
NATIONAL BUREAU OF STANDARDS REPORT

8552

Progress Report

on

Viscoelastic Behavior

of Dental Amalgam

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS



THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring

maximum application of the physical and engineering sciences to the advancement of technology in

industry and commerce. Its responsibilities include development and maintenance of the national stand-

ards of measurement, and the provisions of means for making measurements consistent with those

standards; determination of physical constants and properties of materials; development of methods
for testing materials, mechanisms, and structures, and making such tests as may be necessary, particu-

larly for government agencies; cooperation in the establishment of standard practices for incorpora-

tion in codes and specifications; advisory service to government agencies on scientific and technical

problems; invention and development of devices to serve special needs of the Government; assistance

to industry, business, and consumers in the development and acceptance of commercial standards and
simplified trade practice recommendations; administration of programs in cooperation with United

States business groups and standards organizations for the development of international standards of

practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, tech-

nical, and engineering information. The scope of the Bureau’s activities is suggested in the following

listing of its four Institutes and their organizational units.

Institute for Basic Standards. Electricity. Metrology, Heat. Radiation Physics. Mechanics. Ap-

plied Mathematics. Atomic Physics. Physical Chemistry, Laboratory Astrophysics.* Radio Stand-

ards Laboratory: Radio Standards Physics; Radio Standards Engineering,** Office of Standard Ref-

erence Data.

Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Mate-

rials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.

Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere

and Space Telecommunications. Radio Systems, Upper Atmosphere and Space Physics.

Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research.

Industrial Equipment. Information Technology. Performance Test Development. Instrumentation.

Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineer-

ing Standards. Office of Industrial Services.

* NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
** Located at Boulder, Colorado.



NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

311 . 05 -20- 31 1 0560 J une 30, 1 964

NBS REPORT

8552

Progress Report

on

Viscoelastic Behavior

of Dental Amalgam

By

P. L. Oqlesby*
G. DicKSon*

R. D. Davenport*
M. S. Rodriguez**
W. T. Sweeney***

* Dental Research Section, National Bureau of Standards, Washington, D. C. 20234.
** Guest Worker, National Bureau of Standards. Presently teaching dental materials at

Loyola University Dental School, New Orleans, Louisana.
*** Chief, Dental Research Section, National Bureau of Standards, Washington, D. C. 20234.

This investigation was conducted at the National Bureau of Standards in cooperation
with the Council on Dental Research of the American Dental Association, the Army
Dental Corps, the Dental Sciences Division of the School of Aerospace Medicine, USAF,
and the Veterans Administration.

IMPORTANT NOTICE

Approved for public release by the
director of the National Institute of

Standards and Technology (NIST)

on October 9, 2015

<NB^
U.S. DEPARTMENT OF COMMERCE

ccounting documents intended

ected to additional evaluation

ing of this Report, either in

fice of the Director, National

e Government agency for which

s tor its own use.

NATIONAL BUREAU OF STAND
for use within the Government. Befc

and review. For this reason, the pul

whole or in part, is not authorized

Bureau of Standards, Washington, D

the Report has been specifically prei

NATIONAL BUREAU OF STANDARDS



'
'S>

'

' '<' ’’’j^
,
' * .-

•'
'

'• ,Y ,..y- ':h>p

V' ’•?^'s’i5'<&

•

' • ,’•>••••.
s?5

•

'"ft
'^’

’

'
^

’'4'-'^':'vs?'
• ^c' :

4

'

*'^4‘''’^'V'^4''^-'

'
4 4'4

^
''^ '• :-44

V, .'.^=•-^ JV-'' - vr
.'4-V',-

. .... jjil..;.-''
'
r-'f--'^-'‘'->.» •i,v,

'*

'

: -r^' / '-
,e>

."
, '.V

”' ;' ' - > •’WlSffiwi

'
-r ;4; "yr^-'%. . 'if^;; .' '

.:'7;; #’i'-

.r. :
.

fe'ii

:

" '-p»':' '4'

V- ',4

,4^

"

4 '

'

« * . .

1,^

- nvj^ ‘ ^
.

tT ‘'’.j
, ,r k-

^
' >4 ASC’W'jQaMlflHiMBDfliB

:•¥« _ < i\/'-'" '4 '
i ;. ^-.,.i-Ji.'' ' ^i,;.-.. ~ \j -vf',-.

; 4 ; '

,

'

'#;.. .4 4^
"

_
:; ^

'

/'W} '..•4;>'.^ ^^r.^J«^,l(l•Vv^Hlnl^l(;:.. - it'Si

‘'

"? *• >' ; \-- \ v: '
’ •'"

’'. ^ r'^iiv,;
. ijitf •‘•,3, ;4Kio,<|^ r- •

,

4." ^'4' '; •/•'•
’; •.’•.•?Xj'-6;*V«-.'' ;

5t»>W' »k*y.',fti' •Ji ..'>v:i8tt ;.
,.-

...4-i;-^

: V'M‘.‘ '^‘jf'':^ '4-i ;4’%<V' v.' ri:'>\ '3« .+ rivi.';4-4i

. ,>i ..^.. 4 ' -i-i s>'' iKSSni'ilr^i?. iric-‘(fi)*c;?> V; -isflfcv. v' pi'rs.f 'V'if-h

--.;::4.?.., ;'^4 -' ^SfvV •:
,

V'
'k

' '-'\ ^ p^-'-'’.^.

... \. .
44 -... ;4 ?* ^:. .

,.4:'^44::44.4v^

.4?”
' :,^(^^,.

'',

:4 : ;.. K,i
4''. 44 . 4.:;;:V.i;,;'4r^ '

.4- ' .4;V •

'
-,

I '< " ... V^. , |>> %fl.:..i« V-r1AiT j f* . : 1 .|| .»

/ ^

,

4
'.-^44 .,'

,4'p' .^'p'''''':

i: 4
'4;
'p.-^i.

r,
•'i 1 V

r ' :~ j?^

*>/, .yV\

^''.4yi'.4’'
• V,

'

.
fi'

•.Y

vT'C* J
*

iflk , i.' k '

A uK.
iV P>

44"
r.

•-
.. v,i 1 ... ...L'.'^'.

'^* f
‘

43!)® ..„
,

•• \- V,

^-.iTALIJ

>' • 'Ts* •,

' 'S/M

'•

44 ;'



Viscoelastic Behavior
of Dental Amalgam

Abstract

Measurements made on dental amalgam in tension indicate that amalgam exhibits
three types of viscoelastic phenomena: (l) instantaneous elastic strain,
(2) retarded elastic strain (transient creep) and (3) viscous strain (steady
state creep). The combination of elastic plus retarded strain can be repre-
sented by an equation of the form € = Act + B^cj^where A and B are functions of
time but not of the stress,

^

ct. The viscous strain rate can be represented
by an equation of the form Gv = Kct™ where K and m are constants of the ma-
terial. By applying a nonlinear generalization of the Boltzmann superposi-
tion principle to a general equation describing the creep behavior of amal-
gam, the results of creep tests can be directly related to the results of
stress-strain tests.

1, Introduction

There is no information in the literature on the viscoelastic behavior of dental
amalgam except the limited amount that could be obtained from stress-strain relation-
ships [1,2]. The stress-strain data indicate that amalgam exhibits a nonlinear re-
lation between stress and strain over the entire range of stress investigated; this
has been found to be true in both tension and compression. It has been further noted
that the shape of the stress-strain curves vary with the strain rate indicating that
the strain developed is not only dependent on the applied stress but also upon time
of application of the stress. The results of tensile stress-strain investigation by
Rodriguez [1] indicated that dental amalgam might be a viscoelastic material. It
was, therefore, the objective of this study (l) to make an exploratory investigation
of the types of viscoelastic phenomena exhibited by dental amalgam in tension (2) to
describe the viscoelastic phenomena exhibited by amalgam in terms of available visco-
elastic theory and (.3 ) to make available a practical example and method of application
of viscoelastic theory to a dental material.

2. Theory

In general a strain-hardened material will exhibit at least one or more of three
types of viscoelastic phenomena; (l) elastic behavior (2) viscous behavior (steady-
state creep) and (3) retarded elastic behavior (transient creep).

The elastic behavior is a linear function of the applied stress and completely
recoverable; that is to say the elastic strain developed in a material is directly
proportional to the applied stress and disappears instantaneously upon removal of the
stress. The instantaneous elastic response of a material is commonly ' represented by
a spring as shown in Figure 1-A.

€e= Jocr (1)

where

€g = the elastic strain developed in the material

CT = the applied stress

Jq = the proportionality constant called the elastic compliance which is the re-
ciprocal of the elastic modulus.

In the case of viscous behavior (steady-state creep), the strain developed in the
material is a function of both the applied stress and the time of application of the
stress, but the viscous strain is nonrecoverable upon removal of the stress, that is to
say it is permanent. The viscous strain is a linear function of time, and the viscous
strain rate for any given stress value is a constant; on the other hand the viscous
strain may or may not be a linear function of the applied stress. The viscous response
of a material can be represented by the behavior of a dashpot as shown in Figure 1-B.

The viscous strain rate for a material exhibiting a linear relation to the
applied stress is as follows: = 1 (^-cto)

1



where

€y is the viscous strain rate

T] Is the coefficient of viscosity of the material

CT Is the applied stress

a Is the applied stress level at which the material first begins to exhibit
viscous flow and Is called the yield stress.

A material exhibiting viscous flow In accordance with the above relation Is said to
exhibit Ideal plastic behavior (Bingham behavior) while a material which obeys the
above equation in its viscous flow but has a value of Cq which is zero. Is said to be
a material which exhibits Newtonian flow. Materials demonstrating viscous flow which
Is a nonlinear function of the applied stress; usually obey one of the following two
equations in their viscous response

6^ = K (ct - aQ)*^ or = A slnh Be (3)^ (^)

where K and m, and A and B are constants at any given temperatures, A material
exhibiting nonlinear viscous response described by the first equation Is said to be
pseudo plastic [3] In its viscous behavior in either case whether CTq Is or Is not zero.
On the other hand a material demonstrating nonlinear viscous response according to the
second equation does not have a yield stress ctq and Is said to exhibit viscous flow
(plastic flow) In accordance with the Kauzmann rate theory [4], This type of viscous
flow occurs In metals at temperatures near their melting points [5 j>6,7,8],

The retarded elastic response of a material may be represented by a single model
or by either a finite or an Infinite series of models called Voigt elements. A Voigt
element Is shown In Figure 1-C.

Retarded elastic behavior (transient creep) which can be described by means of a
single Voigt element Is represented by the following equation:

J Cl-e"^/r) a (5)

where

^R

CT

J

T

is

Is

is

Is

the retarded elastic

the applied stress

the retarded elastic

the retardation time

strain developed

compliance

of the material.

in the material

Retarded elastic behavior corresponding to a finite series of Voigt elements is repre-
sented by the following equation:

n

^ ^ JlCl-e"^/'^0 (6)

where

is the retarded elastic strain developed In the material

CT Is the applied stress

Is the retarded elastic compliance of each Voigt element

Is the retardation time of each Voigt element

Retarded elastic response represented by an infinite number of Voigt elements Is
described by the following equation:

^R J(t) T
(7)

o

2



In all of the above equations for the representation of retarded elastic strain,
the relation between the retarded strain and the applied stress Is assumed to be llneaij
however. In many materials this relation has been found to be nonlinear. The mathema-
tical description of the nonlinear case has been treated In various publications [9, 10],
For example. If the retarded elastic strain (transient creep) Is related to the applied
stress, by a second degree equation In which the time response can be represented by an
Infinite number of Voigt elements, such a retarded elastic response can be described
by the following equation:

( 1-e"^/ d T + B(y) (l-e"^'^Y) d ( 8 )

where

Is the retarded elastic strain

CT Is the applied stress

J(t) Is the continuous distribution of retarded elastic compliance as a function
of the variable retardation time t of the continuous distribution of Voigt
responses In the linear stress response element of the material

B(y) Is the continuous distribution of retarded elastic compliances as a function
of the variable retardation time yofthe continuous, distribution of Voigt
elements In the nonlinear second degree stress response of the material.

In a material which exhibits all three types of behavior (elastic, viscous, and
retarded elastic), and In which the three types of behavior are additive (obey a
superposition relation), the creep strain developed In the material at any time t under
an applied stress a may be related to the strains due to the Individual behaviors by
the following equations:

^ ^o + ^v ^5)

where

€ Is the creep strain developed In the material at any time t under an applied
constant stress

^0 Is the Instantaneous elastic strain developed In the material

€r Is the retarded elastic strain developed In the material

Is the viscous strain developed In' the material.

These Individual responses as was noted earlier may be linearly or nonllnearly related
to the stress. For example. In a material which exhibits all three phenomena linearly
related to the applied stress then using the linear equation of each response given
earlier, the above equation takes the form:

CO

% '
-^o r J(t) (l-e'^^T ) d T + — (10)

J T1

o

Next, consider an example of a material which exhibits all three types of behavior, bit

In which the viscous strain developed Is nonllnearly related to the applied stress as
follows

:

€v
= K (cr - Cq) "^t

( 11 )

while the retarded elastic strain Is nonllnearly related to the applied stress by an
equation of second degree as given earlier and the Instantaneous Is assumed to be

linear; thus, the above superposition equation for creep strain takes the following
form:

€ Jo
^
|j(t) (l-e-Vr)

d T + a2

o

’b(y) (1-6-^^y) ^
^

4- K(ct (
12 )

3
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Where the creep strain is linearly related to the applied stress, the strain can
be written as a product of a general creep compliance, which Is a function of time
only, and the applied stress as given by the following equation:

€ = J(t)a (13)

where

G Is the creep strain developed

CT Is the applied stress

J(t) Is the general creep compliance

For example, in the linear creep behavior as seen in equation (10) , the general creep
compliance J(t) is of the form:

j(t; J(' L-e (14)

In the case that creep strain Is linearly related to the applied stress, the
stress-strain behavior for a material may be related to the creep behavior by means
of the linear superposition principle developed by Boltzmann [ 11 ] as shown below

:

^t
E (crt)

=J
J(T- 9 ) d a (6) (I5)

o

or
T

E (T)
- Jj(T-e) d 9 (16)

o

where

a is the applied stress related to the experimental time 9 in a prescribed
experimental functional relation.

e(t) is the strain of a stress-strain relation measured at a time T subsequent
to the variable time 9.

- d 9 Is the Increment of stress from time 9 to time ( 9 + d 9 )

.

For example, applying the Boltzmann superposition principle to the example of
creep given In equation (10) gives the following relation between creep behavior and
the strain measured In a stress-strain test [12]

:

E (T)

T-9

(l-e- ) d T d 9 +
d 9

•(e) d e (17)

0 o o

An excellent discussion of the application of the Boltzmann superposition principle
as applied to linear viscoelastic phenomena is given by Leaderman [13]. However, if
a material exhibits a nonlinear relation in Its retarded strain ( transient creep) and
the applied stress, as discussed earlier, the linear Boltzmann superposition principle
cannot be applied In Its present form to relate strain of a stress-strain test on the
material to the creep strain. A generalization of Boltzmann ' s superposition principle
developed by Nakada [10] may be used to relate nonlinear retarded elastic creep be-
havior to the stress-strain behavior of the material as given:

(o-)

j

T)

t(T-9) d o- (9

(T) cr(T) CT (T)

.(T) a(T)

•<- r f (T-9) $ (T-0) d CT (e) d CT (0)

E(T-9 )
E(T-0) E(T-a) d ct (9) d a (0) d ct (a) (18)

o o
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Now for example, consider the application of the nonlinear superposition principle of
Nakada as applied, to the case of retarded strain (transient creep) related to the
applied stress by a second degree equation as shown earlier:

'2

now

t(t:

00

J(t) (l-e~^^T^ d T + cT^

“

rB(v) (l-e‘*/v) d V

0

)

J(t), (l-e“^^T^ d

(19)

and
00

?(t) = rB(Y) (l-e“^/v) d

where t (t) and $(t) are the respective first degree and second degree retardation
functions as given In the nonlinear superposition principle. Therefore, applying the
nonlinear superposition principle to the above retarded creep example one has:

/ ^ p=Kt)» _T-e .

{a{T)J
=J

['j(T)(l-e^ ) d t d ct (9

(T)^(T) » ®
^

T-0

(y) (l-e~
^

^dY'^Vdcr (0) d a ( 0 ) (20)

0 0

Considering an example of a material which exhibits all three phenomena but In which

the creep strain Is a nonlinear function of the applied stress according to equation
(12), then applying the nonlinear superposition principle, the stress-strain behavior
of the material may be related to the creep behavior by the following equation:

E •= CT Jq + r r J( t) (l-e'^^^) d T d a (t)
eo

,T T
[T-0] . _[T-0 k

B(y) (l-e Y J (l-e V J d y d cr (0) d a (0

+
jK a^{t) a t

o

(21)

3. Materials

The specimens were prepared using a commercial alloy for dental amalgam certified
to comply with American Dental Association Si5'ecificatlon No. 1, This alloy (composi-
tion approximately Ag 7O/0 , Sn 26^, Cu -Zn 0.5^) was mixed with mercury and con-
densed Into a mold as described by Rodriguez and Dickson [1] to produce a specimen
with dimensions as shown in Figure 2. Speclmacs were aged for at least one week to ob-
tain essentially full mechanical strength [14].

4. Procedure

The dumbbell-shaped specimen was placed in the grips and Tuckerman optical strain
gages were mounted on opposite sides of the specimen as shown In Figure 3. To obtain
the creep curve, readings were taken on the strain gages, a weight was suspended from
the lower grip and a second strain gage reading was taken Immediately. Strain read-
ings were then made at 15 second Intervals for 4 minutes and at Increasingly longer
intervals until the strain rate became constant (usually after approximately 1.5 hours).
At the end of this period, the load was removed, a strain reading was taken Immediately
and the recovery curve was followed by reading first at 15 second Intervals and then at

5



longer Intervals until the strain became constant.

Strain readings obtained on the two sides of the specimen were averaged and strain
was plotted against time to obtain the loaded creep and unloaded recovery curves.
Readings on the strain gages were normally made to the nearest 2 X 10“5 inch. Since a
gage length of 0.25 inch was used this is equivalent to a strain of 8 X 10-5. Thus
in the results given below differences in strain of 1 X 10“^ are approximately equal
to the minimum reading difference.

2
Loads placed on the specimen (with a nominal 0.01 in cross sectional area) varied

from 5 to 40 lbs, giving stresses from approximately 500 to 4^000 psi. Most specimens
were used for several runs, first at high and then at lower stresses. The first
loaded creep run was , considered a strain hardening treatment and data obtained on
these runs were not used in the calculation of results other than for viscous strain rate.
All runs were made at 23 ± 1°C.

5. Results and Discussion

The creep curves (both loaded and recovery curves) of strain hardened dental
amalgam as shown for a number of different stress levels in Figure 4 indicate that at
room temperature amalgam exhibits three different types of viscoelastic phenomena:
(l) Instantaneous elastic strain (2) retarded elastic strain (transient creep) and
( 3 ) viscous strain (steady-state creep).

The viscous strain rate was determined from the loaded portion of the creep curve
by taking the slope of the straight line portion of the curve, and was also determined
from the recovery portion of the creep curve by dividing the value of the recovery
strain (the permanent strain in the specimen) by the total time the load was on the
specimen. The viscous strain rates for any given creep curve as calculated from the
loaded and recovery portions of the curve were found to agree fairly well as shown
in Table 1. The log of the viscous strain rate was found to be a linear function of
the log of the applied stress, as shown in Figure 5j thus the viscous strain rate
could be related to the applied stress by the following equation:

€^=- K cr™
( 22 )

where

is the viscous strain rate

CT is the applied stress

K and m are constant of the material

The value of m for amalgam is the value of the slope of the curve in Figure 5.
While the value of K is the antilog of the viscous strain rate value at a value of
applied stress a of 1 psi. The values of K and m for the dental amalgam used in this
investigation were found to be K equals 2.85 and 4.98 X 10-19 and m equals 3.99 and
3.92 from loaded and unloaded data respectively.

The strain developed in amalgam due to the other two phenomena (l) Instantaneous
elastic strain and (2) retarded strain can be determined from the strain recovery
since these two types of strain are recoverable while the viscous strain is not. Thus,
at any given load the strain values taken from the creep curve after the sample has
been unloaded (that is in the recovery portion of the creep curve) are subtracted
from the strain value on the creep curve at the instant Just before unloading of the
specimen. This difference is plotted against recovery time tj_ = T^ - T^ where T^ is

the time at which the specimen was unloaded and Tj_ is the time of the strain value on
the recovery portion of the curve. These difference values, 5', are seen plotted
against the recovery time for each load or stress in Figure 6. These plots are a
measure of the combination of the elastic and retarded elastic strain behavior of den-
tal amalgam as a function of time for various stress levels. In theory the same plot
may be obtained from the loaded portion of the creep curve bj"- taking values off the
loaded creep curve and subtracting the viscous strain accumulated in the specimen at
that time. The accumulated viscous strain at any time may be calculated by multiplying
the viscous strain rate by the time corresponding to that value on the creep curve.
Thus the difference between the creep curve value on the loaded protion and the viscous
strain value at a corresponding time is a measure of the combination of the instantan-
eous and retarded elastic strain. However, a small error in the viscous strain rate
causes a large error in the difference value. Therefore, the plot of the combination

6



of elastic and retarded elastic strain versus time as obtained from the loaded creep
curve is subject to large possible error; for this reason the combination elastic be-
havior is obtained from the recovery portion of the creep curves.

The combination elastic strain (instantaneous and retarded elastic strain) values
are seen in Table 2 tabulated against time for various applied stress levels. The
combination strain becomes asymptotic with time in accordance with theory as seen in
Figure 6. The combination elastic strain values were plotted as a function of the
various stress levels for corresponding time; as shown in Figure 7. The combination
elastic strain is seen to be a nonlinear function of the applied stress. When the com-
bination strain values were divided by their corresponding stresses and then plotted
against the corresponding stress for a fixed time a linear plot was obtained for each
fixed time as illustrated in Figure 8; this result indicated that the combination elas-
tic behavior of amalgam as a function of applied stress under the test conditions could
be represented by an equation of the form:

€'= A(t) a + B2(t) a2 (23)

where

e' is the combination of elastic and retarded elastic strain

a is the applied stress

A(t) and B(t) are constants for any given time value and are functions of time but
not of stress. The value of A(t) for any time value is the intercept at a = 0 of the
plot for that time value as shown in Figure 8 while B2(t) is the slope of the straight
line for that time value. It is also hoted in Figure 8 that as a function of stress
the combination strain divided by the stress is a straight line for all values of t.
This indicated that over all ranges of t the combination elastic strain obeys the same
functional relation to the stress. Thus from Figure 6 it was concluded that the re-
tarded elastic strain as a function of time could be described by means of conventional
viscoelastic theory assuming either a finite or infinite number of Voigt elements while
the combination elastic strain being a nonlinear function of stress indicated the need
for the use of nonlinear viscoelastic theory as developed first by Leaderman[9l and
later more generally by Nakada [10]. Therefore, the values for A(t) and B2(t) were
determined by fitting curves to the data by the method of least squares and were tabu-
lated as a function of time as shown in Table 3. The A(t) values were plotted as a
function of the corresponding t values as shown in Figure 9. The A(t) values are seen
to approach an asymptote as t— thus when the values of the asymptote minus the
A(t) values are plotted as a function of the corresponding time values. Figure 10,
the curve is seen to fall off in a complicated exponential behavior which could be re-
presented by viscoelastic theory assuming an infinite number of Voigt elements or a
continuous spectrum. Thus, it has been, assumed that A(t) could be represented by the
following equation from linear viscoelastic theory since A(t) is the linear term in
stress

:

00

A(t) = Jq t
Jj(t)
0

A ( t )
= Jq +

CO

r j(t)
j
0

00

A(t) = Agg -
\

J(t)

1

>“

Aas- Mt) ]J(t) e

o

(24)

( 25 )

(26)

( 27 )

where

A(t) is the creep compliance term which is linear in stress

Jq is Instantaneous elastic compliance

J(t) Is the retarded elastic compliance spectrum as a function of the
retardation time t

7



Agg is the asymptote value of A(t) as t becomes very large.

Thus, equation (26) indeed does describe the asymptotic behavior of A(t) as a
function of time as seen in Figure 9 while equation (27) could be used to describe
the complicated exponential-like behavior seen in Figure 10. The linear creep compli-
ance term A(t) is plotted as a function of log t to obtain a sigmoidal curve as shown
in Figure 11. The first plateau of the sigmoidal plot at very small values of t
should correspond to Jq (the instantaneous elastic compliance )[ 15 ] , however, the
curve does not extend to short enough time values to determine the value of the plateau
which would be Jq

.

Therefore, it is concluded that Instantaneous elastic behavior of
amalgam cannot be separated from the combination elastic behavior and thus is indeter-
minate from the data obtained in this investigation. The plot in Figure 11 indicates
the need for improved experimentation on anjalgam in which strain measurements can be
made at very short times after loading or removal of the load from the specimen.

Next the nonlinear creep compliance term B'2(t) was plotted against t as shown in
Figure 12. The value of s2(t) is seen to approach an asymptote with increasing time.
When the asymptote value of B(t) minus B(t) is plotted against time it decreases in a

complicated exponentlal-llke form as shown in Figure 13. Thus using the nonlinear
theory of Nakada [10] it is concluded that the experimental B(t) for amalgam could be
described by the following equation:

00

O

which would Indeed describe the behavior of the curves seen in Figure 12 and Figure 13.
It is therefore concluded that the combination elastic behavior of dental amalgam in
creep under the test conditions used can be described by means of the following equa-
tion from viscoelastic theory [10,15]:

A( t ) CT + B^( t

)

CO

CT + r J(t) (l-e ^ J d T +

2

B(y) (l-e d Y

(29)

(30)

and since the loaded portion of the creep curve for amalgam is also composed of viscous
strain as well as combination elastic strain then the strain on the loaded por-
tion is composed of the sum of the two as follows:

€ =

Thus

€ = Jq CT + CT Jj(r)(l-e d T
+

J
B(y) (l-e d Y

2 V "^4.
CT + K CT t

(31)

(32)

Therefore applying both linear and nonlinear viscoelastic theory to the experimental
behavior of amalgam under the test conditions used, a general equation describing the
creep behavior of amalgam as given by equation (32) above is obtained.

Applying the nonlinear generalization of the Boltzmann superposition principle as

developed by Nakada [10], to the above creep equation for amalgam, the stress-strain
curves for various stress rate conditions were calculated for amalgam from the creep
data and compared to the experimental stress-strain curves obtained under those condi-
tions. It is seen in Figure 14 that good agreement is obtained between the calculated
and experimental stress strain curves. Thus, it is concluded that in the case of
dental amalgam the results of creep tests can be directly related to those of stress-
strain tests by use of viscoelastic theory [10,15].

6. Conclusion

Dental amalgam exhibits three types of viscoelastic phenomena: (l) instantaneous
elastic strain (2) retarded elastic strain (transient creep) and (3) viscous strain
(steady state creep).

The instantaneous elastic strain is assumed to be proportional to the applied
stress but the methods used in this study did not provide an Independent determination
of instantaneous strain.



The combination of elastic plus retarded strain is a nonlinear function of stres
and can bp represented by an equation-v^of the following form:

€' *= Act + ct^ where A and B are functions of time but not of stress

The viscous strain rate is also a nonlinear function of stress and can be repre-
sented by an equation of the form:

€*v Kct^ where K and m are constants of the material

A general equation describing the creep behavior of amalgam was obtained by the
application of both linear and nonlinear viscoelastic theory to the experimental be-
havior of amalgam under the test conditions used. By applying the nonlinear general!
zatlon of the Boltzmann superposition principle to this equation the results of creep
tests can be directly related to results of stress-strain tests of amalgam.

7.
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TABLE 1

VISCOUS STRAIN RATES

Specimen - Run Stress
PS I

Strain per
Loaded*
X 10-5

Minute
Unloaded**

X 10-5

41-40-1 3807 5.6531 6.3511***
41 -40-2 3807 5.9759 5.8037
39 -40-1 3731 4.9184 5

,

7
'

449 *-k-*

39-40-2 3731 5.2273 5.0822
40-40-1 3731 7.4476 8.0372***
43 -35-1 3458 3.1200 3.7086***
43 -35-2 3458 3.2339 3.2762
43-35-3 3458 3.4171 3.4389
44-30-1 2959 1.9183 1.9778***
44-30-2 2959 1.6821 1.6769
44-30-3 2959 1.7387 1.7185
41-30-3 2855 2.8429 2.9555
44-25-4 2465 0.9067 0.8867
35-25-1 2375 1,0521 1.3312***
35-25-2 2375 0.9762 1.0621
35 -25-3 2375 1.0288 1.0803
38-25-1 2366 1.0909 1.3967***
38-25-2 2366 •0,7832 0.8211
38-25-3 2366 0.7846 0.8061
35-20-4 1900 -0.3843 —
35 -20-5 1900 0,4192 0.4348
38-20-4 1892 0.3487 0.3581
35-15-6 1425 0.1109 0.1133
38-15-5 1419 0.0761 0.0768
35-10-7 950 0.0306 0.0338
38-10-6 946 0.0232 0.0248
38-10-7 946 0.0170 0.0178
35-05-8 475 0.0083 0.0066

From slope of straight portion of loaded creep curve

From strain remaining in specimen after unloading and recovery

*** These values include effects of strain hardening and were not used in
calculating the relation between stress and viscous strain rate.
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TABLE 3

VALUES OF A(t) AND B^(t) IN EQUATION

A(t) a + B2(t)

Time A(t) B^(t)

Min. X lO"'^ X 10"^^

0.25 0.922 2.707
0.50 1.122 2.873
1.00 1.303 2,828
2.00 1.309 3.367
3.00 1.280 3.904
5.00 1.322 4.284

10.00 1.363 4.986
20.00 1.383 5.804
30.00 1.409 6.110
40.00 1.5^4 6.082
50.00 1.589 6.190
60.00 1.581 6.454
70.00 1.570 6.678
80.00 1.588 6.728

is combination of instantaneous and retarded elastic
strain

cr is stress

A(t) and B^(t) are constants for any time and are functions
of time but not of stress.
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Figure 3. Tensile specimen in position for load application with
optical strain gages mounted on opposite sides of the
specimen.
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A
(t)

Figure 9. Variation with time of the linear creep compliance
term, A(t), in the equation £'=k{t)a +
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TIME- MINUTES

Figure 10, Variation with time of (Aas~A(t)'^ where A(t) is
the linear creep compliance term' in the equation
€'=Pi(t)a + B2(t)a2 and A^g is the asymptote value
of A(t) as t becomes large.
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