NATIONAL BUREAU OF STANDARDS REPORT

8171

A PROGRAMMED FORMALIZER FOR A FRAGMENT OF ENGLISH
by

Sylvan Cappell

To the
National Science Foundation
(Grant No. GN 107)
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUUEAU OF STANOARDS

A PROGRAMMED FORMALIZER FOR A FRAGMENT OF ENGLISH

by
Sylvan Cappell

Applied Mathematics Division
To the
National Science Foundation
(Grant No. GN 107)
important notice

NATIONAL BUREAU OF STAA for use within the Government. Br and review. For this reason, the F whole or in part, is not authorize Bureau of Standards, Washington the Report has been specifically pI

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
accounting documents intended bjected to additional evaluation sting of this Report, either in Jffice of the Director, National e Government agency for which ies for its own use.
U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

This paper describes a computer program written to translate English into symbolic logic by an algorithm developed by Walter sillars. ${ }^{1 /}$ This algorithm, termed "formalizer," has been written for use in a picture language madhine and the vocabulary it applies to is directed to that purpose. 2/ As input the program accepts a parsed sentence, one which has been analyzed gramatically. The parser used is described in a paper by Donald Cohen. 3 / The formalizer program is quite general and, like the parser, can be modified or expanded for other grammars than the one digo cussed here.

Sillars' paper describes a formalizer written for a grammar for 2 fragment of English, Grammar 12R. A corrected version of the grammar and formalizer appears in Appendix I. Gramar 12R is a subset of Grammar 12 developed by B. Kirk Rankin, III. $4 /$

The formalizer program was written in the COMIT programning language, knowledge of which is assumed in this paper. The program appears in Appendix II together with model input and output.

The parsed input describes which rules of Gramar 12 R would be used in the generation of the sentence used as input to the parser. The existence of discontinuous rules in a gramar would necessitate the rearrangement of the rule numbers in the output of the parser, in the general case. However, ther the special case of Gramnar 12R, this is unnecassary.

The formalizer program will accept any number of parser inputs which are separated by a card with the word NEW on it. The program terminates when there are no more input cards to be read in.

The output of the formalizer program is in symbolic logic. A variable is symbolized by a subscripted X. UQ is the symbol used to represent the universai quantifier, $E Q$ the existential quantifier, $U N$ the Sillars U quantifier (Russell and Whitehead's E!), CNJ the "conjunction" and * - represenes Church's T. All other symbols are the same as Sillars'.

Throughout most of the program, what sillars calls pseudo-wffs are stored in the workspace. The program uses only shelves 1-6.

The first part of the program, the part before the rule named GRAM, reads in the input cards until it reaches one with NEW on it. The progran assumes that consecutive digits form part of the same rule number and that non-digital characters separate any two rule numbers. The program assembles the rule numbers in the order that they are to be used on shelf 1 and places an *B after the last rule number. An $X_{1}(x / .1$ in COMIT) is stored on shelf 3. Whenever Sillars' algorithm calls for a new variable the contents of shelf 3 are used and the subscript value of the X in shelf 3 is increased by 1 . The program places the initial symbol, $T O P$, inclosed in brackets in the workspace. Brackets inclose all pseudo-wffs. *B is used internally to represent [and *C represents]. In the output, however, they are converted to " (" and ")" respectively.

The program then branches to the rule named EXIT. It picks up the first grammar rule number on shelf 1 and looks it up in the list GRAM。 It then branches to the formalizer instructions corresponding to the grammar rule number, erases the rule number and returns to EXIT. Those gramar rule numbers which have no corresponding formalizer instructions, the ones which Sillars calls not applicable, NA, are simply erased and control returns to EXIT.

After the last grammar rule number has been picked up the program picks up the $* B$ on shelf 1 and finds it in the list GRAM. It then branches to STOP and the symbolic logic statement correspondirg to the original sentence is given as output. The program then prepares to read in the next input sentence.

The subroutine named FUNC (the name of its first rule) locates the shortest pseudo-wff containing all occurrences of NV and places an m immediately before it and an $* N$ immediately after it. It terminates one of the subrules of OUT, which then branches back into the main body of the program.

The program can be modified quite readily. For each new rule assign a new number. Place a card under GRAM with the number on the left and a zero in the right half and branch to a point in the program where the actual formalizer rules are to be executed. Control must finally return to EXIT.

If an instruction requires finding the shortest pseudomff cono taining all occurrences of some constituent α, substitute NV for
each α, indicate a subrule of OUT to be used, and branch to FUNC. (Subrules can, of course, be added to OUT.) If so desired, every NV can then be replaced by α.

To substitute an X_{i} for each $N V$ and to then increase the subscript of the X in shelf 3 by 1 , branch to XOG. Control will automatically be returned to EXIT.

The program treats any symbol beginning with PC or SC as if it consisted only of one of those two respective symbols. The processing of a PC rule without a quantifier begins at APCl and with a quantifier at APC2 and all SC rules at ASC. Each rule number associated with a DEP or DES rule leads in the program to a series of instructions where quantifiers are generated. The rules UNAT, SQUAT, TQUAT and NQUAT substitute the appropriate quantifier and branch to QUADS where CNJ is substituted for \square. UQUAT substitutes a U for Q and PLY for \square. More quantifier rules, accomplishing similar functions, can be added to the program.

A rule can be taken out simply by removing the card with the appropriate rule number under GRAM.

In the final analysis this program is to be used in the predicate evaluator in the picture language machine. The output format in which all propositions which form part of other propositions are inclosed in parentheses should facilitate its use for this applicationo Thus a proposition of the general form $p \wedge q \cdot O x$ would be given in output as $(((p) \wedge(q)) \rho r)$ 。

In determining the truth or falsehood of a proposition which has several component propositions, the predicate evaluator must selectively choose which of the latter to begin with. Thus in evaluating propositions of the form pvqer it will usually be advisable to begin by analyzing the truth-value of r. If, however, r is in some sense very complex, it might be preferable to begin with p.

APPENDIX I. The Grammar and Formalizer

Here is the revised grammar for which the program in Appendix II has been written. For the notational conventions, see Sillars. ${ }^{\text {// }}$

TOP TOP	$=$ $=$	$\left.\begin{array}{l} \mathrm{CL} 1 \\ \mathrm{CL} 3 \end{array}\right)$	
TOP	$=$	CL5	
TOP	=	CL7	
TOP	$=$	CL11	SR
TOP	=	CLI3	
TOP	=	CL15	
TOP	$=$	CL17	
AAP1	$=$	WPN + COM1	$\mathrm{AAP} 1=\mathrm{WNP}+\mathrm{COML}$
AAPI	=	COM1	SR
AAP1	$=$	WOP + J	AAPI $=\mathrm{WOP}+\mathrm{J}$
AAS	=	$W N+C O M 1$	AAS $=W N+C O M 1$
AAS	$=$	COM1	SR
AAS	$=$	WO +J	AAS $=W O+J$
APN	$=$	$\mathrm{ET}+\mathrm{PNBET}$	SR (2)
AR	$=$	are	NA
ARNTC	$=$	aren't	


```
DES16 = each
DES16 = every
DES16 = no
    DES2 = the
    DES2 = a
    DES2 = one
    DES7 = a
    DES7 = one
    DES7 = no
    DUM1 = R1 + NPH DUM1 (a,NPH)= R1(a, NPH1, NPH2)
    DUM2 = SNASN
    DUM2 = PNAPN }
    DUM2 = PNBET
    ES = ET + SNP2 SR(2)
    ET = and NA
    F1=}\begin{array}{l}{\textrm{T}2+\textrm{Gl}}\\{\textrm{F}2=}
    GI = right }\quadMT+G1= Mort;G1=R
    GI = left MT +G1= Molf;Gl=Lf
    GI = top }\quad\textrm{MT}+\textrm{Gl}=\textrm{Mtop; Gl = TP
    G1 = bottom }\quad\textrm{ML}+\textrm{Gl}=\mathrm{ Mbot; G1 = Bot
    G2 = center }\quadMT+G2= Mcen; G2 = Cen
    G2 = middle MT +G2= Mmid;G2=Mid
    I = is NA
```

$$
\begin{aligned}
& \left.\begin{array}{ll}
I A & = \\
I A & = \\
I A
\end{array}\right\} \\
& I A=J 1+J 2 \quad \operatorname{IA}(a)=J 1(a) \& J 2(a) \\
& \text { ISNTC }=\text { isn't NA } \\
& J=\mathrm{J} 1 \\
& \text { SR } \\
& 3=J 2\} \\
& \mathrm{J} 1 \text { = big } \quad \mathrm{JI}=\mathrm{Bg} \\
& \mathrm{Jl}=\text { Iittle } \mathrm{J} 1=\mathrm{Lt} \\
& J 1=\text { large } \quad J 1=\mathrm{Lg} \\
& \mathrm{~J} 1=\mathrm{small} \mathrm{~J}=\mathrm{sm} \\
& \mathrm{~J} 2=\text { black } \mathrm{J} 2=\mathrm{Bk} \\
& \mathrm{~J} 2=\mathrm{white} \quad \mathrm{~J} 2=\mathrm{Wh} \\
& \text { JER = bigger JER }=\text { Bgr } \\
& \text { JER = littler JER = Ltr } \\
& \text { JER = larger JER = Lgr } \\
& \mathrm{JER}=\text { smaller } \mathrm{JER}=\mathrm{Smr} \\
& \left.\begin{array}{ll}
\mathrm{LL} & =\mathrm{Z1} \\
\mathrm{LL} & =\mathrm{ZL} \\
\mathrm{LP} & =\mathrm{LL}
\end{array}\right\} \\
& \text { MO }=\text { more NA } \\
& \text { MT }=\text { MO : TN NA } \\
& \mathrm{N}=\text { triangle } \mathrm{N}=\mathrm{Tr} \\
& \mathrm{~N}=\text { square } \quad \mathbb{N}=S q \\
& \mathrm{~N}=\operatorname{circle} \quad \mathrm{N}=\text { Cir }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{NPH}=\mathrm{SNP} 2=\mathrm{SR} \\
& \mathrm{NPH}=\text { PNP2 } \quad \mathrm{SR} \\
& \text { NPLUR }=\text { triangles } \text { NPLUR }=T r \\
& \text { NPLUR }=\text { squares } \quad \text { NPLUR }=S q \\
& \text { NPLUR }=\text { circles } \quad \text { NPLUR }=\text { Cir } \\
& \text { NT }=\text { not } N T=7 \\
& P \quad=\text { in } \quad P=\text { In } \\
& P=\text { near } \quad P=\mathrm{Nr} \\
& \mathrm{P}=\text { below } \quad \mathrm{P}=\mathrm{Bel} \\
& P=\text { above } P=A b \\
& \mathrm{P}=\text { touching } \mathrm{P}=\mathrm{Tch} \\
& \left.\begin{array}{ll}
\mathrm{P} 1 & =\text { 七o } \\
\mathrm{P} 1 & =\text { on } \\
\mathrm{Pl}
\end{array}\right\} \\
& \begin{array}{ll}
P 1 & =a t \\
P 2 & =
\end{array} \quad \text { in } \quad \text { NA } \\
& \text { P3 = between } P 3=\text { Bet } \\
& \mathrm{P} 4=\text { of } \mathrm{NA} \\
& \text { PA1 }=\text { IA: AAP1 PAI }(a)=I A(a) \& A A P I(a) \\
& \left.\begin{array}{l}
\text { PAI }=0: A A P 1 \\
P A 1=I A
\end{array}\right\} S R \\
& \mathrm{PA} 2=\mathrm{IA}: \mathrm{AAP1} \operatorname{PA} 2(a)=\mathrm{IA}(\mathrm{a}) \& A \mathrm{AP} 1(\mathrm{a}) \\
& \text { PA2 }=I A \\
& \text { SR }
\end{aligned}
$$


```
SC1 = DES1:N
A(SCi)=(QNV) [N(NV)[A(NV)]
SNASN = SNP2 + ES A(SNASN) = A(SNP2,ES)
SNP1 = SC1 + SA A(SNP1) = SA(SC1) & A(SC1)
SNP1 SC3 SR
SNP13 = SC413 SR
SNP13 = SC13 + SA A SNP13) = SA(SC13) & A(SC13)
SNPI6 = SC416 SR
SNP16 = SC16 + SA A(SNP16) = SA(SC16) & A(SC16)
SNP2 = SC4 SR
    SNP7 = SC37 SR
    SNPT = SC7 + SA A(SNP7) = SA(SC7)& A(SC7)
```

SUB1 SUB10	$=$ $=$	$\begin{aligned} & \text { PNP2A } \\ & \text { PNP2 } \end{aligned}$	
SUB11	=	PNP12	SR
SUB13	$=$	SNP13	
SUB16	=	SNP16	
SUB $1 \times$	=	Subiy	
SUB1Y	$=$	THERE : SUB1	SR (2)
SUB3	$=$	SNP1	SR
SUB4X	=	SUB4Y	
SUB4Y	$=$	THERE : SUB3	SR (2)
SUB6	$=$	PNP6S	SR
SUB6X	=	SUB6Y	SR
SUB6Y	=	THERE : SUB6	SR (2)
SUB7	=	SNP7	SR
SUB7W	$=$	SUB7Y	SR
SUB7Y	$=$	THERE : SUB7	SR (2)
T2	=	the	
TH	=	that	NA
TH	$=$	which	
THERE	$=$	there	
THSAM		$\mathrm{T} 2+\mathrm{SAME}$ than	NA

```
VPO = ARNTC : COML VPO = TCOM1
VP1 = AR : COM1 SR(2)
VPII = ARNTC + COM2 VP11 = T COM2
VP13 = AR + COM2 SR(2)
VP15 = ISNTC + COM 3 VP15 = T COM 3
VPI7 = I + COM3 SR(2)
VP3 = ISNTC : COM1 VP3 = I COM3
VR4 = I : COML SR(2)
    WA = TH + AR NA
    WI = TH + I NA
    WN = WI + NT WN = NT
    WN = WI WN = Q
    WN = NT WN = NT
WNP = WA + NT WNP = NT
WNP
WNS = NT WNP = NT
    WO = WI + NT WO =NT
    WO = WI WO = D
WOP = WA + NT WOP = NT
WOP = WA WOP =\varnothing
    Z1 = P1+F1}
    Z2 = P2 +F2)
    SR (2)
```

APPENDIX II. The Formalizer Program

The COMIT program which realizes the algorithm is listed below. To illustrate the output format of the program, we present the formalization of the sentence:

There aren't any triangles on the right.
The parse of this sentence is:
$2(39(351(352(381(-\operatorname{THERE}))(339(221(195(160(-$ TRIANGLES $))))))$
(239 (394 (35 (- AREN*T) $)(65(148(146(427(172(-O N))(119(378(-T H E))$
(121(®RIGHT)))))))))
(Where the numbers are names of the rules of $12 R$ which were used in generating it.) The output for this sentence from the formalizer program is:

$$
\begin{aligned}
& *+*(+*(+\mathrm{EQ}+\mathrm{X} / .1+*)+*(+*(+\mathrm{TR}+*(+\mathrm{X} / \\
& .1+*)+*+\mathrm{CNJ}+*(+\mathrm{RT}+*(+\mathrm{X} / .1+*)+*)+*) \\
& +*)+
\end{aligned}
$$

APPERDIX II

FORMALIZER

* 1*4*6	$=0$	R146
*1*4*7	$=0$	R147
*1*4*8	$=0$	R148
* 1 * 5 * ?	$=0$	R152
* 1 \# 5 \% 3	$=0$	R153
* $1 * 5 * 4$	$=0$	R154
*1*5*6	$=0$	R 156
*1*5*8	$=0$	R 158
*1*5*9	$=0$	R159
* $1 * 6 * 0$	$=0$	R160
* $1 * 6 * 1$	$=0$	R161
*1*6*2	$=0$	R162
* $1 * 6 * 4$	$=0$	R164
*1*6*6	$=0$	R166
*1*6*7	$=0$	R167
*1*6*8	=0	R168
*1*6*9	$=0$	R169
* $2 * 7 * 0$	$=0$	R170
*1*7*5	$=0$	R175
*1*7* 7	$=0$	R177
*1*7*8	$=0$	R178
* 1*7*9	$=0$	R179
* $1 * 8 * 0$	$=0$	R180
*1*8*1	$=0$	R181
*1*8*2	$=0$	APC2
*1*8*3	$=0$	$A P C 2$
* $1 * 8 * 4$	$=0$	APC1
* $1 * 8 * 6$	$=0$	$A P C 2$
* 1*8*7	$=0$	$A P C 1$
* 1*9*0	$=0$	APC2
* $1 * 9 * 1$	$=0$	$A P C 1$
*1*9*2	$=0$	APC2
*1*9*4	$=0$	$A P C$?
*1*9*5	$=0$	APCl
*2*0*0	$=0$	APC2
*2*0*1	$=0$	APCl
* $2 * 0 * 2$	$=0$	R202
*2*0*5	$=0$	APC1
*2*0*6	$=0$	$A P C 2$
* $2 * 0 * 7$	$=0$	R207
* $2 * 0 * 8$	$=0$	R208
*2*0*9	$=0$	R209
* $2 * 1 * 0$	$=0$	R210
*2*1*9	$=0$	R211
*2*1*2	$=0$	R212
*2*1*3	$=0$	R213
* 2 * 1*4	$=0$	R214
*2*1*5	$=0$	R215
*2*1*6	$=0$	R216
*2*2*0	$=0$	R220
*2*2*1	$=0$	R221
*2*2*2	$=0$	R222
*2*3*5	$=0$	R235
*2*3*6	$=0$	R236
*2*3*7	$=0$	R237

* $2 * 3 * 8$	$=0$	R238
*2*3*9	$=0$	R239
*2*4*0	$=0$	R240
*2*4*2	$=0$	R242
*2*4*4	$=0$	R244
*2*4*6	$=0$	R246
*2*4*8	$=0$	R248
* $2 * 5 * 2$	$=0$	R252
*2*5*7	$=0$	R257
*2*9*4	$=0$	R294
*2*9*5	$=0$	R295
* 2*9*7	$=0$	R297
*2*9*8	$=0$	R298
*2*9*9	$=0$	R299
* $3 * 0 * 0$	$=0$	R300
*3*0*1	$=0$	R301
* $3 * 0 * 3$	$=0$	R303
*3*0*4	= 0	R304
* $3 * 0 * 5$	$=0$	R305
*3*0*6	$=0$	R306
*3*0*7	$=0$	R307
*3*0*9	$=0$	R309
* $3 * 1 * 0$	$=0$	R310
* $3 * 1 * 1$	= 0	R311
* $3 * 2 * 4$	$=0$	ASC
*3*1*5	$=0$	ASC
*3*1*6	$=0$	ASC
* $3 * 1 * 7$	$=0$	ASC
* $3 * 1 * 8$	$=0$	ASC
* $3 * 1 * 9$	$=0$	ASC
$* 3 * 2 * 0$	$=0$	ASC
* $3 * 2 * 1$	$=0$	ASC
* $3 * 2 * 2$	$=0$	ASC
$* 3 * 2 * 3$	$=0$	ASC
* $3 * 2 * 4$	$=0$	R 32.4
* $3 * 2 * 5$	$=0$	R. 325
* $3 * 2 * 6$	$=0$	R326
*3*2*7	$=0$	R327
* 3 * 2 * 8	$=0$	R328
* $3 * 2 * 9$	=0	R329
* $3 * 3 * 0$	$=0$	R330
* $3 * 3 * 2$	$=0$	R332
* $3 * 3 * 3$	$=0$	R333
* $3 * 3 * 4$	$=0$	R334
* $3 * 3 * 9$	$=0$	R339
* 2 * $4 *$?	$=0$	R342
* $3 * 4 * 4$	$=0$	R344
*3*4*7	$=0$	R347
*3*5*0	$=0$	R350
*3*5*1	$=0$	R351
*3*5*2	- 0	R352
*3*5*6	$=0$	R356
* $3 * 6 * 3$	$=0$	R363
*3*6*4	$=0$	R364
* $3 * 6 * 9$	$=0$	R369

$* 3 * 7 * 1=0$	R371
$* 3 * 7 * 7=0$	R377
*3*7*4 $4=0$	R 374
$* 3 * 7 * 5$	R 375
$* 3 * 7 * 7=0$	R 377
$* 3 * 8 * 6=0$	R386
* $3 * 8 * 7=0$	R387
* $3 * 8 * 8=0$	R388
$* 3 * 8 * 9=0$	R389
$* 3 * 9 * 0=0$	R390
*3*9*1 $=0$	R391
*3*9*?	R392
$* 3 * 9 * 2=0$	R 393
*3*9*4 $=0$	R 394
$* 3 * 9 * 5=0$	R395
*3*9*7 $=0$	R 397
*3*9*9 =0	R399
$\cdots 4 * 0 * 1=0$	R401
$* 4 * 0 * 3=0$	R403
$* 4 * 0 * 6=0$	R406
* $4 * 0 * 7=0$	R407
$* 4 * 1 * 7=0$	WNNT
$* 4 * 1 * 8=0$	WNO
*4*1*9 =0	WNNT
*4*2*0 $=0$	WNPNT
* $4 *$? $1 .=0$	WNPO
* $4 * 2 * ?$	WNPNT
* $4 * 2 * 3=0$	WONT
*4*2*4 $=0$	WOC
$* 4 * 2 * 5=0$	WOPN
*4*2*6 $=0$	WOPO
*4*2*7 $=0$	R427
$* 4 * 2 * 8=0$	R428
$* B \quad$, $\quad=0$	STOP
\$1 $=0$	EXIT
TOP $=C L * 1$	EXIT
$T O P=C L * 3$	EXIT
$T O P=C L * 5$	EXIT
$T O P=C L * 7$	FXIT
$T O P=C L * 1 * 1$	EXIT
$T O P=C L * 1 * 3$	EXIT
$T O P=C L * 1 * 5$	EXIT
$T O P=C L * 1 * 7$	EXIT
AAP* $1=W N+C O M * 1$	EXIT
$A A P * 1=C O M * 1$	EXIT
$A A P * 1=W O P+J$	EXIT
$A A S=W N+C O M * 1$	EXIT
AAS $=$ COM* 1	EXIT
$A A S=W O+J$	EXIT
$A P N=P N B E T$	EXIT
$C L * 1=P R E * 0+*(+S U B * 1 X+*)$	EXIT
CL*3=PRE $2+1+*(+5$ UB* $6 x+*)$	EXIT
CL* $5=$ PRE* $3+*(+5$ UB* $4 x+*)$	EXIT
CL*7 $=$ PRE* $4+*(+$ SUB* $7 \mathrm{~W}+*)$	EXIT
CL* $1 * 1=$ PRE* $1 * 1+*\left(+\right.$ SUB* $\left.^{*}{ }^{*} 0+*\right)$	EXIT

R43	CL＊ $1 * 3=P R E * 1 * 3+*(+S U B * 1 * 1+*)$	EXIT	
R45	CL＊ $\mathrm{C}^{*} * 5=$ PRE＊ $1 * 5+*(+\mathrm{SUR}$＊ $1 * 3+*)$	EXIT	
R47	$C L *] * 7=P R F * 1 * 7+*(+$ SUB $* 1 * 6+*)$	EXIT	
R63	$C O L=S M C$	FXIT	
R64	$C O L=S M 2$	FXIT	
R65	$C \cap M \%]=L P$	FXIT	
R66	$C \cap M \%]=R F$	FXIT	
Rちフ	COM＊）$=$（ $\cap \mathrm{M} *$ ］	FXIT	
R68	COM＊）$=P N P * ?$	FXIT	
R69	$C O N * 3=C \cap M * 1$	FXIT	
R 70	$C O M * 3=S N P * 2$	EXIT	
UNAT	$Q=U N$	QUACS	
SQUAT	$Q=S$	\cdots	
QUADS	$Q \\| \overline{A D}=C N J$	EXIT	
TQUAT	$Q=T$ ．	QUADS	
FQUAT	$Q=F Q$	Ollans	
IORUAT	$\bigcirc=110$	＊	
＊	$Q^{\prime} J A \cap=P L Y$	FXIT	
NOUIAT	$* 1+Q=\cdots-+\cdots(+F Q$	OUADC	
R111	DUN＊1＋＊（＋6＋9 $+\mathrm{NPH}+*)=$ R＊ $1+7+3+4+5+4+5+6$	FXIT	
R112．	DUM＊2＝SNA SN	EXIT	
R113	DUM＊2＝PNAPN	EXIT	
R 114	DUM＊2 $=$ PNBET	EXIT	
R117	$E S=S N P * 2$	EXIT	
R119	$F * 1=G * 1$	EXIT	
R120	$F * 2=G * ?$	FXIT	
R121	$\left.M T+G^{*}\right]=M O R T$	$E \times I T$	
＊	$G * 1=R T$	FXIT	
R17？	$M T+G * 1=M O L F$	FXIT	
\cdots	$G * 1=L F$	FXIT	
R122	$M T+G * 1=M T \cap P$	FXIT	
＊	$G *]=T P$	FXIT	
［17 4	$M T+G *]=M R \cap T$	FXIT	
\cdots	$G * 1=B \cap T$	EXIT	
R125	in $T+G * 2=M C F N$	EXIT	
\cdots	$G * 2=C F N$	EXIT	
R126	$M T+G * 2=M M I D$	EXIT	
产	$G \div 2=M 1 D$	EXIT	
R130	$I A=J * 1$	EXIT	
R13］	$I A=J * 2$	EXIT	
R13？	$\cdots P+I A+*(+5+*)+* C=1+1+J * 1+2+4+5+6+C N J+1+J * 2+3+4+5+6+6$	EXIT	
R134	$J=J * 1$	FXIT	
R 135	$J=J * 2$	FXIT	
P136	$J * 1=B G$	FXIT	
R137	$J * 1=L T$	FXIT	
R138	$J * 1=L G$	EXIT	
R139	$J * 1=S M$	EXIT	
R140	$J * 2=B K$	EXIT	
R141	$J * 2=W H$	EXIT	
R142	$J E R=B G R$	EXIT	
R143	$J E R=L T R$	EXIT	
R144	$J F R=L G R$	EXIT	
R145	$J F R=S M R$	EXIT	
P146	$L L=7 * 1$	FXIT	
R 147	$L L=7 * ?$	FXIT	

R148	$L P=L L$	EXII
R157	$N=T R$	EXIT
R153	$N=S Q$	EXIT
R154	$N=C I R$	EXIT
R156	NO = NPLUR	EXIT
R158	NPH $=$ SNP*2	EXIT
R159	$N P H=P N P * 2$	EXIT
R160	NPLUR=TR	EXIT
Rlfl	$N P L \cup R=S Q$	EXIT
R16?	NPLUR=CIR	FXIT
P164	$* R+N T=*-+1$	EXIT
*	NT $=$ *-	EXIT
P166	$P=I N$	EXIT
R167	$\mathrm{P}=\mathrm{NR}$	EXIT
R168	$P=B E L$	EXIT
R169	$P=A B$	EXIT
R170	$P=T C H$	EXIT
R175	$P * 3=B E T$	EXIT
R177	$P A^{*} 1+*(+\Phi+*)=* B+I A+*(+3+*)+* C+C N J+* B+A A P * 1+2+3+4+* C$	EXIT
R178	PA* $1=A A P * 1$	EXIT
R179	$P A * 1=I A$	EXIT
R18?	$P A * \sim+*(+5+*)=* B+I A+*(+3+*)+* C+C N J+* B+A A P *]+2+2+4+* C$	EXIT
R18]	$P A * 2=I A$	EXIT
APCl	$P C=N V$	$A P C 1$
*	\$ //RACH A,OUT A	FUNC
$A P C$?	PC=NV	$A P C 2$
*	\$ //BACH B,OUT A	FUNC
BACH		BACHA
		BACHB
BACHA	$Q+$ + QUAD $=E Q+2+C N J$	BACHB
RACHB	$N V=1 / * \times 3$	CBACH
EQUA	$x+*(+x+*)=2+1+*=+3+4$	EQUA
*	\$ $1 / * \times 3$	*
*	¢ $1=1 /$ I 1 l $1 / * \times 3$	EXIT
CRACH	\$1 $=1+1 \quad 1 / * \times 3$	*
*	$\mathrm{NV}=31 / * \mathrm{NB}^{\text {l }}$	BACHR
R202	$P C * 4 S * 6=P C$	EXIT
R207	$P C * 6 S=P C$	EXIT
R208	$\$ 1+*(+$ PNAPN $+*)=1+2+$ PNBET,++ APN +4	EXIT
R209	PNBET = NV	R209
*	\$ / IOUT B	FUNC
$X O B$	NV=PC	XOB
\cdots	\$	EXIT
R210	PNBET $=$ PC	EXIT
R211	$P N P * 1 * 2=N V$	R211
*	\$ / IOUT C	FIINC
$x \bigcirc 0$	$N V=V$	XOC
*	\$	EXIT
R217	PNP* ${ }^{\text {* }}$ 2 $=P \mathrm{P}$	EXIT
R213	PNP*1*2=NV	R213
*	\$ /1OUT B	FUNC
R214	$P N P * 2=N V$	R214
*	\$ / IOUT B	FUNC
R215	$P N P * 2=P C$	EXIT
R216	$P N P * 2=N V$	R216

$\frac{R 344}{R 347}$	$\begin{aligned} & \text { SUB* } 1 * 1=P N P * 1 * 2 \\ & S U B * 1 * 3=S N P * 1 * 3 \end{aligned}$	-	$\begin{aligned} & \text { EXIT } \\ & E X I T \end{aligned}$	
R350	SUB* $1 * 6=S N P * 1 * 6$		EXIT	
R351	SUR*] $X=$ SUR* SU $^{\text {S }}$		EXIT	
R25?	SUR* $1 Y=S!1 R * 1$		FXIT	
R356	SUR* $3=$ SNP* 1		FXIT	
R363	SUR*4X S SIJR*4Y		FXIT	
R364	$S \\| R * 4 Y=S U R * 2$		FXIT	
R360	SUR*6=PNP*6S		FXIT	
R371	SUR* SUX $^{\text {S S SUR }}$ S $6 Y$		FXIT	
R37?	SUR*6Y $=$ SUR*6		EXIT	
R 374	$S \cup R * 7=S N P * 7$		EXIT	
R375	SUB*7W=SUR*7Y		EXIT	
R377	SUR* $\mathrm{SY}=5 \cup 1 \mathrm{~B} * 7$		EXIT	
R386	$V=N V$		R386	
\cdots	\$	/1011T F	FIJNC	
XOF	$N V=V * 1$		XOF	
\cdots	क		FXIT	
R2R7	$V * 1=V * ?$		FXIT	
P388	$V * 1=V * 2$		FXIT	
R380	$V * ?=V * 4$		FXIT	
R390	$V * 3=N V$		R 390	
*	\$	$110 \cup T$ G	FUNC	
$\times 06$	NV =	$1 / * \times 3$	ZOG	
$\%$	\$ $=$	$11 * \times 3$	*	
\cdots	\$1 $=1 / \cdot 11$	$1 / * \times 3$	FXIT	
706	$\$=1+1$	$11 * \times 3$	\cdots	
\%	NV $=$	$\left.1 / \div N^{2}\right]$	$\times 0 G$	
R391	$V * 4=N V$		R 391	
*	\$	$1 / \bigcirc \bigcirc$	F!INC	
R39?	$\mathrm{V} \times 4=\mathrm{NV}$		R 392	
炎	\$	/10UT	FIJNC	
P3.92	$V * 5=V *$?		EXIT	
P394	* $\mathrm{R}+\mathrm{VP} \times 0=*-+1+$ COM*		EXIT	
*	$V P * 0=*-+$ COM* 1		EXIT	
R395	$V P * I=C O M * 1$		EXIT	
R397	$* B+V P * 1 * 1=*-+1+C O M * 2$		EXIT	
*			EXIT	
R399	VP* $1 * 3=$ COM*?		EXIT	
R401	$* \mathrm{~B}+\mathrm{VP} * 1 * 5=*-1+$ COM* 1		EXIT	
*	$V P * 1 * 5=*-+C O M * 3$		FXIT	
R402	$V P * ? * 7=C O M * 3$		$F \times T T$	
R406	$* 口+V P * 2=*-+1+C O M * 2$		FXIT	
*	$V P * 3=*-+C O M * 3$		FXIT	
R407	$V P * 4=C O M *]$		EXIT	
WNNT	$W N=N T$		EXIT	
WNO	$W N=0$		EXIT	
WNPNT	$W N P=N T$		EXIT	
WNPO	$W N P=0$		EXIT	
WONT	$W O=N T$		EXIT	
WOO	$W \mathrm{O}=0$		EXIT	
WODN	$W \cap P=N T$		EXIT	
WOPO	$W O P=0$		EXIT	
R4?7	7*1=F*1		EXIT	
R428	$7 * ?=F * ?$		EXIT	

$\overline{E N D}{ }^{-}$

REFERENCES

1. Sillars, Walter. An Algorithm for Representing English Sentences in a Formal Language. NBS Report 7884.
2. Cohen, Donald. Picture Processing in a Picture Language Machine. NBS Report 7885.
3. Cohen, Donald. A Recognition Algorithm for a Grammar Model. NBS Report 7883.
4. Rankin, B. K., III. A Programmable Grammar for a Fragment of English for Use in an Information Retrieval System. NBS Report 7352.

