

Mcasurements Automation Section
Information Techalogy Division

```
Sponsored by
Advanced Research Projects Agency
Nuclear Test Detection Office
ARFA Onder No. 183
```

IMPORTAMT NOTLLE
fratonal bureall of stan for use with in the Goveriment. Eat arid revies. For this reason, the it whole or in pert, is not authosized Duscau of Siandards, Washimeton : the keprort has been shecifizally pre

Approved for public release by the director of the National Institute of Standards and Technology (NIST)
on October 9, 2015
accounting docurents intentad bjected to aduitional evaluation stiry of this Report, either is Bilice of the Dircoter, ivationa! e Covernmant acency for which es for lits own use.

층

FOREWORD

The volume of data from physical and chemion experimentation being analyzed by means of electronic computers is constantily growing. Reasorss for this trond are the production of large volumes of experimental data, the availability of sophisticated computer routines for treating previougly obscure decails: and the prospect of freeing scerce cechnical manpower for mone oreative work. Between the experiment and the computer, however, there is an equipment gap that must be bridged before the fuil potentiai of corputcr analysis of data can be realized by tine scientific community.

The eruipmert problem is compiicated by the diverse requtrements of ccentific leboratories with respect to the types, accuisition rates, measurement precision, display, and ultimate use of the data to be cotnined. In addition, not all projects with data handing problems can afford, or efficiently use ail of the automatic equipment that could be applied to their particular activities.
. The fundamental problem is to achieve a gufficiently high cegree of versatilicy of data handifng eq̧ipment to permit its use in meeting many cifferent requirements of scientific laboratozies. The solution to this problem would permit a large variety of measmrement problems to be solved with a minimum investrent in equipment, and will tend to minimize the problem of eģipment obsolescense.

A promising approach to the accomplishment of this objective ia based on a set of comptible electronic modules developed at the National Bureau of Standards. These modules are engineered for flexible interconmectinn. They operate undex the asyrochronous control of a supervisory module, equipped with a patch board to govern the control progreti. "Tach module contufre its own power supply, indicator lights, pluggable printed-cireuit logic waids, and standard connectors for controi and data signals. This permits the ready assembly of data logging systems tailored to the perticular reguirements of individual experinents.

This report describes the printed-circuit logic cards.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to che members of the Measurements Automation Section for their assistance in the preparacion of this report, and especially to Don R. Boyle and Alfred L_{w} Koenig for original design work on the new cjrcuits incorporated in this series.

We are also grateful for the many constructive suggestions tendered by other users, both active and potential, in the hope of further improving the utility and applicability of the packages.
-

ABSTRACT

A fourth family of etched-circuit logic cards has been developed at the National Bureau of Standards. It closely parallels the design criteria and philosophy embodied in previous work, but differs in many respects. Each circuit description is separated physically from the others to facilitate use as an application manual. Specifications, typical uses, graphic symbols, and reliability are discussed in brief.
\bigcirc
Page
FOREWORD ii
ACIKNOWLEDGENENTS iii
ABSTRACT iv

1. INTRODUCIION 1
2. SPECIFICATION'S 2
3. GRAPHIC SYMBOLS FOR LOGIC DIAGRAMS 3
4. SERIES MAD-IB CARDS 9
5. SERIES MAD-1 CARDS 10
a. AND/OR Inverter 17
b. Elip-Flop 18
c. Pulse Gate 31
d. Reed Relays 38
e. Pulse Gate Driver 44
f. One-shot 50
g. Indicator/Amplifier 57
h. Universal Counter 64
i. 16×16 Matrix 71
j. Coil Driver 75
k. Comparator/Gate 83
l. Ripple!Shift Register 89
m. Ripple/Shift Spacer 99
n. High Impedance Amplifier $10 ?$
o. Oscillator/One-Shot 108

-

LIST OF ILIUSTRATIONS

1. And-Or Inverter used as a NAND Circuit 13
2. And-Or Inverter used as a NOR Circuit 14
3. And Or Inverter Circuit Schematic 15
4. And-Or Inverter Component Layout 16
5. And-Or Inverter Photograph 17
6. Flip-Flop used as an R-S Flip-Flop 24
7. Flip-Flop used as a J-K Flip-Flop 25
8. Flip-Flop used as a T Flip-Flop 26
9. Flip-Flop used as a Gated Flip-Flop 27
10. Flip-Flop Circuit Schematic 28
11. Flip-Flop Component Layout 29
12. Flip-Flop Photograph 30
13.. Pulse-Gate Logic 33
13. Five Pulse Gates Connected To Flip--Tlop R Input 34
14. Pulse Gate Circuit Schematic 35
15. Pulse Gate Component Layout 36
16. Pulse Gate Photograph 37
17. Reed Relays Logic 40
18. Reed Relays Circuit Schematic 41
19. Reed Relays Component Layout 42
20. Read Relays Photograph 43
21. Pulse Cate Driver 4
22. Pulse Gate Driver Circuit Schematic 4 ?
23. Pulse Gate Driver Component Layout 48
24. Pulee Gete Drivez Photograph 49
25. One-Shot Logic 53
26. One-Shot Circuitt Schematic 34
27. One-Shot Component Layout 55
28. One-Shot Photograph 56
29. Indicator/Amplifier used as an Amplifier 59
30. Indic三tor/Amplifier used as an Indicator Driver 60
31. Sndicator/Amplifier Circuit Schematic 61
32. Indicator/Amplifiar Component Layout 62
33. Endicator/Amplifier Photograph 63
Figure Page
34. Universai Counter 67
35. Universal Counter Circuit Schematic 68
36. Universal Counter Component Layout 69
37. Universal Counter Photograph 70
3\%. 16×16 Matrix 72
38. 16×16 Matrix Component Layout 73
39. i6 x 16 Matrix Photograph 74
40. Coil Driver 77
41. Coil Driver Circuit Schematic 78
42. Coil Driver Component Layout 79
43. Coil Driver Photograph 80
44. Comparator/Gate - Comparator Section 84
45. Comparator/Gate - Gate Section 35
46. Comparator/Gate Circuit Schematic 86
47. Comparator/Gate Component Layout 87
48. Comparator/Gate Photograph 88
49. Ripple Shift Register Card 93
50. Ripple Shift Register - Internal Logic 94
51. Ripple/Shift Register Circuit Schematic 95
52. Ripple/Shift Register Component Layout 96
53. Ripple/Shift Register Lamp Fiolder 97
54. Ripple/Shift Register Photograph 98
55. Ripple/Shift Spacer Card 100
56. High Impedance Amplifier 103
57. High Impedance Amplifier Circuit Schematic 104
58. High Impedance Amplifier Component İeyout 105
59. High Impedance Amplifier Conductor Layout, Top Side 106
60. High Impedance Amplifier Photograph 107
61. Oscillator/One -Shot used as a Free-Running Oscillator 112
62. Oscillator/One -Shot used as a Keved Oscillator 113
63. Oscillator/One-Shot used as a One-Shot 114
64. Oscillator/One --Shot Circuit Schematic 115
65. Oscillator/One-Shot Component Layout 116
66. Oscillator/One-Shot Photograph 117

TRANSISTORIRED BUILUING BEOCES
 FOR DATA INSTRTMENTATION

by

Philip G. Stein
Measurements Automation Section Information Technology Division National Bureau of Standards

1. INTRODUCTION

Nationai Bureau of Standards Technical Notes 68 and 168 (May 1960 and April 1963, respectively) describe a series of etched-circuit transistor packages for use in construction of smallotomedium sized data acquisition and data processing systems. A related group at NBS has been occupied with design of a series of modulcs that can be readily assembled into smali-scale data acquisition systems. These modules are specifically suited for this purpose, and are therefore not readily applicable to conm struction of larger machines such as storedoprogram data processors.

The construction of these modules is different from that described in Notes 68 and 168. Instead of the drawer style used in previous desigas. the new devices are built aromd a cardocage in which 19 printedmcircuit logic packages may be mounted, along with a selfocontained regnlated power supply to provide all necessary operating yoltages.

Early modules utilize series 3 packag̊es an described in Note 168 , with minor modifications. Jate in 1963, j.t became obvious that use of these cards was very wasteful of space, since they filled only two thirds of the aviluble voime in a 5 wi/4 inch higt cage. In adaition, exverience with series 3 packages indicated that a few logical functions performed by series 3 weme superfluous for datarlogger desigis and that the adaition of some others wonld be advantageous. Cara was taken in the physiad layout of the cards to insure maximum density of comonents, and therefore maximum numer of circuits per cara.

Included in this report is a digest of the new Iogic symbols approved by the American Stardards Association in 1962. These symbols are used throughout this report, which also includes a separate logical diagram and applications information on each of the packages.

2. SEEGTRLCATIONS

1) All systems constructed from these packages may be operated at a frequeray of up to 50 kc . I-dividual cerds have higher capabilities. These are noted where applicable.
2) Ambient operating temperatures may be between $0^{\circ} \mathrm{C}$ and $50^{\circ} \mathrm{C}$.
3) Pcwer supply voltages are:

- 12 volts (careful filtering to eliminate high frequency transients in this line is needed).
+12 volts.
These are the nominal values for the voltages. Plus or minus three volt colerances are permissible in extreme cases, but in any case this voltage, whatever it is, should be reasonably well regulated.

4) Pulse specifications are:

More positive level: within 1 volt of ground (0 volts).
More negative leveI at least -6 volts, at most -12 .
Duration of at least 5 microseconds.
Rise slope of at least 6 volts per microsecond.
(Nose: Most applications of these packages in data acquisition utilize on de levels or changes in them, rather thar pulses per sec. For this reason, the limit on pulse duration is not a severe restrictiono.

Each package is constructed on a plugmin, etched circuit wiring board with a 35 pin hemaphroditic conector integrally monted, and with test points to accomodate phonomip probes momed directly oa the card. These test points are conmeter to the circuit teminals of greatest interest for troublewshooting.

The basic transistor in use for general purposes is a 2 N 404 . For complementary NEN ise, a $2 N 1302$ is satisfactory. Eor high current applicam tions, a 2 N 659 is used for very high current, a 2 Nl 039 , and for high voltage, a 2 N 398 are used. The low current, low voltage diodes are type DR435. The high current, high voltage diodes are type 1N2069.

Circuit cards of prewious series have required external jumpers or external components to effect most logical furctions. A large number of these have been eifminated, some impotant ones have been retained, and several new nes which promise to be useful heve been added.

In general, the circuitry used in the new series is quite similar to that in series 2 and 3 . There are enough differences, though, to warrant a complete re-description of the line. In addition, there are severai completely new circuits, and extensive modification of a few others.

The scries is designated MAD-1 (Measurements £utomation Devices).

3. GRAPHIC SYMBOLS FOR LOGIC DIAGRAMS

The module development group has been using logic symbols which conform to the American standard which was approved by the American Standards Association on September 26, 1962. The distinctive shape symbols are used as shown below.

```
a. Input - Output Symbols
```

Logic leveis are indicated as shown below:

Analog inputs are indicated by a plain arrow:

b. Labeling

Card position is indicated inside the symbol.
Pin numbers are indicated outside the symbol and adjacent to respective line.

b. i, abeling

Card posithon is indicated inside the symbol.
Pin numbers are indicated outaide the symbol and adjacent to respective line.

c. AND/OR Inverter

"and" function with three inputs

"or" function with five inputs

d. Flip-F1op

Tinput

Note: A flip-flop coneains a "L" when the 1 output line is in the " 1 " state.

R-S input (connection directly to transistor base)

$\mathrm{J}-\mathrm{K}$ input (usually connection to Internal pulse gate)

e. One Stiot

Normel connection

Note: The normal (inscive) state of the ONE-SHOT output is the 0 -state. When activated, the output changes to the indicated l-state, remains there for the characteristic time of the device, and returns to the 0-state.
f. Amplifier (inverting)

g. Special Purpose-Circuit

MECHANICAL SPECIFICATIONS

Below is a drawing showing the physical dimensions of all cards in series MAD-lb except the ripple/shift and ripple/shift spacer cards. The latter have the same width and connector tongue cutout, but are $10-1 / 2$ inches long. The circles shown are pads for connector mounting, and are uniform for all cards.

* Min. PERMISSIRLE space from edge of conductof to edge of boaro

Further mechanical specifications aze given in the procurement information, which íoilows.

3. RROCHREMENT SPECIRICATIONS FOR ETCHED-CIRCUTT BACKAGES

S. 1 Packages shall be constructed from $1 / 16$ th inch copper clad laminate, clad either one side only, or both sides as required, with one ounce of copper per square foot. Completed boards shall be 5-7/32 inches by 4-1/2 inches, except for the ripple register card, which is 10 inches by $4-1 / 2$ inches. All dimensions shall be within plus-or-minus $1 / 32$ nd of an inch. Boards shall be made from flame-resistant fiberglassepoxy type material.
S. 2 The etched-circuit conductors should be covered by an electroplate or immersion tin plate before assembly.
S. 3 Eyelets shall be installed on all double-clad cards wherever it is necessary to make connections from one side of the board to the other. The eyelets are to be installed and soldered on both sides prior to assembly. Where an eyelet is to be intstalled without a component, the center hole of the eyelet should not be filled with solder in this process, unless specifically stated in the card description.
S. 4 Semiconductors designated in the drawings should be equivalent in all respects to the ones available fron the following vendors:

2N404 Texas Instrument or RCA
2N398 RCA (Radio Corporation of America.)
2N1302. IT (Texas Instrument)
2N1039 TI
2N659 TI
DR435 General Insstrument
It should be noticed that even though many manufacturers produce a given type of transistor with supposedly identical character. istics, in some cases the control of the spread of these characteristics is extremely inadequate.
S. 5 All resistors shall be 5 percent tolerance, carbon composition type, and shall be $1 / 2$ watt size except where shown differently on drawings.
S. 6 The potenticmeter on packages requiring them shall be Bourns Trimet Type 275, or equivalent.
S. 7 Gapacitors of small values may be of mica, ceramic or mylar if their dimensions are compatible with spacing on the etchedcircuit boards-Sprague Series 192 preferred, when possible.

These capacitors shall be within ± 10 percent of the specified values. Capacitors of large values, such as the 2 -microfarad capacitor in the one-shot package nay be of aluminum or tantalum electrolytic type, or other equivalent type to fit the spacing provided. These capacitors shall be within a tolerance of $-15^{\circ} / 0 \div 100^{\circ} / \mathrm{o}$ of values specified. All capacitors shail have a minimum working voitage rating of 20 volis d-c.
S. 8 Momiting pads (Milton Ross Metal Company "Transipad", or equa1) shall be ueed betweer the transistors and the etched-circuit board. All other components shell be mounted directly on the board on the side opposite the etchedmcircuit condectors.
S. 9 Both sides of all cards are to be thoroughly cieaned to remove all traces of rosin and foreign material. Ultrasonic cleaning shall not be used for this operation.
S. 10 On each card is mounted a male printed circuit connector: supplied by the contractor, Elco No. 00-7022-035-000-001 (no substitutions). At least three of the pins should be staked to the board by splitting and spreading them, but this must not be done in such a maner so as to break the plastic cover of the connector.
S.11 Test jacks indicated are AMP 3-582I18-0, 1, 2, etc.

REREORMANOE

P.l All transistors and diodes shall be given a simple check prior to installation for the purpose of rejecting open or shorted circuitad components. It is only nesessany to determine that the transistor extibits transistor action and that the diodes rectify. Dlodes should be checked for compliance with manafacturer's specifications concerning operation with ar inverse peak voitage of 20 volts.
P. 2 The contractor shall replace without cost to the Government, including transportation, all packages which contain defective components, breaks; or defects in the etched-circuit condactors, or are defective for reasons of poor workmanship.
P. 3 The entire order vill be rejected by NBS if more than 10 percent of the etched-circuit packages are found to te defective by reason of defective components, breaks or defects in the etchedcircuit condactor, or for poor workmanship.

4. SERIES MAD-IB CARDS

Recent advarces in semiconductor technology have made possible significant improvements in the performance of serias MAD-1 cards. The $2 N 404$, long an industry standby because of its low cost and uriversal availability, was still undesirable because of poor beta spread and poor high-temperature performance.

The 2 N 404 is, of course, germanium. The announcement of a silicon PNP transistor with the same characteristics, better beta spread, and same economy prompted a series of experiments. We have tentatively concluded that the 2 N3638 transistor will operate as well as the 2 N 404 in ali of our applications. Its higher currentcarrying capacity and low $\mathrm{V}_{\text {ce }}$ (sat) make it possible to use it in place of the high cost 2 N 659 as well. Full acceptance of this device must await large statistical samples. Over 100 packages have been either delivered or ordered, and they are being incorporated into systems as they are received. A separate report on the eventual outcome of these tests will be published after thejr completion.

Similar tests are also being carried out on the 1 N 270 goldbonded germanium diode, which costs half as much as the previously specified DR435, and will also operate at a higher temperature.

Other semiconductor substitutions have been made in the interests of cconomy, size reduction, or improved characteristics. The changes are summarized in the table belov.

MAD-1
2N404
DR435
2N659
2N1302
2N2926
1N2069

MAD-1B
2N3638 (Fairchild)
IN270 (Transitron)
2N3538
2N3641 (Fairchild-still under consideration)
2N3641 (Fairchild-stiIl under consideration)
1N4005 (Motorola)

The above manufacturers cooperated in the development of series MAD-1B, and the statistical studies mentioned above are being carried out with components manufactured by them. As more suppliers become available, they will be incorporated into the testing.

Use of high-temperature components as above has enabled us to rate series MAD-1R as operable at 85° Celsius. The coil driver card has not been changed, and is still rated as $50^{\circ} \mathrm{C}$.
e

5. SERIES MAD-1 LOGIC CARDS

The following sections are self-contained descriptions of each of the cards. They are designed for use either individually or collectively as application, instruction, maintenance and construction manuals. They each follow the format given below.

Logical Eunction. A brief description of the general uses to which the card is put.

Circuits per Card. Very often, more than one logical unit is contained on one card. This indicates how many there are.

Input Load. Each card is designed to present a uniform load to the sircuits preceding it. These loads are specified as follows: one standard logic gate - 3900 ohm sink to ground in parallel with 220 picofarads; one standard pulse gate - . OOI microfarads to ground. Cards may present integral multiples of these standard loads to the circuits preceding. This section of the description tells how many and what kind of loads are presented.

Fan-out. Tells how many standard loads may be wired in parallel across the output of each circuit.

Power Reduirements. Describes the load on each of the power supplies presented by each circuit.

Logic Diagrams. Shows the logic diagram used for each circuit, in conjunction with the fin numbers for each connection.

Iogical Application. A detailed description of the logical functions that can be performed by the card.

Input Signal Requirements. Lists voltage levels, impedances, currents, and rise-and-iall times associated with. the card output.

Dutprt Signal Characteristics. Lists voltage levels, impedances, currents, aild rise-and -fall times associated with the card output.

Circijt Description. Referring to the schematic diagram, this section details the actual operation of the card.

Trouble Shooting. Some brief hints, plus an insight into the troubles most usually encountered in actual use.

Sonstruction Information. Contains printed circuit artwork, component layout, a parts list, and a photograph.

a. AND/OR Inverter

Logical Function. Each circuit will perform either the NOR function or the NAND function, depending upon the choice of voltage levels to represent logical "]" and "0".

Circuits Der Card. Four twowinput gates.
Four four-input gates.
Input Load. One standard logic gate.
Fan-out. Five standard logic gates and four pulse gate loads.
Fower Requirements. -12 volts: 20 ma for each output at 0 volt; $10 m a$ for each output at -6 volts.
+12 volts: none.
Iogic Diagrams. Figures 1 and 2 show the logic diagram ard pin numbers.
Logic Application. This is used for virtnally all logical gating functions. It will perform either the NOR function or the NAND function, depending upon the choice of voltage leveis to represent logical "1" and "O", as shown in the table below.

Function		Input Levels		Output Levels	
		"]"	"0"	"]."	${ }^{11} 0^{19}$
NAND	(Sheffer Stroke)	Pos.	Neg.	Neg.	Pos.
NOR	Siercc)	Nes.	Pos.	Pos.	Neg.

The fact that this circuit can operate in either mode is a consequence of DeMorgan's theorem of Boolean algebra, which states:

$$
\dot{A B}=\overline{(\bar{A}+\bar{B})}
$$

Or, in words: and AND function with levels of one polarity is mathematically equivalent to the $O R$ function with levels of the other polarity.

Input Signal Requirements. Positive level: 0 volts to -0.2 volts
Negative level: -6 volts to -12 volts
Imput impedance: 3900 ohms sink to ground stunted by 220 pf.

Qutpte Signal Characteristics. Positive level: 0 volt to -0.2 volts at approsimately 10 olims (saturated transistor).

Negative level: -12 volts at 620 ohms. Minimm dy/dt: 6 volts per microsecond (with same rise and foll on input signal).

Circuit Description. The circuit diagram is shown in Figure 3 and is essentially the same as that enployed by series 2 and 3 cards. The input diode configuration was chosen to optimize utilization of all components on the card. No provisions were made for increasing the fan-in of these gates, since that function can be duplicared more effectively with a matrix card.

The circuit consists of a simple amplifier preceded by several diodes connected with their anodes in comon at the input. If any of the input diodes is energized with -6 volts, that diode will be forward biased and the transistor will be driven into saturation. Consequently, the output terminal will be held to ground via the saturation resistance of the trarisistor". If all of the input diodes are either open-circuited or held within 0.2 volt of ground, the transistor will be in cutwoff and the output temminal will be connected to -12 volts via 620 ohms.

The 220 pf input capacitor serves to speed up the turn-on of the transistor. The 620 dm base shunt to ground serves to speed up the turn-off by providing a discharge path for the base-emitter diffusion capacitance; and to hold the transistor in cutwoff by providing a path for the collectorbase leakage current ($I_{c b o}$).

Trouble Shooting, The following table lists some troubles that may be encountered and suggests probabie causes and remedies.

Symptorn	Cause.	Remedy
Will not change state	Shorted transistor	Replace
	Open input diode	Replace

Interferes with operation of other cards wired to its input Shorted input diode Replace Construction Information. Figure 4 shows the component layout of the card and the table below lists the required components.

Quantity	Item
8	
24	2N404,
10	DR435
16	T.est Jacks
8	$6200 h m$ Resistors
8	$3.9 k$ Resistors
	$220 p$ (or 200pf) Capacitors.
	Transipads and Gircuit Boards.

t

b. Flip-Flop

Logical Function. Each circuit can function as an R-S Flip-Flop, J-K Flip-Elop, TElip-Flop, or shift register stage.

Crcuits per Card. Four
Input Ioad. One pulse gate.
Fan-Out. Four standard logic gates and four pulse gate loads.
Yower Requirements. -12 volts: 92 ma per card.
+12 volts: 2.5 ma per card.
Logic Diagtams. Figures 6 through 9 show the logic diagrams and pin numbers for various configurations.

Lozical Apnlication. A flip-flop is a logical binary storage element with two stable states, called 0 and 1 . It car have several different types of inputs, the purposes of which are to charge it from one state to the other. These conffgurations are:

J-K: A change from a logical 0 to a logical 1 on the J input will put the flip-flop in the 1 state regardless of its previous state. A change from a logical 0 to a logicai. 1 on the K input will put the flip-flop in the 0 state, regardless of its previous state. A change from a logical 0 to a logical 1 on both inputs simultaneously will cause the flip-flop to change to whichever state it was not in originally. A change from a logical 1 to a logical 0 on either input will lave no effect.

I: A change from a logical 0 to a logical 1 on the T irput changes the state of the flip-£lop. A change in the other direction has no effect.

R-S: The R-S conection is not normally used without attaching external pulse gates as described below. Not doing so results in a direct connection to the base of the transistors, and may result in damage to them.

Geted: The input gate to the set and reset functions of the flipflop has two inputs. Gne of these is sensitive to a logic level, the other only to a positive-going change in level. They perform a delayed AND function no, as follows: If the level input is at logical 0 , nothing happens. If the level input is at $\operatorname{logical} 1$, and the "change of level" input experiences a change from logical 0 to logical 1, the gate produces an cutput no, which will

Change the state of the flip-fiop if it is not already in the state being energized. A special feature of this gate is that it is not necessary for the "level" input to hold its value while the pulsed input is changing, but rather the gate responds to the value of the "level" input about 5 microseconds before the gate was pulsed. Additional gates (up to 5) may be paralIeled at the Base inputs to the flip-flop. These gates are not on the flip-flop card, but are available on the pulse gate cird.

Wher the circuit is in the state called 0 , the 0 output line will have a logical "1", and the 1 output line will have a logical "0". When the circuit is in the state called 1 , the 0 outpit line will have a logical "O" and the 1 output line will have a logical "1".

Irfut Signal Reguirements. Positive level: 0 volts to -0.2 volts.
Negative leve 1: -6 volts to -12 volts.
Input impedance: 0.001 uf $\ddagger 0$ ground
Minimurn dv/dts. 6 volts per usec., positive slope to trigger.

Qutput Signal Characteristics. Positive level: 0 vole to -0.2 volts (saturated transistor to ground).

Negative leve1: - 12 volts through 620 ohms.

Minimum dv/dt: 6 volts per usec., (with proper input signal).

Circuit Descriotion. The circuit diagram is giver in Figure 10.
Consider the flip-flop itself. Assume that Q_{1} is in the cutoff stata. The voltage drop across its collector resistor will be small, since no current is flowing through Q_{1}. For this reason, the voltage at: the collector of Q_{1} will be very near - 12 volts.

On the base of Q_{2}, there is a voltage divider from the collector of Q_{1}, through the $3.9 k$ resistor to the base of Q_{2}, and then through the $33 k$ resistor to +12 volts. If the collector of Q_{1} is at -5 volts (or more negative), the base of Q_{2} will be carried far enough negative to saturate Q_{2}. Since the current in a saturated transistos is limited oaly by the collector load resistor, most of the voltage drop will appear across the load resistor of Q_{2}, and Q_{2} 's collector will be only a fewtenths of a volt below ground. This, in turn, makes it possible for the 33 k resistor cornected to the base of Q_{1} from the positive bias
supply to hold Q ir the cutoff state, where it wis assumed to lere The circuit is therefore in a stabie state. Symerry considerations make it obvious that a state with Q_{1} "on" and Q_{2} "off" is similarly stable. In order to effect a transition from one stable state to another, it is only necessary to drive the "on" transistor into cut-off by applying a positive pulse to its base. This imonediately turns the transistor "off", and the positive pulse may be removed, Ieaving the circuit stable again. The means of forming this palse and gating it will be discussed.

A transistor in the cutoff state has the base-emitter junction reverse biased. The charge carriers have set up an interface across the junction, and the only transfer of charge occurs because of minority carrier leakage. When the biasing of this junction is reversed suddenly, a small time is required for the majority carriers to leave their previous position and migrate to the junction. The effect behaves like a capacitance. Since the time required to "charge" this capacitance measurably affects the response time of the fiip-flop, we put a small "speed-up" capacitor across the 3.9 k base reaistor in each leg. This allows the impulse to be transmitted through a capacitive voltage divider, thus reducing propagation time.

The series MAD-1 flip-flop have attached permanently to each input a pulse gate or steering gate. The diagram below shows the circuit and wave forms for these gates. Note that the steering gate will respond only to the coincidence of a logical "1" on the resistor input and a positive-going transition on the capacitor input. The resulting output is sufficient to cause a flip-flop to transfer states.

Using these gates, it is possible to construct flip-flops in various configurations comon in the literature. Most of the modifications are made by adding jumpers to the comector, These configurations are:

The J-K FIip Flop. If the resistor of a steering gate is conrected to the output of the same side of the flip-flop, the R input is changed to a K input, and the S input to a J input. These inputs have the property of gating themselves. If the flip-flop is in the 0 state and the J input is energized, the J gate fires, and the trigger pulsa causes a transition. If the flip-flop is in the 1 state and the I input is energized, the J gate does not fire, and no trigger pulse gets through. If now both inputs are energized at once, only the gate whose corresponding transition is "on" will transmit a turnoff pulse. The other will not respond. The result is that ambiguity of the $\mathrm{R}-\mathrm{S}$ type of cixcuit is eliminated.

The T circuit is wired by connecting the capacitoze from the J and K infuts cogether. The resulting action is that a positive..going tasnsition on this connction will transfer the flip-flop from whichever state it is in to the cther state. This is especially useful in conter circuits.

GATE CLOSED

GATE OPEN

If the recision of the steering gate is rot concected to the flip-ilop collectors, but instead is wired to the coilector of a £liffflop adjacent to it in a chain of similar circuits a pulse on the capacitor of this gate will cause the flip-flop to assume the state of the previous member of the chain. Since the operation of the gate does not depend on the immediate stece of the resistor input, but rather on the recent history (whether or not the capacitor is charged), it is possibie to pulse all of the capacitors in the chain at once, thereby causing tise contents of the chain to "nove over" one position. Tris is called a shift register.

This gate is the one referred to in the logical applications section as being useful for performing exterral logic functions.

Trouble Sheoting. The following teble lists some troubles that may be encountered and suggests probable causes and remedies.

Symptorn

WiII not change state

Wi.l1 not operate fast enough
1119
11
11

Cause
Q_{1} or Q_{2} shorted

Insufficient input dv/dt or ampiitude

Output loading for one side too great
"logical spikes" on inputs
-
Inaderuate power supply filtering

Gate resistor dis- Jumper on card connector connected
"Speed-up" capaci- Replace
tors wrong value

Remedy
Replace (Onmeter chack will disclose)

Gheck driving circuits, check de beta of trensistor

Use output buffer amplifier

Gheck with Scope. Redesigr Logic to eliminate

Dermiple alit figh current and inductive devices from porver bus

Construction Information. Figure 11 shows the componert layoul of the card, and the table below lists the required components.

Quantity
8
Item
2 N 404
DR. 435
Test Jacks

Quantity

8
8
8
8
8
8

Item

620 onm Resistors $1 / 2$ w 5% $33 k$ Resistors
3.9k Resistors
5.1k Resistors

200 pf or 220 pf Gapacitous
0.01 if Capacitors

Transipads and Circuit Board

4.

FIGURE 7. FLIP-FLOP SERIES MAD-I AS A J-K FLIP-FLOP

figure 11.

FIGURE 12.
C^{-}

c. Pulse Gate

1.ofical Function. Each circuit will perform the AND function for one steady logic level and one pulse consisting of a change of level from 0 to 1.

Circuits per Card. Ten.
Input Load. One standard pulse gate.
Fan-Out. To drive one flip-flop.
Power Requirements. None.
Logic Diagrans. Figure 13 shows the logic diagram. Figure 14 shows how up to 5 may be connected to the R or S input of a flip-flop up to five pulse gates.

Logical Application. This circuit is usually used when a simple gate is needed to allow a flip-flop to be either triggered or not triggered when an input pulse appears. It also allows data to be transferred into a flip-flop or group thereof synchronously with some event, as might be encountered in the loading of an entire register at once.

Input Signal Requirements. Positive level: 0 volts to -0.2 volts Negative level: -6 volts to -12 voits

Input impedance: 0.001 uf to ground when connected to a flip-flop.

Output Signal Characteristics. Short positive voltage spike for triggering flip-flops.

Circuit Description. The diagram for the circuit is given in Figure 15. Assume that the voltage at the input to the resistor R is -6 volts, and that the input to the capacitor C is being held at -6 volts. The capacitor will not charge. When the input to C experiences a positive transition from -6 volts to ground, the common terminal follows the capacitor to ground. This is still not sufficient to forward-bias the diode, so the gate does not conduct. When the input to R is at ground, the capacitor charges to 6 volts, with the negative side being the capacitor input terminal. When the input to the capacitor does go to ground. the common terminal of the gate also goes up by 6 volts, forward biasing the diode and emitting a short positive pulse, sufficient for triggering a flip-flop.

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedjes.

```
Sumpom
Gause
Emedy
Flip-ilop triggers on
Diode shorted
Replace
Either positive o二
negutive-going s=gnals
```

Ceuse
Diode shorted
Replace

Corstruction Iformationo Pigure le shows tre comporent leyout of tha card and the table below lists the requized components.

Quancity

10
10
10

Item

DR435
0.001 uf Cepacitors
5.1k ohm Resiatoone

Circuit soard

c

苄 MIT PERNISSIBLE SPACE FHOM EUGE OF CONDUCTOR TO EDGE OF BOARD

C

Iogical Eunction．Each circuit，upon receipt of a proper comand， will mechanically close two shielded，isolated circuits．

Circuis per Card．Four．
Invit Load．One standard logic gate．
Nan－Cut．Mechanical contacts capable of switching 125 milliamps，nor－ inductive。

Power Requirements．－ 12 volts： 50 ma standby， 48 ma for each relay energized． +12 volics： 3 ma．

士ogical Diagrams．Eigure 18 shows the logic diagram and pir mabers．
Logical Application．This 三s used in an analog scarning system where several voltages in sequence must be switched（for example）into one analog－to－digital converter．It is also used where it is impossible to connect sone common point between the circuit in guestion and the logic circuits．

Ingut Signal Requiremerts．Positive level： 0 volts to -0.2 volts． Negative level：-6 volts to -12 volts． Input impedance： 3000 oims sink to ground．

Dutput Signal Characteristics．Contact closure，two per circuit．Maxi． mum load 125 ma ron－inductive．Bounce：less than 1 millisecond at ary operating speed．Vibration noise： 10 millivolts for two miliiseconds．

Gircuit Description The diogram is shown in pigure 19．
This package contains four double－pole，single throw dry reed en－ capsulated relays with an estimated life greater than $10,000,000$ opera～ tions under a contact load less than 10 ma ．The relays are enpable of beirg operated at more than 1,000 Heatz，and at that speed wily have less than 500 microseconds of bounce．

In order that low－level signals may be accommodated by these relays， all of the conductors on the card that carry such signals are shielded． This is accomplished by adding guard bands（grounded conductors）on botli sides of the lead in question，and by using a double－clad board with the copper on the other side left intact and grounded．

The packege contains ali of the necessary circuitry to drive tre te． lays，and requires only standard logic levels to activate them．A posjetive Ievel on the input closes the contacts．A two－input AND gate is built in to simplify synchronization of multiple circuits．

c

6

Installation. Because of the size of the recd relays, it is not possible to mount these cards with the connectors on $5 / 8^{\prime \prime}$ centers, as is customary. By alternating them with other cards, however, there will be sufficient room to use $5 / 8^{\prime \prime}$ centers.

Trouble Shooting. The following table lists some troubles that. may be encountered and suggests possible causes and remedies.

Sympton

Relay contacts remain closed

Cause
Shorted 2N659 Contacts welded
closed by large
current pulse

Remedy
Replace
Replace - insure that relay is operating within its ratings

Replace
Replace

Relay at end of life

Construction Information. Figure 20 shows the component layout of the card and the table belov' lists the required components.

Quantity

4
4
8
4
8
4
8
4

10
4

Item
2N659
2N404
DR435
IN2069
3.9k Besictors

1k Resistorj
33k Resistors
100 ohm 5 pexcent. 1 watt Pesistors
Eyelets, installed
Reed Relays
Transipads \& Circuit Board
-。

FWURE PG. REED RELAYS SERIES MAD-I

©
e. Pulse Gate Driver
> logical Function. This circuit is used to extend the drive or fan-out capabilities of a circuit card.

> Circuits per Card. Four.
> Input Load. Two standard logic gates.
> Fan-Out. 25 standard logic gates and 25 pulse gates.
> Power Requirements. -12 volts: Maximar of 6 ma per circuit, depending on losding.
> +12 volts: 2.5 ma .

Logic Diagram. Figure 22 shows the logic diagram and pin numbers.
Logical Application. In general, when pulse gates are used to synchronize a large number of simultaneous operations, as in shifting of regisw ters,all of the gate capacitors are connected to a single line. This Iine must be held at -6 volts or -12 volts, and then brought $t o$ ground. When this transition takes place, a large amount of current flows, much more than a standard card can handle. This circuit is especially designed to drive a large number of loads.

Input Signal Requirements. Positive level: 0 to -0.2 volts.
Negative level: -6 volts to -12 volts.
Input impedance: 2000 ohms sink to ground - shunted by 440pf.

Output Signal Characteristics. Positive level: 0 volts to - 0.2 yolts through a saturated Eransistor.
Negative level: -12 volts at 200 ohms.
Circuit Description. The circuit is shown in Figure 23.
Although similar to the circuit described in Technicai Note 168, the output transistors of this package have been changed to a type with an extremely low RCE (SAT). The circuit operates by connecting the output either to the minus 12 volt line, or to ground. Both paths are through saturated transistors, and therefore ones with low saturation resistance are more desirable.

It was found necessary in some applications to limit the output swing of the package to the region between -6 volts and ground, rather than allowing it co go all the way to -12 volts. A resistor to accomplish this

Fas beer brought out to the comector. To limit the output to 6 rolte, this must be jumpered to the adjacent pin, which is ground.

When the input signal is negative, the 2N404 transistor is saturated, and the collector is at ground.. This turns off the upper 2 N 659 . The lower 2 N 659 is on because it is also connected to the negative input. This effectively shorts the output terminal to ground through the saturated lower 2 N659. The 2 N559 is a transistor with special characteristics designed so that the collector saturation resistance is very low, on the order of 300 milliohrs.

When the input is positive, the $2 \mathbb{N} 404$ is cut off, as is the Jower 2N659. The upper 2 N559 is on, and the output is shorted to the -12 volt supply through the upper 2N559. To limit the negative level of the output to -6 volts, connecting the low side of the resistor shown prevents the voltage at the base of the upper $2 N 539$ from exceeding -6 volts, thereby limiting the collector。

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remediee.

Symptom
Oitput remains at ground
Output remains negative

Cause
Shorted 2N659 (lower)
Shorted 2N404
Shorted $2 N 659$ (upper)

Remedy
Replace
Replace
Replace

Construction Information. Figure 2 ' shows the component layout of the card and the table below lists the required components.

Quentity
8
4
5
8
8
4
8
8

Item

- $2 N 559$

2N404
Tect Jacks
1.5k Resistors

33k Resistors
200 Ohm Resistors
4.3k Resistors

390 pf Capacitors
Transipads and Circuit Board

C

c

FIGURE23 PULSE GATE ORVER SERIES MAD"

半 MII. PERAISSIBLE SPACE FROM EDGE OF CORDUCYOR TO EDGE OF ROARD
f. One-Shot

Logical Function. This circuit is used as a timing or delay element. Two circuits may be connected as an oscillator.

Circuits per Card. Two
Input Load. One pulse gate.
Fan-Out. Four standard logic gates and five pulse gates.
Eover Requixements. -12 volts: 60 ma per circuit.
+12 volts: 2 ma per circuit.
Iogic Diagram. Figure 26 shows the logic diagram and pin numbers.
Logical Application. This circuit is used wherever a certain fixed time must be marked off, either to stop an operation after a certain time, or to start one after a delay. Two may be wired to sequentially start each other after their inherent delay has ended, thus making an oscillator. Basically, it consists of a standard flip-flop which is set by external logic circuitry, and which resets itself at the end of its characteristic time. This time may easily be varied externaliy.

Input Signal Requirements. Positive level: 0 volts to -0.2 volts. Negative level: -6 volts to -12 volts.

Input impedance: 0.001 uf to ground. Minimum dv/dt: 6 voits per microsecond.

Output Signal Characteristics. Positive level: 0 volts to -0.2 volts through saturated transistor.

Negative level: -6 voits to -12 voIts.
Circuit Description. The diagram is shown in Figure 27.
This circuit is identical to the modified one-shot described in Technical Note 168 . Since our applications involve changes of level, rather than pulses, the trigger output has been left off. Times from 5 microseconds to 5 milliseconds are available using capacitors on the card, and times up to several seconds may be generated with external capacitors, provided that they are low leakage types. An integrally mounted potentiometer is used for fine control of delay time.

Initially, transistors Q_{1} and Q_{6} are conducting, all others are cutoff. If the input flip-flop is wired as a normal J-K and a positivegoing pulse is applied to the J input, the flip-flop changes state, cutting
off Q_{1}, and turning on Q_{2}, which cuts off Q_{6}. This allows whichever timing capacitor is wired in to charge towards a terninal voltage determined by R_{1}, R_{2}, and to a small extent the 1 k potentiometer.

When the voltage across the timing capacitor exceeds that at the emitter of Q_{3}, (set by the trimpor), the base-emitter junction of Q_{3} is suddenly forward-biased, and Q_{3} begins to con-. duct.
Q_{3} then turns on its complement transistor Q_{4}, which turns on Q_{5}, clamping the collector of Q_{I} to ground, thereby resetting the flip-flop.

Triggering diodes CRI and CR2 from both the timing circuit and the discharge transistor Q_{6} help achieve faster switching of the threshold circuit. These diodes enable the circuit to switch rapidly even when a large timing capacitor is being used.

The restart mode of operation permits the capacitor to be discharged and the timing cycle restarted without resetting the flipflop.

The timing cycle may be ended synchronous to an external pulse train by leaving out the jumper from pin 5 to 17 or 21 to 33 , and by attaching the pulse train to pin 1.5 to 31.

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Symptom

Flip-flop will not change state when commanded.

```
Flip-flop sets but will not
```

reset itself.

Flip-flop sets but will not reset itself.

Flip-flop sets but will not reset itself.

Cause

Shorted Q_{1} or $Q_{2} \quad$ Replace

No jumper from 5 to Include
17 or 21 to 33.
Shorted $Q_{6} \quad$ Replace

No capacitor wired Wire one in in

Remedy

Quantity	Item
12	2N404
2	2N1302
10	DR435
2	1N2069
2	1 k ohm Trimpot Series 275
4	Test Jacks
6	3.9k 1/4-watt Resistors
2	3.9k 1/2-watt Resistors
4	$33 \mathrm{k} \mathrm{1/4-watt} \mathrm{Resistors}$
8	620 ohm 1/2-watt Resistors
6	5.1k 1/4-watt Resistors
4	$4.7 \mathrm{k} 1 / 4$-watt Resistors
4	2.7 k 1/4-watt Resistors
2	10k 1/4-watt Resistors
6	. 001 uf Capacitors
6	150 pf Capacitors
4	200 pf or 220 pf Capacitors
4	2 uf Electrolytic Capacitors
2	. 018 uf Capacitors
2	0.018 uf Capacitors
2	Jumpers
	Transipads and Gircuit Roard

7

FIGURE 27. ONE-SHOT SERIES MAO-1

FIGURE 29.
3

g。 Indicator/Amplifier

Togica! Erwation This card is used as a buffer amplifier to isolate two circrits, or to provide sufficient drive from a logic level to light a small indicator lamp.

Circrits per Card. Sixteen.
Impui Ioad. One-haIf standard logic gate.
Paŋ-0i上. Then used as an amplifier: Five logic gates and/or five pulse gates.

When used as an indicator driver: One No. 344 incandescent lamp.

Bower Requirements. -12 volts: 20 ma for each output at ground. 10 ma for each outpat at - 5 volts. +12 volts: 5 ma.
logic Diagrams. Figure 30 shows the logic diagram and pin numbers for use as an amplifier.

Figure 31 shows the logic diagram and pin numbers for use as an indicator driver.

Logical Appifcation. Used as a buffer amplifier with an inverted output, Useful for logical inversion and circuit isolation, its application is more suited for indicator work, since the high impedance amplifier is more noise-free.

Input Signal Requirements. Positive level: 0 volts to -0.2 volts Negative level: -6 volts to -12 volts. Input impedance: 8200 ohm sink to ground.

Quppt Stgrel Charectstistics. Positive level: 0 volts to -0.2 volts througt, saturated transistor.

Negative level: -12 volts through external load resistor or light from one No. 344 or 1869 incandescent lamp.

Circit Description. The schematic diagram is shown in Figure 32.
This as a simple transistor inverter. (NOIE: COLLECIOR LOADS SHOUTD NOT DRAN MORE THAN 15 ma . At any higher current, the transistor may mot be aaturated).

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Symptom Cause Remedy
Light remains lit.
Shorted transistor.
Replace
Light will not go on Insufficient drive.
Check input level; if OK, replace transistor with higher bet̃a unit.

Construction Information. Figure 33 shows the parts layout. The following table lists components necessary for construction.

Quantity
16
16
16

Item

2 N 404
8.2k 1/2-watt Resistors

33k $1 / 4$-watt Resistors Transipads and Circuit Board.

WOTES:
ALL TRABSIgTORS $2 N 404$
6.2K Nesistors 1/2 w.

33K RESistons 1/4 w.
\&: THESE RES!STORS REOURED
OA Elecults USED as

* $\because 1$ PR PMISEIBLE SPACE HKOM EUGE OF CONDUCTOR TO EUGE OF BUARD
7

FIGURE 34.

h. Universal Counter

Logical Eunction. Counts input pulses in any radix (number base), up to 15 and stores the count.

Circuits per Card. One
Input Load. Two pulse gates for data, one pulse gate for reset input.
Fan-Out. From register storing count: Three logic gates and/or five pulse gates.

From reset/carry line: Five logic gates and/or twenty-five pul.se gates.

Power Requirements, -12 volts: $120 \mathrm{ma}$. +12 volts: 5 ma.

Logic Diagram. Figure 35 shows the logic diagram and pin numbers.

Logical Application. Most counter cards are set to count in only one radix or number system. A decimal card, for example, will count to 9 and then reset. This card will count to any number up to 15 before resetting, and the number can be set with jumpers on the card. At the end of the count, a 4 -microsecond long pulse with a fan out of 25 gates is emitted from the "carry out" line. A reset input permits premature resetting of the stored comnt. In addition to the reset output, the contents of the count register are also available. Multi-stage counters are simplified by the presence of the special carry line for casading.

Input Signal Requirements. Positive level: 0 volts to 0.2 volts. Negative level: -6 volts to -12 volts Input impedance: . 001 microfarad to ground. Minimum dv/dt: 6 volts per microsecond. Minimum pulse width: 4 microseconds.

Output Signal Characteristics.
I. Stored value outputs. Positive level: 0 volts to -0.2 volts. Negative level: -6 volts to 12 volts. Output impedance: Positive level.: Through saturated transistor to ground.

Negative Level: 620 ohms to -12 volts.

II. Reset/carry line output: Pulse

Positive level: 0 volt to -0.2 volt.
Negative level: -12 volts.
Pulse duration: 4 microseconds.
Pulse polarity: Positive going from the negative line level.
Minimum dv/dt: Rise: 60 volts per usec.
Fall: 6 volts per usec.
Output impedance: 0.3 dams to ground.
Circuit Description. The schematic diagram is shown in Figure 36.
This is a simple, four stage binary counter consisting of four T-input flip-flops, wired in cascade. A gate circuit on the pulse input looks at the contents of the counter. When these conterts reach the value set by the patching on the rear conector, the next pulse is prevented from reaching the counter input, and is instead diverted to trigger a four microsecond one-shot which resets the counter by grounding the collectors on the " 0 " side of each flip-flop through suitable isolating diodes. This output is available to trigger flip-flops or other counters. An extra input directly to the one-shot allows resetting of the counter at any time.

Application Notes. To set the radix of the counter, jumpers should be placed on the rear connector as shown in the logic diagram, Figure 35. An output frofeach counter stage representing the binary value of the counter is available on the pins shown. THESE OUTPUTS SHOULD NOT BE USED FOR ANY LOGIC EXTERNAL TO THE COUNTER CARD. Subtract one from the binary value of the desired radix and patch this into the pins labelled "AND gate inputs".

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Symptom
. Cause

Reset pulse occurring on every input pulse.

Reset pulse occurring on every input pulse.

Insufficient input dv/dt.
\qquad
Remedy
Check "AND" gate patching。

Shorted gate transistor - replace.

This card is more susceptible to this problem than many. Increase dv/dt wirh comparator card or high-impedance amplifier.

a.

6
.

Covetwation Information Esgure 37 shows the component 1ayout The following tabie lists the parts necessary for construction.

Quantity
10
1
19
7
9
1
9
11
1.

9
2
10
8
2

11

Item

$$
2 \text { N404 }
$$

2N659

$$
\text { DR } 435
$$

Test Jacks
33k 1/4-watt Resistors
33k 1/2-watt Resistors

$$
620 \text { ohw } 1 / 2 \text {-watt Resistors }
$$

$$
3.9 \mathrm{k} \mathrm{l/2-vatt} \mathrm{Resistors}
$$

$$
\text { 3.9k } 1 / 4 \text {-watt Resistors }
$$

$$
5.1 \mathrm{k} 1 / 4 \text {-watt Resistors }
$$

1k 1/2-wate Resistors

$$
0.001 \text { uf Capacitors }
$$

$$
200 \text { or } 220 \text { pf Cepacitors }
$$

$$
500 \text { pf Capacitors }
$$

Transipads and Circuitt Board Jumpers

FIGURE 35 UNIVERGAL COUNTER SERIES MAD-I
-

1

* A1: PERMISSELE SPACE \&FORA t UGE OF CUNDUCTOR TO EDGE UF BOARD
-

Figure 38.

Iogical Furtion. This card is a convenient bord on whinh diodes, resistors, or cher components may be mounted. It is 1aid out to permit comecting up to 16 input lines to any, some, or all of 16 catput Iizes.

Card Iavest Sizteen by sixteen square matrix.
Iogic Diagram. Figure 39 shows the logic diagram and pin rambers. This diagram is so designed that copies of it may be used to indicate the component layout used in any given application.

Logical Application. A matrix may, as an example, be used for converting data from cre code format to another. A 16×16 matria, in conjurtetion with amplifiers, may be used to assemble up to 16 characters as unique combinations of ap to 16 lines. In other applications, it may be wsed to mome diodes for large AND or OR gates, and an amplifier placed at the output to restore logical levels.

Circuir Description. Components as desired are monted on the board with their major axis perpendicular to the card. Horizontal lines are on the toy of the caud, vertical ones on the botton. The lines on top are brought electrically through the board with eyelets, ard from thene to the comentor. One lead of each component is soldered to the conductor on the tor of the board as the lead passes through. The other lead is solocred to a couductor on the bottom of the board.

Trowie Shooting. Solder joints on the bottom of the board sometimes overm fiow the boundaries of the printed conductor and short to adjecent conductors. (Some close spacing exists in various places.) Gospection with a magnifying glass generally reveals otherwise mysterious short circuits.

Custruation Informetion. Figne 40 shows the conduaton layout of the botfom side of the cards. There are no components suprited, as these vary with application.
5

MODULE CARD LOCATION

$$
f^{-}=-1
$$

FUNCTION

$$
+\frac{1}{S}=\frac{1}{+}
$$

FIGURE 39. 16×16 MATRIX SERIES MAD-1

-

米 MIA. PERMISSIELE SPACE FROA EDGE OF CONDUCTOR TO EDGE OF BDARD
\bullet

FIGURE 41
-74.

Losical function. The coil driver provides a means of switching the current in devices requiring up to $11 / 2$ amperes of current, with control supplied by ordinary logic levels. The controlled device should have its own power supply.

Circuits per Card. Five.
Input Load. One standard logic gate.
Fan-Out. Not applicable in the normal sense. See Logical Application.
Power Requirements -12 volts: 12 ma for each energized circuit.
+12 volts: 12 ma at all times.
Logic Diagram. Figure 42 shows the logic diagram and pin numbers.
Logical Application. This package was originally intended for driving the magnets associated with a paper tape perforator, such as the Teletype BRPE. It is still used in this application, and has found further use driving relays and other high current devices. It is also used to control logic circuits where a line capable of handing large logic curants must be grounded.

Input Signal Reguirements. Positive level: 0 volts to -0.2 volis . Negative level: -6 volts to -12 volts. Imput impedance: 3900 hms sink to ground shunted by 220pf (standard AND inverter).

Qutput Signal Characteristics. Positive level: 0 volt at approximately 0.2 dms (saturated transistor)
Negative leve1: Depends on external supply.
Maximum allowd: -60 volts.
Maximum current capacity to grownd:
Absolute maximum: 3.5 amperes
Recommended maximum: 1.5 amperes.

Circuit Description. The circuit diagram is shown in Figure 43. A standard NAND gate is used to drive an intermediate and a power transistor wired in a modified Darlington configuration. The 2 N1039 transistor is rated for operation at 3.5 amperes collector cucrent, with a maximun voltage of 60 volts. The heat dissipation facilities on the card in free air are not adequate to maintain a safe junction temperature at this current. Therefore
recommended current is 1.5 amperes per sircuit. Since considerable power is dissipated during the transitions from cutoff to saturation and vicew versa, further derating of current carrying capacity should be done at frequencies above 1000 cycles per second。 Fercentage of "on time" (duty cycle) is not limited.

An arc suppressor diode is brought from the collector of cach transw istor to a point which should be connected to the common negative terminal of the power supply if the load contains inductive components.

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Symptom

Oucput remains grounded.

Output will not go to ground.

Interferes with operation of other cards wired to it.

Cause

Shorted 2N1039 or 2 N398。

Shorted 2N404. Replace

Shorted DR435.
Replace

Construction Information. Figure 44 shows the component layout of the card and the table below lists the required components.

Quantity	Ttem
5	$2 N 1039$
5	$2 N 398$
5	$2 N 404$
5	$1 N 2069$
10	DR435
5	Test Jacks
5	Wakefield Nr205 Dissipators, for 2N1039s s
5	$10 k 1 / 4-$ watt Resistors
10	$33 k 1 / 4-$ watt Resistors
5	$3 k 1 / 4-$ wati Resistors
5	$3.9 k 1 / 4-$ watt Resistors
5	$1 k 1 / 2$ watt Resistors
5	220 Cor 200)pf Capacitors
5	$500 p f$ Capacitors
6	Jumpers
	Transipads and Circuit Board

c

$-\frac{1}{4}$

108141

(\%)
 $\rightarrow \infty$

N

5-1ㄴ등
4

$$
(\rightarrow)(?)(\sqrt{7})
$$

$$
5
$$

L-

(1)
(1)

$4 \frac{1}{8}$

k. Comparator/Gate

Logical Eunction. The comparator section sets or resets a flip-flop depending on whether an analog input voltage is more positive or more negative than a reference input. The gate section is two standard AND-OR inverter circuits.

Circuits per Card. Two comparators.
Two three-input gates.
NOTE: detailed information about the gates may be found in the section on the AND/OR inverter.

Input Load. Analog voitage input.
Fan-Out. Four standard logic gates and/or five standard pulse gates.
Power Requirements. -12 volts: 40 ma per comparator, plus
20 ma for each gate output at 0 voit.
10 ma for each gate output at -6 volts.
+12 volts: 20 ma for each comparator.
Logic Diagrams. Figure 46 shows the logic diagram for the comparator section. Figure 47 shows the logic diagram for the gate section.

Logical Application. Whenever a non-standard signal, such as a contact closure or pulse from a magnetic pickup will be used as a logic signal, this circuit will "square it up" and provide completely compatible levels and rise-times. For timing appications, it is useful for squaring the output of sine wave oscillators. A reference level is established either with the internal trimpot or externally. Crossings of this level. by the analog input signal cause a change of state of the output flip.. flop.

Input Signal Requirements. Analog input: Any voltage between - 12 and +.12 volts.

Any wave shape.
Any frequency up to 100 kc .
Jmpedance: 10,000 ohms at dc. 1,500 ohms at 100 kc 。

Reference input: Any dc voltage between +12 volts and -12 volts. Impedance: 10,000 ohms.
Input hysteresis: 0.01 volts at dc. 0.06 volts at 100 kc .

Cutput Signal Characterisitics. Positive level: 0 volt to - 0.2 volt.
Negative level: -6 volts to -12 volts.
Minimum dv/dt: 6 volts per microsecond.
Circuit Description. The circuit diagram is shown in Figure 48.
Normally, a Schmitt trigger circuit would be used in this application. Such a circuit will sometimes display the difficulty that, over a small region near the transition point, the output follows the input signal. This would not guarantee a minimum rise time For this reason, the classic Schmitt circuit has been modified for this card.

The input signal is resistively mized with the reference input to produce a single d-c level. This level is applied to an amplifier with a gain of 10 and a d-c reference of +4 volts. The output of this drives a complementary inverted emitter-follower for increased current gain. This stage can either inject current into or rob current from the base of the first flip-flop transistor, changing its state. Two parallel reversed diodes provide conduction except around 0 volts, where the impedance of the combination increases, thus decoupling the flipwflop from the amplifier.

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Symptom
Output will not change state.

Cause
Input d-c leve1 not crossing trigger point.

Output will not change state.

Circuit oscillates.

Cause	Remedy		
Input d-c level not crossing			
trigger point.			Jumper Eref from
:---			
trimpot to refer-			
ence input. Adjust			
for proper opers-			
tion.			

Construction Information. Figure 49 shows the component layout of the card and the table below lists the required components.

C
c

Comparator/Gate Card

Single Glad.
Regular Dimensions.
No Special Instructions.

Quantity	Item
8	2N404
2	2N1302
10	DR435
2	Wakefield NF205 Heat Dissipators (for 2N1302's)
6	Test Jacks
2	10k ohm Trimpots
6	3.9k Resistors
8	620 hm Resistors
4	33k 1/4-watt Resistors
2	2k Resistors
2	15k Resistors
2	Jk 1/4-watt Resistors
2	3k Resisiors
4	10k 1/4-watt Resistors
2	10k 1/2-watt Resistors
2	. Coluf Capacitors
4	200 (or 220) pf Capacitors
2	500pr Capacitors
	Transipads and Circuit Board

(6.

(t

1. Ripple Register

Logic Diagrams. Figure 51 shows the diagram used to symbolize the circuit when used in applications. Figure 52 shows the internal logic of the card.

Logical Application. A ripple.register is a self-shifting register. Data may be loaded into any point, and it will automatically shift until it assumes a position adjacent to previously loaded data. In order that the resister be logically able to distinguish a true data character from an empty stage, a special control bit is attached to each stage. If this bit, stored in an integral flip-flop, is a logical 1 , the character is valid. If this bit is zero, the stage does not contain data, and previous stages are instructed to shift true data down to fill up empty positions.

Input Signal Requirements. Fositive Ievel: 0 voltsto -0.2 volts.
Negative level: -6 voits to -12 volts.
Minimum dv/dt: 6 volts per microsecond.
Input impedance: as follows -

Data inputs par. and ser.
also C in
5100 ohms

Sense in	Clock in	Ioad	$\frac{\text { Reset C }}{3900 \text { ohms }}$3900 ohms 220 pf
220 pf	0.005 uf to ground	to ground	

Oitput Signal Characteristics. Positive level: 0 volts to -0.2 volts. Negative level: -6 volts io - 12 volts.

Circuit Description. The circuit diagram is shown in Figure 53.
Data: Four flip-flops on each card are wired in a standard shiftregister configuration. These flip-flops may be loaded with parallel, complementary data from an external source. The gates for this are mounted on the card. A common load line puises all of these gates at once. During shifting, other gates (also on the card) receive a shift pulse from the card's control logic section. These pulses load the data from the previous stage into the stage in question, thereby producing a sinift.

In the collector circuit of each data transistor is a No. 80 Briteeye lamp, bypassed with a 220 -ohm resistor. This light is mounted in a black shading bracket at the end of the card. The bracket is designed to mount flush with the front panel of the module in which the card is mounted, and therefore serves as an indicator showing the contents of the register. The lamp is rated at 3 volts, 8 ma . The bypass resistor allows operation to continue unaffected if the bulb ourns out.

The data input and output terminals of the data section are wired so that putting groups of these cards in a register is considerably simplified. A uniform manner of wiring, very simple in production and trouble shooting, is thereby insured.

Control: One flip-flop is used to store the control bit that indicates to the module logic whether or not the contents of the card are valid. This bit is set to 1 when a character is loaded. In order to inrlicate to the card that a valid character is being loaded, the mesistor labeled SET C is grounded, and the load bus is then pulsed。 (If valid characters will always be loaded, the resistor may be wired to ground.) This gates the load pulse into the flip-flop, and C is set. A shift pulse shifts the contents of C, compiemented, to the C bit of the next card down the line, and loads the C bit from the previous card.

A line called the SENSE line goes through each card. The purpose of this is to report to the card the fact that there are points downstream in the register where an invalid character is stored. This fact causes a shift. The sense line coming from downstream is wired to the SENSE IN terminal, where a reversed OR gate (for positive levels) OR's it with the contents of C. This is then inverted twice (once for logical
reasons, once to maintain levels), and is then sent out to SENSE CUT to go to the next card. The next card, therefore, sees a positive sense line if any card downstream from it is empty.

If the sense line in a given card is positive, it indicates that a shift is necessary. The sense line is therefore used to open a regular AND-inverter gate, which allows the next module clock pulse to generate a shift pulse in the card. Only those cards upstrean from an invalid character will shift at this time.

When the module is being used as a serializing register, it is necessary to cause a shift after the last character jn the register has been used by the system. This is done by externally pulsing the RESET C gate of this character. This immediately "annihilates" the character by making the logic consider it invalid. The register shifts on the next clock pulse.

Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Symptom
Register does not display proper contents.

Register does not display.proper contents.

Register does not display proper
contents.
Register does not display proper
contents.
Register: stops
rippling at
defective stage.
Register stops
rippling at
defective stage.

Cause
Burned-out No. 80 lamp.

Not loading properly.

Shorted transistor in Replace. data flip-flop.

Valid character bit Ground SET C not loaded.

Shorted. transistor Replace. in SENSE line.

Proper negativegoing clock pulse not arriving at card.

Remedy
Replace.

Check rise-time of load pulse.
terminal.

Check and repair.

Construction Information. Figure 54 shows the component layout on the circuit board. Figure 55 is a mechanical drawing of the lamp bracket holding the indicators. The table below lists the required component.

Quantity

4
14
24
1
14
7
4
22

1

Item
Ca1-Glo No。 80 Lamp and Brite-Eys C Holders 2N404
DR435
Test Jack
$33 k 1 / 2$-watt Resistors
620 ohm Resistors
470 ohm Resistors
5.1k Resistors
3.9k Resistors

1k Resistors
220 ohm Resistors
0.001 uf Capacitors

220 pf Capacitors
Transipads and Circuit Board
Lamp Bracket

FIGURE 53 RIPPLE/SHIFT REGISTER CARD

$$
\begin{aligned}
& \text { I. AMP HOLDER } \\
& \text { MATERIAL BLACK LUCITE }
\end{aligned}
$$

FIGURE 5 .
-

Figure 56.

m. Ripple Spacer Card

Logical Function. To use a ripple register with fewer than the design number of stages, certain jumpers must be wired on the connectors of the omitted cards. In addition, the panel cutout must be filled with a blank spacer matching the indicator bracket. This card fulfills those functions.

Power Requirements. None.
Circuit Description. The following pins are jumpered on the card.

$$
\begin{gathered}
3-4 \\
5-6 \\
7-8 \\
9-10 \\
11-12 \\
13-14 \\
15-16 \\
17-18 \\
19-20 \\
32-33
\end{gathered}
$$

Construction Information. The dummy lamp bracket conforms to the same mechanical drawing as the proper bracket shown in Figure 55, except that holes for the bulbs are not drilled. Figure 57 shows the layout of the etched conductors on the card.
\bullet

FIGURE 57.
$-100-$
\bullet
-

n. High Impedance Amplifier

Logicsl Eunction. Each circuit performs the logical inversion, or NOT iunction, and also acts as a noise-rejecting amplifier.

Gincuits ner Gaid. Sixteen.
Irrnt rear: Cow quarter of one logic gate.
Eanout. Eive logic gates and/or five pulse gates.
Pomer pecuirements. -12 volts: 20 ma for each output at 0 volt.

- 10ma for each output at -6 volts.

Oma for each output at. -12 volts.
+12 volts: 1.1 ma per circuit.
Logic Diagram. Figure 58 gives the logic.diagram and pin numbers.
Looical Application. This amplifier is primarily used to generace the Boolean NOT or inversion function. It is also used as a buffer between the oitput of s diode matrix or other passive logic system, and further logic either active or passive. Its high input impedance, combined with optimum noise rejection, makes it ideal for this application. For a seven-input AND gate, for example, the diodes would be mounted on a matrix card or termiral board and the amplifier would be used to bring the output of the gate to staudard levels and impedances.

Input Signal Requirements. Positive level: 0 volt to -0.2 volt.
Negative leve1: -6 volts to -12 volts.
Input Inpedance: 16,000 ohms.

Input noise rejection: around ground: 2 voles. around -6 volts: 3 voles.

Output Signal Characteristics: Positive level: 0 volts to -0.2 volts at approximately 10 ohms.

Negative leve 1: -12 volts at 620 ohms.
Circuit Description. The circuit diagram is shown in Figure 59. This consists of a simple grounded collector amplifier feeding directly into a simple inverter. The circuit constants have been arranged so that the output will begin changing from -6 volts when the input passes -2.5 volts
going negative, and will reach 0 volts when the input passes -3 volts. Trouble Shooting. The following table lists some troubles that may be encountered and suggests probable causes and remedies.

Quantity
32
16
16
16
16
16
16

Item
2N404 Transistors
620-ohm, 1/2-watt, 5-percent Resistors. 1000-ohm, 1/4-watt, 5-percent Resistors. 16,000-ohm, 1/4-watt, 5-percent Resistors. 2000-ohm 1/4-watt, 5 percent Resistors 10,000-ohm, 1/4-watt, 5 percent Resistors. Test Jacks.
Transipads and Circuit Board.

FIGURE 61.
()
o. Oscillator/One-shot

Logical Function. This circuit is a universal timing device. It can be used as a free-running pulse oscillator, a keyed pulse oscillator, or a one-shot time delay generator.

Circuits per Card. Two.
Input Load. Flip-flop inputs: One standard pulse gate.
Oscillator key inputs: One standard logic gate.
Fan-Out. Plip-flop and oscillator outputs: Four standard logic gates and/or
five standard pulse gates.
power Requirements: -12 volts: 60 ma per circuit.
+12 volts: 9 ma per cilcuit.

Logic Diagrams. Figures 63 through 65 show the logic diagrams and pin numbers for all three applications.

Iogical Application. When wired as a free-running oscillator, it can be used as a clock for the generation of sync pulses for a module or system. Jt may also be used as a pulse generator for design or trouble! shooting procedures. An external terminal is brought out for the variation of running frequency, and this can be used to operate the card as a voltage-controlled oscillator (VCO).

When wired as a keyed oscillator, it can be used as a clock for some intermittent or controlled function, whenever a string of pulses must be turned on and off. A flip-flop built into the card is most often used to control the oscillator, but logic levels from any source may be used.

When wired as a one-shot, it can be used for all time-delay and timeaperture applications explained in the description of the one-shot card.

Input Signal Requirements:

Positive level: 0 voltsto -0.2 volts.
Negative level: -6 voIts to -12 volts.
Input impedance: Flip-.flop: $0.001 \mu \mathrm{f}$ to ground.

Oscillator control input: 3.9 k ohms to ground-positive leve1 suppresses oscillation.

Minimum dv/dt: For flip-flop: 6 volts $\mu \mathrm{sec}$.
Erequency control input: 10,000 ohms.

Output Signal Characteristics.

Positive level: 0 volts to -0.2 voltsat approximately 10 ohms.
Negative level: -12 volts at 620 ohms.
Minjmum dv/dt: 6 volts per microsecond.
Circuit Description. The circuit diagram is shown in Figure 66. Onehalf of this circuit is a standard flip-flop as described elsewhere. There are no internal connections to the other half of the circuit. The operation of the flip-flop will not be described here.

Consider for the sake of the description that, originally, the timing capacitors are discharged (-12 volts on either plate), and that Q3, 4, 5 , and 6 are all cut off. The timing capacitor charges from the source voltage (internai or externa1) towards ground. The capacitor "sees" 6.2 volts less than applied because of the action of the zener diode, which is now acting in the reverse direction. This voltage is applied to the emitter of the unijunction transistor $Q 6$, which is not conducting. When the emitter-base 1 voltage of the unijunction reaches the chatacteristic voltage of that device, it begins to conduct, and starts to discharge the timing capacitor. When it conductis, however, this pulls the base of Q3 negative, and it conducts. This turns on Q4, allowing Q5 to conduct. Q5 discharges the timing capacitor much more quickly than $Q 6$ would be able to do unaided.

Wher Q3 conducts, it brings pin 17 to ground. If pin 17 is jumpered to pin 16, giving Q3 a 620-ohm collector load, an output pulse of 5 to 10 microsecond width and of standard logic levels will be produced.

If pin 15 is grounded, Q4 turns on, turning on Q5. This low-resistance path appears across the timing capacitors, preventing them from charging. The circuit therefore does not oscillate. 'This point may be tied to any logic level for use in keying the oscillator. The flip-flop $0: 2$ the card is especially useful for this function, since the oscillator may then be turned on and off by pulses.

NOTE: The first cyole of the oscillator will be longer than the cthers wien it is keyed "on". When the oscillator is not ruming, the timing capacitors discharge fully. 0\% the second and subsequent cycles of cperation, however, the unijunction transistor stops the dischargjng procedure before completion. The difficulty may be minimized by increasing the charging voltage. When this is done, the incomplete discharging is no less, but it is a smaller fraction of the total voltage, and has a correspondingly smaller effect. Increasing the charging voltage is accomplished by shorting out the zener diode, and by making the timing capacitor smaller.

If pin 17 is connected directly to the collector of the flip-flop, and the extra load resistor on pin 16 is omitted, one-shot action will occur as follows:

If Q1 is jumpered to pin 17 and the flip-flop is in the reset state, then Q1 will be conducting, and the collector of Q3 will be at gromed. Q4 will therefore be on, and the oscillator stopped. If the filip-flop is now set, Ql allows Q4 to tum on and one timing cycle is initiated. At the end of that cycle, Q3 is turned on by 06 in the nomal maner, and as its collector goes to ground, it pulls Q1 with it, thereby resetting the flip-flop and preventing further oscillation.

Trouble Shooting. The following table lists some troubles that may be encountered and suggest probable causes and remedies.

Symptom
Oscillator will not run.

Oscillator will not run.

One-shot jitter or oscillator frequency drift, especially at varying repetition rates.

Wide variation of frequercy with temperature.

Cause Remedy
Anelog control volt.. age too negative.

Q5 on, shorting timing capacitor.

Defective zener Replace. diode.

Defective zener Replace. diode.

Adjust tampot on csici. Check exterra! control voltage.

Make sure pins 15 and 17 are negative: otherwise oscillaton is keyed "ofe".

Construction Informatior. Figure 67 shows the components layozt, and the list below shows the required parts.

Quantity

6
4
2

2
10
2
2
6
6
2

Item

2N404 Transistors
2N2926 Transistors
2N2646 Transistors
1N2069 Diodes
DR435 Diodes
1N1766 Zener Diodes
5000-ohm Irimpots
620-ohm, 5 percent, 1/2-watt Resistors
10k ohm, 5 percent, 1/2-watt Resistors
$2.7 k, 5$ percent, $1 / 2$-watt Resistors 20-ohm, 5 percent, 1/2-watt Resiscors 360-ohm, 5 percent, $1 / 2$-watt Resistors 3.9 k ohm, 5 percent, $1 / 2$-watt Resistors 200-ohm, 5 percent, 1/2-watt Resistors 2000-ohm, 5 percent, $1 / 2$-watt Resistors $5.6 k$ ohm, 5 percent, 1/2-watt Resistors 1k chm, 5 percent, $1 / 2-w n t t$ Resistors 5.1 k ohm, 5 percent, $1 / 4$ watt Resistors 33 k ohn, 5 percent, $1 / 2$-watt Resistors 220pf disć Ceramic Capacitors . O01Hf Mylar Capacitors, Sprague 192p $.01 \mu \mathrm{~F}$ Mylar Capacitors, Sprague 192p $0.1 \mu \mathrm{f}$ Mylar Capacitors, Sprague 192 F Transipads and Circuit Board.

类 MIN PERWISSIBLE SPACE FROM EDGE OF CONDUCTOQ TO EDGE OF BUARU
-

