NATIONAL BUREAU OF STANDARDS REPORT

7507

INCIDENCE SPACES AND ALGEBRAS

by

E. C. Dade and K. Goldberg

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 (\$1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 (\$1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) (\$2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

1101-12-11411

May 17, 1962

7507

NBS REPORT

INCIDENCE SPACES AND ALGEBRAS*

by

E. C. Dade and K. Goldberg

*This work was supported in part by the Office of Naval Research. **California Institute of Technology

IMPORTANT NOTICE

NATIONAL BUREAU OF STAND/ for use within the Government. Befor and review. For this reason, the publ whole or in part, is not authorized u Bureau of Standards, Washington 25, the Report has been specifically prepa

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015 counting documents intended cted to additional evaluation ug of this Report, either in ce of the Director, National overnment agency for which for its own use.

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

.

 $||f||^{2}=|f||_{\frac{1}{2}}|f||$

Incidence Spaces and Algebras

E. C. Dade and K. Goldberg

An incidence matrix is a matrix whose entries are either 0 or 1. We use a fixed notation for the incidence matrices I, the identity matrix, and J, the matrix with 1 in every position. The fact that I, J-I are disjoint incidence matrices which form a basis for a linear algebra, lies behind much of the manipulation of the celebrated "incidence equation"

$$AA^{T} = kI + \lambda(J-I)$$

in which A is an incidence matrix of order v. For given integers v,k,λ the existence of A is equivalent to the existence of a v,k,λ design, special cases of which are finite projective planes and Hadamard matrices.

Starting in 1955 several mathematicians, including R. C. Bose, D. Mesner and the authors, began considering more general algebras with a basis of incidence matrices whose sum was J. At first each of these matrices was symmetric. Bose, and later Mesner, considered. the properties of a design with incidence matrix A such that

$$AA^{T} = k_{1}A_{1} + k_{2}A_{2} + \dots + k_{d}A_{d}$$

$$J = A_{1} + A_{2} + \dots + A_{d}$$

This work was supported in part by the Office of Naval Research.

where the A_i are incidence matrices which form the basis of an algebra. We came upon a similar generalization through the graph problem mentioned at the end of this note. In each case $A_1 = I$.

Our purpose is to summarize the results we obtained in generalizing these concepts by not demanding $A_i^T = A_i$ or $A_1 = I$, or even that the basis be an algebra basis.

- 2 -

1. Incidence Spaces. A set $\mathcal{B} = \{A_1, A_2, \dots, A_d\}$ of $m \ge n$ incidence matrices is called an <u>incidence basic</u> if

$$A_1 + A_2 + \cdots + A_d = J_{m,n}$$

where $J_{m,n}$ is the m x n matrix with 1 in every position. This implies that the Λ_p are mutually disjoint (i.e., if Λ_p has 1 in the i,j position then $\Lambda_q \neq \Lambda_p$ has 0 in the i,j position), and that for each i and j there is a unique p such that the i,j element of Λ_p is 1. Thus the Λ_p are linearly independent.

The linear span

$$\mathcal{O}(= [A_1, A_2, \dots, A_d]$$

of the incidence basis \mathcal{B} (over some unspecified field \mathcal{X} of characteristic 0) is called an m x n <u>incidence space</u>. The only incidence matrices in \mathcal{O} are the 2^d sums of distinct elements of \mathcal{B} . Therefore, \mathcal{B} is the only incidence basis which is a vector basis for \mathcal{O} , so that we may speak of <u>the</u> incidence basis of an incidence space.

If m = n, so that the A_p are square, and if \mathcal{O} is closed under matrix multiplication, it is called an <u>incidence algebra</u>. In this case there exist non-negative integers $a_{pq}^{(r)}$, p, q, r = 1, 2...,d such that

 $A_{p}A_{q} = \sum_{q}^{d} a_{pq}^{(r)}A_{r}$

p,q=1,2,...,d.

These integers are called the structure constants of M.

• 3 •

Let $\mathcal{O}[=[A_1,A_2,\ldots,A_d]$ be an m x n incidence space closed under right multiplication by $J_{n,n}$. Then for each $p = 1,2,\ldots,d$ the non-zero rows of A_p have the same row sums a_p , and hence the same number of non-zero elements. Let U_p be the set of indices of the non-zero rows of A_p . Then U_p and U_q are either disjoint or equal. We let u_p denote the order of U_p . If $\mathcal{O}[$ is closed under eleft multiplication by $J_{m,m}$ we similarly define the column sets V_p of order v_p .

An n x n incidence algebra is closed under both right and left multiplication by $J = J_{n,n}$, hence it has both row and column sets. Any basis element is concentrated in one row set and one column set, and the number of non-zero elements in any two rows (columns) are equal. For a fixed U_p and V_q let M_p denote the sum of those A_r with U_r = U_p and V_r = V_q. Then the set of M_{pq} is an incidence basis whose linear span 19_A^{olvect} summand \mathcal{O} . \mathcal{O} is simple if and only if it equals this summand and has a unit element.

An incidence space is called <u>stochastic</u> if each basis element has constant row sums and constant column sums. In that case it has just one row set and just one column set.

An n x n incidence space is called <u>semi-stochastic</u> if each row set U_p is also a column set V_p (then each column set is a row set). In this case let C_{pq} be the subspace spanned by those A_r with row set U_p and column set U_q . Then C_{pq} is isomorphic to a

- 4 -

stochastic $u_p \propto u_q$ incidence space, called an associated incidence space, and

$$C_{pq} \cdot C_{rs} \leq \begin{cases} C_{ps} & \text{if } q = r \\ \{0\} & \text{if } q \neq r \end{cases}$$

for all p, q, r, s. Conversely, given any set of stochastic $u_p \times u_q$ incidence spaces C_{pq} satisfying the above multiplicative condition, we can construct a semi-stochastic incidence space having these as its associated incidence spaces.

If an incidence space contains the identity matrix I and is closed under left and right multiplication by J, then it is semistochastic. 2. Semi-Symmetric Incidence Algebras. The incidence algebra $O[=[A_1,A_2,\ldots,A_d]$ is called <u>semi-symmetric</u> if it is closed under matrix transposition; i.e., if for each $p = 1, 2, \ldots, d$ there is a p' such that $A_p^T = A_p$. A semi-symmetric incidence algebra is clearly semi-stochastic and, algebraically, semi-simple.

After a suitable simultaneous renumbering of rows and columns, which does not alter the incidence or algebraic properties of the algebra, certain of the basis elements have the form

where the empty spaces are zeros. The row and column sets of OI are the row sets U_1, U_2, \ldots, U_8 of A_1, A_2, \ldots, A_8 respectively.

If A has row set U_i and column set U_j , then A has various submatrices equal to J_{a_j} , a_j arranged as entries in an $n_i \ge n_j$ incidence matrix; s.g.,

- 6 -

again with zeros in the blanks. If we replace the J' by 1 (and the $0_{a_1, a_j}$ by 0) we arrive at a new $(n_1 + n_2 + \dots + n_3) \ge (n_1 + n_2 + \dots + n_3)$ incidence algebra, also semi-symmetric, which contains the identity I. These two algebras are clearly isomorphic. Thus the study of semi-symmetric incidence algebras may be reduced to the study of those containing I.

The unit element of \mathcal{O}_{1} is clearly $a_{1}^{-1}A_{1} + a_{2}^{-1}A_{2} + \dots + a_{8}^{-1}A_{8}$. One may also prove that if an arbitrary incidence algebra $\mathcal{O}_{1} = [A_{1}, A_{2}, \dots, A_{d}]$ contains a unit element of the form $x_{1}A_{1} + x_{2}A_{2} + \dots + x_{d}A_{d}$ with each x_{1} non-negative, then \mathcal{O}_{1} is equivalent, in the above sense, to an incidence algebra containing 1.

An incidence algebra is called <u>symmetric</u> if each of the <u>Semi-symmetric</u> but basis matrices are symmetric, and <u>anti-symmetric</u> if_Athe only symmetric basis matrices are those with ones on the main diagonal. A symmetric incidence algebra is commutative and stochastic.

A stochastic, semi-symmetric incidence algebra is symmetric if and only if all the basis matrices have only real characteristic roots.

- 7 -

In an arbitrary incidence algebra the subset of those matrices whose transposes are also in the algebra is a semisymmetric incidence algebra. The subset of symmetric matrices is an incidence space, and an algebra if and only if it is commutative.

.

.

In this section we assume that \mathcal{K} is 3. Characters of Commutative Incidence Algebras. Let algebraically closed. $\mathcal{O}[=[A_1,A_2,\ldots,A_d]$ be a commutative n x n incidence algebra. It is stochastic because each A_p commutes with $J = J_{p,p}$.

For any $\lambda_1, \ldots, \lambda_d$ in \mathcal{K} let $\mathcal{M}(\lambda_1, \ldots, \lambda_d)$ denote the maximal space of n x 1 vectors over \mathcal{K} such that for each p=1,2,...,d

$$(A_p - \lambda_p I)^{\mu p} \cdot \mathcal{M}(\lambda_1, \dots, \lambda_d) = \{0\}$$

with μ_p some positive integer. Since \mathcal{A} is commutative, $\mathcal{A}(\lambda_1, \dots, \lambda_d)$ is contained in $\mathcal{M}(\lambda_1, \dots, \lambda_d)$.

There are only a finite number of $\mathcal{M}(\lambda_1, \dots, \lambda_d)$ different from $\{0\}$. Index those with not all $\lambda_1 = 0$ by $\mathcal{M}_1, \dots, \mathcal{M}_t$, with

 $\mathcal{M}_{k} = \mathcal{M}(\lambda_{1}^{(k)}, \dots, \lambda_{d}^{(k)}) \qquad k = 1, 2, \dots, t$

and let $\mathcal{M}_{0} = \mathcal{M}(0,...,0)$. Note that $\mathcal{M}_{0} = \{0\}$ if and only if \mathcal{M}_{0} contains I. The set \mathcal{M}_{0} of all n x l vectors over \mathcal{K}_{0} is the direct sum of $\mathcal{M}_{0}, \mathcal{M}_{1}, ..., \mathcal{M}_{t}$. The maximal subspace of \mathcal{M}_{1} annihilated by a power of $A_{p} = \lambda$ I is the direct sum of those \mathcal{M}_{k} with $\lambda_{p}^{(k)} = \lambda$.

The non-zero characters of \mathcal{M} are the t homomorphisms of \mathcal{M} onto \mathcal{K} :

$$\chi_{k}: \sum_{p=1}^{d} x_{p}^{A} + \sum_{p=1}^{d} x_{p} \lambda_{p}^{(k)} \qquad k=1,2,\ldots,t.$$

- 9 -

If we denote the dimension of \mathcal{M}_{k} by \mathbf{v}_{k} , then \mathbf{v}_{k} is called the <u>multiplicity</u> of χ_{k} . We have $\mathbf{v}_{o} + \mathbf{v}_{1} + \dots + \mathbf{v}_{t} = \mathbf{n}$, with \mathbf{v}_{o} non-negative and the other \mathbf{v}_{k} positive integers. If σ is any automorphism of \mathcal{K} , then χ_{k}^{σ} maps A_{p} into $(\chi_{k}(A_{p}))^{\sigma}$ and thus is a character of \mathcal{O} . Denote it by $\chi_{\sigma(k)}$. Then $\mathbf{v}_{\sigma(k)} = \mathbf{v}_{k}$. Thus, if $\lambda_{p}^{(i)}$ and $\lambda_{p}^{(j)}$ are roots of the same irreducible polynomial over a ground field of \mathcal{K} then $\mathbf{v}_{i} = \mathbf{v}_{i}$.

Since $\mathcal{O}($ is stochastic, for each $p = 1, 2, \ldots, d, a_p$ is a characteristic root of A_p (the one of largest absolute value) and $e = (1 \ 1 \ \ldots \ 1)^T$ is a characteristic vector. Since the characteristic root $n = a_1 + \ldots + a_d$ of J is not multiple, one of the \mathcal{M}_{k^p} say \mathcal{M}_{1^p} is just the scalar multiples of e. That is, $v_1 = 1$ and $\chi_1(A_p) = \lambda_p^{(1)} = a_p$ for all p.

Let

$$\Lambda = \langle \lambda_{i}^{(j)} \rangle$$

denote the d x t matrix of characteristic roots of the A as defined above. Since J has one characteristic root equal to m and the others equal to 0, the column sums of \bigwedge are, in order, m, 0,..., 0.

Let

- 10 ·

Then the trace of A_p is the i-th row sum of $\bigwedge D_v$. Let t_{pq} denote the trace of $\bigwedge_{p \in q} A_p$, and let

 $T = (t_{ij})$

Then

$$(3.1) \qquad T * \wedge D_{v} \wedge^{T}.$$

Let e_1, \ldots, e_t denote the primitive idempotents of $\mathcal{O}(.)$ Then $X_i(e_j) = \delta_{ij}$. Let μ_{ip} be defined by $e_i = \sum_{p=1}^d \mu_{ip} A_p$, and let M denote the t m d matrix

$$M = (\mu_{ij}).$$

Then

$$(3.2) \qquad M \Lambda = I_{\mu},$$

the identity matrix of order t. Using this in (3.1) we get

$$(3.3) \qquad \qquad \Xi i^{T} p_{v}^{-1} = \Lambda$$

From these equations we have

rank T = rank A = c

nullity $T = d-t = dimension of radical of <math>\mathcal{T}$

Thus T and \wedge are non-singular if and only if d = t or, equivalently, $\mathcal{O}($ is semi-simple. In that case (3.1) yields (3.4) $(\det \wedge)^2 = (\det T) / \prod_{i=1}^{t} v_i$

Suppose \mathcal{O} is semi-symmetric, and let $A_p^T = A_p$, as before. Then $X_i(A_p) = \overline{X_i}(A_p)$ or

- 11 -

$$\lambda_{\mathbf{p}''}^{(\mathbf{i})} = \overline{\lambda}_{\mathbf{p}}^{(\mathbf{i})}$$

where the bar denotes complex conjugation. In this case Olis semi-simple and (3.4) becomes

$$(\det \Lambda)^2 = (-1)^{s/2} \operatorname{d}_{n} \frac{\mathrm{d}}{\mathrm{d}} \operatorname{p}_{i=1}^{n} \frac{\mathrm{d}}{\mathrm{d}} \operatorname{d}_{i=1}^{n}$$

where s is the number of $p \neq p^{\circ}$. In this case Tv_i must divide $n^{d}Ta_{p}$. We also have $\mu_{ip} = v_i \lambda_{p^{\circ}}^{(1)}/na$ and the two equalities

 $\sum_{i=1}^{d} v_i \lambda_p^{(i)} \lambda_q^{(i)} = \delta_{pq} na_p \quad p,q=1,2,\ldots,d$ $\sum_{i=1}^{d} v_i \lambda_p^{(i)} \lambda_q^{(i)} \lambda_{r^i}^{(i)} = na_r a_{pq}^{(r)} \quad p,q,r=1,2,\ldots,d.$

4. Group Generation. Let G be a group of n x n permutation matrices. Let $\mathcal{O}(G)$ be the vector space of all matrices in \mathcal{K}_n commuting with every element of G. Then $\mathcal{O}(G)$ is an incidence algebra, called a <u>group-generated</u> incidence algebra. We let $\mathcal{O}(G)$ denote the algebra spanned by G over \mathcal{K} .

Let P be the permutation group on $\{1,2,\ldots,n\}$ corresponding to G. Then (x_{ij}) is an element of $\mathcal{O}(G)$ if and only if

for all π in P. We shall say that G is transitive if P is transitive, and generally speak of the permutations in G as if they were the corresponding permutations in P. The elements of the incidence basis of $\mathcal{A}(G)$ are the incidence matrices of the equivalence sets of the equivalence: (i,j) \sim (i',j') if and only if there is an element of P taking i into i' and j into j'. That is, the i,j element of the p-th incidence matrix is 1 if and only if (i,j) is in the p-th equivalence set:

A fundamental fact about $\mathcal{A}(G)$ is that it and $\mathcal{O}(G)$ are centralizers of each other and of no larger subsets in \mathcal{K}_n . The center of each is their intersection, and is spanned by the matrices formed by summing the elements in each conjugacy class of G.

If $\mathcal{O}($ is an arbitrary incidence algebra we let $G(\mathcal{O}(\cdot))$ denote the set of permutation matrices which commute with every element of $\mathcal{O}(\cdot)$. Then $\mathcal{O}(G(\mathcal{O}(\cdot)))$ contains $\mathcal{O}(\cdot)$, and $\mathcal{O}(G'_{+})$ contains $\mathcal{O}(\cdot)$ if and only if $G(\mathcal{O}(\cdot))$ contains G'_{-} . Thus $\mathcal{O}(\cdot)$ is group-generated if and only if it is generated by $G(\mathcal{O}(\cdot))$. Also if $G(\mathcal{O}(\cdot))$ is a proper subgroup of G''_{-} then $\mathcal{O}(G''_{-})$ is a proper subalgebra of $\mathcal{O}(G(\mathcal{O}(\cdot)))$.

- 13 -

Some of the properties of $OL(G) = [A_1, A_2, \dots, A_d]$ are

- 1) Ol(G) is semi-symmetric (and thus semi-simple) and contains I.
- 2) Ol(G) is stochastic if and only if G is transitive.
- 3) $\sigma(G)$ is commutative if and only if it is contained in $\mathcal{O}(G)$.
- 4) OL(G) is anti-symmetric if and only if G is of odd order.
- 5) Ol(G) is symmetric if and only if each transposition occurs as a disjoint cycle in G.
- 6) The row and column sets of $\mathcal{N}(G)$ are the transitivity sets of G.
- 7) If G_i is the subgroup of G leaving 1 fixed then $a_p = [G_i:G_i \cap G_j]$ for any i,j such that the i,j element of A_p is 1.
- 8) If G is transitive then d is the number of transitivity sets of $G_{1}^{(1)}$.
- 9) Theopretive of the row set Uprise [GaGe] for any i in Up.
- 10) $\mathcal{O}(G) = \mathcal{O}(G)$ if and only if G is transitive and abelian.
 - If G contains a full-cycle permutation the elements of O((G) are polynomials in that matrix.
 - 12) If Q is a permutation matrix $\mathcal{O}(QGQ^{-1}) = Q \mathcal{O}(G)Q^{-1}$.
 - 13) If $\mathcal{P}(G)$ is written as a sum of irreducible representations $\prod_{i=1}^{r} O(G)$ is written as a sum of irreducible representations $\prod_{i=1}^{r} O(G)$ is isomorphic to $n = \sum_{i=1}^{r} n_i k_i, d = \sum_{i=1}^{r} n_i^2$, and O(G) is isomorphic to $\mathcal{X}_{n_1} + \mathcal{X}_{n_2} + \dots + \mathcal{X}_{n_r}$.
 - 14) O((G) = [I,J-I] if and only if G is doubly transitive.

As an illustration of the applications of these properties consider the following. If G is doubly transitive then $\mathcal{O}(G) = [I,J-I]$. The centralizer of this $\mathcal{O}(G)$ is the set of matrices which commute with J, the set of all matrices with constant row and column sum. The centralizer of $\mathcal{O}(G)$ is also $\mathcal{O}(G)$. Therefore any matrix with constant row and column sums is a linear combination of matrices taken from a doubly transitive group of permutation matrices.

We use a similar method to construct an incidence <u>space</u> S(G,H)from a <u>pair</u> of groups of permutation matrices G,H whose corresponding permutation groups P,Q are representations of degrees m and m respectively of some finite group. To each element M of G and w of P we denote by M^T and w^T the corresponding elements of H and Q respectively.

The S(G,W) has a similar set of three equivalent definitions as does O(G) above: S(G,H) is the set of all m by n matrices $X = (x_{ij})$ such that (i)

 $x_{w(1),j} = x_{i,w}(j)$ for all w in P; (ii) FX = XP^T for all P in G; and (iii) S(G,H) has as a basis the set of incidence matrices of the equivalence sets of the equivalence: (i,j) ~ (i',j') if and only if there is an element W of P such that W takes i into i' and W^Ttakes j' into j.

Among the properties of S(G,H) are: it is closed under left multiplication by J_m and under right multiplication by J_m ; the

- 15 o

transposes form the incidence space S(H,G); if G is transitive then the dimension of S(G,H) is equal to the number of transitivity sets of G_1^T and the row sums of the incidence basis are the orders of these transitivity sets; and if U,V,W are any elements of S(G,H)then UV^TW is an element of S(G,H). It follows that the set $\{UV^T: U,VeS(G,H)\}$, which is a subset of O(G), is closed under unitiplication.

1 250

An example of the results of this method is the following. Let K be a group with a subgroup M of double index 2 (i.e. $K = M + M \times M$) and index v. Let N be any other subgroup of K of index v. Then a v,k, design exists with k equal to the index of MAN in M.

What amounts to this method is described by J. S. Frame in [4]. His primary interest was in the derivable group properties, so that his results and ours do not intersect. the incidence algebra 5. Dimension 3 with identity. Suppose, A has dimension 3 and contains 1. Then of is stochastic and commutative, and we may write

Let n be the order of A, a its constant row and column sum, and c_1, c_2, c_3 non-negative integers such that

$$A^2 = c_1 I + c_2 A + c_3 (J - I - A).$$

The other structure constants of \mathcal{A} , each of which is a nonnegative integer, may be determined from

$$A(J-I-A) = (a-c_1)I + (a-c_2-I)A + (a-c_3)(J-I-A)$$
$$(J-I-A)^2 = (N-2a-1+c_1)I + (n-2a+c_2)A + (n-2a-2+c_3)(J-I-A)$$

By interchanging A and J-I-A, if necessary, we can assume that

$$a \leq \frac{n-1}{2}$$

Then the c, are non-negative integers satisfying

$$1 \ge c_1, c_2 + 1, c_2 \ge 0$$

and $c_2 \ge 1$ if a = (n-1)/2.

A is normal if and only if \mathcal{O}_{1} is either symmetric or antisymmetric. \mathcal{O}_{1} is symmetric if and only if $c_{1} = a$, and antisymmetric if and only if $c_{1} = 0$.

 $x^{2} + (c_{3} - c_{2})x + c_{3} - c_{1} = 0$

We also have

Ĝ

 $\mathbf{v}_2 + \mathbf{v}_3 = \mathbf{n} - 1$ $\mathbf{v}_2 \lambda_2 + \mathbf{v}_3 \lambda_3 = -\mathbf{a}$

and

$$(\lambda_2 - \lambda_3)^2 v_2 v_3 = n(c_1(n-1)-a^2)$$

If λ_2 , λ_3 are irrational then $a = v_2 = v_3 = (n-1)/2$ and either (1) \mathcal{O} is symmetric, $n \equiv 1 \pmod{4}$, $A^2 + A = ((n-1)/4)(J+I)$, λ_2 , $\lambda_3 = (-1 \pm n^{\frac{1}{2}})/2$ or (2) \mathcal{O} is anti-symmetric; $n \equiv 3 \pmod{4}$, $A^2 + A = ((n+1)/4)(J-I)$, λ_2 , $\lambda_3 = (-1 \pm in^{\frac{1}{2}})/2$. This latter is the only way for \mathcal{O} to be anti-symmetric. It leads to the equation

$$AA^{T} = \frac{n+1}{4}I + \frac{n-3}{4}J$$

Which means that A is a v,k,λ design from which one can construct a Hadamard matrix of order n+1. From our method of the previous section (see properties 4 and 8), a sufficient condition for A to exist is that there be a transitive permutation group on n letters, of odd order, with the subgroups leaving one letter fixed having exactly three transitivity sets. Unfortunately, when n is not a prime power such a group would be primitive, and therefore insoluble of odd order, contrary to the classical conjecture.

-17-

Now assume that λ_2 and λ_3 are rational. Then one is negative and the other non-negative. Let

$$e = \lambda_2 \ge 0$$
 and $t = -\lambda_3 \ge 1$.

We can show that if $\mathcal{O}[$ is semi-symmetric it is symmetric, that n is never a prime, that tr $\Lambda^2 \ge n^2$ + at with equality if and only if A is singular, that $\Lambda^T \neq A$ implies $a^2 + a \ge n$, that $s \neq a$ implies $s \le a + 2 - 2(a+1)^{\frac{1}{2}}$ and $t \ne a$ implies $t \le (a+1)/2$. 6. A graph theory problem. Given 2t points, consider the set
L of all (linear, undirected) graphs on these points consisting
of t disjoint lines. That is, in each graph each point is the
neighbor of exactly one other point. There are

(6.1) $n = (2t-1)(2t-3)...3\cdot 1$

such graphs:

$$\mathcal{L} = \left\{ \mathbf{L}_{1}, \mathbf{L}_{2}, \dots, \mathbf{L}_{n} \right\},$$

The union of two elements of \mathcal{L} is a collection of disjoint cycles each having an even number of points. A cycle with 2kpoints is said to be of length k. Thus the lengths of the cycles form a partition of t.

Given a partition $\pi = (1^{j_1}, 2^{j_2}, ..., t^{t_i})$ of t: $t = j_1 + 2j_2 + ... + t_{jt}$

let \mathcal{H}_{π} denote the set of all graphs on the 2t fixed points have j_k cycles of length k for k = 1, 2, ..., t. Let R be the set of partitions of t:

$$R = \{\pi_{1}, \pi_{2}, \dots, \pi_{d}\}$$
 $d = p(t).$

where p(t) denotes the number of partitions of t.

Given fixed elements L of \mathcal{L} and $\pi_p = (1^{j_1}, 2^{j_2}, \dots, t^{j_t})$ of R, it is easy to show that there are

- 19 -

$$a_{p} = 2^{t-j_{1}-\cdots-j_{t}} \frac{t!}{1^{j_{1}} 1^{j_{2}} 2^{j_{2}} \cdots t^{j_{t}} 1^{j_{t}}}$$

elements of \mathcal{L} whose union with \mathbb{L} lies in $\mathcal{H}_{\pi_{n}}$.

The following related question is more difficult to answer. Given fixed elements L_i and L_j of \mathcal{L}_j and π_p and π_q of R_j for how many elements L_k of \mathcal{L} do we have

(6.2)
$$L_i \cup L_k \in \mathcal{H}_n$$
 and $L_k \cup L_j \in \mathcal{H}_n$?

It can be shown that the answer $a_{pq}^{(r)}$ only depends upon x_p , x_q , and x_p where

$$(6.3) \qquad L_1 \cup L_j \in \mathcal{H}_{\pi_2}.$$

To solve this problem, we shall construct an incidence algebra whose structure constants are the above mentioned $a_{res}^{(r)}$.

Let S_{2t} be the set of permutations of the 2t fixed points. Let H_1 be the subgroup of S_{2t} leaving L_1 fixed. Let

H1, H2, ..., H

be the left cosets of H_1 in \mathcal{S}_{2t} , such that any element of H_1 takes L_1 into L_1 . This is the same n as in (6.1).

For any element σ of \mathcal{S}_{22} we have

where %, is a permutation of the integers 1, 2,000 no Lat

 $\mathbf{P} = \left\{ \mathbf{X}_{\sigma} : \sigma \in \mathcal{S}_{2t} \right\}$

be the group of all permutations \forall_{σ} . Let G be the group of permutation matrices of order n corresponding to P.

The incidence algebra wa seek for is of (G).

The proof of this depends on two facts: (F_1) any element of S_{2t} permutes the elements of \mathcal{H}_{π} , for any π in P; and (F_2) if $L_1 \cup L_j$ and $L_1 \cup L_j$, are both in \mathcal{H}_{π} , then there is an element of S_{2t} taking L_1 into L_1 , and L_1 into L_1 .

Let us restate (F_1) and (F_2) in terms of ordered pairs of the cosets H_1 , H_2 ,..., H_n , and the equivalence:

if and only if there is an element of P taking i into i' and j into j'. Then (F_1) and (F_2) imply that the equivalence sets $\overline{\mathcal{H}}_{\pi_1}, \overline{\mathcal{H}}_{\pi_2}, \dots, \overline{\mathcal{H}}_{\pi_d}$ of this equivalence correspond to the sets $\mathcal{H}_{\pi_1}, \mathcal{H}_{\pi_2}, \dots, \mathcal{H}_{\pi_d}$ in such a way that (H_1, H_1) is in $\overline{\mathcal{H}}_{\pi_p}$ if and only if $L_1 \cup L_j$ is in \mathcal{H}_{π_p} . Let $A_p = (a_{pij})$ be the incidence matrix of $\overline{\mathcal{H}}_{\pi_p}$. That is,

apij $\begin{cases} 1 \text{ if } (H_i, H_j) \in \overline{\mathcal{H}}_{\pi_p} \\ 0 \text{ otherwise} \end{cases}$

From our discussion in section 4, we know that A is one of the elements of the incidence basis of $\mathcal{O}[(G)$. If $\{a_{pq}^{(r)}\}$ is the set of structure constants of this basis we have

- 21 -

$$A_{pq}^{A} = \sum_{r=1}^{d} a_{pq}^{(r)} A_{r}.$$

Comparing the i, j elements we have

$$\sum_{k=1}^{n} a_{pik} a_{qkj} = a_{pq}^{(r)}$$

vhore

Since $a_{pik} a_{qkj} = 1$ if and only if $a_{pik} = a_{qkj} = 1$, the constant $a_{pq}^{(r)}$ is just the number of H_k such that $(H_i, H_k) \in \overline{H}_{\pi_p}$ and $(H_k, H_j) \in \overline{H}_{\pi_q}$

where

$$(H_1, H_j) \in \overline{\mathcal{H}}_{n_r}.$$

Comparing these conditions with (6.2) and (6.3), we see that the structure constant $a_{pq}^{(r)}$ is indeed the answer to our problem.

That this is a reasonable solution follows from that fact that we can actually construct the incidence basis of O((G)given the group P. In turn this group only depends upon the group H, which leaves the graph L, fixed.

This same method applies to any set of graphs $\{L_i\}$ which are permuted among themselves by permutations of their points, so long as the sets $\{H_i\}$ into which the unions of L_i are partitioned satisfy conditions corresponding to (F_1) and (F_2) .

- 22 -

Under any conditions the incidence algebra \mathcal{O}_{i} (G) is symmetric (and therefore commutative and stochastic) because $L_{i} \cup L_{j} = L_{j} \cup L_{i}$, and thus $a_{pij} = a_{pji}$ for all p, i, j. Furthermore, the characteristic roots of its incidence basis matrices are all rational integers. This follows from property 3 in section 4, the fact that P is a representation of a symmetric group, and the fact that the characters of any representation of a symmetric group are rational (see [5], vol. II, pages 190-193).

References

- R. C. Bose, "Versuche in unvollstandiger Blocken", Gastuarlesung Universitat Frankfort/M., Naturwissenschaftliche Fakultat, 1955.
- R. C. Bose and D. M. Mesner, "On linear associative algebras corresponding to association schemes of partially balanced designs." Ann. Math. Stat.
- 3) D. M. Mesner, "An investigation of certain combinatorial properties of partially balanced incomplete block experimental designs and association schemes, with a detailed study of designs of Latin squares and related types", unpublished doctoral thesis, Michigan State University, 1956.
- J. S. Frame, "Double coset matrices and group characters",
 Bull. Amer. Math. Soc. 49 (1943), pp. 81-92.
- B. L. Van der Waerden, Modern Algebra, Frederick Ungar, New York, 2nd ed., 1940.
- E. C. Dade and K. Goldberg, "The construction of Hadamard matrices", Mich. Math. J. 6 (1959), pp. 247-250.

California Institute of Technology

and the

National Bureau of Standards

- 24 -

USCOMM-NBS-DC

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements. Dielectrics. High Voltage.

Methology, Photometry and Colorimetry, Refractometry, Photographic Research, Length, Engineering Metrology, Mass and Scale, Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics. Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment. Nucleonic Instrumentation. Neutron Physics.

Analytical and inorganic Chemistry. Pure Substances. Spectrochemistry. Solution Chemistry. Standard Reference Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics, Sound, Pressure and Vacuum, Fluid Mechanics, Engineering Mechanics, Rheology, Combustion Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Characterization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties. Crystallography.

Building Research. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Materials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics, Numerical Analysis, Computation, Statistical Engineering, Mathematical Physics, Operations Research.

Data Processing Systems. Components and Techniques. Computer Technology. Measurements Automation. Engineering Applications. Systems Analysis.

Atomic Physics, Spectroscopy, Infrared Spectroscopy, Solid State Physics, Electron Physics, Atomic Physics, Instrumentation, Engineering Electronics, Electron Devices, Electronic Instrumentation, Mechanical Instruments, Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Molecular Kinetics. Mass Spectrometry.

Office of Weights and Measures.

BOULDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryogenic Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Konosphere Research and Propagation. Low Frequency and Very Low Frequency Research. Ionosphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Modulalation Research. Antenna Research. Navigation Systems.

Upper Aimosphere and Space Physics. Upper Atmosphere and Plasma Physics. Ionosphere and Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY

Radio Physics, Radio Broadcast Service, Radio and Microwave Materials. Atomic Frequency and Time-Interval Standards, Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. Microwave Circuit Standards. Electronic Calibration Center.

.

•

•