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FOREWORD 

In recent years the use of structures at elevated temperatures has in¬ 

creased greatly. If the safe design, and efficient use of structural, mate¬ 

rials are to be assured, a knowledge of the mechanical properties of mate¬ 

rials and of structural configurations is essential. In determining these 

properties, the measurement of strains and deformations is important,. Strain 

gages to measure these quantities must be capable of operating satisfactorily 

over a wide temperature range. 

In order to determine the characteristics of strain gages that are 

available for use at elevated temperatures, the Department of the Navy 

and the Department of the Air Force have sponsored a program for the eval¬ 

uation of these gages. Results obtained from only one gage type are given 

in this report so that performance information may be made available without 

undue delay. Results obtained from other gage types have been presented in 

earlier reports of this series. 

There is a continuing effort, on the part of manufacturers and research 

organizations to develop improved strain gages for use at elevated temper¬ 

atures. Therefore the results given insthis report would not necessarily 

show the performance of similar gages which may differ in characteristics 

due to differences in materials, treatments, or methods of fabrication. 

L. K. Irwin 

Chief, Engineering Mechanics 

Section 

B. L. Wilson 

Chief, Mechanics Division 

II 
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EVALUATION OF RESISTANCE STRAIN GAGES 

AT ELEVATED TEMPERATURES 

Progress Report No. 16 

by 

J. T. Trumbo and R, L. Bloss 

Synopsis 

Type FNW-FB-9-50-12 resistance strain gages, manufactured 

by the Baldwin-Lima-Hamilton Corporation, were evaluated. The 

results of these tests indicate that the gage factor for com¬ 

pressive loading is somewhat higher than for tensile loading; 

that the gage factor decreases with increasing temperature by 

about one-half percent per 100° F; that large errors can be 

expected when strains greater than 0.002 are measured; that 

the gages are well compensated for resistance instability; 

that the temperature sensitivity is low and repeatable from 

gage to gage, but the gage response is strongly affected by 

heating rate; and that the leakage resistance is influenced 

by temperature and the thermal history of the gage. 

1. INTRODUCTION 

In the continuing evaluation of resistance strain gages designed for use at 

elevated temperatures, type FNW-FB-9-50-12 gages of the Baldwin~Lima-Hamilton 

Corporation were tested to determine the following characteristics: 

(1) Gage factor at room temperature, 

(2) Variation of gage factor with temperature, 

(3) Behavior when subjected to large strains, 

(d) Change in indicated strain with time at constant temperature (drift.) , 

(5) Change in indicated strain due to temperature changes, 

(6) Behavior under transient heating conditions, and 

(7) Resistance between the gage and the material to which it is 

attached. 

The results of previous evaluations of other types of gages are given in 

references 1 through 13. 
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2. DESCRIPTION OF GAGES 

Each of the gages consisted of four resistive elements as shown in figure 

1. These elements are bonded to a piece of 0.005 inch thick shim stock by the 

manufacturer. For use, a gage is attached to a metallic surface by two rows 

of spotwelds along the center line of the shim material, and the gage leads 

are connected to form a full-bridge circuit (figure 1). A low temperature 

sensitivity over a large temperature range is sought by the proper choice of 

shim material and appropriate manufacturing techniques. According to the 

manufacturer, the gages tested were prestabilized, post cured and ready for 

use in the temperature range of -400° to 1000° F. The gages were ordered for 

use on materia.1 having a linear temperature coefficient of expansion of 9x1Q"^ 

per degree F. 

3 . TEST EQUIPMENT AND METHODS 

The equipment and methods used, for all these evaluation tests have been 

described in references 5, 8, 14, 15, and 16. 

4. RESULTS AND DISCUSSION 

The number of gages subjected to the various tests and the voltages ap¬ 

plied to the gage circuits are shown in table 1. The heating rates used for 

the transient heating test are given in table 2„ The results of the evalu¬ 

ation tests are given in table 3 and figures 2 through 24. 

In order that the results of the tests might be readily compared with 

previous reports of this series, the gage response is given in terms of the 

relative change of resistance of one arm of a bridge circuit that would pro¬ 

duce the same electrical output that was obtained from the full bridge cir¬ 

cuit of the gage. 

4.1 Strain Sensitivity 

Gage factor values were obtained at about 75° F from four gages at a 

maximum strain of about 0.001 in both tension and compression. The gage 

response was determined-by comparing the electrical output with the output 

of another bridge circuit of which two arms were a Werner ratio set. Power 

to the bridge circuits was from separate power supplies, but the input volt¬ 

ages were compared and adjusted to be equal just prior to each reading. 

Readings were taken at predetermined settings of the Werner ratio set. by 

straining the specimen to which, the gage was attached until the outputs of 

the bridge circuits were equal. The actual strain to which the gage was 

subjected was determined with a Tuckerman extensometer. 

The results of 

K = the 
u 

K, = the 
d 

K = the 

these tests are 

gage factor for 

gage factor for 

average gage fa. 

given in table 3 

increasing load, 

decreasing load, 

tor . 

where 
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Gages A. and A were tested in tension before being tested in compression. 

Gages Ag and A^ were tested in compression first. 

The differences between the experimental gage factor values and the man¬ 

ufacturer's nominal value, 3.14, are shown in figure 2. The departure of a 

plotted point from the origin shows the difference between the experimental 

value and the nominal value. The departure of the points from the diagonal 

line show the differences between gage factor values for tension and compres¬ 

sion loading. Results show that the gage factor values for compression loading 

were higher than for tension loading and that the value for the first Loading 

cycle differed from values for subsequent tests. 

Figures 3 through 6 show the departure from linearity of the gage response 

and the zero shift for the first and third loading cycles. The maximum strain 

was about 0.001. The gage factor, K, used in the data reduction was the man¬ 

ufacturer's nominal value, 3.14. The arrows on the curves indicate the di¬ 

rection of loading. No corrections were applied for temperature fluctuations 

during the tests. 

4.2 Variation of Gage Factor with Temperature 

The variations of gage factor with increasing temperature, obtained by 

dynamic test methods, are shown, in figures 7 through 9. Each curve represents 

the change of gage factor of one gage during one test. Each figure gives the 

results obtained from one gage to show the repeatability of the gages from test 

to test. 

Figure 10 shows the average variation of gage factor of three gages for 

each of the test runs and the extreme values obtained for any gage during any 

test. This shows that the gage factor tended to decrease in a linear fashion 

to 1000° F. The gage factors at 1000° F' were about five percent less than at 

room temperature. 

4.3 Large Strains 

The results of tests in. which the gages were subjected to tensile strains 

greater than those used for gage factor determinations are shown in figures 11 

and 12. In order to compute the strains indicated by the resistance gage, 

1 AR 
eT , = — — , at room temperature the gage factor value, R, used was the 
Ind K R ° 

average of all values obtained frcm the room temperature gage factor tests 

in tension. For the large strain test at 900° F, the room temperature value 

was adjusted by the average amount of change found during the first test runs 

of the variation of gage factor with temperature tests . 
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The errors of these gages tended to increase rapidly with increasing strain, 

exceeding ten percent of the indicated strain for strains greater than about 

0.002 for all tests at room temperature and 900° F. The shape of the curves 

would indicate that the strain is not being transmitted to the gage properly or 

that the compensating arms of the gage are being strained a proportionately 

greater amount as the strain increases. Tests were discontinued at strains of 

about 0,003. 

4.4 Drift 

Records of the change of gage output with time for three gages at constant 

test temperatures up to 1200° F are shown in figures 13 through 19. The results 

were obtained after beating the gage installation at about 10° F per second from 

room temperature or the next: lower test temperature. Recording was started one 

minute after the desired test temperature was reached. The second series of 

tests, Run 2, were made after the gages had been tested once at each test tem¬ 

perature up to 1000° F. The temperature fluctuations during the tests exceeded 

3° F during only one test of one gage during the second test series at 800° F, 

The data was not corrected for temperature fluctuations. 

The results indicate that the gages are well compensated for resistance 

instability effects which ditl not exceed 2xl0"3 for 30 minutes to 120Q°_ F„ At tem¬ 

peratures up to 1000° F, the greatest average drift rate for thirty minutes 

was less than 10“^ per minute (apparent relative resistance change of one gage 

arm), This is equivalent to an apparent strain of about 3x1per minute. 

4.5 Temperature Sensitivity 

Average values of the change of gage output, with, increasing temperature 

for three gages are shown in figures 20 through 22. The maximum and minimum 

values obtained during the tests are also shown. During these tests, the gages 

were heated at about 10° F per second. Tests 1 and 2 were carried to a maximum 

temperature of about 1000° F. Tests 3, 4 and 5 v-ere carried to a maximum tem¬ 

perature of about 1600° F. Results are shown for tests 1, 3 and 5 only since 

the values for tests 2 and 3 were in good agreement at temperatures up to 1.000° F, 

and the values for tests 4 and 5 were in good agreement for temperatures up to 

1600° F. Each point on the graphs was determined as the slope of a line drawn, 

tangent to a curve of gage, output versus temperature. Results for a portion of 

the fifth test were lost when the x-y recorder went off scale. 

4.6 Transient Heating 

The results of tests in which the temperature of the test strip to which 

the gage was attached was increased at about. 2°, 10°, 23°, 50° and 80° F per 

second are shown, in figure ^33. The results of all tests are not shown because 

the differences between tests at the same, heating rate were not thought to be 
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significant after the first test. Tests were also made with no power to 

the gage circuit to determine the possible effect of uncompensated thermal 

emfs within, the circuit. Results of these tests indicated that the effects, 

if any, are small. 

The results shown in figure 23 indicate that these gages are quite sen¬ 

sitive to heating rate, at least when radiant heating techniques are used. 

This is probably due to the poor thermal contact between the gage shim mate¬ 

rial and the test strip at the outer edge where the compensating arms of the 

gage are located and the intimate contact created by the spot welds along the 

center line near the active arms. This difference in contact with a heat sink 

(or source) and the low thermal conductivity of the shim material could pro¬ 

duce large thermal gradients in the gage when high heating rates are encoun¬ 

tered , 

4,7 Leakage Resistance 

Typical results of tests to determine the resistance between the gage 

and the test strip as a function of temperature are shown, in figure 24. The 

results were recorded while the test strip was being heated at a rate of about 

10° F per second to the maximum test temperature. Two tests to a maximum tem¬ 

perature of about 1000° F were followed by three tests to about 1600° F. Four 

gages were tested, but, since the results were nearly the same for all gages, 

the results for only one gage are shown. These results show that, even though 

these, gages have, been post cured during their manufacture, there is considerable 

improvement'in the leakage resistance after the first heating cycle to 1000° F. 

Further improvement is found after heating the gages to 1.600° F. The values 

shown can be considered to be only a qualitative indication of the insulating 

properties of the cement since it has been, found that ceramic cements do not 

follow Ohm's law (reference 17), The small negative leakage resistance shown 

at higher temperatures is probably due to an emf being generated between, the 

test strip material and the gage element. 

5, CONCLUSIONS 

For gages of this type, the data, obtained from the evaluation tests 

covered by this report indicate that“ 

(1) Gage factor values for compression loading were, on the average, 

about five percent higher than for tension, loading. For both 

modes of loading, the. gage factor va.ried as much, as ± 10 percent 

from the manufacturer's value, 

(2) The gage factor decreases in a linear manner with increasing tem¬ 

perature to 1000° F» At; 1000° F the value is about five percent 

below the value at room temperature, 

(3) At strains of 0.002, errors of indicated strain exceeded ten percent 

at room temperature and at 900° F. 
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(4) The gages showed an average drift of less than 3x10"^ inches per 

inch per minute for 30 minutes at temperatures up to 1000° F. 

This low value shows good drift compensation by this gage con¬ 

figuration. 

(5) The temperature sensitivity did not exceed 11 parts per million 

resistance change per degree Fahrenheit to 1000° F. 

(6) The gages were sensitive to heating rate, at least when radiant 

heating methods were used. 

(7) The resistance between the gage and the test strip depends 

upon the temperature and the thermal history of the gage. This 

resistance was greatly increased by heating to 1000° F or 

higher. 

6. MANUFACTURER'S DATA 

Correspondence with the manufacturer (reference 18) has revealed that data 

gathered in their laboratory do not fully agree with the information contained 

in this report. In particular, their data show: 

(1) A gage factor of 3.28 ± 3 percent at strains of 0.001 

(2) The compression gage factor being higher than the tension fac¬ 

tor by the following amounts: 

(a) 1.3 to 3.6 percent at 0.001 strain 

(b) 0.6 to 2„4 percent at. 0.002- strain 

(c) 103 percent at 0.003 strain 

(3) Maximum error of indicated strain of 2.7 percent at 0.002 

strain and 4.7 percent at 0.003 strain. 

(4) Zero shifts net greater than one percent for second and third 

load cycles at any strain level. 

It was also indicated that the manufacturer has found that the installa¬ 

tion of the gage is somewhat, critical. The installation instructions are said 

to have been revised to provide the user with better instructions than were pre¬ 

viously available. Improvements in manufacturing techniques since the initial 

release of these gages are also claimed. 

As noted in the foreword of this report, and previous reports of this series, 

strain measurement, at elevated temperatures is not a static field. Improvements 

in materials, methods of fabrication, and techniques in handling the strain gages 

may improve gage, characteristics significantly. The. manufacturers of these gages 

are continually trying to make such improvements to provide the. user with better 

gages. 



NBS Lab No. 6.4/282,, PR 16 page 7 

The authors gratefully acknowledge the assistance of T. W, Butler, 

C, He Melton, M. L, Sundquist, and R. J, Wall in performing the evalu¬ 

ation tests and in preparing this report. 



page 8 NBS Lab No. 6.4/282, PR 16 

7 . REFERENCES 

(1) R. L„ Bloss and C. H, Melton, "An Evaluation of Two Types of Resist¬ 

ance Strain Gages at Temperatures up to 600° F," NBS Report No. 4676, 

May 1956 (ASTIA No, AD 94696). 

(2) R. L» Bloss and C. H. Melton, "An Evaluation of One Type of Resist¬ 

ance Strain Gage at Temperatures up to 600° F," NBS Report No. 4747, 

July 1956 (ASTIA No. AD 101079). 

(3) R. L. Bloss and C. H. Melton, "An Evaluation of Two Types of Resist¬ 

ance Strain Gages at Temperatures up to 600° F," NBS Report No. 4843, 

September 1956 (ASTIA No. A.D 107662). 

(4) R. L. Bloss and C. H. Melton, "An Evaluation of Strain Gages Designed 

for Use at Elevated Temperatures -- Preliminary Tests for Tempera¬ 

tures up to 1000° F," NBS Report No. 5286, May 1957 (ASTIA No. 

AD 135050). 

(5) R. L. Bloss and C. H. Melton, "Evaluation of Resistance Strain Gages 

at Elevated Temperatures" (Progress Report No. 5), NBS Report No. 

6117, August 1958 (ASTIA No. AD 202419L). 

(6) R, L. Bless, C. H. Melton, and M. L. Seman, "Evaluation of Resistance 

Strain Gages at Elevated Temperatures" (Progress Report No. 6), NBS 

Report No. 6245, December 1958, (ASTIA No. AD 211391), 

(7) R. L, Bloss, C. H. Melton, and M. L. Seman, "Evaluation of Resistance 

Strain Gages at Elevated Temperatures" (Progress Report No. 7) NBS 

Report No. 6395, April 1959, (ASTIA No. AD 217651). 

(8) R, L. Bless, C. H„ Melton, and J. T. Trumbo, "Evaluation of Resist¬ 

ance Strain Gages at Elevated Temperatures" (Progress Report No, 8) 

NBS Report No. 6526, August 1959, (ASTIA No. AD 227197), 

(9) R. L. Bloss, C, Hu Melton, and J. T. Trumbo, "Evaluation of Resist¬ 

ance Strain Gages at Elevated Temperatures" (Progress Report No. 9) 

NBS Report No. 6900, July 1960, (ASTIA No. AD 240829). 

(10) R. L. Bloss, J. T. Trumbo, and C„ H, Melton, "Evaluation of Resist¬ 

ance Strain Gages at Elevated Temperatures" (Progress Report No, 10) 

NBS Report No, 7003, November 1960, (ASTIA No. AD 262059). 

(11) J. T, Trumbo, C. H. Melton, and R. L, Bloss, "Evaluation of Resist¬ 

ance Strain Gages at. Elevated Temperatures" (Progress Report No. 12) 

NBS Report No. 7161, May 1961 (ASTIA No. AD 262790). 



NBS Lab No. 6.4/282, PR 16 page 9 

(12) R. L. Bloss, J. T. Trumbo, C. H. Melton and J. S. Steel "Evaluation 

of Resistance Strain Gages at Elevated Temperatures" (Progress Report 

No. 13) NBS Report No. 7399, December 1961 (ASTIA No. AD 281606). 

(13) R. L. Bloss, J. T. Trumbo, C. H. Melton and J. S. Steel "Evaluation 

of Resistance Strain Gages at Elevated Temperatures" (Progress Report 

No. 14) NBS Report No. 7588, August 1962 (ASTIA No. AD 288224). 

(14) R. L. Bloss, "A Facility for the Evaluation of Resistance Strain 

Gages at Elevated Temperatures, Symposium on Elevated Temperature 

Strain Gages," ASTM Special Technical Publication No. 230, pp. 57-66. 

(15) R. L. Bloss, "Evaluation of Resistance Strain Gages at Elevated Tem¬ 

peratures," Materials Research and Standards, Vol. 1, No. 1, p. 9 (1961). 

(16) R. L. Bloss and J. T. Trumbo, "A Method for Measuring the Instability 

of Resistance Strain Gages at Elevated Temperatures," ISA Transactions, 

Vol. 2, No. 2 p. 112 (1963). 

(17) J. W. Pitts and D. G. Moore, "Development of High-Temperature Strain 

Gages" NBS Monograph 26, 1961. 

Letter from L„ J,, Weymonth, Baldwin-Lima-Hamilton Corp., dated 

June 19, 1964. 

(18) 



page 10 NBS Lab No. 6.4/282, PR 16 

Table 1 - Number of Gages Tested and Gage Circuit Voltage 

Type of test 

Number of 

gages tested 

Voltage applied 

to gage Circuit 

Gage factor determination 4 

volts, d-c 

6 

Gage factor variation 4 6 

Large strain 4 3* 

Resistance instability (drift) 3 8 

Temperature sensitivity 3 8 

Transient heating 4 8 

Leakage resistance 4 10** 

VoV 

a-c (1000 cps) 

Maximum voltage between gage and test strip 
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Table 2 - Heating Rates for Transient Heating Tests 

Test No. 

Nominal 

heating rate 

Power to 

gage circuit 

°F/sec 

1 through 3 10 yes 

4 through 6 2 yes 

7 10 yes 

8 through 10 25 yes 

11 10 yes 

12 through 14 50 yes 

15 10 yes 

16 through 18 80 yes 

19 10 yes 

20 10 no 

21 50 no 

22 80 no 

23 10 no 

24 50 no 

25 80 no 
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Table 3 - Gage Factor Values at Room Temperature (Approximately 75° F) 

Gage 

No. 

A 
1 

A 

A 
3 

A 
4 

Run 

No. 

Gage factor values 

Tens ion Compression 

K 
u Kd 

K K 
u Ka 

K 

1 2.996 3.035 3.016 3.026 3.420 3.223 

2 3.169 3.044 3.106 3.238 3.302 U>
 

ro
 

o
 

3 3.149 3.061 3.105 3.283 3.245 3.264 

Average 3.076 3.252 

1 3.132 3.345 3.238 3.384 3.506 3.445 

2 3.356 3.327 3.342 3.525 3.457 3.491 

3 3.3 74 3.330 3.352 3.440 3.588 3.514 

Average 3.311 3.483 

1 2.742 3.040 2.891 2.820 3.188 3.004 

2 3.106 3.035 3.070 3.035 3.116 3.076 

3 2.959 3.058 3.008 3 039 3.193 3.116 

Average 2.990 3.065 

1 3.000 3 o 223 3.112 3.156 3 .445 

o
 

o
 

C
O

 

r
o

 

2 3.289 3.210 3.250 3.330 3.436 3.383 

3 3.243 3.294 3.268 3.336 3.437 3.386 

3.210 3.356 Average 



© ® 
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Suggested Wiring Color Code 

B-Block R-Red 
G-Green W-White 

Fig. I Gage Configuration and Electrical Circuit 
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Fig. 23 Response of three gages at various heating rates 
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