -2100°C (uncorrected). The mass spectrometric peaks detected correspond to the following ions: Be⁺, O⁺, Al⁺, AlO⁺, Al_2O^+ plus alkali and alkaline earth impurities. An arc image sample of the 3:1 mol ratio compound has been prepared and will be examined at high temperatures.

APPENDIX I

FORMULA-PROPERTY INDEX FOR THE FIRST TWELVE PRELIMINARY REPORTS

by Howard W. Flieger, Jr.

An index has been prepared for the first twelve Preliminary Reports to assist the reader in searching for the properties of materials in his interest. The present (13th) report is excluded in this index.

For the purpose of this index the NBS report numbers are referred to as the following Volume numbers:

NBS	VOLUME
REPORT	NUMBER
6297	1
6484	2
6645	3
69 2 8	4
7093	5
7192	6
7437	7
7587	8
7796	9
8033	10
8186	11
8504	12

The arrangement of the chemical formulae in the index is alphabetical. The placement of the chemical symbols within a given formula is also alphabetical. Chemical isomers are not distinguished. In general four printing spaces are allocated to a chemical symbol and its numerical occurrence in a fromula. For example, lithium aluminum fluoride, Li_3AlF_6 , will be found in the index as AL F 6LI 3. The components of chemical systems are separated by a series of hyphens. Thus Al_2O_3 -TiO₂ appears as AL 20 3---0 2TI. In future versions of the index the spacing may be condensed and the numbers may appear as subscripts.

The property and/or study reference consists of two parts; a letter followed by a number. The letter indicates the propercy or study and the number indicates the source or treatment of the information. The interpretation of the letters and numbers is found in the Key below.

The location of the references in the reports appaears as the Volume number above followed by the page number in parentheses. An exception to this rule occurs for Volumes 2, 3 and 4 where the pages in the appendices have not been numbered. For reference to be found in these appendices the Table number appears within the parentheses. The extensive bibliographies found in several of the Preliminary Reports have not been included in the index. These bibliographies are listed below.

TITLE	VOLUME	PAGES
A Brief Review of the Heat Relationships Among the Crystalline Oxides and Oxyhydrates of Aluminum.	1	74 - 85
References to Recent Values for Heats of Formation.	5	169 - 173
The Heats of Formation of Inorganic Fluorine CompoundsA Survey.	6	9 2- 175
Recent Additions to the Literature on the Chemistry of the Light Elements.	7	39-60
Thermochemical Data for Some Simple Hydrides and Inorganic Oxidizers.	7	7 9 - 89
Recent Additions to the Literature Related to the Heats of Formation of Compounds of Selected Elements.	8	76 - 89
New Literature Relating to Heats of Formation of the Light Elements and Their Compounds.	9	40-81
Substance-Property Index for 1962.	9	8 2- 156
A Bibliography Relating to Heats of Formation, Enthalpy Changes Resulting from Phase Changes, and the Heat Capacities of Aluminum and Beryllium Fluorides, Oxyfluorides, Chlorides,		
and Oxychlorides, and of Lithium Fluoride.	10	22-35
New Literature Relating to Heats of Formation of Fluorine Compounds of Selected Elements.	11	122-142
Preliminary List of Ionization Potentials or Electron Affinities of Light Element Compounds.	12	185 -202

Property							
or Study							
Letter	Interpretation						
А	Heats of reaction, dissociation and formation.						
В	Thermodynamic functions of solids, liquids and solutions.						
С	Thermodynamic functions of gases.						
D	Vapor pressure and vaporization equilibria, decomposition and dissociation studies, and heats of vaporization and sublimation.						
Е	Data of state and related physical properties.						
F	Phase diagrams.						
G	Absorption and emission spectroscopy including molecular constants.						
Н	Kinetic studies.						
J	Chemical preparation and/or purification studies.						
K	Electrical discharge (exploding wire) studies.						
L	Calorimetry techniques.						
М	Mass spectroscopy studies.						
Source an	nd						
Treatment							
Number	Source and/or treatment of information						
1	NBS reported.						
2	Literature (non-NBS) reported.						
3	NBS critical evaluation, review and analysis of data.						
4	Non-NBS critical evaluation, review and analysis of data.						
5	Tables at a standard state.						
6	Ideal Gas tables.						
7	Theoretical or empirical estimate.						
8	Apparatus description.						
0	Tables of themadaments prepartice with temperature or						

9 Tables of thermodynamic properties with temperature or pressure argument and other tables.

e

32

.

FORMULA-PROPERTY INDEX FOR THE FIRST TWELVE PRELIMINARY REPORTS

FORMULA	PROPERTY OR STUDY	VOLUME AND PAGE	FORMULA	PROPERTY OR STUDY	VOLUME AND PAGE
AG	C 5	12(184)	CL N O	C 5	12(178)
AG CL	C 5	12(184)	CL N O 2	A2	7(94)
AG 20	(5)	12(184)		Δ ₂	7(94)
AGT	A2	1(58)	CL N O 5	85	12(178)
AL	A2	2(101)	CL N O 6	A 2	7(94)
AL	A 5	4(C 1)	CL N O 6	B 5	12(178)
AL	82		CL NA	AZ B2	9(21)
AL	B3	1(26)	CL NA	B2	11(90)
AL	B5	1(9)	CL NA	B 3	11(90)
AL	В5	2(20)	CL NA	B9	9(31)
AL	B 9	2(2-1)	CL NA	69 69	11(167)
AL	69	2(1-13)	CL NA O 4	A1	4(28)
AL	C6	4(A13)	CL NA O 4	A2	7(95)
AL	D2	1(48)	CL O	A 2	7(94)
AL	K 1	12(26)		C 5	12(167)
	F2	5(187)		C6	2(1-35)
AL B 3H 12	A2	7(92)	CL O	C 6	4(A38)
AL B 10	E2	5(150)	CL O	G 2	1(42)
AL B 12	E 2	5(150)	CL O	G 9	2(50)
AL-BE O	F 2	5(188)		65	12(167)
AL BE O	67	12(85)		85	12(167)
AL BR 3	B7	6(54)	CL 0 2-	В5	12(167)
AL C	A 2	3(2)	CL O 3	C 5	12(167)
AL C	A 2	3(65)	CL 0 3-	85	12(167)
	A5 62	4((2)		65 A 1	7(3)
AL CL	A2	1(59)	CL O 6N	AB	7(3)
AL CL	A 2	1(66)	CL O 6N	A 9	7(9)
AL CL	A 2	2(89)	CL O 6N	B1	7(3)
AL CL	A2	2(102)		69	10(19)
	AD C6	1(125)	CL 2	A2	2(101)
AL CL	C6	2(1-30)	CL 2	A 5	4(C 1)
AL CL	C.6	4(A32)	CL 2	Α7	2(41)
AL CL	D3	8(114)	CL 2	B5	12(167)
	61	1(42)		C5 C6	12(167)
AL CL	G2	4(43)	CL 2	C 6	2(1-33)
AL CL	G6	12(64)	CL 2	C 6	4(A36)
AL CL	G6	12(65)	CL 2	G2	1(42)
	66	12(66)		69	2(50)
AL CL F 2	C6	2(1-61)	CL 2CR	B2	12(107)
AL CL F 2	C 6	4(A65)	CL 2F 6	C 5	12(168)
AL CL F 2	G2	1 (44)	CL 2H 2MG O	A 2	2(95)
AL CL F 2	69 86	2(5])	CL 2H 2MG 0	A Z	2(104)
AL CL O	C6	2(1-58)	CL 2H 2MG 0	B2	1(15)
AL CL O	C6	4(A62)	CL 2H 2MG O	B2	2(27)
AL CL O	G 2	1 (44)	CL 2H 2MG O	B 5	1(17)
	69	2(51)	CL 2H 2MG 0	85	2(20)
AL CL 2	AZ	2(89)	CL 2H 2MG 0	B9	4(816)
AL CL 2	A 2	2(102)	CL 2H 4MG 0 2	A 2	2(96)
AL CL 2	A 5	4(C 2)	CL 2H 4MG 0 2	A 2	2(104)
AL CL 2	C6 C6	2(1-63)	CL 2H 4MG 0 2	A 5	4(C 2)
	03	8(114)	CL 2H 4MG 0 2	B2	2(27)
AL CL 2	62	1 (44)	CL 2H 4MG 0 2	B5	1(17)
AL CL 2	G 9	2(51)	CL 2H 4MG 0 2	B 5	2(20)
AL CL 2F	C6	2(1-62)	CL 2H 4MG 0 2	B 9	4(B17)
AL CL 2F	62	4 (A66) 1 (44)	CL 2H 4MG () 4	89	2(2-17)
AL CL 2F	G 9	2(51)	CL 2H 8MG 0 4	B 2	2(96)
AL CL 3	A2	1(59)	CL 2H 8MG 0 4	A2	2(104)
AL CL 3	A2	1(66)	CL 2H 8MG O 4	A 5	4(C 2)
AL CL 3	A 2	2(89)	CL 2H 8MG 0 4	B 2	1(15)
	A7 A3	4(36)	CL ZH 8MG 0 4	· B 2	2(27)
AL CL 3	A 5	4(C 2)	CL 2H 8MG 0 4	65	2(20)
AL CL 3	B2	3(64)	CL 2H 8MG 0 4	B 9	2(2-18
AL CL 3	B3	1(26)	CL 2H 8MG 0 4	B 9	4(818)
	B5	1(9)	CL 2H 12MG 0 6	A 2	2(96)
	B	2(2-6)	CL 2H 12MG () 6	A 2	2(104)

AL AL	CL CL	3 3			B9 C6	4(B6) 2(1-64)		CL 2H 12M CL 2H 12M	GO GO	6 6	B2 B2	1(16) 2(28)
AL	CL	3			C6	4(A68)		CL 2H 12M	G O	6	B5	1(17)
AL	CL	3			G2 G9	2(51)		CL 2H 12M CL 2H 12M	60 60	6	85 89	2(20)
AL	CL	3			52	4(36)		CL 2H 12M	G O	6	B9	4(B19)
AL	CL	3H 1	20	6	A 2	2(89)		CL 2LI 2			A2	1(61)
AL Al	CL	3H 1	20	6	A 2 A 5	4(C 2)					A2 A2	1(72) 2(99)
AL	F		20	0	A2	1(59)		CL 2LI 2			A2	2(105)
AL	F				A2	1(65)		CL 2LI 2			A5	4(C 2)
AL	F				AZ A2	2(102)					C6 C6	2(1-46)
AL	F				A2	3(65)		CL 2LI 2			G2	1(43)
AL	F				A5	4(C 2)		CL 2LI 2			G9	2(51)
AL Al	F				(6	2(1-29)		CL 2MG			A2 A2	2(95)
AL	F				C6	4(A31)		CL 2MG			A5	4(C 2)
AL	F				D3	8(114)		CL 2MG			B2	1(15)
AL	F				61	9(12)		CL 2MG			B2 B3	2(26)
AL	F				G2	1(42)		CL 2MG			B5	1(17)
AL	F				G2	4(43)		CL 2MG			B5	2(20)
AL	F				G6	12(64)		CL 2MG			B9	2(2-15)
AL	F				69	2 -01		CL 2MG			C6	2(1-51)
AL	F				69	4(47)		CL 2MG			C6	4(A55)
AL	F	~			G 9	9(14)		CL 2MG			D3	2(73)
AL	F	0			85 C6	2.1-57		CL 2MG			62	1(43) 2(51)
AL	F	õ			C6	4(A61)		CL 20			A2	7(94)
AL	F	0			G2	(44)		CL 20			C 5	12(167)
AL	F	0			G 9	1(51)		CL 20 S			85	12(173)
AL	F	2			AZ AZ	1(66)	1	CL 20 25			B5	12(173) 12(174)
AL	F	2			A 2	2(88)		CL 20 25			C 5	12(174)
AL	F	2			A2	2(102)		CL 20 55	2		B5	12(174)
AL Al	F	2			C6 ·	2(1-59 4(A63)		CL 20 55	2		A2	$\frac{12(174)}{7(94)}$
AL	F	2			G2	1:44)		CL 20 7			C5	12(167)
AL	F	2			G9	2(51)		CL 2PB			B2	6(53)
AL Al	F	3			A I A 1	12(21)		CL 2PB			63	12(184)
AL	F	2			A2	1(59)		CL 25 2			B5	12(173)
AL	F	3			A2	1(66)		CL 25 2			C 5	12(173)
AL	F	3			A 2	2(88)		CL 2SE 2			B5 C5	12(174)
AL	F	3			A2	3(65)		CL 3CR			B2	12(92)
AL	F	3			A 2	4(35)		CL 3FF			B2	12(96)
AL	F	3			A2 A5	8(13)		CL 3I			A2 B5	12(171)
AL	F	3			B2	2(24)		CL 3LI 3			A2	1(61)
ΔL	F	3			B3	1 (26)		CL 3LI 3			A2	21 99)
AL	F	2			85 86	2(20)		CL 3LI 3			A2	2(105)
AL	F	3			B9	212- 5)	CL 3N			A2	7(94)
AL	F	3			89	4(B5)		CL 3N			85	12(178)
AL	F	3			 C6	2(1-50)	CL 30 F	>		B5	12(182)
AL	F	3			D1	9(156)			•		B5	12(182)
AL	F	3			D3	2(68)		CL 3P			C 5	12(182)
AL	F	3			D8	9(158)		CL 3P S	5		C5	12(182)
AL Al	F	3			D9 D9	9(164)		(L 3P +			C5 85	12(182)
AL	F	3			G2	1(44)		CL 4ZR			B2	5(179)
AL	F	3			G9	2(51)		CL 4ZR			B9	5(252)
AL	F 3-A	3	- F I T		L1 F 2	8(13)	1	CL 5P			85 C5	12(182)
ALF	-3	AL201	۲ – – F	LI	F2	5(206)		CR			B2	12(91)
AL	F	3	F	κ	F 2	5(222)		CR K 20) 4		В2	12(98)
AL	F	3	F	L+	F2	5(155)		CR 2FE () 4		B2	12(96)
AL	F	3	F	LI	F2	1001		CR 20 3	, ,		B2	12(98)
AL	F	3	F	NA	F 2	123		CS I			G 9	10(19)
AL.	F	3H	60	3	A 2 B O	(55)		D	d		C5	12(165)
AL	F	6LI	3		B1	68)		D F 21	N N		C6	8(130)
AL	F	6LI	3		89	1: 71)		D F 21	V		GI	8(125)
AL	F	6LI	3		80 RD	: 162)		DHO	2		B5	12(165)
AL	F	6NA	3		M2	.(1)	·	и н (,		Co	12(105)

	_						, .	~		CE	12/1/51
AL	F	6NA	3	89	91	51)	U	0		C S	1211657
AL	н			AZ	11	591		2		05	12(165)
AL	н			A2	20	86)	U	20		85	12(165)
AL	н			A2	2 (102)	D	20		C 5	12(165)
AL	н			A 5	4 (C 21	Ε.	-		C6	7(109)
AL	н			Α7	2 (41)	F			A2	1(58)
A1	ы			66	41	A301	F			Δ2	2(101)
AL				63		421				A 6	410 1)
AL	н			62	4(451				~ J	410 17
AL	н			69	4 (47)				(5	12(166)
AL	н			J2	10	991	F			C6	2(1-9)
AL	н	0		C6	2 (1-55)	F			C6	4(A 9)
AL	н	0		C6	4 (A59)	F -	÷		C 5	12(166)
AL	н	0		G2	1(44)	F ·	÷		C6	6(221)
Δ1	н	0		62	1 (44)	F -	_		R5	12(166)
A1	ы	õ		69	21	51)	F.	-		65	12(166)
		õ		60	21	51)		_		66	12(128)
AL		0	~	0,4	21	1-64)				60	12(120)
AL	н	0	2	6	21	1-507	F F	CS		69	10(19)
AL	н	0	2	C 6	4 (A60)	-	н		AZ	7(90)
AL	н	3		A2	1(59)	F	н		B 5	12(166)
AL	н	3		A2	1 (65)	F	н		C 5	12(166)
AL	н	3		A2	2 (87)	F	н		C6	2(]-32)
A1	н	3		A2	21	102)	F	н		C6	4(A35)
AL	ы	2		A.5	41	(2)	F	н		61	4(46)
AL		2		R5	1 (01	F	н		62	41 46)
AL	n	2	(N)	6 65	10	501				60	41 401
AL	н	AME	0 11 1	4 A9	31	643	F F			83	4(47)
AL	н	0	2	62	1 (441	F 1	H 4N		DZ	91 27)
AL	н	0	2	G 9	21	80	F	H 4N		В3	10(40)
AL	н	3ME	6N /	4 D9	3 (57)	F	H 4N		B5	12(178)
AL	н	3ME	6N	4 D9	3 (591	F	H 4N		B9	9(32)
AL	н	30	3	A2	1 (59)	F	H 4N		B9	10(79)
Δ1	н	30	3	A2	1 (65)	F	H 6N	0	B2	9(28)
AL		20	2	A 2	20	88)	L F	H GN	õ	BA	10(40)
AL		20	2	A 2	21	1021			0	05	12(170)
AL	н	30	3	AZ	21	1021	F F	H 6N	0	85	12(1/8)
AL	н	30	3	A5	4 (C 21	F F	H 6N	0	B9	9(32)
AL	н	4L I		A2	7 (92)	F	H 6N	0	B9	10(80)
AL	н	4L I		B2	1 (21)	F	K		B 2	7(70)
AL	н	4L I		B5	1 (22)	F	ĸ		B2	11(90)
AL	T	3		В7	6 (54)	F	к		B3	11(90)
A1	ĸ	0	4.S.I	B2	120	97)	F	ř		RO	11(171)
AL	ĸ	õ	451	82	120	971		r r		60	10(10)
AL	R.	õ	001	3 82	120	071	1 2			40	10(17)
AL	2	0	851	5 62	120	711	F F	LI		AZ	1(61)
AL	ĸ	0	821	3 BZ	124	981	۲ F	LI		AZ	1(/ 1)
AL-	~LI			F 2	5 (189)) F	LI		A 2	2(97)
AL	LI	0	2	B2	1 (21)	F	LI		A 2	2(98)
AL	LI	0	2	B2	2 (30)	F	LI		A2	2(105)
AL	LI	0	2	B5	1 (22)	F	ET		A 2	12(23)
AL	LI	0	2	85	21	201	F	1.1		A 5	4(C 2)
AL	11	õ	2	BQ	21	2-271		1.1		B1	1 (20)
	11	õ	2	BO		B271				01	1 201
AL		0	2	53		1001				DZ	1(20)
AL-	-MG			F Z	51	1907	F -	LI		BZ	21 297
AL	N			AZ	21	901	F	LI		B2	2(29)
AL	N			A2	21	1031	- F	LI		B3	1(27)
AL	N			A2	31	2)	F	LI		B5	1(22)
AL	N			A2	31	651	F	LI		85	1(33)
AL	N			A2	4	35)	F	LI		85	2(20)
AL	N			A2	4	36)	F	LI		B9	2(2-25)
AL	N			A3	4	36)	F	LI		B 9	4(B24)
AL	N			A5	4	C 2)	F	LT		6	1(107)
A1	N			R2	3	14)	F	E T		6	2(1-20)
AL	N			D2	2	141				66	2(1-20)
AL	A!			D.2	2	16)				0	4(A20)
AL	1%			85	3	107	F	LI		02	4(36)
AL	N			85	3	217	F	LI		D3	2(74)
AL	N			B 9	3	22)	F	LĪ		D3	2(77)
AL	N			B9	3	2-31)	F	LI		G2	1(42)
AL	N			B9	4	(B31)	F	LI		G 9	2(50)
AL	N			D9	3	38)	F	LI		G9	10(19)
AL	N			J2	4	26)	F	LIF	2MG	F2	5(164)
A1	NA	C	2	RO	9	31)	F	1 I F	2MG	F2	5(210)
A1	0			A.2	1	591	E	11	470	50	6(1(4)
AL	0			A2	1	621	F F		428	F 2	5(166)
AL	0			AZ	1	021	I F	LIF	42R	F 2	5(223)
AL	0			A2	2	831	F	MG		A 2	1(60)
AL	0			A2	2	102)	F	MG		A2	1(70)
AL	0			A5	4	(C 2)	F	MG		A2	2(95)
AL	0			C6	1	(127)	F	MG		A2	2(104)
AL	0			C6	2	(1-28)	F	MG		A5	415 21
AL	0			(6	4	(A29)	F	MG		66	1(117)
41	0			62	1	(42)	F	MG		6	2(1-26)
	0			62	1	(15)		MG		0	211-201
AL	0			62	4	501	F	MG		6	4(A26)
AL	0			G 9	2	50)	F	MG		G2	1(42)
AL-	0			D2	1	(50)	F	MG		69	2(50)

-

	D2	2(61)	F N O D	C 5	12(178)
	M8	8(56)	F N O Z	R5	12(170)
AL O BE+	M1	12(118)	F NA	B2	9(20)
AL 0 2	A 2	1(59)	FNA	B2	11(89)
AL 0 2-	A2	1(63)	F NA	B3	11(89)
AL 0 2-	A2	2(84)	FNA	B 9	9(31)
AL 0 2-	A 2	2(102)	F NA	89	11(165)
	A5 B2	4(C 2)	F NA	69	12(166)
AL S	C6	4(A33)	F RB	GÓ	10(19)
AL S	G2	4 (45)	F 2	Δ2	1(58)
AL S	G9	4(47)	F 2	Δ2	2(101)
ALSI	F2	5(191)	F 2	A5	4(C 1)
	F 2	5(192)	F 2 F 2	A /	2(41)
AL 2	A2	1(59)	F 2	C6	1(129)
AL 2	Δ2	1(62)	F 2	C 6	2(1-31
AL 2	A2	21 831	F 2	C6	4(A34)
AL 2	A2	2(102)	F 2	G2	1(42)
AL 2	A 5 A 7	4(C 2)	F 2	69	12(166)
AL 2	G2	4(42)	F 2FF	B2	12(100)
AL 2	C6	4(A28)	F 2H K	B2	7(70)
AL 2	G 9	4(47)	F 2H LI	A 2	2(99)
AL 2BA O 4	A2	6(83)	F 2H LI	A 2	2(105)
AL 28A 0 4	A 3 A 2	6(83)	F 2H LI	A5 R2	4(C 2)
AL 2BA 30 4	A3	6(83)	F 2H LI	B9	9(31)
AL 2BE 0 4	A2	61 831	F 2H N	C1	8(125)
AL 2BE O 4	Α3	6(83)	F 2H N	C 5	12(178)
AL 2BE O 4	В1	8(44)	F 2H N	C6	8(128)
AL 2BE O 4	81	11(50)		G I B 2	8(125)
AL 28E 0 4	B2	8(50)	F 2H NA	B3	10(40)
AL 2BE O 4	B 9	8(49)	F 2H NA	B9	9(31)
AL 2BE O 4	B 9	8(52)	F 2H NA	B 9	10(69)
AL 2BE O 4	B9	8(1/2)	F 2H ~	B5	12(167)
AL 2BE 0 4	B9	11(64)	F 2LI 2	Δ2	1(71)
AL 2BE 0 4	B9	11(160)	F 2LI 2	A2	21 98
AL 2BE O 4	E2	5(160)	F 2LI 2	A2	2(105)
AL 2BE 0 4	J1	12(83)	F 2LI 2	A5	4(C 2)
	A 2	2(103)		6	2(1-4:
AL 2C 2	A2	3(3)	F 2LI 2	G2	1(43)
AL 2C 2	A2	3(65)	F 2LI 2	G 9	2(51)
AL 2C 2	A 5	4(C 2)	F 2MG	A 2	1(60)
	A2	6(83)	F 2MG	A2	2(95)
	B2	12(89)	F 2MG	A2	4(38
AL 2CA O 8SI 2	B2	12(89)	F 2MG	A2	12(22)
AL 2CA 20 751	B2	12(89)	F 2MG	A3	41 38
AL 2CA 30 4	A2	6(83)	F 2MG	A5 BO	4(C 2
AL 2CA 30 6	B2	12(89)	F 2MG	B2	2(26)
AL 2CL 6	A2	1(59)	F 2MG	B 3	1(26
AL 2CL 6	Δ2	1(66)	F 2MG	B5	1(17
	A 2	2(90)	F 2MG	BC	21 20
AL 2CL 6	A2	2(103)	F 2MG	B 9	4 (B14
AL 2CL 6	A2	4 (36)	F 2MG	C6	2(1-5)
AL 2CL 6	A 3	4(36)	F 2MG	C6	4(A54
AL 2CL 6	A5 A5	. 4 (C 2)	F 2MG	D3	2(/1
AL 2CL 6	C6	2(1-65)	F 2MG	G2	1(43
AL 2CL 6	C6	4(A69)	F 2MG	G 9	2(51
AL 2F 6	D3	2(70)	F 2N	C 5	12(178
AL 2FE 0 4	B2	12(96)	F 2N	C6	6(241
AL 2H 20 4 AL 2H 20 4	AZ A2	1(64)	F 2N	62	61 33
AL 2H 20 4	A2	2(86)	F 2N 2	C5	12(178
AL 2H 20 4	A2	2(102)	F 20	C 5	12(166
AL 2H 2O 4	A 5	4(C 2)	F 20 S	C 5	12(173
	B2 B2	2(23)	F 20 2	C 5	12(166
AL 2H 20 4	B5	1(9)	F 20 3 •	C 5	12(166
AL 2H 20 4	В5	21 201	F 2PB	В7	61 53
AL 2H 2O 4	B9	2(2-3)	F 3CR	B2	12(92
AL ZH ZO 4	89	410 31	F 3L1 3	μZ	11 01

J

AL 2H 20 4	F2	1(88)	E 3LT 3	A2	1(71)
AL 2H 20 4	J2	1(90)	F 3LI 3	A 2	2(98)
AL 2H 20 4	J2	1(91)	F 3LI 3	A 2	2(105)
AL 2H 30 4	B3	1(26)	F 3LI 3	Α 5	4(C 2)
AL 2H 6O 6	A 2	1(59)	F 3N	B 2	9(28)
AL 2H 60 6	A 2	1(64)	F 3N	B 9	9(32)
AL 2H 6O 6	A 2	1(65)	F 3N	C 5	12(178)
AL 2H 6O 6	A 2	2(86)	F 3N S	B 5	12(180)
AL 2H 60 6	A 2	2(102)	F 30 P	C 5	12(182)
AL 2H 60 6	Α5	4(C 2)	F 3P	C 5	12(182)
AL 2H 60 6	BZ	1(8)	F 4LI 4	AZ	1(61)
AL 2H 60 6	BZ	2(23)	F 4L1 4	A 2	1(72)
AL 2H 60 6	B3 DE	1(26)		AZ	2(98)
AL 2H 60 6	85	2(20)	F 4N 2	(5	12(1/8)
	80	2(20)	F 4N 2	(6	6(243)
	D 9 BO	2(2 4) 4(B 4)		61	21 30)
	E 2	1 (88)	E AN 2	62	6(33)
	12	1(90)	E AN 2	60	2(38)
	Δ2	6(83)	F 4N 2	69	2(39)
	Δ3	6 (83)	F 4N 2	Нí	10(36)
AL 2MG 0 4	B2	1(16)	F 4S	(5	12(173)
AL 2MG 0 4	B2	2(28)	F 4×F	B 5	12(167)
AL 2MG 0 4	B5	1(17)	F 5T	B 5	12(171)
AL 2MG 0 4	B 5	2(20)	F 5T	C 5	12(171)
AL 2MG 0 4	B9	4(B20)	F 5P	C5	12(182)
AL 2MG O 4	B9	2(2-20)	F 6S	C 5	12(173)
AL 2MG 0 4	E 2	5(160)	F 6SE	C 5	12(174)
AL 2NA 20 4	A2	6(83)	F 6TE	C 5	12(175)
AL 2NA 20 4	Α3	6(83)	F 7 I	C 5	12(171)
AL 20	Α2	1(59)	FE	B2	12(93)
AL 20	A 2	1(62)	FE CL 2	B 2	12(95)
AL 20	A2	2(83)	FE O	B 2	12(96)
AL 20	Α2	2(102)	FE O	B 2	12(96)
AL 20	Α5	4(C 2)	FE 20 3	B 2	12(97)
AL 20	C6	2(1-53)	FF 30 4	B 2	12(97)
AL 20	C6	4(A57)	FE 20 4SI	B 2	12(96)
AL 20	C6	11(144)	GD H 2	A2	7(93)
AL 20	G 1	11(119)	н	A 2	1(58)
AL 20 0 211	E2	5(160)	н	A 2	2(101)
AL 20 2	AZ	1(59)	н	A 2	7(91)
AL 20 2	A2	1(63)	н	A 5	4(C 1)
AL 20 2	A2	2(84)	H H	C 5	12(165)
AL 20 2	A2	2(102)	H H	C6	2(1-1)
AL 20 2	AS	4(C 2)	H	6	4(A 1)
AL 20 2	(6	2(1-54)	H +	85	12(165)
AL 20 2	×3	4(A)0)	H +	C5	7(107)
AL 20 3	Δ2	1(63)		6	12(124)
AL 20 3	Δ2	1(64)	H=	C6	12(124)
AL 20 3	A2	2(84)	H BE	6	12(144)
AL 20 3	A2	2(85)	НО	C5	12(165)
AL 20 3	A2	2(102)	H F 2LI	B3	10(40)
AL 20 3	A2	4(35)	H F 2LI	B 9	10(63)
AL 20 3	Α5	4(C 2)	н і	B 5	12(170)
AL 20 3	Α5	4(C 2)	н і	C 5	12(170)
AL 20 3	A 9	3(41)	н і о	B 5	12(170)
AL 20 3	B1	2(23)	H I O 3	B 5	12(170)
AL 20 3	B2	1(7)	нк	A 2	7(92)
AL 20 3	B2	2(23)	НКО	A 2	7(90)
AL 20 3	В3	1(26)	нко	C 5	12(184)
AL 20 3	83	1(29)	HLI	A 2	1(61)
AL 20 3	85	1(9)	H LI	A 2	8(870)
AL 20 3	80	2(2-2)		A 2	2(97)
	DY	2(2-2) 4(B-2)		A2	2(104)
	07	9(41)		A2	((92)
AL 20 3	01	11(00)		Ab	4 (C Z)
	01	12(91)		A /	2(41)
AL 20 3	01	4(33)		DZ	1(19)
A1 20 3	D9	3(41)		05	2(20)
AL 20 3	09	8(67)		C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12(1/2)
AL 20 3	E 2	1(88)	нцо	LO A 2	1(41)
AL 20 3	E2	5(160)	НІГО	Δ2	1(70)
AL 20 3	J2	1(91)	H LT O	A 2	2(97)
AL 20 3	J2	1(92)	H LT O	A 2	2(105)
AL 20 3BE 0	F2	5(155)	H LI O	A 5	4(C 2)
AL 20 3BE 0	F 2	5(206)	H LI O	B2	1(20)
AL 20 3BE 0	M1	12(118)	H LI O	B2	2(29)
AL203-BEO-MGO	F 2	5(156)	HLIO	B 3	1(27)

.

AL203BE0MG0	F 2	5(207)	H LI O	85 86	1(22)
AL203-BE0-0211 AL203-BE0-0211	F2 F2	5(207)		89	2(2-23)
AL203-BEO-02ZR	F2	5(156)	H LI O	B9	4(B23)
AL203BE002ZR	F 2	5(207)	H LI O	J2	1(97)
AL 20 3MG 0	F 2	5(156)	H MG	A2	1(60)
AL 20 3MG 0	F2	5(156)	H MG	A2 A2	2(104)
AL 03MG002TI	F2	5(209)	H MG	A5	4(C 2)
AL 20 30 2TI	F 2	5(156)	H MG	Α7	2(41)
AL203-02TI-02ZR	F2	5(157)	H MG O	A2	4(36)
AL 20 30 211 AL 20302TL027P	F 2 F 2	5(209)		A2 (5	12(175)
AL 20 4ZR	E2	5(160)	H N	C6	12(146)
AL 20 55I	A2	6(83)	HNO2	85	12(176)
AL 20 55I	A3	6(83)	H N O 2	C 5	12(176)
AL 20 551	DZ 82	8(99)		A2	7(90)
AL 20 551	83	8(99)	H N O 3	A2	7(94)
AL 20 55I	85	8(102)	H N O 3	82	9(29)
AL 20 5SI	89	8(166)	H N O 3	B3	10(40)
AL 20 551	89 89	8(167)		Bo	9(32)
AL 20 5TI	82	7(67)	H N O 3	B 9	10(81)
AL 20 5TI	82	8(101)	H N 3	A2	7(91)
AL 20 5TI	83	8(101)	H N 3	85	12(176)
AL 20 511 AL 20 5TI	85 89	8(170)	H N 3 H N 3+	(5)	12(176)
AL 20 5ZR	A2	6(83)	H NA	A2	7(92)
AL 20 5ZR	Α3	6(83)	H NA	B2	9(18)
AL 4C 3	A1		H NA	B9	9(31)
AL 4C 3	A 1 A 1	11(15)		B2	9(19)
AL 4C 3	Al	12(18)	но	A2	7(91)
AL 4C 3	A 1	12(19)	но	C 5	12(165)
AL 4C 3	A2	2(103)	н о-	A2	7(90)
AL 4C 3	A2 A2	3(65)	H 0 -	65	12(165)
AL 4C 3	A5	4(C 2)	H O NA	B9	9(31)
AL 4C 3	A 8	11(1)	H O NA	C5	12(184)
AL 4C 3	A9	11(15)	H O 2	C5	12(165)
AL 4C 3	81	8(39)	H 0 2+	C 5 B 5	12(165)
AL 4C 3	81	11(21)	H O 3P	85	12(180)
AL 4C 3	81	11(43)	H O 3P	85	12(180)
AL 4C 3	B2	3(12)	H 0 35 -	85	12(172)
	82	8(41) 3(12)	H 0 35E-	85	12(1/4)
AL 4C 3	В5	3(16)	H 0 45 -	85	12(172)
AL 4C 3	B5	3(21)	H O 4SE-	85	12(174)
AL 4C 3	B9	3(22)	H 0 7P 2	85	12(181)
	89	3(2-3/) 4(B37)		C6 85	12(150)
AL 4C 3	89	7(118)	H SE-	B5	12(174)
AL 4C 3	89	8(135)	H SR	C6	12(156)
AL 4C 3	89	11(40)	H ZR	89	11(156)
	89 89	11(42) 11(43)		BO	5(243)
AL 4C 3	D9	3(33)	HZR	89	5(244)
AL 4C 3	D9	3(34)	HZR	Ba	5(245)
AL 43 3	J2	4(22)	HZR	BQ	5(246)
AL 4C 3		11(25)		BQ	11(155)
AL 4C 3	L8	11(1)	HZR	89	11(156)
AL 43A 0 7	82	12(89)	HZR	B 9	11(156)
AL 4CL 3	A2	2(90)	HZR	B9	11(157)
AL 40 3	89	4(35)		F 2 F 3	5(205)
AL14CA120 23	82	12(89)	H 2	A2	1(58)
AR	C6	2(1-18)	Н 2	A2	2(101)
AR	C6	4(A18)	Н 2	A2	7(91)
	C6	6(239)	H 2	A 5	4(C 1)
8	A5	5(39)	H 2	B5	12(165)
В	B9	5(49)	H 2	C 5	12(165)
В	B9	5(50)	H 2	C 6	7(111)
8	89	5 (51) 2 (1 - 5)	H 2	C6	11(157)
8	(6	4(A 5)	H 2+	(5	12(165)
B	C6	5(53)	H 2GD	A2	71 931

B + B BE 2	C6 F2	6(213) 5(150)	H 2LA H 2MG	
B BR	A5	5(40)	H 2MG	
B BR B BR	A5 A5	5(40)	H 2MG H 2MG	
B BR	C6	2(1-42)	H 2MG	
B BR	C6	4(A45) 5(113)	H 2MG	
B BR	G9	5(43)	H 2MG	
B BR CL 2	A5	5(41)	H 2MG	
B BR CL 2	69	5(47)	H 2MG	
B BR F 2	A5	5(41)	H 2MG 0 2	
B BR F 2	G9	5(47)	H 2MG 0 2 H 2MG 0 2	
B BR 2	G9	5(47)	H 2MG 0 2	
B BR 2CL	6 A5	5(123)	H 2MG 0 2 H 2MG 0 2	
B BR 2CL	G 9	5(47)	H 2MG O 2	
B BR 2F B BR 2F	6 A5	5(119)	H 2MG 0 2 H 2MG 0 2	
B BR 2F	G9	5(47)	H 2MG O 2	
B BR3 B CL	A5	5(115)	H 2N H 2N	
B CL	A 5	5(40)	H 2N NA	
B CL B CL	C6 C6	2(1-41) 4(A44)		
B CL	C6	5(95)	H 2N NA	
	G9 A5	5(43) 5(40)	H 20 H 20	
B CL F	C6	5(107)	H 20	
	G9 A5	5(46)	H 20 2 H 20 2	
B CL F 2	C6	5(109)	H 20 2	
B CL O	A5	5(40)	H 20 2+	
BCLO	G 9	5(46)	H 20 35	
B CL 2	C6	5(97)	H 20 35	
B CL 2F	A5	5(40)	H 20 35E	
B CL 2F	C6	5(111)	H 20 4P -	
B CL 3	A5	5(40)	H 20 45	
B CL 3	C6	5(99)	H 20 7P 2	
B F	A5	5(40)	H 20 85 2	
BF	C6	2(1-40)	H 20 +	
B F	C6	5(85)	H 2PR H 2S	
BF	G 9	5(43)	H 25	
B F O	C6	5(91)	H 2SE H 2SE	
BFO	G9	5(46)	H 2TE	
BF2	6 A 5	· 5(87)	H 22R H 3I 3N 2	
B F 2	G9	5(46)	H 3LI O 2	
B F 3	6 A5	5(40)	H 3L1 0 2 H 3LT 0 2	
B F 3	G 9	5(46)	H 3LI O 2	
вн	6 A5	2(1-39)		
ВН	C6	4(A42)	H JLI O 2	
вн	G9	5(65)		
B H O 2	A5	5(39)	H 3N	
B H O 2 B H O 2	C6 69	5(77) 5(45)	H 3N H 3N	
B H 3	A2	7(91)	H 3N O	
В Н 3 В Н 3	A5 (6	5(39) 5(67)	H 3N 0 35	
B H 3	G 9	5(45)	H 3N 0 4	
В Н 30 3 В Н 30 3	A2 A5	7(90) 5(39)	H 3N 0 4	
B H 30 3	B9	5(79)	H 30 2P	
в н 30 3 В н 30 3	C6 G9	5(81) 5(46)	H 30 3P	
В Н 4К	A2	7(92)	H 30 4P	
в н 4к в н 4к	B2 B3	11(92)	H 30 7P 2-	
В Н 4К	B9	11(177)	Н ЗР	

1.155

. . .

1

A2 A2	7 (93) 2 (94)
A2	2(104)
A 5	4(C 2)
B2 B2	1(14) 2(25)
B5	1(17)
85 89	2(20) 2(2-12)
*89	4(B12)
A2	2(94)
A 2 B 2	2(104)
82 83	2(26)
B5	1(17)
85 89	2(20) 2(2-13)
B9	4(B13)
A2	7(91)
C5 B2	12(175) 9(19)
B3	10(40)
B9 B9	10(68)
A2 B5	7(90) 12(165)
C 5	12(165)
B5	12(165)
C5 C5	12(165) 12(166)
A5	4(C 2)
85 85	12(172)
85 85	12(174) 12(175)
B5	12(181)
B5	12(172)
85 85	12(181) 12(173)
85 C5	12(173)
A2	7(93)
85 C5	12(172) 12(172)
B5 C5	12(174)
C5	12(175)
A2 85	7(93) 12(179)
A2	2(97)
B2	2(29)
85 85	1(22)
B9	2(2-24
В9 J2	1(97)
J2 A2	1(97) 7(91)
B5	12(176)
B5	12(175)
85 82	12(179) 9(29)
B3	10(40)
B9	9(32)
85 85	12(181)
B 5	12(175)
85 85	12(181) 12(182)
A 2 B 5	7(91)
A2 B5	7(91)

B H	I I I I A A A A A A A A	A 2 1 B 3 1 B 9 1 B 2 B 2 B 2 B 3 B 9 B 4 B 9 B 4 B 9 B 4 B 9 B 7 C 6 6 C 6 6 C 6 6 C 6 6 C 6 6 C 6 7 C 6 9 C 6 6 C 6 7 C 6 9 C 6 6 C 6 9 C 7 5 C 6 6 C 6 9 C 7 5 C 6 6 C 6 9 C 6 7 C 7 5 C 6 6 C 6 9 B 7 5 C 6 6 C 6 9 C 6 C 6 C 6 C 6 C 6 C 6 C 6 C 6	7(92) 1(89) 1(89) 1(89) 1(164) 7(92) 9(21) 1(90) 1(90) 1(90) 1(90) 1(90) 5(41) 5(125) 5(47) 7(90) 5(41) 5(125) 5(47) 7(90) 5(13) 3(13) 3(16) 5(129) 2(1-44) 4(A47) 5(131) 5(150) 5(43) 0(40) 9(31) 0(73) 5(39) 2(1-38) 4(A41) 5(57) 5(43) 9(22) 5(43) 9(22) 5(43) 9(22) 5(43) 9(21) 5(150) 5(160)	H 3P H 3P H 3D H 4CL 0 H 4N 0 H 4N 2 H 5N 0 H 5N 0 H 5N 0 H 5N 0 H<	BP 2 3 3 3 4 - 2 3 3 4 - 2 3 3 4 - 2 3 3 4 - 2 3 3 3 4 - 2 3 3 3 4 4 - 2 3 3 3 4 4 - 2 3 3 3 4 4 - 2 3 3 3 4 4 - 2 - - - - - - - - - - - - -	C C A B B B B B A B C B A B B B B B B B	12(180) 12(182) 12(182) 12(182) 12(182) 12(177) 12(180) 7(91) 12(176) 12(177) 7(91) 12(177) 9(32) 12(177) 12(177) 12(175) 12(180) 12(176) 12(176) 12(176) 12(177) 12(175) 12(180) 12(170)
B 20 2 B 20 2 B 20 3 B 2 3 B 2 3	CA 0 	C6 G9 A5 B9 C6 C6 G9 A2 A2 F2 F2 F2 F2 F2 F2 A2 A5	5(59) 5(45) 7(90) 5(39) 5(62) 5(61) 5(63) 5(45) 6(79) 6(79) 6(78) 6(77) 5(15) 5(213) 5(157) 5(214) 6(77) 6(80) 5(150)	HE HE HG HG HG HG HG HG O HG O HG O I I I I I I I I I I I I I I I I I I	3	C6 C6 B1 B2 B9 C6 B9 C5 C5 C5 C5 C5 C5 B2 C5 B2 B9 C5 C5 B2 B9 B2 B2 B2 B2 B2 B2	2(1-2 4(A 2) 6(207) 9(29) 9(29) 9(32) 6(261) 9(30) 9(32) 10(84) 12(169) 12(169) 12(169) 12(169) 12(170) 7(71) 12(170) 7(71) 9(26)

• {[]

B 2TI B 2ZR B 3CL 30 3 B 3F 30 3 B 3F 30 3 B 3F 30 3 B 3H 2N 3 B 3H 2N 6 B 3H 3O 6 B 3H 6 3 B 3H 6 3 B 3H 6 3 B 3H 6N 3 B 3H 6N 3 B 4C 5 B 4C 5 B 4C 5	E2 A5 C6 A5 C6 A5 C6 G9 A5 C6 A5 G9 A5 B1	5(150) 5(150) 5(150) 5(40) 5(40) 5(40) 5(40) 5(40) 5(40) 5(40) 5(40) 5(41) 5(41) 5(41) 5(41) 5(150) 3(11)	I K O 3 I K O 3 I LI I LI I NA I O - I O 3- I O 4+ I RB I 2 I 2 I 2 I 2 I 2 I 3- I 3P I 3P K	B3 10(140) B9 10(76) B7 6(54) G9 10(19) G9 10(19) B5 12(170) B7 6(54) A2 7(94) C5 12(170) B5 12(182) B2 7(69)
B 4C B 4C B 4C B 4C B 4C B 4C B 4H B 4MG B 4MG B 4MG B 4MG B 4MA R 4NA ANA 20 T 8 4NA 20 T 8 4NA 20 T 8 5H 9 8 5H 9 5H 9	82 85 89 82 83 89 89 89 89 89 89 89 89 89 69 69 69	3(16) 5(135) 5(150) 7(91) 9(16) 10(40) 9(31) 10(65) 9(22) 10(40) 9(31) 10(73) 6(266) 7(91) 5(39) 5(71) 5(72) 5(45)	K + K H K N 0 3 K N 0 3 K N 0 3 K N 0 3 K N 2 K N 2 K 0 2 K 0 2 K 0 2 K 0 2 K 0 2 K 20 3 K 20 4 K 20 5 K 20 5	C5 12/184) C6 6(257) C6 12(152) A9 7(10) B1 7(3) B2 9(25) B9 9(32) B2 9(131) B2 7(95) B2 7(95) A2 7(95) A2 7(95) B2 7(66) B2 7(66) B2 7(66) B2 7(66) B2 7(66) B2 7(61)
B 5H 10NA 0 13 B 5H 12N 0 12 B 5TI 2 B 5TI 2 B 6BE B 6H 10 B 10H 14 B 10ZR B 10H 14 B 10ZR B 10Z - B 13C 2 B 4 B 4 CL 2 B 4 B 4 B 5 B 5 B 5 B 5 B 5 B 5 B 5 B 5	69 A2 B9 A5 E2 A2 A5 B9 C9 A5 E2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2 B2	6 (264) 7 (91) 6 (268) 5 (150) 5 (150) 5 (150) 7 (91) 7 (91) 7 (91) 5 (39) 5 (75) 5 (45) 5 (150) 12 (87) 12 (87) 12 (87) 12 (87) 12 (87) 12 (87) 12 (158) 12 (87) 12 (158) 12 (158) 12 (24) 2 (101) 4 (C1) 1 (11) 2 (24) 2 (24) 1 (26) 1 (29) 1 (12) 2 (20) 2 (2-7) 4 (B7) 2 (1-4) 4 (A4) 1 (48) 1 (54)	LI LI LI LI LI LI LI LI LI LI	A2 2(101) A5 4(C 1) B1 1(19) B1 5(175) B2 1(19) B2 2(28) B2 2(28) B2 3(63) B2 5(175) B3 1(27) B5 1(22) B5 1(22) B5 1(22) B5 2(20) B9 2(2-2) B9 4(B21) C6 2(1-1) C6 2(1-2) C6 2(1-2) C6 2(10-2) B9 5(227) C6 2(1-2) C6 2(1-2) C6 2(1-2) C6 2(1-2) C6 2(1-2) C6 2(10-3) A2 1(61) A2 1(61) A2 1(61) A2 2(104) A5 4(C 2) C6 12(160) G1 11(118) D2
RF AL 20 4 BE C 2 2	R5 A2 A5 A7 A2	1 (12) 2 (93) 2 (103) 4 (C 2) 3 (4) 1 (60)	LI 2 LI 2 LI 2 LI 2 LI 2 LI 2 LI 2 LI 2	C6 1(105 C6 2(1-1 C6 4(A19 G2 1(42 G9 2(50 A2 1(61

BE	CL		A2	1(68)	LI 20	0	A2	2(97)
BE	CL		A2	2(92)	LI 20	0	A2	2(104)
BE	CL		A2	2(103)	LI 20	0	A2	3(65)
BE	CL		Α5	4(C 2)	LI 20	0	A2	7(95)
ΒE	CL		C6	1(113)	LI 20	ō	A5	4(C 2)
ΒE	CL		C6	2(1-24)	LI 20	0	B2	1(19)
ΒE	CL		C6	4(A24)	LI 20	0	B2	2(28)
BE	CL		G2	1(42)	LI 20	0	B3	1(27)
ΒE	CL		G 9	2(50)	LI 20	0	B5	2(20)
ΒE	CL F		C6	2(1-49)	LI 20	0	B9	2(2-22)
ВE	CL F		C6	4(A53)	LI 2	0	B9	4(B22)
ΒE	CL F		G2	1(43)	LI 2	0	C6	11(148)
ΒE	CL F		G9	2(51)	LI 2	0	E 2	5(160)
BF	CL 2		A1	4(28)	LI 2	0	G1	11(118)
ΒE	CL 2		A2	1(60)	LI 2	0	J2	1(97)
ΒE	CL 2		A2	1(68)	LI 2	0 2	A2	2(97)
BE	CL 2		A 2	2(92)	LI 2	0 2	A2	2(104)
BE	CL 2		A2	21 931	LI Z	0 2	A2	7(95)
BE	CL 2		A2	2(103)	LI 2	0 Z	A5	4(C 2)
BE			A 2	4(35)		0 2	6	11(150)
BE			A 2	4(57)		2 0	42	11(118)
DE			A 2	7(90)		0 351	A2	6(83)
BC			A3	4(37)		0 311	83	71 441
DE			Δ3	4(37)			82	91 031
RE			A.5	41(2)			B3	8(93)
BE			85	1(12)		0 311	85	8(102)
BE			C6	2(1-48)		0 311	89	8(144)
BE	CL 2		C6	4(A52)	112	0 551 2	B2	7(64)
BE	CL 2		G2	1(43)	LI 2	0 751 3	B2	7(64)
BE	CL 2		G9	2(51)	LI 3	N	A2	1(61)
ΒE	F 2		A2	12(22)	LI 3	N	A2	2(100)
BE	F		A2	1(60)	4 LI 3	N	A2	2(105)
ВE	F		A2	1(68)	LI 3	N	A 2	3(5)
ВE	F		A2	2(92)	LI 3	N	A 3	3(5)
BE	F		A2	2(103)	LI 3	N	A 5	4(C 2)
ΒE	F		A5	4(C 2)	LI 3	N	B 2	3(13)
ΒE	F		C6	1(111)	LI 3	N	85	3(16)
ВE	F		C6	2(1-23)	LI 3	N	B5	3(21)
ВE	F		C6	4(A23)	LI 3	N	B9	3(22)
BE	F		03	8(114)	LI 3	N	B9 ,	3(2-28)
BE	F		62	1(42)	LI 3	N	89	4(828)
BE	F		62	4(45)	LI 3	N	09	3(47)
BE	F		63	8(109)		i N	JZ	4(24)
BE	F		69	21 501	MG		A 2	2(10)
BE-	F 		01	4(47)	MG		A 2 A 5	
	-F -=0		MI	8(55)	MG		82	1(14)
BE	-F0		MI	10(55)	MG		B2	2(25)
BE-	-F0		MB	8(56)	MG		R3	1(26)
BE	F 2		A2	1(60)	MG		85	1(17)
BE	F 2		A2	1(68)	MG		85	2(20)
BE	F 2		A2	2(92)	MG		B9	2(2-9)
ВE	F 2		A2	2(103)	MG		B9	4(B 9)
ΒE	F 2		A2	3(65)	MG		C6	2(1-12)
BE	F 2		A2	4(35)	MG		C6	4(A12)
ВE	F 2		A2	10(43)	MG		D2	1(48)
ΒE	F 2		A3	10(43)	MG+		C6	6(227)
BE	F 2		A 3	12(120)	MG	C 2	A2	3(5)
BE	F 2		A5	4(C 2)	MG	0	A2	1(60)
BE	F 2		B3	11(113)	MG	0	A2	1(69)
BE	F 2		85	1(12)	MG	0	A2	2(94)
BE	F 2		87	7(96)	MG	0	A2	2(103)
DE			D9 R0	11(159)	MG	0	AZ AE	4(20)
DE			69	2(1=47)	MG	0	A D	2(25)
	F 2		C0 C6	2(1 4/)	MG	0	82	$\frac{2}{1}$
	F 2		C6	12(138)	MG	0	82	2(25)
BE	F 2		02	4(35)	MG	0	B3	11 261
BE	F 2		03	11(113)	MG	0	85	1(17)
BE	F 2		62	1(43)	MG	0	85	2(20)
BE	E 2		67	12(85)	MG	0	89	2(2-10)
BE	F 2		69	2(51)	MG	0	B9	2(2-11)
BE	F 2		J8	11(84)	MG	0	89	4(B10)
BE	F 2		J8	12(73)	MG	0	89	4(B11)
BE	F 2		M1	8(55)	MG	0	C6	1(121)
BE	F 2		M1	10(55)	MG	0	C6	2(1-25)
ΒE	F 2		M9	10(57)	MG	0	C6	4(A25)
BE	F 2BE	0	A1	11(109)	MG	0	D1	12(83)
BE	F 2BE	0	A 1	11(110)	MG	0	E2	5(160)

BE E	2BE	0	M 1	10(56)	1	MG O	G2	1(42)
BEF	2BE	0	MQ	11(103)		MG O	.12	2(50)
BE F	2BE	õ	M9	11(110)		MG0	D2	2(64)
BE F	2F	LI	F2	5(163)		MG OF 2MG	F2	5(158)
BE F	2F	LI	F2	5(218)		MG 00 2TI	F2	5(158)
BE F	2	2MG	F 2 F 2	5(224)		MG 00 211 MG0-02TI-027R	F2 F2	5(214)
BE E	2F	2MG	F2	5(225)		MG002TI02ZR	F2	5(216)
BÉ F	4LI 2		B1	11(75)		MG O O 2ZR	F2	5(158)
BE F	4LI 2		89	11(78)		MG O O 2ZR	F2	5(215)
BÉ F	4LI 2		89	11(163)		MGSI MG+-TI	F2 F2	5(199)
BE H			A2	2(91)		MGZR	F2	5(201)
BE H			A2	2(103)		MG 0 2	A 2	1(60)
BE H			A5	4(C 2)		MG O 2	A2	1(69)
	2		Α /	2(41)		MG 0 2	A 2	2(104)
BE H	2		85	1(12)		MG O 2	A5	4(C 2)
BÉ H	2		J2	1(100)		MG O 3SI	A 2	6(83)
BÉ H	2		J8	3(55)		MG O 3SI	A3	6(83)
BE H	20 2		A2 A2	1(60)		MG 0 351	62 82	8(94)
BÉ H	20 2		A2	2(91)		MG O 3SI	B3	8(94)
BE H	20 2		Α2	2(92)		MG O 3SI	Β5	8(102)
BE H	20 2		A2	2(103)		MG O 35I	B9	8(146)
BE H	20 2		A 5 8 5	4(C 2)		MG O 311 MG O 3TI	AZ AB	6(83)
BE H	20 2		J2	1(94)		MG O 3TI	B2	7(67)
BE O			Α2	1(60)		MG O 3TI	B2	8(95)
BE O			A 2	1(67)		MG O 3TI	B3	8(95)
BE O			A 2	2(103)			60 F 2	5(160)
BE O			A2	4(35)		MG O 4TI	B9	8(150)
BE O			Α3	12(120)		MG O 4W	B2	7(68)
BE O			A5	4(C 2)		MG O 4W	B2	8(93)
BE O			B2	2(24)		MG O 4W	83 85	8(93)
BE O			B3	1(26)		MG O 4W	B9	8(143)
BE O			B 5	1(12)		MG O 5TI	B2	8(95)
BE O			B5	2(20)		MG O 5TI	B3	8(95)
BE O			89 89	2(2 - 8)		MG 0 511 2	A2 A3	6(83)
BE O			C6	1(115)		MG 0 5TI 2	B2	7(67)
BÉ O			C6	2(1-22)		MG O 5TI 2	B 5	8(102)
BÉ O			C6	4(A22)		MG 0 5TI 2	B9	8(152)
BE O			D2	1 (54)		MG 2	A 2 A 2	1(60)
BE O			D2	4(31)		MG 2	A2	2(93)
BE O			E2	5(160)		MG 2	A2	2(103)
BÉ O			G2	1(42)		MG 2	A 5	4(C 2)
BE O			.12	2(50)		MG 2C 3	A 7 A 2	2(41)
BE O			MI	8 (55)		MG 20 451	A2	6(83)
8E0			D2	2(63)		MG 20 451	Α3	6(83)
BEO	0.0070		D3	2(63)		MG 20 451	B2	7(64)
BEOM	160022R		F2 F2	5(211)		MG 20 451	DZ B3	8(94)
BE O	0 2TI		F2	5(157)		MG 20 451	B5	8(102)
BE O	0 2TI		F2	5(211)		MG 20 451	Β9	8(148)
BEO-02	2TI-02ZR	0	F2	5(157)		MG 20 4TI	A 2	6(83)
BESI	0211022	R	F2 F2	5(196)		MG 20 411	A 3 B 2	6 (83) 7 (66)
BEZF	2		F2	5(197)		MG 20 4TI	B2	8(96)
BE 2			A2	1(60)		MG 20 4TI	В3	8(96)
BE 2			A 2	1(6/)		MG 20 4TI	B5	8(102)
BE 2			A2	2(103)		MG 3N 2	A2	2(96)
BE 2			A 5	4(C 2)		MG 3N 2	A2	2(104)
BE 2			Α7	2(41)		MG 3N 2	A2	3(4)
BE 2C			A2	2(93)		MG 3N 2	A 3	3(4)
BE 2C			AS	4(C 2)		MG 3N 2	B2	4 (C 2) 3 (14)
BE 2C			B2	3(11)		MG 3N 2	B3	3(14)
BE 2C			B5	3(16)		MG 3N 2	B 5	3(16)
BE 2C			85	3(21)		MG 3N 2	B.5	3(21)
BE 2C			B9	3(2-34)		MG 3N 2	B9 B9	3(22)
BE 2C			B9	4(B34)		MG 3N 2	B9	4(B30)
BÉ 2C			D9	3(42)		MG 3N 2	D9	3(45)

BE 2C			J2	41 20	1	MG 3N	2	J2	4(25)
BE 2CL	4		A2	1(60		MO+		C6	6(253)
BE 2CL	4		A2	1(69		N		AZ	2(101)
BE 2CL	4		AZ	21 93		N		A2	7(90)
BE ZCL	4		A 2	21103	. 1	N		A5 C5	4((1)
BE 2CL	4		AZ	41 37		N		6	12(175)
BE 2CL	4		A 3	4(3)		N		66	2(1 - 7)
BE 2CL	4		AD AD	12(120		IN A		6	4(A 7)
	20		6 A 0	12/120		N +		C5	6(217)
	20		A 9 C 4	121121			0 2	82	01211)
BE 2E	20		67	11(119			0 3	RQ	9(31)
BE 20	20		07	1(54		N NA	2	85	31 161
BE 20	451		Δ2	61 83		N NA	3	B7	3(13)
BE 20	451		Δ3	6(83		N O	5	42	7(94)
BE 20	4.51		B2	71 64		N O		C5	12(175)
BE 20	4SI		B2	8(101)	N O -	+	C5	12(175)
BE 20	4SI		B3	8(101) · · · ·	N O -	+	C6	12(136)
BE 20	4 S I		B5	8(102		N O	2	A 2	7(94)
BE 20	4SI		B 9	8(169		N O	2+	C5	12(175)
BE 3N	2		A 2	21 93		N O	2-	B5	12(175)
BE 3N	2		A 2	2(103)	N O	3-	B5	12(175)
BE 3N	2		A 2	31 4		N P		C5	12(183)
BE 3N	2		A 3	31 4)	N TI		A2	3(6)
BE 3N	2		A5	4(C 2)	N TI		A 3	3(6)
BE 3N	2		B1	8(44) [N TI		A5	4(C 2)
BE 3N	2		B2	31 13)	N TI		B 2	3(14)
BE 3N	2		B2	8(50)	N TI		B3	3(14)
BE 3N	2		B5	3(16)	N TI		B5	3(16)
BE 3N	2		B5	3(21)	N TI		B5	3(21)
BE 3N	2		B9	3(22	2	N TI		B9	3(22)
BE 3N	2		89	3(2-2	91	N TI		89	3(2-32)
BE 3N	2		89	4(829)	N TI		89	4(832)
BE 3N	2		89	81 48)	N TI		09	3(50)
BE 3N	2		89	8(134)	N ZR		BZ	5(179)
BE 3N	2		09	3(43	2	N ZR		89	5(250)
BE 3N	2		JZ	41 25	2	N 2		AZ	2(101)
BE 30	3		D2	11 54	?	_₽ N Z		A 5	4(C 1)
BE 40	4		02	11 54		N 2		65	12(1/5)
BE 50	5		02	1 1 54		N Z		6	3(1-66)
BE 60	6		02	10.24	,	N 2		6	4(A48)
BR I				12(100		N 20	2	42	71 941
				- 121100 		N 20	2	85	12(175)
				12/168	, I	N 20	5	12	7(94)
DR-			0.) (5	12(100	, I	N 20	4	85	12(175)
BR CL			62	7(94	ý	N 20	4	C 5	12(175)
BR CL			R F	12(169	í	N 20	5	Δ2	7(94)
BR CL			C F	12(169		N 20	5	85	12(175)
BR CS			G	10(19	5	N 2P	-	Č6	12(132)
BR F	3		BS	12(169)	N 3+		C 5	12(175)
BR F	5		B5	12(169)	N 3-		B5	12(175)
BR F	5		C 5	12(169)	N 3-		C 5	12(175)
BR H			B5	12(169)	N 4SI	3	B2	3(14)
BR H			C 5	5 12(169)	N 45I	3	B2	12(101)
BR H	0		BS	12(169)	N 451	3	В3	3(14)
BR H	0	3	BS	5 12(169)	N 4SI	3	B5	3(16)
BR H	4 N		B5	5 12(179)	N 5P	3	B5	12(183)
BR H	4 P		B	5 12(182)	NA		B2	9(16)
BR H	5 N	2	B	5 12(179)	NA		B9	9(31)
BR I			B	, 12(171)	NA		C6	2(1-11)
BR I			C	12(1/1)	NA		C6	4(A11)
BRK			B2	2 /(/1)	NA H		C6	12(148)
BRK			BZ	2 11(91		NA O	2	AZ	-7(95)
BRK			B :		,	NA O	2	82	9(18)
	0	2	G			NA O	2	83	10(40)
	0	2	D2		,	NA U	2	D 9 R 0	91 51)
	0	2			,	NA U	2	09	71 051
BRK	0	3	D	9 10/75	1	NA U	c	12	7(95)
BRIT	0	2	D.	7 61 54	1	NA 20		B1	9(18)
BR LT			6.0)	NA 20		B2	9(18)
BR N	0		0	5 12(179)	NA 20		BQ	9(31)
BR NA	0		6	9 10(19)	NA 20	t	B2	9(18)
BR O	_		B	5 12(169)	NA 20	2	A2	7(95)
BR O	2		C	5 12(169)	NA 20	2	B3	10(40)
BR O	3-		B	5 12(169)	NA 20	2	B9	9(31)
BR RB	-		G	9 10(19)	NA 20	2	B9	10(66)
BR 2			B	5 12(168)	NA 20	351	A2	6(83)
BR 2			B	9 11(179)	NA 20	251	Δ3	61 831

BR	2			C5	12(168)	NA 20 351	B2	9(23)
BR	2+			C5	12(168)	NA 20 351	B 9	9(31)
BR	2MG			B2	6(53)	NA 20 3TI	B9	9(24)
BR	2PB			B3	6(53)	NA 20 551 2	B 2	9(24)
BR	3-	D		85 85	12(168)	NA 20 551 2 NA 20 5TI 2	89 B2	9(31)
R-	30	P		C5	12(182)	NA 20 5TI 2	B9	9(31)
BR	3P			B5	12(182)	NA 20 551 2	A 2	6(83)
BR	3P 3P	S		85 (5	12(182) 12(182)	NA 20 551 2 NA 20 7TI 3	A 3 B 2	9(25)
BR	4TE	0		B5	12(175)	NA 20 7TI 3	B 9	9(31)
BR	5-			B5	12(168)	NA 20 7TI 3 NA 30 7SI 2	B9 A2	9(31)
c				A5	4(C 1)	NA 30 75I 2	A 3	6(83)
C				85	12(183)	NA 40 45I	A 2	6(83)
ć				B9 B9	4(B39)	NA 40 451 NA 40 451	B2	9(24)
Ċ				C5	12(183)	NA 40 45I	B 9	9(31)
C				C6 C6	2(1-6)	NA+ NA+	(5)	6(225)
C ·	+			C6	6(215)	NE	C6	2(1-10)
C ·	FE	-		B2	12(95)	NE	C6	4(A10)
c	FE H	3 0	3-	62 85	12(183)	0	A2	1(58)
С	н	2 N	2	A 2	7(91)	0	A 2	2(101)
C	н н	20 5 N	3	R5 42	12(183)	0	A2 A5	4(C 1)
C	н	6N	2	A2	7(91)	ō	C 5	12(165)
C	0	2		1 C5	12(183)	0	C 6	2(1 - 8)
c	0	2		82 85	12(183)	0	D2	1(54)
С	0	2		C5	12(183)	0 +	C 5	12(165)
C	0	3		85 82	12(183)	0 +	C6 C5	6(219)
C	SI			B2	12(99)	0 -	C6	12(126)
C	SI			B3	3(12)	O PB	B2	6(52)
c	TI			A2	3(6)	0 PB	B2	8(98)
С	ΤI			A 2	31 61	O PB	B 3	8(97)
C				A5 B2	4(C2) 3(13)		83 85	8(98)
č	TI			B5	3(16)	O PB	B 5	8(102)
C	TI			85	3(21)	O PB	B 9	8(158)
c	TI			B9	3(2-38)	0 5	C5	12(171)
C	TI			B9	4(B38)	0 11	B2	5(176)
c	TI			D9 D9	3(49)		A2	1(58)
С	2CA			B2	12(88)	0 2	A 2	2(101)
C	2CR	3		B2 B2	12(92)		A 2	7(94)
c	2H	5N		A2	7(91)	0 2	A7	2(41)
C	2 H	8N	2	A2	7(91)	0 2	B5	12(165)
c	21	2	2	AZ AZ	2(100)	0 2	C6	7(113)
C	2LI	2		A2	2(105)	0 2	D2	1(54)
c	211	2		A 3 A 5	3(5) 4(C2)	0 2+	C 5 C 6	12(165)
Ċ	2LI	2		B2	3(11)	0 2PB	B2	6(53)
C	2LI	2		85 85	3(16)	0 2PB	B2	8(98)
C	211	2		B9	3(22)	0 2PB	B3	8(98)
C	2LI	2		B9	4(B33)	0 2PB	B5	8(102)
Ċ	211	2		U9 J2	3(46) 4(18)	0 25	89 85	8(161)
C	2 MG	5		A 2	2(96)	0 25	C5	12(171)
C	2MG			A2	2(104) $4(C_2)$	0 2SE	85 82	12(174)
C	2MG	5		B2	3(12)	0 251	B2	12(99)
С	2MG	5		B3	3(12)	0 251	B2	12(100)
C	2 MG	5		85 85	3(21)	0 21E 0 2TI	85 A2	12(175)
С	2 MG	5		B9	3(22)	0 211	A 3	3(5)
C	2MG			B9	3(2-35)	0 211	A 5	4(C 2)
C	2MC	5		J2	4(21)	0 2TI	B2	5(178)
C	2NA	2		B2	3(12)	0 271	B 9	5(237)
C	204	4 2		83	3(16)	0 211 0 2TI	E2	5(239) 5(160)

C 2TI 2	B9	3(2-33)	0 2T10 2ZR	F2	5(158)
C 3CR 7	B2	12(92)	0 2T10 2ZR	F2	5(216)
C 3MG 2	A2	2(96)	0 2W	B2	6(51)
C 3MG 2	A2	2(104)	0 2W	B2	8(92)
C 3MG 2	A5	4(C 2)	0 2W	B3	8(92)
C 3MG 2	82	3(12)	0 2W	B5	8(102)
C 3MG 2	B5	3(16)	0 2W	B9	8(139)
C 3MG 2	B5	3(21)	0 2ZR	B2	5(179)
C 3MG 2	B9	3(22)	0 2ZR	B9	5(248)
C 3MG 2	B9	3(2-36)	O 2ZR	E 2	5(160)
C 3MG 2	B9	4(B36)	0 3	A2	7(94)
C 3MG 2	J2	4(21)	0 3	C 5	12(165)
C 4H 12N 4	A 2	7(91)	0 3P -	B 5	12(180)
C 6CR23	B2	12(93)	0 3PB 51	B 2	8(99)
CA	B2	12(87)	O 3PB SI	B3	8(99)
CA CL 2	B2	12(88)	O 3PB SI	B5	8(102)
CAF2	B2	12(88)	O 3PB SI	B9	8(164)
CA FE 20 4	B2	12(89)	0 3PB 2	B2	6(52)
CA H	C6	12(154)	0 3PB 2	B2	8(98)
CA O	B2	12(88)	0 3PB 2	B3	8(98)
CA O 35I	A2	6(83)	0 3PB 2	B5	8(102)
CA 0 351	A 3	6(83)	0 3PB 2	B9	8(162)
CA 0 35I	B2	12(90)	0 35	B5	12(172)
CA O 3TI	A2	6(83)	0 35	C 5	12(172)
CA O 3TI	A 3	6(83)	0 35	B5	12(172)
CA 2FE 20 5	B2	12(90)	0 35 2	B5	12(172)
CA 20 451	A2	6(83)	0 35E	B5	12(174)
CA 20 451	A3	6(83)	0 35E	B5	12(174)
CA 20 45I	B2	12(90)	0 3TE	B5	12(175)
CA 30 551	A2	6(83)	0 3TI 2	B2	5(176)
CA 30 551	A3	6(83)	0 3TI 2	B9	5(233)
CA 30 551	B2	12(91)	O 3W	B2	8(92)
CA 30 75I 2	B2	12(91)	0 3W	B3	8(92)
CE H 2	A2	7(93)	0 3W	85	8(102)
CL	A2	1(58)	0 3W	B9	8(141)
CL	A2	2(101)	0 4P -3	B5	12(180)
CL	A2	7(90)	0 4PB 251	B2	8(99)
CL	A 5	4(C1)	0 4PB 251	83	8(99)
CL	(5	12(167)	0 4PB 251	85	8(102)
CL	C 6	2(1-17)	0 4PB 251	B9	8(165)
CL	C6	4(A17)	0 4PB 3	B2	6(52)
CL +	C 5	12(167)	0 4PB 3	B2	8(98)
	C 6	6(237)	0 4PB 3	83	6(52)
	85	12(167)	0 4PB 3	83	8(98)
	C5	12(167)	0 4PB 3	85	8(102)
	C 6	12(130)	0 4PB 3	BO	8(163)
	Ge	10(19)	0 45	85	12(172)
	C5	12(168)	0 45E	85	12(174)
	C5	1(122)	0 451 78	82	71 67)
	6	2(1-36)	0 511 0	82	5(177)
	6	4(439)	0 511 3	BO	5(235)
	62	1(42)	0 6P 4	85	12(180)
	60	2(50)	0 7P 2-4	85	12(180)
	Δ.2	1(61)	0 85 2	85	12(172)
CL = F = 1 I 2	Δ2	1(73)	0 10P 4	85	12(180)
	A2	2(99)	P	B5	12(180)
CL E LI 2	Δ2	2(105)	р	6	2(1-15)
CL F LI 2	A 5	4(C 2)	Р	C 6	4(A15)
CL F MG	C6	2(1-52)	P +	C6	6(233)
CL F MG	(6	4(A56)	P 2	B5	12(180)
CL F MG	G2	1 (43)	P 25 3	B5	12(182)
CL F MG	69	2(51)	P 4	B5	12(180)
CL F O 3	C5	12(168)	PB	B1	8(96)
CL F 3	B5	12(168)	PB	B2	6(51)
CL F 4H	C5	12(168)	PB	B2	8(96)
CL F 5S	(5	12(174)	PB	B3	6(51)
CL H	A2	7(90)	PB	B3	8(96)
CL H	C5	12(167)	PB	B5	8(102)
CL H	C6	2(1-34)	PB	B9	8(156)
CL H	C6	4(A37)	PB+	C 6	6(259)
CL H MG O	B2	1(16)	5	85	12(171)
CL H MG O	85	1(17)	S	C 5	12(171)
CL H MG O	85	2(20)	5	6	2(1-16)
CL H O	B5	12(168)	5	6	4(A16)
CL H O 2	85	12(168)	S +	(5	12(171)
CL H O 3	85	12(168)	5 +	(6	6(235)
CL H O 4	A2	7(94)	5 -	C5	12(171)
CL H O 4	85	12(168)	5	B5	12(171)
CL H 2LI O	B2	1(21)	5 2	(5	12(171)
CL H 2LI O	85	11 221	5 3	(5	12(171)
				~ >	*C · I · I /

U.

D

D

0

1

1

CL	н	2LI	0	B5	2(20)
CL	н	4N	0	85	12(178)
CL	н	4 N	0 4	Δ1	3(53)
CL	н	4N	0 4	AI	4(28)
CL	н	4N	0 4	A2	7(94)
CL	н	4N	0 4	B5	12(179)
CL	н	5N	2	B5	12(1/8)
CL	н	5N	20 4	AZ B5	12(179)
CL	HG	5.14	20 4	B2	9(30)
CL	HG			B9	9(32)
CL	I			A2	7(94)
CL	I			B5	12(171)
CL	I v			(5)	12(1/1)
CL CL	ĸ			B2	7(70)
CL	ĸ			B2	11(91)
CL	К			B3	11(91)
CL	К			B9	11(173)
CL	K	0	2	69	10(19)
CL	ĸ	0	3	B2 B3	10(40)
CL	ĸ	õ	3	B9	9(32)
CL	к	0	3	C5	12(184)
CL	К	0	4	A1	3(53)
CL	ĸ	0	4	A1	4(28)
CL	ĸ	0	4	A2	7(10)
CL	ĸ	0	4	A9 B1	7(3)
CL	ĸ	õ	4	B2	9(26)
CL	К	0	4	В3	10(40)
CL	ĸ	0	4	B9	9(32)
CL	ĸ	0	4	B9	10(/4)
CL CL	K LT	0	4	دع ۵2	12(164)
CL.	LI			A2 A2	1(72)
CL	LI			A2	2(99)
CL	LI			A2	2(105)
CL	LI			A5	4(C 2)
CL				B1	1(20)
CL CL				B1 B1	2(30)
CL	LI			B1	5(176)
CL	LI			B2	1(20)
CL	LI			B2	2(30)
CL	LI			B2	3(63)
CL	LI			B2	5(176)
CL CL				B 3 B 5	1(27)
CL				85	2(20)
CL	LI			B9	2(2-26)
CL	LI			B9	4(B26)
CL	LI			B9	5(229)
CL				C6	1(109) 2(1-21)
CL	11			6	2(1-21) 4(A21)
CL	LI			D2	2(79)
CL	LI			61	10(13)
CL	LI			G1	10(18)
CL	LI			G2	1(42)
CL	LI			69	2(50)
CL	II			69	10(18)
CL	LI-	F	LI	F2	5(163)
CL	LI-	F	LI	F2	5(217)
CL	LI	0	4	A1	3(53)
CL	LI	0	4	A1	4(28)
CL	MG	0	4	A2	/(95)
CL	MG			A2 A2	1(70)
CL	MG			A2	2(95)
CL	MG			AZ	2(104)
CL	MG			A5	4(C 2)
CL	MG			C6	1(119)
CL CL	MG			C6	2(1-27)
CL	MG			62	1(42)
CL	MG			G9	2(50)
CL	N	0		A2	7(94)

S 4	C5	12(171)
S 5	C 5	12(171)
S 6	C5	12(171)
S 7	C5	12(171)
S 8	C5	12(171)
SE	B5	12(174)
SE 2	C 5	12(174)
SE 6	C5	12(174)
SI	B2	7(68)
SI	B2	12(98)
SI	C6	2(1-14)
SI	C6	4(A14)
SI+	C6	6(231)
SITI	F 2	5(202)
SIZR	F 2	5(203)
TE	B5	12(174)
TE 2	C5	12(175)
ТІ	A 5	4(C 1)
ΤI	B2	3(15)
T 1	B3	3(15)
ΤI	B5	3(16)
TI	B 5	3(21)
ТΙ	B9	3(22)
ΤI	B9	3(2-40)
TI	B 9	4(B40)
T I +	C6	6(245)
т IВ	F2	5(194)
TI-ZR	F2	5(204)
W	B2	6(51)
W	B2	8(91)
W	B3	6(51)
W	B3	8(91)
W	B5	8(102)
W	B9	8(137)
W +	C6	6(249)
ZR	B1	5(180)
ZR	B2	5(178)
ZR	B2	5(180)
ZR	B9	5(241)
ZR	B9	11(154)
ZR+	C6	6(251)

APPENDIX II

THERMODYNAMIC FUNCTIONS OF SOME SELECTED SUBSTANCES IN THE SOLID AND LIQUID STATES

George T. Furukawa and Martin L. Reilly

The low-temperature heat-capacity and the high-temperature relativeenthalpy data on some selected substances that should be of interest to the light-element thermodynamics program were analyzed. Sources of literature data that were compiled for the analysis have been given for most of the substances in a previous report of this series [1]. The lowtemperature heat-capacity data were examined and selected for general consistency and joined smoothly with the values of heat capacity at the high temperatures calculated from the enthalpy equations reported by the original investigators or given by Kelley [2]. Where the lower temperature limit of the data was fairly high (e.g. about 50°K), the equation selected by the original investigator was used for extrapolation to 0°K and joined smoothly with the experimental data. The thermodynamic functions were calculated from the smoothed tabular values of heat capacity by numerical integration using the 4-point Lagrangian integration coefficient method [3] in conjunction with the usual thermodynamic relations. Sources of data actually used in obtaining the thermodynamic functions are given along with each of the tables.

The 1961 atomic weights based on C-12 [4] and the energy relation: 4.1840 joules = 1 defined calorie, were used in calculating the gram molal thermodynamic functions given in the tables.

References

- "Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds", National Bureau of Standards, Washington, D. C., 20234. NBS Report 8504, 1 July 1964, p 86.
- [2] K. K. Kelley, "Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds", U. S. Bureau of Mines Bulletin 584, 1960.
- [3] "Tables of Lagrangian Interpolation Coefficients" Columbia University Press, New York, 1944.
- [4] "IUPAC Revises Atomic Weight Values", Chem. Eng. News 39, 42 (1961).

TABLE B-116

THERMODYNAMIC FUNCTIONS FOR CRYOLITE (NA3AL F6) SOLID AND LIQUID PHASES

GRAM MOLI	ECULAR WT.=	209.9413 G T DEG K	RAMS = 273.15 +	T DEG C	CAL=4	1840 ABS J					
Т	-(G ⁰ _T -H ^C ₀)/T	(H _T ⁰ -H ₀ ^C)/T	$(s_{T} - s_{0}^{C})$	(H ^T -H ^C)	cp0	-(G _T -H ₀)					
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE					
	SOLID PHASE (ALPHA)										
0.00 5.00	0.000	0.000	0.000 0.006	0•000 0•024	0.000 0.019	0•000 0•008					
10.00	0.013	0.039	0.052	0•389 1•931	0.155	0.130					
20.00	0.101	0.290	0.391	5.810	1.088	2.018					
25.00	0.190	0.527	0.717	13.170	1.893	4.743					
35.00	0.469	1.222	1.691	42.771	4.179	16.416					
40.00	0.661	1.680	2.341	67.211	5.621	26.454					
45.00	0.889	2.203	3.092	99.156 139.01	/•1/1 8•777	57,522					
55.00	1.444	3.399	4.843	186,95	10.403	79.428					
60.00	1,768	4.051	5.818	243.04	12.032	106.06					
70.00	2.494	5,422	7.916	379.54	15.253	174.58					
75.00	2.892	6.130	9.022	459.72	16.811	216.92					
80.00	3,747	7,562	10.155	547.56 642.77	19,762	264.85 318.50					
90.00	4.200	8.279	12.478	745.10	21.166	377.96					
95.00	4.666	8,993	13.660 14.850	854.38	22.538	443.30 514.58					
105.00	5,636	10.411	16.047	1093.1	25.187	591.82					
110.00	6.137	11.111	17.248	1222.2	26.456	675.05					
120.00	7,163	12.492	19.655	1499.0	28.870	859,56					
125.00	7.687	13.170	20.857	1646.2	30.016	960.84					
130.00	8.216 8.751	13.839	22.056	1957.4	32.199	1181.4					
140.00	9.290	15.150	24.440	2121.0	33.236	1300.6					
145.00	9.833 10.379	15,791	25.624 26.801	2289.7	34•232 35•187	1425.8					
155.00	10.928	17.042	27.970	2641.5	36.100	1693.8					
160.00	11.478	17.651	29.130	2824.2	36.971	1836.5					
170,00	12,584	18.836	31,421	3202.2	38,600	2139.3					
175.00	13.139	19.412	32.551	3397.1	39.365	2299.3					
180.00	14,248	20.530	33.670 34.778	3595.8 3798.1	40•101 40•809	2464.8 2635.9					
190.00	14.803	21.073	35.876	4003.8	41.492	2812.6					
195.00	15.357 15.911	21.605	36,962	4213.0	42.149	2994.7					
205.00	16.464	22.638	39.101	4640.7	43.393	3375.0					
210.00	17.015	23.139	40.154	4859.2	43.980	3573.2					
220.00	18,114	24.112	42.226	5304.6	45.090	3985.1					
225.00	18.661	24.584	43.245	5531.4	45.615	4198.8					
230.00	19,207	25.047	44,253	5760.7	46.122	441/•5 4641•3					
240.00	20,292	25.945	46.237	6226.8	47.086	4870.0					
245.00 250.00	20.831	26.381 26.809	47.212 48.178	6463.4	47.545	5103.7 5342.1					
255.00	21,904	27.228	49.132	6943.3	48.417	5585.4					
260.00	22,436	27.640	50.076	7186.4	48.832	5833.4					
270.00	23,495	28.440	51.934	7678.7	49.615	6343.5					
273.15	23.826	28.685	52.511	7835.3	49.850	6508.0					
280.00	24.020	20.828	53,752	8178.5	49.984	6605.5					
285.00	25.063	29.583	54.646	8431.0	50.676	7143.0					
290.00	25,581	29,949	55.530	8685.2	50.999	7418.4					
298.15	26.419	30.531	56.950	9102.9	51,495	7876.8					
300.00	26.608	30.661	57.269	9198.3	51.603	7982.5					

-49-

TABLE B-116 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CRYOLITE (NA3AL F6) SOLID AND LIQUID PHASES

		SOLID	AND LIQUIL	PHASES		
GRAM MOLI	ECULAR WT.=	209.9413 T DEG K	GRAMS = 273.15 +	T DEG C	CAL=4	•1840 ABS J
т	$-(G_T^0 - H_0^C) / T$	(H _T ⁰ -H ₀ ^C)/T	(s _r -s ^c ₀)	(H ¹ ₀ -H ⁰ ₀)	c _P	$-(G_{T}^{0}-H_{0}^{C})$
DEG K	CAL DEG MOLE	CAL DEG MOLE	CAL DEG MOLE	CAL MOLE	CAL DEG MOLE	CAL MOLE
		SOL	ID PHASE (A	LPHA)		
300.00	26.608	30.661	57.269	9198.3	51.603	7982.5
310.00	27.625	31.345	58.970	9717.1	52.154	8563.7
320.00	28,630	32.004	60.634	10241.	52.662	9161.7
330.00	29.625	32.637	62.262	10770.	53.135	9776.2
340.00	30.608	33.247	63.855	11304.	53.581	10407.
350.00	31.581	33.834	65.414	11842.	54.009	11053.
360.00	32,542	34.400	66,942	12384.	54,423	11715.
370.00	33,492	34.946	68.438	12930.	54.826	12392.
373.15	33,789	35,115	68,904	13103.	54.952	12608.
380.00	34.431	35.475	69,906	13480.	55,223	13084 .
390.00	35,359	35.986	71.345	14035.	55.612	13790.
400.00	36.276	36.482	72.758	14593.	55.995	14511.
425.00	38,524	37.657	76.181	16004.	56 . 930	16373.
450.00	40.707	38.753	79,461	17439.	57.833	18318.
475.00	42.831	39.781	82.611	18896.	58,711	20345.
500.00	44.896	40.749	85.644	20374.	59 . 568	22448.
550.00	48.865	42,535	91.400	23395.	61,233	26876.
600.00	52.637	4 4 •161	96.798	26497.	62.853	31582.
650.00	56.231	45.660	101.89	29679.	64,440	36 550.
700.00	59,667	47.058	106.72	32940.	66.004	41767.
750.00	62,959	48.372	111.33	36279.	67.550	47219.
800.00	66.121	49,619	115.74	39695.	69.084	52897.
845.00	68 <u></u> 865	50.692	119,56	42835.	70.454	58191.
		50	LID PHASE	(BETA)		
845.00	68.865	53.248	122.11	44995.	65.552	58191.
850.00	69.179	53.321	122.50	45323.	65.631	58803.
900.00	72.247	54.027	126.27	48624.	66.424	65023.
950.00	75,187	54.700	129.89	51965.	67,217	71427.
1000.00	78.009	55.346	133.35	55346.	68.010	78009.
1050.00	80.724	55.968	136.69	58766.	68.803	84761.
1100.00	83.342	56,569	139.91	62226.	69.596	91676.
1150.00	85.869	57.153	143.02	65726.	70.389	98750.
1200.00	88.314	57.721	146.03	69265.	71.182	105977.
1250.00	90.681	58.275	148.96	72844.	71.975	113352.
1300.00	92,978	58.817	151.79	76462.	72.768	120871.
			LIQUID PH	ASE		
1300.00	92.978	80.079	173.06	104102.	93.400	120871.
1350.00	96.009	80.572	176.58	108772.	93.400	129612.
1400.00	98,948	81.030	179.98	113442.	93.400	138527.
1450.00	101.80	81.457	183.26	118112.	93.400	147608.
1500.00	104.57	81,855	186.42	122782	93,400	156851

 ${\rm H}^{C}_{0}$ and ${\rm s}^{C}_{0}$ apply to the reference state of the solid at zero deg ${\rm k}$

King, E. G., Iow Temperature Heat Capacities and Entropies at 298.15⁰K. of Cryolite, Anhydrous Aluminum Fluoride and Sodium Fluoride J. Am. Chem. Soc. <u>79</u>, 2056-2057 (1957)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

-50-

TABLE B-117

THERMODYNAMIC FUNCTIONS FOR SODIUM ORTHOSILICATE (NA_4S1 $\rm O_4$) SOLID PHASE

GRAM MOLI	ECULAR WT.=	184.0428 (T DEG K	GRAMS = 273.15 +	CAL=4.1840 ABS J		
т	-(G ⁰ _T -H ^C ₀)/T	(H ⁰ _T -H ^C ₀)/T	$(s_{T}^{-}s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	cp0	-(G ¹ -Н ^С)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00 10.00	0.000	0.001	0.002	0.006	0.005	0.002
15.00	0.011	0.034	0.045	0.503	0.134	0.167
20.00	0.027	0.080	0.107	1.602	0.326	0.530
30.00	0.092	0.293	0.385	8.785	1.276	2.772
35.00	0.152	0.494	0.646	17.299	2.178	5.309
40.00	0.235	1.140	1.486	51.282	3 • 364 4 • 754	15.607
50.00	0.489	1.576	2.064	78.775	6.258	24.442
55.00	0.662	2.073	2.734	113.99	7.835	36.401
65.00	1.098	3.204	4.302	208.26	11.002	71.357
70.00	1.357	3.816	5.173	267.11	12,527	95.024
80.00	1.042	4.446	7.036	333.44 406.97	15.401	123.16
85.00	2.277	5.733	8.010	487.33	16.732	193.57
90.00	2.623	6.380 7.023	9.003	574.18 667.22	17.998	236.09
100.00	3.362	7.662	11.024	766.20	20.377	336.20
105.00	3.751	8.295	12.046	870.93	21,510	393.87
115.00	4.151	9.539	14.100	1096.9	23.667	524.59
120.00	4.981	10.149	15.129	1217.8	24.683	597.66
125.00	5.407 5.840	10.749	16.156 17.181	1343.7	25.652 26.573	675 • 88 759 • 22
135.00	6.279	11.921	18.200	1609.3	27.446	847.67
140.00	6,723	12.490	19.213	1748.7	28,276	941.21
150.00	7.623	13,595	21.218	2039.3	29.830	1143.4
155.00	8.077	14.131	22.208	2190.3	30.564	1252.0
160.00	8,993	14.656	23.190	2344.9	31.277	1365.5
170.00	9.453	15.674	25.127	2664.6	32.641	1607 • 1
175.00	9,915	16.168	26.083	2829.4	33.292	1735.1
185.00	10.840	17,127	27.967	3168.6	34.522	2005.4
190.00	11.303	17.593	28.896	3342.6	35.100	2147.5
200.00	12,228	18.049	29.814	3519•5 3699•1	35.653 36.183	2294.3
205.00	12,690	18,933	31.624	3881.3	36.693	2601.5
210.00	13.152 13.612	19.362 19.782	32.514	4066.0 4253.2	37.187	2761.9
220.00	14.072	20.194	34.266	4442.6	38.131	3095.8
225.00	14.530	20.598	35.128	4634.4	38.586	3269.3
235.00	15.443	21.382	36.825	4828.5	39.463	3629.1
240.00	15.897	21.763	37.660	5223.1	39.885	3815.3
245.00	16,350 16,801	22.137	38•487 39-305	5423.6	40.295	4005.7
255.00	17.250	22.865	40.114	5830.5	41.076	4398.7
260.00	17.697	23.218	40.916	6036.8	41.445	4601.3
270.00	18,587	23.906	42.493	6454.8	42.141	4807.9 5018.4
273.15	18.865	24.118	42.983	6587.8	42.349	5153.0
280.00	19.028	24.241	43.269	6879-4	42.468	5232.8
285.00	19,906	24.891	44.797	7094.1	43.078	5673.1
290.00	20.341	25.207	45.549	7310.2	43.362	5899.0
298.15	21.047	25.712	46.759	7665.4	43.796	6275.2
300.00	21,206	25.822	47.028	7746.5	43.890	6361.9

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg κ

Kelley, K. K., The Specific Heats at Low Temperatures of Crystalline Ortho-, Meta-, andDi- silicates of Sodium J. Am. Chem. Soc. <u>61</u>, 471-473 (1939)

TABLE 8-118

THERMODYNAMIC FUNCTIONS FOR BARIUM OXIDE (BA O) SOLID PHASE

GRAM MOLE	ECULAR WT.=	153.3394 G T DEG K	RAMS = 273.15 +	CAL=4.1840 ABS J		
T	$-(G_T^0 - H_0^C) / T$	(H ⁰ _T -H ^C ₀)/T	$(s_{T} - s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	C _P	$-(G_{T}^{0}-H_{0}^{C})$
DEG K	DEG MOLE	DEG MOLE	<u>SAL</u> DEG MOLE	SAL_ MOLE	DEG MOLE	SAL_ Mole
0.00 5.00	0.000	0.000	0.000	0.000		0.000
10.00	0.007	0.022	0.030	0.225	0.090	0.075
15.00	0.025	0.075	0.101	1.132	0.299	0.378
25.00	0.113	0.322	0.435	8.054	1.169	2.832
30.00	0.188	0.509	0.697	15.272	1.721	5.642
35.00	0.282	0.722	1.004	25.269	2.277	9.879
40.00	0,595	1,187	1.344	58 • 017 53 • 433	2.019	23,355
50.00	0.657	1.429	2.086	71.443	3.858	32.830
55.00	0.804	1.673	2.477	91.989	4.358	44.231
60.00 65.00	0,960	1.917 2.159	2.811	114.99	4.841	57.612
70.00	1,292	2.399	3.691	167.93	5.726	90.443
75.00	1.466	2.634	4.100	197.55	6.113	109.92
80.00	1.643	2.863	4.506	229.00	6.464	131.43
90.00	2.006	3.298	5.303	296.81	7.083	180.50
95.00	2.189	3.505	5.694	332.93	7.365	207.99
100.00	2.374	3.704	6.079	370.43	7.633	237.43
105.00	2,745	3.898 4.084	6.830	409.24	7.888 8.128	208.77
115.00	2,931	4.265	7.196	490.49	8,352	337.06
120.00	3,116	4.440	7.556	532.78	8.559	373.94
130.00	3.485	4.608	7.909 8.256	576.05	8 • 750 8 • 925	412.61
135.00	3,668	4 928	8,596	665.29	9.088	495.15
140.00	3.850	5.079	8.929	711.11	9.239	538.97
145.00	4.031	5.225	9.256	757.66	9,380	584.44
155.00	4.388	5.502	9.890	852.75	9.634	680.19
160.00	4.565	5.633	10.198	901.22	9.749	730.41
165.00	4.740	5,759	10.499	950.23	9.857	782.15
175.00	5.086	5.999	11.085	1049.8	10.052	890.09
180.00	5.257	6.113	11.370	1100.3	10.141	946.23
185.00	5,426	6,223	11.649	1151.2	10.225	1003.8
195.00	5.759	6.432	12.191	1202.5	10.382	1123.0
200.00	5,923	6.532	12.455	1306.3	10.455	1184.6
205.00	6.086	6.628	12.714	1358.8	10,524	1247.5
215.00	6.406	6.812	13.218	1411.0	10.590	1377.2
220.00	6.563	6.900	13.464	1518.1	10.714	1443.9
225.00	6.719	6.986	13.705	1571.8	10.772	1511.8
230.00	7.027	7.149	13.943	1625.8	10.828	1581.0
240.00	7.178	7.228	14.406	1734.6	10.932	1722.7
245.00	7.328	7.304	14.632	1789.4	10.981	1795.3
250.00	7.623	7.450	14.854	1844.4	11.028	1869.0
260.00	7.768	7.520	15.288	1955.2	11.118	2019.7
265.00	7.912	7.588	15.500	2010.9	11.161	2096.7
270.00	8.055	7.655	15.709	2066.8	11.202	2174.7
275.00	8.196	7.720	15.915	2122.9	11.242	2253.8
280.00	8.335	7.783	16.118	2179.2	11.282	2333.9
285.00	8.474	7.845	16.318	2235.7	11.319	2415.0
290.00	8,611	7.964	16.515	2292.4	11,392	2497.1
298.15	8.831	8.000	16.831	2385.2	11,415	2633.0
300.00	8.881	8.021	16.902	2406.3	11.427	2664.2

-52**-**

TABLE B-118 (CONT.)

THERMODYNAMIC FUNCTIONS FOR BARIUM OXIDE (BA O) SOLID PHASE

0

RAM MOLECULAR WT.= 153.3394 T DEG			RAMS = 273.15 +	T DEG C	CAL=4.1840 ABS J		
т	-(G _T ⁰ -H ₀ ^C)/Т	$(H_T^0 - H_0^C) / T$	$(s_{T} - s_{0}^{C})$	(H ⁰ _T ~H ^C ₀)	C _P	-(G _T -H ₀)	
DFG K	DEG MOLE	DEG MOLE	DEG MOLE	MÕLE	DEG MOLE	CAL MOLE	
300.00	8.881	8.021	16.902	2406.3	11.427	2664.2	
320.00	9.145	8,238	17:6/3	2636.2	11.495	2035.1	
330.00	9.660	8.340	18.000	2752.1	11.621	3187.9	
340.00	9,911	8.437	18.348	2868.6	11.680	3369.7	
350.00	10,157	8.531	18.687	2985.7	11.737	3554.8	
360.00	10,398	8.620	19.019	3103.4	11.792	3743.4	
370.00	10,636	8.707	19,343	3221.6	11.845	3935.2	
373.15	10.710	8.733	19.443	3258.9	11.861	3996.3	
380.00	10.869	8 • 790	19.659	3340.3	11.895	4130.2	
400.00	11.098	8.948	20 272	3459.5	11.944	4528.5	
400.00	11.872	9,130	21.002	3880.3	12,101	5045.6	
450.00	12,399	9,298	21.697	4184.1	12.201	5579.4	
475.00	12,905	9.453	22.359	4490.3	12.293	6130.1	
500.00	13.394	9,597	22,992	4798.7	12.378	6697.0	
550.00	14.321	9.857	24.179	5421.6	12.533	7876.7	
600.00	15.189	10.086	25.275	6051.8	12.674	9113.4	
650.00	16.005	10.290	26.295	6688.7	12.804	10403.	
700.00	16.//4	10.474	27.248	7091 3	12.926	12127	
800.00	18 194	10.795	28,990	8636 3	13,157	14555	
850.00	18,853	10.938	29.791	9296.9	13,266	16025	
900.00	19.482	11.070	30.552	9962.9	13.373	17534.	
950.00	20.084	11.194	31.278	10634.	13.479	19080.	
1000.00	20.661	11.311	31.972	11311.	13.582	20661.	
1050.00	21.216	11.421	32.637	11992.	13.684	22276.	
1100.00	21.749	11.526	33.276	12679.	13.785	23924 •	
1150.00	22,264	11.627	33.891	13371.	13.886	25603.	
1250.00	22 . 761	11 816	34 484	14068	13.985	29052	
1300.00	23.706	11,905	35.611	15476.	14,182	30818.	
1350.00	24,157	11.991	36.148	16188.	14.280	32612.	
1400.00	24.595	12.074	36.669	16904.	14.377	34433.	
1450.00	25.020	12.155	37.175	17625.	14.474	36279.	
1500.00	25.434	12.234	37.668	18351.	14,571	38150.	
1550.00	25.836	12.311	38.147	19082.	14.667	40046.	
1600.00	26.228	12.386	38.614	19818.	14.764	41965.	
1700.00	26.610	12.532	39.070	20558.	14.860	43907.	
1750.00	27.348	12.602	39.950	22054	14.700	47858	
1800.00	27.704	12.672	40.375	22809	15,147	49866	
1850.00	28,052	12.740	40.791	23569	15.242	51896.	
1900.00	28,392	12.807	41.199	24333.	15.338	53945.	
1950.00	28,726	12.873	41.599	25102.	15.433	56015.	
2000.00	29.053	12.938	41,991	25876.	15,528	58105.	

 H_0^C and s_0^C apply to the reference state of the solid at zero deg K

Anderson, C. T., The Heat Capacities at Low Temperatures of the Oxides of Strontium and Barium J. Am. Chem. Soc. 57, 429-431 (1935)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

TABLE 8-119

THERMODYNAMIC FUNCTIONS FOR CALCIUM CARBIDE (CA C2) SOLID PHASES

;	RAM MOLE	ECULAR WT.=	64.1023 GR T DEG K	AMS = 273.15 +	T DEG C	CAL=4.	1840 ABS J
	т	-(G _T -H ₀)/T	(H _T ⁰ -H ₀ ^C)/T	$(s_{T} - s_{0}^{C})$	$(H_{T}^{0} - H_{0}^{C})$	CP CP	-(G _T -H ₀)
	DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	<u>CAL</u> MOLE
			SOLI	D PHASE (AL	PHA)		
	0.00	0.000	0.000	0.000	0.000	0.000	0.000
	5.00	0.000	0.001	0.001	0.004	0.003	0.001
	10.00	0.002	0.006	0.008	0.056	0.023	0.019
	20.00	0.016	0.049	0.065	0.973	0.195	0.318
	25.00	0.031	0.095	0.126	2.377	0.379	0.784
	30.00	0.054	0.163	0.218	4.899	0.643	1.632
	35,00	0.128	0.255	0.499	8.939	0.984	3.016
	45.00	0.179	0.508	0.687	22.865	1.827	8.055
	50.00	0.240	0.663	0.903	33.138	2.285	12.019
	55.00	0.311	0.831	1.143	45.728	2.754	17.125
	60.00	0.480	1.204	1.684	78,241	3.764	23.482
	70.00	0.576	1.405	1.982	98.373	4,289	40.347
	75.00	0.680	1.615	2.295	121.13	4.811	51.034
	80.00	0.792	1.831	2.622	146.46	5.323	63.324
	85.00	0.909	2.051	2.960	174.34	5 • 825	17.276
	95.00	1,162	2.499	3.661	237.44	6.786	110.36
	100.00	1.296	2.725	4.021	272.52	7.242	129.56
	105.00	1.434	2.951	4.385	309.84	7.683	150.57
	115.00	1.723	3,399	4 • 7 5 Z	390.89	8.517	198.10
	120.00	1.872	3.621	5.493	434.47	8.910	224.63
	125.00	2.024	3.840	5.864	479.96	9.284	253.02
	130.00	2.179	4.056	6.235	527.27	9.635	283.27
	140.00	2,495	4.269	6.073	576+27	9,963	315.37
	145.00	2.656	4,682	7.338	678,94	10.558	385.09
	150.00	2.818	4.883	7.701	732.42	10.829	422.69
	155.00	2,981	5.079	8.060	787.22	11.088	462.10
	165.00	3,311	2•∠/U 5•458	8.768	842•28 900•55	11.571	546,25
	170.00	3.476	5,641	9.117	958.97	11.798	590.97
	175.00	3.642	5.820	9.462	1018.5	12.012	637.42
	180.00	3.809	5,995	9.804	1079.1	12.216	685.58
	190.00	5.975 4.142	6.332	10.474	1203.1	12+407	786,99
	195.00	4.309	6.495	10.803	1266.5	12.754	840.18
	200.00	4.475	6.653	11.128	1330.6	12.912	895.01
	205.00	4.641	6.808	11.449	1395.6	13.060	951.46
	215.00	4,973	7,105	12.078	1527.6	13.334	1069.1
	220.00	5,138	7.248	12.386	1594.6	13.461	1130.3
	225.00	5.302	7.387	12.689	1662.2	13.583	1193.0
	230.00	5,466	7.523	12.989	1730•4	13./00	1257.2
	240.00	5.792	7.785	13.577	1868.5	13.923	1390.0
	245.00	5,953	7.912	13.865	1938.4	14.029	1458.6
	250.00	6.115	8.035	14.150	2008.8	14.133	1528.6
	255,00	6.275	8.156	14.431	2079.7	14.233	1600.1
	265.00	6,593	8.389	14,982	2223.0	14.426	1747.2
	270.00	6.751	8,501	15.252	2295.4	14.518	1822.8
	273.15	6.850	8,571	15.421	2341.2	14.575	1871.1
	280.00	0,908 7,064	8.512	15.784	2368.2	14.608	1899.7
	285.00	7.219	8.825	16.044	2515.2	14.781	2057.5
	290.00	7.374	8,929	16.302	2589.3	14.864	2138.4
	295.00	7.527	9.030	16.557	2663.8	14.944	2220.5
	300.00	7.680	9.129	16.809	2738.7	14.994	22/2.9
		1.0000	- + - L J	10.0009	210001	10020	200400

-54-

TABLE B-119 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM CARBIDE (CA C2) SOLID PHASES

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	GRAM MOL	ECULAR WT.=	64.1023 GF T DEG K	RAMS = 273.15 +	CAL=4.1840 AB5 J							
DEG K CAL DEG MOLE CAL DEG MOLE CAL DEG MOLE CAL DEG MOLE CAL MOLE CAL DEG MOLE CAL MOLE 300.00 7.680 9.129 16.809 2738.7 15.023 2304.0 310.00 7.982 9.322 17.304 2889.7 15.173 2474.5 320.00 8.577 9.685 18.261 3196.0 15.453 2830.3 340.00 8.577 9.685 18.261 3196.0 15.453 2830.3 340.00 8.686 9.856 18.725 3501.2 15.582 3015.2 350.00 9.441 10.181 19.622 366.3 15.824 3987.3 370.00 9.722 10.335 20.057 3824.1 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.041 4217.8 425.00 11.207 11.096 22.303 4715.7 16.461 4717.8 425.00 12.474 11.681 24.155 5548.3	т	-(G _T ⁰ -Н ₀ ^C)/Т	(H ⁰ _T -H ^C ₀)/T	(s _T -s ^C ₀)	(H ⁰ _T -H ^C ₀)	C ⁰ P	$-(G_{T}^{0}-H_{0}^{C})$					
SOLID PHASE (ALPHA) 300.00 7.680 9.129 16.809 2738.7 15.023 2304.0 310.00 7.982 9.322 17.304 2889.7 15.113 24745 320.00 8.281 9.507 17.788 3042.2 15.317 2650.0 330.00 8.577 9.685 18.261 3196.0 15.453 2830.3 340.00 8.688 9.856 18.725 3551.2 15.582 3015.2 350.00 9.156 10.022 19.178 3507.6 15.706 2204.7 360.00 9.441 10.181 16.22 3665.3 15.824 3398.7 370.00 9.722 10.335 20.057 3824.1 15.936 3597.1 373.15 9.810 10.383 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.32 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7	DEG K	DEG MOLE	DEG MOLÊ	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE					
300.00 7.680 9.129 16.809 2738.7 15.023 2304.0 310.00 7.982 9.322 17.304 2889.7 15.173 2474;5 320.00 8.577 9.685 18.261 3196.0 15.453 2830.3 340.00 8.868 9.856 18.725 3351.2 15.582 3015.2 350.00 9.156 10.022 19.178 3507.6 15.706 2204.7 360.00 9.441 10.181 19.622 3665.3 15.824 3398.7 370.00 9.722 10.335 20.057 3824.1 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.043 379.8 390.00 10.274 10.628 20.902 4144.9 16.145 400.68 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.665 5332.6		SOLID PHASE (ALPHA)										
310.00 7.982 9.322 17.304 2889.7 15.173 2474;5 320.00 8.577 9.685 18.261 3196.0 15.453 2830.3 340.00 8.868 9.856 18.725 3351.2 15.582 3015.2 350.00 9.156 10.022 19.178 3507.6 15.706 2204.7 360.00 9.441 10.181 19.622 3665.3 15.824 3398.7 370.00 9.722 10.335 20.057 3824.1 15.936 3597.1 373.15 9.810 10.883 20.193 3874.3 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.4043 3799.8 390.00 10.274 10.628 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.665 532.6 475.00 12.474 12.415 26.656 6828.1 17.278	300.00	7.680	9,129	16.809	2738.7	15.023	2304.0					
320.00 8.281 9.507 17.788 3042.2 15.317 2650.0 330.00 8.686 9.665 18.261 3196.0 15.453 2830.3 340.00 8.868 9.856 18.725 3351.2 15.582 3015.2 350.00 9.156 10.022 19.178 3507.6 15.706 3204.7 360.00 9.411 0.181 19.622 3665.3 15.824 3398.7 370.00 9.722 10.335 20.057 3824.1 15.936 3597.1 373.15 9.810 10.383 20.193 3874.3 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.043 3799.8 390.00 10.774 10.628 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.461 4763.1 450.00 11.850 11.399 23.250 5129.7 16.461 4763.1 450.00 13.080 11.942 25.022 5971.2 16.992 6540.1 550.00 14.241 11.681 24.155 5548.3 16.832 5925.3 500.00 13.080 11.942 25.022 5971.2 16.992 6540.1 550.00 14.241 12.415 26.656 6828.1 17.278 7832.5 650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.372 13.534 30.906 9473.7 17.966 12160. 720.00 17.375 15.505 33.260 11164. 16.840 12783. 500.00 19.396 15.647 35.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 900.00 21.248 15.600 33.949 11670. 16.900 13792. 800.00 19.396 15.647 35.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 900.00 21.248 15.808 37.057 14227. 17.200 19124. 950.00 22.105 15.884 37.989 15090. 17.300 21000. 1000.0 22.922 15.957 38.879 15957. 17.400 22922. 1055.00 22.105 15.884 37.989 15090. 17.300 21000. 1000.00 22.922 15.957 38.879 15957. 17.400 22922. 155.000 23.702 16.029 39.731 16830. 17.500 24887. 1100.00 24.449 16.098 40.547 17707. 17.600 26894. 1150.00 25.166 16.165 41.332 18590. 17.700 23150. 1300.00 27.779 16.422 44.21 21.270. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 24.8477 16.484 44.861 23077. 18.200 39728. 1450.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987.	310.00	7,982	9.322	17.304	2889.7	15.173	2474:5					
330.00 8.577 9.685 18.261 3196.0 15.453 2830.3 340.00 8.668 9.856 18.725 3351.2 15.822 3015.2 350.00 9.156 10.022 19.178 3507.6 15.706 3204.7 360.00 9.441 10.181 19.622 3665.3 15.824 3398.7 373.15 9.810 10.335 20.057 3824.1 15.936 3597.1 390.00 10.0774 10.628 20.902 4144.9 16.145 4006.5 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.656 532.6 475.00 12.474 11.681 24.155 5548.3 16.832 5925.3 500.00 13.080 11.942 25.022 5971.2 16.966 6464. 700.00 17.755 13.658 31.413 983.8 18.045 12783. 750.00 18.389 15.607 33.260 11164. 16.840	320.00	8,281	9.507	17.788	3042.2	15.317	2650.0					
340.00 0.000 9.000 16.725 3331.2 15.766 3204.7 360.00 9.441 10.181 19.622 3665.3 15.824 3398.7 370.00 9.722 10.335 20.057 3824.1 15.936 3597.1 373.15 9.810 10.383 20.193 3874.3 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.043 3799.8 390.00 10.274 10.628 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.850 11.399 23.250 5129.7 16.656 5332.6 475.00 12.474 11.681 24.155 5548.3 16.832 5925.3 500.00 14.381 13.201 29.582 8580.6 17.756 106468. 700.00 17.755 15.505 33.260 11164. 16.840 12783. 750.00 18.389 15.647 35.043 12517. 17.000	330.00) 8,577	9,685	18.261	3196.0	15+453	2830.3					
350.00 9.175 10.022 19.176 3507.00 15.706 3204.7 370.00 9.722 10.335 20.057 3824.1 15.971 360.05 373.15 9.810 10.383 20.193 3874.3 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.043 3799.8 390.00 10.274 10.628 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.6461 4763.1 450.00 11.850 11.399 23.250 5129.7 16.656 5332.6 500.00 12.474 11.681 24.155 5548.3 16.892 5925.3 500.00 13.300 12.415 26.656 6828.1 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 6550.00 16.381 13.201 29.582 850.6 17.	340.00		9.000	10.170	2521+2	15.782	3015+2					
370.00 9.772 10.101 17.002 300.11 15.926 3597.1 373.15 9.810 10.333 20.193 3874.3 15.971 3660.5 380.00 10.000 10.484 20.484 3984.0 16.043 3799.8 390.00 10.274 10.622 20.902 4144.9 16.145 400.6 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.4641 4763.1 450.00 11.850 11.399 23.250 5129.7 16.656 5332.6 475.00 12.474 11.681 24.155 5548.3 16.832 5925.3 500.00 13.080 11.942 25.022 5971.2 16.992 6540.1 550.00 14.241 12.415 26.656 682.81 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.956 1266.4 720.00 17.755 15.505 33.260 11164. 16.8	350.00	J 9.156	10.022	19+178	3507.06	15 824	3204 • 7					
$\begin{array}{c} 373.15 & 9.810 \\ 373.15 & 9.810 \\ 10.383 & 20.193 \\ 390.00 \\ 10.274 \\ 10.628 \\ 20.902 \\ 4144.9 \\ 16.445 \\ 406.9 \\ 16.445 \\ 4006.8 \\ 400.00 \\ 10.545 \\ 10.767 \\ 21.312 \\ 4306.9 \\ 16.241 \\ 4217.8 \\ 425.00 \\ 11.207 \\ 11.096 \\ 22.303 \\ 4715.7 \\ 16.461 \\ 4763.1 \\ 450.00 \\ 11.850 \\ 11.399 \\ 23.250 \\ 5129.7 \\ 16.466 \\ 5332.6 \\ 11.68.2 \\ 17.278 \\ 755.0 \\ 16.381 \\ 13.201 \\ 29.582 \\ 8580.6 \\ 17.756 \\ 10648. \\ 17.756 \\ 10648. \\ 17.756 \\ 10648. \\ 17.756 \\ 10648. \\ 17.756 \\ 10648. \\ 100.0 \\ 17.755 \\ 13.658 \\ 31.413 \\ 9833.8 \\ 18.045 \\ 12784. \\ \hline \\ \hline \\ F20.00 \\ 17.755 \\ 15.505 \\ 33.260 \\ 11164. \\ 16.840 \\ 12783. \\ 17.966 \\ 12160. \\ 12784. \\ \hline \\ \hline \\ F20.00 \\ 17.755 \\ 13.658 \\ 31.413 \\ 9833.8 \\ 18.045 \\ 12784. \\ \hline \\ \hline \\ F20.00 \\ 17.756 \\ 13370. \\ 17.000 \\ 15517. \\ 150.00 \\ 22.105 \\ 15.884 \\ 37.989 \\ 15090. \\ 17.300 \\ 21000. \\ 17.300 \\ 21000. \\ 23.702 \\ 16.029 \\ 39.731 \\ 16330. \\ 17.500 \\ 24.887. \\ 1100.0 \\ 24.449 \\ 16.098 \\ 40.547 \\ 17707. \\ 17.400 \\ 22922 \\ 1050.00 \\ 23.702 \\ 16.029 \\ 39.731 \\ 16330. \\ 17.500 \\ 24887. \\ 1100.0 \\ 24.849 \\ 16.098 \\ 40.547 \\ 17707. \\ 17.600 \\ 26.894. \\ 1200.0 \\ 25.856 \\ 16.231 \\ 42.087 \\ 19477. \\ 17.800 \\ 31027. \\ 1250.0 \\ 26.520 \\ 16.296 \\ 42.816 \\ 2377. \\ 18.200 \\ 37501. \\ 1000.0 \\ 27.779 \\ 16.422 \\ 44.201 \\ 22170. \\ 18.400 \\ 44278. \\ \hline $	370.00	0.722	10.335	20.057	3924.1	15.936	3597.1					
380.00 10.000 10.484 20.484 3984.0 16.043 3792.8 390.00 10.274 10.628 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.461 4763.1 450.00 12.474 11.681 24.155 5548.3 16.832 5925.3 500.00 13.080 11.942 25.022 5971.2 16.992 6540.1 550.00 14.241 12.415 26.656 6828.1 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 6550.00 16.381 13.201 29.582 8580.6 17.766 12464. 700.00 17.755 13.658 31.413 9833.8 18.045 12784. SOLID PHASE (BETA) 720.00 17.755 15.505 3	373.14	5 9,810	10.383	20.193	3874.3	15,971	3660.5					
390.00 10.274 10.628 20.902 4144.9 16.145 4006.8 400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.461 4763.1 450.00 11.850 11.399 23.250 5129.7 16.656 5332.6 475.00 12.474 11.681 24.155 5548.3 16.832 5925.3 500.00 13.080 11.942 25.022 5971.2 16.992 6540.1 555.00 14.241 12.415 26.656 682.1 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.755 13.658 31.413 9833.8 18.045 12783. 720.00 17.755 15.505 33.260 11164. 16.840 12783. 800.00 19.396 15.647 2.643 12517. 17.0	380.00	10,000	10.484	20.484	3984.0	16.043	3799.8					
400.00 10.545 10.767 21.312 4306.9 16.241 4217.8 425.00 11.207 11.096 22.303 4715.7 16.461 4763.1 450.00 11.850 11.399 23.250 5129.7 16.656 5332.6 475.00 12.474 11.681 24.155 5548.3 16.832 5925.3 500.00 13.080 11.942 25.022 5971.2 16.992 6540.1 550.00 14.241 12.415 26.656 6828.1 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.755 13.658 31.413 983.8 18.045 12784. SOLID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. 750.00 18.389 15.560 39.949 1670. 16.900 13792. 800.00 19.396	390.00	10.274	10.628	20.902	4144.9	16.145	4006.8					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	400.00	10,545	10.767	21.312	4306.9	16.241	4217.8					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	425.00	11,207	11.096	22.303	4715.7	16.461	4763.1					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	450.00	11,850	11.399	23.250	5129.7	16.656	5332.6					
500.00 13.080 11.942 25.022 5971.2 16.992 6540.1 550.00 14.241 12.415 26.656 6828.1 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.372 13.534 30.906 9473.7 17.966 12160. 720.00 17.755 13.658 31.413 9833.8 18.045 12784. SOLID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. 750.00 18.389 15.560 33.949 11670. 16.900 13792.8 800.00 19.396 15.647 35.043 12517. 17.000 15517.8 850.00 20.347 15.729 36.076 13370. 17.300 21000.9 950.00 22.105 15.884 37.989 15990. 17.300 21000.9 100.00	475.00) 12.474	11.681	24.155	5548.3	16.832	5925.3					
550.00 14.241 12.415 26.656 6828.1 17.278 7832.5 600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.372 13.534 30.906 9473.7 17.966 12160. 720.00 17.755 13.658 31.413 9833.8 18.045 12784. SOLID PHASE (BETA) T20.00 17.755 15.505 33.260 11164. 16.840 12783. T50.00 18.389 15.560 33.949 11670. 16.900 13792. 800.00 19.396 15.647 35.043 12517. 17.000 15517. 850.00 20.347 15.70 36.076 13370. 17.100 17295. 900.00 21.248 15.808 37.057 14227. 17.400 2292. 1000.00 22.92 15.957 38.879 15957. 17.400 2292. 105.00 23.7	500.00	13.080	11.942	25.022	5971.2	16,992	6540.1					
600.00 15.339 12.831 28.170 7698.4 17.529 9203.6 650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.372 13.534 30.906 9473.7 17.966 12160. 720.00 17.755 13.658 31.413 9833.8 18.045 12784. SOLID PHASE (BETA) T20.00 17.755 15.505 33.260 11164. 16.840 12783. SOLID PHASE (BETA) T0000 19.396 15.647 25.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 900.00 21.248 15.808 37.959 15090. 17.300 21000. 1000.00 22.922 15.957 38.879 15957. 17.400 22922. 1050.00 23.702 16.029 39.731 16830. 17.500 24887. 1100.00 24.449 16.0929 39.731 16830. 17.500	550.00) 14.241	12,415	26.656	6828.1	17.278	7832.5					
650.00 16.381 13.201 29.582 8580.6 17.756 10648. 700.00 17.372 13.534 30.906 9473.7 17.966 12160. 720.00 17.755 13.658 31.413 9833.8 18.045 12784. SOLID PHASE (BETA) SOLID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. SOLID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. SOLID PHASE (BETA) 800.00 19.396 15.647 75.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 90.00 21.248 15.808 37.057 14227. 17.200 19124. 950.00 22.922 15.957 38.879 15990. 17.300 21000. 100.00 24.449 16.029 39.731 16830. 17.500 24887.	600.00	15,339	12.831	28.170	7698.4	17.529	9203.6					
700.00 17.372 13.534 30.906 9473.7 17.966 12160. 720.00 17.755 13.658 31.413 9833.8 18.045 12784. SOLID PHASE (BETA) SOLID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. 750.00 18.389 15.560 33.949 11670. 16.900 13792. 800.00 19.396 15.647 35.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 900.00 21.248 15.808 37.057 14227. 17.200 19124. 950.00 22.105 15.884 37.989 15990. 17.300 21000. 1000.00 22.922 15.957 38.879 15957. 17.600 26894. 1100.00 24.449 16.098 40.547 17707. 17.600 26894. 1150.00 25.856 16.231 42.087 19477. 17.800 31027. <td>650.00</td> <td>) 16.381</td> <td>13.201</td> <td>29.582</td> <td>8580.6</td> <td>17.756</td> <td>10648.</td>	650.00) 16.381	13.201	29.582	8580.6	17.756	10648.					
720.00 17.755 15.656 31.413 9833.6 18.045 12784. SOLID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. 750.00 18.389 15.560 33.949 11670. 16.900 13792. 800.00 19.396 15.647 35.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 900.00 21.248 15.808 37.057 14227. 17.200 19124. 950.00 22.015 15.884 37.989 15957. 17.400 22922. 1050.00 23.702 16.029 39.731 16830. 17.500 24887. 1100.00 24.449 16.098 40.547 17707. 17.600 26894. 120.00 25.856 16.231 42.087 19477. 17.800 31027. 1250.00 26.520 16.296 42.816	700.00) 17.372	13+534	30.906	9473.7	17.966	12160 •					
SOL ID PHASE (BETA) 720.00 17.755 15.505 33.260 11164. 16.840 12783. 750.00 18.389 15.560 33.949 11670. 16.900 13792. 800.00 19.396 15.647 35.043 12517. 17.000 15517. 850.00 20.347 15.729 36.076 13370. 17.100 17295. 900.00 21.248 15.808 37.057 14227. 17.200 19124. 950.00 22.105 15.884 37.989 15090. 17.300 21000. 1000.00 22.922 15.957 38.879 15957. 17.400 22922. 1050.00 23.702 16.029 39.731 16830. 17.500 24887. 1100.00 24.449 16.098 40.547 17707. 17.600 26941. 1200.00 25.856 16.231 42.087 19477. 17.800 31027. 1250.00 26.520 16.296 <td>120.00</td> <td>) 1(,())</td> <td>13.000</td> <td>51.415</td> <td>983308</td> <td>18.045</td> <td>12/84.</td>	120.00) 1(,())	13.000	51.415	983308	18.045	12/84.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			SOL	ID PHASE (BETA)							
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	720.00	17,755	15.505	33.260	11164.	16.840	12783.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750.00	18.389	15.560	33.949	11670.	16.900	13792.					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	800.00	19.396	15.647	35.043	12517.	17.000	15517.					
900.00 21.248 15.808 37.057 14227. 17.200 19124. 950.00 22.105 15.884 37.989 15090. 17.300 21000. 1000.00 22.922 15.957 38.879 15957. 17.400 22922. 1050.00 23.702 16.029 39.731 16830. 17.500 24887. 1100.00 24.449 16.098 40.547 17707. 17.600 26894. 1150.00 25.166 16.165 41.332 18590. 17.700 28941. 1200.00 25.856 16.231 42.087 19477. 17.800 31027. 1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 150.00 28.957 16.545 45.501 23990.	850.00	20.347	15.729	36.076	13370.	17.100	17295 •					
950.00 22.105 15.884 37.989 15090. 17.300 21000. 1000.00 22.922 15.957 38.879 15957. 17.400 22922. 1050.00 23.702 16.029 39.731 16830. 17.500 24887. 1100.00 24.449 16.098 40.547 17707. 17.600 26894. 1150.00 25.166 16.165 41.332 18590. 17.700 28941. 1200.00 25.856 16.231 42.087 19477. 17.800 31027. 1250.00 26.520 16.296 42.816 20370. 17.900 35308. 1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 <td< td=""><td>900.00</td><td>21.248</td><td>15.808</td><td>37.057</td><td>14227.</td><td>17.200</td><td>19124.</td></td<>	900.00	21.248	15.808	37.057	14227.	17.200	19124.					
1000.00 22.922 15.977 36.879 15957. 17.400 22.922 1050.00 23.702 16.029 39.731 16830. 17.500 24.887. 1100.00 24.449 16.098 40.547 17707. 17.600 26.894. 1150.00 25.166 16.165 41.332 18590. 17.700 28941. 1200.00 25.856 16.231 42.087 19477. 17.800 31027. 1250.00 26.520 16.296 42.816 20370. 17.900 33150. 1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 1500.00 29.518 16.605 46.123 24907. 18.400	950.00	22.105	15+884	37.989	15090.	17.300	21000.					
100.00 24.449 16.027 37.151 18830* 17.000 24.81* 1100.00 24.449 16.098 40.547 17.07 17.600 26894 1150.00 25.166 16.165 41.332 18590* 17.700 28941* 1200.00 25.856 16.231 42.087 19477* 17.800 31027* 1250.00 26.520 16.296 42.816 20370* 17.900 33150* 1300.00 27.160 16.360 43.520 21267* 18.000 35308* 1350.00 27.779 16.422 44.201 22170* 18.100 37501* 1400.00 28.377 16.484 44.861 23077* 18.200 39728* 1450.00 28.957 16.545 45.501 23990* 18.300 41987* 1500.00 29.518 16.605 46.123 24907* 18.400 44278*	1050.00	J 22.922	15,957	20.019	10907.	17.400	229220					
1150.00 24.449 160.96 40.947 17700 17700 26.941 1150.00 25.856 16.165 41.332 18590. 17.700 28941. 1200.00 25.856 16.231 42.087 19477. 17.800 31027. 1250.00 26.520 16.296 42.816 20370. 17.900 33150. 1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 1500.00 29.518 16.605 46.123 24907. 18.400 44278.	1100.00	220102	16.029	57 • 7 51 4 0 E 4 7	17707	17.500	2400/0					
1200.00 25.8160 16.231 42.087 19477. 17.800 31027. 1250.00 26.520 16.296 42.816 20370. 17.900 33150. 1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.861 23077. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.300 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 1500.00 29.518 16.605 46.123 24907. 18.400 44278.	1150.00	0 24+449 0 25-166	16.165	40+547	18500	17.000	200740					
1250.00 26.520 16.296 42.816 20370. 17.900 3150. 1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 1500.00 29.518 16.605 46.123 24907. 18.400 44278.	1200.00	25.856	16.231	42.087	19477	17.800	31027					
1300.00 27.160 16.360 43.520 21267. 18.000 35308. 1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 1500.00 29.518 16.605 46.123 24907. 18.400 44278.	1250.00	26,520	16.296	42.816	20370	17,900	33150					
1350.00 27.779 16.422 44.201 22170. 18.100 37501. 1400.00 28.377 16.484 44.861 23077. 18.200 39728. 1450.00 28.957 16.545 45.501 23990. 18.300 41987. 1500.00 29.518 16.605 46.123 24907. 18.400 44278.	1300.00	27,160	16.360	43.520	21267	18,000	35308					
1400.0028.37716.48444.86123077.18.20039728.1450.0028.95716.54545.50123990.18.30041987.1500.0029.51816.60546.12324907.18.40044278.	1350.00	27.779	16.422	44.201	22170.	18,100	37501.					
1450.0028.95716.54545.50123990.18.30041987.1500.0029.51816.60546.12324907.18.40044278.	1400.00	28.377	16.484	44.861	23077.	18,200	39728.					
1500.00 29.518 16.605 46.123 24907. 18.400 44278.	1450.00	28,957	16.545	45.501	23990.	18,300	41987.					
	1500.00	29.518	16.605	46.123	24907.	18.400	44278.					

 H_0^C and s_0^C apply to the reference state of the solid at zero deg K

Kelley, K. K., Specific Heat of Calcium Carbide at Low Temperatures Ind. Eng. Chem. <u>33</u>, No. 10, 1314-1315 (1941)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

-55-

TABLE 8-120

THERMODYNAMIC FUNCTIONS FOR TRICALCIUM ALUMINATE (3CA O .AL203) SOLID PHASE

GRAM MOLE	CULAR WT.=	270.1994 (T DEG K	GRAMS = 273.15 + T	DEG C	CAL=4,	1840 ABS J
Т	-(G ⁰ _T -H ^C ₀)/T	$T \setminus (\cdot, 0^{C} - H_{T}^{C} - H_{T}^{C}) $	$(s_{T} - s_{0}^{C})$	(H ⁰ T-H ^C)	⊂ <mark>₽</mark>	-(G ⁰ T-H ^C)
DEG K	DEG MOLE	DEGMOLE	DEG MOLE	<u>CAL</u> MOLE	DEG MOLE	<u>CAL</u> Mole
0.00 5.01 10.00 15.00 25.00 30.00 35.00 45.00 50.00 50.00 50.00 60.00 65.00 75.00 80.00 85.00 90.00 95.00 10.000 10.000	0.000 0.001 0.029 0.068 0.130 0.215 0.324 0.456 0.611 0.788 0.988 1.209 1.452 1.714 1.996 2.295 2.610 2.941 3.286 3.644 4.395	$0 \cdot 000$ $0 \cdot 003$ $0 \cdot 026$ $0 \cdot 087$ $0 \cdot 200$ $0 \cdot 368$ $0 \cdot 584$ $0 \cdot 843$ $1 \cdot 146$ $1 \cdot 493$ $1 \cdot 886$ $2 \cdot 319$ $2 \cdot 787$ $3 \cdot 286$ $3 \cdot 810$ $4 \cdot 356$ $4 \cdot 919$ $5 \cdot 496$ $6 \cdot 083$ $6 \cdot 680$ $7 \cdot 282$ $7 \cdot 889$ $8 \cdot 499$	0.000 0.016 0.125 0.116 0.268 0.497 0.799 1.167 1.602 2.104 2.673 3.306 3.996 4.738 5.525 6.352 7.214 8.106 9.024 9.965 10.926 12.994	0.000 0.016 0.259 1.302 3.998 9.191 17.506 29.497 45.827 94.279 127.53 167.24 213.59 266.73 326.71 393.52 467.14 547.51 634.55 728.20 828.35 934.93	0.000 0.013 0.104 0.343 0.765 1.332 2.010 2.808 3.747 4.825 6.021 7.289 8.600 9.946 11.311 12.680 14.045 15.401 16.744 18.071 19.383 20.6677 21.948	0.000 0.005 0.086 0.436 1.364 3.246 6.458 11.345 18.239 27.475 39.391 54.315 72.546 120.000 149.68 183.58 221.87 264.68 312.15 364.37 421.43 483.42
115.00 120.00 125.00 135.00 145.00 155.00 155.00 165.00 175.00 180.00 185.00 195.00 205.00	4.786 5.187 5.596 6.013 6.437 6.868 7.305 7.747 8.194 8.6645 9.099 9.557 10.018 10.482 10.948 11.416 11.885 12.356 12.827	9.111 9.723 10.334 10.942 11.547 12.147 12.147 12.742 13.332 13.916 14.493 15.063 15.623 15.623 16.183 16.732 17.273 17.807 18.332 18.850	13.837 14.910 15.930 16.955 17.984 19.015 20.0047 21.079 22.109 23.137 24.163 25.184 26.202 27.214 28.221 29.222 30.217 31.206	1047.8 1166.8 1291.8 1422.5 1558.8 1700.6 1847.6 1999.8 2156.9 2485.5 2656.6 2832.1 3011.8 3195.6 3383.3 3574.8 3770.0 366.8 267.8 267.8 267.8 277.0 267.8 277.0 267.8 277.0 267.8 277.0 267.8 277.0 267.8 277.0 267.8 277.0 267.8 277.0 267.8 277.0	23.192 24.402 25.576 26.714 27.816 28.886 29.924 30.933 31.912 32.860 33.779 34.666 35.524 36.352 37.153 37.928 38.679 39.407	550.39 622.40 699.50 781.71 869.06 961.56 1059.2 1162.0 1270.0 1383.1 1501.4 1624.7 1753.2 1886.7 2025.3 2168.9 2317.6 2471.1 2627.6
210,000 215,00 225,00 230,00 235,00 240,00 240,00 255,00 265,00 265,00 273,15 275,00 285,00 285,00 290,00 290,00 295,00 298,15 300,00	13.300 13.773 14.247 14.720 15.194 15.668 16.142 16.615 17.087 17.559 18.031 18.501 18.971 19.266 19.439 19.906 20.373 20.838 21.301 21.593 21.764	19.863 20.357 20.845 21.325 21.797 22.263 22.721 23.172 23.616 24.054 24.484 24.908 25.326 25.585 25.737 26.141 26.539 26.931 27.317 27.557 27.697	$32 \cdot 162$ $34 \cdot 130$ $35 \cdot 091$ $36 \cdot 045$ $36 \cdot 992$ $37 \cdot 931$ $38 \cdot 862$ $39 \cdot 787$ $40 \cdot 704$ $41 \cdot 613$ $42 \cdot 515$ $43 \cdot 409$ $44 \cdot 296$ $44 \cdot 851$ $45 \cdot 176$ $46 \cdot 047$ $46 \cdot 0912$ $47 \cdot 769$ $48 \cdot 618$ $49 \cdot 150$ $49 \cdot 460$	4171.1 4376.8 4585.8 4798.0 5013.3 5231.7 5453.0 5677.2 5904.1 6133.7 6366.0 6600.7 6838.0 6988.6 7077.6 7319.5 7563.7 7810.0 8058.5 8216.1 8309.1	40.803 41.472 42.123 42.755 43.371 43.968 44.549 45.112 45.659 46.703 47.202 47.686 47.984 48.156 48.612 49.056 49.487 49.906 50.314	20293.0 2961.2 3134.3 3312.1 3494.7 3682.0 3874.0 4070.6 4271.9 4477.6 4688.0 4902.8 5122.1 5262.5 5345.7 5573.8 5806.2 6042.9 6283.9 6427.9 6529.1

-56-

TABLE B-120 (CONT.)

THERMODYNAMIC FUNCTIONS FOR TRICALCIUM ALUMINATE (3CA 0 .AL203) SOLID PHASE

C

RAM MOL	AM MOLECULAR WT.= 270.1994 GRAMS T DEG K = 273.15 + T DEG C				CAL=4.1840 ABS -		
т	$-(G_T^0 - H_0^C) / T$	(H ⁰ _T -H ^C ₀)/T	$(s_{T} - s_{0}^{C})$	(H ⁰ T-H ^C)	C ⁰ P	-(G _T ⁰ -H ₀ ^C)	
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL_ Mole	DEG MOLE	<u>CAL</u> Mole	
300.00	21 764	27 607	49 460	8300 1	50 314	6520 1	
310.00	22.684	28.439	51,123	8816.2	51,100	7032.0	
320.00	23,598	29,159	52,757	9330.9	51,848	7551.4	
330.00	24,506	29.858	54.364	9853.0	52.559	8087.1	
340.00	25.408	30.535	55.943	10382.	53.235	8638.6	
350.00	26.302	31.193	57.496	10918.	53.875	9205.8	
360.00	27.190	31.832	59.022	11459.	54.480	9788.5	
370.00	28.071	32.452	60.522	12007.	55.048	10386.	
373.15	28.347	32.643	60.990	12181.	55.219	10578.	
380.00	28.944	33.053	61.998	12560.	55.580	10999.	
390,00	29.810	33.637	63.448	13119.	56.076	11626.	
400.00	30,009	34.204	64.873	15100	56.538	12268.	
420,00	26,104	35 0 0 4 9 26 7 0 6	71 647	10100.	57 + 257	15692	
450.00	36 872	37.953	74 925	18028	50 139	17514	
500.00	38 847	39.028	77.875	19514.	59.770	19423.	
550,00	42.659	40.964	83.623	22530	60.829	23463	
600.00	46.298	42.656	88,954	25594	61.692	27779	
650.00	49.772	44.149	93.922	28697.	62.415	32352.	
700.00	53.094	45.477	98.570	31834.	63.035	37165.	
750.00	56.272	46.666	102.94	34999.	63.580	42204.	
800.00	59.319	47.738	107.06	38191.	64.068	47455.	
850.00	62.243	48,712	110.95	41405.	64.511	52906.	
900.00	65,053	49.601	114.65	44641.	64.920	58547.	
950.00	67.757	50.418	118.17	47897.	65.301	64369.	
1000.00	70,362	51.171	121.53	51171.	65.659	70362.	
1050.00	12.876	51.869	124.74	54462	66.000	/6519•	
1100.00	75,504	52 124	12/082	5///1.	60.320	82834.	
1200.00	70 025	53.695	122 62	64434	66 04 7	092000	
1250.00	82,128	54,231	136.36	67789.	67.236	102660.	
1300.00	84,265	54.737	139.00	71158	67.523	109544	
1350.00	86,340	55.216	141.56	74541.	67.804	116559.	
1400.00	88.356	55.670	144.03	77938.	68.079	123698	
1450.00	90.317	56.103	146.42	81349.	68.350	130960.	
1500.00	92,226	56,515	148.74	84773.	68,616	138339.	
1550.00	94.086	56.910	151.00	88210.	68.879	145833.	
1600.00	95,899	57.288	153.19	91661.	69.139	153438.	
1650.00	97.667	57.651	155.32	95124.	69.396	161151.	
1700.00	99.393	58.000	157.39	98600.	69.650	168969.	
1/50.00	101.08	58.337	159.42	102089.	69.903	176889.	
1800.00	10/0/3	20.00	161.39	105591.	70.153	184909.	

 $^{\rm C}$ and $\rm s_0^{\rm C}$ apply to the reference state of the solid at zero deg K

King, E. G., Heat Canacities at Low Temperatures and Entropies at 298,16°K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. <u>59</u>, 218-219 (1955)

Bonnickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesium J. Phys. Chem. <u>59</u>, 220-221 (1955)

⁻⁵⁷⁻

TABLE 8-121

THERMODYNAMIC FUNCTIONS FOR CALCIUM ALUMINATE (12CA 0 .7AL203) SOLID PHASES (

GRAM MOLE	CULAR WT.=	1386.6812 T DEG K	GRAMS = 273.15 +	T DEG C	CAL=4	.1840 ABS J
Т	-(G ⁰ _T -H ^C ₀)/Т	(H _T ⁰ -H ₀ ^C)/T	(s _T -s ^C ₀)	(H ⁰ _T -H ^C ₀)	C _P	-(G _T -H ₀)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
		SOL	ID PHASE (A	LPHA)		
0.00	0.000	0.000	0.000	0.000	0.000 0.061	0.000
10.00	0.041	0.122	0.163	1.222	0.489	0.407
15.00	0.137	0.411	0.548	19.065	1.631	∠ • 0 ° 0 6 • 4 6 5
25.00	0.619	1.775	2.394	44.375	6.562	15.478
30.00	1.035	2.857	3.892	85.721	10.062	31.041
35.00	1.5/1	4.171	7 032	145.99	14.146	54,982
45.00	2,997	7.459	10.456	335,67	24.207	134.86
50.00	3.883	9.425	13.308	471.24	30.106	194.14
55.00	4.881	11,591	16.472	637.48	36,457	268.46
65.00	7,203	15,940	23.658	1069.5	50,103	207 • 24 468 • 20
70.00	8,519	19.108	27.627	1337.6	57,112	596.32
75.00	9.931	21.875	31.806	1640.7	64.124	744.82
80.00	11.434	24 . 135	36.168	1978.8	78.059	914.69
90.00	14.687	30.658	45.345	2759.2	84.914	1321.8
95.00	16.425	33.692	50.117	3200.7	91.666	1560.4
100.00	18.231	36.757	54.988	3675.7	98.318	1823.1
110,00	20.099	42,948	54°944 64°972	4183.7	104.87	2422.7
115.00	24.002	46.057	70.060	5296.6	117.61	2760.3
120.00	26.028	49.167	75,196	5900.1	123,75	3123.4
125.00	28.098	52.271 55.361	80.369	6533.8 7197 0	129.72	3512.3
135.00	32,356	58.435	90.790	7888.7	141.15	4368.0
140.00	34.536	61.487	96.023	8608.2	146.64	4835.0
145.00	36.747	64.516	101.26	9354.8	151.97	5328.2
155.00	38.984 41.247	70.492	111.74	10926.	162.21	6393.3
160.00	43,531	73.435	116.97	11750.	167.10	6965.0
165.00	45.836	76.345	122.18	12597.	171.84	7562.9
170,00	48,158	82.063	132.56	13468.	180.88	8186.8
180.00	52,846	84.869	137.72	15276.	185,19	9512.4
185.00	55,210	87.637	142.85	16213.	189.36	10214.
190.00	57,583	90.367	147.95	17170.	193.40	10941.
200.00	62,355	95.714	158.07	19143.	201.14	12471.
205.00	64.751	98.331	163.08	20158.	204.85	13274.
210.00	67.151	100.91	168.06	21191.	208.47	14102.
220.00	71,963	105.96	177.92	23311	215,42	15832.
225,00	74.371	108.43	182.80	24396.	218.76	16734.
230.00	76.781	110.86	187.64	25498.	222.03	17660.
235.00	79.191	113.26	192.45	26617.	225.21	18610.
245.00	84,009	117,96	201.97	28900	231,35	20582
250.00	86.415	120.26	206.67	30064.	234.31	21604.
255.00	88,819	122.52	211.34	31243.	237.20	22649.
265.00	93.617	126.95	220.57	33643.	240.03	24808.
270.00	96.010	129.12	225.13	34864.	245.49	25923.
273.15	97.516	130.48	227.99	35639.	247.16	26636.
275.00	100.78	131.20	229.66	35098.	248.12	28219.
285.00	103.16	135.45	238.62	38604	253.21	29401.
290.00	105.54	137.51	243.04	39877.	255.65	30605.
295.00	107,90	139.53	247.43	41161.	258.03	31832.
300.00	110.27	141.52	251.79	42457.	260.34	33080.

-58-

TABLE B-121 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM ALUMINATE (12CA 0 .7AL203) SOLID PHASES

G	GRAM MOLECULAR WT∙=		1386.6812 GRAMS T DEG K = 273.15 + T DEG C			CAL=4.1840 ABS J	
	т	-(G _T ⁰ -H ₀ ^C)/Т	$(H_T^0 - H_0^C) / T$	$(s_{T} - s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	C _P ⁰	$-(G_{T}^{0}-H_{0}^{C})$
	DFG K	DEG MOLE	DEG MOLE	DEG MOLE	MOLE	DEG MOLE	MOLE
			SOL	ID PHASE (A	LPHA)		
	300.00	110.27	141.52	251.79	42457.	260.34	33080.
	320.00	119.65	149.22	268.87	47751.	268.89	38287
	330.00	124.30	152.91	277.20	50459.	272.75	41018.
	340.00	128,91	156.49	285,40	53205.	276.35	43831.
	350,00	133,50	159,96	293.46	55986.	279.71	46725.
	360.00	138.05	163.33	301.38	58798.	282.84	49700.
	370.00	142,57	166.60.	309.17	61642.	285.77	52752.
	373.15	143,99	167.61	311.60	62543.	286.65	53730.
	380.00	14/.06	169.77	316.83	64513.	288,52	55883.
	390.00	151.51	175 84	324.30	70225	291011	57087 e
	425.00	166.80	182.93	349.73	77745	299.14	70889
	450.00	177,44	189.53	366.97	85287	304.10	79850
	475.00	187.86	195.68	383.53	92946.	308.56	89232.
	500.00	198.04	201.42	399.46	100711.	312.60	99021.
	550.00	217.74	211.86	429.60	116524.	319.72	119757.
	600.00	236.58	221.11	457.69	132668.	325.91	141947.
	650.00	254.61	229.39	484.00	149104.	331.44	165496.
	700.00	271.89	236.86	508 • 75	165804.	336+53	190321
	800.00	200,40	243.07	554 20	102/50+	341+20	210340.
	850.00	319.72	255.67	575.39	217318	349.98	271760.
	900.00	334.48	261.02	595.51	234920.	354.08	301036.
	950.00	348.73	266.03	614.76	252724.	358.06	331297.
	1000.00	362,50	270.72	633.22	270725.	361.93	362499.
	1050.00	375.82	275.16	650.97	288916.	365.72	394607.
	1100.00	388,71	279.36	668.07	307295.	369.44	427586.
	1200.00	401.22	202.20	004.00	325859.	373+10	461404.
	1250.00	425.16	290.82	715.98	363530.	380.30	531449
	1300.00	436.63	294.33	730.97	382634	383.84	567625
	1310.00	438.89	295.02	733.91	386476.	384.54	574949.
			SO	LID PHASE (BETA)		
	1310.00	438,89	295.02	733,91	386476	357.48	574949
	1350.00	447.79	296.93	744.72	400854.	361.41	604522.
	1400.00	458.64	299.32	757.96	419047.	366.34	642091.
	1450.00	469.18	301.72	770.90	437487.	371.26	680313.
	1500.00	479.45	304.12	783.57	456173.	376.18	719176.
	1550.00	489.46	306.52	795.98	475105.	381.10	758665.
	1600.00	499.23	308.93	808.16	494283.	386.02	798770.
	1650.00	508.77	311,34	820.11	513708.	390.95	839477
	1760.00	518,10	313.75	831.86	533378	395.87	880777.
	1800.00	536.17	318.59	854.76	573457	400 • 79	965115

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg K

King, E. G., Heat Capacities at Low Temperatures and Entropies at 298.16°K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. <u>59</u>, 218-219 (1955)

Bonnickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesium J. Phys. Chem. <u>59</u>, 220-221 (1955)

TABLE B-122

THERMODYNAMIC FUNCTIONS FOR MONOCALCIUM ALUMINATE (CA O AL_2O_3) SOLID PHASE

GRAM MOLE	ECULAR WT.=	158.0406 C	GRAMS = 273.15 +	CAL=4.1840 ABS J		
т	-(G _T ⁰ -H ₀ ^C)/T	(H ⁰ _T -H ^C ₀)/T	(s _T -s ^C ₀)	(H _T ⁰ -H ₀ ^C)	<pre>CP</pre>	-(GT-H0)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
0.00	0.000	0.000	0.000	0.000	0.000	0.000
10.00	0.004	0.012	0.017	0.124	0.050	0.041
20.00	0.033	0.098	0.131	1.964	0.387	0.659
30.00	0.108	0.311	0.420	9.336	1.151	3.253
35.00	0.168	0.467	0.634	16.334	1.660	5.869
45.00	0.330	0.863	1.193	38.832	2.879	14.869
50.00	0.433	1.098	1.532	54.919	3.561	21.667
60.00	0.679	1.626	2.306	97.588	4.983	40.756
65.00	0.821	1.913	2.733	124.33	5.713	53,343
70.00	1,136	2,516	3,652	188,72	7,161	85,209
80.00	1,308	2.829	4.137	226.31	7.873	104.68
85.00 90.00	1,489	3.146	4.636 5.146	267.44 312.06	8,577 9,272	126.60
95.00	1.875	3.791	5.665	360.14	9.955	178.08
100.00	2.077	4.116	6.193	411.60 466.38	10.626	207.72
110.00	2.500	4.768	7.268	524.45	11.938	275.01
115.00	2.719	5.093 5.419	7.813 8.361	585.75 650.24	12,580	312.71
125.00	3.171	5.743	8.913	717.84	13.830	396.33
130.00	3.402	6.066 6.387	9.468 10.024	788•52 862•18	14.436 15.028	442.28
140.00	3.875	6.706	10.581	938.77	15.607	542.52
145.00	4.116	7.022	11.138	1018.2	16.174	596.81 653.90
155.00	4,605	7.648	12.253	1185.5	17.274	713.77
160.00	4.853	7.958	12.810	1273.2	17.808	776.43
170.00	5.353	8.568	13.921	1456.5	18.841	910.09
175.00	5.606	8.868	14.475	1552.0	19.341	981.08
180.00	6,115	9.461	15.026	1750.2	20.307	1131.3
190,00	6.372	9.752	16.124	1853.0	20.775	1210.6
200.00	6.886	10.041	17.213	2065.3	21.232	1292.6
205.00	7.145	10.609	17.754	2174.8	22.121	1464.7
210.00	7,404	11.164	18.292	2400.3	22.975	1554.8 1647.6
220.00	7.923	11.437	19.360	2516.2	23.389	1743.1
225.00	8.183 8.443	11.074	19.891 20.418	2634.2	23.795 24.191	1841.2
235.00	8.704	12.239	20.942	2876.1	24.579	2045.4
240.00	8,964	12,500	21.464	2999.9	24,958	2151.4
250.00	9.485	13.013	22.498	3253.2	25.693	2371.2
255.00	9,745	13.265	23.010	3382.5 3513 7	26.049	2485.0
265.00	10.265	13.760	24.025	3646.5	26.742	2720.2
270.00	10.524	14.004	24.528	3781.1	27.079	2841.6
275.00	10,783	14.245	25.028	3917.3	27.411	2965.5
280.00	11.042	14.483	25.525	4055.2	27.737	3091.8
290.00	11,559	14,951	26.510	4335.7	28.373	3352.0
295.00	11.816	15,181	26.997	4478.4	28.681	3485.8
300.00	12.073	15.408	27.482	4569.0	28.872	3571.3

-60-

TABLE B-122 (CONT.)

THERMODYNAMIC FUNCTIONS FOR MONOCALCIUM ALUMINATE (CA O \bullet AL₂O₃) SOLID PHASE

GRAM MOLECULAR WT.=			158₊0406 G T DEG K	RAMS = 273.15 +	CAL=4.1840 A85 J		
	т	-(GT-H0)/T	(HT-H0)/T	$(s_{T} - s_{0}^{C})$	$(H_{T}^{0} - H_{0}^{C})$	C _P	-(G ₁ -H ₀)
	DEG K	DEG MOLE	DEG MOLE	L_CAL Deg mole	CAL_ Mole	DEG MOLE	CAL_ Mole
	300.00	12.073	15.408	27.482	4622.5	28.983	3622.0
	310.00	12,586	15.856	28.442	4915.3	29.566	3901.6
	320.00	13.096	16.293	29.389	5213.8	30.119	4190.8
	330.00	13.604	10.720	30 • 324	5517.6	30.0000	4489+4
	350.00	14.612	17.543	32.155	6130.0	31,576	5114.2
	360.00	14.012	17.038	33 050	6457 8	31 007	5440 3
	370.00	15.609	18,324	33.932	6779.8	32.388	5775.2
	373.15	15,764	18,443	34.207	6882.0	32,505	5882.5
	380.00	16,102	18,699	34.801	7105.5	32.752	6118.9
	390.00	16.593	19.063	35.656	7434.7	33.092	6471.2
	400.00	17.080	19.418	36,498	7767.3	33.410	6831.9
	425.00	18,283	20.263	38,546	8611.7	34,127	7770.2
	450.00	19.463	21.051	40.514	9472.8	34.751	8758.6
	475.00	20.622	21.787	42.408	10349.	35.303	9795.2
	500.00	21.757	22.475	44.232	11237.	35.796	10878.
	550.00	23,959	23.726	47.685	13049.	36.647	13177.
	600.00	26.072	24.833	50.905	14900.	37•365	15643.
	650.00	28.099	25.822	53,921	16784.	37,990	18264.
	700.00	30.046	26.711	56.757	18698.	38.547	21032.
	750.00	31,917	27.517	59.434	20638.	39.055	23937.
	800.00	33.716	28.223	61.970	22603.	39.524	26973.
	850.00	35+47U	20,929	64.519	24590.	59.964	30132.
	900.00	20 726	29,004	60.075	20399.	40.581	26709
	1000.00	40.294	30.676	70.971	20020.	40.780	40294
	1050.00	41.804	31,185	72.988	32744.	41.536	43894.
	1100.00	43.265	31.663	74.929	34830.	41.898	47592
	1150.00	44.683	32.116	76.799	36934.	42.252	51385.
	1200.00	46.059	32.546	78.605	39055.	42.599	55271.
	1250.00	47.396	32,955	80.351	41193.	42.940	59245.
	1300.00	48,696	33.345	82.041	43349.	43.277	63305.
	1350.00	49,962	33.719	83.681	45521.	43,609	67448.
	1400.00	51,194	34.078	85.273	47710.	43.938	71672.
	1450.00	52.396	34.424	86.820	49915.	44.263	75974.
	1500.00	53,569	34.758	88.326	52136.	44,586	80353.
	1550.00	54.714	35.080	89.794	54374.	44.907	84806 •
	1600.00	55.833	35.392	91.224	56627.	45.225	89332.
	1650.00	56,926	35.095	92.621	58896.	45.542	93928
	1760.00	50 044	32. 275	93.900	61181.	45.05/	98594.
	1800.00	60 060	36 554	99.519	65708	40 • 170	1099200
	1000.00	00.009	50.554	700024	00170.	40.402	1001500

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg κ

King, E. G., Heat Caracities at Low Temperatures and Entropies at 298.16 K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. <u>59</u>, 218-219 (1955)

Bonnickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesium J. Phys. Chem. <u>59</u>, 220-221 (1955)

-(1-

TABLE B-123

THERMODYNAMIC FUNCTIONS FOR CALCIUM DIALUMINATE (CA 0 .241203) SOLID PHASE

GRAM MOLECULAR WT.= 260.001B GRAMS CAL=4.1840 ABS J

		I DLO K	- 213015 +	I DEG C		
Т	-(G ⁰ _T -H ^C ₀)/T	(H ⁰ _T -H ^C ₀)/T	$(s_T - s_0^C)$	(H ⁰ _T -H ^C ₀)	C ⁰ P	$-(G_{T}^{0}-H_{0}^{C})$
DEG K	DEG MOLE	CAL DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
0.00	0.000	0.000	0.000	0.000	0.000	0•000
5.00	0.001	0.002	0.003	0.012	0.010	0.004
10.00	0.007	0.020	0.026	0.196	0.078	0.065
20.00	0.052	0.153	0.205	0.990	0.594	1.038
25.00	0.100	0.286	0.385	7.146	1.056	2.489
30.00	0.166	0.459	0.625	13.772	1.605	4.993
35.00	0,252	0.666	0.918	23.313	2.225	8.831
40.00	0.356	0.904	1.261	36.164	2.931	14.259
50,00	0.617	1.474	2.091	73.685	4.643	30.852
55.00	0.773	1.807	2.580	99.398	5.658	42.509
60.00	0.946	2.174	3.119	130.42	6.762	56.738
65.00	1.135	2.571	3.706	167.09	7.912	73.782
70.00	1,563	2.974	4.332	209000	10.225	117.19
80.00	1.799	3.898	5,696	311.80	11.378	143.92
85.00	2.049	4.371	6.421	371.57	12,527	174.20
90.00	2.313	4.856	7.169	437.06	13.668	208.16
95.00	2.589	5,350	7.938	508.23	14.798	245.92
105.00	3,173	6.356	9.529	667.36	17.022	333.21
110.00	3,481	6.866	10.346	755.21	18,117	382.89
115.00	3.797	7.378	11.176	848,51	19,199	436.69
120.00	4.122	7.893	12.015	947.18	20.266	494.67
130.00	4,499	8,925	12.004	1160.3	21 • 31 5	623,32
135.00	5,141	9.441	14.583	1274.6	23.361	694.08
140,00	5.494	9.956	15.450	1393.9	24.356	769.16
145.00	5.852	10.470,	16.322	1518.1	25.334	848.58
150.00	6,216	10.981	17.197	1647.2	26.295	932.38
160.00	6,957	11,997	18,954	1919.6	28,168	1113.1
165.00	7.334	12.501	19.835	2062.7	29.080	1210.1
170.00	7.715	13.002	20.717	2210.3	29.975	1311.5
175.00	8.099	13.500	21.598	2362.4	30.852	1417.3
185.00	8.876	14.484	23.360	2679.5	32,551	1642.1
190.00	9.269	14,970	24.239	2844.3	33.375	1761.1
195.00	9.664	15.452	25.116	3013.2	34.181	1884.5
200.00	10.061	15,930	25.992	3186.1	34.970	2012.2
205.00	10.460	16.874	26.865	3362+9	35.743	2144.4
215.00	11,264	17.339	28.603	3727.9	37.242	2421.7
220.00	11.668	17.800	29.467	3915.9	37.968	2566.9
225.00	12.073	18.256	30.328	4107.5	38.679	2716.4
230.00	12.479	18.707	31.186	4302.7	39.375	28/0.2
240.00	13,294	19,597	32.891	4703.2	40.058	3190.6
245.00	13.703	20.035	33.737	4908.5	41.387	3357.1
250.00	14.112	20.468	34.580	5117.1	42.036	3527.9
255.00	14.521	20.897	35.419	5328.9	42.678	3702.9
260.00	14.931	21.322	30.274	5762 0	43,313	3882.1
270.00	15.752	22.160	37.912	5983.2	44.566	4252.9
273,15	16.010	22.421	38.431	6124.2	44.958	4373.2
275.00	16.162	22.573	38.735	6207.6	45.187	4444.6
280.00	16.982	22.983	39.555	6435.1 6665 6	45.803	4640.3
290.00	17.393	23.790	41.184	6899.2	47.021	5044.0
295.00	17.803	24.189	41.993	7135.9	47.622	5251.9
298.15	18.061	24.439	42.500	7286.5	47.996	5385.0
300.00	18,213	24,585	42.798	7375.4	48.214	5463.9

-62-
TABLE B-123 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM DIALUMINATE (CA 0 .2AL203) SOLID PHASE

GRAM MC	DLFCULAR WT.=	260.0018 (T DEG K	GRAMS = 273.15 +	CAL=4.1840 ABS J		
т	-(GT-HO)/T	(H _T ⁰ -H ₀ ^C)/T	(ST-S0)	(H _T ⁰ -H ₀ ^C)	CP CP	-(GT-HO)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	<u>CAL</u> MOLE	DEG MOLE	CAL_ MOLE
		24 505	(2.7.0)	7075 ((0.21)	5440.0
300.0	18,213	24.585	42.798	1315.4	48.214	5463.9
310.0	19.032	20.000	44.398	1863.4	49.371	5899.9
320.0	19.849	20.133	45.983	8362+7	50+480	6321+8
3.000		20.001	47.000	00/2+0	51.533	7202 8
340.0	21,479	21.021	49.100	9393.1	52 444	7902.0
350.0	22.290	20 061	52 160	9923+0	520440	10UI + 5
270 0	0 23.005	29.001	52 459	11000	54+505	8844 7
272	15 26 158	29 060	54 127	11183	55 330	0044 0
380 0	24,100	27,907	55 128	11564	55.838	0388.7
390.0	0 25.506	31.091	56.597	12126.	56.521	9947.4
400 0	0 26 301	31.735	58.036	12604	57.157	10521.
425.0	28,272	33.273	61.545	14141.	58,567	12016.
450.0	30,215	34.712	64,927	15621	59.767	13597
475.0	32,128	36.059	68,187	17128	60.805	15261
500.0	34.010	37.319	71.330	18660	61,710	17005
550.0	37.677	39,608	77.285	21784	63.220	20722
600.0	41.212	41.628	82.839	24977.	64.434	24727.
650.0	44.616	43.422	88.038	28224.	65.439	29000.
700.0	47.893	45.026	92,919	31518.	66.294	33525.
750.0	51.050	46.469	97.519	34852.	67.036	38287.
800.0	0 54.091	47.775	101.87	38220.	67.693	43273.
850.0	0 57.024	48,965	105.99	41620.	68.284	48470.
900.0	0 59.854	50.053	109.91	45048.	68.825	53869.
950.0	62.587	51.054	113.64	48502.	69.324	59458.
1000.0	65,230	51,980	117.21	51980.	69.790	65230.
1050.0	0 67,787	52.838	120.63	55480.	70.230	71176.
1100.0	0 70.264	53.638	123.90	59002.	70.647	77290.
1150.0	72,665	54.387	127.05	62545.	71.046	83564 •
1200.0	74.994	55.089	130.08	66107.	71.430	89993.
1250.0	77.257	55.750	133.01	69687.	71.801	96571.
1300.0	0 79.456	56,374	135.83	73286.	72.161	103292.
1350.0	0 81.594	56,965	138.56	76903.	72,511	110152.
1400.0	0 83,676	51.521	141.20	80537.	72.854	11/14/.
1450.4	0 85.705	58.061	143.77	84188.	73.189	124272.
1500.0	0 87.682	58,571	146.25	87856.	73,519	131522.
1550.0	0 89.610	59.058	148.67	91540.	13.843	138896.
1600.	0 91,493	57.525 50.073	151+02	95240.	74+163	146388.
1700	0 95.531	570 973	155 53	102600	74.478	153996.
1750 (0 04 805	60.405	157 71	102080.	74+790	101/18.
1900 (0 90.085	61 221	150 93	110108	75.099	177/07
1000.0	70.004	010221	104002	110128.	72+405	1//40/0

 $\begin{array}{c} c\\ \textbf{H}_{0} \end{array}$ and $\begin{array}{c} s\\ 0 \end{array}$ apply to the reference state of the solid at zero deg k

King, E. G., Heat Capacities at Low Temperatures and Entropies at 298.16[°]K. of Crystalline Calcium and Magnesium Aluminates J. Phys. Chem. <u>59</u>, 218-219 (1955)

Bonnickson, K. R., High Temperature Heat Contents of Aluminates of Calcium and Magnesium J. Phys. Chem. <u>59</u>, 220-221 (1955)

-63-

TABLE 8-124

THERMODYNAMIC FUNCTIONS FOR TRICALCIUM DISILICATE (3CA 0 .2SI 02) SOLID PHASE

GRAM MOL	FCULAR WT.=	288.4078 C T DEG K	GRAMS = 273.15 +	CAL=4.1840 AB5 J		
Т	-(G _T ⁰ -H ₀ ^C)/T	$(H_T^0 - H_0^C) / T$	(5 _T -5 ₀)	(H _T ⁰ -H ₀ ^C)	C ⁰	-(GT-HO)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	MOLE	DEG MOLE	CAL_ MOLE
0.00	0.000	0.000	0.000	0.000	0.000	0.000
. 5.00	0.001	0.003	0.004	0.013	0.011	0.004
15.00	0.024	0.072	0.096	1.075	0.284	0.359
20.00	0.056	0.166	0.223	3.727	0.644	1.128
25.00	0.108	0.311	0.419	7.775	1.160	2.703
30,00	0.181	0.506	0.687	15.180	1.827	5.439
40,00	0.397	1.052	1.449	42.099	3.676	15.862
45.00	0.540	1.408	1.948	63.354	4.849	24.322
50.00	0.709	1.816	2.525	90.776	6.135	35.475
55.00	0,903	2.269	3.173	124.81	7.488	49.690
60.00	1,364	3,290	2.004	213.86	10.353	88,629
70,00	1.628	3.847	5.475	269.32	11.830	113.93
75.00	1.913	4.429	6.341	332.14	13.298	143.45
80.00	2,218	5.028	7.246	402.26	14.745	177.41
90.00	2,881	6.266	9,147	563,98	17.589	259.28
95.00	3.237	6.899	10.136	655.42	18.982	307.48
100.00	3.607	7.537	11.144	753.75	20.342	360.67
105.00) 3,990	8.179	12.169	858.77	21.660	418.95
115.00	4.791	9.461	14,253	1088.0	24.162	551.02
120.00	5,208	10.099	15.306	1211.8	25,356	624,91
125.00	5,633	10.732	16.365	1341.5	26.520	704.09
130.00) 6.066 \ 6.506	11.361	17,427	1477.0	27.656	788.57
140.00	6,954	12.604	19,558	1764.6	29.840	973.49
145.00	7.407	13.217	20.623	1916.4	30.883	1073.9
150.00	7,865	13.822	21.687	2073.3	31,889	1179.7
155.00) 8,795	14.421	22.149	2401.9	32,0000	1290.0
165.00	9,266	15.594	24.860	2573.1	34.690	1528.5
170.00	9.740	16.169	25.909	2748.7	35.557	1655.8
175.00	10.217	16.735	26.952	2928.6	36.397	1787.9
180.00	11,177	17.842	29.019	3300.7	37.004	2067.8
190.00	11,660	18.382	30.043	3492.6	38.774	2215.5
195.00	12,145	18,915	31.060	3688.4	39,524	2368,2
200.00) 12.630	19.439	32.070	3887.8	40.254	2526•1
210.00) 13.604	20.464	34.068	4090.9	41.653	2856.8
215.00	14.091	20.965	35.056	4507.4	42.324	3029.6
220.00) 14.579	21.458	36.036	4720.7	42.975	3207.3
225.00	$15 \cdot 066$	21.943	37.009	4937.1	43.609	3389.9
235.00) 16.041	22.891	38.932	5379.4	44.828	3769.7
240.00	16,528	23.354	39.882	5605.0	45,414	3966.7
245.00) 17.014	23.810	40.824	5833.5	45.985	4168.5
250.00) 17.500	24.259	41.759	6064.8	46.543	4374.9
260.00	18,468	25.137	43,605	6535.6	47.617	4801.8
265.00	18,951	25.566	44.517	6775.0	48.135	5022.1
270.00	19.433	25.989	45.422	7017.0	48.639	5246.9
275.00	19.736	20.252	45.988	7261 4	48.950	5370 · 9
280.00	20.393	26.815	47.208	7508.2	49.609	5710.1
285.00	20.871	27.219	48.091	7757.5	50.074	5948.4
290.00	21.348	27.617	48.965	8009.0	50.528	6191.0
295.00	21.824	28.009	49.833	8262.7	50.969	6438.0
300.00	22.298	28.395	50.693	8518.6	51.398	6689.3

 $H_{O}^{\textbf{C}}$ and $s_{O}^{\textbf{C}}$ apply to the reference state of the solid at zero deg κ

King, E. G., Low Temperature Heat Capacities and Entropies at 298.15 K. of Some Crystalline Silicates Containing Calcium J. Am. Chem. Soc. <u>79</u>, 5437-5438 (1957)

TABLE 8-125

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA 0 .51 02) SOLID PHASE (GAMMA)

SRAM MOL	ECULAR WT.=	172.2436 G T DEG K	RAMS = 273.15 + 1	T DEG C	CAL=4	.1840 ABS J
т	-(G _T ⁰ +H ₀ ^C)/T	$(H_T^0 - H_0^C) / T$	(s _T -s ₀)	(H ⁰ _T -H ^C ₀)	C _P	-(G _T O-H ₀ C)
DFG K	DEG MOLE	DEG MOLE	DEGMOLE	MOLE	DEG MOLE	MOLE
		501.1	D PHASE (GAN			

0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 5.00 0.002 0.006 0.005 0.002 0.003 0.009 0.013 0.094 0.038 0.031 15.00 0.011 0.032 0.042 0.477 0.127 0.159 0.075 20.00 0.025 0.100 1.502 0.298 0.502 25.00 0.049 0.145 0.194 3.619 0.564 1.221 30.00 0.084 0.243 0.327 7.300 0.922 2.505 0.130 0.371 12.983 1.365 4.558 35.00 0.190 0.527 40.00 0.717 21.091 1.893 7.586 45.00 32.053 0.712 0.974 2.506 11.797 0.262 50.00 0.348 0.926 1.274 46.285 3.199 17.400 3.958 55.00 0.447 1.166 1.614 64.156 24.602 0.560 85.946 4.764 60.00 1.432 1.992 33.602 65.00 1.721 5.597 0.686 2.407 111.84 44.585 2.028 2.852 141.94 6.444 70.00 0.825 57.720 0.975 2.350 7.294 75.00 3.326 176.29 73.155 80.00 1.138 2.686 3.824 214.88 8.141 91.019 85.00 257.69 8.983 111.43 1,311 3.032 4.343 90.00 1.494 3.386 4.880 304.70 355.86 9.819 134.47 95.00 1.687 3.746 5.433 10.644 160.25 100.00 1.888 4.111 5.999 411.11 11.455 188.82 2.098 105.00 4.480 6.577 470.37 12.246 220.26 110.00 4.850 7.165 533.54 13.016 254.61 2.315 2,538 5.222 291.92 115.00 600.50 7.760 13.765 2.769 5.593 120.00 8.362 671.15 14.493 332.23 125.00 3,004 5.963 8.968 745.40 15.201 375.55 130.00 3.245 6.332 9.577 823.13 15.891 421.91 6.698 135.00 3.491 3.741 10.190 904.28 16,564 471.32 988.74 7.062 10.804 17.219 523.81 579.37 3,996 11.419 17.854 145.00 7.424 1076.4 150.00 4.253 7.782 12.035 1167.3 18.470 638.00 699.72 155.00 4.514 8,136 12.650 1261.1 19.065 160.00 4.778 8.487 13.265 1357.9 19.638 764.50 5.045 8,833 165.00 13.878 1457.4 20.190 832.36 1559.7 170.00 5,313 9.175 14.488 903.28 9.512 5,584 977.24 175.00 15.096 1664.6 21.238 180.00 5.857 9.845 1772.1 1054.2 15.702 21.736 185.00 6.131 10.173 16.304 1882.0 22.220 1134.3 1217.3 190.00 6.407 10.496 16.903 1994.3 22.690 195.00 6.683 10.815 2108.9 17.498 23.147 1303.3 200.00 2225.7 23,591 11.129 18.090 1392.2 205.00 11.438 7.240 18.678 2344.8 24.024 1484.2 210.00 7.519 11.743 19.262 2465.9 24,445 1579.0 215.00 12.043 19.842 2589.2 24.854 1676.8 8.079 220.00 12.338 20.418 2714.5 25.252 1777.4 12.630 20.989 2841.7 225.00 8,360 25.639 1880.9 230.00 8.640 12.917 2970.8 26.016 21.557 1987.3 3101.8 2096.5 235.00 8.921 13.199 22.121 26.383 13.478 13.752 26.740 240.00 9.202 22.680 3234.6 2208.5 245.00 9.483 27.090 2323.3 23.235 3369.2 250.00 9.763 14,022 23.786 27.431 3505.5 2440.9 255.00 10.044 14.288 24.332 3643.5 27.763 2561.1 10.324 24.874 260.00 14,551 3783.1 28.088 2684.2 3924.4 2809.9 265.00 10.603 14.809 25.412 28.405 270.00 273.15 10.883 4067.2 15.064 25.946 28,713 2938.3 15.222 26,280 28,902 3020.5 275.00 11.161 15.315 26.476 4211.5 29.012 3069.3 15.562 280.00 11.439 27.001 4357.3 29.302 3203.0 285.00 11.717 15.805 27.522 4504.5 29.582 3339.3 290.00 11.994 16.045 28.039 4653.1 29.852 3478.2 295.00 12.270 16.281 28.552 4803.0 30.111 3619.7 298,15 12.444 16.428 28.872 4898.1 30.270 3710.2 12.546 16.514 300.00 4954.2 29.060 30.361 3763.8

-65-

TABLE 8-125 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA O .SI 02) SOLID PHASE (GAMMA)

GRAM MOLI	ECULAR WT.=	172.2436 G T DEG K	T DEG C	CAL=4.	1840 ABS .	
т	-(G ₁ ⁰ -H ₀ ^C)/T	(H ⁰ _T −H ^C ₀)/T	$(s_{T}^{-}s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	cp0	- (G ⁰ т-н ⁰
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	MOLE	DEG MOLE	MOLE
		SOLI	D PHASE (GA	(MMA)		
300.00	12,546	16.514	29.060	4954.2	30,361	3763.8
310.00	13,095	16.968	30.063	5260.2	30.832	4059.4
320.00	13.641	17.408	31.049	5570.7	31.265	4365.0
330.00	14,183	17.834	32.017	5885.4	31.667	4680.3
340.00	14,721	18.247	32.968	6203.9	32.040	5005.2
350.00	15,256	18.646	33.902	6526.1	32.389	5339.6
360.00	15,787	19.032	34.819	6851.7	32.719	5683.2
370.00	16.313	19.407	35.720	7180.4	33.031	6035.9
373.15	16.478	19.522	36.000	7284.6	33.127	6148.9
380.00	16.836	19.769	36.605	7512.2	33.329	6397.6
390.00	17.354	20.120	37.474	7847.0	33.614	6768.0
400.00	17.868	20.461	38.329	8184.5	33.888	7147.0
425.00	19.133	21.270	40.403	9039.8	34.526	8131.3
450.00	20,370	22.023	42.393	9910.4	35.112	9166.4
475.00	21,580	22.726	44.306	10795.	35.655 1	10250.
500.00	22.762	23.386	46.148	11693.	36.163	11381.
550,00	25.049	24,591	49.639	13525.	37.101	13777.
600.00	27.236	25.669	52.905	15402.	37.962	16341.
650.00	29.329	26.646	55.976	17320•	38.769	19064 •
700.00	31.337	27.540	58.877	19278.	39.536	21936.
750.00	33,266	28.364	61.630	21273.	40.274	24949.
800.00	35.121	29.131	64.252	23305.	40.989	28097.
850.00	36.909	29.849	66.758	25372.	41.687	31373.
900.00	38.634	30.526	69.160	27473.	42.371	34771.
950.00	40.302	31.167	71,469	29609.	43.046	38287.
1000.00	41,916	31.778	73.694	31778.	43.714	41916.
1050.00	43,481	32.362	75.843	33980.	44.376	45655.
1100.00	45.000	32.923	77.923	36215.	45.030	49500.
1120.00	45.596	33,141	78.737	37118.	45.289	51068-

 ${\rm H}_{\rm O}^{\,\,{\rm C}}$ and ${\rm S}_{\rm O}^{\,\,{\rm C}}$ apply to the reference state of the solid at zero deg K

King, E. G., Low Temperature Heat Capacities and Entropies at 296.15 K. of Some Crystalline Silicates Containing Calcium J. Am. Chem. Soc. <u>79</u>, 5437-5438 (1957)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

-66-

TABLE 8-126

HERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA 0 +S1 0-)

INCR	OUTNAMIC FU	JNCTIONS FO	SOLID PHAS	ES	E IZCA U .	51 02/	
GRAM MOLE	ECULAR WT.=	172.2436 G T DEG K	RAMS ≈ 273.15 +	T DEG C	CAL=4.	1840 ABS J	
т	-(GT-H0)/T	(H ⁰ _T -H ^C ₀)/T	$(s_{T} - s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	<pre>Cp</pre>	-(GT ^O -HO	
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	MOLE	DEG MOLE	MOLE	
SOLID PHASE (BETA)							
0.00 5.00 10.00 15.00 20.00 25.00 30.00	0.000 0.000 0.004 0.013 0.031 0.960 0.101	0.000 0.001 0.012 0.039 0.092 0.176 0.293	0.000 0.002 0.015 0.052 0.122 0.235 0.394	0.000 0.007 0.115 0.584 1.833 4.388 8.777	0.000 0.006 0.046 0.155 0.362 0.678 1.092	0.000 0.002 0.038 0.195 0.614 1.489 3.042	
35.00 40.00 45.00 50.00 55.00	0.157 0.228 0.313 0.413 0.528	0.442 0.623 0.835 1.077 1.347	0.599 0.850 1.148 1.490 1.876	15.464 24.908 37.562 53.839 74.105	1.598 2.195 2.880 3.643 4.474 5.263	5.506 9.110 14.087 20.663 29.060	
65.00 70.00 75.00 80.00 85.00	0.838 0.802 0.960 1.132 1.316 1.511	1.966 2.308 2.666 3.036 3.416	2 • 303 2 • 768 3 • 268 3 • 798 4 • 352 4 • 927	127.79 161.56 199.95 242.92 290.37	6.287 7.218 8.139 9.045 9.934	52.152 67.230 84.884 105.25 128.44	
90.00 95.00 100.00 105.00 110.00	1.717 1.933 2.158 2.392 2.633	3.803 4.193 4.587 4.982 5.377	5.520 6.127 6.745 7.374 8.010	342.23 398.37 458.71 523.11 591.48	10.804 11.652 12.477 13.281 14.064	154.55 183.66 215.84 251.13 289.59	
120.00 125.00 130.00 135.00 140.00	2.880 3.134 3.394 3.658 3.928 4.201	6.164 6.554 6.941 7.324 7.702	9.298 9.948 10.599 11.251 11.903	739.67 819.24 902.29 988.68 1078.3	14.025 15.557 16.266 16.948 17.605 18.237	376.11 424.22 475.59 530.22 588.10	
145.00 150.00 155.00 160.00 165.00	4.478 4.758 5.040 5.326 5.613	8.076 8.445 8.809 9.167 9.520	12.553 13.202 13.849 14.493 15.134	1171.0 1266.7 1365.3 1466.7 1570.9	18.846 19.435 20.005 20.556 21.088	649.24 713.63 781.26 852.12 926.19	
170.00 175.00 180.00 185.00 190.00 195.00	5.903 6.194 6.486 6.780 7.074 7.369	9.868 10.211 10.548 10.879 11.205 11.526	15.771 16.404 17.034 17.659 18.279 18.895	1677.6 1786.9 1898.6 2012.6 2129.0 2247.5	21.603 22.099 22.579 23.042 23.490 23.924	1003.4 1083.9 1167.5 1254.2 1344.1 1437.0	
200.00 205.00 210.00 215.00 220.00	7.665 7.961 8.258 8.554 8.851	11.841 12.151 12.456 12.756 13.050	19.506 20.112 20.713 21.310 21.901	2368.2 2490.9 2615.7 2742.4 2871.1	24.345 24.755 25.153 25.542 25.920	1533.0 1632.0 1734.1 1839.2 1947.2	

-67-

22.488

23.070

24.219 24.786

25.349 25.906 26.459

27.007 27.551 27.891

28.090

28.624 29.154

29.680

30.201

30.527

30.718

3001.6

3134.0

3268.1

3404•0 3541•5

3680.7

3821.6

3963.9

4107.8

4253.3

4345.6

4400.1

4548.4 4698.1

4849.2

5001.6

5098.3

5155.3

2058.2

2172.1 2288.9

2408.5

2531.0

2656.4

2784.5 2915.4

3049.1

3185.5

3272.8

3324.6

3466.4 3610.8 3757.9

3907.6

4003.3

4059.9

26.290

26.650

27.002 27.344 27.678

28.003

28.320

28.630

28.932

29.411

29.517

29.801 30.078 30.350 30.617 30.782

30.878

225.00

230.00

235.00

240.00

245.00

250.00

255.00

265.00

270.00

273.15

275.00 280.00 285.00

290.00

295.00

298.15

300.00

9.147

9.444 9.740 10.036

10.331

10.626

10.920

11.506

11.982

12.089 12.380 12.670 12.958

13.246

13.533

.

13.341

13.626

13,907

14.183

14.455

14.723

14.987

15.501

15.753

15.909

16.000

16.244

16.721

16.955

17.100

17.184

TABLE B-126 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM ORTHOSILICATE (2CA 0 .SI 02) SOLID PHASES

RAM MOLECULAR WT.=		172.2436 (GRAMS = 273.15 +	T DEG C	CAL=4.1840 ABS		
т	-(GT-HC)/T	$(H_{T}^{0} - H_{0}^{C}) / T$	$(s_T - s_0^C)$	(H _T ⁰ -H ₀ ^C)	c ⁰	- (G ₁ ⁰ -н ₀ ^C	
DEG K							
	DEGRADEL	DEG HOLL	DEG MOEL	ŅOEL	DEG MOEL	HOLL	
		SOL	ID PHASE (BETA)			
300.00	13.533 14.104	17.184 17.634	30•718 31•738	5155•3 5466•7	30•878 31•383	4059.9 4372.2	
320.00	14.671	18.072	32.742	5782.9	31.865	4694.6	
330.00	15.233	18.497	33.730	6103.9	32.322	5027.0	
340.00	15.792	18,910	34.701	6429.3	32.753	5369.2	
360.00	16,895	19.701	36.596	7092.4	33.540	6082.3	
370.00	17.440	20,080	37,520	7429.6	33.898	6452.9	
373.15	17,611	20.197	37.808	7536.5	34.006	6571.5	
380.00	17,981	20,448	38.429	7770.2	34.235	6832.6	
390.00	18,516	20.806	39.322	8114.2	34,553	7221.4	
400.00	20.355	21.980	40.201	0401.Z	35,544	8650.9	
450.00	21.633	22.751	44.384	10238.	36.161	9735.0	
475.00	22.883	23.472	46.355	11149.	36.721	10869.	
500. 10	24.104	24.147	48.251	12074.	37.235	12052.	
550.00	26,465	25.380	51.844	13959	38.157	14556.	
600.00	28,721	20.419	58 350	17855	38,974	20072	
700.00	32,949	28.369	61.319	19858	40.409	23065	
750.00	34,935	29.194	64.129	21895.	41.060	26201.	
800.00	36.844	29,955	66.799	23964.	41.682	29475.	
850,00	38,681	30.663	69.344	26063.	42.283	32879.	
900.00	40,453	31.947	74.110	28192.	42.863	36408.	
970.00	42.831	32.186	75.017	31220.	43.652	41546.	
		SOLID	PHASE (ALPH	A PRIME)			
970.00	42.831	32.639	75.471	31660.	42.849	41546.	
1000.00	43.830	32.951	78.001	32951.	43.180	43830.	
1100.00	47.017	33.931	80.948	37324	44.282	51719	
1150.00	48,536	34,393	82,929	39552.	44.833	55816.	
1200.00	50.009	34.839	84.848	41807.	45.384	60011.	
1250.00	51,440	35,272	86.712	44090.	45,935	64300.	
1350.00	52.632	35.093	88.524 90.289	46400.	40+480	73152.	
1400.00	55.507	36.503	92.010	51104.	47.588	77710.	
1450.00	56.795	36.895	93.689	53497.	48.139	82352.	
1500.00	58.052	37.279	95.331	55918.	48.690	87078.	
1550.00	59.280	37.656	96.936	58366.	49.241	91885.	
1650.00) 60.482	200U20 38,391	100.05	63346	49.792	101735.	
1700.00	62.809	38.751	101.56	65876.	50.894	106775.	
1710.00	63.036	38.822	101.86	66386.	51.004	107792.	
		SOL	ID PHASE (A	LPHA)			
1710.00	63.036	40.805	103.84	69776.	49.000	107792.	
1750.00	63.982	40.992	104.97	71736.	49.000	111969.	
1850-00) 65.140) 66.272	41.4214	106.35	76636	49.000	122604	
1900.00	67.380	41.624	109.00	79086	49.000	128021	
1950.00	68.463	41.813	114.18	81536.	49.000	133503.	
2000.00	69.524	41,993	111,52	83986	49.000	139048	

 ${\bf H}_0^{\bf C}$ and ${\bf S}_0^{\bf C}$ apply to the reference state of the solid at zero deg K

Todd, S. S., Low-temperature Heat Capacities and Entropies at 298.16 K. of Crystalline Calcium Orthosilicate, Zinc Orthosilicate and Tricalcium Silicate J. Am. Chem. Soc. <u>73</u>, 3277-3278 (1951)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur Mines, Bull. <u>564</u>, 232 pages (1960) TABLE 8-127

THERMODYNAMIC FUNCTIONS FOR CALCIUM FERRITE (CA 0 •FE203) SOLID AND LIQUID PHASES

GRAM MOLI	ECULAR WT.=	215.7716 (T DEG K	GRAMS = 273.15 + 1	DEG C	CAL=4.	1840 ABS J
Т	-(G ⁰ _T -H ^C ₀)/T	(H ⁰ _T -H ^C ₀)/T	$(s_{T} - s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	C ⁰ P	-(G _T -H ₀)
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
			SOLID PHASE			
0.00	0.000	0.000	0.000	0.000	0.000	0.000
10.00	0.003	0.008	0.010	0.075	0.030	0.025
15.00	0.008	0.025	0.034	0.381	0.102	0.127
20.00	0.039	0.060	0.080	2,912	0.459	0.401
30.00	0.067	0.198	0.265	5.941	0.767	2.014
35.00	0.105	0.307	0.412	10.740	1.168	3.691
40.00	0.155	0.613	0.830	27.574	2.265	6•204 9•760
50.00	0.291	0.812	1.104	40.605	2.964	14.574
55.00	0.379	1.043	1.423	57.382	3.763	20.871
60,00	0,481	1.307	1.788	/8.398 104.06	4.050 5.615	28.879
70.00	0,728	1.923	2.650	134.60	6.607	50.930
75.00	0.872	2.269	3.141	170.16	7.620	65.393
80.00	1.030	2.635	3.665	210.84	8.656 9.712	82.394
90.00	1,385	3.422	4.807	307.98	10.780	124.66
95.00	1,581	3.837	5.419	364.55	11.850	150.21
100.00	1,789	4.265	6.054	426.48	12.920	178.88
110.00	2.236	4 • 702 5 • 148	7.385	566.33	15.043	246.01
115.00	2.475	5.601	8.077	644.16	16.086	284.66
120.00	2.723	6.060	8.783	727.16	17.112	326.81
125.00	2.980	6,988	9.502	815.25 908.40	18.125	421.85
135.00	3,517	7.456	10.974	1006.6	20.152	474.86
140.00	3.797	7.928	11.725	1109.9	21.180	531.60
145.00	4.084 4.377	8.403	12.487	1218+4	22.213	592.13
155.00	4.676	9.360	14.035	1450.8	24.239	724.71
160.00	4.980	9.840	14.820	1574.4	25.194	796.85
165.00	5.290	10.319	15.609	1702.6	26.092	872.92
175.00	5,925	11.267	17.192	1971.8	27.696	1036.9
180.00	6.249	11.734	17.983	2112.0	28.407	1124.9
185.00	6,577	12,193	18.770	2255.7	29.067	1216.7
190,00	7,242	12.045	20.332	2552.5	29.082	1412.3
200.00	7.579	13.526	21.105	2705.2	30.805	1515.9
205.00	7,919	13.954	21.872	2860.5	31.318	1623.3
215.00	8,603	14.784	22.0000	3178.5	32.002	1849.6
220.00	8,947	15.186	24.133	3340.8	32.680	1968.4
225.00	9.293	15.579	24.872	3505.2	33.076	2091.0
230.00	9.040	15.963	25.603	23671.5	33.444	2217.1
240.00	10.335	16.706	27.041	4009.4	34.105	2480.4
245.00	10.683	17.064	27.747	4180.6	34.402	2617.4
250.00	11.031	17,413	28.445	4353.3	34•680 34-941	2757.8
260.00	11.728	18.087	29.815	4702.7	35,188	3049.2
265.00	12.075	18.412	30.488	4879.3	35.421	3199.9
270.00	12.422	18.729	31,152	5056.9 5169.4	35.643	3354.0
275.00	12,769	19.039	31.808	5235.7	35.854	3511.4
280.00	13.115	19.341	32.456	5415.4	36.055	3672.1
285.00	13.460	19.636	33.095	5596.2	36.246	3836.0
295.00	14.147	20.205	34.352	5960.5	36.604	4173.2
298,15	14.362	20.379	34.741	6076.0	36.711	4282.1
300.00	14.488	20.480	34.968	6143.9	36.771	4346.5

.

-69-

TABLE B-127 (CONT.)

THERMODYNAMIC FUNCTIONS FOR CALCIUM FERRITE (CA 0 .FE203) SOLID AND LIOUID PHASES

GRAM MOLE	ECULAR WT.=	215.7716	BRAMS	T 000 0	CAL=4.	1840 ABS J
Ť	-(6 ⁰ -H ^C)/T		$= 2/3 \cdot 15 + (S_{}S_{})$		0	$=(6^{0}-H^{C})$
1	-(0T-H0))1	UT '0//1	(ST 50'	V''T ''O'	Сþ	(°T ''0'
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	<u>CAL</u> MOLE	DEG MOLE	CAL_ MOLE
			SOLID PHASE	Ξ		
300.00	14.488	20.480	34.968	6143.9	36.771	4346.5
310.00	15.169	21.010	36.179	6513.2	37.084	4702.3
320+00	15+844	22.002	37+301 38.515	7260.5	37.632	5070+0
340.00	17,177	22,465	39.642	7638.1	37.875	5840.2
350.00	17.835	22.909	40.743	8018.0	38.100	6242.2
360.00	18.486	23.333	41.820	8400.1	38.311	6655.0
370.00	19.131	23.741	42.872	8784.2	38.508	7078.5
373.15	19.333	23,866	43.199	8905.6	38,568	7214.1
380.00	19.769	24.132	43.901	9170.2	38.870	7956.5
400.00	21.026	24.869	45.895	9947.5	39.036	8410.5
425.00	22,560	25.714	48,273	10928.	39.417	9587.8
450.00	24.052	26.485	50.536	11918.	39.755	10823.
475.00	25,503	27.191	52.694	12916.	40.059	12114.
500.00	26,914	27.841	54,756	13921.	40.336	13457.
550.00	29.623	29.000	58+624	15950.	40.828	10293.
650.00	34.628	30.885	65,513	20075.	41.648	22508.
700.00	36,946	31.667	68.613	22167.	42.005	25862
750.00	39,155	32,367	71.522	24275.	42.339	29366.
800.00	41.265	33.001	74.265	26400.	42.656	33012.
850.00	43.283	33.577	76.860	28541.	42.959	36790.
900.00	45.217	34.107	79.324	30696.	43.252	40695 •
1000-00	47.074	34.590	83.910	35050.	43.814	48861
1050.00	50.581	35.474	86.055	37247.	44.086	53110.
1100.00	52,241	35.871	88.112	39458.	44.354	57465.
1150.00	53.843	36.246	90.089	41682.	44,617	61920.
1200.00	55.394	36.600	91.993	43920.	44.878	66472.
1250.00	56.895	36.936	93.831	46170.	45.136	71118.
1300.00	50.761	37.562	92.324	50709-	45.591	80678.
1400.00	61.133	37.856	98.988	52998	45.897	85586
1450.00	62.466	38.137	100.60	55299.	46.148	90576.
1500.00	63,764	38.409	102.17	57613.	46.397	95645.
1510.00	64.019	38.462	192,48	58077。	46.447	96669.
			LIOUID PHA	SE		
1510.00	64.019	55.594	119.61	83947.	54,900	96669.
1550.00	65.472	55.576	121.05	86143.	54.900	101482.
1600.00	67.236	55.555	122.79	88888.	54.900	107578.
1650.00	68,946	55.535	124+48	91633.	54.900	113760.
1750.00	70.003	55,400	120.12	943780	54.900	126371.
1800.00	73.775	55.482	129.26	99868	54.900	132796
1850.00	75,295	55,466	130.76	102613.	54,900	139296
1900.00	76.774	55.452	132.23	105358.	54.900	145871.
1950.00	78.215	55.437	133.65	108103.	54.900	152518.
2000.00	79.618	55.424	135.04	110848.	54.900	159236.

 $\overset{\textbf{C}}{\overset{}_{0}}$ and $\overset{\textbf{C}}{\overset{}_{0}}$ apply to the reference state of the solid at zero deg K

King, E. G., Heat Capacities at Low Temperatures and Entropies at 298.16°K. of Calcium and Magnesium Ferrites J. Am. Chem. Soc. <u>76</u>, 5849-5850 (1954)

.

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

TABLE B-128

THERMOOYNAMIC FUNCTIONS FOR DICALCIUM FERRITE (2CA O •FE203) SOLIO ANO LIQUID PHASES

CAL=4.	1840	ABS	J
			-

GRAM MOLECULAR WT.= 271.8510 GRAMS

		T OEG K	= 273.15 +	T OEG C		
т	-(G _T ⁰ -H ₀ ^C)/T	(H ⁰ _T -H ^C ₀)/T	$(s_{T}^{-}s_{0}^{C})$	(H ⁰ -H ^C)	C ⁰ P	-(GT-HC)
OEG K	CAL DEG MOLE	DEG MOLE	OEG MOLE	MOLE	OEG MOLE	CAL MOLE
			SOLID PHASE			
0.000 5.000 10.000 25.000 35.000 45.000 55.000 60.000 55.000 60.000 75.000 80.000 80.000 80.000 80.000 100.000 105.000 105.000 110.000 115.000 125.000 125.000 125.000 125.000 135.000 140.000 145.000 155.000 125.000 125.000 125.000 125.000 125.000 250.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 215.000 225.000 225.000 235.000 245.000 255.000 245.000 255.	0.000 0.001 0.007 0.024 0.057 0.110 0.184 0.279 0.396 0.535 0.695 0.695 1.074 1.292 1.529 1	0.000 0.022 0.073 0.169 0.508 0.744 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.025 2.088 2.0892 2.957 3.432 2.957 3.432 2.954 1.0099 1.651 12.740 13.277 13.808 14.332 14.851 15.866 16.362 17.334 17.808 16.852 17.334 17.8063 12.0068 20.4981 20.4491 20.	SOLID PHASE 0.000 0.004 0.029 0.097 0.226 0.425 0.691 1.023 1.420 1.878 2.394 2.962 3.581 4.249 4.961 5.711 6.494 7.307 8.145 9.005 9.884 10.778 11.687 12.606 13.535 14.472 15.415 16.361 17.310 18.261 19.213 20.164 21.113 20.164 23.947 24.883 25.815 26.742 27.662 28.577 29.485 30.387 31.282 32.170 33.050 33.924 34.790 35.649 35.649 37.345 38.182 39.012	$0 \cdot 000$ $0 \cdot 014$ $0 \cdot 218$ $1 \cdot 095$ $3 \cdot 381$ $7 \cdot 867$ $26 \cdot 054$ $40 \cdot 956$ $60 \cdot 462$ $84 \cdot 961$ $114 \cdot 81$ $150 \cdot 44$ $192 \cdot 19$ $240 \cdot 24$ $294 \cdot 64$ $355 \cdot 38$ $422 \cdot 45$ $495 \cdot 80$ $575 \cdot 35$ $661 \cdot 02$ $752 \cdot 72$ $850 \cdot 36$ $953 \cdot 83$ $1063 \cdot 0$ $1177 \cdot 8$ $1297 \cdot 9$ $14237 \cdot 9$ $1689 \cdot 4$ $1897 \cdot 9$ $1224 \cdot 3$ $2278 \cdot 3$ $2278 \cdot 2$ $3108 \cdot 9$ $3286 \cdot 1$ $3650 \cdot 7$ $3650 \cdot 7$	0.000 0.011 0.087 0.289 0.652 1.164 4.390 5.422 6.533 7.728 10.245 11.514 12.782 14.045 15.293 16.524 17.739 16.524 17.739 20.115 21.271 22.398 23.496 24.563 25.600 26.608 27.589 28.541 29.466 30.361 31.226 32.863 33.637 34.382 35.099 35.791 35.799	0.000 0.004 0.072 0.366 1.148 2.746 5.508 9.767 15.850 24.072 34.730 48.098 64.435 83.991 107.00 133.66 164.16 198.65 237.27 280.14 327.36 379.01 435.16 495.89 561.24 631.26 705.97 785.41 869.59 958.52 1052.2 1150.6 1253.8 1340.6 1972.0 2108.1 2248.7 2393.8 2393.8 2567.77 2856.3 3019.4 3358.6 3358.6 3358.6 3534.7 3715.1 3899.7 4088.5 428.5
260.00 265.00 270.00	16.467 16.900 17.333	22.544 22.934 23.317	39.012 39.834 40.650	5861.6 6077.5 6295.6	42.960 43.409 43.851	4281.5 4478.6 4679.8
273.15 275.00 280.00	17.605 17.764 18.194	23,556 23,694 24,066	41.160 41.458 42.260	6434.2 6516.0 6738.5	44.125 44.284 44.710	4808.7 4885.1 5094.4
285.00 290.00 295.00	18.623 19.052 19.478	24.432 24.792 25.147	43.055 43.844 44.626	6963.1 7189.8 7418.5	45.129 45.540 45.943	5307•7 5524•9 5746•1
298.15	19.747 19.904	25.368 25.497	45.115 45.401	7563.6 7649.2	46.193	5887.5 5971.2

TABLE B-128 (CONT.)

THERMODYNAMIC FUNCTIONS FOR DICALCIUM FERRITE (2CA 0 •FE203) SOLID AND LIQUID PHASES

GRAM MOLE	ECULAR WT.=	271.8510 (T DEG K	GRAMS = 273.15 +	T DEG C	CAL=4	.1840 ABS J
Ť	$-(G_T^0 - H_0^C) / T$	(H ⁰ _T -H ^C ₀)/T	$(s_{\tau} - s_{0}^{C})$	$(H_{T}^{0} - H_{0}^{C})$	<pre>CP</pre>	$-(G_{T}^{0}-H_{0}^{C})$
DEG K	DEG MOLE	DEG MOLE	DEG MOLE	CAL_ MOLE	DEG MOLE	CAL MOLE
			SOLID PHAS	E		
300.00	19,904	25.497	45.401	7649.2	46.338	5971.2
310.00	20.751	26.182	46.933	8116.4	47.099	6432.9
320.00	21.593	26.847	48.440	8591.0	47.818	6909.8
330.00	22.429	27.493	49.922	9072.6	48.490	7401.6
340.00	23,259	28.120	51.379	9560.6	49.114	7908.1
350.00	24.083	28.728	52.811	10055.	49.689	8429.1
360.00	24.901	29.317	54.218	10554.	50.218	8964 62
370.00	25.712	29.889	55.601	11059.	50.704	9513.4
373.15	25.966	30.065	56.031	11219.	50.849	9689.2
380.00	26.516	30.443	56,959	11568.	51,151	10076.
390.00	27.314	30.979	58.293	12082.	51.562	10652.
400.00	28,105	31,498	59.603	12599.	51.942	11242.
425.00	30.052	32.120	62.018	13909.	52.116	12772.
450.00	22 814	34 908	69 722	102070	5/ 045	14300.
47J.00	35 430	35 970	71 500	17040	54.570	17915
550.00	39.133	37.617	76.750	20689-	55.381	21523.
600.00	42.472	39,124	81,596	23474.	55.997	25483.
650.00	45,657	40.441	86.098	26287	56.475	29677
700.00	48,697	41.600	90.298	29120	56.855	34088
750.00	51,603	42,628	94.231	31971.	57,162	38702.
800.00	54.384	43.544	97.928	34836.	57.413	43507.
850.00	57,049	44.367	101.42	37712.	57.623	48492.
900.00	59.606	45.108	104.71	40597.	57.798	53645.
950.00	62.063	45.780	107.84	43491.	57.946	58960.
1000.00	64.427	46.391	110.82	46391.	58.073	64427.
1050.00	66,704	46.950	113.65	49298.	58.181	70040.
1100.00	68,901	47.463	116.36	52209.	58.275	75791.
1150.00	/1.021	47.935	118.96	55125.	58.358	81674.
1200.00	73.070	48.371	121.44	58045.	58.429	87684.
1250.00	75.053	48.774	123.83	60968.	58.493	93816.
1300.00	70.975	49.149	120.12	63894	28.249 58.500	100066.
1,00,00	100022	47.490	128 . 22	60754	20.099 E0 444	100427.
1400.00	80.0041 92 305	49.024 50 120	122 52	77697	28+044 59 69/	112097.
1500.00	84 099	50.415	134.51	75622	58.721	126148
1550.00	85 756	50.683	136.44	78559	58.754	1320222
1600.00	87,370	50.936	138,31	81498	58,784	139791
1650.00	88,941	51,174	140.11	84438	58,811	146752
1700.00	90.472	51,399	141.87	87379.	58.836	153802
1750.00	91.965	51.612	143.58	90321.	58.859	160938.
			LIQUID PHA	SE		
1750.00	91,965	72.246	164.21	126431	74.200	160938
1800.00	94,001	72.301	166.30	130141	74.200	169201
1850.00	95.982	72.352	168,33	133851	74.200	177567
1900.00	97.913	72.401	170.31	137561	74.200	186034 .
1950.00	99.794	72.447	172.24	141271.	74.200	194598.
2000.00	101.63	72.491	174.12	144981.	74.200	203257.

 $H_0^{\mbox{C}}$ and $s_0^{\mbox{C}}$ apply to the reference state of the solid at zero deg K

King, E. G., Heat Capacities at Low Temperatures and Entropies at 298.16°K, of Calcium and Magnesium Ferrites J. Am. Chem. Soc. <u>76</u>, 5849-5850 (1954)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

THERMODYNAMIC FUNCTIONS FOR COBALT FERRITE (CO 0 ${\rm \cdot FE_2O_3}{\rm)}$ SOLID PHASE

FRAM MOL	ECULAR WT.=	234.6248 (T DEG K	SRAMS ≈ 273•15 +	T DEG C	CAL=4	•1840 ABS J
т	-(G ⁰ -Н ^С)/Т	(H ⁰ _T -H ^C ₀)/T	$(s_{T}^{-}s_{0}^{C})$	(H ⁰ T-H ^C)	C ⁰	-(G _T -H ₀)
DEG K	DEGMOLE	D5G MOL5	DEG MOLE	CAL MOLE	DEG MOLE	<u>CAL</u> MOLE
0.00	0.000	0.000	0.000	0.000	0.000	0.000
10.00	0.003	0.010	0.013	0.098	0.039	0.033
20.00	0.011	0.078	0.104	1.557	0.308	0.522
25.00	0.051	0.150	0.200	3.740	0.581	1.266
35.00	0.134	0.381	0.515	13.327	1.390	4.706
40.00	0,195	0.539	0.734	21,553	1.914	7.812
50.00	0.356	0.937	1.293	46.825	3.191	17.814
55.00	0.457	1.175	1.631	64.611	3.935	25.108
60.00	0,570	1.438 1.724	2.008 2.420	86.271	4 • 739 5 • 590	34.190 45.245
70.00	0.835	2.032	2.867	142.23	6.473	58.449
75.00	0.986	2.358 2.699	3.344 3.848	176.82 215.90	7.367 8.263	73.964
85.00	1.323	3.052	4.376	259.45	9.158	112.48
90.00	1.508	3.416	4.925	307.48	10.055	135.72
100.00	1.907	4.171	6.077	417.06	11.863	190.68
105.00	2.120	4.558	6.678	478.64	12.769	222.56
115.00	2,570	5.351	7.920	615.33	14.564	295.51
120.00	2.806	5,753 6,158	8,559	690.36 769.78	15.447	336.70
130.00	3,298	6,566	9.864	853,53	17.180	428.79
135.00	3,554	6.975	10,528	941.56	18.028	479.77
145.00	4.081	7.794	11.875	1130.2	19,680	591.77
150.00	4.352	8.204	12.556	1230.6	20.477	652.84
160.00	4,908	9.019	13.927	1443.1	22.007	785.25
165.00	5.192	9.424	14.615	1554.9	22.740	856.60
175.00	5.769	10,225	15,995	1789.4	23.454 24.149	1009.7
180.00	6.063	10.622	16.685	1911.9	24.828	1091.4
190.00) 6.359) 6.658	11.015	17.374	2037•7 2166•8	25.491	1265.1
195.00	6.960	11.790	18.750	2299.1	26.771	1357.1
200.00) 7.568	12,551	20.119	2572.9	27.990	1551.5
210.00	7.875	12.925	20.800	2714.3	28.575	1653.8
220.00) 8.184) 8.493	13.662	22.156	2858.6	29.142	1868.6
225.00	8.805	14.025	22.829	3155.5	30.227	1981.0
230.00	$9_{\bullet}117$ $9_{\bullet}430$	14.382	23.499 24.166	3308.0 3462.9	30.744	2096.8
240.00	9.744	15.085	24.829	3620.4	31.729	2338.5
245.00	10.058	15.429	25.488 26.143	3/80.2 3942.3	32,198	2464.3 2593.4
255.00	10.689	16.105	26.794	4106.7	33.098	2725.7
260.00) 11.005	16•436 16•762	27.441	427303	33•530 33•951	2861.3
270.00	11.637	17.084	28.722	4612.8	34.364	3142.1
273.15	11.837	17.285	29.122	4721.4	34.619	3233.2
280.00	12,270	17.716	29.986	4960.5	35,163	3435.7
285.00	12.587	18.025	30.612	5137.2	35.550	3587.2
295.00	13,219	18,632	31.851	5496.5	36.300	3899.5
298.15	13,418	18.823	32.241	5611.2	36.529	4000.4
500.00	120234	100230	JC 0 404	2010.9	30.003	4060.5

 H_{O}^{C} and s_{O}^{C} apply to the reference state of the solid at zero deg κ

King, E. G., Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals J. Phys. Chem. <u>60</u>, 410-412 (1956) TABLE B-130

THERMODYNAMIC FUNCTIONS FOR IRON COBALTITE (FE 0 •C0203) SOLID PHASE

GRAM MOLE	ECULAR WT.=	237.7110 G	iRAMS ≈ 273.15 + T	DEG C	CAL=4.	1840 ABS J
Т	-(G ⁰ -Н ^С)/Т	(H ⁰ _T -H ^C ₀)/T	(s _T -s ^C ₀)	(H ⁰ _T -H ^C ₀)	⊂p	-(G ⁰ т-Н ⁰)
DEG K						CAL
	DEG MOLL	DEG MOEL	DEG MOLL	HOLL	DEG MOLL	HOLL
0.00	0.000	0.000	0.000	0.000	0.000	0 • 000
10.00	0.003	0.010	0.014	0.105	0.042	0.035
15.00	0.012	0.035	0.047	0.530	0.141	0.177
20.00	0.028	0.083	0.111	1.668	0.330	0.558
30.00	0.092	0.267	0.359	8.002	0.993	2.771
35.00	0.143	0.401	0.544	14.033	1.429	5.013
40.00	0.207	0.560	0.766	22.382	1.919	8 • 274
45.00	0,283	0.740	1.023	33.307	2.459	12.734
55.00	0.471	1.161	1.632	63.870	3.687	25.908
60.00	0.582	1.400	1.983	84.022	4.382	34.933
65.00	0.704	1.658	2.363	107.79	5.131	45.784
70.00	0.981	2.226	3.207	135.39	5.916	73.543
80.00	1,134	2.532	3.666	202.55	7,518	90.715
85.00	1.297	2.849	4.146	242.15	8.321	110.24
90.00	1.650	3.1/5	4.644	285.11	9.947	132.20
100.00	1.838	3.853	5.691	385.25	10.771	183.83
105.00	2.035	4.202	6.236	441.18	11,599	213.64
110.00	2,238	4.557	6.795	501.25	12.428	246.21
120.00	2.666	5.282	7.947	633.79	14.079	319.89
125.00	2.889	5.650	8.539	706.24	14.899	361.10
130.00	3,118	6.021	9.139	782.78	15,715	405.29
140.00	3,591	6.771	10.363	948.00	17.324	502.77
145.00	3.835	7.149	10.984	1036.6	18.111	556.14
150.00	4.084	7,527	11.611	1129.1	18,882	612.63
160.00	4,594	8,284	12.878	1325.4	20.369	735.06
165.00	4.855	8.661	13.516	1429.0	21.084	801.04
170.00	5.119	9.037	14.156	1536.2	21.780	870.22
180,00	2,380 5,657	9.410	14.191	1760.8	22.460	1018.2
185.00	5.930	10.151	16.081	1878.0	23.769	1097.0
190.00	6.205	10.518	16.723	1998.5	24.400	1179.0
195.00	6.483	10.882	17,365	2122.0	25.013 25.610	1264.2
205.00	7.045	11.600	18.646	2378.1	26.190	1444.3
210.00	7.329	11,954	19.283	2510.4	26.752	1539.1
215,00	7.901	12.652	19,919	2645.6	27.823	1637.1
225.00	8,190	12.994	21,184	2923.8	28.333	1842.6
230.00	8.479	13.333	21.812	3066.7	28.826	1950.1
235.00	8,769	13.668	22.437	3212.0	29.303	2060.8
245.00	9.352	14.325	23.677	3509.6	30.212	2291.3
250.00	9.645	14.647	24.292	3661.8	30.646	2411.3
255.00	9,938	14,965	24.903	3816.1	31.066	2534.3
265.00	10.526	15,588	26.114	4130.8	31.871	2789.4
270.00	10.820	15.893	26.713	4291.1	32.256	2921.4
273.15	11.006	16.083	27.089	4393.1	32,494	3006.2
280.00	11.409	16.491	27.900	4617.4	32.997	3194.5
285.00	11.703	16.783	28.487	4783.3	33.352	3335.5
290.00	11.998	17.072	29.070	4950.9	33.699	3479.4
295.00	12.292	17.357	29.649	5227.8	34.036	3626.2
300.00	12,586	17.637	30.224	5291.2	34.364	3775.8

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg κ

King, E. G., Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals J. Fhys. Chem. <u>60</u>, 410-412 (1956)

.

TABLE 8-131

THERMODYNAMIC FUNCTIONS FOR NICKEL FERRITE (NI O \cdot FE203) SOLID PHASE

GRAM MOL	ECULAR WT.=	234.4016 (T DEG K	GRAMS = 273.15 +	T DEG C	CAL=4.	1840 ABS J
т	-(G ⁰ _T -H ^C ₀)/T	$(H_T^0 - H_0^C) / T$	$(s_{T} - s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	C ⁰ P	-(GT-HO)
DEG K	CAL DEG-MOIE	CAL DEG MOLE	CAL DEG MOCE	CAL Mõte	CAL DEG MOLE	CAL Mote
0.00 5.00 10.00 15.00	0.000 0.000 0.003 0.010	0.000 0.001 0.008 0.029	0.000 0.001 0.011 0.038	0.000 0.005 0.085 0.431	0.000 0.004 0.034 0.115	0•000 0•002 0•028 0•143 0•143
25.00 25.00 30.00 35.00 40.00 45.00 50.00	0.044 0.076 0.119 0.173 0.239 0.317	0 • 132 0 • 223 0 • 340 0 • 482 0 • 647 0 • 835	0.176 0.299 0.459 0.655 0.886 1.152	3.305 6.690 11.901 19.270 29.110 41.738	0.518 0.848 1.247 1.711 2.236 2.826	1.40 2.281 4.160 6.930 10.769 15.849
55,00 60.00 65.00 70.00 75.00 80.00	0.406 0.507 0.619 0.743 0.877 1.023	1.045 1.278 1.532 1.808 2.102 2.412	1 • 451 1 • 785 2 • 151 2 • 551 2 • 980 3 • 435	57.475 76.656 99.602 126.56 157.68 192.98	3 • 480 4 • 202 4 • 984 5 • 805 6 • 641 7 • 480	22.343 30.418 40.245 51.987 65.802 81.828
85.00 90.00 95.00 100.00 105.00 110.00	1.179 1.344 1.520 1.703 1.896 2.096	2.735 3.069 3.412 3.764 4.124 4.489	3.914 4.413 4.932 5.468 6.019 6.585	232.47 276.19 324.16 376.42 432.98 493.83	8.320 9.167 10.022 10.882 11.742 12.597	100.19 121.00 144.35 170.35 199.06 230.56
115.00 120.00 125.00 130.00 135.00 140.00	2.504 2.519 2.740 2.968 3.201 3.440 3.684	4.000 5.236 5.614 5.996 6.380 6.765 7.151	7.164 7.754 8.354 8.963 9.581 10.205	558.94 628.27 701.79 779.46 861.23 947.06	13.445 14.286 15.120 15.946 16.762 17.566 18.355	302 • 22 342 • 49 385 • 78 432 • 14 481 • 60 534 • 19
150.00 155.00 160.00 165.00 170.00 175.00	3 • 933 4 • 186 4 • 444 4 • 706 4 • 971 5 • 239	7 • 537 7 • 923 8 • 308 8 • 692 9 • 074 9 • 454	10.637 11.470 12.110 12.753 13.398 14.045 14.693	1130.6 1228.1 1329.3 1434.2 1542.6 1654.4	19.127 19.879 20.612 21.326 22.020 22.697	589.96 648.90 711.06 776.43 845.04 916.88
180.00 185.00 190.00 195.00 200.00 205.00	5.511 5.785 6.062 6.342 6.624 6.907	9.831 10.205 10.576 10.944 11.309 11.670	15.342 15.990 16.639 17.286 17.933 18.578	1769.5 1887.9 2009.5 2134.1 2261.8 2392.4	23.356 23.999 24.625 25.235 25.830 26.409	991.97 1070.3 1151.9 1236.7 1324.7 1416.0
210.00 215.00 220.00 225.00 230.00 235.00	7.193 7.480 7.769 8.059 8.350 8.642 8.935	12.028 12.382 12.732 13.078 13.421 13.759	19.221 19.862 20.501 21.137 21.771 22.401	2525.9 2662.1 2801.1 2942.6 3086.8 3233.4 3232.5	26.973 27.522 28.056 28.575 29.079 29.570	1510.5 1608.2 1709.1 1813.2 1920.5 2030.9 2144.5
240.00 245.00 250.00 255.00 260.00 265.00 270.00	0 935 9 229 9 524 9 819 10 115 10 411	14.094 14.424 14.750 15.073 15.391 15.705 16.015	23.653 24.274 24.892 25.506 26.116 26.723	3533.9 3687.6 3843.5 4001.6 4161.9 4324.2	30.513 30.966 31.407 31.838 32.258 32.668	2144 • 5 2261 • 2 2381 • 0 2503 • 9 2629 • 9 2759 • 0 2891 • 1
273.15 275.00 280.00 285.00 290.00 295.00	10.895 11.004 11.301 11.598 11.895 12.192	16.209 16.322 16.624 16.923 17.218 17.509	27.104 27.326 27.926 28.521 29.113 29.701	4427.5 4488.5 4654.9 4823.1 4993.3 5165.2	32,921 33,068 33,460 33,842 34,215 34,580	2975.9 3026.2 3164.4 3305.5 3449.6 3596.6
298.15 300.00	12.379 12.489	17.691 17.797	30.070 30.285	5274.5 5339.0	34.805 34.935	3690.7 3746.6

.

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg κ

King, E. G., Heat Capacities at Low Temperatures and Entropies of Five Spinel Minerals J. Phys. Chem. <u>60</u>, 410-412 (1956)

TABLE 8-132

THERMODYNAMIC FUNCTIONS FOR FERRIC OXIDE (FE203) SOLID PHASES

GRAM MOLE	CULAR WT•≈	159.6922 G T DEG K	RAMS = 273.15 +	T DEG C	CAL=4.	1840 ABS -
T	-(G ⁰ _T -H ^C ₀)/T	(H ⁰ _T -H ^C ₀)/T	(s ₁ -s ^C ₀)	(H ⁰ _T ~H ^C ₀)	C ⁰ P	-(G ⁰ -H ⁰)
DEG K	CAL DEG MOLE	CAL DEGTMOLE	CAL DEG MOLE	CAL Mõte	CAL DEG-MOLE	CAL Molê
		SOLI	D PHASE (AL	PHA)		
0.00	0.000	0.000	0.000	0.000	0.000	0.000
5.00	0.000	0.000	0.000	0.001	0.001	0.000
10.00	0.001	0.002	0.003	0.022	0.012	0.006
15.00	0.003	0.010	0.013	0.157	0.043	0.042
20.00	0.015	0.047	0.062	1.168	0.199	0.143
30.00	0.027	0.086	0.113	2.585	0.380	0.800
35.00	0.044	0.145	0.189	5.073	0.628	1.544
40.00	0.068	0.225	0.293	8.995	0.952	2.73
45.00	0.101	0.326	0.427	14.692	1.335	4.520
55.00	0.190	0.589	0.780	32.422	2.238	10.468
60.00	0.248	0.748	0.996	44.871	2.748	14.890
65.00	0.315	0.922	1.237	59,961	3.293	20.470
70.00	0.390	1.112	1.502	77.851	3.867	27.309
/5.00	0.4/4	1.316	1.789	98.666	4.461	35.529
85.00	0,665	1.757	2.422	149.36	5.683	56.52
90.00	0.772	1.992	2,764	179.32	6.301	69.484
95.00	0.886	2.235	3.122	212.36	6.916	84.19
100.00	1.007	2 485	3.492	248.47	/•530 8 144	100 • 72
110.00	1.268	2.999	4.267	329.92	8.760	139.48
115.00	1.407	3.263	4.670	375.26	9.374	161.82
120.00	1.552	3.530	5.082	423.65	9.984	186.20
125.00	1.701	3.801	5.502	475.08	10.586	212.65
135.00	2.014	4.347	5.362	586.86	11.763	241.23
140.00	2.178	4.622	6.800	647.11	12.337	304.85
145.00	2.345	4.898	7.243	710.21	12.901	339.96
150.00	2,515	5,174	7,689	776.11	13,456	377.28
160.00	2.867	5,725	8,592	916.07	12,529	410.82
165.00	3.047	6.000	9.047	990.02	15.045	502.78
170.00	3.230	6.274	9.504	1066.5	15.546	549.16
175.00	3.416	6.545	9.962	1145.5	16.034	597.82
180.00	3.795	7.084	10.879	1220+0	16.972	702.02
190.00	3,987	7.350	11.337	1396.5	17.424	757.56
195.00	4,181	7.614	11.796	1484.7	17.866	815.39
200.00	4.378	7.876	12.253	1575.2	18,296	875.51
205.00	4.075	8.102	12./10	1762 3	18./16	937.92
215.00	4,975	8.646	13.621	1858.9	19,523	1069.6
220.00	5,176	8.898	14.074	1957.5	19.911	1138.8
225.00	5.379	9.147	14.526	2058.0	20.290	1210.3
230.00	5,583	9.393	14.976	2160•4	20.658	1284.1
240.00	5,993	9.877	15.870	2370.6	21.369	1438.3
245.00	6,199	10.115	16.314	2478.3	21.710	1518.8
250.00	6.406	10.351	16.756	2587.6	22.042	1601.5
255.00	6.613	10.583	17.196	2698.7	22.366	1686.3
265.00	7,029	11.039	18.068	2925.5	22.080	1862.7
270.00	7.237	11.263	18,501	3041.1	23.282	1954.1
273.15	7.369	11.403	18.772	3114.8	23.465	2012.8
275.00	7.446	11.485	18,931	3158.3	23.571	2047.7
280.00	7.864	11.918	19.358	3396-8	23.852	2143.4
290.00	8.073	12.131	20.204	3518.1	24.393	2341.2
295.00	8,282	12.341	20.624	3640.7	24.653	2443.3
298.15	8.414	12.472	20.886	3718.6	24.815	2508.7
300.00	8.491	12.549	21.040	3764.6	24.908	2547.4

-76-

TABLE B-132 (CONT.)

THERMODYNAMIC FUNCTIONS FOR FERRIC OXIDE (FE $_2$ O $_3$) SOLID PHASES

GRAM MO	DLECULAR WT•≖	159.6922 (T DEG K	GRAMS = 273.15 +	CAL=4.1840 ABS		
т	-(G ⁰ _T -H ^C ₀)/T	(H ⁰ _T -H ^C ₀)/T	$(s_{T} - s_{0}^{C})$	(H ⁰ _T -H ^C ₀)	c _P ⁰	-(G ⁰ т-Н ^С)
DEG *	DEG MOLE	DEG MOLE	DEG MOLE	CAL MOLE	DEG MOLE	CAL MOLE
		SOL	ID PHASE (AL	_PHA)		
300.0	0 8,491	12,549	21.040	3764.6	24.908	2547.4
310.0	0 8.910	12.955	21.865	4016.1	25.398	2762.0
320.0	9.327	13,351	22.679	4272.5	25.863	2984.7
330.0	9.744	13.737	23.481	4533.3	26.301	3215.5
340.0	10.160	14.113	24.273	4798.4	26.710	3454.3
350.0	00 10 . 574	14,478	25.052	5067.4	27.093	3700.9
360.0	10.987	14.834	25.821	5340.2	27.450	3955.3
370.0	0 11.398	15.179	26.577	5616.4	27.787	4217.3
313.	11.527	15.286	26.813	5704.1	27.890	4301+4
300.0	12 215	15, 215	21.323	2892.8 6179 5	28.108 29.414	4400.08
400.0	12 620	16,160	28.780	6464.1	28,714	5047.9
425.0	0 13.623	16,920	30,543	7191.0	29.429	5789.6
450.0	14.610	17.634	32,244	7935.3	30.106	6574.5
475.0	15,582	18.307	33.889	8696.0	30.751	7401.3
500.0	16.537	18,945	35.482	9472.6	31.370	8268.6
550.0	18.399	20.129	38,528	11071.	32,546	10120.
600.0	20.198	21,210	41.408	12726.	33,664	12119.
650.0	21.935	22.210	44.145	14436.	34.740	14258.
700.0	23,616	23.142	46.758	16200.	35.785	16531.
750.0	25.243	24.019	49.262	18015.	36.808	18932.
800.0	20.820	24.800	51.007	19880.	37.815	21426.
900.0	0 20.930	26.401	56.238	23761	30.702	26854
950.0	0 31.284	27,131	58,416	25775.	40.766	29720
		501	ID DHASE /	PCTA)		
		300	TO PHASE II			
950.0	31.284	27.300	58.584	25935.	36.000	29720.
1000.0	32.696	27.735	60.431	27735.	36.000	32696.
1050.0	0 34.059	28.129	62.187	29535.	36.000	35762.
		SOL	ID PHASE (G	AMMA)		
1050.0	34.059	28.129	62.187	29535.	33,558	35762.
1100.0	0 35.373	28.377	63.751	31215.	33.646	38911.
1150.0	36.640	28.608	65.248	32900.	33.734	42136.
1200.0	0 37.862	28.824	66.686	34588.	33.822	45434.
1250.0	39.043	29.025	68.068	36282.	33,910	48803.
1300.0	00 40.185	29.215	69.400	37979.	33.998	52240.
1400 (41.291	29.394	70.685	3968Z .	34.086	55743
1400.0	0 42.363	29,000	73 127	41288	34 262	59308 ·
1500-0	0 44,413	29.876	74.290	44814	34.350	66620.
1550-0	45.395	30.022	75.417	46534	34.438	70363
1600.0	46.351	30.161	76.512	48258.	34.526	74161.

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg κ

Gronvold, F., and Westrum, Jr., E. F., Alpha-Ferric Oxide: Low Temperature Heat Capacity and Thermodynamic Functions J. Am. Chem. Soc. <u>81</u>, 1780-1783 (1959)

Kelley, K. K., Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds U. S. Bur. Mines, Bull. <u>584</u>, 232 pages (1960)

THERMODYNAMIC FUNCTIONS FOR POTASSIUM CHROMATE (K2CR 04) SOLID PHASE GRAM MOLECULAR WT.= 194.1976 GRAMS

CAL=4.1840 ABS J

		T DEG K	= 273.15 +	T DEG C		
т	$-(G_{T}^{0}-H_{0}^{C})/T$	(H ⁰ _T -H ^C ₀)/T	(s _T -s ₀ ^C)	(H ⁰ _T -H ^C ₀)	cp0	-(G ⁰ T-H ⁰)
DEG K	DEG MOLE	CAL DEG MOLE	DEG MOLE	CAL MOLE	CAL DEG MOLE	MOLE
0.00 5.00	0.000	0.000	0.000	0•000 0•063	0.000 0.050	0.000 0.021
10.00	0.033	0.099	0.133	0.992	0.389	0.334
15.00	0.109	0.311	0.420 0.886	4.666	1.143	1.637
25.00	0.430	1.074	1.504	26.853	3.437	10.753
30.00	0.670	1.587	2.257	47.620	4.899	20.103
35.00	0.958	2+174 2+818	3 • 1 32 4 • 1 0 8	76.098 112.73	6.507 8.142	33•530 51•594
45.00	1.661	3.498	5.159	157.41	9.721	74.735
50.00	2.065	4.196	6.262	209.81	11.224	103.27
55.00	∠ • 498 2 • 955	4.900 5.598	7 • 398 8 • 553	269.50	12.032	137.41
65.00	3.430	6.281	9.711	408.25	15.019	222.94
70.00	3.920	6.941	10.861	485.88	16.018	274.37
80.00	4.929	8.190	13.119	655.17	17.802	394.32
85.00	5.443	8.779	14.223	746.23	18.614	462.68
90.00	5,961	9.347	15.308	841.23	19.377	536.52
100.00	7.002	10.421	17.423	1042.1	20.766	700.24
105.00	7.523	10.929	18.452	1147.5	21.407	789.94
110.00	8,043	11.419	19.462	1256.1	22.022	884.73
120.00	9.077	12.352	21.429	1482.2	23.183	1089.2
125,00	9,590	12,796	22,386	1599.5	23.728	1198.8
130.00	10.101	13.227	23.327	1719.4	24,247	1313.1
140.00	11,111	14.049	25.160	1966.8	25,209	1555.6
145.00	11.611	14.441	26.052	2094.0	25.657	1683.6
150.00	12.107	14.822	26,929	2223.3	26.086	1816.1
160.00	13.087	15.552	28.639	2488.3	26.898	2094.0
165.00	13.571	15.902	29.473	2623.8	27.285	2239.2
170.00	14,051 14,527	16.242	30.293	2761.1	27.660	2388 • 7
180.00	14,998	16.897	31,895	3041.4	28,382	2699.6
185.00	15,465	17.212	32.677	3184.2	28.730	2861.1
190.00	15,928	17.820	33.448	3328.7	29.069	3026.4
200.00	16,842	18,113	34,956	3622.7	29.723	3368.5
205.00	17.293	18.400	35.693	3772.1	30.038	3545.1
210.00	17.740	18.081	36+421 37+139	3923.0 4075.5	30.345	3/25+4
220.00	18,622	19,225	37.846	4229.5	30.933	4096.7
225.00	19.057	19.488	38.545	4384.8	31.215	4287.7
230.00	19.488	19,999	39.914	4541.6	31.489	4482•2
240.00	20.339	20.246	40.585	4859.1	32.016	4881.3
245.00	20.759	20.489	41.248	5019.8	32.272	5085.9
255.00	21,175	20.961	42,549	5345.1	32,771	5504.9
260,00	21,997	21.191	43.188	5509.5	33.017	5719.2
265.00	22.403	21.416	43.819	5675.2	33.262	5936.7
273.15	23.057	21.038	44.832	5948 • 0	33.660	6298.0
275.00	23.204	21.856	45.060	6010.3	33.751	6381.2
280.00	23.600	22.070	45.670	6179.7	33.996	6608.0
290.00	24,382	22.490	46.872	6522.1	34.488	7070.7
295.00	24.768	22.695	47.463	6695.1	34.736	7306.6
298.15	25,010	22,823	47.833	6804.8	34.892	7456.7
200.00	220121	220070	40.047	000944	24.784	1242.4

 H_0^{C} and s_0^{C} apply to the reference state of the solid at zero deg κ

Popov, M. M., and Kolesov, V. P., The Determination of the True Specific Heat of Solid Materials at Low Temperatures J. Gen. Chem. (USSR) <u>26</u>, 2665-2672 (1956)

SELECTED THERMOCHEMICAL VALUES

Donald D. Wagman

In the preceding semiannual report (NBS Report 8504 dated 1 July 1964) a selection of values from the data prepared by the Chemical Thermodynamic Properties Group for the revision of NBS Circular 500, Selected Values of Chemical Thermodynamic Properties, was presented. Since that report, data on an additional number of compounds have been critically evaluated and values selected. In order to make these values available to research groups prior to completion we have presented the results on compounds of possible interest to this program in the accompanying table.

These new data will form a self-consistent set of thermodynamic tables; extreme caution should be used if they are combined with values from other sources.

"Selected	Thermochemical	Values"
-----------	----------------	---------

Substance	State	́лн £8	∆H£°	∆Gf°	S°	C_°
		0°K		29	98.15°K	Р
			kcal	/mole	ca1/d	leg mole
As	c,α		0	0	8.4	5.89
	β ,amorp		1.0			
	γ , cubic		3.5			
	g	72.04	72.3	62.4	41.61	4.968
As ⁺	g	298.38	300.12			
As ₂	g	53.30	53.1	41.1	57.2	8.366
As ₄	g		34.4	22.1	75 .	
AsO	g	16.88	16.72			
AsO_2 std state, m = 1	aq		-102.54	-83.66	9.9	
$As0_4$ state, m = 1	aq		-212.27	-155.00	-38.9	
As205	с		-221.05	-187.0	25.2	27.85
As406	c,octah		-314.04	-275.46	51.2	45.72
	c,monocl		-313.0	275.82	56.	
	g		-289.0	-262.4	91.	
AsH3	g	17.70	15.88	16.47	53.22	9.10
HAsO ₂ std state, unionized, $m = 1$	aq		-109.1	-96.25	30.1	
HAs04 state unionized, m = 1	aq		-216.62	-170.82	-0.4	
H ₂ As0 ₃ std state, unionized, m = 1	aq		-170.84	-140.35	26.4	
H ₂ AsO ₄ std state unionized, m = 1	aq		-217.39	180.04	28.	
H ₃ AsO ₄	с		-216.6			
AsF3	1		-228.55	-217.29	43.31	30.25
	g	-218.68	-220.04	-216.46	69.07	15.68
AsC12	g	16.	16.			
AsC13	1		-72.9	-61.37	49.6	
	g	-61.42	-61.80	-58.77	78.17	18.10
AsBr ₃	с		-47.2			
	g		-31.	-28.	86.94	18.92

Substance	State	∆Hf°	∆Hf°	∆Gf°	S°	C_°
		0°K			298.15°K	
			kcal	l/mole	cal/de	g mole
AsI3	с	-13.91	-13.9	-14.2	50.92	25.28
As2S3	с		-40.4	-40.3	39.1	27.8
AsN	g	47.	46.9	40.1	53.9	7.27
NH4H2AsO4	c		-253.3	-199.1	41.12	36.13
in 660 H ₂ O	aq		-249.1			
$(NH_4)_2 HAsO_4$	с		-282.4			
in 660 H ₂ O	aq		-279.8			
(NH ₄) ₃ AsO ₄	с		-307.4			
Sb std state	c, III	0	0	0	10.92	6.03
	g	62.63	62.7	53.1	43.06	4.97
Sb ⁺	g	261.91	263.46			
Sb2	g	56.76	53.3	44.7	60.90	8.70
Sb4	g	50.2	49.0	33.8	84.	
ЅҌѺ	g	48.	47.7			
SbO ⁺ std state, $m = 1$	aq			-42.33		
SbO_2 std state, m = 1	aq			-81,32		
Sb204	с		-216.9	-190.2	30.4	27.39
^{Sb} 2 ⁰ 5	с		-232.3	-198.2	29.9	28.11
sb40 ₆	c, cubic		-344.3	-303.1	52.8	
	c, orthorh		-338.7	-299.5	58.8	48.46
^{Sb60} 13	с		-670.6			
SbH3	g	36.62	34.68	35.31	55.61	9.81
sb(OH) ₃	с			-163.8		
SbF	g	-11.	-11.29			
SbF ₃	с		-218.8			
in 200 H ₂ 0	aq		-217.7			
H ₃ SbF ₆	aq		-448.4			
SPC1	g	-6,	-6.22			
SbC1 ₂	g	-18.	-18.5			
SbCl ₃	с		-91.34	-77.37	44.0	25.8
	g	-74.57	-75.0	-72.0	80,71	18.33
						-0:00

Substance	State	∆H£8	∆Hf°	∆Gf°	S°	Cp°
		0°K	1	29	8.15°K	
			kca	1/mole	cal/c	leg mole
SbC1 ₅	1		-105.2	-83.7	72.	
	g	-93.70	-94.25	-79.91	96.04	28.95
SPOC1	с		-89.4			•
	g	-25.	~25.5			
SbBr ₃	C		-62.0	-57.2	49.5	
	g		-46.5	-53.5	89.09	19.17
in CS ₂	1		-58.4			
SbI3	с		-24.0			
	aq		-23.6			
Sb2S3 black	с		-41.8	-41.5	43.5	28.65
orange	amorp		-35.2			
Sb2Te3	с		-13.5	-13.2	56.	
SPN	g	64.	63.66			
Bí	с	0	0	0	13.56	6.10
	g	49.56	49.5	40.2	44.669	4.968
Bí+	g	217.6	219.1			
^B ¹ 2	g		52.5			
B1203	с		-137.16	-118.0	36.2	27.13
Bi(OH) ₃	с		-170.0			
BíF	g					
BiC1	с		-31.2	-25.9	22.6	
BiC1 ⁺⁺ std state, $m = 1$	aq			-14.64		
$BiCl_2$ std state, m = 1	aq			-49.1		
BiCl ₃	с		-90.6	~75.3	42.3	25.
	g	-63.32	-63.5	-61.2	85.74	19.04
in HC1.26H ₂ 0	aq		-101.7			
B1OC1	с		-87.7	-77.0	28.8	
B1(OH) ₂ C1	с			-128.71		
^{BiBr} 3	с					26.
BiBr ⁺⁺ std state, m = 1	aq			-8.1		
$BiBr_2^+$ std state, m = 1	aq			-35.9		

Substance	State	H£8	∆Hf°	∆Gf°	S°	C _p °
		0°K		29	3.15°K	
			kcal,	/mole	cal/de	g mole
BiBra std state						
unionized, m = 1	aq			-63.3		
Bil	g					
Bil3	с			-41.9		
BiS	g		43.	29.	68.	
Bi ₂ S ₃	с		-34.2	-33.6	47.9	29.2
$Bi_2(SO_4)_3$	с		-608.1			
BiSe	g		42.0			
B12Se3	с		-2.2			
BiTe	g		42.8			
Bi2Te3	с		-18.5	-18.4	62.36	28.8
CH ₄	g	-15.970	-17.88	-12.13	44.492	8.439
HCOO std state, $m = 1$	aq		-101.71	-83.87	22.	
HCO_3 std state, m = 1	aq		-165.39	-140.26	21.8	
нсоон	1		-101.51	-86.38	30.82	23.67
	g		-90.48			
in 1 H ₂ 0	aq		-101.699			
2 H ₂ O	aq		-101.715			
3 H ₂ 0	aq		-101.697			
5 H ₂ 0	aq		-101.667			
10 H ₂ 0	aq		-101.642			
50 H ₂ 0	aq		-101.654			
100 H ₂ 0	aq		-101.666			
1000 H ₂ 0	aq		-101.681			
СH ₃ 0H	1		-57.04	-39.76	30.3	19.5
	g		-48.06			
Si	с	0	0.	0.	4.50	4.78
	g	107.86	108.9	98.3	40.12	5.318
Si ⁺	g	295.83	298.35			
Si ₂	g	141.32	142.	128.	54.92	8.22
1.10		de	1			

Substance	State	AHEO	∆Ħf°	∆Gf°	S°	C _p °
		0°K			298.15°K	
			kcal	/mole	cal/d	eg mole
Si ₃	g	146.4	147.			12.9
SiO	g	-24.08	-23.8	-30.2	50.55	7.15
SiO ₂ α , quartz	с		-217.72	-204.75	10.00	10.62
cristobalite	с		-217.37	-204.46	10.20	10.55
trydimite	с		-217.27	-204.42	10.4	10.66
glass	amorp		-215.94	-203.33	11.2	10.6
	g		-77.			
SiH	g	86.	86.28			
SiH ₄	g	10.30	8.2	13.6	48.88	10.24
Sí2 ^H 6	g	23.04	19.2	30.4	65.14	19.31
Si3H8	1		22.1			
	g		28.9			
H ₂ SiO ₃	c		-284.1	-261.1	32.	
H ₄ SiO ₄	c		-354.0	-318.6	46.	
SiF	g	1.	1.7	-5.8	53.94	7.80
SiF ₂	g	-147.75	-148.	-150.	60.38	10.49
SiF ₄	g	-384.66	-385.98	-375.88	67.49	17.60
std state, $m = 1$	aq			-384.2		
SiF6 std state, m = 1	aq		-571.0	-525.7	29.2	
SiHF ₃	g				64.96	14.47
SiH3F	g				56.95	11.33
H2SiF6	aq		-570.			
SiC1	g	45.				
SiCl ₄	1		-164.2	-148.16	57.3	34.73
	g	-156.51	-157.03	-147.47	79.02	21.57
SiH ₃ C1	g				59.88	12.20
SiHC13	1		-128.9	-115.34	54.4	
	g	-121.40	-122.6	-115.2	74.99	18.12
SiBr4	1		-109.3	-106.1	66.4	
	g		-99.3	-103.2	90.29	23.21
SiH ₃ Br	g				62.69	12.63
					•	

Substance	State	∆H£8	∆Hf°	∆Gf°	S°	<u>Ç</u> °
		0°K		29	8.15°K	P
			kcal	l/mole	ca1/de	eg mole
SiHBr ₃	1		-85.0	-80,4	59.3	
	g		-75.9	-78.5	83.28	19.30
Sil4	с		-45.3			
Sis	g	26.6	26.88	14.56	53.43	7.71
SiS ₂	с		-49.5			
SiSe ₂	c		-7.			
SiN	g	116.	116.68	109.41	51.78	7.21
(NH ₄) ₂ SiF ₆ hexagonal	с		-640.94	-565.38	66.98	54.52
cubic	с		-640.67	-565.40	67.99	59.25
ín 555 H ₂ O	aq		-633.60			
1500 H ₂ 0	aq		-633.20			
SiC β, cubic	с	-15.36	-15.6	-15.0	3.97	6.42
α , hexagonal	с		-15.0	-14.4	3.94	6.38
	g	175.6	177.	ł		
Si(CH ₃) ₄	1		-63.	-24.	66.27	48.78
	g		-57.15	-23.93	85.78	34.39
Si(C ₂ H ₅) ₄	1		-68.			
SiH(OCH ₃) ₃	1		-199.			
Si(OCH ₃) ₄	1		-302.			
$Si(OC_2H_5)_4$	1		-334.			
SiF ₄ •N(CH ₃) ₃	с		-419.4			
SiC1(CH ₃) ₃	1		-91.5	-58.93	66.5	
	g		-84.32	-58.23	88.2	
Sn white	с		0	0	12.32	6.45
gray	с		~0.50	0.03	10.55	6.16
	g	72.18	72.2	63.9	40.243	5.081
Sn ⁺	g	241.54	243.04			
Sn^{++} in aq HCl, $m = 1$	aq		-2.1	-6.5	-4.	
Sn^{++++} in aq HCl, m = 1	aq		7.3	0.6	-28.	
SnO	с		-68.3	-61.4	13.5	10.59
Sn0 ₂	с		-138.8	-124.2	12.5	12.57
				•	1	

Substance	State	∆H£ð	∆Hf°	∆Gf°	S°	Cp°
		0°K	298.15°K			
			kca1	/mole	cal/d	eg mole
SnH ₄	g	41.78	38.9	45.0	54.39	11.70
Sn(OH), ppt	c		-134.1	-117.5	37.	
Sn(OH) ₄ ppt	c		-265.3			
SnC1 ₂	c		-77.7			
in aq HC1	aq		-78.8			
SnC12°2H20	с		-220.2			
SnC1 ₄	1		-122.2	-105.2	61.8	39.5
	g	-112.16	-112.7	-103.3	87.4	23.5
in aq HC1	aq		-152.5	-124.9	26.	
SnC1 ₆	aq		-231.9	1		
Sn(OH)C1 std state, m=1	aq		-108.4	-93.7	30.	
SnBr ₂	c		-58.2			
in aq HBr, $m = 1$	aq		-58.8	-57.8	45.	
SnBr ₄	c		-90.2	-83.7	63.2	
	g		-75.2	-79.2	98.43	24.71
Sn(OH)Br std state,m=1	aq		-97.4	-86.7	35.	
SnI ₂	c		-34.3			
in aq HC1	aq		-28.5			
SnI ₄	с					20.3
	g				106.6	25.2
SnS	с		-24.	≈ 23.5	18.4	11.77
	g		28.5			
SnS ₂	с				20.9	16.76
$Sn(SO_4)_2$	c		-389.4			
	aq		-354.2			
SnSe	с		-21.7			
	g		30.8			
SnTe	с		-14.6			
	g		38.4			
(NH4) ₂ SnC1 ₆	c		-295.6			
	aq		-293.9			
		1	1	1		

Substance	State	∆H£°	∆Hf°	∆Gf°	S°	C _p °	
		0°K		298.	15°K	E	
			kcal/mole		cal/d	cal/deg mole	
(NH ₄) ₂ SnBr ₆	с				120.2	63.97	
$SnH_2(CH_3)_2$	1		14.5				
	g		21.				
SnH(CH ₃) ₃	1		-2.1				
	g		5.				
Sn(CH ₃) ₄	1		-12.5				
	g		-4.5				
$Sn(C_2H_5)_4$	1		-22.9				
	g		-10.9				
Sn ₂ (CH ₃) ₆	g		-21.6				
$Sn(CH_3)_2C1_2$	с		-80.4				
Sn(CH ₃) ₃ Br	1		-45.2				
Sn(CH ₃) ₃ I	1		-32.4			•	
in CC1 ₄			-31.2				
AgBr	с		-23.99	-23.16	25.6		
AgI	с		-14.78	-15.82	27.6	13.58	
Na ₂ CO ₃	c		-270.9		32.5	26.41	
std state, $m = 1$	aq		-276.62				
in 15 H ₂ 0			-278.80				
20 Н ₂ О			-278.66				
50 Н ₂ О			-277.83				
100 Н ₂ О			-277.28				
1000 H ₂ О			-276.53				
Na ₂ CO ₃ ·H ₂ O	с		-342.4				
Na2C03.10H20	с		-976.5				
NaCHO2	с		-159.13		24.80	19.76	
in 400 H ₂ 0	aq		-158.97		a marine a m Marine a marine a mari		
NaCHO2·2H2O			-300.7				
Na2SiF6	с		-695.4	-656.7	44.7		
in 630 H ₂ 0	aq		-685.1				

Substance	State	<u>AHf</u>	∆Hf°	∆Gf°	S°	C
		0°K	298.15°K			
			kcal/mole		cal/deg mole	
кн ₂ РО ₄	с		-366.0		32.23	
к ₂ со ₃	с		-274.3		37.4	27.65
in 50 H ₂ 0			-281.65			
100 H ₂ 0			-281.56		5	
1000 H ₂ 0			-281.17			
2000 H ₂ 0			-281.0		and a second	
к ₂ со ₃ • <u>≒</u> Н ₂ о	с		-310.7			
KCHO ₂	с		-162.3			
	aq		-161.8			
K ₂ SnC1 ₆	с		-355.6			
-	aq		-352.5			
					the Annual Party of	
					-	
		88	3		1	

A 1645

APPENDIX IV

LIST OF IONIZATION POTENTIALS OR ELECTRON AFFINITIES OF LIGHT ELEMENT COMPOUNDS

(A Revision of Appendix IV, NBS Report 8504, dated July 1, 1964)

Charles W. Beckett and Esther C. Cassidy

Ionization potential and electron affinity data for substances formed from elements of the first and second rows of the periodic table were given in Appendix IV of the above NBS Report 8504. In Table 1 of the present list, we have revised some of the values in the light of information received subsequent to the printing of the last report. We have also added ionization potentials or electron affinities of a number of substances which were not included in the former list. We are indebted to Dr. W. C. Price [45] for many of these corrections and additional values, to Dr. L. M. Branscomb [49] for pre-publication information on the electron affinity of OH, and to Drs. J. L. Margrave and T. C. Ehlert [56] for prepublication information on AlF2. Other values included here were taken from the recent report entitled "A Survey of Ionization Potentials of Combustion Products" by O'Bryan and Brown [44], from a Russian volume by Vedeneev et al [50], and from a number of recent publications as indicated by references [44] through [64] of the following list of references. In some cases the bibliography has been annotated with the formula of the substances and the ionization potentials or electron affinities.

In addition to the above, recent theoretical estimates of the electron affinities for negative ions of elements in the third row of the periodic table are given in Table 2. The values presented were taken from a paper by E. Clementi [65].

As stated earlier, the data given in these tables were assembled to provide a listing of values which are useful in determining what substances are likely to be important in hightemperature research. The substances listed in this preliminary survey were limited to those expected to be present in hightemperature ionized gases containing metals in addition to stable gases. The substances expected in flames were of special interest in view of their pertinence to current practical problems in the missile and space field, as indicated by Jones <u>et al</u> [66] in their review of the 1962 American Rocket Society Conference on ions in flames and rocket exhausts. For more detailed and comprehensive discussion of ionization in flames and high-temperature combustion systems, the reader is referred to the AIAA Progress Series entitled Ionization in High-Temperature Gases edited by Shuler and Fenn [67], to a recent paper by Miller and Calcote on "Negative-Ion Formation in Hydrocarbon Flames" [68], and to the works of Knewstubb, Sugden and Green [69, 70, 71] on ion observations in flames and electrical discharges. Branscomb [72], Nicolet [73, 74], and Whitten and Poppoff [75] have reviewed the closely related ionization phenomena in the upper atmosphere. These phenomena also occur in combustion and exhaust processes (see Calcote [76], Sugden [77], Van Tiggellen [78], and Smith and Gatz [79]), in electrically conducting gases

(see Berry [80] and Franklin [81]), and in other applications including magnetohydrodynamic devices for power generation (see Brogan [82] and Moore [83]).

A selected list of ionized (or readily ionizable) substances is given below. This summary includes some of the heavier elements having low ionization potentials. Small amounts of these elements in a mixture are likely to have large effects on electron density at 2000 to 4000°K. Ions observed in flames and the upper atmosphere also are listed for the convenience of the reader.

A. Elements Likely to Ionize Appreciably at 3000°K:

Cs, Rb, K, Na, Li	(3.9 to 5.4 e.v.)
Ba, Sr, Ca	(5.2 to 6.1 e.v.)
Pr, Nd, Ce, Sm, La, Eu	(5.4 to 5.7 e.v.)
In, Ga, Al, U, Tl	(5.8 to 6.1.e.v.)
V, Cr, Ti	(6.7 to 6.8 e.v.)
Zr, Hf, Th	(6.8 to 7.0 e.v.)

- B. <u>Selected Listing of Observed Negative Ions</u>: H, C, O, F, S, Cl, Br, I, C₂, C₃, O₂, NO₂, CN, OH, CH, NH, NH₂
- C. <u>Ions Observed in Hydrocarbon-Oxygen (or Air) Flames</u>: H_30^+ , $CH0^+$, $C_3H_5^+$, $C_2H_2^+$, CH_30^+ , $C_2H_70^+$, $CH_30_2^+$, $CH_50_2^+$, $C_2H_30^+$, $C_2H_30_2^+$, $C_2H_50_2^+$, CN^+ , O^- , OH^- , C^- , C_2^- , C_3^- , CN^- , CL^-
- D. Some Ions Observed in Upper Atmosphere (at about 100 km Altitude) $0^{-}, 0_{2}^{-}, 0_{3}^{-}, N0_{2}^{-}, N0^{+}, N^{+}, N_{2}^{+}, 0^{+}, 0_{2}^{+}, H^{-}, OH^{-}$

Many of the values listed in the tables probably have errors that are considerably larger than the crude estimates given in the third column. Some of these difficulties can be resolved by a more comprehensive review of the existing data. A new program on the collection and evaluation of ionization process data has been initiated at the National Bureau of Standards by Dr. Henry Rosenstock. This program will provide more comprehensive reviews of ionization potentials, electron affinities and related data.

From this preliminary survey and other surveys of ionization potential data, it appears that reliable values are available for many of the stable molecules likely to occur in combustion mixtures. Furthermore, since the ionization potentials of these stable molecules are in general greater than 10 electron volts, even errors as large as one electron volt would not significantly affect the electron and ion concentrations in equilibrium thermodynamic mixtures at combustion temperatures. More serious problems occur in the data on less stable species, such as the free radicals which may have much lower ionization potentials. There is a need for continuing search for information on substances with low ionization potentials. This will require the extension of the tables into the lower part of the periodic table. Negative ions obviously are of great importance in combustion systems as well as in many other applications involving ionized gases, yet the number of species for which we have reliable data is extremely small. Clearly much more work is needed in this area.

References

- Kiser, R. W., Tables of Ionization Potentials, No. TID-6142, June 20, 1960, and Additions and Corrections to Tables of Ionization Potentials, No. TID-6142, July 20, 1962.
- Sitterly, C. M., Spectroscopy Section, Atomic Physics Division, National Bureau of Standards, private communications, July 1, 2, 1964.
- [3] Moore, C. E. (C. M. Sitterly), Atomic Energy Levels, NBS Circular 467, Vol. I, 1949; Vol. II, 1952; and Vol. III, 1958.
- [4] Wilkinson, P. G., Astrophys. J. 138, 778 (1963).
- [5] Price, W. C., <u>Handbuch der Physik</u>, edited by S. Flügge, Vol. XXVII, Spektroskopie I, published by Springer-Verlag, Berlin, 1964, p. 453-454.
- [6] Foner S. N. and R. L. Hudson, J. Chem. Phys. <u>35</u>, 2676 (1962); <u>36</u>, 2001 (1962).
- [7] Verhaegen, G., F. E. Stafford, and J. Drowart, J. Chem. Phys. <u>40</u>, 1622 (1964).
- [8] Berkowitz, J. and W. A. Chupka, J. Chem. Phys. 40, 287 (1964).
- [9] Berkowitz, J. and J. R. Marquart, J. Chem. Phys. 39, 275 (1963).
- [10] Nakayama, T. and K. Watanabe, J. Chem. Phys. 40, 558 (1964).
- [11] Dibeler, V. H. and R. M. Reese, J. Chem. Phys. 40, 2034 (1964).
- [12] Schoen, R. I., J. Chem. Phys. 40, 1830 (1964).
- [13] Yang, J. H. and D. C. Conway, J. Chem. Phys. 40, 1729 (1964).
- [14] Varney, R. N., J. Chem. Phys. 31, 1314 (1959); 33, 1709 (1960).
- [15] Christoffersen, R. E., S. Hagstrum, and F. Prosser, J. Chem. Phys., <u>40</u>, 263 (1964).
- [16] Conroy, H., J. Chem. Phys. 40, 603 (1964).
- [17] Karplus, M., R. N. Porter, and R. D. Sharma, J. Chem. Phys. <u>40</u>, 2033 (1964).

- [18] Porter, R. N. and M. Karplus, J. Chem. Phys. 40, 1098 (1964).
- [19] Berry, R. S., C. W. Reimann, and G. N. Spokes, J. Chem. Phys. <u>37</u>, 2278 (1962).
- [20] Berry, R. S. and C. W. Reimann, J. Chem. Phys. 38, 1540 (1963).
- [21] Branscomb, L. M. and S. J. Smith, J. Chem. Phys. 25, 598 (1956).
- [22] Branscomb, L. M., D. S. Burch, S. J. Smith, and S. Geltman, Phys. Rev. 111, 504 (1958).
- [23] Seman, M. and L. M. Branscomb, Phys. Rev. <u>125</u>, 1602 (1962).
- [24] Chantry, P. J. and G. J. Schulz, Phys. Rev. Letters <u>12</u>, 449, (1964).
- [25] Edlén, B., J. Chem. Phys. 33, 98 (1960).
- [26] Edlén, B., <u>Handbuch der Physik</u>, edited by S. Flügge, Vol. XXVII, Spektroskopie I, published by Springer-Verlag, Berlin, 1964, p. 199-201.
- [27] Clementi, E., A. D. McLean, D. L. Raimondi, and M. Yoshimine, Phys. Rev. <u>133</u>, Al274 (1964).
- [28] Clementi, E. and A. D. McLean, Phys. Rev. 133, A419 (1964).
- [29] Scherr, C. W. and R. E. Knight, Rev. Mod. Phys. 35, 436 (1963).
- [30] Knight, R. E. and C. W. Scherr, Phys. Rev. 128, 2675 (1962).
- [31] Knight, R. E. and C. W. Scherr, Rev. Mod. Phys. 35, 431 (1963).
- [32] Pekeris, C. L., Phys. Rev. <u>112</u>, 1649 (1958); <u>115</u>, 1216 (1959); <u>126</u>, 143 (1962); <u>126</u>, 1470 (1962).
- [33] Kinoshita, T., Phys. Rev. 105, 1490 (1957); 115, 366 (1959).
- [34] Cubicciotti, D., J. Chem. Phys. <u>31</u>, 1646 (1959); Errata Notes: J. Chem. Phys. <u>33</u>, 1579 (1960) and J. Chem. Phys. <u>34</u>, 2189 (1961).
- [35] Honig, R. E., J. Chem. Phys. 22, 126 (1954).
- [36] Chupka, W. A. and M. G. Inghram, J. Phys. Chem. 59, 100 (1955).

- [37] Melton, C. E. and P. S. Rudolph, J. Chem. Phys. 31, 1485 (1959).
- [38] Kistiakowsky, G. B. and J. V. Michael, J. Chem. Phys. <u>40</u>, 1447 (L) (1964).
- [39] Glass, G. P. and G. B. Kistiakowsky, J. Chem. Phys. <u>40</u>, 1448 (L) (1964).
- [40] Strickler, S. J. and K. S. Pitzer, "Energy Calculations for Polyatomic Carbon Molecules," to be published as a chapter in a volume, "Molecular Orbitals in Chemistry," B. Pullman and Per-Olov Lowdin, editors, Academic Press, Inc., New York.
- [41] Drowart, J., R. P. Burns, G. De Maria, and M. G. Inghram, J. Chem. Phys. <u>31</u>, 1131 (1959).
- [42] Pitzer, K. S. and E. Clementi, J. Am. Chem. Soc. 81, 4477 (1959).
- [43] Bishop, D. M., J. Chem. Phys. 40, 432 (1964).
- [44] O'Bryan, L. K. and B. Brown, Proceedings of Second Meeting of Working Group on Thermochemistry (June 3-4, 1964), CPIA Publication No. 54 (U), Vol. I, p. 1-12, August 1964, (Chemical Propulsion Information Agency, Silver Spring, Maryland). Ionization potential data as follows: Be₂Cl₄ = 12.8, BO = 12.8, BOF = 13.4, and (BOF)₃ = 14.2 ev.*
- [45] Price, W. C., Physics Department, Kings College, Strand, London WC2, private communication, Sept. 26, 1964. Ionization potential data as follows: $OH^- = 1.8$, $NO_2^- = 1.66$, $NO_2^- = 10.97 \pm 0.03$, PH = 10.5, CF = 8.91, CF₂ = 11.7, CCl ~9.5, SiF₃ = 10.6, SiCl < 7.0, SiCl₂ = 10.0, SiCl₃ \approx 10.0, BH = 9.73 \pm 0.01, BF = 11.2, AlH = 8.4, AlF₃ = 14.4, AlCl ~9, AlCl₂ ~8, AlCl₃ ~ 12, BeF = 9.1, BeCl ~9, BeCl₂ ~ 11, MgH = 6.83, and MgCl ~ 7 ev.
- [46] Price, W. C., T. R. Passmore, and D. M. Rossler, Dis. Far. Soc. <u>35</u>, 201 (1963). Ionization potential data as follows: $OH_{5} = 6.2 \pm 0.4$, OF = 12.2 ± 0.5, OF₅ = 14.3 ± 0.5, $NH_{4} = 4.9 \pm 0.2$, $NF_{4} = 8.8 \pm 0.4$, $BeH_{2} = 11.9 \pm 0.5$ and LiF = 11.1 ± 0.5 ev.
- [47] Price, W. C. and T. R. Passmore, Dis. Far. Soc. <u>35</u>, 232 (1964). Ionization potential data as follows: PH₂ = 9.98 ± 0.05, PF₃ = 9.71 ± 0.05, and PCl₃ = 9.91 ± 0.05 ev.

* All values are given in electron volts.

- [48] Price, W. C., J. Chem. Phys. <u>37</u>, 1853 (1962). Ionization potential data as follows: $MgF_2 = 13.5 \pm 0.4$ ev.
- [49] Branscomb, L. M., Joint Institute for Laboratory Astrophysics, Boulder, Colorado, private communication, July 27, 1964, Electron affinity data as follows: OH = 1.8 ± 0.1 ev.
- [50] Vedeneev, V. I., L. V. Gurvich, V. N. Kondrat'ev, V. A. Medvedev, and E. L. Frankevich, <u>The Dissociation Energy of Chemical Bonds</u>. <u>Ionization Potentials and Electron Affinity</u>, Akademia Nauk SSSR, Moskow, 1962, pp. 164-214. Ionization potential data as follows: $O_{3}^{-} = 2.89$, $O_{3} > 11.7$, $H_{2}O^{-} = 0.9$, $HO_{2}^{-} = 3.04$, $ClO^{-} = 2.91$, $ClO_{2}^{-} = 3.43$, $ClO_{2}^{-} = 11.1$, $ClO_{3}^{-} = 3.96$, $ClO_{4}^{-} = 5.82$, $ClO_{2}F = 13.6 \pm 0.2$, $SO^{-} \ge 1.1$, $CS_{2}^{-} = 10.1$, $NO^{-} > 0$, $N_{2}H = 10.3 \pm 0.2$, $CH^{-} = 1.65$, $CH_{2}^{-} = 1.08$, $C_{2}H_{2}^{-} = 9.45 \pm 0.05$, $C_{2}H_{2}^{-} = 8.80 \pm 0.05$, $C_{2}H = 11.3 \pm 0.4$, $CO_{2}^{-} \sim 3.8$, $CH_{2}Cl = 11.3 \pm 0.1$, $SiCl_{2}^{-} > 2.6$, and $SiC^{-} \sim 4$ ev.
- [51] Al-Joboury, M. I. and D. W. Turner, J. Chem. Soc. <u>41</u>, 4434 (1964). Ionization potential data as follows: $NO_{2} = 10.97 \pm 0.03$ ev.
- [52] Harrison, A. G., <u>Mass Spectrometry of Organic Ions</u>, ed. F. W. McLafferty, Academic Press, New York and London, 1963, p. 240. Ionization potential data as follows: $N_2H_2 = 7.88 \pm 0.2$, $CHF_2 = 9.45$, $CHCl_2 = 9.54 \pm 0.1$, $CH_2F = 9.37$, $CH_2Cl = 9.70 \pm 0.09$, and $CH_2 = 9.85 \pm 0.2$ ev.
- [53] Farmer, J. B., I. H. S. Henderson, F. P. Lossing, and D. G. H. Marsden, J. Chem. Phys. 24, 348 (1956). Ionization potential data as follows: $CF_3 = 10.10 \pm 0.05$ and $CCl_3 = 8.78 \pm 0.05$ ev.
- [54] Ehlert, T. C. and J. L. Margrave, J. Chem. Phys. <u>41</u>, 1066 (1964). Ionization potential data as follows: $SiF_{0} = 11.0 \pm 0.05$ ev.
- [55] Ehlert, T. C. and J. L. Margrave, J. Chem. Phys. <u>41</u>, 2250 (1964). Ionization potential data as follows: MgF = 7.8 \pm 0.3, SrF = 5.2 \pm 0.3 and BaF = 4.9 \pm 0.3 ev.
- [56] Ehlert, T. C. and J. L. Margrave, Report, Dept. of Chemistry, Rice University, Houston, Texas, 1964. Ionization potential data as follows: AlF₂ = 9 ± 1 ev.
- [57] Chupka, W. A., J. Berkowitz, and C. F. Giese, J. Chem. Phys. <u>30</u>, 827 (1959). Ionization potential data as follows: BeO = 10.4 ± 0.5, (BeO)₄ = 11.0 ± 0.5, (BeO)₅ = 11.0 ± 1.0, and (BeO)₆ = 11.0 ± 1.0 ev.

- [58] Theard, L. P. and D. L. Hildenbrand, J. Chem. Phys. <u>41</u>, 3416 (1964). Ionization potential data as follows: Be₂O = 10.5 ± 0.5, (BeO)₂ = 11.1 ± 0.4, (BeO)₃ = 10.7 ± 0.4, and Be₃O₂ = 12.5 ± 1.0 ev.
- [59] Hildenbrand, D. L., L. P. Theard, and F. Ju, Philco Research Laboratory Report, Jan. 1, 1965. Ionization potential data as follows: BeF = 9.1 \pm 0.5 and BeF₂ = 14.7 \pm 0.4 ev.
- [60] Berkowitz, J. and J. R. Marquart, J. Chem. Phys. <u>37</u>, 1853 (1962). Ionization potential data as follows: MgCl₂ = 11.1 ± 0.2 ev.
- [61] Browne, J. C., J. Chem. Phys. <u>41</u>, 3495 (1964). Ionization potential data as follows: LiH = 7.81 to 7.91 ev.
- [62] Phelps, A. V. and J. L. Pack, Phys. Rev. 6, 111 (1961). Electron affinity $O_{2} = 0.46$ ev.
- [63] Curran, R. K., Phys. Rev. <u>125</u>, 910 (1962). Electron affinity NO₂ > 3.8 ev.
- [64] Farragher, A. L., F. M. Page, and R. C. Wheeler, Dis. Far. Soc. 37 (1964). Electron affinity $NO_{2}^{-} = 4.0$ ev.
- [65] Clementi, E., Phys. Rev. <u>135</u>, A980 (1964). Electron affinity data for elements of the iron series.
- [66] Jones, W. H., M. Griffel, and A. R. Hochstim, Astronautics and Aerospace Engineering, Oct., 1963, p. 86.
- [67] Shuler, K. E., ed., and J. B. Fenn, assoc. ed., <u>Ionization in High-Temperature Gases</u>, Vol. 12 of <u>Progress in Astronautics and Aeronautics</u>, Academic Press, New York and London (1963).
- [68] Miller, W. J. and H. F. Calcote, J. Chem. Phys. 41, 4001 (1964).
- [69] Knewstubb, P. F. and T. M. Sugden, Nature 196, 1312 (1962).
- [70] Knewstubb, P. F., Mass Spectrometry of Organic Ions, ed. F. W. McLafferty, Academic Press, New York and London, 1963, p. 255.
- [71] Green, J. A. and T. M. Sugden, Proceedings of the Ninth Symposium on Combustion, Cornell University, Ithaca, N. Y., 1962, Academic Press, New York and London (1963), p. 607.
- [72] Branscomb, L. M., Ann. Geophys. 20, 88 (1964).
- [73] Nicolet, M., J. Geophys. Res. 70, 679 (1965).

- [74] Nicolet, M., ibid., p. 691.
- [75] Whitten, R. C. and I. G. Poppoff, J. Atmos. Sciences <u>21</u>, 117 (1964).
- [76] Calcote, H. F., "Nonequilibrium Ionization in Flames," <u>Ioniza-</u> tion in High-Temperature Gases, ed. K. E. Shuler and J. B. Fenn, Academic Press, New York and London (1963), p. 107.
- [77] Sugden, T. M., "A Survey of Flame Ionization Work at the University of Cambridge," <u>ibid</u>., p. 145.
- [78] Van Tiggelen, A., "Ionization Phenomena in Flames," ibid., p. 165.
- [79] Smith, F. T. and C. R. Gatz, "Chemistry of Ionization in Rocket Exhausts," <u>ibid</u>., p. 301.
- [80] Berry, R. S., "Thermodynamics and Elementary Processes of Gaseous Ions," <u>ibid.</u>, p. 3.
- [81] Franklin, J. L., M. S. B. Munson, and F. H. Field, "Chemi-Ionization and Ion-Molecule Reactions in Gases," ibid., p. 67.
- [82] Brogan, T. R., "Electrical Properties of Seeded Combustion Gases," <u>ibid</u>., p. 319.
- [83] Moore, G. E., "Experimental Studies of Some Electrical Properties of Seeded Flame Gases," <u>ibid.</u>, p. 347.
- [84] Steiner, B., M. L. Seman, and L. M. Branscomb, J. Chem. Phys. <u>37</u>, 1200 (1962).
- [85] Burke, P. G. and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
- [86] Berry, R. S., C. W. Reimann, and G. N. Spokes, J. Chem. Phys. <u>35</u>, 2237 (1961).
- [87] Conway, D., J. Chem. Phys. 36, 2549 (1962).
- [88] Cooper, J. W. and J. B. Martin, Phys. Rev. 126, 1482 (1962).
- [89] Geltman, S. and M. Krauss, Bull. Am. Phys. Soc. 5, 339 (1960).
- [90] John, T. L., Month. Not. Roy. Astron. Soc. 121, 41 (1960).
- [91] John, T. L., Astrophys. J. 131, 743 (1960).
- [92] Smith, S. J. and D. S. Burch, Phys. Rev. 116, 1125 (1959).

- [93] Natanson, G. L., Zh. Tekh. Fiz. 29, 1373 (1959). (In Russian).
- [94] Bates, D. R., ed., Atomic and Molecular Processes, Academic Press, New York (1962).
- [95] Scherr, C. M., J. N. Silverman and F. A. Matsen, Phys. Rev. <u>127</u>, 830 (1962).
- [96] Melton, C. E., "Negative Ion Mass Spectra," <u>Mass Spectrometry of Organic Ions</u>, ed. F. W. McLafferty, Academic Press, New York, 1963, p. 163.
- [97] Burtt, B. P. and J. Henis, J. Chem. Phys. 41, 1510 (1964).
- [98] De Jaegere, S., J. Deckers and A. Van Tiggelen, "Identity of the Most Abundant Ions in Some Flames," Proceedings Eighth Symposium on Combustion, Pasadena, Calif., 1960, Academic Press, New York (1962), p. 155.
- [99] Calcote, H. F. and J. L. Reuter, J. Chem. Phys. 38, 310 (1963).
- [100] Calcote, H. F., "Ion and Electron Profiles in Flames," Proceedings Ninth Symposium on Combustion, Cornell, Ithaca, N. Y., 1962, Academic Press, New York (1963), p. 622.
- [101] Curran, R. K., "Negative Ion Formation in Various Gases at Pressures up to 0.5 mm Hg," Mass Spectrometry Conference, ASTM Committee E-14, New Orleans, La., June 1962, pp. 324-332.
- [102] Field, F. H. and J. L. Franklin, <u>Electron Impact Phenomena</u>, Academic Press, New York (1957).
- [103] Bernecker, R. R. and F. A. Long, J. Phys. Chem. 65, 1565 (1961).
- [104] Hand, C. W. and G. B. Kistiakowsky, J. Chem. Phys. 37, 1239 (1962).
- [105] Glass, G. P., G. B. Kistiakowsky, J. V. Michael, and H. Niki, J. Chem. Phys. <u>42</u>, 608 (1965). Ions observed in the acetyleneoxygen in shock waves: $C_{3}H_{3}^{+}$, $H_{3}O^{+}$, CH_{3}^{+} , $C_{2}H_{3}^{+}$, $C_{4}H_{3}^{+}$, $C_{5}H_{3}^{+}$, $C_{6}H_{3}^{+}$, $CH_{3}O^{+}$, HO_{2}^{+} , $H_{5}O_{2}^{+}$, $C_{2}H_{3}O^{+}$, $CH_{2}O_{2}^{+}$.

98 ·
Formula	I.P.(or E.A.) 	Est. Error e.v.
н	0.754	0.001
Н	13.598	
H ₂	15.426	
НЗ	9.0	1.0
0	1.465	0.005
0	13.618	
02	0.46 .	0.1
02	12.075	0.01
0_3	2.89	0.2
03	>11.7	1.0
0 ₁₄	11.65	0.1
OH	1.8	0.1
OH	13.36	0.2
н ₂ 0 ⁻	0.9	0.4
H ₂ O	12.61	0.02
но <mark>-</mark>	3.04	0.5
HO2	11.53	0.02
H202	10:92	0.05
OH3	6.2	0.4
_		
F	3.448	0.005
F	17.422	
F ₂	15.7	0.2

TABLE 1.	PRELIMII	VARY	LIST	OF	IC	DNIZATI	EON	POTEN	TIALS	OR
	ELECTRON	AFF:	INITI	ES (ΟF	LIGHT	ELI	CMENT	COMPO	JNDS

$$0_{4}^{+} = 0_{2}^{+} + 0_{2}^{+}$$
 0.42 e.v.

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
цъ	15 77	0.2
111.	L)• [[0.2
OF	13.	0.5
of ₂	13.7	0.2
OF3	14.3	0.5
Cl_	3.613	0.005
Cl	12.97	0.05
Cl ₂	11.48	0.05
HCL	12.74	0.01
ClF3	13.0	0.4
C10	2.91	0.4
ClO	≤ 10.4	0.2
C10_2	3.43	0.4
C10 ₂	11.1	0.4
C10_3	3.96	0.4
C103	11.7	0.4
Clo ₄	5.82	0.4
Clo _z f	13.6	0.2
ຮ້	2.07	0.07
S	10.360	
s ₂	8.3	1.
s ₈	8.9	1.
SH	2.6	0.5

T1 7-	I.P.(or E.A.)	Est. Error
Formula	e.v.	<u>e.v.</u>
HS	11.1	0.2
H_2S	10.47	0.1
SO	\geq 1.1	0.1
SO	12.1	0.3
so ₂	12.34	0.2
SF ₆	16.15	0.5
CS ₂	10.1	0.1
N	0.04	0.04
N	14.53	0.05
N^+	29.59	0.05
N_2	15.580	0.005
N ₃	3.13	0.3
$\mathbb{N}_{j_{+}}$	15.07	0.1
NH	13.10	0.1
NH ₂	1.22	0.5
NH2	11.6	0.4
NH3	10.154	0.05
$\mathbb{NH}_{\underline{l}_{\frac{1}{4}}}$	4.9	0.2
N2H3	7.88	0.2
N_H	10.3	0.2
NO	0	
NO	9.267	0.01
NO ⁺	30.6	0.3

$$N_{l_{1}}^{+} = N_{2} + N_{2}^{+}$$
 0.5 e.v.

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
NO2	4.0	0.5
NO2	10.97	0.03
N ₂ O	12.94	0.05
NF	12.2	0.3
NF ₂	11.6	0.5
NF3	13.0	0.3
$NF_{j_{\downarrow}}$	8.8	0.4
N_2F_4	12.0	0.3.
NHF ₂	12.0	0.3
P	0.77	0.2
Ρ	10.486	
P ₂	0.3	0.3
P_2	11.8	0.5
$P_{\underline{\lambda}}$	9.0	0.5
PH ₃	9.98	0.05
PC13	12.2	0.2
PH	10.5	0.5
PF ₃	9.71	0.05
PC13	9.91	0.05
C	1.25	0.03
C_2	3.1	1.
C_3	1.8	1.
C,	<u>\</u> +.O	1.

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
С	11.26	0.05
C ₂	12.0	0.4
C3	12.6	0.4
C ₁₄	12.6	0.4
с ₅	12.5	0.4
CH	1.65	0.4
CH	10.64	0.01
CH2	10.396	0.01
СН	1.08	0.4
CH3	9.84	0.01
CH	13.0	0.1
C_2H	11.3	0.4
C_2H_2	11.406	0.01
C2H3	9.45	0.05
C_2H_4	10.51	0.01
C2H5	8.80	0.05
C2H6	11.65	0.1
C_6H_6	9.247	0.05
(с ₆ н ₅) ₂	8.3	0.1
Pyrene	7.55	0.1
Coronen	e 7.6	0.1
CH	1.1	0.2
C_6H_6	0.54	0.2
(C ₆ H ₅) ⁻ 2	0.41	0.2

.

Formula	I.P.(or E.A.) e.v.	Est. Erron e.v.
с ₁₀ н ₈	0.65	0.2
CO	14.01	0.01
c0-2	3.8	0.4
C0 ₂	13.79	0.02
CHO	9.85	0.1
CH ₂ 0	10.88	0.04
CH_02	11.33	0.04
CH ₄ 0	10.85	0.04
CHF ₂	9.45	0.4
CHC12	9.54	0.1
CH_2F	9.37	0.3
CH ₂ Cl	9.70	0.09
CH3	9.85	0.2
CH3CI	11.3	0.1
CF	8.91	0.2
CF_2	11.7	0.5
CF3	10.10	0.05
CF_{4}	17.81	0.04
$C_2 F_4$	10.12	0.2
$^{\mathrm{C}}\mathrm{6F}\mathrm{6}$	10.0	0.2
CCl ₂ F ₂	11.7	0.5
CCl	9.5	0.5
CCL	11.0	0.5

Formula	I.P.(or E.A.) 	Est. Error e.v.	
CC13	8.78	0.05	
CCl ₄	11.47	0.1	
coci ₂	11.78.	0.04	
CS	11.8	0.3	
cs ₂	10.07	0.02	
COS	11.3	0.07	
CN	3.21	0.3	
CN	14.2	0.3	
HCN	13.73	0.1	
CNCL	12.49	0.1	
CH_N_3	9.5	0.2	methyl azide
CH_ON	10.84	0.1	formamide
CHJON	8.2	0.3	methylnitrosyl
CH302N	11.08	0.04	
CH5N	8.97	0.04	methyl amine
C_2N	12.8	0.3	
C ₃ N	14.3	0.3	
$C_{j_{\downarrow}}N$	12.3	0.3	
C ₅ N	12.0	0.3	
CGN	12.2	0.3	
C ₃ HN	11.6	0.3	cynoacetylene
CH ₁₄ S	9.44	0.1	

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
Si	1.4	0.2
Si	8.151	
Si ₂	7.3	0.3
SiH	8.5	0.5
SiH_{μ}	12.2	0.3
SiO	10.51	0.1
Si0 ₂	11.7	0.5
Si ₂ 0 ₂	10.	1.0
SiF	7.26	0.1
SiF ₂	11.0	0.5
SiF3	10.6	0.5
$\operatorname{SiF}_{\underline{\mathfrak{h}}}$	15.4	0.¥
$\mathrm{Si}_2 \mathbb{F}_4$		
SiCl	< 7.0	1.0
SiCl_2	1 2.6	0.5
SiCl ₂	10.0	0.4
SiCl ₃	10.0	0.4
SiCl ₄	12.0	0.4
SiC	4.O	1.0
SiC	9.0	0.3
SiC ₂	10.2	0.3
Si ₂ C	9.1	0.3

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
в	0.3	0.1
В	8.298	
B ₂	12.4	0.3
BH	9.73	0.01
BH ₂	8.12	0.3
BHJ	11.3	0.4
во	12.8	l.0
B ₂ 0 ₂	13.3	0.4
B203	13.2	0.4
нво ₂	12.6	0.4
BF	11.2	0.5
BF ₂	9.4	0.4
BF3	15.6	0.4
BFJ	2.17	0.4
BCl	10.44	0.4
BC1 ₂	7.20	0.5
BC13	11.5	0.5
BOF	13.4	0.5
(BOF) ₃	14.2	0.5
BN		
B₂H	10.62	0.5
B2HG	12.0	0.3
BOCL		

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
BC	10.5	0.3
BC ₂	10.7	0.3
B₂C	10.7	0.3
BSi	7.8	0.3
BCSi	9.9	0.3
Al	0.52	0.05
LA	5.986	
HLA	8.4	0.5
AlO	9.5	0.5
Al ₂ 0	7.7	0.4
A1202	9.9	0.4
AlO ₂ H		
Alof		
Alf	9.5	0.5
AlF ₂	9.0	1.0
Alf ₃	14.4	0.5
AlCl	9.0	1.0
ALC12	8.0	1.0
ALC13	12.0	0.8
AlBr ₃	12.2	0.8

¥

.

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.	
Be	(≤0.1)	0.1	Estimate
Ве	9.322		
ВеН	8.6	0.4	
BeH ₂	11.9	0.5	
BeOH			
Be0	10.4	0.5	
Be ₂ 0	10.5	0.5	
Be ₃ 0 ₂	12.5	1.0	
(BeO) ₂	11.1	0.4	
(BeO) ₃	10.7	0.4	
(BeO) ₄	11.0	0.5	
(BeO) ₅	11.0	1.0	
(BeO) ₆	11.0	1.0	
BeF	9.1	0.5	
BeF ₂	14.7	0.4	
BeCl	9.0	1.0	
BeCl ₂	11.0	1.0	
$\operatorname{Be}_2\operatorname{Cl}_4$	12.8	0.5	
Mg	(≤0.1)	0.1	Estimate
Mg	7.646		
MgH	6.83	0.08	
MgO	8.6	0.5	
MgF	7.8	0.3	

Formula	I.P.(or E.A.) e.v.	Est. Error e.v.
MgF ₂	13.5	0.4
MgCl	7.0	1.0
MgCl ₂	11.1	0.2
Li ⁻	0.7	0.2
Li	5.392	
Li ₂	4.96	0.2
LiH	7.85	0.2
LiO	9.0	0.4
Li ₂ 0	6.8	0.4
LiI	8.55	0.4
LiF	11.1	0.5
Na	0.6	0.2
Na	5.139	
Na ₂	4.87	0.2
NaH	6.5	1.
NaO	7.6	l.
NaOH	9.0	l.
NaI	8.8	0.4
NaN ₃	11.7	0.4
SrF	5.2	0.3
BaF	4.9	0.3

THE ELECTRON AFFINITIES FOR NEGATIVE IONS OF THE SERIES FROM POTASSIUM TO COPPER

The electron affinities for negative ions of the elements of the iron series, as taken from recent work [a] by Clementi, are given in Table 2. The affinities stated were estimated from the correlation energy of the corresponding neutral atoms and from calculations of the relativistic and the Hartree-Fock energies. The uncertainty in the data are estimated by the author to be from 0.1 to 0.35 e.v.

Formula	E. A. e. v.	Est. Error <u>e. v.</u>
к ⁻ (² s)	0.902	± 0.05
sc ⁻ (³ F)	0 [b]	
Ti ⁽⁴ F)	0.391	± 0.2
v ⁻ (⁵ D)	0.937	± 0.25
Cr ⁻ (⁶ s)	0.980	± 0.35
Ma ⁻ (⁵ D)	0 ^[d]	
Fe ^{-(¹} F)	0.582	± 0.20
Co ⁻ (³ F)	0.936	± 0.15
Ni ⁻ (² D)	1.276	± 0.20
Cu ⁻ (¹ S)	(1.801	± 0.10)
	1.799	± 0.08 ∫

TABLE 2. ELECTRON AFFINITY FOR III ROW ELEMENTS

[a] E. Clementi, Phys. Rev. 135, A980 (1964).

[b] Clementi reported negative values, -0.142 ± 0.1 and -1.073 ± 0.20 respectively, for the affinities of Sc⁻⁽³F) and Mn⁻⁽⁵D). The value zero was assigned in this table since the negative values are probably incorrect.

☆ U.S. GOVERNMENT PRINTING OFFICE . 1965 0-770-868

.

