This report has been prepared for information and record purposes and is not to be referenced in any publication.

NATIONAL BUREAU OF STANDARDS REPORT

8041

Quarterly Report

on

EVALUATION OF REFRACTORY QUALITIES OF CONCRETES FOR JET AIRCRAFT WARM-UP, POWER CHECK MAINTENANCE APRONS, AND RUNWAYS

BY

J. V. Ryan and E. C. Tuma

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development, engineering, instrumentation, testing, work includes basic and applied research, development, engineering, instrumentation, testing, projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the Borek cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and the Central Radio Propagation Laboratory Ionospheric Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D.C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

1002 - 12 - 10 + 72

July 17, 1963

8041

NBS REPORT

Quarterly Report

on

EVALUATION OF REFRACTORY QUALITIES

of

CONCRETES FOR JET AIRCRAFT WARM-UP, POWER CHECK

MAINTENANCE APRONS, AND RUNWAYS

by

J. V. Ryan and E. C. Tuma Fire Research Section Building Research Division

Sponsored by:

Department of the Navy Bureau of Yards and Docks

Reference: Task Y-F015-15-102

NBS File No. 10.02/10472

IMPORTANT NOTICE

NATIONAL BUREAU OF ST for use within the Government. and review. For this reason, the whole or in part, is not author Bureau of Standards, Washingto the Report has been specifically

Approved for public release by the Director of the National Institute of : Office of the Director, National Standards and Technology (NIST) on October 9, 2015.

ss accounting documents intended subjected to additional evaluation listing of this Report, either in the Government agency for which opies for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Quarterly Report

on

EVALUATION OF REFRACTORY QUALITIES OF CONCRETES FOR JET AIRCRAFT WARM-UP, POWER CHECK MAINTENANCE APRONS, AND RUNWAYS

by

J. V. Ryan and E. C. Tuma

1. Introduction

The purpose of this project is the development of criteria for the fabrication of jet exhaust resistant concretes. Concretes under development are evaluated by exposure to hot gases from a combustion chamber. The combustion chamber delivers these gases at velocities and temperatures approaching field conditions.

2. Present Plan of the Investigation

In an attempt to gain more understanding of the mechanism of spalling and of the factors that determine whether or not a given concrete spalls under jet impingement, specimen sizes were chosen to provide different degrees of restraint to thermal stresses and to the escape of steam from within the concrete. The instrumentation was designed to provide data on pressures and temperatures, including temperature gradients in the 1/2 in. nearest the exposed surface. In addition, electrical resistance elements were embedded in some specimens to provide an indication of their drying. It was decided to keep some specimens in the fog room throughout their conditioning, to condition others in air at 73°F and 50% relative humidity, and to attempt to dry others thoroughly.

3. Activities

The specimens of diabase aggregate concrete (Di-2) cast late in December, 1962 were subjected to jet impingement; companion specimens were tested for shear, flexural, and compressive strengths, and for moisture content. The specimens of blast furnace slag aggregate concrete cast in the preceeding quarter were conditioned throughout the quarter, and observations were made of changes that occurred in the specimens.

The study of the feasibility of accelerated drying by conditioning in atmospheres at reduced pressures was continued.

3.1 Diabase Aggregate Specimens

The diabase aggregate concrete specimens included cylindrical specimens for jet impingement tests, and various prisms for strength tests, dimensional changes, and moisture content.

The jet impingement specimens were cast in three diameters, (12, 6, 3 in), two thicknesses (6 and 2 in.), and were conditioned according to three schedules. The first schedule consisted of keeping the specimens in a room at 73°F and 100 percent relative humidity, the fog room, until they were tested. The second schedule consisted of keeping specimens in the fog room for 28 days after which they were stored in an atmosphere at temperature of 73°F and relative humidity of 50 percent until tested. The third schedule consisted of keeping specimens in the fog room until they were about the same age as those in the second schedule and then drying them to constant weight at 105°C. The prism specimens for strength tests and moisture content determinations were conditioned according to the same schedules.

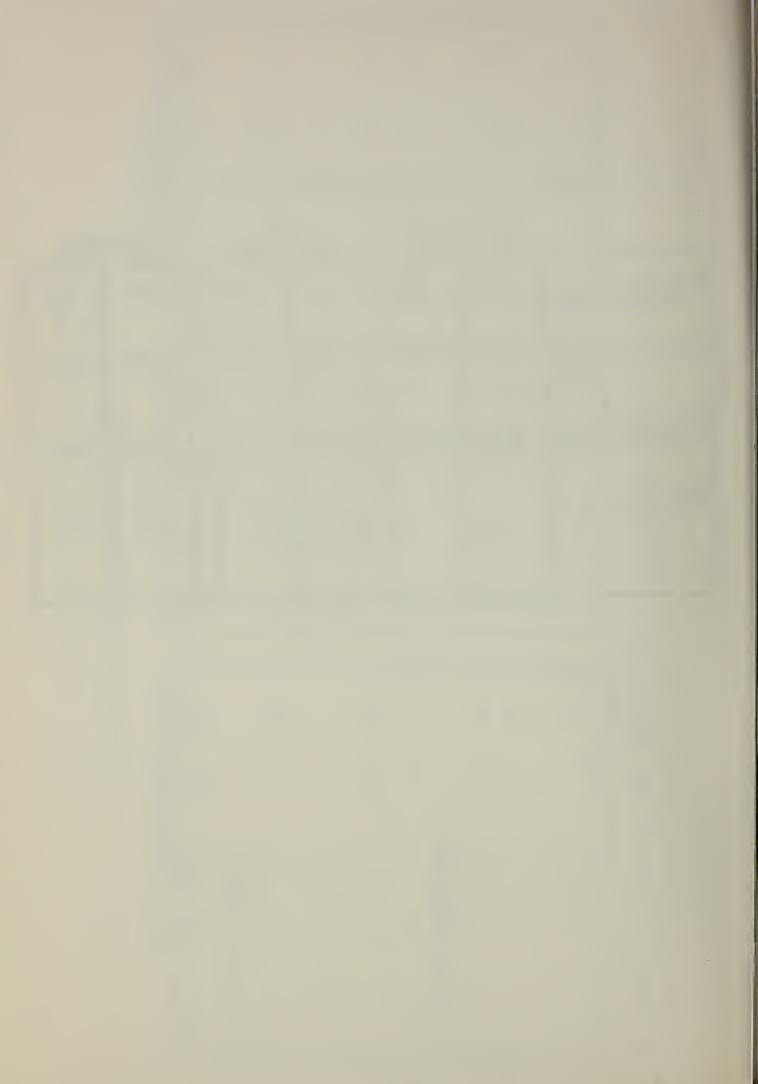
The results of the tests are given in Tables 1 and 2. Evaluation of these data, both as to spalled volume and as to peak pressure, showed that reduction of diameter and of thickness each resulted in decreased effect of the jet impingement on the exposed surface of the concrete. Also, the shift from fog room, to 50 percent relative humidity, to oven drying lead to marked reduction in spalling and pressure. None of the specimens oven dried at 105°C showed visible spalling.

3.2 Blast-furnace Aggregate Specimens

The specimens of blast-furnace slag aggregate concrete were conditioned throughout the quarter, following the conditioning schedules described in the preceeding section. The plot of data obtained is similar to that of figure 1 in NBS Report 7878 for the last quarter, indicating that the specimens are nearly ready to be tested.

3.3 Vacuum Drying

The results obtained to date are only for diabase aggregate concretes kept in the fog room a minimum of 28 days to allow development of strength and then conditioned at reduced pressures in an attempt to accelerate the elimination of excess moisture. As reported for the previous quarter, those specimens kept at about 0.5 atmosphere for 28 days after the fog room showed greater moisture content than duplicates kept at 1 atmosphere in 73°F/50 percent relative humidity. The second set of specimens have been kept at pressures near or below the vapor pressure of water (21 mm Hg at 73°F) for much longer time. On the basis of electrical conductivity measurements, no appreciable change was observed during the first 28 days at reduced pressure. This is despite the fact that several fluid ounces of water were removed from a trap in the vacuum system daily. Comparison with conductivity data from Di-2 specimens conditioned at 73°F/50 rh indicated the latter were drying faster for about 70 days. However, beyond that time, the specimens in reduced pressure have been at much lower (factor of 4) conductivities than attained by specimens at 73°F/50 rh in comparable times. They have not attained conductivities as low (by a factor of about 100) as attained by oven drying.


Table 1. Data Summary for Di-2 Concrete Specimens

The data are presented to show first the effect of diameter and then that of thickness

	Pressure Max	psi		200	1	I	360	100		200	360	I	100
Fog Room	Peak P Avg	þsi		180	I	I	260	70		180	260	I	70
FОР	<u>Volume</u> Max	ວວ		270	I	ł	140	<10		270	140	ı	<10
	Spall Avg	ပပ		250	I	I	110	<10		250	OTT	1	<10
73°F/50% RH	Pressure Max	psi		0+t+t	100	35	350	55		0+7+7	350	35	55
	Peak P _J Avg	pấỉ		260	70	25	220 <u>a</u> /	55 <u>b</u> /		260	220 <u>a/</u>	25	55 <u>b</u> /
	<u>Volume</u> Max	ວວ		190	100	C 10	90	0		190	90	¢ 10	0
	<u>Spall</u> Avg	ບບ		130	70	<pre>clo</pre>	<u>a</u> /	0		130	ন্ত্র	V 10	0
Oven Dried	<u>Peak Pressure</u> Avg Max	psi		95	ı	ł	350	0		95	350	ł	0
	Peak I Avg	pši		70	I	I	200	0		70	200	i	0
	<u>Volume</u> Max	ວວ	leter	0	ı	I	0	0	kness	0	0	ı	0
	Spall	ວວ	by diam	0	I	ł	0	0	by thickness	0	0	I	0
	Specimen Size		Arranged by diameter	12 x 6	6 x 6	3 x 6	12 x 2	3 x 2	Arranged	12 x 6	12 x 2	3 x 6	3 x 2

 \underline{a} (only 1 of 3 spalled; avg. pressure for 2 that did not spall. \underline{b} / Only 2 of 3 showed pressure, average for those 2. Table 2. Supplementary Data on Di-2

	<u>Oven Dried</u> Avg Max			73/ Avg	/50 <u>Max</u>	 <u>Fog Room</u> Avg Max			
Modulus of Rupture, Psi	795	890		795	895	830	920		
Shear Strength, Psi	4380	4560		3680	3850	3670	4150		
Compressive Strength, Psi	12700	13 ¹ +00		10500	11400	10900	11600		
Moisture Content, %	-	-		3.03	3.27	5.33	5.73		

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section earries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage. Absolute Electrical Measurements.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Volume.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vaeuum. Fluid Mechanies. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition. Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermoehemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Radiation Chemistry. Office of Weights and Measures.

BOULDER, COLO.

CRYOGENIC ENGINEERING LABORATORY

Cryogenic Processes. Cryogenic Properties of Solids. Cryogenic Technical Services. Properties of Cryogenic Fluids.

CENTRAL RADIO PROPAGATION LABORATORY

lonosphere Research and Propagation. Low Frequency and Very Low Frequency Research. lonosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Troposphere and Space Telecommunications. Data Reduction Instrumentation. Radio Noise, Tropospheric Measurements. Tropospheric Analysis. Spectrum Utilization Research. Radio-Meteorology, Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude lonosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Standards Physics. Frequency and Time Disseminations. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Microwave Physics.

Radio Standards Engineering. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

Joint Institute for Laboratory Astrophysics-NBS Group (Univ. of Colo.).

.

