NATIONAL BUREAU OF STANDARDS REPORT 8341

PROJECTS and PUBLICATIONS of the APPLIED MATHEMATICS DIVISION A Semiannual Report

July through December 1963
U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures, and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.
Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.* * Office of Standard Reference Data.
Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.
Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.
Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

[^0]
NATIONAL BUREAU OF STANDARDS REPORT NBS PROJECT
 NBS REPORT
 11.08341

PROJECTS and PUBLICATIONS

 of the
APPLIED MATHEMATICS DIVISION A Semiannual Report

July through December 1963

IMPORTANT NOTICE

NATIONAL BUREAU OF STAI for use within the Government. B and review. For this reason, the । whole or in part, is not authorize Bureau of Standards, Washington, the Report has beeri specifically pi

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
accounting documents intended fbjected to additional evaluation isting of this Report, either in Office of the Director, National the Government agency for which jies tor its own use.
U.S. DEPARTMENT OF COMMERCE

National bureau of standards

APPLIED MATHEMATICS DIVISION

July through Dec. 1963
TECHNICAL ADVISORY PANEL
George E. Forsythe, Stanford University, Chairman
Joaquin B. Diaz, University of Maryland Elliott W. Montroll, Inst. Def. Anal., Wash., D.C. Albert H. Bowker, Stanford University J. Barkley Rosser, University of Wisconsin William Feller Princeton University B. O. Koopman, Columbia University

Alan J. Hoffman, IBM, Yorktown Heights
Francis J. Anscombe, Yale University

Alston S. Householder, Oak Ridge National Laboratory

DIVISION OFFICE

\author{

Edward W. Cannon, Ph.D, Chief
 Franz L. Alt, Ph.D, Assistant Chief
 Catherine Hartsfield, Sec'y Y. S. Sladen, Admin. Officer
 Hansjörg Oser, Ph.D. Leroy F. Meyers, Ph.D.
 Ida Rhodes, M.A., Consultant W. J. Youden, Ph.D., Consultant
 Russell A. Kirsch, Electron. Engineer
 | Barbara C | Inda Rimel ${ }^{\circ}$ | Arlene Ruhl, Sec ${ }^{\text {'y }}$ |
| :---: | :---: | :---: |
| Elaine S. Grayson | Irene R. Robinson | Mary B. Sherlin, Sec 'y |
| | | William Watt |

NUMERICAL ANALYSIS SECTION

Richard DeMar, Ph.D. ** Sharrill Dittmenn Karl Goldberg, Ph.D. Margaret Gray, Sec 'y Fred Gross, Ph.D.** Seymour Haber, Ph.D.

Morris Newman, Ph.D., Chlef

Eugene Johnsen, Ph.D. **	Frank W. J. Olver, D.Sc.
Marvin I. Knopp, Ph.D.	Edward T. Ordman
Joel N. Kugelmass	Hans Rademacher, Ph.D.
Joseph Lehner, Ph.D.*	Jane Reed, M.A.
Ronald J. Mieoh, Ph.D.**	Frank Stenger ***
Steven S. Muchnick	

Don I. Mittleman, Ph.D., Chief
Irene A. Stegun, M.A., Assistant Chief

Robert J. Arms, Ph.D.
Mary C. Boyer, B.S.
Judith S. Bradley, Sec'y
Kenneth Branch
Ruth E. Capuano
LaVerne T. Clarke
Robert A. Creller
Vernon Dantzler, M.A.
Charles R. Drew
Marvin Elster, B.A.
Elizabeth F. Godefroy
Ananda Gregg, B.S.
William G. Hall, B.S.
Robert J. Herbold, B.S.
Gloria F. Holmes, B. S.
Pearlie M. Johnson
STATISTICAL ENGINEERING LABORATORY

Louls Joseph, M.A. George W. Reitwiesner, M.S.
Joyce M. Johnson
Blañdie L. Knight
Eula M. Lawson
David S. Lilepman
Walter A. Hipton
Loretta Y. Matthews
Linda C. McCleary ${ }^{000}$
Patricia McGuire, Sec 'y
Kermit C. Nelson
Peter J. O'Hara, B.S.
Betty J. Pailen
Maxine L. Paulsen, B.S.
Sally T. Peavy, B.S.*
B. Stanley Prusch, B.S.

Nellle E. Reese, Sec'y Maxine L. Rockoff, M.A. Russell, Evelyn D., B.A. Patricia Ruttenberg, B.A.* Andrew Selepak Mary W. Shultz Barbara L. Slyder, M.A. ${ }^{\circ}$
John M. Smith, M.A.
David J. Sookne ${ }^{\circ}$
Ruth N. Varner, B.A. *
J. D. Waggoner, B.A.

Philip J. Walsh, B.S.
Bertha H. Walter
John F. N. Wilkinson
Nicholas Williams
John H. Wilson

Ruth Zucker, B.A.
Joseph M. Cameron, M.S., Chief
Joan R. Rosenblatt, Ph.D., Assistant Chief

Karen A. Bedeau, B.A.
Marion T. Carson
Veronica Connor
Mary C. Croarkin, B.A. *
Arthur B. Hoadley, M.A. ${ }^{\circ \circ}$
MATHEMATICAL PHYSICS SECTION
Barry Bernstein, Ph.D.
James H. Bramble, Ph.D. *
Doris M. Burrell, Sec'y
Abolghassem Ghaffari, Ph.D.

OPERATIONS RESEARCH SECTION

Jack Edmonds, M.A.
Harriet Fell
Dolores E. Harrison, Sec'y
Lambert S. Joel, B.A.

Brian L. Joiner, B.S.
Hsien H. Ku, M.S.
Mary G. Natrella, B.A. *
Albert Romano, Ph.D. **

Janace A. Speckman, B.A. Phyllis K. Tappscott, Sec'y Roy Wampler, M.A.
George H. Weiss, Ph.D.*
Thomas A. Willke, Ph.D.*
Willlam H. Pell, Ph.D., Chief
John E. Lagnese, Ph.D.** Ettore Minardi, Ph.D.***
Lawrence E. Payne, Ph. D*
Mark A. Pinsky ${ }^{00}$
Alan J. Golảman, Ph.D., Chief
Daniel Kleinman
Joel Levy, M.A.
John Mather
Kenneth Kloss, M.S.

Philip Meyers, M.A.
Walter A. Sillars, M.A.
Christoph Witzgall, Ph.D. ${ }^{\circ}$
Charles T. Zahn, Jr., M.S. ${ }^{\circ}$
** Postdoctoral Resident Research Associate

- Temporary appointment
*** Guest worker
\because Student trainee

Contents

Status of Projects ${ }^{\circ}$ as of December 31, 1963 I

1. Numerical analysis 1
2. Mathematical tables and programing research 3
3. Probability and mathematical statistics 4
4. Mathematical physics 6
5. Operations research 10
6. Mathematical and computational services 12
7. Statistical engineering services 18
Current applications of automatic computer 20
Lectures and technical meetings 28
Publication activities 31
[^1]
Status of Projects

\author{

1. NUMERICAL ANALYSIS
}

RESEARCH IN NUMERICAL ANALYSIS AND RELATED FIELDS Task 1101-12-11110/55-55

Origin: NBS
Authorized 8/29/54
Manager: Morris Newman
Full task description: July - September 1954 issue, p. 1
Status: CONTINUED. M. Newman has continued his studies of the modular group Γ. He has proved that if G is a proper subgroup of I containing

$$
\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \Gamma(n)\right\}
$$

then $G \subset \Gamma_{0}(d), d \mid n, d>1$. This result was used by M. Knopp and M. Newman to prove that if G is a free congruence group of level n, where $(n, 2.3 .5 .7 .13)=1$, then G is of positive genus.

A study of subgroups of F-groups and characters on such groups has been initiated by M. Knopp, J. Lehner and M. Newman.

Bounds for class numbers of algebraic number ifelds improving those in the literature have been given by M. Newman. It is shown for example that if p is a prime $\equiv 1$ (mod 4) then the class number of $R(\sqrt{p})$ is less than $2 / p / 3$.

Asymptotoc formulas for the number of lattice points in a 3-dimensional sphere have been given by M. Bleicher (U. of Wisconsin) and M. Knopp.
K. Goldberg has considered the problem of determining the sums of distinct permutation matrices which can be made symetric through left multiplication by a permutation matrix, and for which the multiplier can be chosen to be sumetric. The problem has direct application to the construction of Hadsmard matrices.
K. Goldberg has continued his investigation of the powers of the iterates of a formal power series.
S. Haber continued his study of a modified Mont-Carlo numerical quadrature method which he had proposed earlier. As applied to integration over the unit n-cube, it consists of subdividing the cube into a large numer of subcubes, choosing a single point at random in each, and averaging the functional values at the points chosen. He showed that the variance of this estimate is always less than that of simple Monte-Carlo quadrature, and that for differentiable functions the standard deviation is asymptotic to $K N^{-\frac{1}{8}-\frac{1}{n}}$, where N is the number of points chosen and K is the I^{2} mean of the gradient of the integrand. He also began some numerical experiments with the method.
F. Gross has completed a paper (with Professor E. G. Straus) on exponentials of entire functions. He is now investigating entire solutions to certain functional equations. He is also studying rates of growth of entire functions of one and of several complex variables.
R. Miech is continuing his study of problems in prime number theory.
F. W. J. Olver is continuing his work in aymptotic expansions under Task 1101-11-11421/63

Publications:

(1) On a theorem concerning existence of interpolating functions. R. F. DeMar. Submitted to the Transactions of the American Mathematical Society.
(2) A uniqueness theorem. R. F. DeMar. To be published in Proceedings of the American Mathematical Society.
(3) A note on some quadrature formulas for the interval ($-\infty, \infty$). S. Haber. To appear in Mathematics of Computation.
(4) Matrix rational completions satisfying generalized incidence equations. E. C. Johnsen. Submitted to a technical journal.
(5) The inverse multiplier for Abellan group difference sets. E. C. Johnsen. To appear in the Canadian Journal of Mathematics.
(6) Weierstrass points of $\Gamma_{(n) \text {. J. Lehner and M. Newman. To appear in Annals of Mathematics. }}^{\text {. }}$.
7) Almost primes generated by a polynomial. R. Miech. To appear in Acta Arithmetica.
(8) Symplectic modulary groups. M. Newman and J. R. Smart. To appear in Acta Arithmetica.
(9) A complete description of the normal subgroups of genus one of the modular group. M. Newman. To appear in American Journal of Mathematics.
(10) Normal congurence subgroups of the modular group. M. Newman. American Journal of Mathematics, vol. 85, pp. 419-427 (1963).
(11) Note on the partition function. M. Newman. To appear in American Mathematical Montly.
(12) Free subgrups and normal subgroups of the modular group. M. Newman. To appear in Illinois Journal of Mathematics.

RESEARCH IN MATHEMATICAL TOPICS APPLICABLE TO
 NUMERICAL ANALYSIS
 Task 1101-12-11411/55-56

Origin: NBS
Sponsor: Office of Naval Research
Manager: Morris Nemman
Full task description: July-September 1954 issue, p: 5
Status: INACTIVE. All manuscripts which had not been published when this project was rendered inactive have been transferred to Task 1101-12-11110/55-55.

ASYMPTOTIC EXPANSIONS
Task 1101-11-11421/63
Origin: NBS
Authorized 9/10/63
Sponsor: U. S. Army Research Office, Durham, N.C.
Manager: F.W. J. Olver
Objective: To study the behavior of solutions of differential equations near singular points.
Status: NEW. F.W.J. Olver has been investigating the asymptotic expansions of solutions of ordinary second-order differential equations in the neighborhood of an irregular singularity. In the case of singularities of rank one, new error bounds have been obtained; they are expressed in terms of the variation of the first neglected term of each expansion. Generalizations are now being studied.

Publications:

(1) Error bounds for first approximations in turning-point problems. F.W. J. Olver. Appeared in the Journal of the Society for Industrial and Applied Mathematics, 1963, vol. 11, 748-772.
(2) Error bounds for asymptotic expansions in turning-point problems. F.W. J. Olver. To appear in Journal of the Society for Industrial and Applied Mathematics.
(3) Error analysis of Miller's recurrence algorithm. F.W. J. Olver. of Mathematics of Computation of January 1964, vol. 18.

2. MATHEMATICAL TABLES AND PROGRAMMING RESEARCH

AUTOMATIC CODING
Task 1102-12-11120/55-0065

3. PROBABILITY AND MATHEMATICAL STATISTICS

RESEARCH IN PROBABIIITTY AND MATHEMATICAL STATISTICS
Task 1103-12-11131/63-1259
Origin: NBS
Authorized 10/1/62
Manager: Joan Raup Rosenblatt
Full task description: July - December 1962
Status: CONITNUED. J. M. Cameron has Written notes entitled "Effect of change of restraint on the inverse of the matrix of normal equations" and "Incorporating restraints in least squares computations", the third and forth of a series of notes on computational problems associated with the solution of the normal equations for estimation in a linear model when the parameters of the model must obey linear restraints.
W. J. Youden worked on a collection of special designs suitable for calibration work. Experiments on electrical circuit analogs of these designs are being performed by Francis Hermach of the Electrical Instruments Section.
A. Bruce Hoadley prepared two related working papers entitled "Comparison of the method of group averages and the method of least squares for fitting a straight line when both variables are subject to error", and "A note on the estimation of error variance in the functional relationship model". A paper summarizing the results of these investigations is being prepared for publication.
H. H. Ku is preparing for publication a collection of propagation-of-error formulas.

Roy H . Wampler is continuing the study initiated by Churchill Eisenhart, with the collaboration of Ann D. Smith and John Van Dyke, on the distribution of tolerance interval coverages in sampling from a normal distribution.

Janace Speckman and Richard G. Cornell (Florida State Univ.) have completed their joint paper on "Estimation for a one-parameter exponential model".

George Weiss has carried further his investigation of mathematical models for pedestrian queueing, and has completed a paper on "The effects of a distribution of gap acceptance functions on pedestrian queues". Two additional papers completed by George Weiss are "The calculation of certain multiple generating functions" and "A simple derivation of the Faxen solution to the Lamm equation". In collaboration With E. W. Montroll (Institute for Defense Analyses), George Weiss initiated computation of tables of the two-dimensional Green's function for the discrete analogue of the Laplace operator

$$
J(m, n ; \alpha, \beta)=\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{\cos m x \cos n y d x d y}{(1+\alpha) \beta-\alpha \cos x-\cos y}
$$

for $m, n=0(1) 5, \alpha=1,2,4,8$, and $\mu=\beta^{-1}=.01(.01) .99$. These tables will be useful in a variety of problems, including random walk problems, solid state problems, and statistical estimation problems in two dimensions.

Brian L. Joiner is studying the comparison of the Normal and Weibull distributions, according to the criterion

$$
D(p)=\min _{\mu, 5}^{\max } \left\lvert\, \begin{array}{l|l}
x & N(x ; \mu, \sigma)-W(x ; p)
\end{array}\right.
$$

where

$$
\begin{aligned}
W(x ; p) & = \begin{cases}0 & x<0 \\
1-\exp \left\{-x^{p}\right\} & x \geq 0, p>0,\end{cases} \\
N(x ; \mu, \sigma) & =\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} \quad \exp \left\{-\frac{1}{8}\left(\frac{t-\mu}{\sigma}\right)^{2}\right\} d t, \\
& -\infty<x<\infty,-\infty<\mu<\infty, \sigma>0 .
\end{aligned}
$$

$D(p)$ has a minumum near $p=3.06232$. For fixed p, the minimizing mean $\mu(p)$ and standard deviation $\sigma(p)$ of the normal distribution are compared with the mean, median, standard deviation, and other characteristics of the Weibull distribution $W(x ; p)$.

Brian L. Joiner has taken up the investigation of the random variable defined by $z=A x^{\alpha}-B x^{\beta}+C$, where x has uniform distribution on the unit interval. Computations are being made to permit comparison of the percentage points and moments of the distribution of z with those of tabulated distributions.

Publications:

(1) Realistic evaluation of the precision and accuracy of instrument calibration systems. Churchill Eisenhart. Proceedings National Conference of Standards Laboratories, held at NBS Boulder Laboratories, Aug. 8-10, 1962, NBS Misc. Publication 248, pages 63-89, August 1963.
(2) A note on contingency tables involving zero frequencies and the $2 \hat{I}$ test. H. H. Ku. Technometrics 5, 398-400, August 1963.
(3) Experimental Statistics. May G. Natrella. NBS Hendbook 91, 1963.
(4) On an extreme rank sum test for outliers. W. A. Thompson, Jr., and T. A. Willke. To appear in Biometrika, December 1963.
(5) An analysis of pedestrian queueing. George Weiss. Journal of Research NBS-B. (Mathematics and Mathematical Physics), 67B, 229-243, Oct.-Dec., 1963.
(6) A note on a generalized elliptic integral. George H. Weiss. To appear in Journal of Research NBS-B. (Mathematics and Mathematical Physics).
(7) The calculation of certain multiple generating functions. George H. Weiss. To appear in Journal of Research NBS-B. (Mathematics and Mathematical Physics).
(8) The effects of a distribution of gap acceptance functions on pedestrian queues. George Weiss. To appear in Journal of Research NBS-B. (Mathematics and Mathematical Physics).
(9) A simple derivation of the Faxén solution to the Lamm equation. George Weiss. To appear in Journal of Math. Physics.

MEASUREMENT OF REJLTABILITIY
Task 1103-12-11130/56-182
Origin: NBS
Authorized $3 / 23 / 56$
Manager: Joan Raup Rosenblatt
Full task description: January-March 1956 issue, p. 13
Status: CONTINUED. Albert Romano completed a working paper summarizing the results of his investigation of models for the statistical analysis of transistor aging experiments.

4. MATHEMATICAL PHYSICS

RESEARCH IN MATHEMATICAL PHYSICS AND RELATTED FTELDS Task 1104-12-11141/55-57

Origin: NBS
Manager: W. H. Pell
Full task description: July-September 1954 issue, p. 27
Status: CONTINUED. Dr. Barry Bernstein is continuing his work with E. A. Kearsley and L. Zapas, of Section 6.05, which consists of a study aimed at a description of the mechanical response of polymers. Experimental work in 6.05 has been continuously conducted over the last year in which materials were subjected to simple extension histories suggested by the formula proposed by Bernstein, Kearsley, and Zapas. (See (1) below.) Recent experiments have tended to confirm the appropriateness of this formula, and some schemes have been considered for computing the response of these materials. It is expected that computational work will begin soon.

Preliminary theoretical work on the thermodynmics of viscoelastic materials has shown promise of leading to the formulation of a proper thermodynamical theory.

Dr. I. E. Payne and J. H. Bramble are continuing their intensive study of the problem of determining error bounds of a priori type for the solutions of boundary value problems in classical elasticity. Their current investigation is concerned with obtaining pointwise bounds for elastic plates with mixed boundary conditions. A man uscript is in preparation.

The study of Drs. J. P. Vinti and R. M. Langer on the measurement of drag on a manned satellite of the earth ahs been concluded.
J. E. Iagnese has been investigating the existence of second order, linear partial differential operators of hyperbolic type which satisfy Huygens' principle. In the self-adjoint case, a large class of such operators has been found; this class includes, as a special case, the set of aill previously known Huygens' operators. Several important properties of these operators have been found, in particular, properties relating to their fundamental solutions.

For operators with constant principal part and coefficients depending on only one of the independent variables, the use of Fourier transforms enables one to reduce the question of Huygens ' principle to a consideration of special properties of solutions of second order ordinary differential equations containing a parameter.

A manuscript dealing with a portion of these results has been prepared.
The system of differential equations

$$
\begin{equation*}
\frac{d x}{d t}=x(x+y+1) \quad \frac{d y}{d t}=y(a x+b y+c) \tag{1}
\end{equation*}
$$

is encountered in the thory of oscillations, astrophysics, and chemical kinetics, and has been studied by N. N. Serebriakova [Fryklad. Math. Mech., vol. 27, no. 1, 1963]. Dr. A. Ghaffari has obtained new results concerning the behavior of solutions of the system at infinity, and showed that if the parameters $a, b \neq 1$, then the equator is an integral curve of (1). Using Bendixson's criterion, Dr. Ghaffari has demonstrated the non-existence of limit cycles of (1).

The discussion of the second-order equation

$$
\begin{equation*}
\frac{d^{2} x}{d t^{3}}+f(x)=0, \quad x(0)=c_{1}, \quad \frac{d x(0)}{d t}=c_{2}, \tag{2}
\end{equation*}
$$

in the phase plane is classic, see J. J. Stoker, Non-linear Vibrations, 1950. Application of
standard methods leads to the associated equation

$$
\begin{equation*}
\left(\frac{d x}{d t}\right)^{2}+F(x)=c, \quad x(0)=c_{1} \tag{3}
\end{equation*}
$$

where $F^{\prime}(x)=2 f(x), C=c_{2}^{2}+F\left(c_{1}\right)$. Hochstadt [Am. Math. Monthly 70, 1086-87 (1963)] has pointed out by considering the case $f(x)=x$ that it can happen that ($\overline{2}$) may have unique solutions, whereas (3) does not. He obtained a criterion which will insure that a solution of (3) will also satisfy (2). Dr. Ghaffari has discussed the case $f(x)=2 x^{2}(1-x)$, and showed that for suftable choice of C, a solution may be obtained which satisfies Hochstadt's criterion.

Publications:
(1) A study of stress relaxation with finite strain. B. Bernstein, E. A. Kearsley, and L. J. Zapas. Transactions of the Society of Rheology VII. 391-410 (1963).
(2) Pointwise bounds in the first biharmonic boundary value problem. L. E. Payne and J. H. Bramble. To appear in the Journal of Mathematics and Physics.
(3) Error bounds in the pointwise approximation of solutions of elastic plate problems. J. H. Bramble and L. E. Payne. Jounal of Research NBS 67B, 157-168 (1963).
(4) Drag compensation and measurement with manned satellites: feasibility study. R. M. Langer and J. P. Vinti. Journal of Research NBS 67C, 247-249 (1963).
(5) On Rayleigh's non-linear vibration equation. A. Ghaffari. To appear in the Proceedings of the International Symposium on Non-Ifnear Vibrations, sponsored by the Academy of Sciences of the Ukrainian SSR, Kiev, USSR, September 16-18, 1961.

THEORY OF' SATELLTTTE ORBITS
Task 1104-12-11441/62-1166
Origin: NBS
Authorized 1/9/62
Sponsor: National Aeronautics and Space Administration
Manager: J. P. Vinti
Full task description: January-March 1962 issue, p. 12
Status: CONTINUED. The analysis of the drag-free motion of an artificial satellite has been continued by J. P. Vinti. The perturbations of the standard Vinti orbit by the third harmonic have now been derived, along with those produced by the residual fourth harmonic. These derivations, utilizing an adaptation of the von Zeipel method, hold good whenever the inclination I is sufficiently far removed from the critical values 63.4° and 116.6°.

Work is now in progress on the case where I is close to efther of these critical values, with two purposes. The first is to incorporate the solution for the critical regions into the general algorithm for calculating an orbit by the spheroidal method, in such a way that the critical solution will merge into the previous solution at the bounderies $63.4^{\circ} \pm \epsilon$ and $116.6^{\circ} \pm \epsilon$, where ϵ is still to be specified. The second is to attempt to make the critical inclinations physically reasonable.

Publications:
(1) The spheroidal method for satellite orbits. J. P. Vinti. Proceedings of the First International Symposium on the Use of Artificial Satellites for Geodesy, North Holland Publishing Co. Amsterdam. pp. 12-16 (1963).
(2) Zonal harmonic perturbations of an accurate reference orbit of an artificial satellite. J. P. Vinti. J. Research NBS. 67B, No. 4, pp. 191-222́ (1963).
(3) Drag compensation and measurement with manned satellites: feasibility study. R. M. Langer and J. P. Vinti. J. Research NBS 67C, No. 3, pp. 247-249 (1963).

Full task description: April-June 1959 issue, p. 15
Status: CONIINUED. Research by Dr. C. M. Tchen has been directed toward the following problems:
(1) Statistical theory of hydromagnetic turbulence. An analytic formulation of the mechanism of the non-linear transfer of energy between the eddies and the spectral distribution of the kinetic and magnetic energies in the wave-number space has been made. It is assumed that the conducting fluid is incompressible, and the Heisenberg hypothesis for the non-conducting fluid was generalized to include the effect of the magnetic field. A report on this is in preparation.

An attempt has been made to construct a molecular theory for turbulence in a non-conducting field. This has been helpful in achieving a better understanding of the non-linear transfer mechanism, but needs more elaboration.
(2) Interaction of the solar wind with the geomagnetic field. A derivation has been made of the shape of the boundary between the dipole magnetic fleld of the earth and the uniform solar plasma. The disturbance in the geometrical configuration of the field lines by the plasma stream was analyzed by an approximate theory. A manuscript if in preparation. Ansilysis of the non-stationary problem representing the comencement of the solar wind has been attempted, using a one-dimensional model and the method of characteristics.
(3) Interaction of a plasma source with a uniform magnetic field. This is a variation of problem (2). A steady source of plasma is placed in a uniform magnetic field, and the theoretical shape of the boundary between the plasma and the magnetic field is derived. The problem has application to the streaming of the solar wind in a galactic magnetic field. A paper on this has been completed.

DYNAMICS OF PLASMAS
Task 1104-12-11417/62-1157
Origin: NBS
Manager: C. M. Tchen
Full task description: April-June 1959 issue, p. 15 .
Status: CONIINUED. Work is in progress on the following problems in the kinetics of plasmas:
(1) Kinetic equation for rapidly varying processes in plasmas. The theory of such an equation is based on the BBGKY hierarchy of equations. The usual closure procedure leads to a system of two equations determining the singlet distribution function and the correlation function. The time variation of the correlation function is to play an important role in the theory presently being developed. This gives the effect of a memory in the evolution of the singlet distribution function and it modifies the dielectric property of the medium.
(2) Diffusion of the correlation function in a plasma. With an initial correlation function given, one may ask how it evolves in time and in space before it reaches its asymptotic equilibrium value. This question has been studied, and it is found that the time evolution of the correlation function can be interpreted by a modified diffusion process.
(3) Plasma oscillations with correlations. Here the dispersion relation, the modes of oscillations and the Landau domping have been studied by including the effects of the self-consistent field in the correlation function.
(4) Nonlinear damping and excitation in a plasma. At the present stage of study of this problem the nonlinear Landau damping from the Vlasov equation has been computed. The data are being analyzed by W. L. Sadowski and C. M. Tchen.

Preliminary reports for the problems (1) - (3) have been prepared, and the results are being compared With the results obtained by Dr. Tchen using other methods of attack. In the case of problem (2), it is planned to increase the amplitude and to consider the excitation problem. Dr. K. Hain, on leave from the Institute for Plasma. Physics, Munich, Germany, has recently joined Section 11.04 of NBS and will work on this problem.

HYPERVELOCITY IMPACT
Task 1104-12-11418/63-1373
Origin and Sponsor: Applied Physics Laboratory Authorized. 4/22/63 Johns Hopkins University
Manager: Barry Bernstein
Status: CONTINUED. An attempt to calculate the effect of impact of two metal cylinders has been made. The analysis is based on the mathematical model (due to R. L. Bjork, Proc. Xth International Astron. Congress, London, 1959. Springer-Verlag, Wien, pp. 505-514 (1960)) of an inviscid gas with the introduction of an artificial viscosity (J. von Neumann and R. D. Richtmyer, J. App. Phys. 21, 232-237 (1960)) to eliminate the necessity of considering possible discontinuous solutions. It was found that an IBM-STREICH computer program existed at LOs Alamos which could be used for this problem. The problem was run at Los Alamos and the results reported to the sponsor. The results were analyzed and the resolution was found to be somewhat too coarse to give the desired information.

Manager: Alan J. Goldman
Full task description: October-December 1960 issue, p. 3
Status: CONTINUED. The following investigations in various fields of operations research were caxried out by members of the staff:
(I) C. Witzgall and A. J. Goldman continued investigating mathematical models of distribution networks. Illustrative results based on Chicago residential density data were obtained. Asymptotic analysis of related functions defined by integrals is in progress.
(2) W. Sillars, J. Levy and A. J. Goldman continued investigations of the effects of buffer capacity in a simple flow system. P. Meyers is analyzing a (previously simulated) stochastic sorting process, and carried out numerical studies on the usefulness of exceptions to the rules in encoding information. D. Kleimman continued work on the computer simulation of a class of mail sorting devices.
(3) L. S. Joel, K. Kloss and J. Levy (primarily) are participating in a Commerce Department analysis of some aspects of the textile industry. (Reported here for convenience; supported under Project No. 30409). A. J. Goldman continued assisting the Interagency Cormittee on Oceanography in connection with an operations research study.
(4) H. Fell and J. Mather proved that "barely faithful algebras" (in which each element is a right and left zero-divisor, but no non-zero element is a right or left annihilator) exist in all dimensions 24 , but not in lower dimensions. H. Fell and A. J. Goldman improved the existing procedure for imbedding a given algebra A as a left ideal in an algebra B so that every left semi-multiplier of A (linear transformation T obeying $T(x y)=(T x) y$ is realized as left multiplier of B. A. J. Goldman and D. Kleinman obtained a counter-example to a standing conjecture related to the maximum number of iterations for the simplex method of linear programming. D. Kleinman worked out the relationship between optimal solutions of transportation problems and those of imbedded assignment problems.
(5) P. Meyers is investigating variants of the Banach Contraction Theorem, an important tool in establishing convergence of iterative processes. The emphasis is on the possibility of remetrizing to turn a non-contraction into a contraction.
(6) A. J. Goldman completed collaboration with M. Zelen (now at NIH, National Cancer Institute) on a paper dealing with least squares estimation. C. T. Zahn, Jr. revised his paper on relational approximations to incorporate additional results.

Publications:
(1) Reailzation of semi-multipliers as multipliers. Harriet Fell and A. J. Goldman. To appear in Am. Meth. Monthly. (Math. Notes).
(2) Barely faithful algebras. Harriet Fell and John Mather. Submitted to a technical journal.
(3) Examples relating to the simplex method. A. J. Goldman and Daniel Kleinman. To appear in Operations Research, Vol. 12 (1964).
(4) Approximating symmetric relations by equivalence relations. C. T. Zahn, Jr. Submitted to a technical journal.

Origin and Sponsor: Defense Communication Agency
Manager: Lambert S. Joel
Authorized 6/19/63
Full task description: June 19, 1963
Objective: To analyze various instrumentalities of the Defense Commications System and if possible, to determine optimal structure and operational procedures according to appropriately developed cost/ effectiveness/ and feasibility criteria.

Background: The DCS processes a large number of messages to, from and within the military estalishment. It is quite desirable to minimize annual costs while maintaining adequate quality and accuracy of service.

Status: NEW. Two problems were investigated. One is that of finding the best set of "relay points" from the military network to commercial commuications facilities; a disrete linear progremning formulation was obtained, and computational procedures are being developed. The second problem is the rational derivation of "value numbers" for the links of a communication net; a formulation based in part on L. Shapley's analysis of n-person games has been developed and is being explored.

COMBINATORIAL MATHEMAITICS
Task 1105-12-11455/62-1205
Origin: NBS
Sponsor: Army Research Office-Durham
Manager: Jack Edmonds

Authorized 5/2/62
Manager: Jack Edmonds
Full task description: April-June 1962 issue, p. 15
Status: CONTINUED. C. Witzgail and C. T. Zahn, Jr. prepared their paper on the "predeceasor" algorithe for maximon watching in graphs. Zahn, examining in depth the generalized matehing theary, (I) analyzed limitations of the predecessor method and (2) sfmplified the treatient by Ediandm. Witzgall proved the existence of certain alternating paths in certain matched graphs. A. J. Goldman prepared a poper, listed below, on some other results in this arca.
J. Mather wrote the first draft of a long paper on the inmersion of complexes in Euclidean space. Mather and Zahn constructed counterexamples to a conjecture on miolmum boolean formulas.
J. Edmonds, investigating with Witzgail various topics on graphs and combinatorics, obtained meny negative results and a few positive ones including (1) minimum normal formulas for symmetric boolean functions, (2) conditions for the existence of k-edge connected graphs with prescribed degrees, (3) an efficient algorithm for deciding isomorphism of trees and of series-parallel networks, (4) with C. Y. Chao (U. of Pennsylvania), a construction for graphs with prescribed automorphisms, (5) a simplification in inter-programming theory, (6) with A. J. Goldinan, the convex hull of the (0,1)vectors corresponding to the trees in a graph.

Publications:
(1) Paths, trees, and flowers. Jack Edmonds. To appear in the Canadian Journal of Mathematics.
(2) On the surface duality of graphs. Jack Edmonds. Submitted for publication.
(3) Optimal matchings and degree-constrained subgraphs. A. J. Goldman. To appear in Journal of Research NBS, Section B (Math. and Mathematical Physics) 68B, (1964).

1102-40-11645/56-0166 SCF-LCAO SOLUTION OF SOME HYDRTDES
Origin and Sponsor: NBS, Section 5.9 (now Division 15)
Manager: P. J. Walsh
Full task description: January-March 1956 issue, p. 27
Status: CONIINUED. Calculations are run on the computer by the sponsor. Future activities will be reported in the section "Current Applications of Automatic Computer".

1102-40-11645/56-0186 MECHANICAL MEASUREMENIS OF GAGE BLOCKS
Origin and Sponsor: NBS, Section 2.5
Manager: B. S. Prusch
Full task description: July-September 1956 issue, p. 33
Status: CONIINUED. Computations were performed to check 41 laboratory sets of gage blocks as requested.

1102-40-11647/58-0266 DFPOLYMERIZATION PROCESSESS
Origin and Sponsor: NBS, Section 7.6
Manager: Maxine L. Rockoff
Full task description: July-September 1957 issue, p. 36
Status: INACTIVE
1102-40-11645/58-0339 COMPUTATION OF VISCOETASTICITY PROPERTIES OF MATERIALS
Origin and Sponsor: NBS, Section 3.4
Manager: H. Oser
Full task description: January-March 1958 issue, p. 38
Status: CONIINUED. Several computer runs were made on polymer fractions and blends with the aim to find ways of computing the creep function for polymer blends. The most promising way seems to be Inear superposition of the stress relaxation functions and determining the creep function from

$$
t=\int_{0}^{t} G(t-\tau) J(\tau) d \tau
$$

A program has been written at Bell Telephone Laboratories which determines J when G is numerically given. Test runs are under way which will determine the accuracy of this method.

1102-12-17.403/59-0348 RUSSIAN-TO-ENGIISH MACHINE TRANSLATION
Origin: NBS
Sponsor: U. S. Army Signal Corps and U. S. Army Research Office
Manager: I. Rhodes (11.0)
Full task description: October-December 1958 issue, p. 26
Status: CONTINUED. All three parts of our scheme have been encoded and checked out on the 7094. This is a necessarily limited routine, since we have been experimenting all along with only two very difficult Russian sentences. We are now engaged in applying the mechanical scheme to numerous other sentences, based upon our small internally stored sample glossary. If these prove successful, We shall attempt a public demonstration of the efficacy of our method.

1102-40-11645/60-0486 MORSE WAVE FUNCTIONS AND FRANCK-CONDON FACTORS Origin and Sponsor: NBS, section 3.0
Manager: Ruth Zucker
Full task description: January-March 1960 issue, p. 28
Status: CONTINUED. Production runs were made and results submitted to Sponsor.
1102-40-11645/60-0513 RADIATIVE ENVELOPES OF MODEL STARS Origin and Sponsor: National Aeronautics and Space Administration Managers: P. J. Walsh and S. Haber (11.1)
Full task description: July-September 1960 issue, p. 23
Status: INACTIVE

1102-40-11645/61-0532 CALCULATION OF VIBRATIONAL ENERGY LEVELS FOR IONIC MOLECULES
Origin and Sponsor: Georgetown University
Managers: H. Oser and P. Walsh
Full task description: October-December 1960 issue, p. 21
Status: COMPLETED. All production runs were carried out and results transmitted to the sponsors.
1102-40-11645/61-0538 SPECTRAL REFFLECTANCE
Origin and Sponsor: NBS, Section 9.4
Managers: S. Haber (1.1.1) and P. J. Walsh
Full task description: October-December 1960 issue, p. 23
Status: CONTINUED. New data on the reflectivity of Rhodium and on its optical constants were obtained from outside sources. As a check on the accuracy of the new and old data, it was decided to see whether they satisfied the Kramers-Kronig relations. Routines necessary for the calculation of the phase from the reflectivity were written andchecked out, and applied to the data. The results were inconclusive and indicated a need for more data on the reflectivity of Rhodium in the ultra-violet.

1102-40-11647/62-1022 CALCULATIONS FOR SPECTRUM OF DIPOLE RADIATION Origin and Sponsor: Naval Research Laboratory
Manager: R. J. Arms
Full task description: April-June 1958 issue, p. 33
Status: CONTINUED: A small amount of calculation has been completed. It is expected that the project will continue on a limited basis.

1102-40-11645/62-1027 NEW SYSTEM
Origin and Sponsor: NBS, Section 11.2
Manager: R. J. Herbold
Full task description: July-September 1961 issue, p. 22
Status: CONTINUED. The IRM system (IBSYS) has been in a Ifmited use and it is hoped that it will be used more in the future. A special program is being coded to make the OMNITAB system more flexible under IBSYS. The target date for completion of the insertion of OMNITAB into IBSYS system is January 1, 1964.

1102-40-11645/62-1030 ELECTROCARDIOGRAPHIC ANAIYSIS
Origin: NBS, Section 12.5
Manager: Robert Herbold
Sponsor: Veterans Administration
Full task description: April-June 1959, p. 29
Status: CONTINUED. Production runs are being conducted by the sponsor. Future activities will be reported in the section "Current Applications of Automatic Computer."

1101-12-11416/62-1091 BOUNDS FOR EIGENVALUES
Origin: Wright Patterșon AFB
Manager: H. Oser
Full task description: October-December 1961 issue, p. 4
Status: CONIINUED. Activities on this project are reported under tasks 0532 and 1390.
1102-40-1.1647/62-1130 FALLOUT SHETTER COMPUTIATIONS
Origin and Sponsor: Office of Civil Defense
Manager: D. I. Mittleman
Full task description: October-December 1961 issue, p. 25
Status: CONTINUED. Since the completion of the first year's work, the problem has been relatively dormant. We are presently in an updating stage which will include building constructions completed more recently as well as corrections to material that is already in the permanent file. A new modification of the calculation has been the lowering of the minimum protection factor to 10 from the previously used figure of 20.

1102-40-11647/62-1155 MORTGAGE LOAN SURVEY
Origin and Sponsor: Federal Home Loan Bank Board
Manger: Ruth Zucker
Full task description: January-March 1962 issue, p. 24
Status: CONTINUED. Production runs continued under the sponsor's direction.

1102-40-11647/62-1178 LOGARITHMIC COEFFICIINNIS
Origin and Sponsor: NBS, Section 5.3
Manager: R. J. Arms
Full task description: January - March 1962 issue, p. 27
status: IKACTITV.
1102-40-11647/62-1179 CATAIOGUE INFORMAIION
Origin and Sponsor: HDL
Manager: Ruth Varner
Full task description: January-March 1962 issue, p. 27
Status: CONTINUED. A new program was requested by the sponsor. The purpose of the new program is to search a magnetic tape with bibliographic entries such as subject codes and other pertinent information in order that a list of documents may be submitted to a requester who has specified his interest in particular subjects. The program will be written for the 1410.

1102-40-11647/62-1189 SEQUENIIAL METHODS TABLES
Origin and Sponsor: Quartermaster Research and Fingineering Field
Evaluation Agency, U. S. Army
Manager: R. J. Arms
Full task description: April-June 1962 issue, p. 26
Status: INACIIVE. For lack of funds this project has been inactive this period.
1102-40-11647/62-1193 SOLUTION TO SECOND ORDER PARTIAL DIFFERENTIAL ELTTPTIC EQUATION Origin and Sponsor: NBS, Section 3.08
Manager: P.J. Wash
Full task description: April-June 1962 issue, p. 28
Status: InACIIVE.

1102-40-11647/62-1196 HEAT OF ASSORPTION
Origin and Sponsor: NBS, Section 15.2
Manager: Ruth Varner
Full task description: April-June 1962 issue, p. 29
Status: INACTIVE
1102-40-11647/62-1203 CYLTNDRICAL SHOCK WAVE
Origin and Sponsor: NBS; Section 3.7
Managers: Sally. Peavy and S. Haber
Full task description: April-June 1962 1ssue, p. 30
Status: CONITNUED. Several computations were performed in order to check the mesh interval and resulting computer time. Formulation of inner boundary condition will have to be checked by sponsor.

1102-40-11647/62-1212 COLOR DIFFERRENCES
Origin and Sponsor: NBS, Section 10.9
Manager: J. D. Waggoner
Full task description: April-June 1962 1ssue, p. 33
Status: CONIINUED. Several runs were made and results were submitted to the sponsor.
1102-40-11647/63-1219 SHOCK IUBE DATA
Origin and Sponsor: Diamond Ordnance Fuze Laboratories
Manager: L. Joseph
Full task description: July-December 1962 issue, p. 32
Status: TERNDINATED
1102-40-11647/63-1223 CARDIOVASCULAR DYNAMICS
Origin and Sponsor: Univ. of Pennsylvania, Bockus Research Institute
Manager: M. Rockoff
Full task description: July-December 1962 issue, p. 32
Status: TERNMINATED
1102-40-11647/63-1240 SECREY SERVICE FORGERY PROJECT
Origin and Sponsor: Treasury Department, U. S. Secret Service
Manager: M. Paulsen
Full task description: July-December 1962 issue, p. 33
Status: INACTIVE.

1102-40-11647/63-1258 SPECTRAL ANALYSIS
Origin and Sponsor: NBS, Section 15.03
Manager: H. Oser
Full task description: July-December 1962 issue, p. 33
Status: COMPLENED. Results defy a satisfactory interpretation at this time. Further theoretical work will be necessary before resumption of this task.

1102-40-11647/63-1335 MATRIX OF POLYNOMLALS
Origin and Sponsor: NBS, Section 13.1
Manager: Ruth Zucker
Full task description: January-June issue 1963, p. 25
Status: COMPLEIED. Results were transmitted to the sponsor.
1102-40-11647/63-1341 LINE WIDIBS
Origin and Sponsor: NBS, Section 13.2
Manager: Maxine Paulsen
Full task description: January-Jume 1963 issue, p. 26
Status: COMPLEIED
1102-40-11647/63-1352 NEAR NAITIONAL EMERGENCY AIARM REPEATER
Origin and Sponsor: OCD
Manager: Louis Joseph
Full task description: Jenuery-June 1963 issue, p. 26
Status: TERMMNATED.
1102-40-11647/63-1355 STUDY OF EJECTRONIC ENERGY BANDS IN THE RUTILE CRYSTAL Origin and Sponsor: NBS, Section 13.4
Managers: P. Walsh and A. Gregg
Full task description: January-June 1963 iss, $p .26$
Status: CONTINUED. The codes for generating the various energy matrices were checked and production runs were made. The results have been submitted to the sponsor.

1102-40-11647/63-1364 BaF ELHMENT RESPONSE TIME
Origin and Sponsor: NBS, Section 14.4
Manager: Maxine Paulsen
Full task description: January-June 1963 issue, p. 27
Status: COMPLEIED.
1102-40-11647/63-1368 HEART DISEASE CONTROL
Origin and Sponsor: Public Health Service
Manager: Sally Peavy
Fuss task description: January-Jume 1963 issue, p. 27
Status: CONTINUED. Program is written and in process of being checked out.
1102-40-11647/63-1377 WISKER GROWTH IN A VAPOR ATMOSPHERE
Origin and Sponsor: NBS, Section 8.5
Managers: H. Oser and J. A. Simmons (8.5)
Full task description: January-Jwne 1963 1ssue, p. 28
Status: INACTIVE

1102-40-11647/64-1410 INTEGRO-DIFFERENTIAL EQUATIONS
Origin and Sponsor: Institute for Defense Analyses
Manager: R. J. Arms
Objective: The integro-differential equations were reduced to a system of partial differential
equations.

$$
\text { 1) } \begin{aligned}
s_{b l} & =e_{r} / s_{r} \\
e_{t} & =\bar{s}_{t} e_{r} / s_{r}-r f(r) / s_{r} s_{r}
\end{aligned}
$$

Where $f(r)$ is a known function; r, b, and t are independent variables; and s, e are unknown functions. Boundary conditions are given on the surfaces $\ell=0, t=0, r=0$. The solution s, e is wanted in a part of the positive octant. Status: NEW. The sytem 1) was replaced by a finite difference system. Results have been submitted to the spomsor.

1102-40-11647/64-1433 NMR SPECTRA
Authorized 8/14/63
Origin and Sponsor: Food and Drug Administration
Manager: L. Joseph
Objective: To convert a FORTRAN program for the calculation of NMR (nuclear magnetic resonance) spectra so that it can be run on the Bell Monitor System on the IBM 7094.
Background: FREQINT IV is a program from the MELLON INSTITUTE for the calculation of NMR spectra expected for a given set of chemical shifts and coupling constants. It is written in the FORTRAN language to be run on the IBM 7094. In order for it to run on the Bell Monitor System certain minor changes Were required.
In addition, an extra option was put in to enable part of the printout to be suppressed.
Status: NEW. The program was modified as indicated above. Code check and production runs have been made. Further runs will be made by the sponsor. Submitted by Dr. E. Lustig.

1102-40-11647-1415 SINGLE CRYSTAL DATA
Origin and Sponsor: NBS, Section 5.6
Manager: Don I. Mittleman
Objective: To prepare a Folume using the Mergenthaler linofilm equipment at the Government Printing Office and to organize magnetic tapes for information storage and retrieval of these data.
Background: The past techniques for the preparation of this volume are unsatisfactory from the standpoint that the volume appears too long after it has been prepared. Using modern computer techniques and Mergenthaler equipment available at the Government Printing Office, it is hoped to produce this volume on a more timely basis and at lower cost and to make revision and updating a bi-product of the operation. It is also hoped that having the information available on magnetic tape will facilitate research work in this field.
Status: NEW. The work was started and as of the present is dormant.

1102-40-11647/64-1381 EXPANSION OF POLYELECTROLYTES
Origin and Sponsor: NBS, Section 3.8
Manager: J. D. Waggoner
Objective: To determine theoretically the average size and shape of an electrically charged polymer molecule (polyelectrolyte) In solution. In particular, to compute by approximation, a Gaussion distribution, i.e. $m(r)=e^{-B r^{2}}$, where B is a parameter which depends on the total number of chain elements in the polymer.
Background: Various considerations have been made in connection whith a polyelectrolyte and what happens if one has charge of the same sign distributed along the chain, if it is clear that the charge will, by virtue of the Coulomb repulsion, tend to expand the polyion and change its average shape. On the basis of theoretical considerations, it is required that the density of polyion matter is proportional to the product of the initial (uncharged) distribution and the Boltzmann factor, $\exp [p p / k t]$. Here p is the fraction of the chain elements carrying charge and $\varphi(r)$ is the total electrostatic potential. Based on the assumption that the counter-ions are distributed according to the Boltzmann distribution, the solution of the Poisson-Boltzmann equation will yield the potential and the polyion shape.
Status: NEW. Completed. A FORIRAN code was written to solve the Foisson-Boltzmann equation. Several runs were made and the results were submitted to the sponsor along with the code. Future activities will be reported under "Current Applications of Automatic Computer".

1102-40-11647/64-1438 MATRIX CALCULAMION
Authorized 9/19/63
Origin and Sponsor: NBS, Section 8.5
Manager: J. D. Waggoner
Objective: To perform computations in connection with the calculation of the diffusion coefficient of tracer ions in a NaCl type ionic crystal.
Background: Assuming the diffusion mechanism to consist of tightly bound anion-eation vacancy pairs, it is desired to study the evidence that this mechanism is the dominant one under certain experimental conditions. The calculation involves finding the probabilities of correlated exchanges of a tracer with a vacancy pair. By comparing the results of the calculation with experiment, it should be possible to determine the ratio of jump frequencies, and the andon and cation vacancies. Status: NEW. Completed. A FORTRAN code was written to perform these computations. Several runs were made and the results were submitted to the sponsor.

1100-12-11404/63-1456 RESEARCH ON A PICTURE IANGUAGE MACHINE
Authorized 5/1/61
Origin: NBS
Sponsor: National Science Foundation
Manager: Russell A. Kirsch
Objective: To perform investigations on the development of an automatic programoing system for processing information retrieval prescriptions which are addressed to collections of documents which consist of interrelated pictures and natural language text.
Background: In order to mechanize information retrieval systems which use text and pictures, it is necessary to provide a formal (i.e., mechanical) set of procedures for processing the text and pictures. Since such information is ordinarily meant only for human consumption, it is necessary that these procedures accomplish the equivalent of human visual pattern recognition and linguistic syntactical analysis. The development of a general-purpose research tool like a Picture Language Machine will provide the capability for exploring more complex problems in pattern recognition and linguistic analysis than could be done without this tool. Furthermore, of the many research efforts in pattern recognition or in linguistic analysis, none attempts to tie together in this way these two kinds of information processes to attack problems which human beings as processors of information have the natural equipment for solving.
Status: A prototype Picture Language Machine was partly programmed and partly hand simulated. This prototype was able to accept English sentences which described pictures containing geometrical shapes and by mechanical operation upon the sentences and the pictures determine which sentences were correct descriptions of which pictures.
To accomplish this simulation, a general purpose syntactical analyzer for phrase structure gramars was written for the 7094 computer. A grammar for the relevant fragment of English was also written. This gramar was the basis for several others written that included larger fragments of English. A set of programs in the STRIP language for the SEAC computer was constructed for automatic analysis of the simple pictures. Finally, an algorithm was written and programmed for translating from the syntactically analyzed sentences to a logical calculus representation.
A small study was also made of the use of gramars in inductive inference. A pictorial gramar was written for the geometric arrays of symbols used in various textbooks for denoting Boolean algebraic expressions. A comparative analysis was completed for the list processing languages COMLT, FLPL, IPL-V, and LISP.

7. STATISTICAL ENGINEERING SERVICES

COLIABORATION ON STATISTICAL ASPECTS OF NBS RESEARCH AND TESTTING

Task 3911-61-39951/51-1
Origin: NBS
Authorized 7/1/50
Managers: J. M. Cameron, H. H. Ku
Full task description: July-September 1950 1ssue, p. 60
Status: CONTINUED. During this period members of the section provided statistical assistance to a number of Bureau personnel. The following are representative examples:
Hsien H. Ku continued his collaboration with T. Hockersmith of the Engineering Mechanics Section on the statistical aspects or proving ring calibration particularly the estimation of the uncertainty to be attached to such calibrations.
Brian L. Joiner has been working with M. G. Kerper and T. Scuderi of the Glass Section on problems related to the use of the Weibull distribution in studies of the strength of glass.
W. J. Youden collaborated With W. B. Mann and B. Garfinkel of the Radiation Physics Bivision on problems of experimental design and uncertainty statements relating to radiation standards.
G. Weiss has collaborated with H. Andersen, I. Oppenheim, and K. Shuler (Director's Office) in the preparation of a paper on "Exact conditions for the preservation of a canonical distribution in Markovian relaxation processes".
Mary G. Natrella is teaching an in-hours course on Statistics of Measurement. For scientists and engineers, this course provides an introduction to the use of NBS Handbook 91, Experimental Statistics. Fourteen people, from NBS and other government agencies in the Washington area, are registered for the first semester.
J. M. Cameron collaborated with J. Hilsenrath (Equation of state Section) in teaching a course entitled: Introduction to Mathematical and Statistical Analysis of Laboratory Data. This course presents an outline of the use of the Bureau's general purpose computing program OMNITAB for the statistical and numerical analysis of experimental data.

Publications:
(1) Mathematics and experimental science. W. J. Youden. The Science Teacher 30, 23-26, September 1963.
(2) Measurement agreement comparisons. W. J. Youden. Proceedings National Conference of Standards Laboratories, held at NBS-Boulder, Aug. 1962. NBS Misa. Pub. 248, pp 147-151, August 1963.
(3) Edforial: Parable of the Fisherman. W. J. Youden. The Physics Teacher 1, 120-121, Sept. 1963.
(4) Families of distributions for hourly median power and instantaneous power of received radio signals. M. M. Siddiqui (NBS Boulder Laboratorles) and George Weiss. J. Res. NBS--D. (Radio Propagation), 67D, 753-762, Nov.-Dec. 1963.
(5) Statistics of irreversible termination in homogeneous anionic polymerization. Fred Gornick (NBS Macromolecules Synthesis and Structure Section), Bernard D. Coleman (Mellon Institute), and George Weiss. To appear in J. Chemical Physics.
(6) Exact conditions for the preservation of a canonical distribution in a Markovian relaxation process. H. Andersen, I. Oppenheim, K. Shuler (Director's Office), and G. Weiss. To appear in J. Math. Physics.
(7) Exact Faxen solution for centrifugation when sedimentation depends linearly on concentration. George Weiss and Irwin H. Billick (Macromolecules Synthesis and Structure Section). Submitted to a technical journal.
(8) Mathematical models for personnel promotion. E. L. Crow (Boulder Lahoratories) and George Weiss. Submitted to a technical journal.
(9) Simplified statistical quantity control. W. J. Youden. Report of the 48th National Conference on Weights and Measures, NBS Misc. Pub. No. 254, 1963, pp. 97-102.
(10) Sampling and statistical design. W. J. Youden. To appear in Proceedings, Symposium on Environmental Measurements, U. S.Public Health Service, 1963.

STATISTICAL SERVICES
Ta.sk 1103-40-11625/58-346
Origin and Sponsors: Various Agencies
Authorized 3/31/58
Manager: J. M. Cameron
Full task description: January-March 1958 issue, p. 45
Status: CONTINUED. Senior personnel from precision measurement and calibration laboratories attended a one-week seminar on Precision and Accuracy in Measurement and Calibration conducted by the Statistical Engineering Laboratory. In addition to. lecture and discussion sessions, the fourteen conferees who participated were given the opportunity to visit the NBS laboratories most closely related to their fields.
The session chairman, Churchill Elsenhart, speaking on "Calibration as a Process" and "Expression of Uncertainties," dealt with measurement of the precision and assessment of the accuracy of a measurement process. W. J. Youden, speaking on "Estimation of Precision" and "Establishing Statistical Control," discussed experimental designs for calibration, how to detect possible systematic error in comparisons, and how to run and interpret interlab studies. H. H. Ku spoke on "Propagation of Systematic and Random Error." J. M. Cameron, after presenting the general theory and techniques of "Least Squares," demonstrated applications of least squares, as well as applications of quallty control of a measurement process, in a "Case History -- Mass Calibration."

This is a record of the use of the IBM 7094 for the period of July I through December 31, 1963.

TASK NUMBER

NBS SERVICES

```
51-0002 11.3 STATISTICAL ENGINEERING
63-0003 11.3 CLASS+++
54-0030 13.1 SPECTRUM ANALYSIS++
54-0031 13.1 SPECTRUM ANALYSIS++
54-0032 13.1 SPECTRUM ANALYSIS++
54-0033 13.1 SPECTRUM ANALYSIS + +
54-0034 13.1 SPECTRUM ANALYSIS++
55-0.055 11.1 RESEARCH IN NUNEDICAL AVALYSIS
55-0056 11.1 RESEARCH IN MATHEMATICAL TOPICS
55-0065 11.2 AUTOMATIC COOING
55-0082 3.1 THERMOMETER CALIBRATION+
5E-0166 15.0 SCF-LCAO SOLUTION OF HYDRIDES+
57-0219 3.2 THERMAL PROPFPTIES +
57-0236 3.8 SCF EIGENVALUES+
57-0250 2.1 SPECTROPHOTEMETRIC DATAt
57-0252 4.4 VEUTRAL MESUN EXPERIMENTS+*
58-0256 10.6 COMPOSITE WALL STUOIES+t
59-0272 3.7 FQUATION CF STATE++
58-0314 3.7 APPKOXIMATIO:S FOR GAS MIXTURES
59-0339 6.5 VISCOFLASTICITY PROPERTIES
59-0433 2.1 COLOR UF SIGNALS++
60-0489 3.1 INVERSION OF LINE PROEE DATA+
61-0523 4.7 NFUTRON CROJS SECTIO? STUDIES++
61-0538 9.4 SPECTRAL REFLECTANCE DATA
61-0559 3.1 THERMOCOUPLE CALIBRATION+
6l-0562 7.6 CUBIC LATTICES+
6L-0995 11.2 ERRDR DETECTIGN+++
62-1000 12.5 POST OFFICE OPERATIO:IS STUDY +t
62-1003 15.4 MOLECULAP. SHECTROSCOPY+
62-1005 4.3 QADIATIO% INTERACTIO:+t+
62-1006 4.3 RADIATION LNTERACTION++
62-1007 4.3 RADIATIGN: SHIELDING++
62-1011 13.5 DISPERSION INTECRALS++
62-1013 7.0 STATISTICNL METHODS++
6?-1015 15.1 THERMAL FUNCTIONS++
```


 NOILDACOY

S 1
300
22
543
23
33
2492
189
309
66
38
127
167
261
62
39
765
375
3
250
29
1
149
4
41
47
115
16
266
75
365
822
161
6
30
1

TASK NIMBER
WSS SLHVICES

```
6?-1019 41.0 VBS PERSONNEL REPURT++
6>-10<7 11.2 NEW SYST=M
```

62-1029 9.7 D-SPACI CALCULATIOVS +
6?-1033 9.7 こRYSTAL STRUTTUEE CALIFRATIDN++
6)-1034 30.0 PHOTUIO:IZATIOA CROSS SECTION++
62-1035 7.7 CREEP NATA AVALYSIS++
6)-1036 7.7 FILM THICKVESS + +
6?-1038 7.5 STAINDARDIZATION ANALYDES++
Gフ-1052 2.0 BLACK BOX COMPUTER SERVICE+
67-1055 8.4 ELLIPSOIDAL COMPUTATIGN++
62-1064 2.4 SAGE BLOCK STUDIES++
6?-1066 1.2 STANDARD CELLS++
02-1080 9.2 BLACK EOX CDMPUTER SERVICE+
6)-1081 9.1 BLACK BOX COMPUTER SERVICE+
6)-1089 9.6 ELASTIC CONSTANTS++
6?-1102 6.8 BLACK $30 \times$ CONPUTER SERVICE+
6?-1107 6.5 3SCILLATING SPHERE++
62-1125 9.5 MATRIX COMPUTATIONS
6?-1157 11.4 PLASMA RLSEARCH++
0?-1163 14.1 TRANSISTGR AGING PEHAVIOR++
62-1170 7.7 HIGH PURITY POLYMERS++
S?-1161 12.4 NTDC++
62-1165 10.3 HEAT TRANSFER CALCULATIOVS +
S2-1187 2.4 FRUSTRATEC PEFLECTIONS + +
62-1135 7.2 LIGHT SCATTERING++
67-1176 15.2 EQUATICNS I IV XY THETA
67-1203 3.7 CYLINDRICAL SHOCK WAVE
6?-1211 12.5 TECHNICAL I IFO RETRIEVAL + +
02-1212 10.9 COLOR DIFFE?ENCES
63-1226 12.0 JTS - kWIC++
63-1231 13.0 BLACK BOY COMPUTER SERVICE+
63-1237 3.1 PYROMETRY + +
63-1241 12.5 IICASP++
63-1250 12.0 K.WIC++
63-1252 11.5 ARMY ORDNANCE++
63-1257 7.8 CALC OF CALCIUM PHOSPHATE++
63-1259 1L.3 RESEAPCH IN PROSAPILITY++
67-1263 15.5 LINEAR CLASSICAL SYSTEM++
63-1276 14.2 INSTRUMENTATION++
63-1281 2.4 CERPECTIDN-SMEARING
63-1285 11.5 RTS FUNES++

TITLE

1 M 11

6	41	149	196
119	120	109	348
0	0	14	14
37	20	541	598
14	2	20	36
1	2	24	27
6	15	72	93
32	14	0	46
1	0	8	9
0	2	6	8
0	0	16	16
0	0	15	15
1	0	128	129
21	4	19	44
10	2	16	28
12	2	22	36
15	12	13	40
0	42	17	59
102	22	5	129
28	114	34	176
0	2	5	7
12	29	0	41
35	55	105	245
0	0	40	40
0	7	0	7
2	6	13	21
4	9	4	17
1	1	0	2
1	8	7	16
37	313	198	548
1	0	11	12
0	7	0	9
0	25	22	47
9	36	30	75
0	7	0	7
0	0	1	1
42	47	64	153
24	0	78	102
52	56	14	122
9	0	0	9
2	1	1	4
		10	

TITLE

63-1287	3.7	data analyses cf gasest+
63-1259	3.8	1 CNILEO GASES++
6.3-1290	3.0	MOLECULAR ENFRGY LEVELS++
63-1291	1.1	JOB CALCularions++
63-1300	4.1	MAXIMUM SIGMAt+
63-1302	7.3	COMPUTER CALCULATIONS + +
63-1308.	2.5	BUTTRESS THRFADSt+
63-1309	4.2	LINEAR RLGRESSION ANALYSIS++
63-1315	3.3	VIRIAL CCEFFICIENTS + +
63-1318	10.3	THERMISTOR PROGRAM + +
63-1320	9.7	CRYSTAL STRUCTURE.
63-1323	3.0	PLASMA TRANSPORT++
63-1325	4.7	THERMOFLUX++
63-1326	3.2	HEAT MEASUREMENT++
63-1332	3.1	TEMPERATURE PHYSICS++
63-1333	2.2.	BLACK 3OX COMPUTER SERVICE+
63-1337	12.0	RICASIP PT1+t
63-1338	15.4	SECTIJIV COMPUTATIONS+t
63-1340	3.3	FUNCTION OF TEMPERATURE + +
63-1341	13.2	LINE WIDTH
63-1342	6.1	OMNITAB +
63-1343	3.1	OMVITAB +
63-1351	1.2	TEST DATAt+
63-1355	13.4	RUTILE BANO STRUCTURE
63-1359	13.5	OMNITAB+
63-1375	3.7	THERMAL PROPERTIFS+
63-1378	12.5	DCA +
63-1381	3.8	PCLY-FLECTRCLYTES
63-1382	2.3	SIGMA COMPUTATIONS
63-1388	3.2	COMBUSTICN CALORINETRY++
63-1389	6.4	PROVING PINGS+t
63-1390	30.0	FCKKER-PLANCK
64-1395	10.9	EMITTANCE Data
64-1396	12.0	SYNCRETIC CODE++
64-1399	03.2	PILOT PROJECT LPHC + +
64-1400	13.2	STATISTICS++
64-1401	10.7	LQNG TIME CEMENT STURY $1++$
64-1402	10.7	LONG TIME CENENT STUDY $2++$
64-1405	6.8	TEMPERATURE SFNSING++
64-1406	6.8	HYPERSOMIC CEMBUSTION++
64-1407	5.2	SPECTROANALYSIS++

63-1287 3.7 DATA ANALYSES CF GASES++
63-1290 3.0 MOLECULAR ENFRGY LEVELS++
63-1291 7.1 JOB CALCULATIONS++
63-1300 4.1 MAXINUM SIGMA++
63-1302 7.3 COMPUTER CALCULATIOVS++
63-1308 2.5 BUTTRESS THRFADS++
63-1309 4.2 LINEAR REGRESSION ANALYSIS++
63-1315 3.3 VIRIAL CCEFFICIENTS + +
63-1318 10.3 THERMISTOR PROGRAM + +
63-1320 9.7 CRYSTAL STRUCTURE
63-1323 3.0 PLASMA TRANSPORT++
63-1325 4.7 THERMOF LUX++
$63-1326$ 3.2 HEA MEASUFCMENT+

63-1333 2.2 BLACK 3OX COMPUTER SERVICE+ 63-1337 12.0 RICASIP PTl+t
63-1338 15.4 SECTIJIV COMPUTATIONS++
63-1340 3.3 FUNCTION OF TEMPERATURE++
63-1341 13.2 LINE WIDTH
63-1342 6.1 OMNTAB
63-1351 1.2 TEST DATA++
63-1355 13.4 RUTILE BAND STRUCTURE
63-1359 13.5 OMNITAB+
53-1375 3.7 THERMAL PROPERTIES+
63-1378 12.5 DCA +
63-1381 3.8 PCLY-FLECTRCLYTES
63-1382 2.3 SIGMA COMPUIATIONS
$63-1388-3.2$ COMBUSTILN CALORINETRY + +
63-1380 6.4 PRONINGINGSt
$64-1345 \quad 10.9$ EMITTANCE DATA
64-1396 12.0 SYNCRETIC CUNE++
64-1399 03.2 PILOT PROJECT LPHC++
64-1400 13.2 STATISTICS++
64-1402 10.7 LONG TINE CENENT STUDY $2++$
64-1405 6.8 TENPERATURE SFNSING++
64-1407 5.2 SPECTROANALYSIS++

1 M I N U
1 E

7

7	37	62	106
137	9	0	146
8	8	16	32
0	39	7	46
3	58	8	69
0	0	8	8
4	47	14	65
0	0	12	12
18	9	8	35
17	6	32	55
0	5	2	7
0	0	53	53
46	74	100	220
0	10	26	36
0	2	4	6
0	0	1	1
0	1	2	3
0	0	7	7
1	0	10	11
7	14	3	24
1	0	1	2
0	3	11	14
0	0	8	3
3	36	3	42
0	21	2	23
60	78	54	192
23	231	133	392
33	90	20	143
0	0	3	5
0	2	0	2
0	24	12	36
34	36	259	329
0	5	2	7
0	18	3	21
2	2	0	4
60	0	143	203
60	2	82	144
34	2	162	198
0	0	14	14
68	87	4	159
2	0	3	5
	0	3	

CURRENT APPLICATICINS OF AUTOMATIC COMPUTER

TASK NUMBE?
TITLE

```
vPS SERVICES
```

64-1416 3.3 DNiNITAB+
64-1417 13.7 CISPERSION INTECRATION++
$\begin{array}{llll}64-1418 & 2.6 & \text { STATISIICAL COMPUTATIUN++ } \\ 6 / 4-1419 & 2.6 & \text { STATISTICAL COMPUTATICNt+ }\end{array}$
$\begin{array}{llll}64-1418 & 2.6 & \text { STATISIICAL CONPIITATIONt+ } \\ 64-1419 & 2.6 & \text { STATISTICAL COMPUTATICAt+ }\end{array}$
64-1420 3.2 OMNITAB+
64-1421 12.5 HAYSTAQ++
E4-1423 3.7 COORDTNATE ANALYSIS++ 204
64-1427 8.5 ELECTRON EIFFRACTICN
64-1428 9.5 NUMERICAL INTEGRATICN++
64-1431 3.7 RESEARCH++ 29
64-1437 7.08 AMALGAM STRAIN-TIME UATA++
64-1438 8.0 MATRIX OPERATIONS
64-1440 10.9 OMNITAB+
64-1443 4.10 MAGNET TEST PROGRAM + +
64-1444 9.9 SILICA X-RAY PATTERNS++
64-1445 30.0 TEXTILE INDUSTRY STUOY + +
64-1448 15.0 BLACK BOX COMPUTER SERVICE+
64-1449 15.5 OXYUEV BANDS++
64-1450 10.7 GLASS BEAC CATA
64-1453 3.1 RES THERMCMETER CALC++
64-1454 7.4 ACTIVE ENERGIES ++
64-1455 30.35 REACTOR DESIGN+ +
64-14ち6 11.0 INFORMATIGN RETRIEVAL++
6ヶ-1459 4.0 GIANT RESIDENCE ANALYSIS + +
64-1460 13.5 FIELD EMISS $10 N++$
64-1462 4.23 POSITRON PRUDUCTION++
U4-1463 13.0 IRANSITION PROIBASILITIES
64-1464 10.7 OMNITAB +
64-1465 4.33 CROSS SECTION APPROX++
64-1468 5.3 LEAST SQUARĖS
64-1473.3.7 POLAR GASES+t
64-1474 15.0 ATOM CORRELATION++
63-3003.11.2 MACHINE TIME ONLY + ++
63-3005 11.2 FREE MACHINE TIME +++
63-3008 11.? SFCRETARYS MACHINE TIME+++
64-3011 11.2 ERROR-USER+++
TUTALS (INBS SERVICES).
13
CODE
CHECKING
64-1412 4.2 QEF++

```
```

64-1409 10.1 ELASTIC SCLIOS

```
```

64-1409 10.1 ELASTIC SCLIOS

```
9
\begin{tabular}{rrrr}
9 & 5 & 0 & 14 \\
38 & 105 & 84 & 227 \\
0 & 0 & 2 & 2 \\
0 & 0 & 1 & 1 \\
1 & 0 & 68 & 69 \\
0 & 0 & 62 & 62 \\
0 & 0 & 2 & 2 \\
15 & 61 & 0 & 76 \\
204 & 345 & 35 & 584
\end{tabular}
64-1421 12.5 HAYSTAQ++ 15
\(345 \quad 35 \quad 584\)
0
3
        \(\begin{array}{rrr}61 & 0 & 76 \\ 345 & 35 & 584 \\ 2 & 2 & 4\end{array}\)
        \(\begin{array}{rrr}61 & 0 & 76 \\ 345 & 35 & 584 \\ 2 & 2 & 4\end{array}\)
    3
29
        \(\begin{array}{rrr}61 & 0 & 76 \\ 345 & 35 & 584 \\ 2 & 2 & 4\end{array}\)
2
4
            14
                                14
                51
                2
1
        4
    7
        69
        4
        2
        2
        2
            8
64
3011
8503
16665

CURRENT APPLICATIONS DF AUTOMATIC COMPUTER

TASK NUMBER
NON-NBS SERVICES
```

58-0348 OOR MACHINE TRANSLATION OF QUSSIAN
58-0366 USIA RADIATION PATTERNS OF AVJENNAS
59-0407 HDL FGURIER COEFFICIENTS+
59-0409 FSLIC BANK BOARD REPORTS ++
59-0425 CU MOLECULAR ORBITALS +
57-0434 GC PETROLOGICAL COMPUIATIONS+
53-0441 USRED SYSTEMS ENGINEERING++
60-0457 PHA PUBLIC HOUSING PROBLEN++
60-0476 HDL GAS TUBE CHARACTERISTIC II
60-0486 U DNT MORSE WAVE FIJNCTIIIN++
60-0492 IMF MONETARY RESEARCH REPCORTS++
60-0506 WBANK WORLD BANK REPORTS++
61-0513 NASA ORBITING STUDIES
61-0532 GU VIBRATIONAL ENERGY LEVELS+
61-0540 ACC DIFFUSION CALCULATIONS +
61-0569 AGO HUMAN FACTORS RESEARCH+*+
61-0830 BPR HIGHWAY TRAFFIC STUDIES++
61-0902 BPR HIGHWAY TRAFFIC STUDIES++
61-0903 BPR HIGHWAY TRAFFIC STUDIES++
61-0945 WB FORECASTING++
62-1004 BUSHP RHOMBIC ANTENNAS +
62-1014 NIH
62-1018 NRL
62-1021 DCH
62-1023 NSF
62-1030 VA
62-1044 FCC
62-1046 BPR
62-1056 HDL
62-1071 HDL
62-1076 NAS
62-1096 HDL
62-1110 ICC
67-1113 HDL
6?-1114 HDL
62-1119 BPR
62-1121 CARIN CARNEGIE INSTITUTE STUDIES++
62-1130 COENG FALLOUT SHELTER COMPUTATIONS
62-1131 USIA CANTILEVER KETAINING WALL++
62-1140 VA VA MEDICAL++
62-1158 GC MINERALOSY STUDIES++

```

IITLE
\begin{tabular}{|c|c|c|c|}
\hline 1 M & N & U T & S ) \\
\hline 21 & 46 & 1 ' & 68 \\
\hline 0 & C & 2 & 2 \\
\hline 1 & 1 & 6 & 8 \\
\hline 0 & 13 & 300 & 313 \\
\hline 33 & 158 & 93 & 284 \\
\hline 45 & 64 & 78 & 187 \\
\hline 7 & 97 & 46 & 150 \\
\hline 8 & 49 & 229 & 286 \\
\hline 0 & 0 & 735 & 735 \\
\hline 4 & 0 & 59 & 63 \\
\hline 23 & 286 & 127 & 436 \\
\hline 44 & 8 & 102 & 154 \\
\hline 0 & 13 & 5 & 18 \\
\hline 1 & 73 & 157 & 231 \\
\hline 40 & 37 & 268 & 345 \\
\hline 125 & 129 & 60 & 314 \\
\hline 22 & 8 & 638 & 668 \\
\hline 0 & 0 & 340 & 340 \\
\hline 48 & 7 & 1315 & 1370 \\
\hline 0 & 0 & 136 & 136 \\
\hline 1 & 2 & 34 & 37 \\
\hline 257 & 448 & 1354 & 2059 \\
\hline 55 & 99 & 86 & 240 \\
\hline 84 & 342 & 2567 & 2993 \\
\hline 0 & 74 & 38 & 112 \\
\hline 763 & 1211 & 1310 & 3284 \\
\hline 18 & 16 & 49 & 83 \\
\hline 363 & 44 & 1737 & 2144 \\
\hline 10 & 18 & 225 & 253 \\
\hline 17 & 0 & 0 & 17 \\
\hline 0 & 23 & 1 & 24 \\
\hline 0 & 1 & 1 & 2 \\
\hline 33 & 38 & 355 & 426 \\
\hline 39 & 110 & 267 & 416 \\
\hline 13 & 3 & 0 & 16 \\
\hline 0 & 0 & 21 & 21 \\
\hline 127 & 14 & 11 & 152 \\
\hline 92 & 276 & 312 & 680 \\
\hline 2 & 0 & 30 & 32 \\
\hline 53 & 5 & 192 & 250 \\
\hline 1 & 46 & 258 & 305 \\
\hline
\end{tabular}

CURRENT APPLICATIONS OF AUTOMATIC COMPUTER
\begin{tabular}{|c|c|c|}
\hline TASK NUM & MBER & TITLE \\
\hline NON-NBS & \multicolumn{2}{|l|}{SERVICES} \\
\hline 62-1169 & U ONT & A TOMIC COLLISIONS++ \\
\hline 62-1171 & \(\vee 4\) & HOSPITAL PRUGRAN PLANNIVC+ \\
\hline 62-1172 & PEACE & PEACE CORPS EVALUATIUNS + + \\
\hline 62-117.9 & HDL & CATALOG INFORMATION+ \\
\hline 63-1218 & HDL & INTEGRAL EVALUATION \\
\hline 53-1221 & BPR & RHODE ISLAND++ \\
\hline 63-1232 & NORAD & MISSILES++ \\
\hline 63-1236 & COMM & DATATROL++ \\
\hline 63-1239 & PHS & PUBLIC HEALTH SERVICE++ \\
\hline 63-1243 & WSMAS & HIGHWAY STUDIES++ \\
\hline 63-1246 & PHS & SCREENING EVALUATION+ \\
\hline 63-1249 & RC & I SOTOPE TRACER ANALYSIS++ \\
\hline 63-1253 & GU & BLACK BOX COMPUTER SERVICE++ \\
\hline 63-1254 & DEFCO & HIGH FREQUENCY PROPAGATION++ \\
\hline 63-1256 & NCTA & TRANSIT STUDY++ \\
\hline 63-1264 & NRL & NUCLEONICS++ \\
\hline 63-1271 & COMM & ECONOMICS STUDY++ \\
\hline 63-1272 & \(B P R\) & ROADS STUDY++ \\
\hline 63-1280 & UARIL & VIH++ \\
\hline 63-1284 & HDL & STATISTICAL ANALYSIS++ \\
\hline 63-1293 & COMM & BCDDY CALCULATION++ \\
\hline 63-1299 & HDL & 1410 PROGRAM++ \\
\hline 63-1301 & HDL & SERGEANT SPARE PARTS++ \\
\hline 63-1305 & DSA & ARMY++ \\
\hline 63-1307 & HDL & MISCFLLANEOUS PROGRAMMING++ \\
\hline 63-1310 & HDL & SHOCK WAVE TEST++ \\
\hline 63-1313 & IDA & OMNITAB+ \\
\hline 63-1317 & AID & SORTING AND TABULATING \\
\hline 63-1324 & HEW & GENERAL KINETICS++ \\
\hline 63-1330 & BROOK & INVESTMENT++ \\
\hline 63-1336 & NAVWE & ARC++ \\
\hline 63-1345 & HDL & RGCKET TRAJECTORIES++ \\
\hline 63-1350 & HDL & ME DATA++ \\
\hline 63-1352 & OCDM & VEAR \\
\hline 63-1356 & NIH & COMPUTER CONSULTING \\
\hline 63-1357 & 8P中 & HIGHWAY STUDIFS++ \\
\hline 63-1358 & PHS & TRAINING GRANTS \\
\hline 63-1360 & FPC & FEDERAL POWER COMMISSION++ \\
\hline 63-1361 & HDL & AVTEN:NA CALCULATION++ \\
\hline 63-1362 & VA & RESEARCH++ \\
\hline 63-1365 & HCL & \(1410++\) \\
\hline
\end{tabular}

title
```

NDN-NBS SERVICES
63-1367 BPR PUELIC RUAD>++
63-1368 PHS HEART DISEAS[
63-1371 TREAS ALTERVATF TAX PLANS +t
63-1374 OCOM FEDERAL RESSARCH++
63-1386 BPR PUBLIC QUAN,+t
63-1391 HEW BIOMEDICAL STTA PROC++
63-1393 NASA COMPUTER SYSTENS
64-1394 DSA ARMY COST MUDEL (RAND)++
64-1409 AU SOUNO FIELDS
O'4-1410 IDA INTEGRAL EQUATION
64-1411 HDL AUTOCORRELATION++
64-1413 HDL TRANSFER EQUATION++
64-1414 HDL AD 70 PROGRAM++
64-1426 DCH DC HIGHWAY ++
64-1429 HDL RESEARCH NISC++
04-1430 HDL LANCE ECM STUDY+t
64-1432 BRINS BROOKINGS++
64-1433 HEW NMR SPECTRA
64-1434 AMERD AMERAD+t
64-1435 OBE CAPITOL CCEFFICIENTS++
64-1436 HDL DIPOLE MOMEINT COMP++
64-1441 BROOK STAT STUUY OF DIVIDENDS++
64-1446 HOL TIME VARYING INOUCTANCE++
64-14ว1 DEF PROGRAM 2++
64-1452 HDL BESSEL FUNCTIONS++
64-1457 NRL SOLAR RADIATION DATA RED++
64-1458 HDL ANALIGHT++
64-1461 COMM BP ANALYSIS++
64-1467 NRL THEORET NUCLFAR PHYSICS++
64-1469 DEFSU LEAST S?|ARES

```

TOTALS (NON-NBS SERVICES)
TOTALS (NBS AND NON-NES)
\begin{tabular}{|c|c|c|c|}
\hline  &  &  &  \\
\hline 1 M & 1 N & \(\cup T\) & E S ) \\
\hline 0 & 0 & 89 & 89 \\
\hline 60 & 29 & 4 & 93 \\
\hline 11 & 0 & 1015 & 1026 \\
\hline 0 & 52 & 43 & 145 \\
\hline 0 & 0 & 57 & 57 \\
\hline 11 & 0 & 90 & 101 \\
\hline 40 & 9 & 41 & 90 \\
\hline 45 & 0 & 2181 & 2226 \\
\hline 0 & 23 & 8 & 31 \\
\hline 26 & 3 & 121 & 150 \\
\hline 0 & 34 & 4 & 38 \\
\hline 0 & 0 & 8 & 8 \\
\hline 81 & 37 & 146 & 264 \\
\hline 10 & 52 & 39 & 101 \\
\hline 27 & 7 & 42 & 76 \\
\hline 13 & 0 & 15 & 28 \\
\hline 0 & 0 & 63 & 63 \\
\hline 4 & 1 & 5 & 10 \\
\hline 28 & 1 & 0 & 29 \\
\hline 0 & 0 & 19 & 19 \\
\hline 0 & 0 & 3 & 3 \\
\hline 0 & 0 & 10 & 10 \\
\hline 1 & 0 & 0 & 1 \\
\hline 0 & 0 & 502 & 502 \\
\hline 2 & 13 & 3 & 18 \\
\hline 3 & 0 & 9 & 12 \\
\hline 3 & 0 & 0 & 3 \\
\hline 0 & 0 & 2 & 2 \\
\hline 67 & 26 & 0 & 95 \\
\hline 0 & 0 & 101 & 101 \\
\hline 4067 & 5462 & 28816 & 38345 \\
\hline 7078 & 10613 & 37319 & 55010 \\
\hline
\end{tabular}
```

 + PROPLGM PROGRAMMEC IN THE COMPUTATIOV LAEDRATITRY, PRODUCTIOI
 RUINS CONTINUFD WNDEK DIRECTIJN OF SPONSOR.
 ++ PROHLEM PROGRAMMED SY THE SPOYSOR AN:D RUN UNDER HIS OIPECIIDN.
 +++ FUNCIIONS PERTAIN TU THE INTERNAL OPERATIONS OF THE CONPUTATION
LABORATORY.
++++ CLASSIFIEC TASK.
AS ASSEMBLY TIME.
CC CODE CHECKING TIME.
PR PRODUCTION TIME.

```

Note: In general, copies of papers or talks listed in this section are not available from the National Bureau of Standards. If and when a paper is to be published, it will be listed in the section of this report on Publication Activities.

\section*{Applied Mathematics Division Lectures}
\begin{tabular}{ll} 
BETCHOV, R. & \begin{tabular}{l} 
(Aerospace Corporation, Los Angeles, California) Statistical theory of turbulance. \\
December 3, 1963.
\end{tabular} \\
CLENSHAW, C. \(\quad\)\begin{tabular}{l} 
(National Physical Laboratory, Great Britain) Slowly-convergent Chebyshev series \\
expansions, October 17, 1963.
\end{tabular} \\
HOH, F.C. & \begin{tabular}{l} 
(Princeton University, Princeton, New Jersey) Electron resonance in plasma column. \\
October 7, 1963.
\end{tabular} \\
LFMKE, C.E. & \begin{tabular}{l} 
(Rensselaer Polytechnic Institute, Troy, New York) Bimatrix games and quadratic- \\
like programs. December 13, 1963.
\end{tabular}
\end{tabular}

\section*{NBS Scientific Staff Meeting}

CANNON, E.W. Highlights of Activity in the Applied Mathematics Division, October 25, 1963
1. M. Newman. Recent research on the modular group. Numerical Analysis Section.
2. J. M. Cameron. Curve fitting. Statistical Engineering Laboratory.
3. A. J. Goldman. Overflows and firehouses. Operations Research Section.

\section*{Mass and Scale Section Staff Meeting}

CAMERON, J.M. Statistics of mass callbration. October 7, 1963.

\title{
Lectures and Technical Meetings
}

\author{
Papers and Invited Talks \\ Presented by Members of the Staff \\ at Meetings of Outside Organizations
}

CAMERON, J.M. The use of general purpose coding systems for statistical calculations. IBM Scientific Computing Symposium on Statistics, Yorktown Heights, N.Y., Oct. 23, 1963.

The method of least squares. Monmouth College, West Long Branch, N.J., October 30, 1963. (Institute of Mathematical Statistics Visiting Lecturer Program.)

EIMONDS, J. The Existence of connected graphs with prescribed degrees. Presented before the Mathematical Association of America. December 14, 1963.

GHAFFARI, A. On a new approximation method for nonlinear nonautonomous differential equations. Sponsored by Mathematics Research Laboratory; Aerospace Research Laboratories; and the United States Air Force, Wright-Patterson Air Force Base, Ohio. August 1, 1963.

GOLIMAN, A.J. Optimal matchings and degree-constrained subgraphs. Presented before the Mathematical Association of America. December 14, 1963.

Contributions of mathematical concepts to management. Seminar at Industrial College of the Armed Forces, Fort McNair. September 3, 1963.

KE:ARSLEY, E.A. \& BERNSTEIN, B.

KIRSCH, R. A.

KIOSS, K.

IAGNESE, J.E. Self-adjoint differential operators of the pure wave type. Presented at the. U. S. Naval Ordnance Iaboratory. White Oak, Silver Spring, Maryland, Sept. 30, 1963.

MEYERS, P. A remark oIf the contraction theorem. Presented before the Mathematical Association of America. December 14, 1963.

NEWMAN, M. Bounds for class numbers. Presented at the American Math. Society Meeting at Pasadena, California, November 21, 1963.

OLVER, J.W.J. The LHouville-Green (or WKB) approximation. Presented at the University of Maryland, November 20, 1963.

Error bounds for asymptotic expansions. Presented at the University of Maryland, November 27, 1963.
\begin{tabular}{ll} 
PEAVY, S.T. & \begin{tabular}{l} 
Ways to communicate with electronic computers. Presented at the American \\
Association of University Women Board Room, Washington, D.C. Oct. 2 and 9,
\end{tabular} \\
& Sponsor: U. S. Civil Service Commission.
\end{tabular},

YOUDEN, W.J. Sampling and statistical design. Presented at Symposium on Environmental Measurement, U.S. Public Health Service, Cincinnati, Ohio, September 4, 1963.

Picking winners and losers. Allied Chemical Corp. Seminar, Morristown, New Jersey, October 7, 1963.

The evolution of designed experiments. IBM Scientific Computing Symposium on Statistics, Yorktown Heights, N.Y., October \(21,1963\).

Interlaboratory studies. American Society for Testing and Materials, and American Society for Quality Control, Pittsburgh, Pa., October 22, 1963.

Picking winners and losers. Virginia Teachers Association, Richmond, Va., November 1, 1963.

\section*{Publication Activities}

\section*{1. PUBLICATIONS THAT APPEARED DURING THIS PERIOD}
1.2 Manuals, Bibliographies, Indices

Experimental Statistics. Mary G. Natrella. NBS Handbook 91, 1963.
1.3 Technical Papers

Recognition of clauses in machine translation of languages. Franz L. Alt and Ida Rhodes. Proceedings of the Internationsl Conference on Machine Translation of Languages and Applied Language Analysis, Tedaington, England, September 6-8, 1961.

A study of stress relaxation with finite strain. B. Bernstein, E. A. Kearsley and L. J. Zapas. Transactions of the Society of Rheology VII. 391-410 (1963).

Error bounds in the pointwise approximation of solutions of elastic plate problems. J. H. Bramble and L. E. Payne. Journal of Research NBS, 67B, pp. 157-168, 1963.
Normal functions, the Montel's property, and interpolation in \(H^{\infty}\). Transactions of the Mathematical Society. Vol. 10, pp. 141-6, 1963. G. T. Cargo.

The segmental variation of Blaschke products. G.T. Cargo. Duke Mathematical Journal. Vol. 30, no. l, pp. 143-50, Mar. 1963.

Realistic evalualtion of the precision and accuracy of instrument calibration systems. Churchill Eisenhart. Proc. Nat'l. Conf. of Standards Laboratories, NBS Boulder Laboratories, Aug. 8-10, 1962, NBS Misc. Publication 248, pp 63-89, August 1963.
A note on contingency table involving zero frequencies and the \(2 \hat{I}\) test. H. H. Ku. Technometrics 5, 398-400, August 1963.

Ferroelectric Switching and the Sievert integral. P. H. Fang and Irene A. Stegun. Journal of Applied Physics. Vol 34, no. 2, pp. 284-6, Feb. 1963

Drag compensation and measurement with manned satellites: Feasibility study. R. M. Langer and J. P. Vinti. Journal of Research NBS, 67C, pp. 247-249, 1963.

The Pythagorean Theorem in certain symmetry classes of tensors. M. Marcus and H. Minc, Transactions of the American Mathematical Society, vol. 104, no. 3, Sept. 1962, pp. 510-515.

Copositive and completely positive quadratic forms. Marshall Hall, Jr., and M. Newman.
Proc. Camb. Phil. Soc. Vol 59, pp. 329-339, 1963.
Statistical computation of configuration and free volume of a polymer molecule with solvent interaction. J. Mazur and L. Joseph. The Journal of Chemical Physics. Vol. 38, no. 6, 1292-1300, March 15, 1963.

Normal congruence subgroups of the \(t \times t\) modular group. Morris Newman. Bulletin of the American Math. Society. Vol. 69, no. 5, pp. 719-720, Sept. 1963.

Error bounds for first approximations in turning-point problems. Frank W. J. Olver. Journal of Soc. for Ind. and Applied Math. Vol ll, no. 3, pp. 748-772, Sept. 1963.

The effect of molecular weight on viscoelastic properties of polymers as predicted by a. molecular theory. H. Oser and R.S. Marvin. Journal of Research, Section B. Vol. 67B, no. 2, pp. 87-90, Apr.-Jun, 1963.

Syntactic integration carried out mechanically. I. Rhodes. Information Storage and Retrieval. Vol. I, pp. 215-219. Pergamon Press 1963.

The method for mechanical translation used by the National Bureau of Standards group and the structure of its machine glossary. Ida Rhodes. Automation and Scientific Communication. American Documentation Institute, 26th Annual Meeting, Chicago, Ill., October 1963.

Normal congruence subgroups of the modular group. M. Newman. Americen Journal of Mathematics, vol. 85, pp. 419-427 (1963).

Convergence to Normality of powers of a normal random variable. N. C. Severo and L. J. Montzingo. Bulletin of the International Statistical Institute. Vol. 39, part 2, pp. 491-500, 1962.

Zeros of polynomials and fractional order differences of their coefficients. 0. Shisha and G. T. Cargo. Journal of Mathematical Analysis and Applications. Vol. 7, no. 2, pp. 176-182, Oct. 1963.

Families of distributions for hourly median power and instanteneous power of received radio signals. M. M. Siddiqui (NBS Boulder Laboratories) and George Weiss. Journal of Research, NBS-D, (Radio Propagation), 67D, pp. 753-762, Nov.-Dec. 1963.

The zeros of infrapolynomials with prescribed values at given points. J. L. Walsh and 0. Shisha. Proceedings of the American Mathematical Society. Vol. 14, no. 5, pp. 839-844, October 1963.
An analysis of pedestrian queueing. George Weiss. Journal of Research, NBS-B (Math. and Math. Physics), 67B, pp. 229-243, Oct.-Dec. 1963.

The spheroidal method for satellite orbits. J. P. Vinti. Proceedings of the First International Symposium on the Use of Artificial Satellites for Geodesy, North Holland Publishing Co., Amsterdam, pp. 12-16, 1963.

Zonal harmonic perturbations of an accurate reference orbit of an artificial satellite. J. P. Vinti. Journal of Research NBS, 67B, no. 4, pp. 191-222, 1963.

Mathematics and experimental science. W. J. Youden. The Science Teacher 30, pp. 23-26, September 1963.

Measurement agreement comparisons. W. J. Youden. Proseedings National Conference of Standards Laboratories, held at NBS - Boulder, Aug. 1962. NBS Misc. Pub. 248, pp. 147-151, August 1963.

Editorial: Parable of the fisherman. W. J. Youden. The Physics Teacher I, pp. 120-121, September 1963.

Simplified statistical quantity control. W. J. Youden. Report of the 48 th National Confereace on Weights and Measures, NBS Misc. Pub. no. 254, pp. 97-102, 1963.
1.4 Reviews and Notes

Book review of "Studies in management science and applied probability". Reviewed by George H. Weiss. To appear in Technometrics.

\section*{2. MANUSCRIPIS IN THE PROCESS OF PUBLICATION}

\subsection*{2.3 Technical Papers}

Lattice points in a sphere. M. Bleicher (u. of Wisc.) and M. Knopp. To appear in Acta Arithmetica.

Error bounds in the pointwise approximation of solutions of elastic plate problems. J. H. Bramble and L. E. Payne. Journal of Research, Section B, Math. and Math. Physics.

The effect of error in measurement of elastic constants on the solutions of problems in classical elasticity. J. H. Bramble and L. E. Payne. Journal of Research Section B, Math. and Math. Physics. vol. 67, pp. 157-168, Jul.-Sep. 63.

Pointwise bounds in the first biharmonic boundary value problem. J. H. Bramble and L. E. Payne. To appear in Journal of Mathematics and Physics.

Use of general purpose coding systems for statistical calculations. J. Cameron and J. Hilsenreith. IMB Scientific Symposium on Statistics.

Mathematical models for personnel promotion. E. L. Crow (Boulder.Laboratories) and George Weiss. Submitted to a technical journal.

A uniqueness theorem R. F. DeMar. To be published in Proceedings of the American Mathematical Society.

On a theorem concerning existence of interpolating functions. R. F. DeMar. Submitted to the Transactions of the American Mathematical Society.

Paths, trees; and flowers. J. Edmonds. To appear in the Canadian Journal of Mathematics.
On the surface duality of linear graphs. J. Edmonds. To appear in the Canadian Journal of Mathematics.

Miscellaneous studies in probability and statistics: distribution theory, small-sample problems, and occasional tables. Technical note. Statistical Lab.

Barely faithful algebras. Harriet Fell and John Mather. To appear in American Math. Monthly (Math. Notes).

Realization of semi-multipliers as multipliers. Harriet Fell and A. J. Goldman. To appear in American Math. Monthly (Math. Notes).

Higher approximations with the Stroboscopic method. A. Ghaffari. To appear in the Proceedings of the Second International Conference on Non-Iinear Vibrations, Warsaw, Poland, Sep. 18-21, 1962.

On Rayleigh's non-linear vibration equation. A. Ghaffari. To appear in the Proceedings of the International Symposium on Non-Tfnear Vibrations, sponsored by the Academy of Sciences of the Ukranian SSR, Kiev, USSR, September 16-18, 1961.

Hadamard matrices of order cube plus one. Karl Goldberg. To appear in Proceedings of American Mathematical Society.

Optimal matchings and degree-constrained subgraphs. A. J. Goldman. To appear in Journal of Research NBS, Section B. (Math. and Math. Physics) 68B, (1964).
"Examples relating to the simplex method". Letters to the editor. To appear in Operations Research.

Statistics of irreversible termation in homogeneous anionic polymerization. Fred Gornick (NBS Macromolecules Synthesis and Structure Section), Bernard D. Coleman (Mellon Institute), and George Weiss. To appear in Journal of Chemical Physics.

A note on some quadrature formulas for the interval \((-\infty,+\infty)\). S. Haber. To appear in Mathematics of Computation.

The inverse multiplier for Abelian group difference sets. E. C. Johnsen. To appear in the Canadian Journal of Mathematics.

Some recent number-theoretic calculations. Kenneth Kloss. To appear in Mathematics of Computation.

Representations of discrete groups. Joseph Lehner. To appear in Number Theory Sumposium of the American Math. Soc.
Weierstrass points of \(\Gamma_{0}(n)\). J. Lehner and M. Newman. To appear in Annals of Math.
Almost primes generated by a polynomial. R. Miech. To appear in Acta Arithmetica.
Jacobian elliptic functions and theta functions. L. M. Milne-Thomson. To appear in Handbook of Mathematical Functions (Chapt. 16).

Elliptic integrals. L. M. Milne-Thomson. To appear in Handbook of Mathematical Functions (Chapt. 17).

Connection between shielding and stability in a collisionless plasma. E. Minardi, F. Engelmann, and M. Feix. To appear in II Nuovo Cimento.

A complete description of the normal subgroup of genus one of the modular group. M. Newman. To appear in American Journal of Mathematics.

Bounds for class numbers. M. Newman. To appear in Proceedings of Number Theory Sumposium of The American Math. Soc.

Free subgroups and normal subgroups of the modular group. M. Newman. To appear in Illinois Journal of Mathematics.

Normal congruence subgroups of the modular group. M. Newman. To appear in American Journal of Mathematics.

Note on the partition function. M. Newman. To appear in American Mathematical Monthly.
Symplectic modulary groups. M. Newman and J. R. Smart. To appear in Acta Arithmetica.
On a problem of G. Sansone. M. Newman. To appear in Amali di Matematica (Italy).
Error analysis of Miller's recurrence algorithm. F. W. J. Olver. To appear in Mathematics of Computation.

Pointwise bounds in the first biharmonic boundary value problem. L. E. Payne and J. H. Bramble. To appear in Journal of Mathematics and Physics.

Some remarks on certain generalized Dodekind sums. H. Rademacher. Io appear in Acta Arithmetica.

Estimation for a one-parameter exponential model. Janace A. Speckman and R. G. Cornell. To appear in Journal of American Statistical Association.

On an extreme rank sum test for outliers. W. A. Thompson, Jr., and T. A. Willke. To appear in Biometrika.

The calculation of certain multiple generating functions. G. Weiss. To appear in Journal or Res. NBS, Math. and Math. Physics.

A simple derivation of the Faxén solution to the Lamm Equation. G. Weiss. To appear in Journal of Mathematical Physics.

The effects of a distribution of gap acceptance functions on pedestrian queues. G. Weiss. To appear in Journal of Res. NBS-B. Math. and Math. Physics.

A note on a generalized elliptic integral. G. Weiss. To appear in Journal of Res. NBS-B. Math. and Math. Physics.

Optimal periodic inspection programs for randomly failing equipment. G. Weiss. To appear Journal of Research, NBS, Section B, Math. and Math. Physics.

Exact conditions for the preservation of a canonical distribution in a Markovian relaxation process. G. Weiss, H. Andersen, I. Oppenheim, and K. Shuler (Director's Office). To appear in Journal of Math. Physics.

Exact Faxén solution for centrifugation when sedimentation depends linearly on concentration. G. Weiss and Irwin H. Billick (Macromolecules Synthesis and Structure Section). To appear in a technical journal.

General application of Youden's rank sum test for outliers and tables of one sided percentage points. T. A. Willke. To appear in Journal of Research, NBS, Section B (Math. and Math. Physics).

The evolution of designed experiments. W. J. Youden. Proceedings IBM Scientific Computing Symposium on Statistics.

Sampling and statistical design. W. J. Youden. To appear in Proceedings, Symposium on Envirormental Measurements, U. S. Public Health Service, 1963.

Statistics in its proper place. W. J. Youden. To appear in Journal of the Washington Academy of Sciences.

Approximating symmetric relations by equivalence relations. C. T. Zahn, Jr. Submitted to a technical journal.

\subsection*{2.4 Reviews and Notes}

Barely faithful algebras. Harriet Fell and John Mather. Submitted to a technical journal.
Realization of semi-multipliers as multipliers. Harriet Fell and A. J. Goldman. To appear in Amer. Math. Monthly (Math. Notes).

Examples relating to the simplex method. A. J. Goldman and Daniel Kleinman. To appear in Operations Research (Letters to the Editor), Vol. 12 (1964).```


[^0]:    - NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.
    - Located at Boulder, Colorado.

[^1]:    - Only unclassified material is included in this report.

