NATIONAL BUREAU OF STANDARDS REPORT 8529

PROJECTS and PUBLICATIONS

 of the APPLIED MATHEMATICS DIVISIONA Semiannual Report January through June 1964
U.S. DEPARTMENT OF COMMERCE national bureau of standards

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.
Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.
Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 205.0
 NBS REPORT 8529

PROJECTS and PUBLICATIONS

of the
APPLIED MATHEMATICS DIVISION
A Semiannual Report
January through June 1964

IMPORTANT NOTICE

NATIONAL BUREAU OF STAND. for use within the Government. Befor and review. For this reason, the pub whole or in part, is not authorized Bureau of Standards, Washington, D. 1 the Report has beeri specifically prep;

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
counting documents intended ected to additional evaluation ng of this Report, either in ice of the Director, National Government agency for which for its own use.
U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

APPLIED MATHEMATICS DIVISION

January through June 1964
TECHNICAL ADVISORY PANEL

George E. Forsythe, Stanford University, Chairman

Joaquin B. Diaz, University of Maryland
Alan J. Hoffman, IBM, Yorktown Heights William Feller, Princeton University Francis J. Anscombe, Yale University M. M. Schiffer, Stanford University

Elliott W. Montroll, Inst. Def. Anal., Wash., D.C.
J. Barkley Rosser, USARC, Madison, Wisc.
R. D. Richtmyer, New York University
B. O. Koopman, Columbia University

Peter D. Lax, New York University Alston S. Householder, Oak Ridge National Laboratory

DIVISION OFFICE

NUMERICAL ANALYSIS SECTION Morris Newman. Ph.D., Chief

Karl Goldberg, Ph.D.	Joseph Lehner, Ph.D.*	Frank Stenger***
Fred Gross, Ph.D.**	Ronald Miech, Ph.D.**	Margaret Vessel, Sec'y
Seymour Haber, Ph.D.	Frank W. J. Olver, D.Sc.	Steve Winters
Marvin Knopp, Ph.D.	Edward Ordman, B.A.	
COMPUTATION LABORATORY	Don I.Mittleman, Ph.D., Chief	
	Irene A. Stegun, M.A., Assistant Chief	

Robert J. Arms, Ph.D.
Kenneth Branch
Martha Burns Ruth E. Capuano Vernon Dantzler, M.A. Charles R. Drew
Marvin Elster, B.A. Robert Gauntt Elizabeth F. Godefroy Amanda Gregg, B.S. William G. Hall, B.S. Robert Herbold Gloria F. Holmes, B.S. Pearlie M. Johnson Joyce M. Johnson
Louis Joseph, M.A.

Blandie L. Knight
Roberta Krupen ${ }^{000}$
Eula M. Lawson
David S. Liepman
Walter A. Lipton
Loretta Y. Matthews
Patricia McGuire, . Sec'y
Kermit C. Nelson
Peter J. O'Hara, B.S.
Betty J. Pailen
Maxine L. Paulsen, B.S.
Sally T. Peavy, B.S.*
B. Stanley Prusch, B.S.

Nellie E. Reese, Sec'y
George W. Reitwiesner, M.S.
Evelyn D. Russell, B.A.

Patricia Ruttenberg, B.A.* Robert Schatten, Ph.D.*** Andrew Selepak
Mary W. Shultz
John M. Smith, M.A.000
David J. Sookne ${ }^{000}$
Huth N. Varner, B.S. ** J. D. Waggoner, B.A. Philip J. Walsh, B.S. Bertha H. Walter John F. N. Wilkinson Nicholas Williams John H. Wilson Kenneth B. Winiecki ${ }^{000}$ Ruth Zucker, B.A.

STATISTICAL ENGINEERING LABORATORY
Joseph M. Cameron, M.S., Chief
Joan R. Rosenblatt, Ph.D., Assistant Chief

Brian L. Joiner, B.S.
Hsien H. Ku, M.S.
Richard Meyer ${ }^{000}$
Mary G. Natrella, B.A.*
Janace Speckman, M.A.

Phyllis A. Tapscott, Sec'y
Roy H. Wampler, M.A.
George H. Weiss, Ph.D.*
Thomas A. Willke, Ph.D.*

Karen A. Bedeau, B.A.*
Marion T. Carson
Veronica Connor
David Hogben, Ph.D. ${ }^{\circ}$

William H. Pell, Ph.D., Chief
Abolghassem Ghaffari, Ph.D. Klaus H. S. Hain, Ph. D.*** John E. Lagnese, Ph.D.** Lawrence E. Payne, Ph.D.*

Walter L. Sadowski, Ph.D. Chan Mou Tchen, Ph.D. John P. Vinti, Sc.D.

OPERATIONS RESEARCH SECTION Alan J. Goldman, Ph.D., Chief
Jack Edmonds, M.A.
Dolores E. Harrison, Sec'y
Lambert S. Joel, B.A.

Daniel Kleinman
Kenneth Kloss, M.S.
Joel Levy, M.A.

John Mather, B.S.
Philip Meyers, M.A.
Christoph Witzgall, Fh.D. ${ }^{00}$
** Postdoctoral Resident Research Associate
***Guest worker - Temporary appointment

Contents

Status of Projects ${ }^{\circ}$ as of June 30, 1964 1

1. Numerical analysis. 1
2. Mathematical tables and programming research 4
3. Probability and mathematical statistics 5
4. Mathematical physics 7
5. Operations research 11
6. Mathematical and computational services 14
7. Statistical engineering services 24
Current applications of automatic computer 26
Lectures and technical meetings 34
Publication activities 38

Status of Projects

1. NUMERICAL ANALYSIS

RESEARCH IN NUMERICAL ANALYSIS AND RELATED FIELDS
 Task llOl-12-lll10/55-55

Origin: NBS
Authorized 8/29/54
Manager: Morris Newman
Full task description: July - September 1954 issue, p. 1
Status: CONTINUED. A proof of the fact that a bounded automorphic form of dimension zero is constant has been given by M. Knopp, J. Lehner and M. Newman. An elementary proof for the case of a function was also given.

The 2-dimensional representations of the Hecke groups are being studied by J. Lehner and M. Newman. In particular all 2-dimensional representations of the modular group have been determined.
M. Knopp and M. Newman are studying groups defined by the vanishing of an additive character. For example they show that if G is a subgroup of a free abelian group F of finite rank such that F / G has no elements of finite order, then G can be defined by the vanishing of a suitable additive character on F.
K. Goldberg has collected copies of all of the original papers dealing with Hadamard matrices, their construction, generalizations, and applications.
K. Goldberg has investigated the determination of conditions for "associativity" in certain combinatorial operations, i.e. $f(f(x, y), z)=f(x, f(y, z))$ with f a homogeneous polynomial summed over partitions of its degree, and x, y, z vectors of variables.
S. Haber continued numerical experiments on a modified Monte-Carlo quadrature procedure he had proposed, and obtained results generally conforming to his theoretical estimates. He also worked together with F. Gross on problems relating to fix-points of entire functions.
R. Miech spent the period experimenting with sieves and found proofs of the following assertions: 1) if $f(x)$ and $g(x)$ are polynomials with integral coefficients and N is a positive integer then there is a number Q which depends on the degree of $f(x) g(x)$ such that the number of positive integers m for which $N-g(m)>0$ and $f(m) n-g(m)$ has at most Q prime factors approaches infinity as N approaches infinity; 2) the number of positive integers $N \leq x$ for which $g(x)-N$ is irreducible is asymptotic to x.
F. Gross has completed the following papers: 1) Entire solutions of the functional equation $h(f(z))=g(z) ; 2$) On simple sets of polynomials (with E. G. Straus) ; 3) On compositions of entire functions; 4) Functional equations and fix-points.
F. W. J. Olver is continuing his work in asymptotic expansions under Task 1101-11-11421/63.

Publications:
(1) Weierstrass points of $\Gamma_{0}(n)$. J. Lehner and M. Newman. Annals of Mathematics, 79, 360-368 (1964).
(2) A complete description of the normal subgroups of genus one of the modular group. M. Newman. American Journal of Mathematics, 86, 17-24 (1964).
(3) Free subgroups and normal subgroups of the modular group. M. Newman. Illinois Journal of Mathematics, 8, 262-265 (1964).
(4) Normal subgroups of the modular group which are not congruence subgroups. M. Newman. To appear in Proc. American Mathematical Society.
(5) Congruence subgroups of positive genus of the modular group. M. Knopp, M. Newman. To appear in Illinois Journal of Mathematics.
(6) Symplectic modular groups. M. Newman and J. R. Smart. To appear in Acta Arithmetica.
(7) Note on the partition function. M. Newman. To appear in American Mathematical Monthly.
(8) Hadamard matrices of order cube plus one. K. Goldberg. Accepted for publication in the Proceedings of the American Mathematical Society.
(9) A note on some quadrature formulas for the interval ($-\infty, \infty$). S. Haber. Mathematics of Computation, vol. 18, 313-314.
(10) Almost primes generated by a polynomial. R. Miech. To appear in Acta Arithmetica.
(11) Entire functions all of whose derivatives are integral at the origin. F. Gross. To appear in the Duke Mathematical Journal.

RESEARCH IN MATHEMATICAL TOPICS APPLICABLE TO
 NUMERICAL ANALYSIS
 Task 1101-12-11421/55-56

Origin: NBS
Authorized 8/13/54
Sponsor: Office of Naval Research
Manager: Morris Newman
Full Task description: July-September 1954 issue, p. 5
Status: INACTIVE. All manuscripts which had not been published when this project was
rendered inactive have been transferred to Task 1101-12-11110/55-55.

ASYMPTOTIC EXPANSIONS
Task 1101-11-11421/63
Origin: NBS
Authorized 9/10/63
Sponsor: U. S. Army Research Office, Durham, N. C. Manager: F.W. J. Olver
Full task description: July-December 1963 issue, p. 2
Status: CONTINUED. F. W. J. Olver and F. Stenger have completed their investigation of the asymptotic solution of ordinary second-order differential equations in a domain containing an irregular singularity and have evolved a fully satisfactory theory of error bounds. Applications have been made to Bessel functions and confluent hypergeometric functions. An extension of the theory to systems of n first-order equations is now being studied by F. Stenger.
F. W. J. Olver is investigating the application of the theory of error bounds to the development of a rigorous basis for phase-integral methods for second-order differential equations.

Publications:

(1) Error bounds for asymptotic expansions with an application to cylinder functions of large argument. F. W. J. Olver. Proceedings of a Symposium on Asymptotic Solutions of Differential Equations and their Applications (Madison, Wisconsin, 1964). New York: John Wiley (1964).
(2) On the asymptotic solutions of second-order differential equations having an irregular singularity of rank one. F. W. J. Olver. Submitted to a technical journal.
(3) Whittaker functions of large argument. F. W. J. Olver. Submitted to a technical journal.
(4) Error bounds for asymptotic expansions in turning-point problems. F. W. J. Olver. Journal of the Society for Industrial and Applied Mathematics, Vol. 12, No. 1, March 1964, 200-214.
(5) Error analysis of Miller's recurrence algorithm. F. W. J. Olver. Mathematics of Computation, Vol. 18, No. 85, January 1964, 65-74.

2. MATHEMATICAL TABLES AND PROGRAMMING RESEARCH

HANDBOOK OF MATHEMATICAL FUNCTIONS
Task 1102-40-11121/57-216

Origin and Sponsor: National Science Foundation
Authorized 12/27/56
Manager: Irene A. Stegun
Full task description: October-December 1956 issue, p. 10
Status: COMPLFTED. The Handbook of Mathematical Functions has been released as Applied Mathematics Series 55 and is available from the U.S. Government Printing Office.

CURRENT RESEARCH IN THE COMPUTATION LABORATORY
 Task 1102-12-11122/63-1999

Origin and Sponsor: NBS, Section 11.2
Authorized 8/18/63
Manager: Don I. Mittleman
Full task description: July-December 1963 issue, p. 3
Status: CONTINUED. The theory of universal covering surfaces was successfully applied when the number of singularities did not exceed three.

AUTOMATIC CODING
Task 1102-12-11120/55-0065

Origin: NBS
Authorized 9/29/54
Manager: P. Walsh
Full task description: July-September 1954 issue, p. 11
Status: CONTINUED. Some members of the staff visited several installations throughout the country to observe time shared computing systems in action and to obtain ideas from people experienced in time sharing systems. Further thought was given to the applicability of remote terminals to NBS needs. Some ideas on the quality of service desired from remote terminals were developed. Thought was also given to the type of system which should be developed to maintain the quality of service desired.

RESEARCH IN PROBABILITY AND MA THEMATICAL STATISTICS
 Task ll03-12-11131/63-1259

Origin: NBS
Authorized 10/1/62
Manager: Joan Raup Rosenblatt
Full task description: July - December 1962
Status: CONTINUED. Roy H. Wampler is continuing the study initiated by
Churchill Eisenhart, with the collaboration of Ann D. Smith and John Van Dyke, on the distribution of tolerance interval coverages in sampling from a normal distribution. The tolerance intervals have the form ($\bar{x}-k s, \bar{x}+k s)$, where \bar{x} and s denote the sample mean and standard deviation. Sample size is denoted by n. The following tables have been computed:
(1) Expected values of the coverage $P(k, n)$ where the factors k (computed by Bowker, 1947) are such that with probability γ the coverage is at least p. Arguments covered are $\gamma=.75, .90, .95, .99 ; \mathrm{p}=.75, .90, .95, .99, .999 ; \mathrm{n}=2(1) 10,12,15$, 20, 30, 61.
(2) Approximate probability points $P_{\alpha}(k, n)$ of the coverage of tolerance intervals whose expected coverage is preassigned to be po (Wilks, 194l), for $\mathrm{p}_{0}=.50, .95 ; \alpha=.005, .01, .025, .05, .10, .20, .25, .50, .75, .80, .90, .95$, $.975, .99, .995 ; \mathrm{n}=2(1) 10,12,15,20,30,60$.
(3) Approximate probability points and expected values of the coverage of tolerance intervals for certain values of k, α, n, namely: $k_{1}=.6745, k_{2}=t_{.50}$, $\mathbf{k}_{3}=t_{.50} \sqrt{\frac{n+1}{n}}, k_{4}=2, k_{5}=3 ; \alpha=.005, .50, .995 ; n=2,5,10,20,30,60$; when t. 50 is the 50% two-tailed percentage point of the t-distribution for $n-1$ degrees of freedom.

Graphs of the (approximate) cumulative distribution functions and probability density functions of coverages of the Wilks type have been obtained for $p_{0}=.50$, $.95 ; \mathrm{n}=4,10,30,60$.

A study of the behavior of some estimates for the mean and the variance from very small samples $(n=3,4)$ when one of the sample values is from a contaminating distribution was begun by T. Willke. In 1952 Lieblein derived the distributions of several estimates, such as the mean of the best two out of three, for non-contaminated samples. Since this kind of estimate is used only when some contamination is suspected, this study is meant to find out how well they work for contaminated samples. Both Monte Carlo and analytical methods will be used.

John Van Dyke's paper on "Fitting $y=\beta x$ when the variance depends on x " has been completed. Properties of various weighted least squares estimators for β are studied. Estimation of the variance of an estimator of β, and the effect of the choice of x values are also investigated.

Janace Speckman's paper "Determinations based on duplication of readings" reports the properties of a measuring procedure in which observations are made until two identical values have been obtained, this duplicated value serving as estimate of the mean. The underlying distribution is taken to be normal, with extreme tails truncated. Unless the rounding lattice is very coarse and happens to be advantaseously placed, a better estimate of the mean will be obtained from the average of two observations. The study was motivated by the use of the duplication procedure in a test method proposed by the American Society for Testing and Materials.

Thomas A. Willke has completed a paper developing generalized applications of Youden's rank sum test for outliers. The paper has been published together with a table of one-sided percentage points for the test.
H. H. Ku is preparing two chapters for a handbook on Industrial Metrology, sponsored by the American Society of Tool and Manufacturing Engineers. Chapter IC, Statistical Concepts of a Measurement Process, leads up to a discussion of precision and accuracy. A basic kit of tools for the comparison and manipulation of variances is given in Chapter ID, Statistical Analysis of Measurement Data. The use of control chart techniques for monitoring stability is emphasized. Examples are given using calibration data obtained in NBS laboratories.

Publications:
(1) On an extreme rank sum test for outliers. W.A. Thompson, Jr., and T. A. Willke. Biometrika 50, 375-383, December 1963.
(2) A note on a generalized elliptic integral. George H. Weiss. J. Res. NBS-B. (Math. and Math. Phys.) 68B, 1-2, Jan.-Mar. 1964.
(3) Calculation of certain multiple generating functions. George H. Weiss. J. Res. NBS-B. (Math. and Math. Phys.) 68B, 13-15, Jan.-Mar. 1964.
(4) Effects of a distribution of gap acceptance functions on pedestrian queues. George H. Weiss. J. Res. NBS-B. (Math. and Math. Phys.) 68B, 31-33, Jan.Mar. 1964.
(5) Miscellaneous studies in probability and statistics: distribution theory, small-sample problems, and occasional tables. Statistical Engineering Laboratory. NBS Technical Note No. 238, April 24, 1964.
(6) Determinations based on duplication of readings. Janace A. Speckman. J. Res. NBS-B. (Mathematics and Mathematical Physics) 68B, 49-53, Apr.-June 1964.
(7) Fitting $y=\beta x$ when the variance depends on x. John Van Dyke. J. Res. NBS-B. (Math. and Math. Phys.) 68B, 67-72, Apr.-June 1964.
(8) General application of Youden's rank sum test for outliers and tables of onesided percentage points. Thomas A. Willke. J. Res. NBS-B. (Math. and Math. Phys.) 68B, 55-58, Apr.-June 1964.
(9) La revolucion Fisheriana en los metodos de experimentacion. W. J. Youden. Estadistica, Journal of the Inter-American Statistical Institute, September 1963. (Translation of "The Fisherian revolution in methods of experimentation", J. Amer. Statist. Assoc. 46, 47-50, 1951.)
(10) Use of general purpose coding systems for statistical calculations. J. M. Cameron and J. Hilsenrath (NBS Equation of State Section). To appear in Proceedings of IBM Symposium on Scientific Computing.
(11) A simple method for calculating orthogonal bases for a vector space and its complement. J. M. Cameron, Submitted to a technical journal.
(12) Estimation for a one-parameter exponential model. Janace A. Speckman and Richard G. Cornell (Florida State Univ.). Submitted to a technical journal.

Manager: Joan R. Rosenblatt
Full task description: January-March 1956 issue, p. 13
Status: INACTIVE.

Task 1104-12-11141/55-57

Origin: NBS
Authorized 9/1/54
Manager: W.H. Pell
Full task description: July-September 1954 issue, p. 27
Status: CONTINUND. The theoretical and experimental study of constitutive relations for continua with non-linear response to applied forces carried on by Dr. B. Bernstein together with E.A. Kearsley and L. Zapas, of Sec. 6.05, has been continued.

As mentioned in July-Dec. $1963 P$ and P the problem of calculating the response of a material to a given strain history using the Bernstein-Kearsley-Zepas constitutive relation has been considered. Dr. Hansjorg Oser has set up a program for fitting the data from which the response is to be calculated.

Dr. Bermstein and his co-workers have recently concerned themselves with the thermodynamical aspects of visco-elasticity. A thermodynamics has been incorporated into the BKZ theory which includes the isothermal concepts of the elastic fluid but is applicable to non-equilibrium conditions and includes thermal as well as mechanical phenomena. To develop such a thermodymamics, equilibrium is defined as a state free of shear stress. To the usual state variables of thermostatics is adjoined a quantity with dimensions of entropy which depends on the deformation history. This formulation makes possible the precise mathematical description of a material which behaves like an elastic material if investigated on a very short time scale but whose "stored energy" relaxes in time to show fluidlike behavior in the long time limit. The formulation gives a specific calculation of entropy in either equilibrium or non-equilibrium, and shows a monotonic increase of entropy as the material relares towards an equilibrium state. It specifically predicts that the temperature will rise if work is done on the material under isochoric and adiabatic conditions and will fall if the material does work under the same conditions. A relation between time and temperature effects is introduced in a general fashion including the case where temperature is a function of time.

There has been time, so far, to check only a few of the characteristics shown by this formulation. All of those checked so far give results in agreement with experience and persuade us that we have here the start of a very general and powerful tool with which to analyze material behavior in a fundamental and useful fashion.

Dr. John Lagnese has conducted an investigation concerning the fundamental solution and Huygens' principle for linear combinations of linear differential operators of second order. A manuscript on this subject has been prepared.

In connection with the question of Huygens' principle, Dr. Iagnese has proved that Hadamard's conjecture is true in a certain extended sense for the class of operators of the form
$L u=u_{t t}-\sum_{1=1}^{n} u_{x_{1}} x_{1}+c(t) u$. A manuscript concerning this result is in preparation.

Drs. J.H. Bramble and L.E. Payne completed their study of a priori pointwise bounds for the problem of the elastic plate with mixed boundary conditions. The plate boundary was supposed to consist of disjoint arcs Σ_{1} and Σ_{2}, and the plate to be simply connected. Three problems were considered:
a) $u, \partial u / \partial n$ given on $\Sigma_{1} ; u, M(u)$ on Σ_{2}
b) $u, \partial u / \partial n$ given on $\Sigma_{1} ; M(u), V(u)$ on Σ_{2}

Status of Projects

c) $u, M(u)$ given on $\Sigma_{1} ; M(u), V(u)$ on Σ_{2}
where $M(u)$ and $V(u)$ are essentially the edge bending moment and shear, respectively.

Study is currently under way on the properties of Green's functions, with the aim of obtaining explicit bounds for the Green's function and its normal derivative for the Dirichlet problem for general second order elliptic equations and various domains.

Dr. Payne presented to the May colloquium of Div. 6 a survey of the methods he and Dr. Bramble have developed for the establishment of a priori bounds for the solution of boundary value problems of mechanics.

Dr. W.H. Pell has been collaborating with Mr. A. Kirstein, of Sec. 6.04, on a comparison of the theory of deflection of elastic plates supported and loaded by point loads with experimental results obtained by Mr. Kirstein. In the cases thus far considered, theory and experiment are in excellent agreement.

Publications:

(1) Thermodynamics of perfect elastic fluids. B. Bermstein, E.A. Kearsley, and L.J. Zapas. Submitted to Journal of Research, Section B, Math. and Math. Physics.
(2) A new differential operator of the pure wave type. J.E. Lagnese. To appear in Contributions to Differential Equations.
(3) On Rayleigh's non-linear vibration equation. A. Ghaffari. Proceedings of the International Symposium on Non-Linear Vibration, Kiev, USSR, September 12-18, 1961, Vol. II, pp. 130-133.
(4) Inequalities for solutions of mixed boundary value problems for elastic plates. J.H. Bramble and L.E. Payne. Journal of Research NBS, 68B, pp. 77-92, 1964.
(5) The effect of error in measurement of elastic constants on the solutions of problems in classical elasticity. J.H. Bramble and L.E. Payne. Journal of Research Section B, Math. Math. Physics, Vol. 67, pp. 157-168, July-Sept. 1963.
(6) Pointwise bounds in the first biharmonic boundary value problem. J.H. Bramble and L.E. Payne. Joumal of Mathematics and Physics, Vol. 42, No. 4, pp. 278-286, 1963.

PLASMA RESEARCH
Task 1104-12-11140/59-422

Origin: NBS Authorized 6/30/59
Nienager: C.M. Tchen
Filll task description: April-June 1959 issue, p. 15
Status: CONTINUED. Principal activity has been along the lines of research problems reported on in July-Dec. 1963 P and P, i.e., work has been principally in the two areas indicated below.
(1) Stochastic theory of diffusion in a plasma across a magnetic field. A stochastic theory was used to investigate the diffusion across a constant magnetic field for the following cases: (a) diffusion by collision, (b) diffusion by collective oscillations, and (c) diffusion by turbulence. For the cases (a) and (b) a general formula was obtained, which by suitable degeneration could be brought to agree with existing special theories. Such diffusion was found to decrease with the
magnetic field. For the case (c), the diffusion was found to increase in magnitude with the turbulent fluctuations. As the magnetic field plays the role of an extemal supply of turbulent energy, it broadens the turbulent spectrum and increases the diffusion, contrary to the situation in cases (a) and (b). A paper with the above title was presented at the International Symposium on Plasma Diffusion, Munich, Germany, June 1964.
(2) Spectrum of magnetohydrodynamic turbulence. Consider a plasma with incompressible, isotropic, and homogeneous turbulence in a uniform magnetic field. The magnetohydrodynamic equations for the velocity and the magnetic field were used, and proceeding therefrom, the equations for the spectra of velocity and magnetic field were derived. The Heisenberg hypothesis was introduced for the formulation of the non-Iinear terms which were responsible for the transfer of energy in the cascade of modes. The non-linear equations were solved for the inertial and dissipative ranges of spectra. A report on this work is in preparation.

DMNAMICS OF PLASMAS
 Task 1104-12-11417/62-1157

Origin: NBS
Manager: C.M. Tchen
Full task description: April-June 1959 issue, p. 15
Status: CONTINUED. The investigations of Dr. C.M. Tchen's group on the kinetics of plasmas have continued. Emphasis in this period has been on the numerical aspects of problems, with Dr. K. Hain, Institut für Plasma Physik, Garching, Germany and Dr. W.I. Sadowski aiding Dr. Tchen in this work. Work was concentrated on two areas:
(1) Non-linear damping of waves in a plasma.

This is a continuation of work initiated by Drs. Sadowski and Tchen, and noted in Jan.-July 1963 P and P. The non-linear damping governed by the Vlasov equation is under study. Stability difficulties have been encountered in the numerical integration, but it now appears that these have been overcome.
(2) One-dimensional problems of the interaction of a plasma with a magnetic field.

Two problems were investigated: a) the unsteady and non-linear expansion of a plasma into a vacuum, with a constant magnetic field initially present in the plasma; b) a semi-infinite plasma driven at one end by a time-varying magnetic field. The evolution of the interaction in time was investigated numerically by including transport coefficients. A report on this is in preparation by Drs. Tchen and Hain.

The reports a), b) and c) listed in Jan.-July $1963 P$ and P are in the process of revision. They are:
a) The Kinetic Equation for Rapidly Varying Plasma,
b) Diffusion of the Correlation Function in a Plasma,
c) Plasma Oscillations with Collective Correlations

THEORY OF SATELLITE ORBITS
Task 1104-12-11441/62-1166

Origin: NBS
Authorized 1/9/62
Sponsor: National Aeronuatics and Space Administration
Manager: J.P. Vinti
Full task description January-March 1962 issue, p. 12
Status: CONTINUED. Dr. Vinti has derived the connections between the orbital elements in spherical coordinates and in parabolic coordinates for the Kepler problem. This is in preparation for calculating the effect of a uniform gravitational field on an elliptic orbit, which in turn has applications to the effect of radiation pressure on the orbit of an artificial satellite. He is currently working out this problem by perturbational methods, using parabolic coordinates. The problem is the classical analogue of the Stark effect for a hydrogen atom, for which spherical coordinates fail, but for which parabolic coordinates succeed.

Publication:

(I) The spheroidal method in the theory of the orbit of an artificial satellite. J.P. Vinti. To appear in the Proceedings of the Symposium on Celestial Mechanics, held March 1964, at the Mathematisches Forschungsinstitut at Oberwolfach, West Germany.

> FYPERVELOCITY IMPACT
> Tesk 1104-12-11418/63-1373

Origin and Sponsor:
Applied Physics Laboratory
Authorized 4/22/63
Johns Hopkins University
Manager: Barry Bernstein
Status: TERMINAIED. A formulation of the problem presented by the sponsor has been made which is based on what appears to be a reasonable model of the physical phenomenon under consideration. Only numerical solution of the problem seems feasible, and the work required for this formidable. A careful evaluation of the time required for a machine solution indicated the monetary expenditure with available computers would be orders of magnitude greater than anticipated by the sponsor when the project was initiated. It has therefore been terminated.

5. OPERATIONS RESEARCH
 OPERATIONS RESEARCH

Task 1105-12-11115/61-546
Origin and Sponsor: NBS
Authorized 12/30/60
Manager: Alan J. Goldman
Full task description: October-December 1960 issue, p. 3
Status: CONIINUED. The following investigations in various fields of operations research were carried out by members of the staff:
(1) P. Meyers continued research on remetrizing a space so as to make the Banach Contraction Theorem applicable; his results extend and unlfy those of Janos and Edelstein. A.J. Goldman generalized an inequality due to B.C. Rennie, and subsequently (with J.B. Diaz and F.T. Metcalf, U. of Maryland) showed that the Rennie inequality and its generalization were respectively equivalent to the Diaz-Metcalf inequalities complementing those of Cauchy-Schwarz and of Hölder. A.J. Goldman generalized recursive-function-theoretic results of J. and R.M. Robinson pertaining to the generation of functions, using specified operations, without introducing intermediate functions of unnecessarily many variables. K. Kloss continued his use of the NBS PILOT computer to investigate solutions of the congruences ($p-1$) $\equiv-1\left(\bmod p^{2}\right)$ and $q^{p-1} \equiv 1\left(\bmod p^{2}\right)$ for primes p and q. He used PILOT to show that for $0<n \leq 12000,8 n+3$ is always the sum of a square and twice a prime (thus supporting a conjecture made by Euler). At the suggestion of Dr. G. Howett (NBS Sec. 2.01) he investigated the possibility of generating primes by a formula of the form $f(k)=a_{o} p_{k}+a_{1} p_{k-1}+\ldots+a_{m} p_{k-m}$, where $m, a_{0}, a_{1}, \ldots, a_{m}$ are integer constants and p_{1} denotes the 1 -th prime.
(2) L.S. Joel and K. Kloss (with G. Stonebreaker and G. McKay of the Institute for Applied Technology) continued work on modelling some aspects of the textile industry; a more specific model based on field interviews was constructed for the production-distribution cycle of a tufted carpet factory. J. Levy began related studies concerning the important parameters of information (cost, value, timeliness, accuracy) at various levels in such an industry. (Reported here for convenience; supported under Project No. 30409.) K. Kloss (with V. DeGutis of the Veterans' Administration) began developing computer procedures for facilitating hospital floor layout, with emphasis on translating architects' assessments, of the relative importance of proximity for different types of functional units, into a specific algorithm. (Reported here for convenience; supported under Project No. 11647).
A.J. Goldman (with B.M. Levin of the Transport Systems Division) is* preparing a survey of mathematical and simulation models relevant to transportation research and development. (Reported here for convenience; supported under Project No. 19407). A.J. Goldman, and W. Hall of ll.02, are participating in the Comerce Department's economic analysis of the proposed commercial supersonic transport plane.
(3) C. Witzgall completed a study of mathematical models and concepts relevant to determining that location of a central facility which minimizes the total costs of transportation between it and its customers. One section, excerpted for separate publication, contains a proof that a metric (not necessarily symmetric) defined on a linear space, if convex in each argument separately, must arise from a norm. Dr. Witzgall is now studylng a new class of models for efficiently representing urban origin-to-destination travel times.
J. Levy and A.J. Goldman continued investigations of the effects of buffer capacity in a simple mail sorting machine. P. Meyers continued analysis of a stochastic sorting process, and developed a mathematical model for value analysis of a proposed new subsystem of a sorting system. D. Kleinman continued work on the computer simulation of a class of mail sorting devices. A.J. Goldman investigated some mathematical measures of ambiguity for address-coding schemes in mail sorting. (Reported here for convenience; items (3) all supported under Project No. 12450.)

Publications:
(1) A Generalization of Rennie's inequality. A.J. Goldman. Journal of Research NBS, 68B, No. 2, pp. 59-64, 1964.
(2) Examples relating to the simplex method. A.J. Goldman and Daniel Kleinman. Operations Research 12 (Letters to the Editor), No. 1, pp. 159-161, 1964.
(3) Generation and composition of functions. A.J. Goldman. Submitted to a technical journal.
(4) Weak generalized inverses and minimum variance linear unbiased estimation. M. Zelen and A.J. Goldman. Submitted to a technical journal.
(5) On convex metrics. C. Witzgall. Submitted to a technical journal.
(6) Approximating symmetric relations by equivalence relations. C.T. Zahn, Jr. Submitted to a technical journal.
(7) Realization of semi-multipliers as multipliers. Harriet Fell and A.J. Goldman. To appear in Amer. Math. Monthly (Math. Notes).
(8) Barely faithful algebras. Harriet Fell and John Mather. To appear in Amer. Math. Monthly (Math Notes).

COMMERCIAI, REFIIE PROBLEM DCA
Task 1105-12-11465/63-1494

Origin and Sponsor: Defense Communication Agency Authorized 6/19/63
Manager: Lambert S. Joel
Full task description: June 19, 1963
Objective: To analyze various instrumentalities of the Defense Commications System and if possible, to determine optimal structure and operational procedures according to appropriately developed cost/ effectiveness/ and feasibility criteria.

Background: The DCS processes a large number of messages to, from, and within the military establishment. It is quite desirable to minimize annual costs while maintaining adequate quality and accuracy of service.

Status: CONTINUED. Two "Integer Program" computer codes were obtained through SHARE (IBM computer users group) and tested with artificially constructed small refile problems (5 candidate, 10 destinations and 6 candidate, 12 destinations). The algorithms failed, running about 10000 iterations without solution and halting after sensing excessive round off error accumulation. A slightly changed formulation of the problems normalizing the equations terminated for the same reason after about 1100 iterations. Three other computer programs were discovered to be in existence but as all are subject to proprietary restrictions they were not obtained for experimentation.
L.S. Joel wrote and tested a Fortran program to determine the feasibility of a particular very simple "hill climbing" or local optimum generating algorithm based on the formulation set up for Integer Programing. The program was refined and expanded using "machine language" (FAP) and is being debugged. Various other approximate methods proposed by C. Witzgall, A.J. Goldman and L.S. Joel were examined and studies leading to computer implementation started.

Joel Levy investigated the relationship between the communication network connecting members of a "team" pursuing a common known objective, and the nature of the feasible policies for the team.

Jack Edmonds investigated extensions of the Shannon "switching game".

COMBINATORIAL MATHEMATICS
Task 1105-12-11455/62-1205
Origin: NBS
Authorized 5/2/62
Sponsor: Army Research Office-Durham
Manager: Jack Edmonds
Full task description: April-June 1962 1ssue, p. 15
Status: CONTINUED. C. Witzgall continued the preparation, testing, and documentation of computer codes for the maximum matching algorithms.

Edmonds continued the preparation of papers on earlier reported material. He began investigations on the theory of matroids. Matroids embody the "abstract properties of linear dependence". They bear closely on electrical networks, switching functions, matrices, lattices, and projective configurations. One result is that: The columns (elements) of a matrix (matroid) M can be partitioned into as few as k sets each of which is linearly independent, if and only if every subset of the columns (elements) of M has cardinality at most k times its rank.

Publications:
(1) Existence of k-edge connected ordinary graphs with prescribed degrees. Jack Edmonds. Journal of Research NBS, 68B, 1964.
(2) Paths, trees, and flowers. Jack Edmonds. To appear in the Canadian Journal of Mathematics.
(3) On the surface duality of graphs. Jack Edmonds. Submitted to a technical journal.
(4) Maximum matching and a polyhedron with (0,1)-vertices. Jack Edmonds. Submitted to a technical journal.
(5) On matching problems. J. Edmonds, A.J. Goldman, C. Witzgall, and C.T. Zahn, Jr. Presented to the meeting of the Army Research Office Working Group on Computers at NBS, Feb. 5, 1964.
(6) Optimal matchings and degree-constrained subgraphs. A.J. Goldman. Journal of Research NBS, 68B, 1964.
(7) A modification of Edmonds' maximum matching algorithm. C. Witzgall and C.T. Zahn, Jr. Submitted to a technical journal.

```
1102-40-11645/56-0166 SCF-LCAO SOLUTION OF SOME HYDRIDES
Origin and Sponsor: NBS, Section 5.9 (now Division 15)
Manager: P.J. Walsh
Full task description: January-March 1956 issue, p. 27
Status: TERMDNATED.
```

1102-40-11645/56-0186 MECHANICAL MEASUREMENTS OF GAGE BLOCKS
Origin and Sponsor: NBS, Section 2.5
Manager: B.S. Prusch
Full task description: July-September 1956 issue, p. 33
Status: CONTINUED. Computations were performed to check 42 laboratory sets of gage
blocks as requested.

1102-40-11647/58-0266 DEPOLYMERIZATION PROCESSES
Origin and Sponsor: NBS, Section 7.6
Manager: R. Zucker
Full task description: July-September 1957 issue, p. 36
Status: REACTIVATED. Production runs were made and results submitted to sponsor.

1102-40-11645/58-0339 COMPUTATION OF VISCOELASTICITY PROPERTIES OF MAIERIALS
Origin and Sponsor: NBS, Section 3.4
Manager: H. Oser
Full task description: January-March 1958 issue, p. 38
Status: CONTINUED. We continued with analysis and computation of various blending laws for creep and stress relaxation of polymer solutions. The program of the Bell Laboratories which computes creep when stress relaxation is given, has been thoroughly tested. In the regions of interest the accuracy is about l percent which is better than the experimental accuracy.

1102-40-11645/60-0486 MORSE WAVE FUNCTIONS AND FRANCK-CONDON FACTORS
Origin and Sponsor: NBS, Section 3.0
Manager: Ruth Zucker
Full task description: January-March 1960 issue, p. 28
Status: CONTINUED. Production runs were made and results submitted to sponsor.

1102-40-11645/60-0513 RADIATIVE ENVELOPES OF MODEL STARS
Origin and Sponsor: National Aeronautics and Space Administration Managers: P.J. Walsh and S. Haber (11.1)
Full task description: July-September 1960 issue, p. 23
Status: INACTIVE.

1102-40-11645/61-0538 SPECTRAL REFLECTANCE
Origin and Sponsor: NBS, Section 9.4
Managers: S. Haber (1l.1) and P.J. Walsh
Full task description: October-December 1960 issue, p. 23
Status: INACTIVE.

1102-40-11647/62-1022 CALCULATIONS FOR SPECTRUM OF DIPOLE RADIATION
Origin and Sponsor: Naval Research Laboratory
Manager: R.J. Arms
Full task description: April-June 1958 issue, p. 33
Status: CONTINUED. More results have been submitted to the sponsor.

1102-40-11645/62-1027 NEW SYSTEM
Origin and Sponsor: NBS, Section 11.2
Manager: P.J. Walsh, V. Dantzler, W. Lipton
Full task description: July-September 1961 issue, p. 22
Status: CONTINUED. The $\phi M N I T A B$ system was incorporated as a subsystem of the IBM system IBSYS (Version 8). The program written to insert $\phi M N I T A B$ under IBSYS should prove to be a useful tool for including similar systems under the IBSYS framework.

Version 10 of IBSYS was released by IBM and will replace the current version sometime in July. Reassembly of the IBSYS supervisor was required and an accounting routine was inserted into this version. The 1410 program, B ϕ SS, required modifications to be compatible with this version of IBSYS. Some library subroutines, which were written at the University of Chicago, will also be inserted into this IBSYS system.

The number of users of IBSYS at NBS has increased over this period and it is hoped that this increase will continue as newer programing features are made available in current and future versions of the IBSYS system.

The Stanford University Algol Compiler (SUBALC ϕ M) was obtained and some experimental runs are being set up. This system compiles programs written in SUBALGQL, Stanford University's algorithmic language. This language is an extension of the Burrough's Algebraic Language, BALGфL.

1101-12-11416/62-1091 BOUNDS FOR EIGENVALUES
Origin: Wright-Patterson AFB
Manager: H. Oser
Full task description: October-December 1961 issue, p. 4
Status: COMPLETED. The investigations about the relaxation of a Lorentz gas were completed. Eigenvalues and eigenfunctions of the second-order differential operator were determined up to order 10 for 4 different values of the force parameter s in the r^{-s} force law.

Publication:
(1) On the relaxation of a Lorentz gas under an r^{-s} force law. H. Oser, K.E. Shuler and G.H. Weiss. To appear in J. Chem. Physics.

1102-40-11647/62-1130 FALLOUT SHELTER COMPUTATIONS
Origin and Sponsor: Office of Civil Defense
Manager: W. Hall
Full task description: October-December 1961 issue, p. 25
Status: CONTINUED. Modifications have been made in programs and procedures to enable lowering of the minimum protection factor to 10 rather than the previously used value of 20. Other changes were made in output format and to distinguish between first and second generation data items. Second generation data are being processed.

1102-40-11647/62-1155 MORTGAGE LOAN SURVEY
Origin and Sponsor: Federal Home Loan Bank Board
Manager: Ruth Zucker
Full task description: January-March 1962 issue, p. 24
Status: COMPLETED.

1102-40-11647/62-1178 LOGARITHMIC COEFFICIENTS
Origin and Sponsor: NBS, Section 5.3
Manager: R.J. Arms
Full task description: January-March 1962 issue, p. 27
Status: INACTIVE.

1102-40-1164 7/62-1179 CATALOGUE INFORMATION
Origin and Sponsor: HDL
Manager: Ruth Varner
Full task description: January-March 1962 issue, p. 27
Status: INACTIVE.

1102-40-11647/62-1189 SEQUENTIAL NETHODS TABLES
Origin and Sponsor: Quartermaster Research and Engineering Field
Evaluation Agency, U.S. Army
Manager: R.J. Arms
Full task description: April-June 1962 issue, p. 26
Status: CONTINUED. Production runs have been completed up to the amount of available funds. More funds are needed for completion of the project.

1102-40-11647/62-1193 SOLUTION TO SECOND ORDER PARTIAI DIFFERENTIAL ELLIPTIC EQUATIONS Origin and Sponsor: NBS, Section 3.8
Manager: P.J. Walsh
Full task description: April-June 1962 issue, p. 28
Status: INACIIVE.

1102-40-11647/62-1196 HEAT OF ADSORPTION
Origin and Sponsor: NBS, Section 15.2
Manager: Ruth Varner
Full task description: April-June 1962 issue, p. 29
Status: INACTIVE.

```
1102-40-11647/62-1203 CYLINDRICAL SHOCK WAVE
Origin and Sponsor: NBS, Section 3.7
Managers: Sally Peavy and S. Haber
Full task description: April-June l962 issue, p. }3
Status: INACTIVE.
1102-40-11647/62-1212 COLOR DIFFERENCES
Origin and Sponsor: NBS, Section 10.9
Manager: J.D. Waggoner
Full task description: April-June 1962 issue, p. }3
Status: COMPLETED.
```

1102-40-11647/63-1240 SECRET SERVICE FORGERY PROJECT
Origin and Sponsor: Treasury Department, U.S. Secret Service
Manager: M. Paulsen
Full task description: July-December 1962 issue, p. 33
Status: CONTINUED. A new scheme of output was found to be advisable in matching coded information found in signatures of forged government checks. This involved making many changes in the original output program. Two sets, of about 200 forged checks each, have been submitted and the requested information given to the sponsor.

1102-40-11647/63-1355 STUDY OF ELECTRONIC ENERGY BANDS IN THE RUTIIE CRYSTAL Origin and Sponsor: NBS, Section 13.4
Managers: P.Walsh and A. Gregg
Full task description: January-June 1963 issue, p. 26
Status: TERMINATED. Production runs were made and the results have been submitted to the sponsor. These results will be published.

1102-40-11647/63-1368 HEART DISEASE CONTROL
Origin and Sponsor: Public Health Service
Manager: Sally Peavy
Full task description: January-June 1963 issue, p. 27
Status: COMPLETED. Program given to sponsor.

1102-40-11647/63-1377 WISKER GROWIH IN A VAPOR ATMOSPHERE

Origin and Sponsor: NBS, Section 8.5
Managers: H. Oser and J.A. Simmons (8.5)
Full task description: January-June 1963 issue, p. 28
Status: REACTIVATED. The problem was analyzed again and refined techniques for the iterative solution of the system of integral equations were designed. A computer program was written by Miss Maxine L. Paulsen and Walter Lipton. This program is currently being checked out.

1102-40-11647/64-1410 INTEGRO-DIFFERENTIAL EQUATIONS
Origin and Sponsor: Institute for Defense Analysis
Manager: R.J. Arms
Full task description: July-December 1963 issue, p. 16
Status: INACTIVE.

1102-40-11647/64-1415 SINGLE CRYSTAL DATA
Origin and Sponsor: NBS, Section 5.6
Manager: D.I. Mittleman
Full task description: July-December 1963 issue, p. 16
Status: TERMINATED. The program will be handled directly from the Office of Standard Reference Data.

1102-40-11647/64-1442 COLFACS
Authorized 3/30/64

Origin and Sponsor: HEW

Managers: Ruth Zucker and J.D. Waggoner
Objective: To edit and prepare a series of tables relating to status and career orientations of college faculty 1962-63. Two profiles containing numerous fields such as age groups, sex, rank, student level taught most, salary status, type of institute, etc. are to be cross tabulated with other fields with controls on numerous fields. Weighted tallies and percent are to be obtained for the various tabulations. Also median and averages where salary tables are computed.
Background: The need for reliable and current information on college faculty is widely felt throughout the educational field. It is generally recognized that this decade will be a period of rapid expansion in higher education. This survey is an effort to help fill some of the gaps in knowledge about faculty. The survey was conducted by questionnaires to a selected sample of voluntarily participating individuals. 13017 questionnaires were received. The problem was transmitted by Kenneth G. Nelson, HEW. Status: NEW. Editing and correlation codes were written and checked out. Tables were run and submitted to the sponsor.

1102-40-11647/64-1450 GLASS BEAD DATA
Authorized 3/24/64
Origin and Sponsor: NBS, Section 10.7
Manager: R. Zucker
Objective: See January-March 1961 issue, p. 22, PARTICLE SIZE CALCULATIONS. The above task is a continuation of the previous project with slight modifications.
Background: Modifications were introduced to take care of change in the microscope calibration factor.

In order to estimate the effect of certain measurement errors on the calculated distributions and parameters, simulated errors were introduced and the results recomputed for a group of 1000 beads.

There were three individual runs based on the following assumptions.
a) Assume the diameter of each bead was in error by 0.3 micron.
b) Increase the bubble diameter of each bead by 6%.
c) Eliminate all imperfect beads from a group of data.

The Stoke's law distributions were originally calculated for water, having a density of $1.00 \mathrm{~g} / \mathrm{ml}$ and air, having a neglible density in comparison with the beads. Computations were also made for Stoke's law distributions in media of different densities.

Several groups of 1000 beads were involved in the above calculations.
Status: REACTIVATED.

1100-12-11404/64-1456 RESEARCH ON A PICTURE LANGUAGE MACHINE Authorized 5-1-61 Origin: NBS
Sponsor: National Science Foundation
Manager: Russell A. Kirsch
Full task description: July-December 1963 issue, p. 17
Status: CONTINUED. The technique of syntax direction for interpreting syntactically described information sources was investigated by R. A. Kirsch. The technique which was developed for natural language sources has been partially extended to include schematic pictures.
W. C. Watt developed a computer algorithm capable of generating and analyzing a large body of English sentences which describe pictorial images.

1100-12-11404/64-1456 RESEARCH ON BIOLOGICAL PATTERN DATA PROCESSING Authorized 1-21-64
Origin: NBS
Sponsor: National Institutes of Health
Manager: Russell A. Kirsch
Objective: To investigate computer techniques for processing biological patterns. Specific attention is to be given to three kinds of techniques: 1. Those for analyzing images to produce quantitative data; 2. Those for synthesizing (schematic and diagrammatic) images for visual consumption; and 3. Those for associating linguistic descriptions with the articulated part of the images they describe. Photomicrographs (of brain tissue) are to be automatically processed with these three kinds of techniques in order to study, by simulation, the specific future machines for implementing such processing.

Status: NEW. A preliminary feasibility study has produced a grammar for a fragment of English including statements, questions, and processing commands pertaining to brain tissue photographs. A picture processing language, PAX, from the University of Illinois has been set up and experimented with on the 7094. Automatically scanned and quantized images of brain tissue have been analyzed in PAX.

1102-40-11647/64-1466 GREENBRIER CIINIC PROJECT

Origin and Sponsor: HEW

Managers: M. Paulsen and W. Hall
Objective: To take the data from approximately 60,000 cards having many multi-punched columns and convert it into a form that could be used by regular EDP equipment. Background: This medical examination data was taken at Greenbrier Clinic, White Sulphur Springs, West Virginia. Initially the data was put on porta-punch and mark sense cards but later all this data was transferred to standard type punch cards. There were 3274 patients having at least one and as many as eleven examinations. There were in all 10,146 examinations (6 cards each) and 195 deaths (1 card each) or a total of 61,071 cards involved.
Status: COMPIETED. An elaborate edit routine was written to do a column by column check, certain checks between columns, checks for missing cards within an examination, missing examinations, duplicate cards and various other checks that could be applied. All information that could be converted to a usable form was (a card having a wrong number, that is other than 1 to 6 or death - could not, because there was no way to know which of the 7 different convert-edit routines should be used.) The printed information from the edit portion of the routine indicates any incorrect information found in the converted data. The converted data consists of a 206 word record for each examination (including the death examinations - which just has more filler.)

The 61,071 cards submitted were put on tape and sorted. This tape was used as input to the above mentioned routine. The objective has been accomplished - the edited, converted, expanded data is now on two magnetic tapes in a form that can be used in various medical studies by the HEW Department on regular EDP equipment.

1102-40-11647/64-1479 NUCLEAR QUADRUPOLF
Origin and Sponsor: NBS, Section 13.4
Manager: P. Walsh
Objective: To determine the solution to the problem of nuclear quadrupole splitting of Zeeman energy levels of a nucleus in the region where perturbation theory does not converge sufficiently rapidly. The program is suitable for all nuclear magnetic resonance studies but is most useful when one principle axis can be determined experimentally, which is the present case of interest. The program is being used currently to fit the spectra observed in potassium azide.

The problem is to find the eigenvalues and eigenvectors of the Hermetian matrix J of order (2I+l) defined below.

1) Diagonal Elements

$$
\frac{A q}{4 I(2 I-I)}\left(3 m^{2}-I(I+1)\right)-m A h \cos \theta
$$

2) One-Above Diagonal

$$
\frac{-A h}{2} \sqrt{I(I+l)-m(m+1)} \sin \theta e^{-i \Phi}
$$

3) Two-Above Diagonal

$$
\frac{A q \eta}{8 I(2 I-1)} \sqrt{I(I+1)-m(m+1)} \sqrt{I(I+1)-(m+1)(m+2)}
$$

4) All other elements are zero.

I, Aq, Ah and η are input parameters. m assumes the value I on the first row of the matrix and decreases by 1 for successive rows.

$$
\begin{aligned}
\Phi & =\Phi_{0}(\Delta \Phi) \Phi_{\mathrm{n}} \\
\theta & =\theta_{0}(\Delta \theta) \theta_{m}
\end{aligned}
$$

The differences of the eigenvalues are calculated and plots of these differences against θ are obtained.
Background: The general solution of the secular equation of the Hamiltonian describing Zeeman and quadrupole interactions has been previously done only for very special values of the parameters. The present experimental work required an exact solution of the secular equation.
Status: NEW. The Hermetian matrix described above was changed to a real symmetric matrix of twice the given order. A program was written to generate the matrix from input parameters, calculate the eigenvalues and eigenvectors, difference the eigenvalues and plot these differences against the range of θ values. The program has been checked out and production runs were submitted to the sponsor. Production runs are being conducted under the sponsor's direction.

1102-40-11647/64-1488 INTERPLANETARY CALCULATIONS
Authorized 1/28/64
Origin and Sponsor: NASA
Manager: J. Arms
Objective: To assist in the development of a program for the simulation of interplanetary trips subject to a family of input parameters. The problem was submitted by
Dr. Stanley Ross of NASA.
Background: Plans of interplanetary travel require the investment of large amounts of man years and funds. With the help of a computer trip simulation program it is hoped that some planning costs will be reduced.
Status: NEW. Programming has begun. Parameter looping codes are in the process of checkout. Some trip simulations have been made.

1102-40-11647/64-1501 SPACE INVENTORY
Authorized 2/20/64
Origin and Sponsor: NBS, Section 50.0
Managers: P. O'Hara and J. Wilkinson
Objective: To prepare an inventory that shows the location and usage of all rooms at NBS, Washington. Summaries are required by building, division, and usage code.
Background: Part of this task was formerly run by the Accounting Division on standard IBM equipment. In order to prepare additional reports with fewer machine passes it was decided to program the job for the IBM 1410.
Status: NEW. COMPLETED. The 1410 program has been checked out and one production run has been completed. Future runs will be made by the sponsor.

1102-40-11647/64-1511 AUTOMATIC FILING SYSTEM
Authorized 3/16/64
Origin and Sponsor: International Commerce
Manager: W. Hall
Objective: To aid BIC in the design of formats and procedures to test the feasibility of producing World Trade Lists from a world trade directory file.
Background: BIC has the responsibility of furnishing U.S. businesses with data concerning potential overseas markets. This has been done via World Trade Lists prepared by foreign service officers in the market area although much of the pertinent information is contained in a world trade directory file.

Japan was chosen as the test country both because it is one of the most active export markets in terms of volume and variety of cormodities and because language problems are as difficult as any others expected.

Although EAM equipment is to be used for testing, the system is designed to permit easy transition to a stored program computer with a high I/O capability. Status: COMPLEIED.

1102-40-11647/64-1528 LUMBER STANDARDS
Origin and Sponsor: NBS, Section 18.0 (R.E. Wilson)
Manager: L. Joseph
Objective: To assist the Statistical Engineering Laboratory (11.3) in the summarization of the results of a questionnaire concerning a revision of SPR 16-53: American Lumber Standards for Softwood Lumber.
Background: The American Lumber Standards Committee submitted a proposal to revise the softwood lumber standard under the voluntary commodity standards program. A questionnaire was circulated to ascertain whether the proposal had wide support in the industry. Because a large response was expected, the Applied Mathematics Division was requested to assist in processing of the data.
Status: NEW. COMPIETED. In conjunction with Mr. Cameron and others of the Statistical Engineering Laboratory (11.3) routines were written to edit and process the data. Production muns were made. A final report has been submitted.

7. STATISTICAL ENG INEER ING SERVICES

COLLABORATION ON STATISTICAL ASPECTS OF NBS RESEARCH AND TESTING

Task 3911-61-39951/51-1
Origin: NBS
Managers: J. M. Cameron, H. H. Ku
Full task description: July-September 1950 issue, p. 60
Status: CONTINUED. Dr. Youden collaborated with the Bureau's Radioactivity Section on studies of the calibration of radiation standards. These studies involved, in addition to the problems of design for the multiple comparisons among the standards and the unknowns, the concomitant investigation of the effect of experimental factors such as position and time trend on the precision and accuracy oif the results.
J. M. Cameron and K. Bedeau have developed a computer program for the analysis of weighing designs that has greatly facilitated the development and comparison of special designs needed in the work of the Mass laboratory in its dead weight testing in the $10,000 \mathrm{lb}$. range. As yet no mathematical method for the construction of an optimum design exists so that new designs for use in this program were selected irom a group of the most promising designs. The computer makes it economically possible to intercompare a lairly exhaustive list of possible designs and hence arrive at an optimum (or near optimum) design.

Mrs. M. G. Natrella has taught the second semester of a course in Experimental Statistics using her own book, NBS Handbook 9l, as the text. This course was originally scheduled for one semester but was extended because of the demand of the students. The popularity and usefulness of Handbook 91 inside the Bureau is matched by a wide distribution to the public--nearly 6000 copies having been sold since October 1963.

Through the cooperative efforts of T. E. Hockersmith(6.00) and H. H. Ku(ll.03), over the past year, a new form of report of calibration has been adopted by the Mechanics Division for the calibration of proving rings. The new report, which replaces the type in use since 1946, includes a table of load values and detailed information on precision and accuracy of the calibration. An expository paper on the "Uncertainties Associated with Proving Ring Calibration" is being prepared for presentation at the October meeting of the Instrument Society of America.

Publications:

(1) Statistics of irreversible termination in homogeneous anionic polymerization. Bernard D. Coleman (Mellon Institute), Fred Gornick (NBS Macromolecules Synthesis and Structure Section), and George Weiss. J. Chemical Physics 39, 3233-3239, December 15, 1963.
(2) Exact conditions for the preservation of a canonical distribution in a Markovian relaxation process. H. C. Andersen, I. Oppenheim, Kurt E. Shuler (Director's Office), George H. Weiss. J. Math. Physics 5, 522-536, April 1964.
(3) Exact Faxen solution for contrifugation when sedimentation depends linearly on concentration. George Weiss and Irwin H. Billick (Macromolecules Synthesis and Structure Section). Nature 201, 912-913, February 29, 1964.
(4) A simple derivation of the Faxen solution to the Lamm equation. George Weiss. J. Mathematical Physics $\underline{3}$ 675-676, 1964.
(5) Statistics in its proper place. W. J. Youden. J. Wash. Academy of Sciences 54, 53-57, March 1964.
(6) Mathematical models for personnel promotion. E. L. Crow (Boulder Laboratories) and George Weiss. Submitted to a technical journal.
(7) Relaxation of a Lorentz gas with a repulsive $r^{-\mathbf{S}}$ force law. H. Oser, K. Shuler (Director's Office), and G. H. Weiss. Submitted to a technical journal.
(8) Evaluation of exact solutions to the Lamm equation. I. Billick (Macromolecules Synthesis and Structure Section) and G. H. Weiss. Submitted to a technical journal.
(9) Non-equilibrium thermodynamics of canonically invariant relaxation processes. H. Andersen, I. Oppenheim, K. Shuler (Director's Office), and G. H. Weiss. Submitted to a technical journal.
(10) Sampling and statistical design. W. J. Youden. To appear in Proceedings, Symposium on Environmental Measurements, U. S. Public Health Service, 1963.
(11) The evolution of designed experiments. W. J. Youden. To appear in Proceedings, IBM Symposium on Scientific Computing.

STATISTICAL SERVICES
Task 1103-40-11625/58-346
Origin and Sponsors: Various Agencies
Authorized 3/31/58
Manager: J. M. Cameron
Full task description: January-March 1958 issue, p. 45
Status: CONTINUED. Dr. Youden assisted the International Atomic Energy Agency in the planning of interlaboratory tests for establishment of standard samples for uranium and for trace elements associated with uranium.

THIS IS A RECORD OF THE USE OF THE IBM 7094 FOR THE PERIOD OF JANUARY 1. THROUGH JUNE 30. 1964.

TASK NUMBER

TITLE
NBS SERVICES

51-0002	11.03	STATISTICAL ENGINEERING	253	105	229	587
63-0003	11.03	CLASS +t+	2	2	5	9
54-0030	13.01	SPECTRUM ANALYSIS++	69	20	522	611
54-0031	13.01	SPECTRUM ANALYSISt+	3	0	26	29
54-0032	13.01	SPECTRUM ANALYSIS + +	69	18	168	255
54-0033	13.01	SPECTRUM ANALYSIS+t	101	21	937	1059
54-0034	13.01	SPECTRUM ANALYSIS++	4	1	232	237
55-0065	11.02	AUTOMATIC CODING	26	13	19	58
55-0082	3.01	THERMOMETER CALIBRATION*	0	0	248	248
56-0166	15.00	SCF-LCAO SOLUTION OF HYDRIDES +	36	105	648	789
57-0219	3.02	THERMAL PROPERTIES *	23	11	99	133
57-0236	3.08	SCF EIGENVALUES *	11	16	134	161
57-0250	2.01	SPECTROPHOTOMETRIC DATA*	42	8	45	95
57-0252	4.04	NEUTRAL MESON EXPERIMENTS + +	51	33	92	176
58-0256	10.06	COMPOSITE WALL STUDIES + +	178	113	61	352
58-0266	7.06	DEPOLYMERIZATION PROCESSES	0	0	25	25
58-0272	3.07	EQUATION OF STATE++	4	3	5	12
58-0314	3.07	APPROXIMATIONS FOR GAS MIXTURES	1	11	5	17
58-0339	6.05	VISCOELASTICITY PROPERTIES	23	10	11	44
60-0489	3.01	INVERSION OF LINE PROBE DATA+	109	76	48	233
61-0523	4.07	NEUTRON CROSS SECTION STUDIES + +	11	0	0	11
61-0538	9.04	SPECTRAL REFLECTANCE DATA	0	0	29	29
61-0559	3.01	THERMOCOUPLE CALIBRATION +	7	57	32	96
61-0562	7.06	CUBIC LATTICES*	0	0	47	47
62-1000	12.05	POST OFFICE OPERATIONS STUDYt*	32	14	7	53
62-1003	15.04	MOLECULAR SPECTROSCOPY +	1	0	104	105
62-1005	4.03	RADIATION INTERACTION+*	279	150	165	594
62-1006	4.03	RADIATION INTERACTION+*	408	511	663	1582
62-1011	13.05	DISPERSION INTEGRALS + +	7	3	31	41
62-1015	15.01	THERMAL FUNCTIONS + +	24	22	17	63
62-1019	41.00	NBS PERSONNEL REPORT++	5	28	153	186
62-1027	11.02	NEW SYSTEM	194	80	182	456
62-1029	9.07	D-SPACING CALCULATIONS +	0	0	8	8
62-1033	9.07	CRYSTAL STRUCTURE CALIBRATION++	83	117	334	534
62-1034	30.00	PHOTOIONIZATION CROSS SECTION+*	24	2	71	91

TITLE

COMPUTER			
1 M	1 N	U T	E S J
29	4	3	36
1	0	43	44
0	14	1	15
0	0	2	2
0	0	1	1
1	0	22	23
0	0	12	12
0	0	90	90
0	0	16	16
0	0	81	81
4	0	14	18
160	44	140	344
90	40	11	141
52	58	12	122
0	0	4	4
11	36	3	50
211	65	118	394
0	0	17	17
0	3	3	6
0	4	28	32
3	9	0	12
10	3	23	36
0	0	47	47
5	11	66	82
3	0	27	30
0	3	0	3
67	13	10	90
0	0	65	65
6	15	97	118
4	23	0	27
8	76	70	154
20	81	15	116
16	-8	80	104
15	8	0	23
8	7	5	20
17	4	3	24
8	0	36	44
35	1	261	297
236	23	5	264
0	0	4	4
15	194	18	227

62-1036 7.07 FILM THICKNESS*+
62-1038 7.05 STANDARDIZATION ANALYSES $+t$
62-1052 2.00 BLACK BOX COMPUTER SERVICE*
62-1055 B.04 ELLIPSOIDAL COMPUTATION++
62-1064 2.04 GAGE BLOCK STUDIES + +
62-1066 1.02 STANDARD CELLS+*
62-1080 9.02 BLACK BOX COMPUTER SERVICE*
62-1081 9.01 BLACK BOX COMPUTER SERVICE+
62-1089 9.06 ELASTIC CONSTANTS+*
62-1107 6.05 OSCILLATING SPHERE + +
62-1125 9.05 MATRIX COMPUTATIONS
62-1157 11.04 PLASMA RESEARCH++
62-1163 14.01 TRANSISTOR AGING BEHAVIOR ++
62-1165 15.02 NMR SPECTRA ANALYSES +
62-1181 12.04 NTDC++
62-1185 10.03 HEAT TRANSFER CALCULATIONS*
62-1187 2.04 FRUSTRATED REFLECTIONS++
62-1195 7.02 LIGHT SCATTERING + +
62-1203 3.07 CYLINDRICAL SHOCK WAVE
62-1211 12.05 TECHNICAL INFO RETRIEVAL +*
62-1212 10.09 COLOR DIFFERENCES
63-1222 7.01 DILATOMETRIC DATA CALCULATIONS*
63-1226 12.00 OTS - KWIC++
63-1231 13.00 BLACK BOX COMPUTER SERVICE+
63-1233 9.07 BLACK BOX COMPUTER SERVICE +
63-1234 10.03 VAPOR TRANSMISSION+t
63-1237 3.01 PYROMETRY+*
63-1250 12.00 KWIC++
63-1252 11.05 ARMY ORDNANCE+t
63-1257 7.08 CALC OF CALCIUM PHOSPHATE+t
63-1259 11.03 RESEARCH IN PROBABILITY++
63-1263 15.05 LINEAR CLASSICAL SYSTEM++
63-1276 14.02 INSTRUMENTATION++
63-1277 1.02 BLACK BOX COMPUTER SERVICE+t
63-1281 2.04 CORRECTION-SMEARING
63-1285 11.05 RTS FUNDS++
63-1287 3.07 DATA ANALYSES OF GASES ++
63-1289 3.08 IONIZED GASES + +
63-1290 3.00 MOLECULAR ENERGY LEVELS+t
63-1291 7.01 JOB CALCULATIONS ++

\cdots	1 N	$\cup \quad$ T	E S)
8	0	3	11
0	15	14	24
9	3	23	35
40	70	217	327
49	2	3	54
14	41	7	62
4	0	98	102
133	109	26	268
0	13	1	14
0	0	3	3
24	3	0	27
C	0	22	22
0	0	47	47
0	6	2	8
0	1	b	6
0	6	12	18
13	2	15	30
3	4	2	9
0	0	15	15
31	44	13	88
37	58	4	99
187	942	494	1623
0	17	0	17
15	28	28	71
0	0	8	8
35	2	241	278
0	0	5	5
0	1	105	106
0	0	13	13
1	5	0	6
0	0	2	2
6	6	1	13
0	0	2	2
0	5	0	5
0	0	94	94
5	16	29	50
1	0	3	4
7	9	21	37
28	15	110	153
0	C	68	69
20	4	13	37

CURRENT APPLICATIONS OF AUTOMATIC COMPUTER

TITLE
NBS SERVICES

```
64-1440 10.09 OMNITAB+
64-1443 4.10 MAGNET TEST PROGRAM++
64-1445 30.00 TEXTILE INDUSTRY STUDY +t
64-1448 15.00 BLACK BOX COMPUTER SERVICE+
64-1450 10.07 GLASS BEAD DATA
64-1453 3.01 RES THERMOMETER CALC++
64-1454 7.04 ACTIVE ENERGIES++
64-1456 11.00 INFORMATION RETRIEVAL++
64-1459 4.00 GIANT RESIDENCE ANALYSIS+*
64-1460 13.05 FIELD EMISSION++
64-1462 4.23 POSITRON PRODUCTION++
64-1463 13.00 TRANSITION PROBABILITIES
64-1464 10.07 OMN ITAB+
64-1470 12.5 PICNIC PROJECT +4
64-1473 3.07 POLAR GASES++
64-1474 15.00 ATOM CORRELATION+t
64-1476 3.2 THERMOVELOCITY +t
64-1478 4.21 LEAST SQUARES+t
64-1479 13.4 NUCLEAR QUAURUPOLE
64-1480 12.5 TAPE TASK ROUTINE++
64-1483 9.7 POWDER PATTERNS+t
64-1484 6.3 OMNITAB+
64-1485 12.5 MANAGEMENT PROBLEMS++
64-1486 3.1 OMNITAB+
64-1487 6.1 VIBRATION CALIBRATION++
64-1489 5.2 HOMOGENEITY TESTING++
64-1492 4.L ELECTROMAG CROSS SECT++
64-1493 6.4 PROVING RINGSt+
64-1496 2.4 EXP FOR INVAR TAPE++
64-1497 2.5 INTERFEROMETER
64-1500 41.4 FORTRAN CLASS
64-1502 8.7 POT POLYELECTROLYTE+t
64-1503 6.1 OMNITAB+
64-1507 4.24 COULOMB WAVE FUNCTION+t
64-1512 6.2 OMNITAB +
64-1515 3.8 VARIATIONAL INTEGRAL++
64-1517 12.3 OPTICAL SCANNER++
64-1518 30.0 OPER RES INCORP++
64-1521 6.1 INFRASONIC COMP++
64-1522 2.6 OMNITAB+
64-1523 2.1 FORTRAN CLASS++
```

NON-NBS SERVICES

57-0216	NSF	HANDBOOK OF MATHEMATICAL TABLES
58-0348	OOR	MACHINE TRANSLATION OF RUSSIAN
58-0366	USIA	RADIATION PATTERNS OF ANTENNAS
59-0425	CU	MOLECULAR ORBITALS*
59-0434	GC	PETROLOGICAL COMPUTATIONS+
59-0441	USRED	SYSTEMS ENGINEERING++
60-0457	PHA	PUBLIC HOUSING PROBLEM++
60-0476	HDL	GAS TUBE CHARACTERISTIC II
60-0486	UONT	MORSE WAVE FUNCTION++
60-0492	I MF	MONETARY RESEARCH REPORTS++
60-0506	WBANK	WORLD BANK REPORTS++
61-0513	NASA	ORBITING STUDIES
61-0540	ACC	DIFFUSION CALCULATIONS+
61-0569	AGO	HUMAN FACTORS RESEARCH++
61-0830	$B P R$	HIGHWAY TRAFFIC STUDIES + +
61-0902	$B P R$	HIGHWAY TRAFFIC STUDIES++
61-0903	BPR	HIGHWAY TRAFFIC STUDIES + +

TASK NUMBER

64-1528	18.0	LUMBER STANDARDS
64-1531	12.0	INFORMATION PROCESSING+*
64-1533	5.2	CAST IRON++
64-1535	4.33	MICOFTIES++
64-1536	8.5	SEVEN INVERTED MATRICES
64-1537	14.1	FIST++
64-1538	15.2	LEAST SQUARES
64-1539	6.4	SQUARE BAR++
64-1540	12.5	DESCRIPTORS + +
64-1542	15.6	FRANCK-CONDON FACTORS*
64-1543	15.6	FRANCK-CONDON FACTORS+
64-1545	1.2	STAND REFER DATA CALC++
64-1547	5.1	MOSSBAUER++
64-1553	3.2	OMNITAB +
64-1557	14.1	PMEUMATIC BRIDGES +
64-1559	12.5	IPRS++
63-3005	11.02	FREE MACHINE TIME+++
63-3008	11.02	SECRETARYS MACHINE TIME+++
64-3011	11.02	ERROR-USER+++

TOTALS (NBS SERVICES:
title

1 M

| 1 |
| :--- |18

0
0
25
25
0
2
0
5
52
1
0
1
0
14

14	1	10	25
8	3	29	40
0	0	1	1
0	0	2	2
4	11	0	15
85	26	36	147
25	23	25	73
0	0	95	95

436
4367469210512
19571

24	18	32	74
30	94	3	127
0	0	1	1
126	57	15	198
60	68	108	236
59	102	401	562
3	16	149	168
0	0	941	941
0	0	73	73
90	157	149	396
127	0	188	315
12	0	13	25
1	0	190	191
191	58	259	508
41	2	1115	1158
1	0	576	577
16	17	235	268

CURRENT APPLICATIONS OF AUTOMATIC COMPUTER

TASK NUMBER
title

NON-NBS SERVICES

```
\begin{tabular}{|c|c|c|}
\hline 61-0945 & WB & FORECASTING ++ \\
\hline 62-1004 & BUSHP & RHOMBIC ANTENNAS+ \\
\hline 62-1014 & NIH & METABOLIC DISEASES ++ \\
\hline 62-1018 & NRL & HYOROMAGNETIC PROBLEMS + \\
\hline 62-1021 & DCH & HIGHWAY STUDIESt+ \\
\hline 62-1030 & VA & ELECTROCARDIOGRAPHIC ANALYSIS \\
\hline 62-1044 & FCC & RADIO INTENSITIES +4 \\
\hline 62-1046 & BPR & TRAFFIC PREDICTION++ \\
\hline 62-1056 & HDL & PD ENGINEERING + + + + \\
\hline 62-1071 & HDL & RHINITIS STUDIESt+ \\
\hline 62-1076 & NAS & EVALUATION OF APPLICATIONS* \\
\hline 62-1091 & WPA & LOWER BOUNDS TO EIGENVALUES \\
\hline 62-1110 & ICC & ICC SYSTEMS STUDY++ \\
\hline 62-1113 & HOL & TRANSPORT ANALYSES+t+t \\
\hline 62-1114 & HDL & RADIATION EFFECTS ++ \\
\hline 62-1121 & CARIN & CARNEGIE INSTITUTE STUDIES+* \\
\hline 62-1130 & CDENG & FALLOUT SHELTER COMPUTATIONS \\
\hline 62-1140 & VA & VA MEDICAL++ \\
\hline 62-1158 & GC & MINERALDGY STUDIES++ \\
\hline 62-1169 & UONT & ATOMIC COLLISIONS+* \\
\hline 62-1171 & VA & HOSPITAL PROGRAM PLANNING* \\
\hline 62-1172 & PEACE & PEACE CORPS EVALUATIONS++ \\
\hline 62-1175 & HDL & ION DISTRIBUTIONS + \\
\hline 62-1179 & HDL & CATALOG INFORMATION+ \\
\hline 62-1189 & QM & TABLES FOR SEQUENTIAL METHODS \\
\hline 62-1215 & NASA & MISSILE SATELLITE+t \\
\hline 62-1216 & BPR & ARIZONA++ \\
\hline 63-1221 & BPR & RHODE ISLAND+* \\
\hline 63-1236 & COMM & DATATROL++ \\
\hline 63-1239 & PHS & PUBLIC HEALTH SERVICE++ \\
\hline 63-1240 & TREAS & SECRET SERVICE FORGERY \\
\hline 63-1246 & PHS & SCREENING EVALUATION* \\
\hline 63-1249 & RC & ISOTOPE TRACER ANALYSIS+* \\
\hline 63-1253 & GU & BLACK BOX COMPUTER SERVICE+* \\
\hline 63-1254 & DEFCO & HIGH FREQUENCY PROPAGATION + + \\
\hline 63-1262 & NRL & NUCLEONICS++ \\
\hline 63-1264 & NRL & NUCLEONICS + + \\
\hline 63-1271 & COMM & ECONDMICS STUDY +t \\
\hline 63-1272 & BPR & ROADS STUDY++ \\
\hline 63-1279 & HDL & MAGNETIC FIELD++ \\
\hline 63-1280 & UARIL & \(\mathrm{NIH++}\) \\
\hline
\end{tabular}
```

I	I	N	U	E
2	0	209	211	
0	3	46	49	
477	310	1386	2173	
150	195	68	413	
146	488	3050	3684	
1284	2184	617	4085	
10	0	42	52	
710	249	1709	2668	
22	19	159	200	
0	0	5	5	
0	0	47	47	
1	0	1	2	
2	0	10	12	
56	170	99	325	
25	24	0	49	
173	30	47	250	
88	70	574	732	
370	53	677	1100	
12	81	157	250	
2	0	124	126	
245	199	238	682	
27	12	20	59	
20	5	22	47	
0	5	33	38	
18	77	854	949	
66	0	2669	2735	
2	76	198	276	
15	0	98	113	
41	15	199	255	
18	11	169	198	
12	7	7	26	
35	26	24	85	
0	12	38	50	
93	68	134	295	
193	82	577	852	
17	261	1	279	
314	368	422	1104	
0	24	339	363	
3	4	292	299	
0	0	3	3	
1	16	0	17	

		CURRENT APPLICATIONS OF	COMPUTER			
TASK NUM	MBER					
NON-NBS	SERVIC	CES	1 M	N	$\cup T$	E S
63-1293	COMM	BODDY CALCULATION+*	7	12	0	19
63-1296	HDL	OPTIMUM LIFE++	2	146	0	148
63-1299	HDL	1410 PROGRAM++	0	1	3	4
63-1301	HDL	SERGEANT SPARE PARTS++	4	0	137	141
63-1305	DSA	ARMY+*	0	0	1490	1490
63-1307	HDL	MISCELLANEOUS PROGRAMMING+t	27	30	41	98
63-1310	HDL	SHOCK WAVE TEST++	21	0	52	73
63-1313	IDA	OMNITAB*	11	12	0	23
63-1314	BPR	FLORIDA HIGHWAYS+*	14	4	490	508
63-1317	AID	SORTING AND TABULATING	28	15	70	113
63-1324	HEW	GENERAL KINETICS+*	3	86	0	89
63-1336	NAVWE	ARC++	97	0	1151	1248
63-1345	HDL	ROCKET TRAJECTORIES+*	20	21	82	123
63-1350	HDL	ME DATA++	6	66	6	78
63-1352	OCDM	NEAR	3	0	742	745
63-1356	NIH	COMPUTER CONSULTING	33	7	2	42
63-1358	PHS	TRAINING GRANTS	11	2	11	24
63-1360	FPC	FEDERAL POWER COMMISSION++	6	0	107	113
63-1362	VA	RESEARCH**	30	13	49	92
63-1365	HDL	$1410++$	0	0	4	4
63-1368	PHS	HEART DISEASE	64	0	21	85
63-1371	TREAS	ALTERNATE TAX PLANS++	17	0	890	907
63-1373	JHAPL	HYPERVELOCITY IMPACT	5	1	5	11
63-1385	HDL	TRANSDUCER PROGRAM + +	3	0	0	3
63-1391	HEW	BIOMEDICAL STA PROG+*	22	0	526	548
63-1393	NASA	COMPUTER SYSTEMS	111	21	19	151
64-1394	DSA	ARMY COST MODEL (RAND) ++	66	32	5410	5508
64-1403	HDL	WORLD TEMPERATURE DIST + +	10	0	8	18
64-1411	HDL	AUTOCORRELATION++	19	7	61	87
64-1414	HDL	AD 70 PROGRAM++	51	24	1002	1077
64-1425	FAA	EKG RESEARCH++	0	10	29	39
64-1429	HDL	RESEARCH MISC++	15	29	67	111
64-1432	BRINS	BROOKINGS + +	0	0	39	39
64-1433	HEW	NMR SPECTRA	0	0	5	5
64-1434	AMERD	AMERAD ++	22	13	0	35
64-1435	OBE	CAPITOL COEFFICIENTS++	0	C	19	19
64-1436	HDL	DIPOLE MOMENT COMP+t	8	1	4	13
64-1439	HDL	SHOCK PRESSURES ++	0	0	1	1
64-1442	HEW	COLFACS	6	200	725	931
64-1447	SSA	SOCIAL SECURITY RES+*	3	2	29	34
64-1451	DEF	PROGRAM $2++$	22	2	124	148

CURRENT APPLICATIONS OF AUTOMATIC COMPUTER

Lectures and Technical Meetings

Note: In general, copies of papers or talks listed in this section are not available from the National Bureau of Standards. If and when a paper is to be published, it will be listed in the section of this report on Publication Activities.

Applied Mathematics Division Lectures

BETCHOV, R.	(Aerospace Corporation, Los Angeles, California) Kraichnan's theory of turbulence. June 11, 1964.
BLEICHER, M.	(University of Wisconsin, Madison, Wisconsin) Series of three lectures on Analytic number theory. January 2, 3 and 6, 1964 .
KNORR, G. E.	(Plasma Physics Laboratory, Princeton, New Jersey) Numerical investigation of the non-linear Vlasov equation for plasma oscillations. June 4, 1964.
RANKIN, R. A.	(Indiana University, Bloomington, Indiana) Quadratic forms. April 2, 1964
REINER, I.	(University of Illinois, Urbana, Illinois) Group Theory. June 8, 1964.

Building Research Division Staff Meeting

YOUDEN, W. J. Statistics in its proper place. January 28, 1964.

Radiation Physics Division Seminar

YOUDEN, W. J. Rejection of observations. March 5, 1964

NBS Seminars

KLOSS, K.	Hilbert's l0th problem. Presented before the NBS Automata Theory Seminar, March 20, 1964.
KLOSS, K. \quadWang's tiling problem (The first part of a two part lecture). Presented before the NBS Automata Theory Seminar, April 3, 1964.	
KLOSS, K. \quadThe second part of the lecture listed above. April 10, 1964. KLOSS, K.Available grammar models for one-dimensional languages. Presented before the	

Papers and Invited Talks
 Presented by Members of the Staff
 at Meetings of Outside Organizations

WITZGALL, C.

YOUDEN, W. J.

On matching problems. Presented before the Army Research Office Working Group on Computers, Harry Diamond Laboratories., February 2, 1964.

An algorithm for all-integer programming with quadratic constraints. Presented before the Department of Mathematics, Rensselaer Polytechnic Institute, Troy, New York, February 10, 1964.
(1) Realistic estimates of the error of measurement, February 13, 1964. (2) Testing a test method. February 14. Presented before the Dept. of Civil Engineering, University of Illinois, Urbana, Ill.

When Laboratories disagree. New Jersey Section, American Chemical Society, South Orange, N.J., February 24, 1964.

Picking winners and losers. Pensacola-Mobile Section, American Society for Quality Control, Mobile, Alabama, Feb. 26, 1964.

Panel discussion on future problems of science. Westinghouse Science Talent Search, Washington, D.C., February 28, 1964

Combining science and math in instruction. Maryland State Department of Education, Baltimore, Md., March 18, 1964.

The evolution of designed experiments. Institute of Statistics, University of North Carolina, Raleigh, N.C., May 1, 1964.

Science of measurement. Maryland Academy of Sciences, Finalists in National Science Fair, and Maryland Junior Science and Humanities Symposium, Baltimore, Md., May 6, 1964.

Publication Activities

1. PUBIICATIONS THAT APPEARED DURING THIS PERIOD

1.1 Mathematical Tables

Handbook of mathematical functions. NBS Applied Mathematics Series 55. Available from the U. S. Goverment Printing Office, Washington, D.C. 20402, \$6.50.

1.3 Technical Papers

Exact conditions for the preservation of a canonical distribution in a Markovian relaxation process. H. C. Andersen, I. Oppenheim, Kurt F. Shuler (Director's Office), George H. Weiss. J. Math. Physics 5, 522-536, April 1964.

Inequalities for solutions of mixed boundary value problems for elastic plates. J. H. Bramble and L. E. Payne. J. of Research NBS, 68B, No. 2, pp. 75-92, 1964.

The effect of error in measurement of elastic constants on the solutions of problems in classical elasticity. J. H. Bramble and L. E. Payne. J. of Research NBS, 67B, pp. 157-168, July-Sept. 1963.

Pointwise bounds in the first biharmonic boundary value problem. J. H. Bramble and L. E. Payne. J. of Math.and Phys., 42, No. 4, pp. 278-286, 1963.

Statistics of irreversible termination in homogeneous anionic polymerization. Bernard D. Coleman, (Mellon Institute), Fred Gornick (NBS Macromolecules Synthesis and Structure Section), and George Weiss. J. Chemical Physics 39, 3233-3239, Dec. 1963.

Existence of k-edge connected ordinary graphs with prescribed degrees. Jack Edmonds. J. of Research NBS 68B, No. 2, pp. 73-74, 1964.
r_{Ω} Rayleigh's non-linear vibration equation. A. Ghaffari. Proc. of the International Symposium on Non-Linear Vibrations, Kiev, USSR, September 12-18, 1961, Vol II, pp. 130-133.

A generalization of Rennie's Inequality. A. J. Goldman. J. of Research NBS, 68B, No. 2, pp. 59-64, 1964.

Optimal matchings and degree-constrained subgraphs. A. J. Goldman. J. of Research NBS, 68B, No. 1, pp. 27-30, 1964.

A note on some quadrature formulas for the interval ($-\infty, \infty$). S. Haber. Mathematics of Computation, Vol. 18, 313-314, 1964.

Weierstrass points of $\Gamma_{0}(n)$. J. Lehner and M. Newman. Annals of Mathematics, 79, No. I 360-368, 1964.

A complete description of the normal subgroups of genus one of the modular group. M. Newman. American Journal of Mathematics, 86, 17-24, 1964.

Free subgroups and normal subgroups of the modular group. M. Newman. Illinois J. of Mathematics, 8, 262-265, 1964.

Error analysis of Miller's recurrence algorithm. F. W. J. Olver. Mathematics of Computation, 18, No. 85, pp. 65-74, Jen. 1964.

Error bounds for asymptotic expansions in turning-point problems. F. W. J. Olver. J. of the Society for Industrial and Applied Mathematics, 12, No. 1, pp. 200-214, March 1964.

Firror bounds for asymptotic expansions with an application to cylinder functions of large argument. F. W. J. Olver. Proc, of a Symp. on Asymptotic Solutions of Differential Fquations and their Applications (Madison, Wisconsin, 1964). New York, John Wiley, 1964.

Determinations based on duplication of readings. Janace A. Speckman. J. Res. NBS, 68B, No. 2, pp. 49-53, Apr.-June 1964.

Miscellaneous studies in probability and statistics: distribution theory, small-sample problems, and occasional tables. Statistical Engineering Laboratory. NBS Tech. Note No. 238, April 1964.

On an extreme rank sum test for outliers. W. A. Thompson, Jr., and T. A. Willke. Biometrika, 50, part $3 \& 4$, 375-383, Dec. 1963.

Fitting $y=\beta x$ when the variance depends on x. John Van Dyke. J. Research NBS, 68B, No. 2, 67-72, ApHil-June 1964.

A note on a generalized elliptic integral. George H. Weiss. J. Research NBS, 68B, No. 1, pp. 1-2, Jan.-March 1964.

Calculation of certain multiple generating functions. George H. Weiss. J. Research NBS, 68B, No. 1, pp. 13-15, Jan.-March 1964.

Fffects of a distribution of gap acceptance functions on pedestrian queues. George H. Weiss. J. Research NBS, 68B, No. 1, pp. 31-33, Jan.-March, 1964.

A simple derivation of the Faxén solution to the Iarm equation. George Weiss. J. Math. Phys. 5, 675-676, 1964.

Exact Faxén solution for centrifugation when sedimentation depends linearly on concentration. George Weiss and Irwin H. Billick (Macromolecules Synthesis and Structure Section). Nature 201, 912-913, Feb. 29, 1964.

General application of Youden's rank sum test for outliers and tables of one-sided percentage points. Thomas A. Willke. J. Research NBS 68B, 55-58, April-June 1964.

An all-integer programming algorithm with parabolic constraints. C. Witzgall. J. Soc. Ind. Appl. Math. 11, No. 4, pp. 855-871, 1963.
Ia revolución Fisheriana en los metodos de experimentación. W. J. Youden. Estadística, J. of the Inter-American Statistical Institute, Sept. 1963.) (Translation of "The Fisherian revolution in methods of experimentation", J. Am. Statist. Assoc. 46, pp. 47-50, 1951).

Statistics in its proper place. W. J. Youden. J. Wash. Academy of Sci. 54, pp. 53-57, Mar. 1964.
1.4 Reviews and Notes

Examples relating to the simplex method. A. J. Goldman and Daniel Kleinman. Operations Research 12. (Letters to the Editor), No. 1, pp. 159-161, 1964.

Digital information Processors. Reviewed by H. Oser. Math. of Comp. 18, No. 86, pp. 340-343, April 1964.

Studies in Management Science and Applied Probability. Reviewed by George H. Weiss. Technometrics, 4, No. 4, pp. 616-617, Nov. 1962.
2. MANUSCRIFIS IN THE PROCESS OF PUBLICATION
2.3 Technical Papers

Non-equilibrium thermodynamics of canonically invariant relaxation processes. H. Andersen, I.Oppenheim, K. Smuler (Director's Office), and G. H. Weiss. Submitted to a technical journal.

Thermodynamics of perfect elastic fluids. B. Bernstein, F. A. Kearsley, and L. J. Zapas. Submitted to J. of Research NBS, Section B, Math. and Math. Physics.

Evaluation of exact solutions to the Lamm equation. I. Billick (Macromolecules Synthesis and Structure Section) and G. H. Weiss. Submitted to a technical journal.

A simple method for calculating orthogonal bases for a vector space and its complement. J. M. Cameron. Submitted to a technical journal.

Use of general purpose coding systems for statistical calculations. J. M. Cameron and J. Hilsenrath (NBS Equation of State Section). To appear in Proc. of IEM Symposium on Scientific Computing.

Paths, trees and flowers. Jack Edmonds. To appear in the Canadian J. of Math.
On the surface duality of linear graphs. Jack Edmonds. Submitted to a technical journal.
On matching problems. J. Edmonds, A.J. Goldman, C. Witzgall, C.T. Zahn, Jr. To appear in Proceedings of the Army Research Office (Durham).

Hadamard matrices of order cube plus one. K. Goldberg. Accepted for publication in the Proc. of the Am. Math. Soc.

Generation and composition of functions. A. J. Goldman. Submitted to a technical journal.
Entire functions all of whose derivatives are integral at the origin. F. Gross. To appear in the Duke Mathematical Journal.

Entire Solutions of the functional equation $h(f(z))=g(z)$. Fred Gross. To appear in Proc. of the Am. Math. Soc.

Functional equations and fix-points. Fred Gross. To appear in the Pacific J. of Math. The inverse multiplier for Abelian group difference sets. E.C. Johnsen. To appear in Canadian J. of Math.

Computer interpretation of english text and picture patterns. R. A. Kirsch. To appear in the Inst. of Electrical and Electronic Engineers Trans. on Electronic Computers, Aug. 1964.

A new differential operator of the pure wave type. J.E. Legnese. To appear in Contributions to Differential Equations.

Representations of Discrete Groups. Joseph Lehner. To appear in Number Theory Symposium of the Am. Math. Soc.

Almost primes generated by a polynomial. R. Miech. To appear in Acta Arithnetica.
Connection between shielding and stability in a collisionless plasma. E. Minardi, F. Finglemann, and M. Feix. To appear in Il Nuovo Cimento.

Symplectic modular groups. M. Hewman and J. R. Smart. To appear in Acta Arithmetica. Note on the partition function. M. Newan. To appear in American Mathematical Monthly. Normal subgroups of the modular group which are not congruence subgroups. M. Newman. To appear in Proc, of the Am. Math. Soc.

Congruence subgroups of positive gemas of the modular group. M. Newman, M. Knopp. To appear in III. J. of Math.

On the asymptotic solutions of second-order differential equations having an irregular singularity of rank one. F.W.J. Olver. Submitted to a technical jourmal.

Whittaker functions of large argument. F.W.J. Olver. Submitted to a technical journal.
Relaxation of a Iorentz gas with a repulsive r^{-s} force law. H. Oser, K. Shaler (Director's Office), and G. H. Weiss. Submitted to a technical journal.

Some remarks on Certain Generalized Dedekind Sums. Hans Rademacher. To appear in Acta Arithmetica.

The spheroidal method in the theory of the orbit of an artificial satellite. J. P. Vinto. To appear in the Proceedings of the Symposium on Celestial Mechanics, held March 1964, at the Mathemstische Forschungsinstitut at Oberwolfach, West Germany.

On convex metrics. C. Witzgall. Submitted to a technical journal.
Sampling and statistical design. W. J. Youden. To appear in Proceedings, Symposium on Environmental Measurements, U. S. Public Health Service, 1963.

The evolution of designed experiments. W. J. Youden. To appear in Proceedings, IBM Symposium on Scientific Computing.

Approximating symmetric relations by equivalence relations. C. T. Zahn, Jr. Submitted to a technical journal.

2.4 Reviews and Notes

Realization of semi-multipliers as mitipliers. Harriet Feli and A. J. Goldman. To appear in Am. Math. Monthly (Math. Notes).

Barely faithful algebras. Herriet Fell and John Mather. To appear in Am. Math. Monthly (Math Notes).

Tables of the cumulative binomial probability distribution for small values of p. Reviewed by H. Oser. To appear in Science.
U.S. DEPARTMENT OF COMMERCE WASHINGTON, D.C. 20230 U.S. DEPARTMENT OF COMMERCE

OFFICIAL BUSINESS

[^0]: * NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
 ** Located at Boulder, Colorado.

