

NATIONAL BUREAU OF STANDARDS REPORT

7760

CAPACITY TESTS OF FIVE REMOTE AIR-COOLED REFRIGERANT CONDENSERS

> Manufactured by Dunham-Bush, Inc. West Hartford, Connecticut

> > by

R. J. Dockery and C. W. Phillips

to

Mechanical Engineering Division Quartermaster Research and Engineering Command Natick, Massachusetts

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials; devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

NBS REPORT

1003-20-10435

November 30, 1962

7760

CAPACITY TESTS OF FIVE REMOTE AIR-COOLED REFRIGERANT CONDENSERS

> Manufactured by Dunham-Bush, Inc. West Hartford, Connecticut

> > by

R. J. Dockery and C. W. Phillips Mechanical Systems Section Building Research Division

to

Mechanical Engineering Division Quartermaster Research and Engineering Command Natick, Massachusetts

IMPORTANT NOTICE

NATIONAL BUREAU OF STANE

intended for use within the Gov to additional evaluation and revie listing of this Report, either in w the Office of the Director, Nation however, by the Government age to reproduce additional copies fc

Approved for public release by the ly published it is subjected Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.

ress accounting documents oduction, or open-literature is obtained in writing from h permission is not needed, pared if that agency wishes

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

CAPACITY TESTS OF FIVE REMOTE AIR-COOLED REFRIGERANT CONDENSERS

Manufactured by Dunham-Bush, Inc. West Hartford, Connecticut

by

R. J. Dockery and C. W. Phillips

1.0 INTRODUCTION

This report presents results of tests of five remote air-cooled refrigerant condensers, of three sizes and four classes listed in, "Purchase Description, Condensers, Air-Cooled, for use with Dichlorodifluoromethane (F-12)," dated March 22, 1957. All five were manufactured by Dunham-Bush, Inc., West Hartford, Connecticut. All were constructed with tubes containing the Company's patented "Inner-Fin."

The five condensers were:

Specimen No. 1. Size B Class 4 Steel Tubes, Steel Fins NBS Test No. 170-58 Specimen No. 2. Size B Class 3 Aluminum Tubes, Aluminum Fins NBS Test No. 166-58 Specimen No. 3. Size B Class 2 Copper Tubes, Copper Fins NBS Test No. 159-58 Specimen No. 4. Size C Class 1 Copper Tubes, Aluminum Fins NBS Test No. 140-57 Specimen No. 5. Size A Class 1 Copper Tubes, Aluminum Fins NBS Test No. 138-57

-

1.1 BACKGROUND

The performance evaluations of condensers discussed in this report represent a resumption in July 1961 of a study started in 1957 and interrupted for fiscal reasons in 1959. Apparatus designed and constructed specifically for this work was originally patterned after a proposed ASRE Standard PS-2.4. During the time the project was inactive, the proposed ASRE Standard PS-2.4 was modified and adopted as ASHRAE Standard 20-60, "Methods of Testing for Rating Remote Mechanical-Draft Air-Cooled and Evaporative Condensers." It should be noted that ASRE (American Society of Refrigerating Engineers) and ASHAE (American Society of Heating and Air Conditioning Engineers) merged in 1959 to form ASHRAE (American Society of Heating, Refrigerating and Air Conditioning Engineers). The primary change between ASRE PS-2.4 and ASHRAE Standard 20-60 affecting this test series was the substitution of a low side refrigerant calorimeter for the air-side psychrometric measurement of heat rejection. In reactivating the project, the airside psychrometric measurement was retained, and the original test system evaporator was modified to function as a low-side refrigerant calorimeter. For some tests a separate low-side refrigerant calorimeter was used. The use of a turbine-type electric flowmeter for determination of the electronic rate of liquid refrigerant flow was retained.

Neither ASRE PS-2.4 or ASHRAE Standard 20-60 established requirements for minimum or maximum subcooling of the liquid refrigerant leaving the condenser. Failure to control the degree of subcooling to as low a positive value as possible, and certainly failure to condense completely will result in unsuitable comparisons of different test condensers. All tests in both the prior and present series were made with condensation of all of the refrigerant (indicated by a sight glass at the condenser outlet) and with subcooling less than five degrees F in most cases and less than 10.5°F in all cases.

ASRE PS-2.4 included Standard Rating Conditions, ASHRAE Standard 20-60 does not. QMR&E Purchase Description dated 22 March 1957 entitled "Condensers, Air-Cooled for Use with Dichlorodifluoromethane (F-12)" set forth the following capacity requirements, at an entering refrigerant saturation temperature of 135°F and 25°F temperature

difference between the entering air (110°F) and entering saturation refrigerant temperature (135°F) for the four series of condensers:

Size	Α	22,300	Btu/hr ((Min.)
Size	В	35,600	Btu/hr ((Min.)
Size	С	46,000	Btu/hr	(Min.)
Size	D	57,000	Btu/hr (

Capacities have also been determined at the following conditions as suggested in ASRE PS-2.4.

	High Rate	Low Rate
Dry bulb temperature of air entering unit	95 °F	95°F
Wet bulb temperature of air entering unit Dry bulb temperature of ambient	75 ° F ±5°F	75°F ±5°F
air Saturation temperature of dry	95°F	95°F
vapor entering condenser Actual temperature of dry	130°F	105°F
refrigerant vapor entering condenser	195°F ±10°F	170°F ±10°F

Other relevant document changes occurring since the original implementation of these tests include Military Specification MIL-C-23122, "Military Specifications for Condensers, Air Cooled, Refrigerant-12" adopted December 27, 1961, and proposed Military Standard "Condensers, Air Cooled, Refrigerant." (FSC 4130)

2.0 TEST APPARATUS AND PROCEDURES

The test apparatus and procedures used were similar to those used for tests previously reported in NBS Reports 6378, 6401, 6420, and 6670, except as modified to conform generally to ASHRAE Standard 20-60, "Standard Methods of Testing for Rating Remote Mechanical-Draft Air-Cooled or Evaporative Condensers."

*

•

Tests were run in general conformance with requirements of ASHRAE Standard 20-60. A few points of non-conformance are discussed.

- The requirement in Section 4-2 of ±0.1°F accuracy of of absolute temperature measurements is unrealistic for normal laboratory-quality measuring systems. ±0.2°F is more realistic and test results reported were based on measurements approaching this degree of accuracy.
- 2. ASHRAE Standard 20-60 requires two simultaneous measurements of refrigerant flow rate as the means for determining performance. Tests reported here compare a psychrometric "air-side" measurement with a simultaneous refrigerant flow measurement. On each run at least these two independent determinations of capacity were made. On some of the runs, the evaporator in the test circuit was adapted and instrumented to serve as a low-side refrigerant calorimeter to provide a third measurement, and a direct comparison with the turbine-type liquid refrigerant flowmeter determination was made in all runs.
- 3. ASHRAE Standard 20-60 does not establish requirements for maximum or minimum subcooling of the liquid refrigerant leaving the test condenser. In fact only by inference does it require that all refrigerant vapor entering the condenser must be condensed. Tests reported were all run with minimum positive subcooling. The desired subcooling was controlled by means of an adjustable flow valve at the receiver inlet.

The three independent measuring systems can be described briefly.

1. Air-side or Psychrometric. The test condenser was mounted in one end of an insulated air duct apparatus installed in a test room with ambient temperature and humidity controlled at the specified condenser entering air conditions. The air was drawn through the condenser by a selected fan discharging at atmospheric pressure in a chamber large enough to simulate free discharge. The air was drawn out of this chamber through a long radius nozzle by means of an auxiliary blower which discharged into the surrounding room temperature and humidity controlling apparatus. Condenser heat rejection capacity was determined by measuring air quantity and enthalpy change and correcting for fan motor energy input.

- 2. Liquid Refrigerant Flowmeter. The subcooled condensed liquid refrigerant was metered by means of a totalizing (integrating) turbine-type flowmeter and heat rejection capacities were determined from refrigerant mass flow and enthalpy change.
- Low-side calorimeter. Liquid refrigerant flow was 3. determined by means of measurement of the enthalpy change in the refrigerant and the energy (heat) required to evaporate the refrigerant in an insulated, metered, electrically heated evaporator using one or the other of two low-side calorimeters. The first was the original tube-type evaporator equipped with immersion electric heaters, modified to operate as a dry system primary calorimeter by installing electric energy meters, thermocouples, and better insulation. Although this calorimeter was generally satisfactory for the larger size condensers producing liquid refrigerant flow rates greater than about 8.0 lbs/min. its overall accuracy was not considered suitable for useful comparison. For smaller flow rates a secondary refirgerant calorimeter constructed for a previous study was used, and results are given for the one Size A condenser included in this report.

Figures 1 through 8 show certain features of the test apparatus and instrumentation.

- Figure 1. Schematic drawing of complete measuring apparatus.
- Figure 2. Inclined gauges and manometers for air pressure measurements, totalizing counter for refrigerant liquid flowmeter, barometer, hot and cold temperature reference baths. Switch box (lower left) controlled position of auxiliary blower inlet damper.
- Figure 3. Wet and dry-bulb thermocouple grid at test condenser air inlet.
- Figure 4. Auxiliary blower (left) and inlet damper control motor. Blower is at exit end of air duct apparatus.

- Figure 5. Condensed refrigerant liquid line leaving test condenser (right). Pressure tap (right), sight glass (center) and thermocouple well (left) and part of measuring system for determining temperature and degree of subcooling of leaving refrigerant liquid.
- Figure 6. Test system refrigerant pressure gauges and precision galvanometer type potentiometer.
- Figure 7. Instruments for measurement of electric energy, current and voltage, and relative humidity.
- Figure 8. Components of condenser test circuit including compressor, vertical liquid receiver, primary dry system calorimeter evaporator (in plywood enclosure, top), and various accessories for controlling and measuring refrigerant temperatures, pressures and flow. Two pressure gauges (center) indicate pressure drop across liquid line flowmeter(s) directly above gauges.

Figure 9. Secondary refrigerant calorimeter.

The vertical liquid receiver shown in Figure 8 was located near an outside door and during cold weather was influenced by frequent and excessive changes in ambient temperatures not experienced during earlier tests. These temperature changes interfered with control of subcooling A water coil was formed around the receiver, with water flow controlled by receiver refrigerant pressure and the entire assembly insulated as shown in Figure 8, eliminating the effect of ambient temperature changes. Water-cooling the receiver also facilitated pump down of the refrigerant when changing test condensers.

Additional details concerning apparatus will be found under "Data and Results."

.

3.0 DATA AND RESULTS

Each condenser coil was studied at three different sets of standard conditions as previously described. Each test required control of refrigerant inlet temperature and pressure, air inlet temperature and pressure, air outlet pressure and refrigerant subcooling. Although each condenser was supplied with its own fan, and fan motor, tests were made using a selected military standard fan, and fan motor conforming to the fan air delivery vs. static pressure requirements of the purchase description. Figure 10 shows the three fan types and two motors used for the series.

Figure 11 shows the typical construction of the tube, "Inner-Fin," and fin assembly used in all of the condensers covered by this report. Refrigerant passage is through the spirally-wound accordian-pleated "Inner-Fin." The center tube is closed to refrigerant flow. Materials and dimensions vary as reported. Note the cut raised sections in the external fins.

Figure 12 is a pressure-enthalpy diagram for dichlorodifluoromethane on which the three sets of rating conditions are shown. Symbols used in the tables of test results are identified on this diagram.

Photographs and drawings of the five specimen condensers are shown in Figures 13 to 24. Dimensional and material data and test results are summarized in Tables 1 to 10.

In each table of test results, Items 1 through 6 are specified test conditions and the corresponding observed conditions, Items 7 and 8 are performance observations based on air-side measurements, Items 13 through 23 are ratings derived from both sets of measurements. Two additional ratings, Items 24 and 25 are given separately for further comparison. They are:

Item 24 Btu per (sq.ft.) (°F) (Hour)

Item 25 Btu per (sq.ft.) (°F) (CFM) (Hour

*

·

where:

sq.ft. = total surface area of the condenser

°F

CFM = air flow rate

Items 1 through 12, 17, and 18 are observed test results, corrected for gauge calibration, etc. Items 13 through 16 and 19 through 25 are values which have been converted from observed test conditions to standard conditions. Item 14 "Condensing Heat Rejection" includes desuperheating of the inlet refrigerant. Where a zero appears in Item 15, the adjusted average value for total capacity was the same or slightly smaller than condensing heat rejection as determined from refrigerant flow rate.

Specimen #1, a Size B Class 4 condenser, NBS No. 170-58 was the first unit tested following reactivation of the test apparatus. Figure 13 is a view of this condenser which had steel tubes and fins, and the tubes contained the patented "Inner-Fin" made of aluminum. Figure 14 and Table 1 give the dimensional data, and Table 2 gives the test results for this condenser. In Figure 14, the black tube connections on the right side view designated tubes which connect into headers, the clear tube connections are return bends and do not connect to the headers.

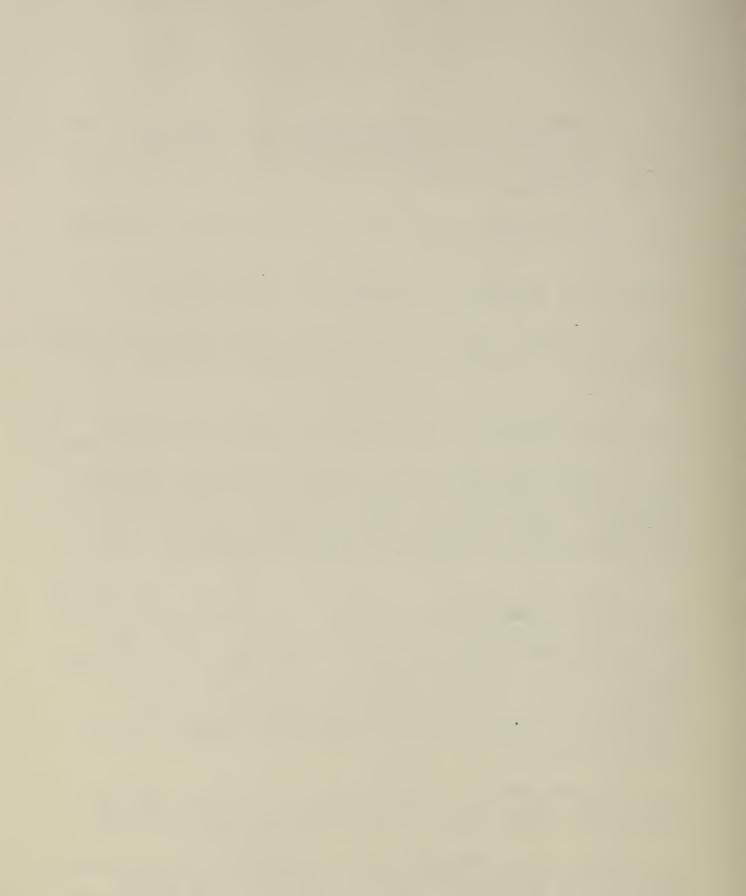
During the collection of these data, a difference in the degree of liquid refrigerant subcooling between the outlet conditions as observed at the sight glass and as shown by the pressure temperature relationship was noted. Bubles appeared in the sight glass where the instruments indicated a degree or two of subcooling. The instruments were checked and the temperature measuring station was relocated with relation to the sight glass as it was thought that this might be causing some disturbance. The difference persisted but because it was slight, nothing more was done at this time. Later in this test series, the discrepancy was found to be caused by lack of adequate mixing of the vapor and liquid leaving the different parallel circuits.

Specimen #2, was a Size B Class 3 all-aluminum condenser. It was equipped with an aluminum patented "Inner-Fin." Figure 15 is a view of this specimen, NBS No. 166-58, with shroud removed. Coil has been cut at lower left for tube and fin examination.

The fin bond on this coil seemed to be poor compared with others in the series.

Figure 16 and Table 3 give dimensional data for Specimen #2, and Table 4 presents the test results.

Specimen #3 was a Size B Class 2 condenser with copper fins and copper tubes. It is equipped with a copper "Inner-Fin." Figure 17 is a view of this condenser, NBS No. 159-58.


Figure 18 and Table 5 present dimensional characteristics, and Table 6 gives the test results for Specimen #3.

Specimen #4 was a Size C Class 1 condenser, NBS No. 140-57, with aluminum fins and copper tubes with aluminum "Inner-Fin" construction. Figure 19 is a view of this condenser. Figure 20 shows the condenser in place in the rack designed to position it in the test apparatus, and Figure 21 shows the entering air face of the coil.

Figure 22 and Table 7 shows the dimensions and Table 8 gives test results of Specimen #4. It will be noted in the table that two separate tests, on different dates, were made at the ASRE High Saturation Temperature, both with free air discharge. Ability of the test apparatus to repeat is shown by the 2.9 percent agreement for the two air side determinations, 1.6 percent for the refrigerant side determination, and 0.14 percent agreement between the two total heat rejection ratings. Other similarities can be seen in Table 8.

Specimen #5 was a Size A Class 1 condenser, NBS No. 138-57 with copper tubes, aluminum fins, and an aluminum "Inner-Fin" in the tubes. Figure 23 shows this specimen.

Figure 24 and Table 9 give dimensional data and Table 10 presents the test results for Specimen #5. These test results were affected by partial restriction at the condenser inlet. See later discussion.

In Table 10 two values are shown for Items 9 and 12 for each of the three tests reported. The numbers to the left of each main column represent the refrigerant flow rate and total heat rejection capacity for Items 9 and 12 respectively, as determined by the low side secondary refrigerant calorimeter shown in Figure 9. Items 9 and 12 in the main column for each test were derived from the refrigerant liquid turbinetype flowmeter. The agreements obtained between flow rates determined by the two methods were 2.0, 2.0, and 0.5 per cent for the three tests. Specimen #5 was the only condenser of the five in this report for which the secondary refrigerant calorimeter values were obtained. The liquid refrigerant flowmeter was used for all tests here reported.

Examination of the condenser following the completion of the test series showed that the two inlet tubes were partially restricted by foreign material at the inlet face of the inner fin. Consequently, these test results should not be considered representative of those for a similar condenser with no such restriction.

The foreign material was probably introduced into this condenser when it was being used at the outset of the test series to check the performance of the test system. Burnout of an electric immersion heater in the system evaporator contaminated the system. The condenser was removed and the system cleaned at that time and the condenser was not tested until the second part of the test series. The restriction at the inlet tube was not discovered until the test apparatus was being dismantled, which prevented running comparative tests of another specimen of the same type and size.

The effect of the restriction on the capacity is not known. A previous experience in this test series involving two Size B condensers also manufactured by Dunham-Bush, Inc., one partially restricted, the other clean, was reported earlier in NBS Report 6378. The difference in capacity at the QMR&E High Ambient Temperature Conditions for those two condensers was about 7 per cent.

For the Size A condenser in the current test series, the condenser coil internal pressure drop, Item 10, for the QMR&E High Ambient Temperature Test was 7.7 psi as shown in Table 10. There is, of course, some pressure drop for any condenser, but if it is assumed ideally that all or most of this observed pressure drop occurred at the inlet restriction, the refrigerant saturation temperature in the coil would have been 132°F instead of the 135°F design test conditions. With air entering the condenser at 110°F assuming that neither tube was completely blocked, the probable capacity reductions can be approximated by the relationship:

$$1 - \left(\frac{132 - 110}{135 - 110}\right) = 0.13 \text{ or } 13\%$$

If one of the two tubes was completely blocked, the capacity reduction was probably more than this amount and less than 50 per cent. It did not appear that either tube was completely blocked but the first row (in direction of air flow) contained more foreign material than the second. In considering these assumptions it must be remembered that the subcooling of the refrigerant liquid leaving the condenser was controlled at a minimum value as a part of the test conditions.

COMPARISON OF SEVEN DUNHAM BUSH-CONDENSERS

Table 11 shows the total heat rejection capacity for seven Dunham-Bush condensers (including two Size B condensers previously reported in NBS Report 6378. Also shown is the percent of QMR&E requirement (22,300, 35,600, and 46,000 BTUH for Sizes A, B, and C respectively) for the QMR&E High Ambient Temperature Test.

TABLE 11

TOTAL HEAT REJECTION OF SEVEN DUNHAM-BUSH CONDENSERS

Condenser	Class	Size	TOTAL HEAT REJECTION, BTUH				
<u>NBS No.</u>			ASRE High Sath Temp.	ASRE Low Sath Temp.	QMR&E High Amb.	QMR&E Req'mnt	
138-57 ^a	1	A	21480	6190	16120	72	
139-57 ^a , ^b	1	В	<u>3</u> 9400	10600	30100	85	
155-58 ^b	1	В	45000		32100	90	
159-58	2	В.	41010	8430	29890	84	
166-58	3	в	47940	7170	32810	92	
170-58	4	В	38990	8730 `	27830	78	
140-57	l	С	55490	9665	37950	83	

a. Foreign material in condenser inlet during tests b. Previously reported in NBS Report 6378.

-12-

Table 12 lists the Heat Transmission Coefficient, BTUH per Ft² (°F log mean temperature difference), (Item 24 in Tables of Test Results), for the seven Dunham-Bush condensers.

TABLE 12

HEAT TRANSMISSION COEFFICIENT OF SEVEN DUNHAM-BUSH CONDENSERS

Condenser NBS No.	Class	Size		ASRE High Sat'n Temp.		ASRE Low Sat'n Temp.		QMR&E High Ambient	
			Trans. Coeff. BTUH/ ft ² (°F)	Air Face Vel. FPM ^C	Trans. Coeff. BTUH/ ft ² (F)	Air Face Vel FPM ^c	Trans. Coeff. BTUH/ ft ² (°F)	Air Face Vel. FPM ^C	
138-57 ^a	1	А	5.03	540	5.32	555	5.30	585	
139-57 ^{a,b}	l	В	5.01	660	4.67	655	5.42	655	
155-58 ^a	'n	B	5.84	660			6.00	655	
159-58	2	В	5.54	720	4.67	710	5.84	720	
166-58	3	В	6.87	675	3.22	685	6.54	690	
170-58	4	В	5.18	695	4.15	690	5.46	665	
140-57	1	. C	4.62	545	3.05	545	4.35	535	

a. Foreign material in condenser inlet during tests. b. Previously reported in NBS Report 6378

c. Based on CFM at Test Conditions (Item 7, Tables of Test Results)

Table 13 gives the Heat Transmission Coefficient, BTUH per Ft² (°F log mean temperature difference) (CFM), (Item 25 in Tables of Test Results) for the seven Dunham-Bush condensers

TABLE 13

HEAT TRANSMISSION COEFFICIENT OF SEVEN DUNHAM-BUSH CONDENSERS

Condenser NBS No.	<u>Class</u>	Size	Coefficient,	BTUH Per Ft	2 (°F log	Mtd)(CFM ^C)
			ASRE High Sat'n Temp.	ASRE Low Sat'n Temp.	QMR&E High Amb.	
138-57 ^a	1	А	0.00302	0.00312	0.00313	
139-57 ^{a,b}	l	B	.00146	.00135	.00162	
155-58 ^b	l	B	.00170		.00183	
159-58	2	B	.00149	.00125	.00163	
166-58	3	В	.00192	.00088	.00187	
170-58	4	В	.00145	.00114	.00162	
140-57	1	C	.00127	.00083	.00122	

a. Foreign material in condenser inlet during tests.

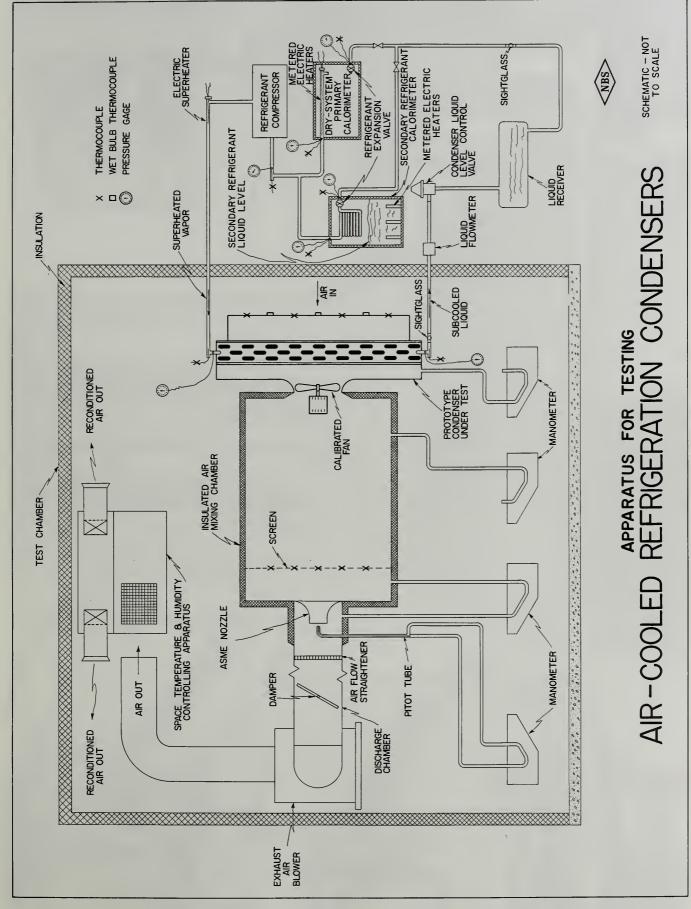
b. Previously reported in NBS Report 6378c. Based on standard air, (Item 16 in Tables of Test Results)

·

Table 14 presents the Heat Transmission Coefficient, BTUH per Ft² (°F log mean temperature difference) (FPM entering air face velocity).

4.8

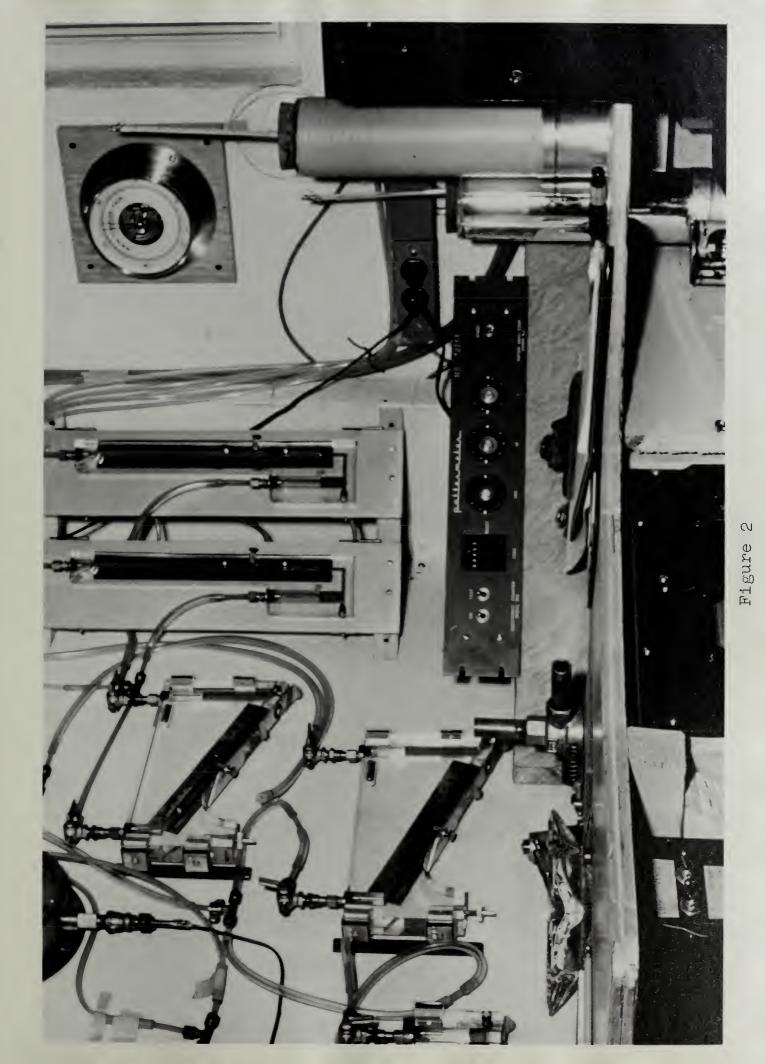
TABLE 14

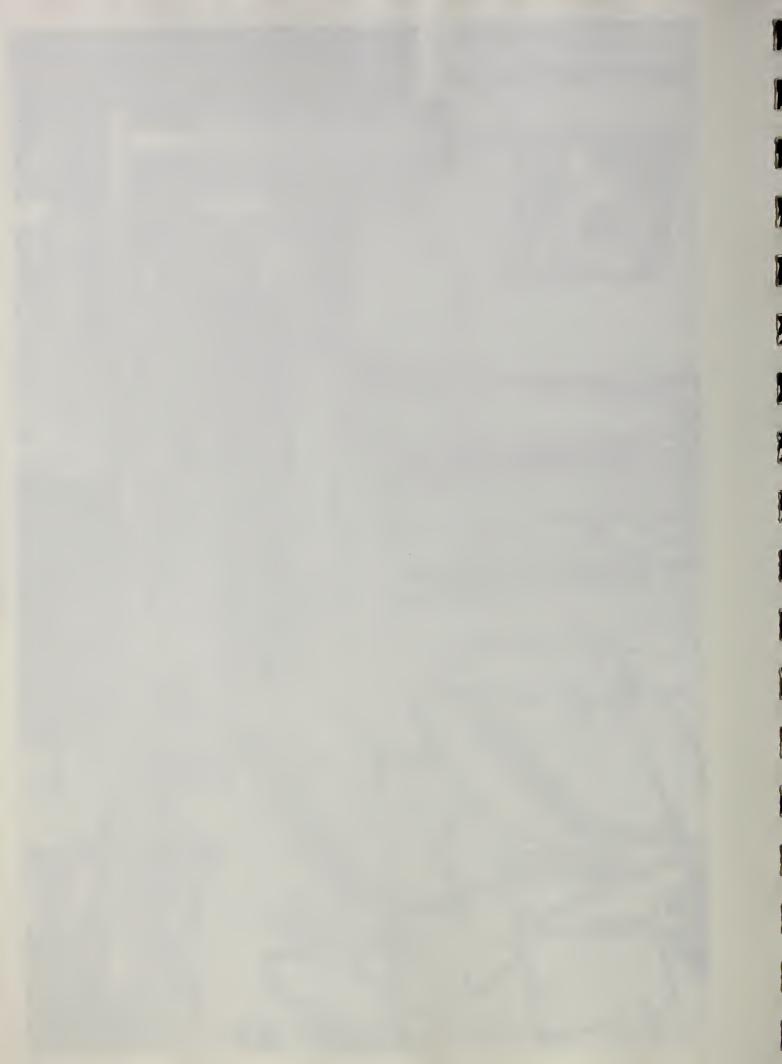

HEAT TRANSMISSION COEFFICIENT OF SEVEN DUNHAMBBUSH CONDENSERS

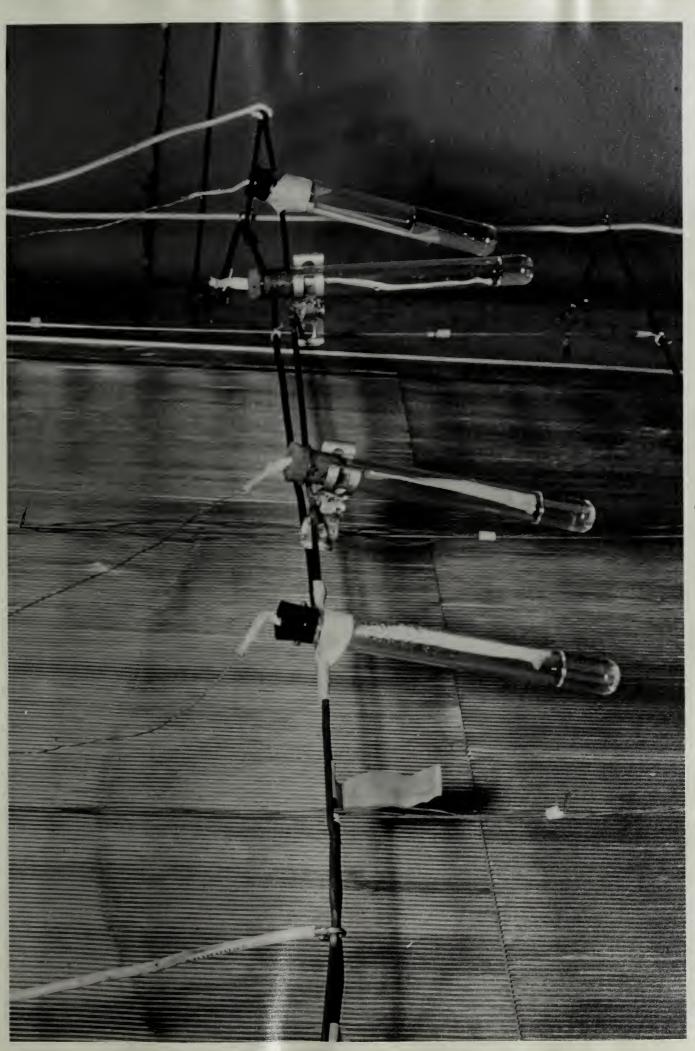
Condenser NBS No.	Class	Size	Coefficient,	BTUH Per Ft ²	(°F log Mt	td)(FPM ^C)
			ASRE High Sat'n Temp.	ASRE Low Sat'n Temp.	QMR&E High Amb.	
138-57 ^a	l	А	0.00932	0.00959	0.00906	
139-57 ^{a,b}	1	В	.00759	.00713	.00828	
155-58 ^b	1	в	.00885		.00916	
159-58	2	в	.00770	.00658	.00811	
166-58	3	в	.0102	.00470	.00948	
170-58	4	В	.00746	.00602	.00821	
140-57	l	C	.00848	.00560	.00813	

a. Foreign material in condenser inlet during tests

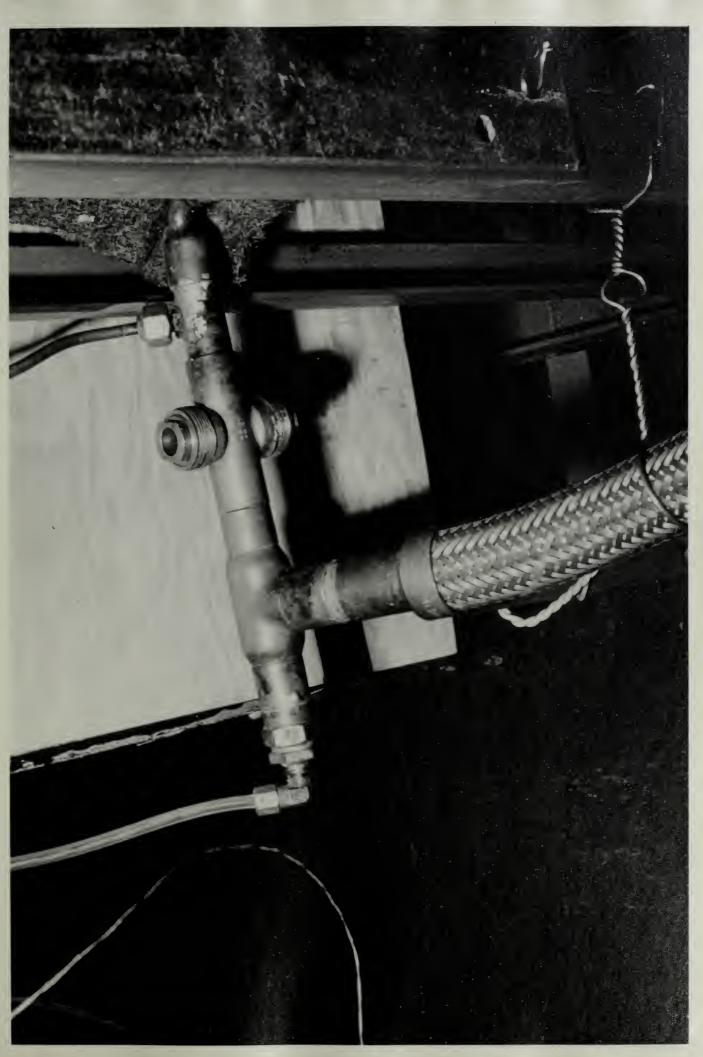
b. Previously reported in NBS Report 6378c. Based on FPM entering air face velocity at test conditions

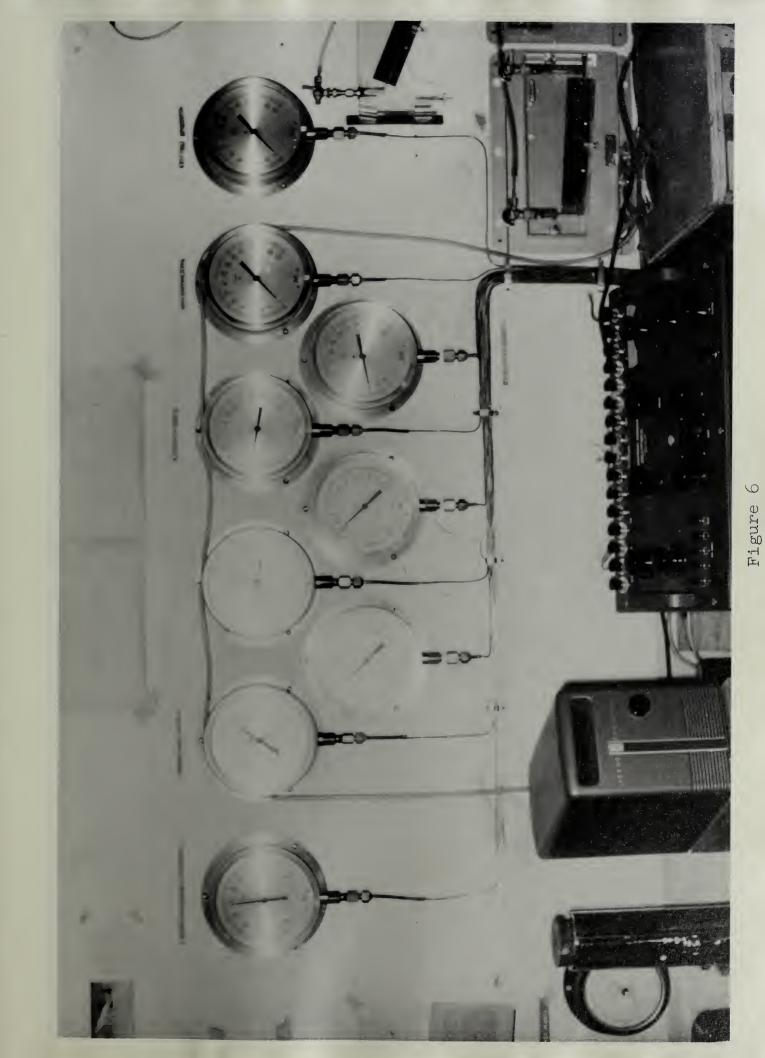


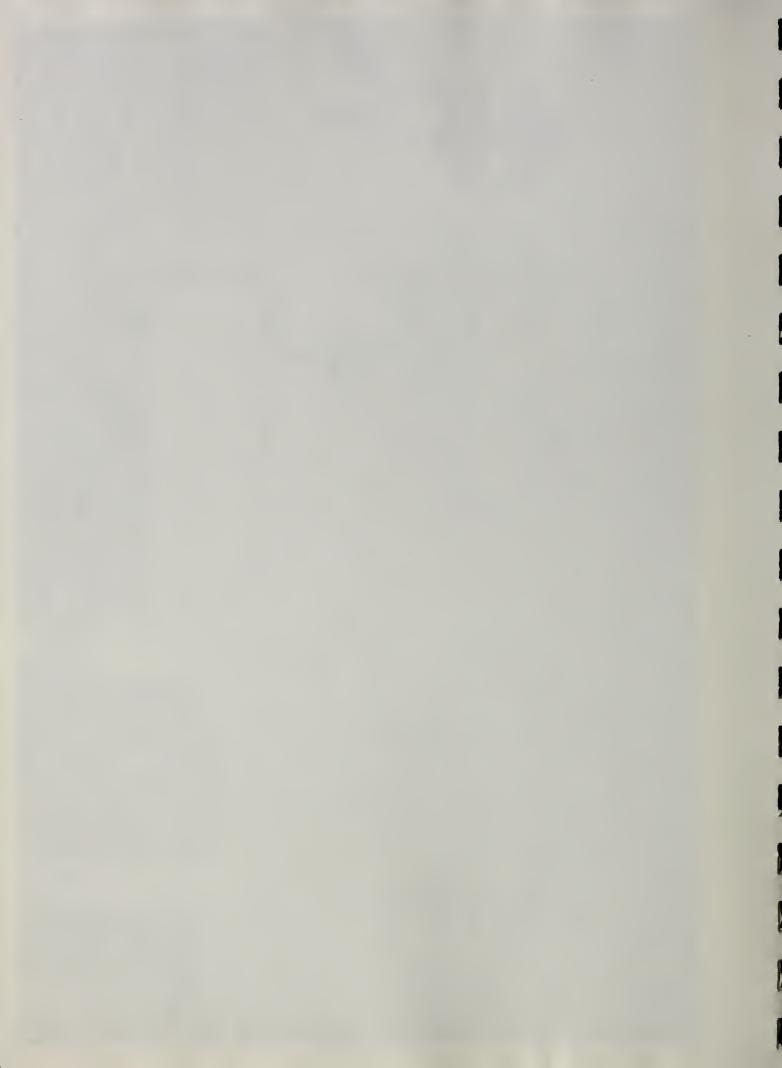


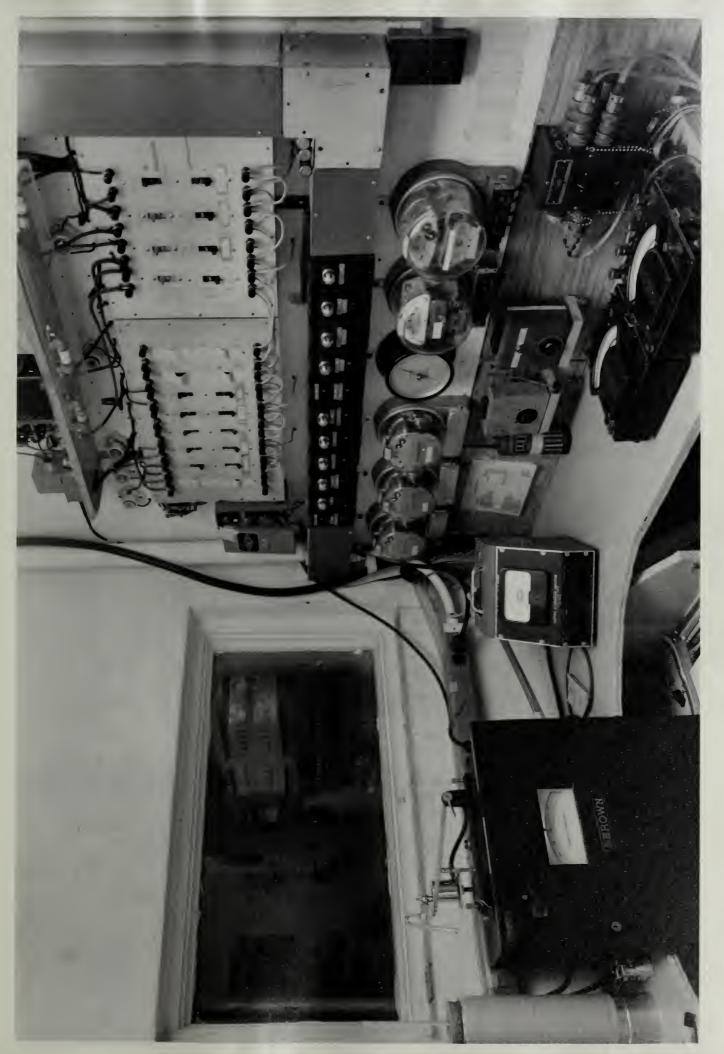

Figure

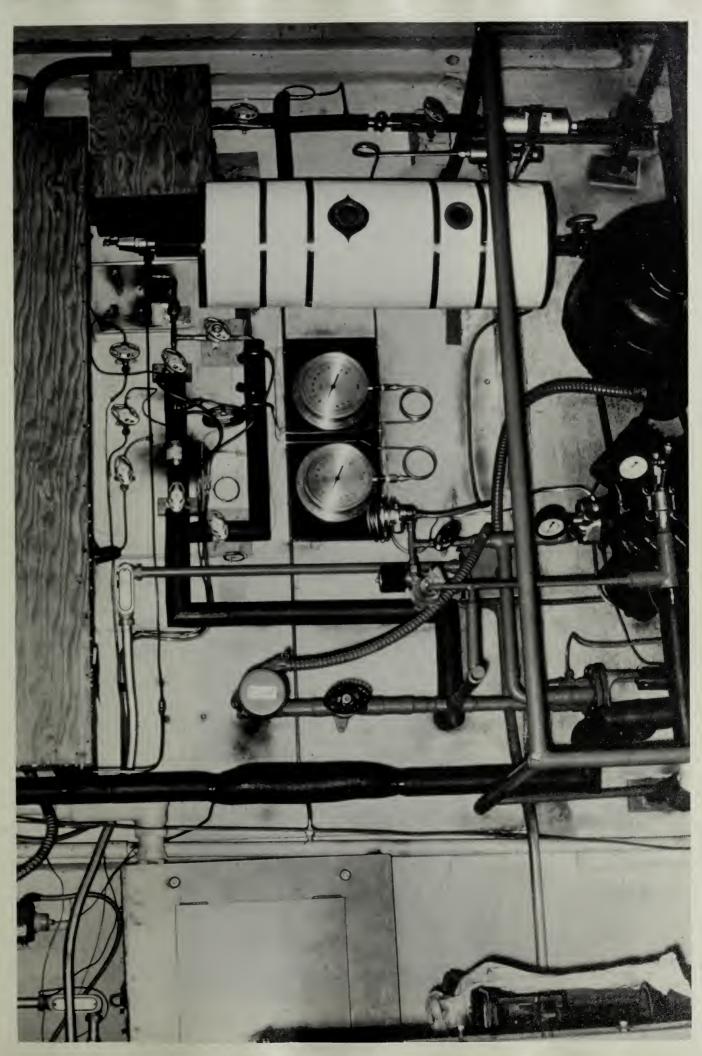
Ч











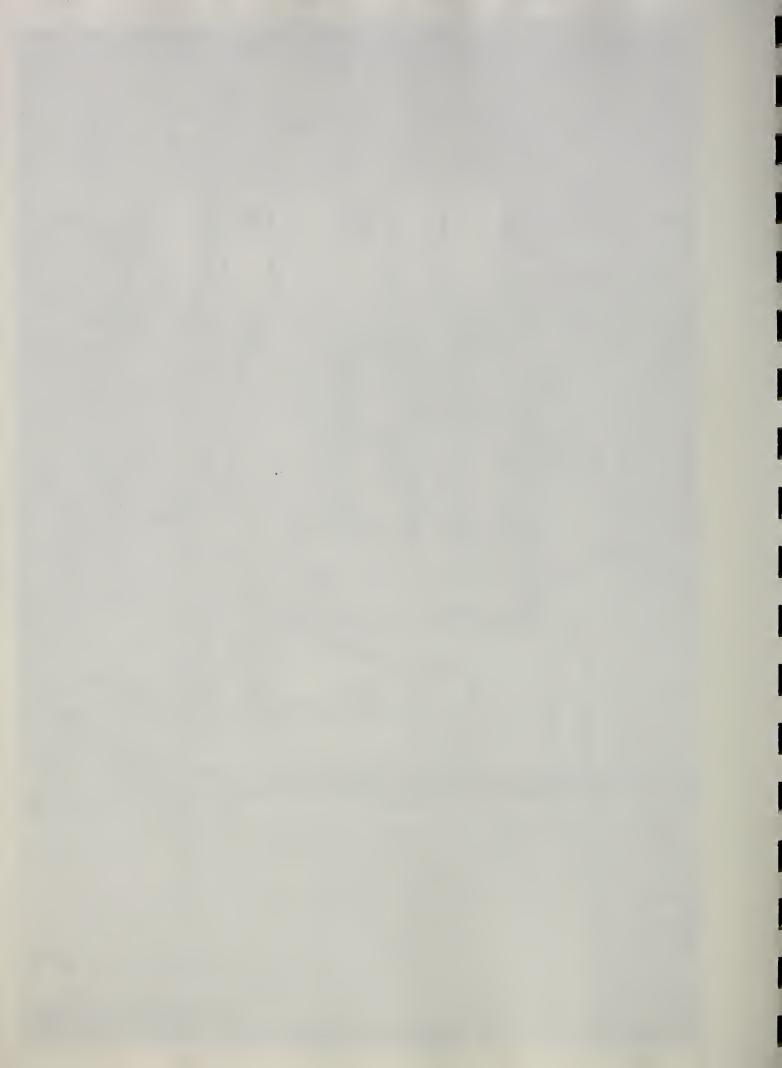
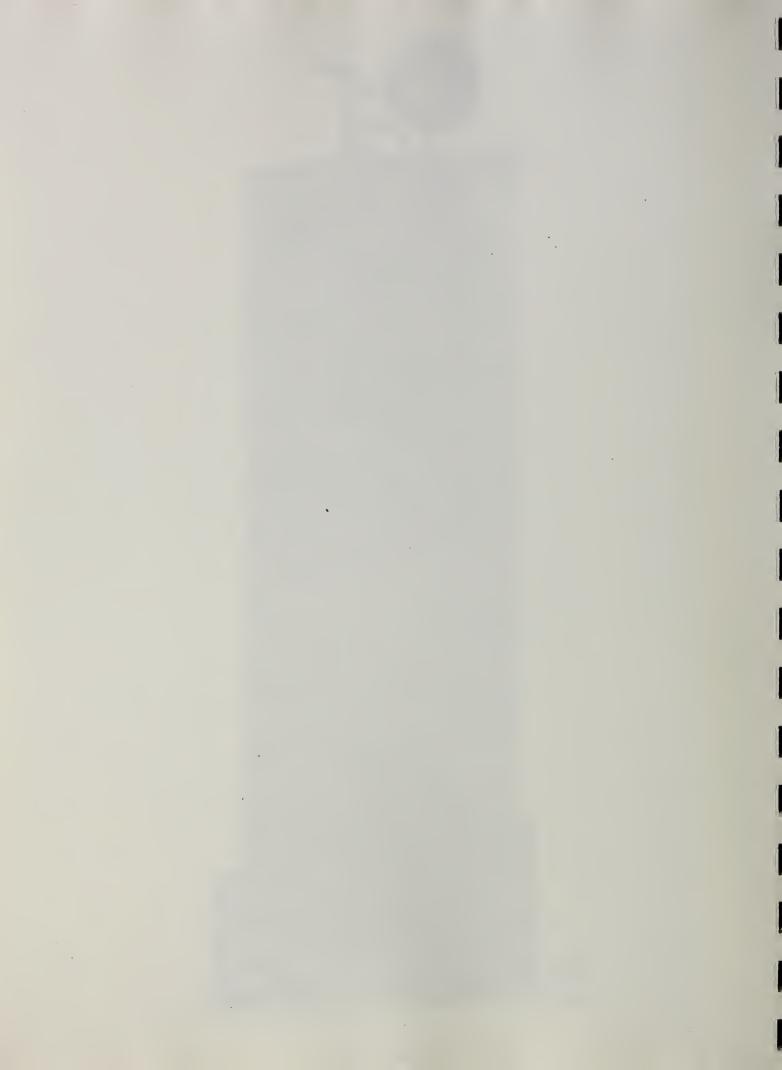



Figure 9

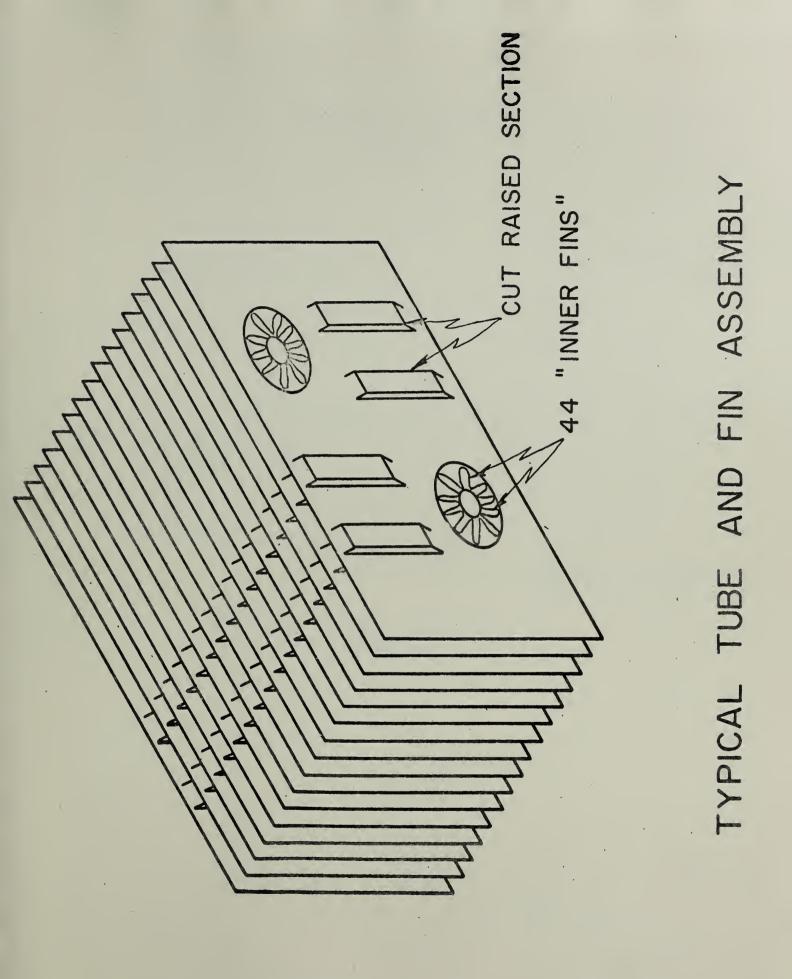
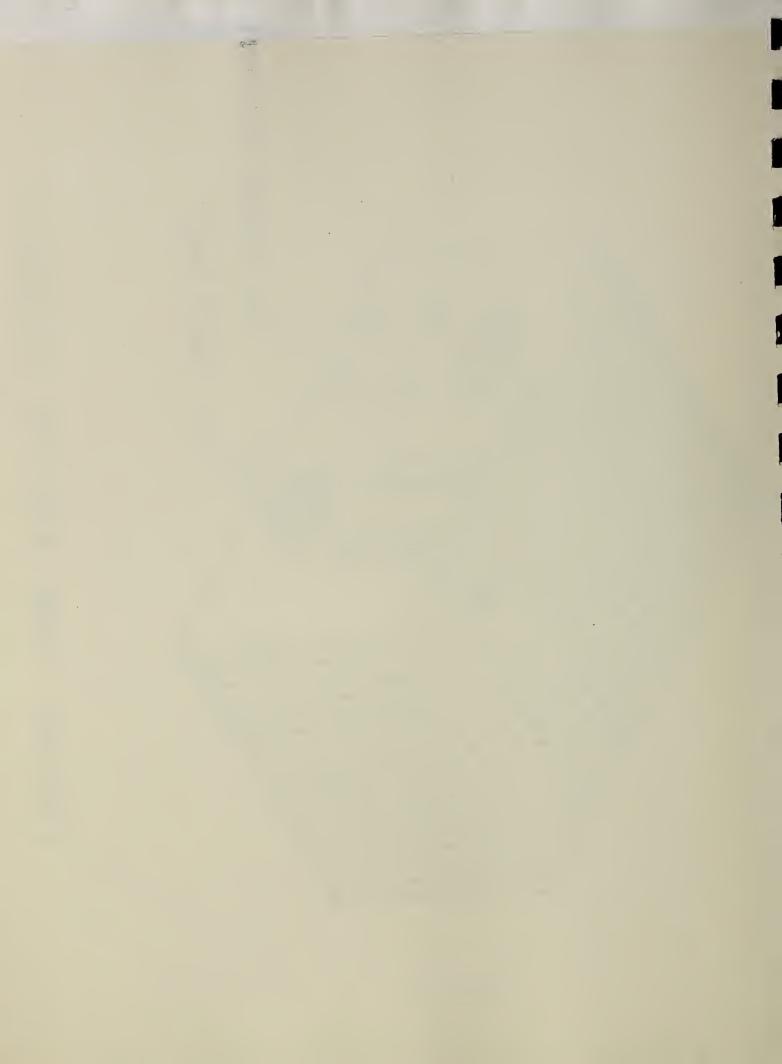
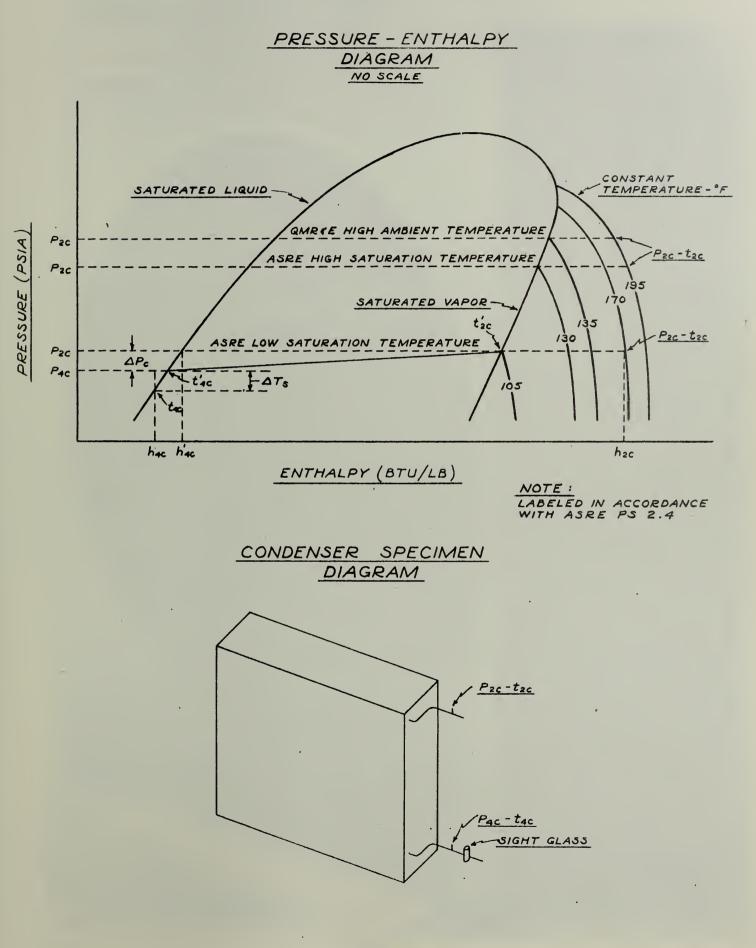
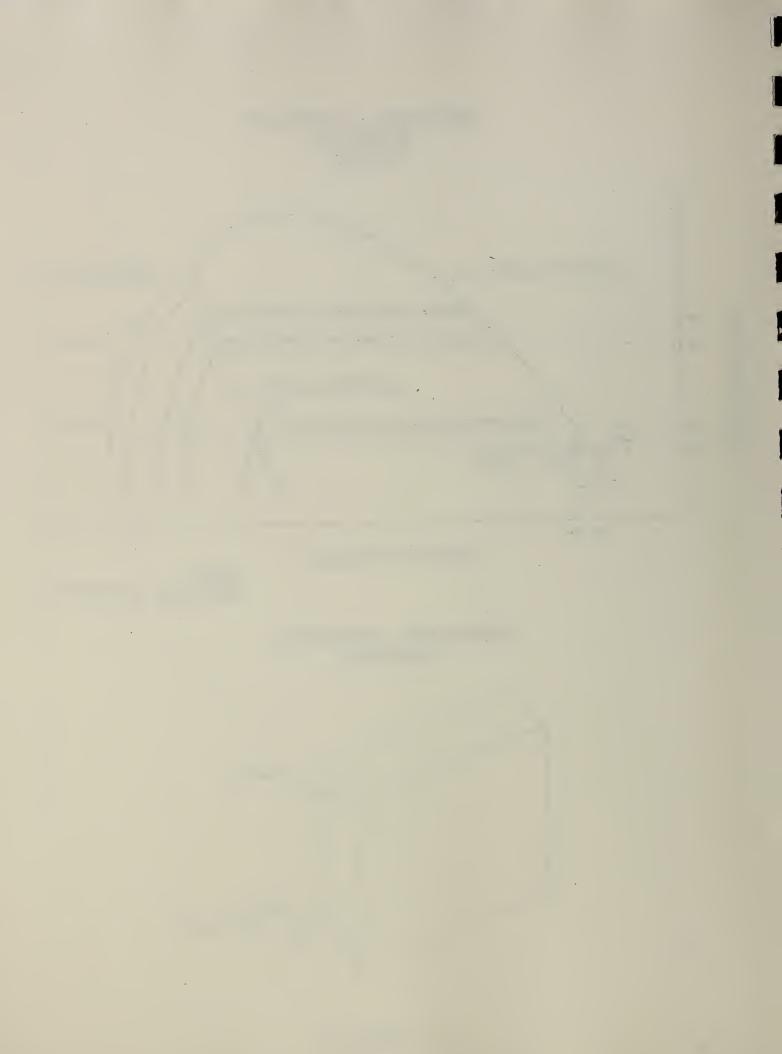
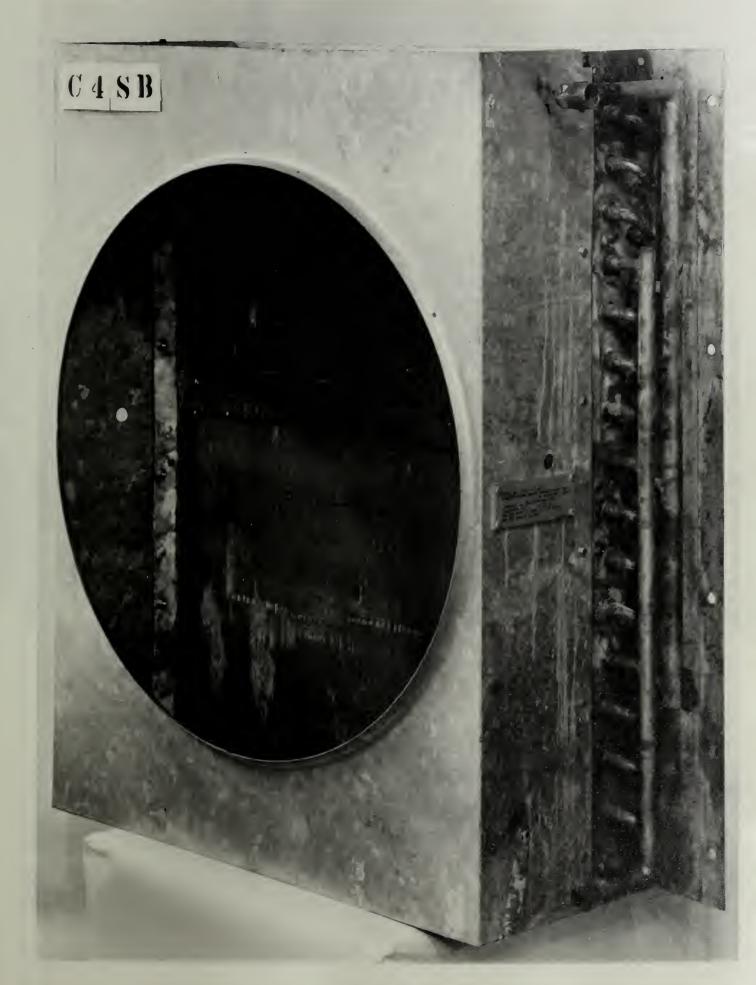
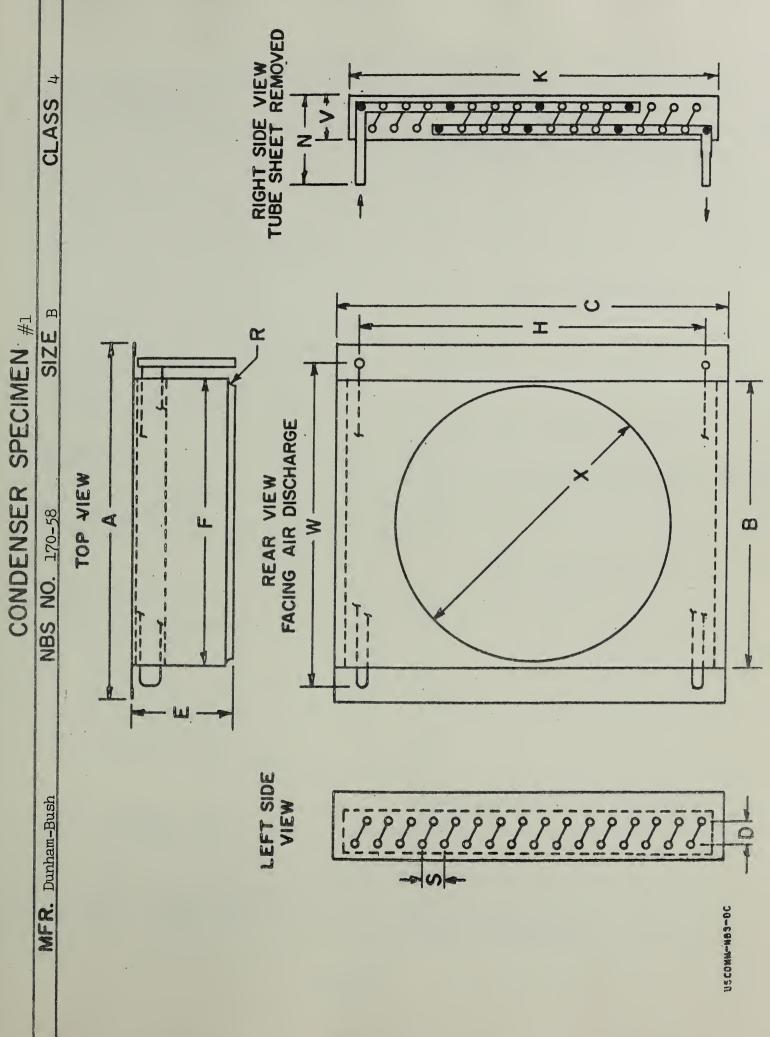
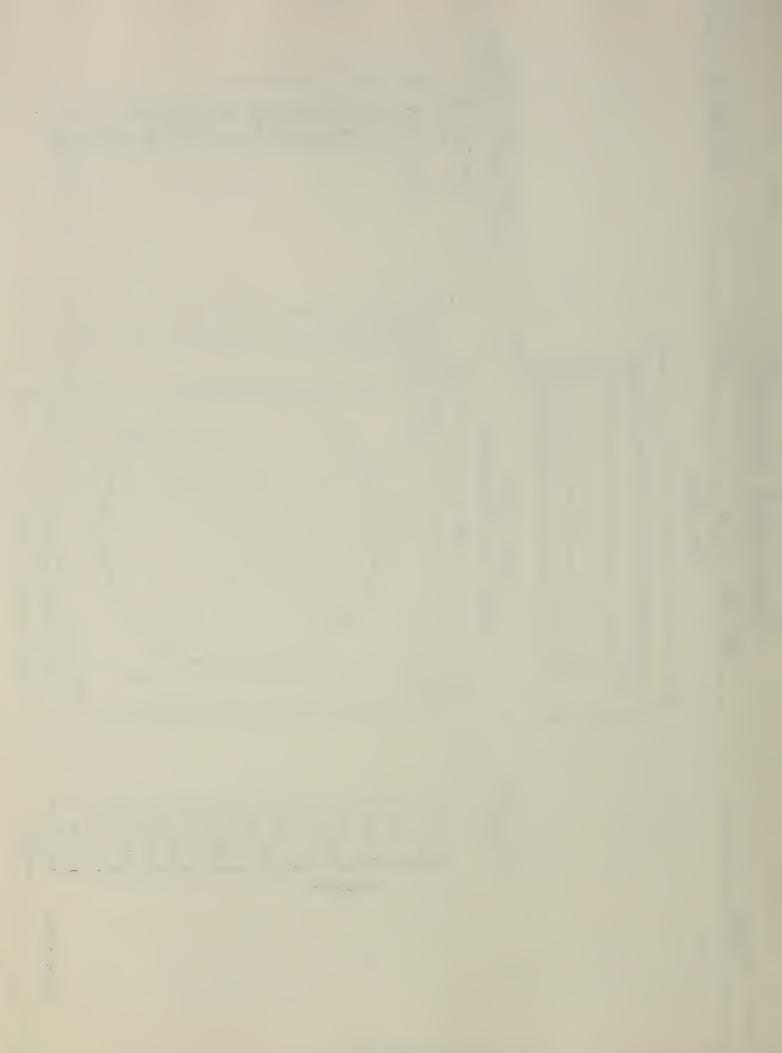
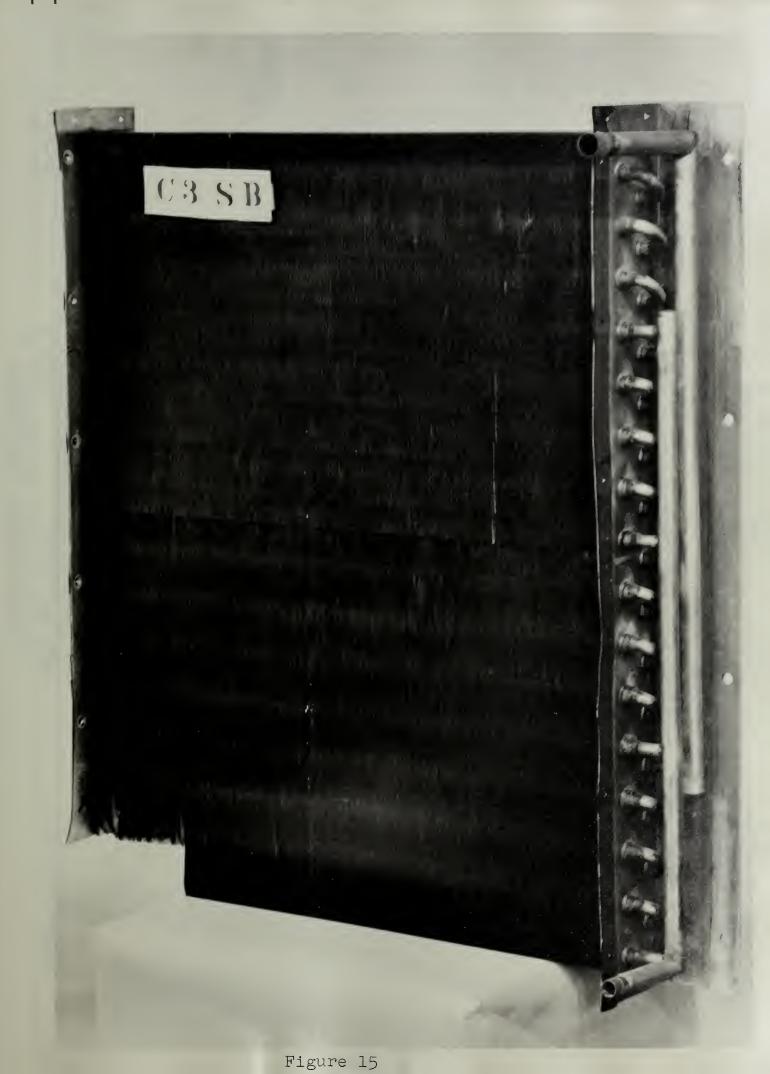






Figure 11





C	OND	EN	SER	SPEC	CIMEN	#1
---	-----	----	-----	------	-------	----


MFR. Dunham-Bush	<u>2017 - 1996 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>	SIZE - B
NBS NO. 170-58		CLASS - 4
ITEM	PROPERTY	REMARKS
	COIL TU	BE CHARACTERISTICS
I MATERIAL	Steel	
2 NUMBER OF ROWS DEEP	2	
3 NUMBER OF TUBES HIGH	16	
4 NUMBER OF CIRCUITS IN PARALLEL	<u> </u>	
5 NUMBER OF TUBES PER CIRCUIT	8	
6 TUBE DIAMETER, O.D., IN.	5/8	With aluminum "Inner Fin"
7 TUBE WALL THICKNESS , IN.		
& TUBE RETURN BEND DIAMETER, O.D., IN	. 1/2	
9 GAS INLET CONNECTION DIAM., O.D., IN.		ľ
IO LIQUID OUTLET CONN. DIAMETER, O.D. II	. 5/8	
II VERTICAL TUBE SPACING, IN.	2	
12 PRIMARY SURFACE AREA, SQ. FT.	10.75	
	COIL	FIN CHARACTERISTICS
I MATERIAL	Steel	
2 TYPE OF FIN	Plate	Flat with cut raised section
3 FIN SPACING , PER INCH	. 8.	
4 FIN THICKNESS, IN.	0.02	
5 SECONDARY SURFACE AREA, SQ.FT.	249.6	
·	(COIL DIMENSIONS
I FINNED HEIGHT, IN. K	32	
2 FINNED WIDTH, IN. F	25 1/2	•
3 FINNED DEPTH, IN. V	3	
4 COIL HEIGHT, IN.	31	
S COIL WIDTH, IN.	/ 29	
6 COIL DEPTH, IN. D	1 1/2	
7 COIL DEPTH, OVERALL, IN.		
8 FACE AREA , SQ. FT.	5.67	
9 TOTAL SURFACE AREA, SQ.FT.	260.4	
		CONDENSER DIMENSIONS
I WIDTH, OVERALL, IN.		
2 WIDTH, SHROUD, IN. B		
3 HEIGHT, IN. C		
4 DEPTH, IN. E		
S BELLMOUTH ORIFICE DIAMETER, IN. X	<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	
6 BELLMOUTH RADIUS, IN. R	0.406	Approx.

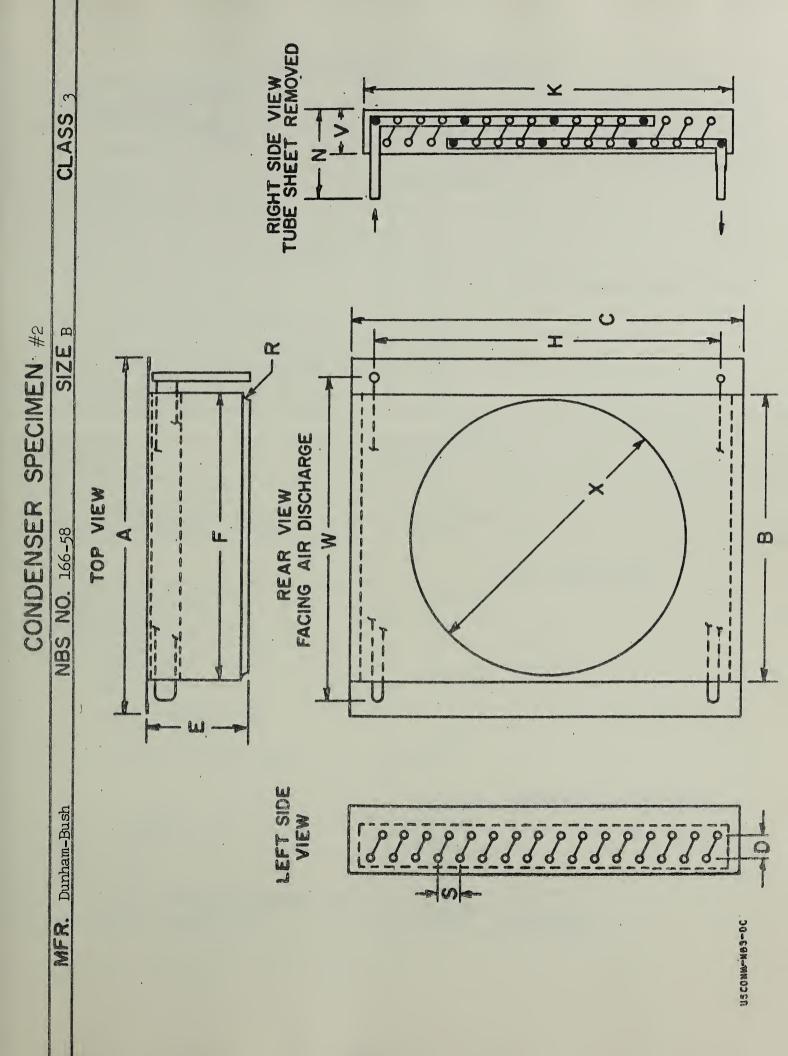
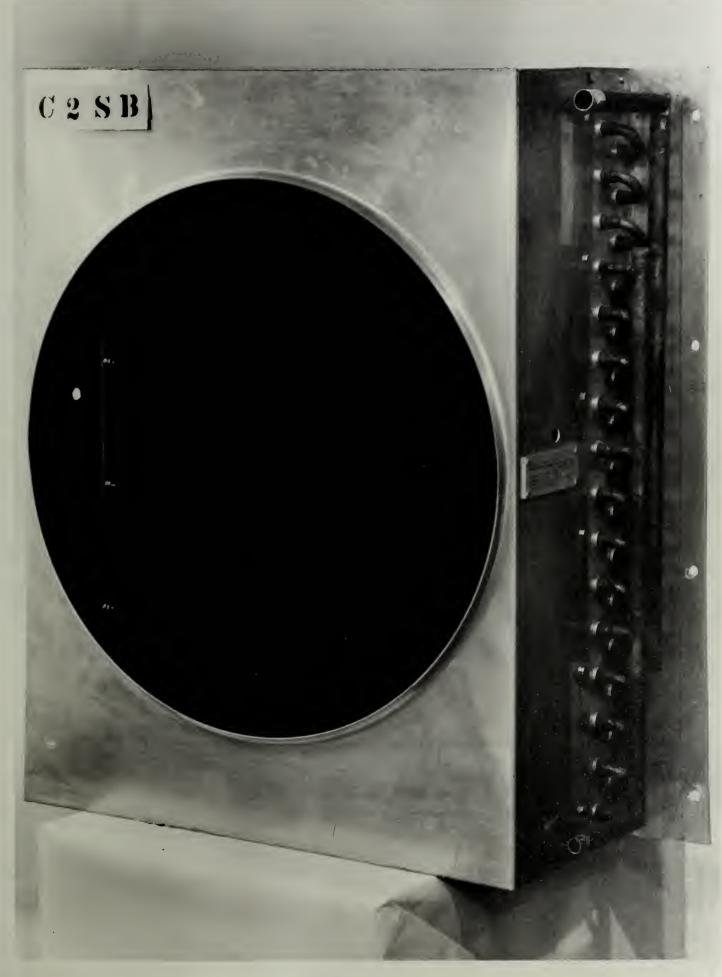

					+ #			
MFR. Dunham-Bush			NBS NO.	170-58	SIZE - B		CLASS -	
AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED		·	Ĩ	ASRE HIGH SATURATION TEMPERATURE	LOW SAT	ASRE LOW SATURATION TEMPERATURE	HIGH A	QMR «E HIGH AMBIENT TEMPERATURE
FAN MFR. TO TRINGTON FAN SFPIAL NO. E-2420-4			03	OBSERVED CONDITION	607	OBSERVED	03	
SPEE			1011010	AIR FLOW RATE CFM	1012012	AIR FLOW RATE CFM	1014074	AIR FLOW RATE CFM
ITEM			, 20°2	FREE DISCH.	5,02	FREE DISCHARGE	202	
I. BAROMETRIC PRESSURE	Pab	EH"	29.92/	29.90	29.921	29.72	29.921	29.41
2. DRY BULB, TEMPERATURE OF 2. AIR ENTERING COIL	¢ae	4	95	95.4	95	95.0	. 011	110.0
3. WET BULD TEMPERATURE OF 3. AIR ENTERING COIL	t'ae	4	75±5	78.5	75±5	78.3		72.8
4. DRY BULS TEMPERATURE OF 4. AMBIENT AIR	tae	ч.	95	95.4	50	95.0	011	110.0
S. SATURATION TEMPERATURE OF S. ENTERING REFRIGERANT VAPOR	t 20	LL.	130	1:30.4	105	104.3	135	135.0
6. SUPERHEAT TEMPERATURE OF 6. ENTERING REFRIGERANT VAPOR	tac	4.	195 \$ 10	189.7	170 \$ 10	3.6di		194.0
			AIR	R FLOW METHOD		AIR FLOW	METHOD	
7. NOZZLE AIR AND WATER VAPOR MIXTURE FLOW RATE	Q.ed	CFM		3929		3917		3759
8. TOTAL HEAT REJECTION 8. CAPACITY	940	BTUH		. 38890		8094		28130
			REFRIC	REFRIGERANT FLOW METHOD		REFRIGERANT	FLOW METHOD	THOD
S. REFRIGERANT FLOW RATE	Wr	Ibfmin		10.01		1.98		7.38
10. CONDENSER COIL INTERNAL PRESSURE DROP	APc	PSI		7.7		1.1		5.0
II. SUBCOOLING OF LEAVING REFRIGERANT LIQUID	473	4	10° MAX.	7.7	S-MAX.	5.1		1.1
12. TOTAL HEAT REJECTION . CAPACITY	9 tr	BTUH		39090		8076		27530
				RATINGS		RATINGS	NGS	
13. TOTAL HEAT REJECTION	948	BTUH		38990	•	8732		27830
14. CONDENSING HEAT REJECTION	9cR	BTUH		37860		8561		27180
13. SUBCOOLING HEAT REJECTION	9sr	BTUH		1123		171		647
	a a	CFM		3578		3647	•	3364
17. CONDENSER COIL 17. EXTERNAL RESISTANCE	Pas	"H20		0.25		0.25		0.22
16. FAN MOTOR POWER	Ptm	WATTS		480		475		462
19. FAN BRAKE HORSEPOWER	٩	BHP		1		1		•
20. HEAT REJECTION PER UNIT PRIMARY SURFACE AREA	BTUH	1/35	•	3610	-	866.3	•	2577
21. HEAT REJECTION PER UNIT SECONDARY SURFACE AREA	BTUH	1/5F		156.2		34.98		1.11.4
22. HEAT REJECTION PER UNIT TOTAL SURFACE AREA	BTUH/SF	1/5F		149.7		33.53		106.9
23. HEAT REJECTION PER CFM	BTUH	7	1	10.90		2.39	-	8-27
" BTUH/SF	•F)(CFM)	(1		0.00145	•	0.00114		0.00162

Table 2



CONDENSER SPECIMEN #2

SIZE - B
CLASS - 3
RTY REMARKS
IL TUBE CHARACTERISTICS
num
With aluminum "Inner Fin"
)
COIL FIN CHARACTERISTICS
um
Flat with cut raised section
11
COIL DIMENSIONS
/4
/2
/4
/2
4
RALL CONDENSER DIMENSIONS
/2
/4
/8
/2
Approx.


*

.

MFR. Dunham-Bush			NBS NO.	166-58	SIZE - B		CLASS -	3
AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED			SIH .	À S.R.E HIGH SATURATION TEMPERATURE	LOW SAI	A SRE LOW SATURATION TEMPERATURE	QMR CE HIGH AMDIENT TEMPERATURI	QMR CE 4 AMDIENT 17 ERATURE
FAN MFR. TOTTINGTON FAN SFELAL NO. E-2420-4			03	OBSERVED CONDITION	607	DBSERVED CONDITION	03	OBSERVED
SPEEL OR HP		,	201202	AIR FLOW RATE CFM	1012012	AIR FLOW RATE CFM	1011011	AIR FLOW RATE CFM
ITEM			205	FREE DISCH.	Scor	FREE	5,0L	
I. BARONETRIC PRESSURE	Peb	=H3	29.921	29.35	29.921	29.85	29.92/	29.85
2. DRY BULB TEMPERATURE OF AIR ENTERING COIL	tae	4.	50	95.0	50	95.1	110	109.9
3. VIET BULB TEMPERATURE OF AIR ENTERING COIL	tiae	4.	75 ± 5	78.4	7325	77.2		86.2
4. DRY BULS TEMPERATURE OF A. ANDIENT AIR	tae	u.	95	95.0	50	95.1	110	109.9
S. SATURATION TEMPERATURE OF S. ENTERING REFRIGERANT VAPOR	tec	4.	130	130.4	105	105.2	135	134.4
6. SUPERHEAT TEMPERATURE OF 6. ENTERING REFRIGERANT VAPOR	tac	٤.	195 £ 10	202.0	170\$10	169.7		192.0
			AIR	E FLOW METHOD		AIR FLOW	METHOD	
7. NOZZLE AIR AND WATER VAPOR 7. MIXTURE FLOW RATE	Qad	CFM		3875		3920		3947
B. TOTAL HEAT REJECTION B. CAPACITY	940	BTUH		49340		7225	•	32730
			REFRIGERANT			F	FLOW ME	METHOD
9. REFRIGERANT FLOW RATE	Wr	nim/di		11.7		77 T		8.22
10. CONDENSER COLL INTERNAL PRESSURE DROP	APc	PSI		5.5		2.7		3.7
II. SUBCODLING OF LEAVING REFRIGERANT LIQUID	AT5	4.	10° MAX.	9.8	S-MAX.	5.3		9.8
12. TOTAL HEAT REJECTION 2. CAPACITY	9tr	BTUH		47510		7260		31600
				RATINGS		RATINGS	VGS	
13. TOTAL HEAT REJECTION	948	BTUH	·	, 47940		7171		32810
14. CONDENSING HEAT REJECTION	gcr	BTUH		45260	•	7044		30990
13. SUBCOOLING HEAT REJECTION	9sr	BTUH		2683		127		1823
IG. AIR FLOW RATE	a a	CFM		3581	-	3636		3493
17. CONDENSER COIL 17. EXTERNAL RESISTANCE	Pas	"H20		0.22		0.22		0.22
16. FAN MOTOR POWER	Ptm	WATTS		477		485		478
N	٩	BHP		1		1		8
20. HEAT REJECTION PER UNIT	BTUH	H/3F		4566		683.0	•	3125
21. HEAT REJECTION PER UNIT	BTUH	4/3F		196.2		29.35		134.3
22. HEAT REJECTION PER UNIT 22. TOTAL SURFACE AREA	BTUH	1/SF		188.1		28.14		128.8
23. HEAT REJECTION PER CFM	BTUH	H		13.39	;	1.97	t.	6.90
BTUH/SF(◦F)(CFM)	(M)		0.00192		0.00088		0.00187

Table 4

.

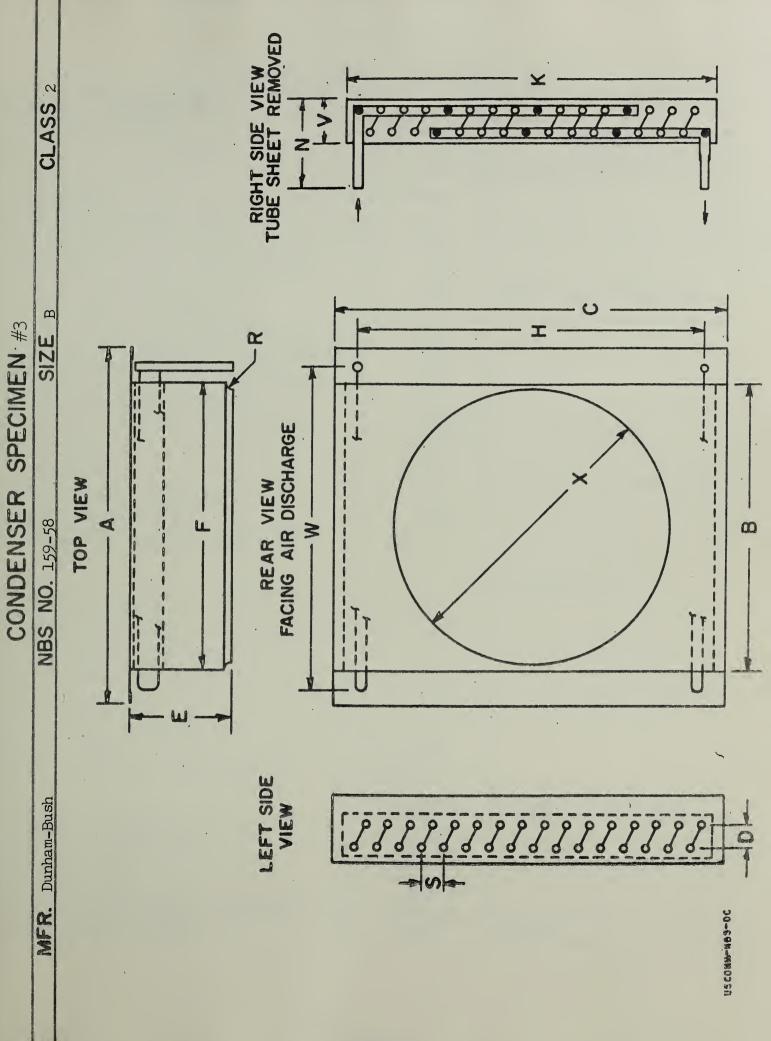
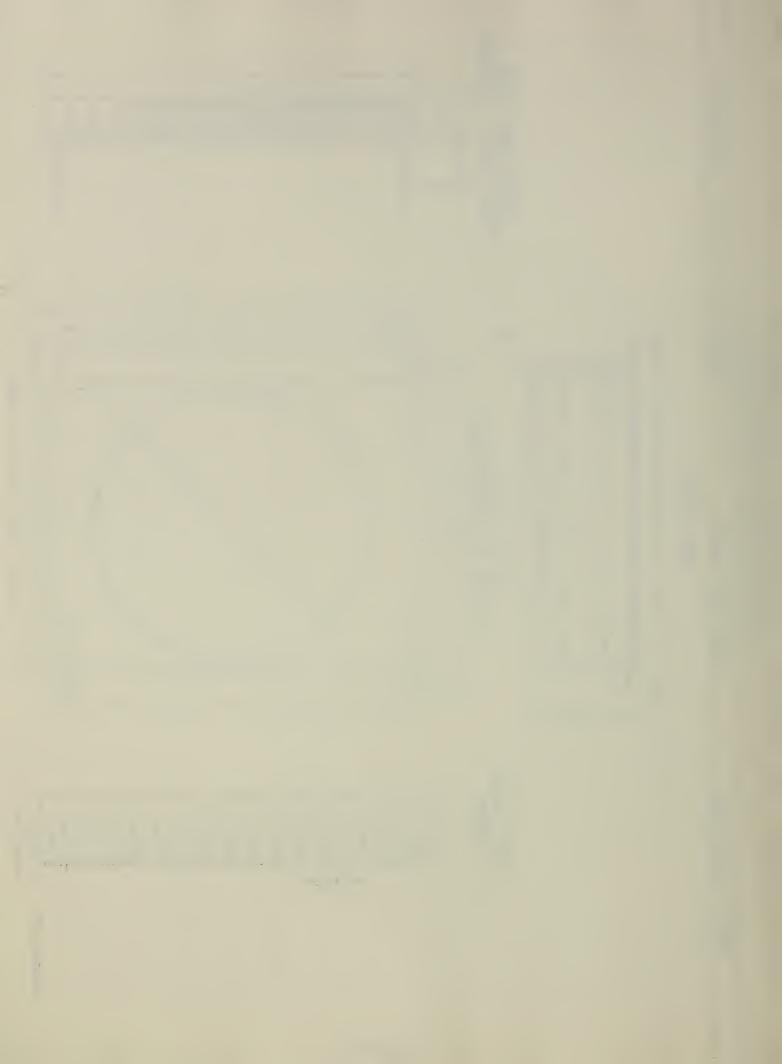
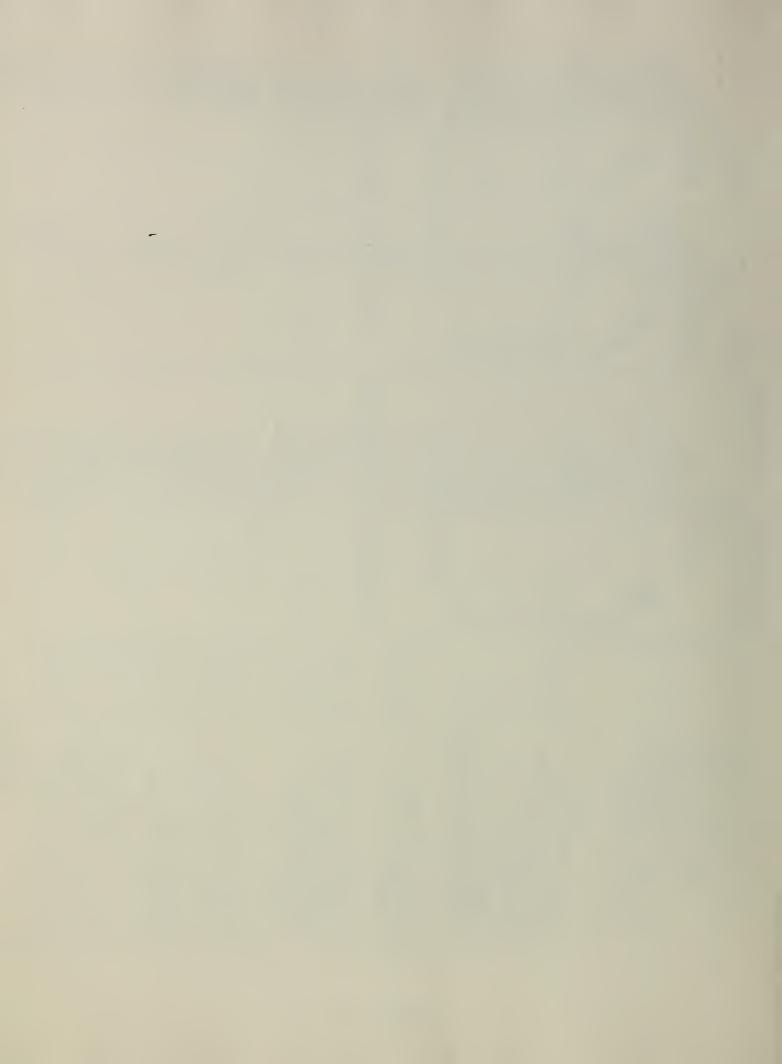



Figure 18



CONDENSER	SPECIME	IN #3
MFR. Dunham-Bush		SIZE - B
NBS NO. 159-58		CLASS - 2
ITEM	PROPERTY	REMARKS
	COIL TU	BE CHARACTERISTICS
I MATERIAL	Copper	
2 NUMBER OF ROWS DEEP	2	
3 NUMBER OF TUBES HIGH	1:6	
4 NUMBER OF CIRCUITS IN PARALLEL	4 .	
5 NUMBER OF TUBES PER CIRCUIT	8	•
G TUBE DIAMETER, O.D., IN.	5/8	With copper "Inner Fin"
7 TUBE WALL THICKNESS , IN.		
& TUBE RETURN BEND DIAMETER, O.D., IN.	1/2	
9 GAS INLET CONNECTION DIAM., O.D., IN.	7/8	1
IO LIQUID OUTLET CONN. DIAMETER, O.D., IN.	5/8	
II VERTICAL TUBE SPACING, IN. S	2	
12 PRIMARY SURFACE AREA, SQ. FT.	10.75	
		IN CHARACTERISTICS
I MATERIAL	Copper	
2 TYPE OF FIN	Plate	Flat with cut raised section
3 FIN SPACING , PER INCH	8	
4 FIN THICKNESS, IN.	0.006	•
5 SECONDARY SURFACE AREA, SQ. FT.	240.0	1
	1	
	C	OIL DIMENSIONS
I FINNED HEIGHT, IN. K	32	
2 FINNED WIDTH , IN. F	25 3/8	•
3 FINNED DEPTH, IN. V	3	
4 COIL HEIGHT, IN. H	31 .	
5 COIL WIDTH, IN. W	28 7/8	
6 COIL DEPTH, IN. D	11/2	
7 COIL DEPTH, OVERALL, IN. N		
8 FACE AREA , SQ. FT.	5.64	
9 TOTAL SURFACE AREA, SQ.FT.	250.8	
	an a the second second second second	
	OVERALL	CONDENSER DIMENSIONS
I WIDTH, OVERALL, IN. A	32 1/2	
2 WIDTH, SHROUD, IN. B	25 3/4	
3 HEIGHT, IN. C	34 1/8	
4 DEPTH, IN. E	11	
S BELLMOUTH ORIFICE DIAMETER, IN. X	24 1/2	
6 BELLMOUTH RADIUS, IN. R	0.406	Approx.

ł

I

NBS NO. 159-58 NBS NO. 159-58 HIGH SATURATION TEMPERATURE OBSERVED CONDITION AR FLOW RATE CFM SOLO DISCH.
65 65
75 ± 5
95
130 195 ž10
AIR FLOW
REFRIGERANT
10°MAX.
RATINGS

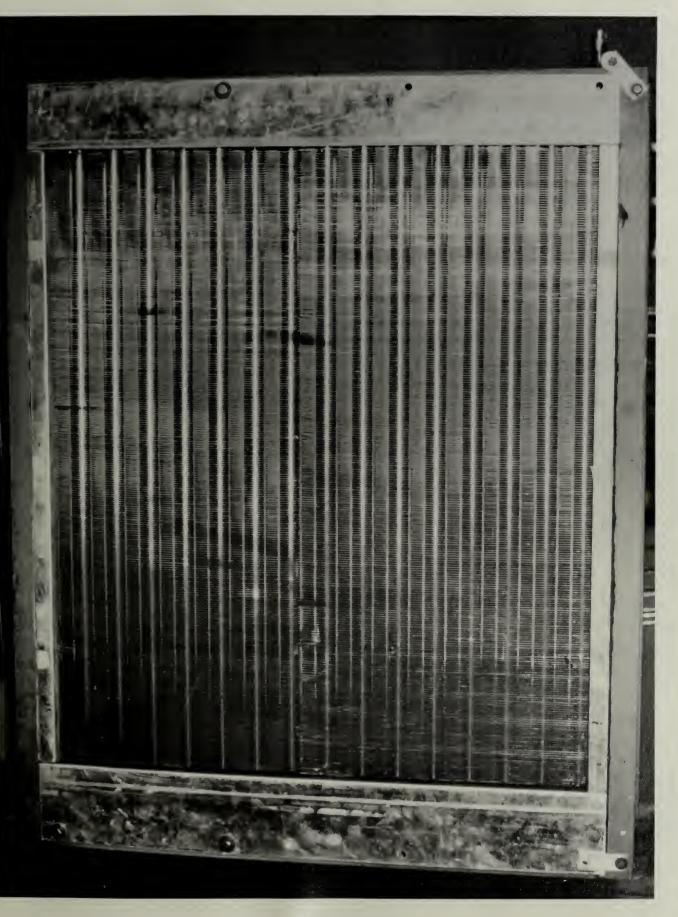
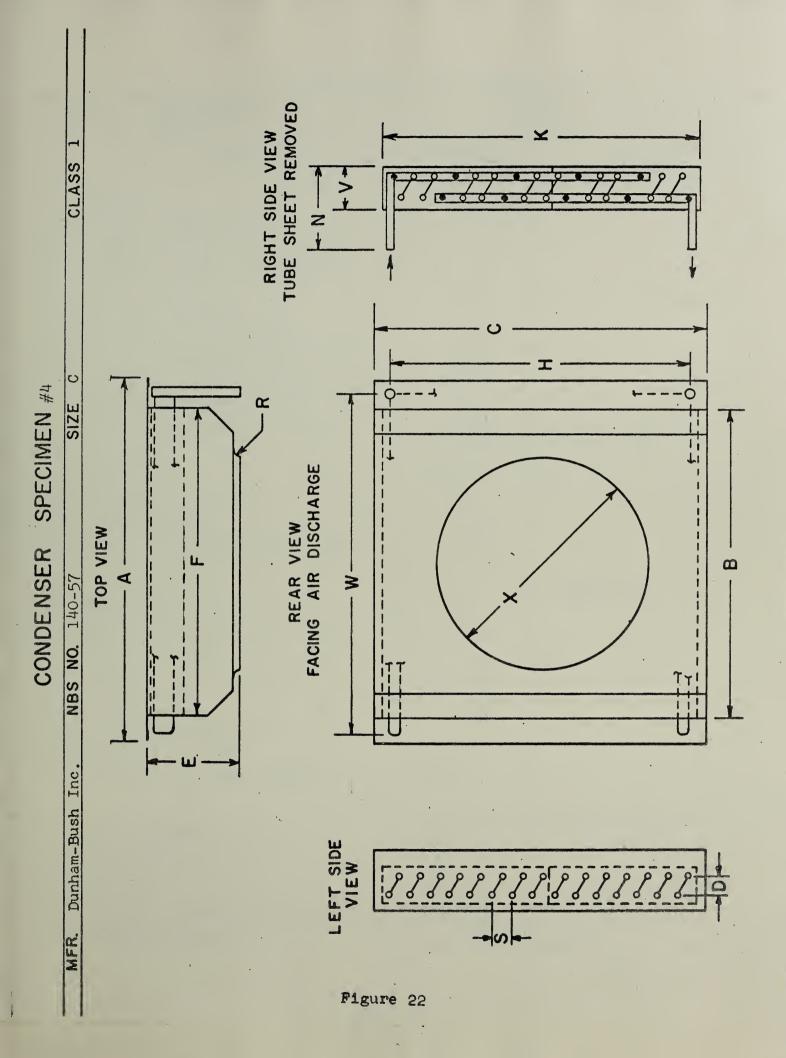
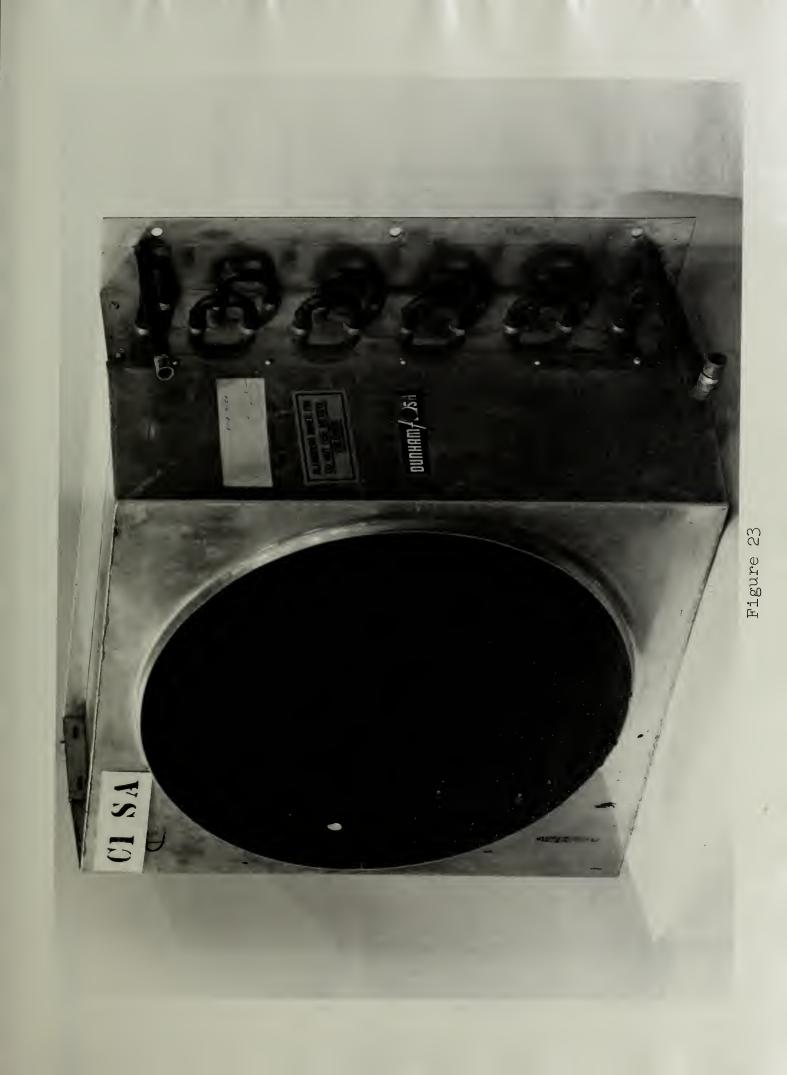



Figure 21

MFR. Dunham-Bush NBS NO. 140-57 ITEM F I MATERIAL		SIZE - C CLASS - 1
ITEM		CLASS - 1
	PROPERTY	
I MATERIAL		REMARKS
I MATERIAL	COIL TUB	E CHARACTERISTICS
	Copper	
2 NUMBER OF ROWS DEEP	2	
3 NUMBER OF TUBES HIGH	15	
4 NUMBER OF CIRCUITS IN PARALLEL	5	
5 NUMBER OF TUBES PER CIRCUIT	6	
6 TUBE DIAMETER, O.D., IN.	5/8	With aluminum "Inner-Fin"
7 TUBE WALL THICKNESS , IN.		
6 TUBE RETURN BEND DIAMETER, O.D., IN.	1/2	
9 GAS INLET CONNECTION DIAM., O.D., IN.	7/8	
10 LIQUID OUTLET CONN. DIAMETER, O.D, IN.	7/8	
II VERTICAL TUBE SPACING, IN. S	2	
12 PRIMARY SURFACE AREA, SQ. FT.	13.57	
	COIL FI	N CHARACTERISTICS
I MATERIAL A	luminum	
2 TYPE OF FIN	late	Flat with cut raised section
3 FIN SPACING, PER INCH	8	
4 FIN THICKNESS, IN.	0.010	· · · · · · · · · · · · · · · · · · ·
5 SECONDARY SURFACE AREA, SQ. FT.	422.4	
	CC	DIL DIMENSIONS
I FINNED HEIGHT, IN. K	30	
2 FINNED WIDTH, IN. F	35 1/8	•
3 FINNED DEPTH, IN. V	4	
	29 3/8	
5 COIL WIDTH, IN. W	38 1/2	
6 COIL DEPTH, IN. D	1 1/2	
7 COIL DEPTH, OVERALL, IN. N	'	
8 FACE AREA, SQ. FT.	7.32	
9 TOTAL SURFACE AREA, SQ.FT. 4	36.0	
	OVERALL C	ONDENSER DIMENSIONS
I WIDTH, OVERALL, IN. A	43 1/2	
	35 1/8	
	32 1/8	
4 DEPTH, IN. E	11	
	24 1/2	
6 BELLMOUTH RADIUS, IN. R	0.406	Approx.

CONDENSER SPECIMEN #4


۰.

•

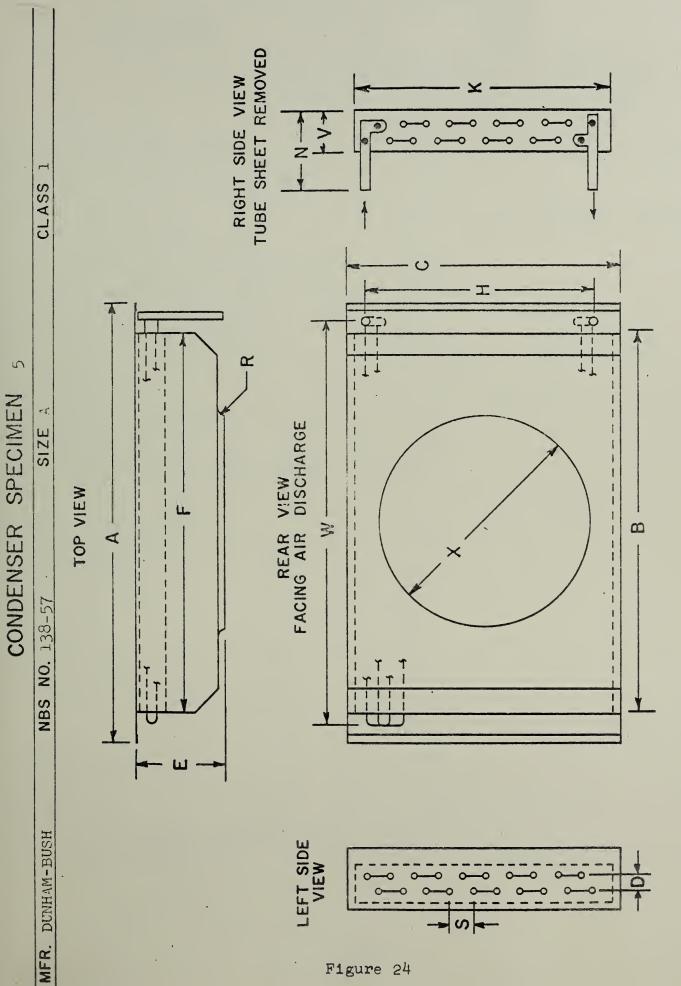

			CONDE	ONDENSER	SPE	SPECIMEN	ħ#			
MFR. Dunham-Bush			NBS NO.	140-57			SIZE - C		CLASS - 1	
AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED			л	A S A SH SATU TEMPEN	ASRE HIGH SATURATION TEMPERATURE		LOW SAT TEMPER	A SRE LOW SATURATION TEMPERATURE	A HIGH A TEMPE	QMR (E HIGH AMDIENT TEMPERATURE
FAN MFR. TOPPINGTON FAN SEPIAL NO. 5-2420-4			0	ဝပ္ပံ	OBSERVED CONDITION		60	DBSERVED	03	OBSERVED
SPEEL SPEEL			101,10 1,20 1,20 1,20 1,20 1,20 1,20 1,2	AIR	FLOW RATE CFM		101101	AIR FLOW RATE CFM	014014	AIR FLOW RATE CFM
ITEM			2000		FREE DISCH.	FREE DISCH.	5,0 ⁷	FREE	203	SIQ
I. BAROMETRIC PRESSURE	Pab	6H.,	29.921		29.92	29.97	29.921	29.84	29.921	29.51
SULB	tae	4.	95		95.0	95.3	9 5	95.0	011	109.9
1.	t'ae	<u>لا</u>	75±5		74.0.	79.2	75 25	77.8		88.1
4. DRY BULS TEMPERATURE OF 4. ANBIENT AIR	tae	لر °	95		95.0	95.3	95	95.0	011	109.9
10	t 20	ų,	130	·	130.2	129.8	105	105.9	135	135.4
SUPERHEAT TEMPERATURE OF SUTERING REFRIGERANT VAPOR	¢ 20	4	195 ± 10		195 .2	192.0	170 \$ 10	171.5		198.4
			AIR	FLOW	METHOD	0		AIR FLOW	METHOD	
7. NOZZLE AIR AND WATER VAPOR MIXTURE FLOW RATE	Gad	CFM			3980	3971		3977		3911
B. TOTAL HEAT REJECTION B. CAPACITY	9 40	BTUH			55940	54330		10130		39090
			REFRIG	REFRIGERANT	FLOW METHOD	1ETHOD	REFA	REFRIGERANT	FLOW METHOD	ТНОД
	¥,r	Ib/min			14.25	14.22		2.66		9.87
10. CONDENSER COIL INTERNAL PRESSURE DROP	APc	PSI			5.5	5.4		1.2		2.6
	DT3	4	10° MAX.		7.1	4.9	5°MAX.	5.2		10.2
	9tr	BTUH			56170	55270		10880		38360
				RATINGS	NGS			RATINGS	NGS .	
13. TOTAL HEAT REJECTION	9te	втин			55490	55570		9665		37950
14. CONDENSING HEAT REJECTION	9cR	BTUH			54050	54960		(9665)		36040
13. SUBCOOLING HEAT REJECTION	9sr	BTUH		·	1439	606		Ø		1914
IG. AIR FLOW RATE	d Q	CFM			3625	3587		3682		3559
17. CONDENSER COIL 17. EXTERNAL RESISTANCE	Pas	"H20			0.14	0.15		0.15		0.15
16. FAN MOTOR POWER	Pfm	WATTS			468	463		470	-	464
19. FAN BRAKE HORSEPOWER	٩	BHP			1	1		6110 1111		500 400 GBD
20. HEAT REJECTION PER UNIT 20. PRIMARY SURFACE AREA	втин,	H/SF			4021	4027		700.4		2750
21. HEAT REJECTION PER UNIT SECONDARY SURFACE AREA	BTUH,	4/5F			131.4	131.6		22.88		89.80
22. HEAT REJECTION PER UNIT 22. TOTAL SURFACE AREA	BTUI	BTUH/SF	-		127.3	127.5		22.16		87.04
23. HEAT REJECTION PER CFM	BTUH	I			15.31	15.49		5.62		10.66
BTUH/SF	F)(CE	(M)						3.05		4.35
Ň					マーンション			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		VUTON-D

Table 8

.

CONDENSER	2 SPECIME	N #5
MFR. DUNHAM-BUSH		SIZE - A
NBS NO. 138-57		CLASS - 1
ITEM	PROPERTY	REMARKS
	COIL TUI	BE CHARACTERISTICS
I MATERIAL	Copper	
2 NUMBER OF ROWS DEEP	2	
3 NUMBER OF TUBES HIGH	10	
4 NUMBER OF CIRCUITS IN PARALLEL	2 .	
5 NUMBER OF TUBES PER CIRCUIT	10	•
G TUBE DIAMETER, O.D., IN.	5/8	With aluminum "Inner Fin"
7 TUBE WALL THICKNESS , IN.		
& TUBE RETURN BEND DIAMETER, O.D., IN.	1/2	
9 GAS INLET CONNECTION DIAM., O.D., IN.	5/8	ľ
IO LIQUID OUTLET CONN. DIAMETER, O.D., IN.	5/8	
II VERTICAL TUBE SPACING, IN. S	2	
12 PRIMARY SURFACE AREA, SQ. FT.	6.494	
	COIL F	IN CHARACTERISTICS
I MATERIAL	Aluminum	
2 TYPE OF FIN	Plate	Flat with cut raised sections
3 FIN SPACING , PER INCH	8	1
4 FIN THICKNESS, IN.	.010	·
5 SECONDARY SURFACE AREA, SQ.FT.	142.6	
	•	
1		COIL DIMENSIONS
I FINNED HEIGHT, IN. K	20	
2 FINNED WIDTH, IN. F	24	· · ·
3 FINNED DEPTH, IN. V	3	
4 COIL HEIGHT, IN. H	19	· · · · · · · · · · · · · · · · · · ·
5 COIL WIDTH, IN. W	27 1/2	
6 COIL DEPTH, IN. D	1 1/2	
7 COIL DEPTH, OVERALL, IN. N	-	
8 FACE AREA, SQ. FT.	3.33	
9 TOTAL SURFACE AREA, SQ.FT.	149.1	
	OVERALL	CONDENSER DIMENSIONS
I WIDTH, OVERALL, IN. A	30	
2 WIDTH, SHROUD, IN. B	24 1/8	
3 HEIGHT, IN. C	22.	
<u>4 DEPTH, IN.</u> E	10 7/8	
S BELLMOUTH ORIFICE DIAMETER, IN. X	18 5/8	
6 BELLMOUTH RADIUS, IN. R		Conical section
	-	

CONDENSER SPECIMEN #5

1

	1	QMR IE HIGH AMBIENT TEMPERATURE		AIR FLOW RATE CFM	PISCHARGE	29.92	110.2	90.8	110.2	135.3	197.2		1944	. 16010	FLOW METHOD	4.27	7.7		0 16360		16120	15760	357	1692	0.17	177	1 	. 2482	113.0	108.1	9.53	5.30
	CLASS -	HIGH	09	0140744	50°5	29.92/	110		011	135		METHOD		-	FLOW A	4.25			16280	RATINGS		-		******			-				-	
		ASRE LOW SATURATION TEMPERATURE	DBSERVED CONDITION	AIR FLOW RATE CFM	FREE DISCHARGE	29.90	95.6	78.0	95.6	105.0	169.3	AIR FLOW	1846	5710	REFRIGERANT	1.46	0.4	3.1	5929	RAT	6192	6123	69	1705	0.17	187		953.5	43.42	41.53	3.63	5.32
#5 	SIZE - A	LOW SAT TEMPER	603	10,10,10,10,10,10,10,10,10,10,10,10,10,1	2°01	29.921	95	75 25	9 <i>5</i>	105	170 = 10				REF	1.49		teren.	6050		•	•				/		242-2			:	.*
- C CIVIEN		ION RE		FLOW RATE CFM			8	.5	8	8	2	ПОВ	31	Ot	FLOW METHOD	54	6	0	10		30	06	589	55	16	175		207	.6	0.	12.90	5.03
10 2	-57	ASRE HIGH SATURATION TEMPERATURE	OBSERVED		FREE DISCH.	29.78	94.	77.	94.8	129.8	192.2	N METHOD	1671	21040	+	5.54	10.9	7.2	21	TINGS	2148	20890	- 58	1665	0	Τ.	1	3307	150.6	144.0	112	17.00 001
UNDENSER	138	GH SAT TEMPL		AIR								AIR FLOW		,	REFRIGERANT	5.43	•		21410	RA							and a second sec					•
CUNDE	NBS NO.	Ĩ	00	2012022	2000 2000	29.921	95	75±5.	95	130	195 ± 10	¥			REFRI		•	10°MAX.														
	1	-				°H.	4.	L.	4	4.	4.		CFM	DTUN	-	Ib/min	PS1	4.	BTUH		BTUH	BTUH	DTUH	CFM	"H20	WATTS	BHP	14/SF	втин/зғ	IH/SF	Н	(MJ)
						Pab	tae	ť.se	tae		e tac		Que	9 tc		W.	APc	ΔT ₅	9tr		948	1 9ck	1 qsr	22	Pas	Pfm	٩	BTUH	BTL	втин,	BTUH	oF) ●F)(CFM)
	2. DUNHAM-BUSH	AIR CIRCULATING EQUIPMENT AND REFRIGERANT USED	2.	SPEED 110	ITEM	BAROMETRIC PRESSURE	Y BULS TEMPERATURE OF	ET BULB TEMPERATURE OF	DRY ENTERNEE OF	SATURATION TEMPERATURE OF	SUPERHEAT TEMPERATURE OF ENTERING REFRIGERANT VAPOR		NOZZLE AIR AND WATER VAPOR MIXTURE FLOW RATE	CAPACITY		REFRIGERANT. FLOW RATE	CONDENSER COIL INTERNAL	SUBSCOOLING OF LEAVING	TOTAL HEAT REJECTION		TOTAL HEAT REJECTION	CONDENSING HEAT REJECTION	SUBCOOLING HEAT REJECTION	AIR FLOW RATE	CONDENSER COIL EXTERNAL RESISTANCE	FAN MOTOR POWER	FAN BRAKE HORSEPOWER	EAT REJECTION PER UNIT	HEAT REJECTION PER UNIS	MEAT REJECTION PER UNIT TOTAL SURFACE AREA	REJECTION F	BTUH/SF(oF
	MFR			2 2 0 5		1							12 2	10	1	12	12. 6	150	NH C	i	IL	Ŭ	n	13	UW	I L	IL	IIG	TO	TL	12	
	MFR		FAN	FAL FAL		104	2. DEY	5	* DI	54	104	1	2. 2	Ö		9.	10.	11.	12.		13.	14.	13.	<i>.</i> .	17.	10.	19.	20.	21.	22.	1	24.

CONDENSER SPECIMEN #5

U. S. DEPARTMENT OF COMMERCE Luther H. Hodges, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage.

Metrology. Photometry and Colorimetry. Refrectometry. Photographic Research. Length. Engineering Metrology. Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Rediation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Far Ultraviolet Physics. Solid State Physics. Electron Physics. Atomic Physics. Plasma Spectroscopy.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instruments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Elementary Processes. Mass Spectrometry. Photochemistry and Reviation Chemistry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Vechnical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Frequency Utilization. Modulation Research. Antenna Research. Radiodetermination.

Upper Atmosphere and Space Physics. Upper Atmosphere and Plasma Physics. High Latitude Ionosphere Physics. Ionosphere and Exosphere Scatter. Airglow and Airora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards. Radio Plasma. Millimeter-Wave Rescarch.

Circuit Standards. High Frequency Electrical Standards. High Frequency Calibration Services. High Frequency Impedance Standards. Microwave Calibration Services. Microwave Circuit Standards. Low Frequency Calibration Services.

