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CHARACTERISTICS OF FOUR LIST-PROCESSING

LANGUAGES

by

R. W. Hsu

I. INTRODUCTION

This is a compilation of some characteristics of four list-processing
languages, FLPL, IPL-V, LISP, and COMIT

.

Generalizations concerning the suitability of particular languages
to particular classes of programming situations tend to he subjective
and dependent on the accidents of one’s experience. Similarly unreli-
able are Impressions as to the ease and difficulty of learning or using
different languages. These Judgments will be avoided as much as possible;
instead, this report lists in parallel for the four languages certain of
their properties that would be of particular interest to a user in choosing
a language for a given Job . Among the considerations excluded by this
limitation of scope are theoretical aspects of the languages, such as

completeness and minimality, and the methods of implementation, except
insofar as they affect the user.

To prevent this paper from becoming a programming manual for
four languages, not every feature referred to is explained in detail.
Some familiarity with the languages is assumed, and key terms are

given so that further details on them may be looked up in the res-
pective manuals. Terms technical to a particular language are always
underlined.

The author would be grateful for additions and comments,
especially concerning any Inaccurate statements made in this report.

The author’s experience with these languages has been gained
during the course of the last three years as an employee of the
National Bureau of Standards, as an employee of the Computer Center
at the University of California at Berkeley, and as an IBM-WDPC
research assistant at the University of California.

FLPL (Fortran List Processing Language)

This is a set of about 50 list-processing subroutines in

machine language, for use with Fortran. Thus the user has all of
the power and facilities of Fortran, in addition to list-processing
capability. The (binary) deck of subroutines is available for 704
and 709-90. The functions for 709-90 FLPL are slightly different
from those of 704 FLPL. In this paper we will be talking about



704 FLPL, since this is the version described in the published descrip-
tions of the language. However^ since FLPL is only a set of list-
processing functions, and not a complete language with control state-
ments, input-output, etc., the actual language we will be considering
will be Fortran augmented with the FLPL functions .

IPL-V (information Processing Language, 5th, in a Series of IPL's).

This language is very much like a machine language, with a reper-
tory of some 150 list-processing, arithmetic, input-output, and house-
keeping instructions. It has extensive tracing facilities and subroutining
(including recursion) facilities. The current implementations of the lan-
guage are almost all interpretive, and they are available on some dozen
different machines. IPL-V is probably the most widely used of the four
list-processing languages considered here. Many new features, mainly in
the form of new instructions added to the repertory, have been adjoined
to individual implementations of the language since the original language
was defined in the programmer's manual. The language we consider here is

that of the manual, but mention will be made of some of the additional
features, and some of the restrictions on the original system, that have
come to the author’s attention.

LISP (List Processor)

This language offers a compact functional notation, and can express
manipulations on list structures represented in a certain symbolic fashion.
Although the basic vocabulary of the language is very small, very powerful
functions can quickly—say, in three or even two levels—be built up from
them using the very powerful means of combining expressions available in
the language. The language is basically interpretive, and the Interpreter
can itself be exhibited as a LISP function. Compilers have, however, also
been built for compiling LISP functions into machine language routines.'

A 704 version of LISP is available, although it is said that it was never
completely debugged. A 709-90 version, LISP 1.5, which includes several
features not described in the LISP I manual was released recently, too
late for detailed consideration in this report. Another system, MBLISP,
is available. It also contains some features not described in the LISP I

manual, as well as some restrictions. In particular, it does not have the

compiler option and the program feature. A LISP system is also being im-

plemented for the IBM 7070. The language we will be concerned with here
will be that of the LISP I manual, and mention will be made, where relevant,
of new features and restrictions that have come to our attention.

CQMIT

This is, strictly speaking, not a general list-processing language,
but a string-processing language. The method of addressing and manipula-
ting data is perhaps the most novel and powerful feature of this language.
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It was originally designed for natural language data processing and research,
but has been found to be useful for a much wider variety of problems. The
709-90 version is available through SHARE; the 704 version was not completely
finished. It is not available on any other machine. In the present imple-
mentation, the COMIT source program is first compiled into an intermediate
language and packed into a table, and this table is then interpret ively
executed. The system has very extensive debugging aids.

II. THE SHAPE OF DATA

Symbols Inherent in the Language and Symbols Available for Use as Program
Names and Data

FLPL

The fixed vocabulary of Fortran is rather small. The FLPL functions
introduce about fifty new names. These names are meant to be mnemonic but
certain pairs unfortunately lack visual distinctiveness, and are easily con-

fused, e.g. XBSPSHF, XBTSCHF, XSTORTF, XSTORDF. In naming subroutines, one
must of course avoid using any of the names of these functions. The rules
for naming functions and variables which have fixed point values must also
be adhered to, since the symbols that FLPL manipulates are treated as Fortran
integers. Otherwise the user is free to choose his own names for use in pro-
grams. Arbitrary data may be handled, since due to context, there is no
chance of collision with the fixed vocabulary of the language.

IPL

The IPL symbols in the J, H, and ¥ regions
,

l.e., IPL symbols begin-
ning with these letters, have special meanings within the system, that is,

constitute the fixed vocabulary of the language, and may not be used to
represent data or to name arbitrary routines. However, the programmer may
invent and use any other symbols which adhere to the IPL symbol format.
Data other than IPL symbols can be handled; but only in the restricted
" data term” format

.

LISP

The basic vocabulary of LISP consists of some half dozen words or
" atomic symbols "

. The fixed vocabulary of the current LISP systems also
includes some 40 or 50 names of commonly used functions which come with
the system "package" . Apart from these names the user is completely free

to invent his own data symbols and function names (except that MBLISP
restricts atomic symbols to 36 characters in length). Data symbols and
function names are kept apart by context

.
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COMIT

Except for the "punctuation" symhols / , //, etc., the thirty
or so " routing instructions " are the only symbols in the fixed vocabulary
of COMIT. Names for program locations, or " rule " names, may be arbitrarily
made up (except for a very few conventions such as not starting with a

period, and being 12 characters or less in length.) There are also very
few restrictions on data. Furthermore, an entire second font of letters
is available for use by the program. These are represented by "double
characters" *A, *B, ..., *Z

.

Symbols with double characters may be
inserted into the data by the program only and cannot be read in as data.
Thus when, for instance, a marker is to be inserted into the data at some
point by the program, in order to insure that the marker will be distinct
from any possible symbol in the data, one or two of these "double char-
acters" may be used in the marker symbol.

DATA STRUCTURES

The kinds and shapes of data elements and data structures that can
be manipulated vary greatly from language to language.

FLPL

Data elements in Fortran can be numeric (fixed or floating point),
or arbitrary alphanumeric strings, but appropriate FORMAT statements must
be provided by the programmer and adhered to by the data to be read in or
out. For symbolic data it is most convenient to handle strings of six or
fewer characters, since the language requires the user to manipulate con-
tents of actual machine cells. Longer strings can of course be handled by
creating list structures for them. List structures to be read in cannot
be read in as list structures; the data must be input using ordinary
Fortran facilities (READ and FORMAT statements) and then explicitly
assembled into the desired list structures. Similarly, data from a list

structure for output must be assembled by the program and written out
using ordinary Fortran facilities. (See section on input-output ) . Within
the machine, however, list structures of arbitrary shape and complexity
may be generated and manipulated. The user has complete freedom to read
and write in the decrement and address parts of cells.

IPL-V

The basic unit of data, which has no internal structure as far as

the language is concerned, is the "IPL symbol"
,
consisting of a letter

(or the digit 9) followed by a number, e.g. A25, 93. Individual cells,
lists, and list structures containing IPL symbols

,
are the normal kinds

of data structures handled by IPL, A list is represented on paper by a

vertical column of the symbols in the list
,
together with a symbol repre-

senting the " name" of the list
,
and a "termination symbol" 0 at the end
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of the list . When symbols on a list are names of other lists
,
we have a

list structure . Simple "trees", (no re-entries, no loops ) are the only
list structures that are safe to handle in IPL. It is possible to con-

struct and manipulate other kinds of structures in IPL, but the system
assumes that only trees are being handled.

Numeric and arbitrary alphanumeric data can also be handled, but

must be referred to indirectly by means of regular IPL symbols . The IPL
symbols serve as names of the " data terms" ,

which may be numbers (fixed or

floating point) or strings of five or fewer alphanumeric characters. Input

format for data terms is also columnar, as for lists, with one data term
to a line.

Besides the normal output format for lists and data terms
,
that is,

vertical lists, there is a horizontal "print line " format available. The
user may "compose" the print line from symbols and data terms and print
out the line. Thus, although the input format for data is very restricted,
the output format is potentially completely general. The corresponding
input capability, for reading in horizontal lines of data, exists in at

least one implementation of IPL-V, but is not generally available.

LISP

The basic unit of data in LISP is the " atomic symbol"—an arbitrary
string of alphanumeric characters (in the current MBLISP there is a length
limit of 36 characters). Although the atomic symbol was the smallest
piece of data distinguishable from another atomic symbol in LISP I, MBLISP
has and LISP 1.5 will have the ability to break up an atomic symbol into a ,

list of its constituent characters, as well as reassembling a list of char-

acters into an atomic symbol . Thus completely arbitrary data can be handled
in these versions of LISP. Floating point numbers were also permitted as

atomic symbols in LISP I, and both floating and fixed point numbers will be
permitted in LISP 1.5. The data structures that LISP handles are essen-
tially simple trees. Depending on the history of a particular program,
trees with common subtrees may in actual fact share those substructures
in the machine, and hence would be called re-entrant list structures, but
the user has no explicit control over this situation, and need think only
in terms of simple trees. A LISP list structure is represented on paper
horizontally, with parentheses grouping the subtrees. Input-output format
of data is also in this form. But since blanks and card boundaries are

ignored by the input routine, input data may be arranged so as to be very
convenient to read. Output format is normally out of the control of the
user. The system prints out list structures in horizontal unspaced and
unindented lines. The capability of reading in an arbitrary record of
data and assembling the characters into a list is available with MBLISP.

COMIT

Data in COMIT are of three types or levels: l) symbols
,
which are

arbitrary strings of characters; 2) subscripts, arbitrary strings up to
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twelve characters in length, which can he associated as a kind of "tag",

with particular occurrences of symbols; and 3) values, which are arbi-

trary strings, associated, in turn, with each occurrence of a subscript .

A special kind of subscript is the numerical subscript , whose value is an

integer. This is the only place in COMIT where numerical data is handled.

An occurrence of a symbol may have any number of subscripts associated
with it, and each subscript may have up to 36 values . "New" subscripts
or values, which are not mentioned in the program, cannot be read in as

data during the running of the program. That is, the range of different
subscripts and of their values (except for numerical subscripts ) that a

program can handle is set once and for all when the program is compiled,
and other subscripts and values will not be recognized. A further char-
acteristic of these three levels of data in COMIT is -that data on one
level can never become data on another level. Values can never be made
into subscripts by a program nor subscripts into symbols

,
and reversely.

(However, such a feature may become available in a future version of
COMIT .

)

Data structures in COMIT are restricted to linear strings of
constitutents . A constitutent is a symbol occurrence together with
subscripts and values

,
if any.

Constituents and strings of constituents are represented horizontally
on paper. The symbol SYM, for instance, with numerical subscript 10 and
another subscript SUB with values T1 and T2, would be represented as

SYM/.IO, sub T1 T2. Strings of such constituents are written horizon-
tally with + signs joining the constituents, e.g. A/n + B + c/G N, H L.

Data may be read in and written, out in this form (format S, or
" workspace notation"), complete with + signs and slashes. Data in
arbitrary format may also be handled: The format A instructions read
in data character by character and string them out as a string of one-
character symbols. Format A instructions also can write out the symbol
parts of specified constituents, with no spaces or + signs between them.
Instructions which expand symbols into a string of their constituent
characters, and which compress specified consecutive symbols into one
symbol

,
are also available. Thus COMIT is able to handle completely

arbitrary input data, and write out data in any desired format.

General Remarks on Heirarchy in Data Structures .

It is frequently convenient to organize data not as simple lists
but as lists of lists, to arbitrary depth, and to be able to refer to
the next element on a list at a certain level without having to pass
through any intervening sublevels . Thus it may be useful to refer

- 6 -



directly to the next sentence without having to count out the words of the

current sentence, or to find the next right parenthesis at the current level
without having to count out all intervening left and right parentheses. Such
trees are naturally handled by FLPL, IPL, and LISP, (although there is no

built-in facility in FLPL for the input and output of trees.). COMIT, how-
ever, stores only linear strings of symbols. To store trees in COMIT,
special schemes have to be devised to represent them linearly. One natural
way is to introduce special constituents as markers, like the parentheses
in algebraic expressions. It would be convenient, though not logically
necessary, to attach numerical subscripts to these markers to indicate their

respective depths or scopes.

III. THE SHAPE OF ROUTINES

The - "Sequential Units” of the Languages .

Programs in most procedural languages consist of a top-level routine
and a set of subroutines. Each routine in turn consists of a sequence of

units which all have the same structure, or at least have structures from
a limited set of structures. In looking for and discussing these "sequential
units" in the different languages, we may use this criterion as a rough
guide: They are those recurrent structures in a program, generally of a

limited number of types, which are Interpreted, or executed, sequentially
in the order in which they are written, except where Jump instructions
break the sequence.

It is interesting to consider units that have this property because,
very generally speaking, a language with relatively powerful "sequential
units" requires less breaking down of a procedure into sequential steps by
the user. Thus the complexity of a process may be reflected more in the

depth rather than in the length of its description.

One of the standard ways of making a "sequential unit" powerful is

to enable it to execute (i.e., call and return from) an entire subroutine,
as in IPL. The subroutine must still be coded, of course, but consider-
able flexibility can be achieved in a language which allows this. Some
brevity of expression can be gained by allowing the "sequential unit"
also to specify the transmission of variables to and from the subroutine,
as in a functional notation such as that of Fortran and LISP. Nesting of
functions further adds to the power of a sequential unit with a functional
notation. Yet another extension of this device is provided in the LISP
conditional expression notation (where we shall consider the pair, predi -

cate and function , as the unit which satisfies the criterion above) which,

in addition, expresses a condition (which itself may involve functions to

arbitrary depth) to be evaluated to determine whether or not the associated
function is to be evaluated. Here we may note that recursion, a very
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powerful means for constructing functions in LISP^ is not a property of

the ’’sequential unit”, hut of the next higher unit, that on the ’’subroutine”

level.

Completely novel devices for increasing the power of ’’sequential

units” are used in COMIT . The highest level of ’’sequential units” have:

l) The ability to specify a complicated linear pattern of symbols, which
actually combines the operation of a predicate evaluation (determining
whether the given pattern exists in the data) and that of data addressing
(assigning temporary numbers to the constituents of the pattern); and 2)

the ability to specify an arbitrary rearrangement of the pattern including
insertions and deletions. This power, however, is partially counter-
balanced by the absence of the powerful device which the other languages
have, namely the ability to execute entire subroutines from within one
such unit. Thus while each COMIT rule may be quite ’’deep”, the total
COMIT program is comparatively ’’shallow” for its length.

We now consider these ’’sequential units” in greater detail in each
of the languages

.

FLFL

The ’’sequential units” are the Fortran statements which are written
one after the other in a column, and are executed in that order. Probably
the most commonly used types are the ’’assignment statement” and the ”IF”
statement. An assignment statement can specify the evaluation of functions,
nested to arbitrary depth, on given arguments, and the assignment of the
value of the top level function to a specified variable. With the FLPL
functions, such a statement might be used to specify a search down a list
for a given piece of data, insertion or deletion or replacement of data,
retrieval of data, etc., or combinations of these different types of opera-
tions. By invoking names of subroutines, rather than Just the FLPL func-
tions, subroutines of any depth may be executed within such a statement.

The "IF” statement, for the purposes of symbol manipulation, may
be said to send control to one of two specified points in the routine
depending on whether or not two variables currently have the same value.
These variables can also be specified in terms of functions, nested to
any depth. Hence, although the information finally extracted from the
evaluation of these functions is very small (one bit, represented by
the two-way branch), it may represent the value of a very complex predicate.

IPL-V

The "sequential units” are the IPL instructions . An IPL instruc-
tion consists of only one symbol, together with a prefix Indicating how
the symbol is to be interpreted e.g,, as the name of a routine to be
executed, as a piece of data to be copied, as the location of data to be
copied, as an address to which control is to be conditionally transferred,
etc. Although the one symbol may represent a subroutine or a list

- B -



structure of great complexity, the programmer must still deal with only
one symbol at a time. To apply an operation on, say, two arguments and
to store the result of the operation requires in general four separate
sequential instructions in IPL-V (but would need only one "sequential
unit" in FLPL). If furthermore each argument must be computed as functions
of other arguments, correspondingly more IPL instructions would be needed,
whereas in FLPL the subfunctions may, in most cases, simply be nested
within the one assignment statement.

LISP

The predicates in a function definition are evaluated one after the

other in the order in which they are written, and the subfunction asso-
ciated with the first predicate which has the value "true" is evaluated.
Thus we may consider the predicate-and-function pair in a function defini-
tion as satisfying the criterion for a "sequential unit". As was mentioned
in the introduction to this section, this unit is even more powerful than
the assignment statement in Fortran, since it further contains a branching
facility which decides, on the value of a predicate of arbitrary complexity,
whether to evaluate the associated function or to proceed to the next
"sequential unit".

COMIT

In COMIT we have two levels of "sequential units". One level is repre-
sented by the COMIT " rule "

,
which is executed one after the other in a pro-

gram. Within the rule
,
however, are other "sequential units", the " left-half"

,

the " right -half" (which is optional), the individual " routing" Instructions
(which are also optional), and the "go-to", which are also executed one after
the other in the order written. As mentioned in the introduction to this
section, the left-half and right-half operations are quite powerful. Also,
the different kinds of routing instructions express in very compact form
some useful and essential operations that cannot be described in the left-
half-right-half notation, such as input-output, expansion of symbols into

their constituent characters, etc.

Physiognomy of the Code .

We are interested here in the physical format of programs and instruc-
tions written in the languages and their "readability", and, in particular,
whether the physical appearance of the program reflects the flow of control
and the hierarchy of routines, and distinguishes among the functionally
different types of objects (e.g., operations, data, branch commands, etc.).

FLPL

A Fortran routine consists of a list of " assignment statements " and
" control statements " (and input-output statements ) . The statements that
may be approached by jump are clearly labeled in the margin with statement
numbers. The jiump statements themselves, however, are not distinguished
by any such format feature, but merge in with the rest of the statements.

9



Within the assignment statement there is no difference between the

shape of a function computed for its value and one computed for its effect
on a list structure, nor are names of subroutines distinguishable from the
names of the basic FLPL functions except simply by the reader's knowing
their names. The dependence between routines is similarly not immediately
obvious, since calls to subroutines, that is, mentions of subroutine names,
are buried within the general mass of other computation in the calling
routine

.

Lines of explanatory comments may be inserted among the lines of
code.

IPL-V

An IPL routine consists of a vertical column of instructions, each
composed of a two-digit prefix and an IPL symbol. Instructions approach-
able by Jump are labeled to the left of the column (in the NAME section),
and unconditional transfers protrude to the right (LINK section) of the
column. The uniform format of the instructions, however, does not provide
simple visual cues to the reader for distinguishing between functionally
very different operations, e.g. pushing down a cell, transferring a symbol
from one cell to another, executing a subroutine, or a conditional branch.
The logic at conditional branch points is especially obscure to a reader:
He must carefully trace through several steps of logic in order to deter-
mine the relation between the directions of the branch and the condition
which set the test cell H5 before the branch. (H5 is a standard cell in
which may be placed one of two symbols and to which a conditional branch
instruction always appeals in order to make the appropriate Jump.) Since
calls on subroutines are buried in the same format as ordinary house-
keeping or logic instructions, the dependence of a routine on other
routines is also not immediately evident.

Short comments may be written in parallel with the column of
instructions. This format allows a clearer visual separation of comments
from program, while preserving the advantage of a step-by-step parallel
running commentary, than do the formats of comments in Fortran or Comit,
which are interspersed among the instructions themselves.

LISP

Conditional branching and the dependence between functions are both
more clearly brought out in the LISP notation, due to the distinctiveness
of the arrow in the conditional expression and to the general absence of
housekeeping matter that tends to clutter up the codes in the other lan-

guages .

Due to the free format, cascaded conditions can be written one under
the other so that the arrows fall under each other, presenting a picture
very suggestive of the logical structure of the function.
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Comments may not be interspersed within or between LISP functions
in the actual running deck, but may be placed after the STOP card.

COMIT

A COMIT program consists of a list of ’’ rules ”
,
each of which has a

name beginning in column one, and continues to the right of the name in

a free format . The left and right halves of a COMIT rule provide con-

venient visualizations of the shape of the data before and after the

operations to be performed. The following inconvenience is, however,
frequently met: All the symbols ( constituents ) that the COMIT programmer
writes in his code are treated with equal weight, whereas one of them may
refer to a symbol used as a marker or punctuation, another may refer to

actual data, and still another may be a dummy constituent used only for
carrying a logical or numerical subscript

,
etc. These differences in

function are not brought out in the shape or format of the symbols, and

increases the difficulty of reading and understanding a program.

A more serious fault with the notation is this: The flow of

control in a COMIT program is not generally evident from the shape of

the code. It is not even evident from an inspection of the individual
rules ,

since the reader has no immediate way of telling whether the

left half of a given rule is meant to be always satisfied, or whether
it is being used as a test for a conditional branch. To understand the
function of a left half depends intimately on a knowledge of the ex-

pected shape of the intermediate data on which it is to operate. Simi-
larly, other control operations such as dispatcher entries and the dollar
sign in the go-to, are imbedded in the general text-like code, and their
effect cannot be readily appreciated by the reader of a program.

IV. BASIC OPERATIONS

Basic Operations Provided by the System

List Processing Operations

All the languages, of course, provide list processing operations.
FLPL and IPL-V provide large batteries of operations for inserting,
deleting, and locating given symbols on lists, and for erasing, creating,
and concatenating lists. These operations can, of course, all be per-
formed in LISP, with functions that can be easily built up from the six

elementary LISP functions. Some of the commoner list processing functions,
such as appending and deleting, are provided in the ’’basic functions”
package. In COMIT all these operations can be expressed within the frame-

work of the left-half-right-half notation.
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Arithmetic Capaljility.

With FLPL, all the arithmetic capabilities of Fortran are, of

course, available. This includes integer and floating point arith-
metic, the arithmetic comparisons, and some of the commonest functions
such as exponentiation, square root and the trigonometric functions

.

IPL also provides the full range of arithmetic operations (but none of
the other functions) on integers and floating point numbers. The argu-
ments of arithmetic operations may be of mixed types (e.g. a floating
point number may be added to a fixed point number). LISP I provided
addition, multiplication, and exponentiation of (positive and negative)
floating point numbers only, and no "less than" or "greater than" com-
parison between numbers. LISP 1.5 has both floating and fixed point
numbers. MBLISP has no arithmetic capability, and whatever arithmetic
is needed must be programmed as symbol-manipulation. In COMIT, only
integer arithmetic is allowed. The numbers are manipulated as numeri-
cal subscripts on constituents. Addition, subtraction, multiplication,
and a kind of division, as well as the comparison for equality and the
inequalities, are available.

Manipulation of Internal Structure of Symbols .

Data in FLPL can be examined character by character and even
bit by bit by using the masking and shifting operations provided.

The Internal structure of IPL symbols cannot be computed upon,

nor can that of alphanumeric data terms . Once they are in the machine
they can be treated only at atomic units. Only the relation of equality
can hold between two symbols or between two alphanumeric data terms .

The internal structure of atomic symbols is accessible to com-

putation in MBLISP and LISP 1.5 via the expansion and compression
functions

.

In COMIT, symbols can be expanded character by character, each
character forming a new symbol ; and any sequence of symbols can be
combined, or compressed into a single symbol . Thus the character
structure of symbols is completely accessible to the programmer. Sub -

scripts and values , however, cannot be so treated. They are fixed once

and for all at the beginning of a run, and their internal structure is

not accessible to the programmer.

Tagging of Symbols on List .

Sometimes it is convenient to be able to attach to a symbol
extra information about the symbol, and not to have to do this by
adding additional symbols on the same list, or by means of a sublist.
Means for doing this would then be, strictly speaking, not "list-
processing" facilities.

12



FLPL provides such a facility by making available the six extra
bits in the 704 (7090) word which are not used by address and decrement,
the sign-prefix and the tag. There are functions available to retrieve
and alter these portions of a given word, and functions to search linearly
down a list for the first word which contains a given bit-configuration in
the sign-prefix or tag, etc.

In IPL, these extra bits are not available for the user, but the
comparable function can be easily performed by using description lists

.

While these are sublists in the ordinary sense, and can be treated by
the regular list-processing operations, there are available special des -

cription list processes which treat a description list as a list of pairs

—

pairs of "attribute” and "value". Given a symbol and an attribute , the
value can be directly retrieved or altered by the description list pro-

cesses , and the user need not be aware that the description list exists
as a regular list. Note that the description list belongs to a symbol ,

rather than to a symbol occurrence or to a position in a list, whereas
in FLPL, the flagging bits belong to a cell.

In LISP no such facility is provided in the system, but has to be
programmed using sublists.

COMIT provides extensive tagging facilities on symbols . The tag-
ging is of an occurrence of a symbol rather than the symbol Itself. A
symbol occurrence may be tagged with an Integer and with any number of
logical subscripts

,
each of which may have up to 36 values . These items

may be retrieved, altered or moved from one symbol to another very simply.
There is also a sophisticated way for computing with logical subscripts
and values

,
called dispatcher logic . As was previously mentioned, the

total set of available subscripts and values is fixed for each program,
and cannot be modified during a run.

V. BRANCHING AND OTHER CONTROL OPERATIONS

Branching .

FLPL

Branching is most commonly done with the IF statement. The
three-way branch which it offers is usually, in symbol-manipulation
situations, reduced to a two-way branch, since two symbols are either

equal to or not equal to, and usually not greater or less than, each

other. A complicated nest of expressions may occur in the IF state-

ment, so that the branch can be made to depend on a complicated condi-

tion. Other branching methods are available, such as computed and

present switches, etc.
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IPL-5

All branching in IPL is binary and is contingent on the current
state (+ or -) of a particular cell, the test cell H5. The existence of

only one such test cell is sometimes inconvenient, requiring considerable
housekeeping.

LISP

The only method of branching is through the conditional expres -

sion
,
which can actually look like a large switch, when the predicates

are cascaded one after the other. Furthermore the predicates themselves
can be of any complexity, either expressed fully in the conditional
expression or defined explicitly elsewhere and only referred to by name.

COMIT has perhaps the most extensive and the most sophisticated
and idiosyncratic set of branching abilities of all the languages, and
someone who is very familiar with them can make very elegant use of them.
The most common branching mechanism is the success or failure of left
half match. This branching is binary. The condition tested for by this
branching may be very complicated logically, although simple to express
as a string configuration.

A similar branching occurs when an input instruction in the
routing section fails (reads an EOF), in which case control also falls
to the next rule .

Another device is the rule with multiple subrules where the
choice of the particular subrule to be executed can be set previously
in the program by a "dispatcher entry". If the switch is not already
set before the multiple subrule rule is reached, or if the switch is

set so as to still leave more than one choice among the subrules
,
the

choice is made by a built-in pseudo-random number generator.

Finally, a very useful indirect transfer of control device is

the " dollar sigrP in the " Go-To" . The programmer can find a constituent
and send control to the rule whose name appears as a subscript on that
constituent (without of course knowing in advance which rule it is).

Thus he need only know what the symbol part of the constituent is, or
know at least some way of locating that constituent (say the first con-

stituent on a certain shelf ) . The constituent may have been put there
by any other part of the program. Subroutining frequently uses this
device. Before transferring to the subroutine, a dummy symbol having
the return address as a subscript is put onto some standard shelf . At
the end of the subroutine, the subroutine, as standard procedure, takes
the first constituent off that shelf and transfers control to the rule
whose name appears as subscript on that constituent

.
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A final remark concerning the use of the left-half match as a

branching method. Frequently a left-half expresses more than one con-
dition, whose satisfaction or failure is of interest. However, the
left-half match discriminates only between a complete satisfaction of
all the conditions and a failure of any one of them, that is, when the
match fails, any one of the conditions might have caused it, and further
left-half searches, in the succeeding rules, are needed to find out
exactly which condition (or even conditions) was the cause. This re-
flects the difference between the great power of a left-half search
and the extremely limited binary branching facility with which it is

associated.

Multiple Branching and the Addressability of Program by Data .

¥e are interested here in whether it is possible for a program
address or the name of a routine to be stored as data and to be used
for transfer of control purposes.- This is useful for constructing a

many-way branch depending directly on a given piece of data, and is

much more efficient and convenient than writing a tree of tests which
test the given piece of data for all the possibilities.

A multi-way branch may be accomplished in three kinds of ways:
l) The most primitive is to use a tree of binary tests to determine
exactly what the piece of data is, among a list of predetermined possi-
bilities, and to transfer control according to the result. This is, of
course, possible in all of the languages. 2) Some languages provide
facilities for setting up a multi-way switch, which essentially com-
presses the test tree into something in a more convenient linear form.

The user must still, at the point of the switch, provide the list of
possible data items and the list of corresponding transfer addresses.
Thus the list rule in COMIT may be used as such a device where the left

halves of the subrules of the list rule provide the possibilities and the
corresponding go-to's provide the addresses. IPL does not provide such a

device within the system, but it may easily be coded using description
lists . In LISP such a device exists naturally in the conditional expres-
sion, when used in a cascaded fashion (nesting always to the right)
rather than in a fully nested fashion. The free coding format of LISP
allows such a switch to be written in a particularly clear way, that is,

with the arrows lined up underneath each other.

In all these schemes a left-over case can always be provided for,

that is, the case where the input data does not match any of the antici-

pated cases; In the COMIT list rule
,
by the failure of any of the left

halves to match, resulting in a skip to the subsequent rule
;

in the

description list switch by a special provision when the given symbol is

not found as an attribute
;

and in LISP by the use of the "T" as the

final condition.
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Fortran provides a multiway switch in the form of the computed and

assigned go-to*s . The input data to the switch is, however, restricted

to integers and cannot he arbitrary symbolic data.

3) In all these schemes, however, the programmer is required to

explicitly set up the switch, with its list of anticipated inputs (except

for Fortran where this list is always a set of consecutive integers) and

list of corresponding transfer addresses. A more convenient method would
be the use of a statement such as ’’execute x” or ”go to x” where x is a

variable which can be assigned as value to the name (address) of some

instruction or subroutine in the program. This can be done in LISP, COMIT,
and IPL but not in FLPL.

In IPL this can be done by using the prefix codes 01 or 02. Thus
01A5 means execute the routine names in cell A5, and 02A5 means execute
the routine named in the cell named in A5. In either case the actual name
of the routine need not be explicitly stated at this point. Another way
to do this is to use J1 ’’execute the routine named in HO”. Notice that an
indirect go-to is not possible, but an indirect execute is.

In LISP an indirect execute can be done by using the APPLY function.

The first argument of the APPLY function is evaluated to get the name of a

function (which is in a data structure as if it were data), and the APPLY
function evaluates it with the argument provided by the second argument.

COMIT provides an indirect go-to in the ^ in the Go -To facility.

The address (name ) of the rule to which control is to be transferred is

a subscript on a constituent located by the rule from which control is to

be transferred. Note that while the program address is storable as data,

it is stored as a subscript
,
which can never be interpreted, by the same

program, as a symbol or a value .

To summarize, we have:

Binary Test Tree Multiway Switch
Indirect
Go-To

Indirect
Execute

FLPL IF statements m.any way Go-To’s no no

LISP
fully nested condi-
tional expressions

cascaded to the right
conditional expressions

no
APPLY
function

IPL
ordinary branchings
on H5

programmable
no

Prefixes 01

or 02 or J1

COMIT
ordinary left
half test

list rule or simple
sequence of ordinary
rules

^ in
go-to no
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VI. SUBROUTINING AND RECURSION

Subroutining .

At least three factors are associated with the ease of writing
and using subroutines: l) the housekeeping necessary to transmit vari-
ables to and from subroutines; 2) the method of transferring control to
and from the subroutines; and 3) the availability of local names^ and
other means of protecting the private property of individual subroutines.

FLPL

There is essentially no housekeeping associated with transmission
of arguments and the storage of results. The arguments are simply men-
tioned by name in the right order in the calling statement .

The user, also, has nothing to do about transferring control to
and from subroutines. All such housekeeping is automatic.

All names of variables and statement locations in subroutines are
local except for variables declared "COMMON" at the beginning of the
routine so that the user need not worry about collision of names while
writing routines.

IPL

Transfer of control to and from subroutines is fully automatic
but the conventions regarding the transmission of variables and regar-
ding the use of temporary storage demand a considerable amount of
careful housekeeping in both the using and the writing of subroutines:
Inputs to subroutines have to be placed in the cell HO in the proper
order before the subroutine is called, and the outputs left in HO by
subroutine have to be saved or otherwise immediately dealt with upon
return from the subroutine. Within the subroutine itself, upon entry
the inputs must be saved, usually in the working cells WO through W9;

and Just before termination, the W’s must be restored to their original
state and the outputs

,
if any, have to be put into HO in the correct

order.

Actually, these are only convention, adhered to by most IPL
programmers, and not demanded, although greatly facilitated, by the

structure of the language. They need not be observed, but only at

great expense in flexibility and independence of the routines.

In IPL, local symbols are available for labeling private program
and data addresses, and even for naming private subroutines.

LISP

Transfer of variables and transfer of control to and from

subroutines are fully automatic as in FLPL. In fact, all variables
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appear as arguments. All variable names are local, while names of

functions are always ’’common", in the Fortran sense. The lack of

local subroutine (function) names is rarely an inconvenience.

COMIT

There is no transmission of data to and' from subroutines, since
all data is accessible to all parts of the entire program, although a

programmer may wish to establish and observe certain conventions in this
regard, if he finds it more convenient to do so. However, some house-
keeping is necessary to transfer control correctly into and out of sub-
routines, and the absence of ’’local" facilities is frequently incon-
venient .

There are several ways to approach and leave subroutines in COMIT

.

Using the dispatcher entry requires that the names of all the return
points from the subroutine be known, and a special multi-way branch rule
be set up with subrules corresponding to the return points. Another way
is by shelving a constituent having as subscript the return point name,
before going into the subroutine. The subroutine terminates by finding
this constituent and exits indirectly by a ^ in the QO-TQ . This does
not have the drawback of the dispatcher method and therefore is more
flexible, and also permits recursive subroutining without difficulty
(the return addresses are merely pushed down on the shelf ) but has
the disadvantage that housekeeping has to be done at three points J before
the jump to the subroutine, at the exit to the subroutine, and upon re-
turn from a subroutine to delete the return-address-bearing constituent
from the workspace

.

The lack of local names is frequently an inconvenience, es-
pecially when a large program is being written and debugged in several
segments. Rule names may inadvertently be repeated. Also, local
shelves which would be useful for temporary storage are not available.
In the present COMIT system the programmer in writing a subroutine must
know which shelves are not in use by other portions of the program, un-
less he adopts a time consuming "push-down" convention.

Recursion

A routine is recursive if it calls upon itself as a subroutine.

It is frequently useful or natural to write a subroutine as a recur-
sive subroutine, for instance in processing a list structure whose
elements are considered all of the same order, or in generating permu-
tations. The particular difficulties presented by a recursive routine
over and above those of a routine which simply loops back upon Itself
are that for each call upon Itself, the routine must remember to return
after the completion of the subrou'tine and it must keep safe the tem-
porary storage registers which it is using, so that the subroutine
does not overwrite them.
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In FLPL no special facilities are provided for doing these
things^ although temporary storage can easily be arranged into push-
down lists and the returns can be counted out either by using a

push-down list or by numerical counting.

In IPL recursive subroutining presents no more difficulty than
ordinary subroutining as long as the user observes certain conventions
regarding the use of public working storage to assure the safety of
temporary storage during any kind of subroutining. If he uses private
storage he must remember to observe the same push-down and pop-up
conventions

.

In LISP, recursion is the normal way to write loops, and itera-
tion cannot be done in any other way (except by using the program
feature). This is, however, frequently an encumbrance since it is

not always easy to see how to write a loop as a recursive function.
However, as in other areas in the use of LISP, no housekeeping on
the part of the programmer is necessary nor even possible. Such
things as pushing down and saving results are taken care of auto-
matically.

Since COMIT is essentially a one-level language and not even
subroutining is particularly simple to do, recursion is not particu-
larly natural to do in it either, although due to the natural way in
which the shelves can be used as push-down stores, a recursive sub-
routine is not much more difficult to manage than an ordinary sub-
routine. Both data and return addresses can be pushed onto shelves
and taken off in the opposite order.

VII. INPUT-OUTPUT

Loading of Programs and Data, Output of Results .

FLPL

The source and/or binary programs are loaded automatically in

ways differing from installation to installation. Data is not loaded
by the system but must be read in by the FLPL program itself. Since
there are no FLPL functions to read in list structures, input of list
structures has to be programmed using the ordinary Fortran input facili-
ties in conjunction with FLPL list-generation functions. The card format
for lists is thus also up to the programmer. Similarly, output routines
must be written.

The program may read in data at any time during the run, but it

cannot load more program and transfer control to it. Programs which
take up more than one memory load may be run as "chain Jobs" within
some monitor systems

.
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IPL

During " initial loading”, the system loads both routines and
data. The program can, during a run, read in further data, as well
as additional routines to be executed.

There are primitive operations which print out IPL symbols
and data, lists and list structures (1150-153). Elaborate formatting
may be done, with more programming effort, by using the line-printing
primitives (J154-161). Input and output tape units are specified by
data terms in fixed system cells, viz. W16 and W17.

LISP

The system initially loads both program and data. Further data
and programs may be read in by the program during a run. Output may be
either explicitly programmed, by using the PRINT and associated func-
tions, or may be left to the system, which automatically prints out the
value of the highest level function evaluated. Output is always on a

fixed system output tape.

Before punching up a program, a transliteration and a small
amount of translation must be done by the programmer to convert his
functions, normally written in the m-expression notation,^ to s-expres -

sions acceptable by the LISP interpreter. Parentheses must be counted
out carefully.

COMIT

Program is loaded automatically from a fixed tape unit by the
system. Data must be read in by the program, the choice of input
unit being up to the programmer. Additional programs cannot be loaded
in the middle of a run. The programmer has complete control over the
output of data, including formatting and choice of tape unit.

Composition of the Running Deck .

FLPL

The actual deck submitted for a run consists at least of the

source and/or already compiled routines plus the data. Depending on
what routines are available on the library tape that a particular
installation maintains, the program deck may also contain the FLPL
binary deck and other library subroutines used. A number of control
cards also appear in the deck, depending on the conventions at the
installation.

- 20



IPL

The deck submitted for running must be headed by region
reservation cards, a housekeeping detail which could logically be
left to the system, but which, in the interest of loading effi-
ciency, has been relegated to the user. These cards instruct the
system as to what regional IPL symbols to expect in the routines
and data that follow. Any ’’unexpected'^ symbol in the following
deck not accounted for in the reservation cards will result in a

bad assembly. Blocks of routines and data, each block Initiated
by a header card, constitute the body of the deck. A transfer
card ("final type 5 card" ) terminates loading and directs the in-

terpreter to the beginning of a specified routine.

LISP

The deck begins with a small binary deck which calls the
system from tape. The body of the deck contains S-expressions
representing the definitions and arguments oL functions. Each
job is headed by a special header card and terminated by a "STOP"
card. A series of jobs is terminated by a "FIN" card.

CQMIT

The running deck consists of the program itself, with the
first rule to be executed on the first card, and the logically last
rule on the last card. A control card is placed before and another
after the program. After this may be placed the data.

Temporary Storage of Data and Program on Tape .

FLPL

By using the regular tape operations available in Fortran,
temporary data can be stored on, and read back from, tape. Depending
on the installation there will also be methods for saving all of
memory at any point during a run for continuation of the program at

a future time.

IPL

Facilities for temporarily storing data as well as routines
on slow or fast back-up storage (e.g., drum, tapes) are described in

the manual, but are not actually available on all of the systems
presently in use. The normal input and output facilities may not be

used for temporary storage on tape because of format discrepancies
between normal input and output, and the lack of tape manipulation
operations. The facility for saving memory for restart (J166) does,

however, seem to be generally available.
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LISP

There are no facilities for temporary storage of data and
program on tape. By using the "SET” header card, core may be saved
on tape at the end of a run, to he used in a later job.

COMIT

The normal input and output facilities of Format S and Format
A can be used for temporary storage of data on tape. Format B, how-
ever, is particularly fast and suitable for this purpose since it

reads and writes in binary. The user, however, is still responsible
for such tape operations as writing and testing for end-of-file, re-
winding tape, etc. By preceding the deck with a special COMSET card
the user may cause core to be saved on tape at the end of a run, for
re-run from the beginning at a future time.

On-Line Input and Output .

FLPL

The Fortran manuals describe statements which read information
in from console switches and which print on the on-line printer, but
at most installations the use of these facilities is discouraged or
prohibited.

IPL

The manual mentions a primitive, J141, which reads in one IPL
symbol from the console, but this- is not available in most actual
versions of the system. No on-line output facilities are generally
available

.

LISP

The standard system has no facilities for reading console
switches. The LISP-flexo system, as described in the LISP I (704)
manual, however, allows input-output of data via the on-line flexo-
writer if there is one.

COMIT

Both sense-switches and on-line flexo-writer may be read by
a COMIT program. A COMIT program may also print out on the one-line
printer

.
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VIII. DEBUGGING AIDS

Debugging .

We are concerned here with diagnostic features of the various
systems, program tracing and dumping capabilities, and program patching
facilities

.

FLPL

The Fortran compiler checks for errors of format, spelling,
punctuation, logic (e.g., unreachable points in the program), etc.,
in the source code and prints out explicit error comments. There is

no special facility for tracing of the program during execution; any
tracing must be programmed. However, depending on the installation,
various kinds of memory dumps are available and may be quite easily
requested at any point in the program or may be triggered by various
error conditions. For FLPL specifically there is a list dump function,
XDUMPF, which prints out a specified list or list structure, the abso-
lute address and contents of each cell being represented in octal nota-
tion.

Patching of programs is done simply by replacing, deleting, and

inserting statements in the source program. It is rarely Justified to
patch in the compiled binary deck.

IPL

The assembler, which loads the running deck into the computer,
does not check for errors in format (e.g., symbols punched in wrong
columns) or logical errors (e.g. unreachable points in routines).

Debugging of runs is aided by tracing
,
snapshots

,
and the post -

mortem dump . An elaborate tracing facility is provided whereby the

programmer may request a printout of the contents of a number of key
cells of the system (HO, H5, H4, etc.) for each instruction executed.
He may request that only the instructions in a certain routine be
traced (and not those in its subroutines), or he may request a full

trace of a routine (in which case every subroutine which the routine
calls is traced). In the hands of an experienced IPL programmer, the

first type of tracing, the selective trace ,
can be a very powerful

debugging aid. The traces can be turned on and off by a signal

(Q = 3 or 4) written in the routine to be traced, or by execution of

an Instruction (j 47-9) in some other routine external to the routine
being traced or by manual intervention through console switches.

Breakpoints may also be planted at crucial points in routines by the

programmer to trigger snapshot routines that he himself provides.

Snapshot dumps and tracing can be controlled in very elaborate ways
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by a combination of internal (programmed) and external (console
switches) means. At the end of a run the system always prints
either a normal termination message or an error comment, followed
by a post mortem dump of the final contents of all of the system
cells (the H’s and W's )

.

Correction of errors involves repunching of the offending
instructions or routines. If routines are kept short and flexible,
check-out and patching and other modifications are simplified.
Experienced IPL programmers often consider it worthwhile to set up
even two-instruction sequences as subroutines if it is convenient
to think of them as operational units.

LISP

Essentially no checking of format, spelling, etc., is or
can be done on input functions, since there is no format to speak
of, and every spelling can represent a legal atomic symbol. Even
missing subroutines can not theoretically be checked for during
loading since an entire function might be generated during the
execution of the program. About the only real input error that
can be and is checked for is that of unbalanced left and right
parentheses

.

For debugging programs, the user has at his disposal two
tracing functions. One, called TRACE, prints out the arguments
and value of EVAL (the principal function in the interpreter) each
time it is used by the interpreter (in IPL terminology this is a

trace of each interpretation cycle ). The other, TRACKLIST, prints
out the arguments and value of any specified function each time
it is evaluated. The interpreter also provides error comments
whenever a computation cannot continue due to a logical error.
However, these comments, as well as the print-outs from the trace
functions tend to be rather cryptic to someone not intimately
acquainted with the operation of the interpreter.

CQMIT

The compiler checks for errors in format, syntax, and logic
and prints out very explicit error diagnostics. A bad compilation
does not halt a run, however. The system compiles some kind of
program and proceeds to run it as far as possible, in order to
discover further errors, if any.

COMIT does not provide special debugging aids within the
language. Tracing and dumping must be programmed into the program
being checked out. On-line debugging aids, however, are available.
By manipulating sense switches, a programmer at the console may
follow the progress of a program on the on-line printer, rule by
rule as they are executed. At the end of each run the system prints
out a normal termination message or an error comment.
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