NATIONAL BUREAU OF STANDARDS REPORT

10.00

7775

0012

THERMAL CONDUCTIVITY OF A SPECIMEN OF CHROMIUM-COPPER ALLOY

by

Thomas W. Watson and Henry E. Robinson

Report to the

U.S. Naval Ordnance Laboratory White Oak Silver Spring, Maryland

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress. March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellancous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT 1006-30-10642

January 7, 1963

NBS REPORT

7775

THERMAL CONDUCTIVITY OF A SPECIMEN OF CHROMIUM-COPPER ALLOY

by

T. W. Watson and H. E. Robinson Heat Transfer Section Building Research Division

Report to the

U.S. Naval Ordnance Laboratory Code MSD-22 White Oak Silver Spring, Maryland

IMPORTANT NOTICE

NATIONAL BUREAU OF STAN for use within the Government. Be and review. For this reason, the p whole or in part, is not authorize Bureau of Standards, Washington the Report has been specifically pri

Approved for public release by the viected to additional evaluation Director of the National Institute of iffice of the Director, National Standards and Technology (NIST) 3 Government agency for which on October 9, 2015.

accounting documents intended sting of this Report, either in es for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

Temperatures along the specimen were indicated by seven thermocouples located symmetrically about the longitudinal center of the specimen, spaced approximately 3.51 cm apart, with one additional thermocouple near the bottom end of the specimen. Thermocouples were similarly located in almost exactly corresponding longitudinal positions on the guard tube.

The guard tube was equipped near its lower end with an external circumferential electric heater, as shown. The guard tube was cooled at the top by means of a copper-tube coil soldered circumferentially at a position corresponding in effect to that of the specimen coolant well. Coolant (water at 40°C) was pumped through the guard coil and specimen well in series connection, as shown.

The electrical heater for the specimen consisted of a porcelain cylinder 1.25 cm in diameter and 5.2 cm long, threaded longitudinally with 26-gage nichrome heater wire. Its resistance was approximately 22 ohms. Current was brought to the heater through relatively large heater leads, to which separate potential leads were connected at the point where they entered the porcelain core. The heater was energized by an adjustable constant-voltage d-c source. Heater current and voltage drop measurements were made using standard resistors and the high precision manual potentiometer used for thermocouple observations. The guard was heated with alternating current governed by a sensitive temperature controller actuated by the guard temperature at a selected position.

The thermocouples were made from calibrated chromel and alumel 26-gage wires, welded by gas-oxygen flame to form a butt joint about 0.042 cm in diameter.

The thermocouple junctions were pressed into transverse grooves 0.04 cm wide by 0.05 cm deep and 0.6 cm in length in the convex surface of the bar and tightly secured by hammering the metal around the groove. The thermocouple leads were individually insulated electrically with fiberglass sleeving, and brought out in the powder insulation in the same transverse plane as the junction (one wire in each direction) forming a 2-cm circle. The wires were brought out through the powder insulation near the guard tube. The thermocouples in the guard tube were electrically welded to form a spherical junction about 0.10 cm in diameter. The junctions in the guard were inserted into radiallydrilled holes 0.11 cm in diameter and 0.17 cm deep, and tightly secured by punch-pricking the metal around the hole. The wires were similarly brought out through the powder insulation. The longitudinal positions of the thermocouple junctions were taken as those of the centers of the grooves, or of the drilled holes, measured to the nearest 0.01 cm with a laboratory cathetometer.

After installation of the specimen, the space between it and the guard tube was filled with diatomaceous earth powder insulation, which also was used to insulate the space surrounding the guard tube. The tests were conducted with the insulation exposed to atmospheric air.

In principle, if there were no heat exchange between the specimen and its surroundings, the conductivity could be determined from the measured power input to the specimen and the average temperature gradient for each of the six spans along the specimen, all of uniform known cross-sectional area. In practice, a perfect balance of temperatures between the bar and guard all along their lengths is not possible because of differences in their temperature coefficients of conductivity, and the effect of the outward heat losses of the guard. In addition to heat exchanges between the bar and guard from this cause, a relatively insignificant longitudinal flow of heat occurs in the powder insulation surrounding the specimen, and the contribution of the specimen to this heat flow must depend somewhat on the bar-to-guard temperature unbalance.

In order to evaluate the heat flow in the bar at the center points of each of the six spans, a partly empirical procedure was used. Two steady-state test-runs were made with slightly different bar and guard temperatures and power inputs. In the two tests, the heat flow and the observed temperature drop from end to end of a given span differed, as did also the approximate integral with respect to length of the observed temperature differences between bar and guard, summed from the hot end of the bar to the span center point. It is thus possible to write for each span two equations (one for each test-run) of the form

$$\frac{Ak\Delta t}{\Delta x} + fS = 0$$

where A is the cross-sectional area of the specimen,

- k is the specimen conductivity at the mean temperature of the span,
- \triangle t is the temperature drop from end to end of the span,
- $\triangle x$ is the length of the span,
- fS represents the total net heat loss from the bar from its bottom end at the heater to the midpoint, x, of the given span, expressed as the product of S, which is the integral $\int_0^X (t_{\text{bar}} - t_{\text{guard}}) dx$, and an average heat transfer coefficient f for the thermal path from bar to guard.
 - Q is the measured power input to the specimen heater.

APPARATUS FOR MEASURING THE THERMAL CONDUCTIVITY OF METALS

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research, Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Raciation Chemistry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Technical Services.

1.81

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Millimeter-Wave Research.

Circuit Standards. Iligh Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

