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1. Introduction.

Let be a complex Hilbert space. If T is a completely continuous

¥ -1

operator on T, then (T T)^ is not only completely continuous but also

non-negative (henqe Hermitean) . If ... represent all the non-zero

* 1-

elgenvalues of (T T)^—each eigenvalue repeated in the sequence the

number of times equal to its multiplicity- -we may form the sum

which--to indicate its dependence on the operator T--will be also

denoted by t(t). By definition, the trace -class (tc) consists of all

those operators T for which t(t) Is finite. It is not a simple argument

to prove that (tc) forms a linear space and that t(t) defines there a

norm. Incidentally, the resulting normed linear space turns out to be

complete, that is, forms a Banach space. It is also true that the

operators of finite rank form a dense set in (tc).

We remark that for an operator T, the above definition of t(t)

involves notions which are meaningful only in linear spaces with an inner

product. It is of interest--and in fact of signiflcance--to observe

that for operators T of finite rank^T(T) may be also expressed via

concepts meaningful in a perfectly general Banach space. This means,

for operators T on of finite rank, we have two versions for t(T).

While one immediately carries over to arbitrary Banach spaces, the other

does not yield to a straightforward generalization. This observation

permits then to carry over to perfectly general Banach spaces the o

concept of a trace-class of operators. To define the last^one simply

proceeds as follows: One considers the linear space of all the operators

T of finite rank on the given Banach space. There one defines t(t)
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via the concepts meaningful in general Banach spaces. The customary

metric ccmipletion of the so resulting normed linear space furnishes then

the desired tracer-class of operators.

It remains thus to sketch how for operators T of finite rank,

t(T) may be expressed via concepts meaningful in any Banach space.

The argument follows; If f^, f^ and
g^^, g^ are elements in

/v, then

n

Tg = 'T (g,g^)f^

represents an operator T of finite rank which we shall also denote
n

symbolically by S f g,

.

The converse is also true, that is, every
i=l

^ ^

operator T of finite rank admits many such representations of the form
m
Z cp.® the number of terms m will vary of course with the

^_1 J J

representation of T. It can be shown that

t(T) = Inf S l|cp II II ^11
0=1 ’ ^

where the above infimum extends over the set of sLLl sums corresponding

to all possible representations of the operator T of finite rank.

The details of all that was said above will be outlined in later

sections

.
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2. Prolpleins to be considered.

The last ' formula expresses,- t(T)- in a language meaningful for

any Banach space. This suggests the desirability to investigate -the above

infimum for general normed linear spaces (not necessarily inner product

spaces). The details follov:

i -p

Let T Sind .stand for any two normed linear spaces and
,

*
represent their conjugate spaces_, that is^ the corresponding spaces

of additive and bounded^ that is_, continuous^ linear functional on ^

and O respectively:

Elements in ^ vlll be denoted by f^^ f^^ ...;

in ^ will be denoted by g^^ . . .;

in J' will be denoted by ...j

U'
*

in eJ) w’ill be denoted by . . .; .

. p * /CObserve that, for a fixed pair of elements G€ ^ and j, the expression

Tg.Go(g)f^

defines an operator of rank 1 from ^5 into . More generally^ if

G^, ..., G^ are in and f^, ...^ f^ are in

,

then

n • .

Tg = EG(g)f
i=l

represents an operator from £) into ^ of rank at most n. The last

operator we shall also denote by .f.®G.; one calls then s'? ,f ®G1=1 1 1 1=1 1 i

a representation of the operator T. It is not difficult to see that

conversely, every operator T from ^ into ^ of finite rank has many such

representations. With each representation of a given operator

T of finite rank, one associates the number Z^_^||f^l|
|1 g^|| and then
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defines

t(T) = inf S IlfJlllGjII
i=l

where the inflimjin extends over the set of all possible representations of

T. We prove below that the so defined t(T) Is a norm on the linear

space of all ofterators from ^ into ^ of finite rank. The metric

completion of the above normed linear space is then defined as the trace-

class of operators from into ^ •

Similarly^ if f
, f are in ^ and g , g^ are in qJ ,

the expression represents an operator T of finite rank from

^ into ^ whose defining equation is given by T(G) = E^_^G(g^)f^.

Moreover, every operator T of finite rank from into ^ has many such

representations

.

Our problem is to furnish some "enlightening" information concerning

t(T) = Inf
II g^ll where the infimum is extended over the set

of sians corresponding to all possible representations
g^

of the

given operator T of finite rank. In other words, we are interested in

some characterizations of the above infimum. Perhaps in particular

Banach spaces, it is possible to express t(t) "directly in terms of T "

just as it was done in the case of eompletely continuous operators T on

a Hilbert space. In the last, t(T) = S ,where the X^ represent all the

* 1-

^

non-zero eigenvalues of (T T)^j each eigenvalue appearing in the last sum

the number of times equal to its multiplicity.
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At this stage one should ask for the following question; Assume

that f, , .... f are in ^ and g^ ,
. .

.

,

g^ are in *5 • Assruue also that
1' ' n J. .

n

f« , .... f' are in ^ and g\, ..., g’ are in § . When do the
i^ m 1 m

expressions and i:^^
3
_f * g’

j

represent the same operator of

finite rank from ^ into ^ . To answer this question observe (writing

1. fj®
gj_

+ ^2®®2 ^n®®n

=
^n*®®n'

where 1', 2', ..., n’ is any permutation of the 1, 2, n.

2a. f
3
_'®(g^ + i^) + fg®®2 + ^n^^n

"

=
^n^®n

2b. (f^ + f
3_)®g^ + f2®g2

^n® ®n
"

=
^n®®n

5» (aj^fj_)®g]_ + (a2f2)®S2 **”•+
^^^n^^^n

= f]^®(aj^g^) + f2®(a2g2) + ••• +

where a^, a^, ...^ a^ are arbitrary scalars.

It is not difficult to see that two expressions and

.0g' . define the same operator T of finite rank if and only if one
J~-L J J

can be derived from the other by a finite number of successive applications

of the above relations 1, 2a, 2b, 5

•
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Theorem

.

Let ^ and ^ represent two normed linear spaces and

stand for the linear space of all operators from ^ into ^ of finite

rank. Then^ the above defined function t(t) represents a norm on

Also, t(t) has the "cross-property" that is, t(t) coincides with the

bound l|Tjj for all operators T of rank < 1. The last condition

characterizes t(T) completely in the following sense; t(t) is the

greatest norm on having the cross-property.

Proof; Let Ter’^and . Then for any representation

2? if.®gj of T we have
i=l 1 i

i|T(o)||= II
SG(g )f ||< ||g|| E ||f

II ||g II

i=l i=l

Thus,

I|t(g)||< ||g|| t(t)

The Idst inequality implies

||t||<t(t)

for all operators T in^6^.

rCoT)

(i). If T = 0, then obviously t(t) = 0 .

If T / 0, then 0 < |1
t||< t(t), and thus t(T) > 0.

(ii.) It is also clear that for any scalar a we have = |a|T(T)
I

(iii.)To prove that t(T^ + T^) < t(Tj^) + t(T
2

) for any two operators

Tj^ and T^ InTSt, we argue as follows;

Let e > 0 be given. Choose a representation of T^^, such that

sjlqll II gj|< t(Tj^) + I
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Similarly, we can find a representation f' .®g' . of such that

m
s

II f’jll Hg'j|l< T(Tg) + I
J

But then ^ representation for and

therefore

t(Tj_ + Tg) < E
II fjl ||gj| +

i=l
m

+ S Ilf, II II g',ll< t(t ) + t(T ) +e.-
j=l J J

(iv.) Assume now that T is of rank < 1. Then T admits a representation

in the form T = f®g and thus,

t(t) < ||f|| ||gl|= ||t|1 .

We already know that
|1
t||< t(t) holds. Thus t(t) = HTjj .

Finally, suppose that a(T) is a norm on ”75^ satisfying the condition

a(f®g) = II
f||

II g|| . Let Te-^. For every representation

T we have

n

q:(t) = a{ E f.CX'g.) <
1=1 ^ ^

< Ea(f,®gj) = E
II fjl II g II

1=1 i=l

Thus, Q!(t) < t(t).
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. The trace-class of operators on a Hilbert space.

¥e start with some preliminaries

.

The setting for our discussion is a fixed Hilbert space A/

^

that is, a complex inner product space for which the resulting metric

space is complete. The inner product will be denoted by (f,g) and

JL

j| f II
= (f, f)2 will stand for the norm that goes with it.

A basis is by definition a maximal orthonormal family of vectors

{cp^}. It follows from Zorn’s Lemma (which is equivalent to the axiom

of choice) that in any Hilbert space there is a basis. Incidentally,

the cardinal number corresponding to any two bases is always the same

and defines the dimension of the space.

Clearly, [cp^] is a basis if and only if,

||f||® = s|(f,cp.)|®
i

for all f in /v.

A continuous linear transformation A defined everywhere on

with values in is termed an operator . Continuity is equivalent to

boundedness, that is
' ’

II
A|1 = sup

II
Af|| < + 0=

II f|l< 1

*)( y

The adjoint of A will be denoted by A ; by definition A is the unique

operator which satisfies the condition

(Af,g) = (f,A*g)

for all pairs f,g.
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' Thec>rem 1; Let A be a given operator and [cp. }, { ^4'] be any
^ J

two bases. Then

i

s lKacp^, fk)
1 J

2|lA>j|l®
j

’

represent the same (finite or infinite) value; we denote the last

|a|^.

Proof. For a fixed the "Pythagorean theorem" implies

llAtpJI® = Z|(Acp,, ^j)l®

and thus.

SilAtPjll® = Z Z|(Atp^, rfj)r
1 1 j

*
Replacing in the last A by A {cp^} by { ®-^d

{ ^3 by {cp^} one gets

2||aVJI^ = 2: zKa""^ ,cp.)|^ =

J ' j i
^

= Z z|( rf'j^Acp^)!^ = 2 z|(Acp^, ^.)f
1 J i J

Thus, the values of the above three sums are the same. Observe

finally that.

S||A0)J| =S||A^||‘' =

1 J

**
= Z||A ^,|r = Z||

This concludes the proof.
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Definition . For a given operator let jAj^ stand for the common

value of the three "sums" determined in Theorem 1.

Theorem 2 . For any operator A, we have

l|A|| < |a|

Proof. It is sufficient to prove that
1| AcpH < [a] for any

vector cp such that HcdH = 1. This is easy; Choose a basis {cp^}

with cp as one of its elements . ¥e then have

llAcpll® < 2|lAc0.|i® = \Af.
1

Theorem 3 • For any two operators A and B we have;

|a + b| < 1a| + |b|

Proof. It is sufficient tO’ consider the case in which hotV’

[a] < + and
1

b[ < + =°. Choose a fixed basis {cp^}- Then

lA+ b| = (Z||(A+ B)cp.||^P" <
i

(E(l|AcpJl + 11
Bcp.

11 f)^< .

i

(Eli Acp.
II

+ (e|| Bcp. |l^)i = |a1 + |b
1

i i

Theorem 4 . Let stand for the set of all operators A for which

I

a] < + With the obvious definitions of addition and scalar

multiplication, ^ is a complex linear space. There
1

a| represents

a norm.

Proof. This is an immediate consequence of the proceeding

discussion

.
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Remarks Incidentally, the normed linear space l^is also complete,

hence a Banach space. Considering however, 't^only as a linear set of

operators, and defining the hound
||
a

1|
of an operator as a new norm

on then the resulting normed linear space is not complete.

Remark; Incidentally, |a| also satisfies the following conditions;

(1) lAl = 1A*J

(ii) For any operator B, we have

|ab| < |a|
II

b|| < |A| |b|

As a consequence of (ii), TS is also an algebra. In fact, Tp is an

Ideal in the algebra of all operators

.

Definition ; An operator A in is commonly referred to as one

which belongs to the E. Schmidt-class and |a| is said to define its

Hilbert-Schmidt norm.

Remark ; That the' Hilbert-Schmidt norm of an operator is always

not smaller that its bound was stated in Theorem 2. Also, it can be

readily verified that the Hllbert-Schmidt norm is a cross-norm| that

is, |Aj = II
A|| wherever A is an operator of rank < 1.

At this point, the following comment is in order; Let stand

for the Hilbert space of all complex-valued Lebesgue measurable functions

2
f(x) defined on the Interval 0 < x < 1 for which jf(x)| is integrablej

two functions being considered Identical if and only if they differ on

a set of measure zero. There, the linear operations are the usual ones

in function spacesj the inner product is represented by

(f,g) = /f(x)ir^dx
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Similarly, let represent the Hilbert space of complex-valued

p
measurable functions K(x^y) defined on 0 < y ^ ^ which jK(x^y)I

is integrablej the inner product being given by

(H,K) = //H(x,y)K(x,y}dxdy.

One observes that if K^(x,y) and K
2
(x,y) are both in then the

function

H(x,y) = /K^(x,z)K
2
(z,y)dz

is also in J?2 and

//|H(x,y)|^dxdy <

//|K^(x,y)|^dxdy • //lK2
(x,y) |^dxdy

Thus, if H(x,y) is defined as the "product" of K^(x,y) and K
2
(xjy),

the space turns out to be an algebra.

Let K(x,y) be a fixed element in . For f(x) in L^,

/K(x,y)f(y)dy

is then defined for almost all x in 0 < x < 1 and represents a function

g(x), again in • It turns out that the equation

g(x) = /K(x,y)f(y)dy - .

defines an operator K on which belongs to the Schmidt-class (of

operators on L^) and

|k
1

= (//|K(x,y)|^dxdy)^ .

Moreover, every operator on in the Schmidt-class is obtained in such

a manner. This one-to-one correspondence between and the Schmidt-’

class of operators on preserves addition, scalar-multiplication,

products, and the norm. This means we have the following;
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Theorem 5J The 3chmldt-class of operators on and the Hilbert
' d.

space are congruent not only as Banach spaces but also as .Banach

algebras

.

Definition ; An operator A is termed Hermitean if A i= k, and non-

negative in symbol A > 0 if (Af^f) > 0 for all f in /v . Since

is a space with complex scalars, every non-negative operator is

necessarily Hermitean. It is also clear that for any operator A the

* *
products A A and AA are >0. It can be shown that for every operator

2
A > 0, there is a unique operator B > 0 such that A = B . It is

customary to write [A] for the unique > 0 operator such that A A = [A] .

Clearly, [A] = [A ] if and only if A is normal, that is, A A ^ AA .

Theorem 6 ; Let A be a given operator and {cp^} a basis. Then

S( [A]cp ,CD. )

1

is independent on the chosen basis

.

Proof. Since [A] > 0, there is a unique operator B > 0 such

that [A] = B^ . Now,
'

'

([A]cp^,cp^) = (B^cp^,cp^) = (Bcp^,Bcp^) = llBcp^ll^

An application of Theorem 1 concludes the proof.

Definition ; The operators A for which the sirni in the Theorem 6

if finite, form the trace-class (tc).



Theorem 'Jt Let (tc) denote the class of all operators A for which

L{ [A]cD^,cp. )
< + «

, j. X .

1

for a fixed basis fcp. ] . With the obvious definition of addition and
1

scalar multiplication (tc) Is linear space. The last will be normed

if the above sum represents the norm of an operator A. Moreover^ the

resulting normed linear space is complete^ hence a Banach space: it

contains the operators of finite rank as a dense subset . The operators

in trace-class necessarily belong to the Schmidt-class. Moreover (tc)

is a (two-sided) ideal in the algebra of all operators and a Banach

algebra under its own norm.

An operator A is termed completely continuous if for every bounded

sequence of vectors f
^

. f^. f .1^3 the transformed sequence Af^^ Af^^

. contains a subsequence convergent (in the strong sense) to

some element of the space

.

Theorem 8° Let represent the set of all completely continuous

operators on /v . With the conventional definition of sum^ product^'

and scalar multiple for operators, is an algebra in fact a two-sided

'ideal in the algebra of all operators on /u . It is readily seen that

the algebra <^will be normed if the bound of an operator stands for its

norm. Also, the resulting normed algebra is complete, that is,

is a Banach algebra.
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We are about to exhibit a representation characteristic for the

Completely continuous operators. Firsts however^ we state some

preliminaries

.

The polar decomposition ; Let A be an operator. Then there

exists an operator W isometric on the closure of the range of [A] and

equal to 0 on its orthogonal complement, for which the following

relations hold:

A = W[A]

[A] = W*A

The above representation is unique in the following sense: If

A = where > 0 and W^ is isometric on the range of and

equal to 0 oh its orthogonal complement, then B^ = [A] and W^ = W.

In the case A is of finite rank we may assume that W is unitary

(not unique however).

The last theorem implies that A is completely continuous if and

only if [A] is such.

Definition ; If CD and ^ are two elements of let

CP

represent the operator whose defining equation is given by

(cp®Tp)f = (f, rp)cp

for all f in /v

.

If f^, f^ and g^, ..., g^ are any 2n elements and |j^, ...,

are any n scalars, the meaning of the symbol

n

s ujf.si;;
1=1

is clear j it represents an operator of rank at most n.
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One readily verifies the following simple relations!

(1) (f^ + f2)0g = + (f^t^g)

+ gg) =

(2) {af)0'g = o:(f(X)g)

f®(^) = f®i)

for any scalar a.

(4) A(f(?)i) = (Af)®i

for any operator A.

( 5 ) {fmf = S0f .

ThuSj, if
n _ * ^ _

A = E u^f^(g)g^ then A = Z
i=l i=l

In general, analogous infinite sums have no meaning. However,

the following theorem will be useful for all our purposes:

Theorem 9
*

' Le't {cd^ 3 a-nd { stand for any two orthonormal

families of vectors and {o^3 a- bounded family of complex nimibers

indexed by the same set of subscripts . Then,

Tf = Zu.(f, ^^)CD.

i

is meaningful for every f inFi/ and represents an operator T which we

shall also denote by

(S> f i

The bound of T is given by

||t|| = sup|,i
I

i ^
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Proof; We have;

sup||i^|s|(f, < 11
f||®sup|Uj^l

Thus Tf is meaningful and

l|Tf|| <
. II fll^suplu.

I

This of course means that |jTjj < sup|[i^j. On the other hand;, ve

have ||T^y|= lii^ 1

• And therefore ||t|| s sup|u^|. Thus, ||t|| =

sup|u^|.

The fundamental theorem of algebra implies that every operator

on a finite dimensional complex inner product space, has eigenvalues.

In the case the inner product space is infinite dimensional, it is

always possible to construct (even completely continuous) operators

which do not have a single eigenvalue . It may be added that thus far it

is not known whether every operator T on a Hilbert space has at least

a proper invariant subspace . We mean hereby, a subspace '^/Z-such that

Pi and T(7T^)C irL .

The story is however quite different when one deals with Hermitean

operators. It is well known that every Hermitean operator A on an

n-dimensional space always admits an orthonormal basis of eigenvectors

We mean hereby, that there is an orthonormal basis cp^, ..., cp^ in

(r\/ for which

AcPi = for 1 < i < n
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Thus, A may be written in the form
n

A = E \.cp.®cp.

i=l

The corresponding eigenvalues are necessarily real.

Conversely, every sum of the above form with cp^, cd^

orthonormal and A^ real, represents a Hermltean operator.

The infinite -dimensional extension of the above result which

follows is also well known;

Theorem 10 ; Every Hermltean completely continuous operator A on

a Hilbert space admits in that space an orthonormal basis of eigenvectors.

The corresponding non-zero (necessarily real) eigenvalues are each of

finite multiplicity and may be arranged either in a finite or denumerably

infinite sequence A.^, A.^^ • » • (each non-zero eigenvalue being repeated

in the sequence the number of times equal to its multiplicity) such that

A.^-^ 0. If cp^, cpg, ... is a corresponding orthonormal sequence of

eigenvectors (that is, A:p^ =
^1*^1 i = 1, 2, .••), then

A = ,EX^CD^lS)cp.j^ «
• •

i

Conversely, every sum of the above form, that, is, with {cp^} orthonormal,

X real and X 0, represents a completely continuous Hermltean operator.(11
The above yields a representation characterizing the completely

continuous Hermltean operators.. To obtain an analogous representation

valid for all completely continuous operators, one makes use of the

polar decomposition for operators

.
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Theorem 11 ; An operator A is completely continuous if and only if

it admits a "polar representation"

A = 21 cp ^ ^
i

vhere hoth {cp^'} and i are orthonormal sequences and the 1^'s are

positive . The sum has either a finite or denumerahly infinite number

of terms. In the last case, we have also The above representation

is unique in the sense that the 1^'s are necessarily all the positive

proper values (each represented in the sequence the nimiber of times

equal to its multiplicity) of [A]

.

Proof. Since A is completely continuous, the same is true for

[A]

.

Thus,

[A] - 2l^

i

Now, if A = W[A] is its polar decomposition, then W is isometric on

the closed linear manifold determined by Thus, is also

an orthonormal feuniiy. Put W = cp^ . Then

A = W[A] = ¥(21^^^®^):^=

= 2X.(W^
, 7j^

,
.

i i

Corollary; For an operator T of finite rank

m
t(T) = 2 ||f

II llg II

j=l •> J

where the infimum is taken over the set of all numbers corresponding

to all possible representations if? ^f .(S)g. of T.



go

Proof. Since t(t) is a crossnorm, for any representation if? f.®ig.
J J

m
of T we have t(T)^ T(f.®-g.)= I. Hf.|l Hs-H- However, if

J J J J

^ polar representation of T, then

* n _ ^ _
T T = ( Z ®cp )( Z X cp ®'^ )

=

1=1 * 1=1

= S x/ tilPTl
1=1

and [T] = z”_^X^rf ^ • Now, [T]cp = 0 whenever cp Is orthogonal to

Thus,

n

t(T)
=

^Z^([T]^^, =

= 2 lU.cpJI II ^>J|
.

1=1

Theorem 12 ; Every operator in the trace-class is necessarily in

the Schmidt-class. Every operator in the Schmidt-class is completely

continuous

.

Let A be a completely continuous operator and ZX^cp^®^ its

^ 2
polar form. Then A is in the Schmidt-class if and only if ZX^ < + <»|

I 2 -
^

we have |a| = (SX^^ )^. The operator A is in the trace-class if and

only if Sj^X^ < + we have t(A) = •
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