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PREFACE

This is the first volume of a two-voliame final report on

a project dealing with mathematical and computational methods

for the optimization of radar siting with respect to coverage.

It contains a detailed investigation of a convenient idealization

of the siting problem, chosen as a suitable "test case" on which

to evaluate alternate methods of calculation and analysis. This

material is being presented separately because it forms a natural

self-contained unit for expository purposes. The second volume

will (among other topics) discuss the relationship of the actual

siting problem to the simplified version treated in the present volume.

L.S. Joel, Project Manager



ABSTRACT

The principal problem considered is that of determining

which placement of n discs of equal radius will cover as

much as possible of a circular area A» Extensive computer

experiments were performed to find the optimal arrangements

and to compare the performances of several "black box"

maximization methods as applied to this problemo A second

version^ in which A is divided into subregions and each

disc is regarded as contributing to the coverage of only

one subregion, is also treatedo Related mathematical

resiilts and questions are discussed.
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lo THE PROBLEM

1. Description of Covering Problem

We are given a circular area A of radius R, centered at

the origin of the XY-plane, and a specified number n of circular

discs (l< i< n) all having the same radius r < R. How should

the n discs be placed so that they cover as great a portion of

A as possible? And for this optimal placement of the discs, what

is the ratio between (i) the area of the portion of A covered

by the discs, and (ii) the total area of A?

To describe the problem more precisely we shall make the

following definitions o A placement or conf1guration of n discs

is uniquely determined by specifying the (X^Y) coordinates of

centers of the discs.. If we suppose that the n discs are ordered

by their indices C^, » » «> ;
we may construct the vector

X=(X, , Y, ,X^, Y„, 0 . 0 , X ,Y ) where (X. ,Y. ) denotes the center of

the disc This vector X with 2n components completely

determines a configuration of the n discs with respect to the

large area A. The configuration of Figure 1 would be represented

by the vector

x=(-11,6,-i,12,-3, 3, -5, -^,6,1,12,7).

Now for each vector there is a uniquely determined area of that

region of the plane which is within A and at least one of the

discs C. » In set theoretic notation this region would be given as
n

( U c ) Pi A* In Figure 1 the region we w^t is shaded. It should

be^ciear that the ratio referred to above is a function F(x). If

we restrict the pairs (X^,Y^) by requiring that the centers of

all discs lie within A, then our problem is that of maximizing

the function F(x) over some bounded subregion of 2n- dimensional

Euclidean space*

2. Some Related Problems

There are several problems that are closely related to our

problem and which seem to be somewhat more Interesting from a purely

mathematical viewpoint*
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Since their solution for the most part involves obtaining a

solution to the general problem stated in . I-l we shall briefly

mention these others:

(a) Given discs of radius r < R, what is the minimum nunfbei'

of them required to completely cover A?

(b) Given r < R^ what is the maximum number of discs' of radius

r that can be packed into A so that there is no oveilap between

discs and each disc lies entirely within A? See Figure 2o

(c) Given the number n of discs, what is the minimum radlua

r for which these discs can completely cover A?

(d) Given the number n of discs, what is the maximum radius

r consistent with packing?

(e) Given the value of P=nr ,
what values of n and r

determine the best coverage?

Certain of the above classes of problems lend themselves to

direct analytical solutiono For example problem (a) above with^^^

r=l/2 can be solved briefly as follows* For complete cover^e

it is; required that the circumference of A be covered* Remembering

that a regular hexagon inscribed in a circle of radius R has edges

of length R, we see that at least six discs are required to cover

the circumference* But if exactly six are used then the canter

of A is left uncovered and a seventh disc is required. It can

then be shown that seven discs are in fact sufficient and the

problem is solved. A similar argimient can be used to show that

r=l/2 is the solution to (c) when n=7. Problem (b) in the case

r:=l/2 can also be solved easily.

Probably the least trival analytical solution in this class

( 2 )
of problems is due to Neville' ' who solved problem (c) in the

case n=5« He showed that the minimum radius required is appraximately

.609. It is interesting to note that the configuration of discs

that achieves complete coverage with this radius does not have

central symmetry. In fact the boimdaries of three discs (see Figure 3)

(1) We assume R=1 for convenience; it should be noted that the ratio
of coverage depends only on r/R and therefore our assumption involves
no loss of generality.

(2) E.H. Neville, "Solutions of Numerical Functional Equations,"
Proc. London Math. Soc l4 (second series, 1915)^ PP« 308-326.
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pass thru a point near the center of A whereas the other two discs

are considerably displaced from its center* If three of the disc-

boundaries are required to pass through the center of A, the

minimum radius needed for complete coverage increases to .6l0, and

it rises to «6l8 if all five boundaries are required to pass through

the center.

3. Some Related Mathematical Literature

The several paragraphs that follow contain references to some

mathematical papers that are relevant to the problems discussed in

this paper* We hope the interest of these topics will be an adequate

compensation for the lumpiness of their presentation*

An interesting result converning coverage by discs of equal size

is the following theorem of R» Kerschner^^^

:

If W(r) is the smallest number of discs of radius r needed to cover

a plane set of area A^ then

lim jrr^ N(r) = 2jt ^ A/9«
r—

o

This formula suggests the possibility of using

R (r) = 2 '{3/9r^

as an estimate for the minimum number of discs of radius r required to

completely cover a large disc whose area is n (i«e. whose radius is

R = l)* For example^ ( 3/8 ) = 9 to the nearest integer whereas 10

discs at this radius can be made to cover 99p of the area A, as

indicated in Table 1 .

f 2)The following theorem of Verblunsky^ ' relates to how fast the

convergence is in Kerschner’s result;

(1) "The Number of Circles Covering a Set" Amer. J* Math* 6l (1939),
p. 665

(2) S« VerbluJisky, "On the Least Number of Unit Circles which can
cover a Square", J. London Math, Soc, 2k (1949), pp. 164-170 *
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There is a number c > l/2 such that^ for all small efiough r

N(r) - (2 ll/9r^) > (2 V3c/9r)

where N(r) is the least number of discs of radius r required to cover

a square of area I® This means that the approximation W^(r) suggested

above converges at best on the order of (l/r)*, In the absence of

other knowledge^ however,, this might be used to get some idea of what

sort of coverage might reasonably be expected with a particular pair (n, r)«

The Verblunsky result applies to coverage of a square but it seems quite

likely that the convergence is similar for the circular coverage problem.

( 3 )
The following result^ establishes a relationship between the

problems of packing and covering. If r^ and r^ denote respectively the

maximum r for packing and the minimum r for covering with n discs then

3 r^ > 4 r^

This is true whenever the region to be covered qr packed is convex. We

can use this resul.t to get a lower bound on r^ if we know r^, and

vice versa®

(4)
The 2-dimenslonal case of a more general theorem of D. Gale implies

that any plane set of diameter 2 can be covered by three properly- chosen

sets each of diameter < The author also points out that no three

sets each of diameter < is will cover a disc of diameter 2® This

essentially solves problem (c) for the case n=3 and indicates that a disc

is the "hardest" set to cover amorg sets of equal diameter®

(3) Lo Fejes Tith,, L^erungen in der ^ene,_ auf der Kugel^ und im Raum,

Springer Verlag (1953),, p» 67 .

(4) D® Gale,, "On Inscribing n-dimensional Sets in an n-dimenslonal

Simplex";, Proc. Amer® Math® Soc® 4 (1953) ^ PP® 222-225®
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An interesting related problem arises if the n discs are

"thrown down" independently at random^
i»e. with their centers uniformly

distributed subject only to the condition that they overlap the circular

area A* Here F(x) becomes a random variable whose mean is an appropriate

reference point in deciding which values of F(x) might be considered

high ones. The value of such a reference point is enhanced if one also

has at hand the standard deviation q- of F(x), which can be obtained from

0-2 = Mg -

where is the second moment of F(X) and is the mean (i.e.^ the

first moment).

Such problems of "random coverage" have been treated in the technical

literature. The basic theorem on thlB subject^ due to A. Kolmogoroff

can be stated for our purposes as follows; Suppose one has a probability

distribution over a specified class of sets S in m-dlmensional Euclidean

space^^^. Then the measure^"^^ jLi(S) of a set S is a random variable. If

points of the Euclidean space are denoted x=(x ) and y=(y-i^»*«^y )j

then the mean of jLi(s) is given by^ ^

M-, =
[
Prob (x is in S) dx-,u..dx ,

1 1 m^

its second moment by

M„ = rr Prob (x is in S and y is in s) dx, ...dx dy, ...dy .

and similarly for higher moments.

XT) A. Kolmogoroff, Grundbergrlffe der Wahrschelnlichkeltsrechnung
^

Ergebnisse der Mathematik^ Berlin^, 1933^ P»

(6) In our case m=2 and the sets S are non-empty intersections of the
circular disc A with the union of n circular discs of radius r.

( 7 ) "Measure" is here a generic term which means "length" in one-
dimensional situations^ "area" in two dimensions^ and "volume" in three.

(8) The integral formally extends over the entire Euclidean space^ but
in most applications the Integrand is zero outside some bounded region.
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(9)
This theorem was rediscovered by HoEb Rohhlns 3 used it

to study the one-dimesional analog of our problem^ loe® random coverage

of a linear Interval by smaller Intervals* He calculated and for

this case^ and observed that his formula for remains valid for the

two-dimensional ("circles") case that concerns us here* Subsequently

Jt. Bronowski and J* Neyman(10) treated the random coverage of a fixed

rectangle by smaller rectangles with sides parallel to those of the

fixed one* Robbins ( 11 ) solved the m- dimensional generalization of the

problem for rectangles_, and also treated random coverage of a rectangle
( 12 )by circular discs® L*A* Santalo^ ' treated random coverage of an

( 13)m-dlmensional rectangle by spheres^
, a,nd also the coverage of a

(two-dimensional) rectangle by rectangles of random orientation* He also

solved the problem of random coverage of a sphere in m-dimensional Space

by smaller spheres^ which for m=2 is the problem that concerns us»

Of the many formulas derived in these papers,, only two will be cited

here* Both refer to the area of a circular region A of radius R=l^ which

is covered by the union of n circular discs of radius r < 1^ whose

centers are independently chosen and uniformly distributed over a disk of

radius 1+r concentric with A*

('
9 ) H*E* Robbins^ "On the Measure of a Random Set", Annals of Math*
Stat, ^ ( 19^4 ), pp» 70- 74 .

( 10 ) J. Bronowski and J* Neyman, "The Variance of the Measure of a Two-

Dimensional Random Set"^ Annals of Math* Stat* ^ (1945),? pp* 330" 341.

( 11 ) H*E* Robbins,, "On the Measure of a Random Set: II";, Annals of

Math* Stat* (1945),? pp» 342-347®

( 12 ) L*A» Santalo,, "On the First Two Moments of the Measure of a Random
Set", Annals of Math. Stat* ^ (1947)^ pp® 37~49®

( 13 ) Note that a "sphere" is just a linear interval in one- dimensional
situations, and is a circular disc in two dimensions*



The first formula^, due to Rohbins_, gives the mean ' of this "random

covered area" as

this must he divided by the area jt of A to obtain the mean of the ratio

F(x)* The second formula^ due to Santalo^ gives the corresponding

variance as

cr^ = 2tc

[

l- 2Ttr^- 2r^ arc cos (t/2r)+^(hr^-t^)^'^^ (2 arc cos (t/2))

jt(l+r)^

- ;|t (h-t^)^/^]t dt + {ly [ 7t^-2jt(2(2r^-l) arc cos r

(1+r)^

- 33^(1- + jt + 2r(l-r^)^^^ - arc sin r)

}

2
this must be divided by n to obtain the variance of F(x)«.

(14) See Table 0 for values of / « pertinent to this study.
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lie ATTEMPTS AT ANALYTICAL SOLUTION

1» Formiila for Maximand

Returning to the main prohlera presented in I“I^ we shall

describe some attempts that were made to obtain an analytical

solution. Problems involving the maximization of a function

of several variables can usually be handled by calcuJLus if

the function P(x) can be written as an expression involving

the components of X and familiar functions of them. The first

step in any attempt at an analytical solution to our problem

is to obtain some "formula" for that portion of the area of A

that is covered by the configuration X=(X^;»Y^,

2. The Two- Pi sc Problem

An initial attempt was made to derive a "formula" for

the area covered by two discs of radius r < R=l. The

parameters describing the placement (see Figure 4) of the discs were

(i) d^ and d^, the distances from the center of A to the centers

of discs and Cg respectively,

(ii) 0, the angle between these two distances (q <tc).

It was thought that with these parameters in place of

(Xf^Yi^X^^Yg), it would be easier to obtain the formula desired^^^

.

It was found that a single formilLa could not be obtained far the

area covered but an algorithm was devised which uses no less

than 8 "formulas", depending on certain geometric properties
(2)

of the covering configuration^ ^

.

3. Abandonment of Analytical Methods

The impossibility of obtaining any reasonable "formula"

for the function we are trying to maximize in the relatively

trivial case n=2 seems to indicate the futility of the analytical

approach especially when n is larger*

(1) Every configuration of n discs can actually be specified by
only (2n-l) variables, by arbitrarily setting X^=0, This involves
no loss in generality, for if we are given a configuration where

then a rotation of the coordinates can be performed so as to
make Xj^=0. Such a rotation will not alter the coverage of the
configuration.

(2) See Appendices I and II.
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On this sad note the general analytical approach was- abandoned

and another method of a somewhat experimental nature, using

high-speed electronic computers, was adopted.
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III. BLACK BOX MAXIMIZATION

1, General Description

Procedures collectively known as "Black Box Maximization"

have keen used recently to search for the maximum value of a

functlon^^^ They are employed when the following copditlons exist

(l) It is required to maximize a certain function P(x), where

X ranges over some finite set of objects S»

(il) For each individual X it is possible to calculate

F(X)j but there is no neat analytical expression for F(x)«

(ill) The function F has some sort of continuity which

makes it possible to define^ for each X inS^a subset W(x) of the

points of S in such a way' that .the value of F at X differs from

the value of F at any point of N(X) by a small amount. This set

W(x) is called the set of neighbors of X.

In one such method^ the search for the maximum of F over S

proceeds as follows: Pick some point X^ in S as a starting point

and calculate F(X^). Then determine the points belonging to N(X^)

and compute F for each of these points. Among the members of. N(X^)

select one that yields the highest function value. If this point

X^ kas a higher function value than X^^ then repeat the process with

Xg replacing X^. However_, if F(X2) < F (X^)^ then X^ is a relative

maximum of F and the iteration terminates.

(1) A, Gleason^ "A Search Problem in the N-Cube^ "Proc, of Tenth
Amer. Math, Soc. Symosium on Applied Math^ Vol, 10 (196O),

(2) S,Reiter and G,R,Sherman_, "Allocating Indivisible Resources
Affording External Economies or Diseconomies^" Paper No, 11 of the
Purdue University Institute for Quantitative Research in Economics
and Management^ (12/60), Also Paper No. 13^ "Choosing an Investment
Program among Interdependent Projects" by S.Reiter (5/6l)«

"The Peak- Finding Problem" : Abstracts of Session 43 of the
18 National Meeting (Oct. 10-12_, i960) of the Operations Research
Society of America, See the Fall i960 ORSA Bulletin^ Supplement
2 to Volume 8 of Operations Research .

(4) R.C.Buck^ "Extremal Properties of Finite Sets_, " delivered at

the Symposium on Combinatorial Problems^ Princeton^ 4/l2-4/l3 I96O.
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The method we have just described is known as the method of

"steepest ascent"^ since in selecting the new point we picked

that member of N(X^) with vhe greatest function value. Two other

methods which might be employed are worthy of notice. If we

select as that neighbor of which has the smallest value

of F among those whose function values are greater than F(X^)^

this is known as the method of "slowest ascent " or "least positive

ascent . " This method derives its rationale by analogy with the

case of searching for the absolute maximum of a function of

2 variables where the function can be considered as a surface

in 3 space with hills and valleys representing extrema. There is

some intuitive reason for surmising that following a "river bed"

may lead to a higher peak than a "steep climb" would obtain. The

third method; known as the "first positive ascent, " derives its

value from the fact that the selection of the new point X^ at each

stage generally takes less computation than for the other two methods,

and thus saves valuable time when an electronic computer is being

used to solve the problem. In this method the members of N(X^) are

arbitrarily ordered into a sequence is

computed and if it exceeds F(X^) then is selected as X^" If

F(N^) < F(X^) the computation is repeated with and so on \mtll

one of the neighbors of X^ is selected or all the neighbors are

exhausted. If the latter occurs, then no points of W(X^) have

a higher function value than X^, so X^ is a relative maximum of F.

There is no known way of selecting one of these methods as best,

even given certain characteristics of the maxlmand. Gleason (op cit)

presents interesting statistics comparing the "steepest ascent" with

the "slowest ascent" for one particular problem, but no general

comparison seems possible short of numerous experiments,

2. Application to the Coverage Problem

We observed in II- 2 that the function F(X) we want to maximize

could not be expressed in any neat formula. In fact, where more

(*) See reference (1) p.lO.
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than two discs are involved^ the construction of an algorithm

to calciilate the function would probably be too difficult and

time-consuming to be worthwhile. What we need^ first of all, Is

an approximation for F(X) . We assiime that the circular area A

Is centered at the origin and Its radius R Is a positive Integer.

(5)
Furthermore, the radius r of the dlsQs:ia also a positive Integer^ .

The points of the plane (p, q) where both p and q are Integers are

called grid-points and the area of A Is approximated by the number

of grid- points n^ which lie Inside the boundary of A. We shall also

require that each pair (X^,Y^) determining the center of a disc

be a grid- point. Our estimate for the portion of A covered by the

discs Is the number of grid-points n^ that lie Inside A and at least

one of the discs (see Figure 5)» The ratio F(x) Is approximated by

the quotient n^/n^.

The problem Is now to maximize F(x) where F Is given by the

approximation, over all vectors X such that the components are

Integers J In the range -R < j < R. In this form the problem

satisfies conditions (l) and (ll) of III-l. To satisfy the third

condition we must specify the neighborhood R(X) for each vector X

In the domain of F« We shall define W(x) to be all those vectors

In the domain of F which can be derived from X by adding + 1 to

exactly one component of X. This means that each X has 4n

neighbors except In the boundary situations (some component of X

Is + R) where It has less.

The problem as now formulated can be submitted to the methods

of maximization described above. Some rather slight deviations

from the general method were employed because of certain peculiarities

of our problem, but for the most part these methods were the

techniques that were programmed for use on a computer.

( 5 )
Since the function F(x) Is a ratio, the value of F Is not

changed If R, r and the vector X are all multiplied by a constant
factor.
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3* Drawbacks of the Methods

At this point we should, acknowledge several rather sobering facts

about our method. The Black Box Maximization methods described

( steepest^ slowest, and first positive ascent) all find a point^^'^ which

is a relative or "local" maximum of the function; if one were certain

beforehand that the function has only one such "local" maximum, there

would be no further problem. Unfortimately, this is usually not the

case because one is dealing primarily with fimctions whose behavior

is generally unknown. The best way to Increase the probability of

hitting on the true "global" maximum seems to be to repeat the search

many times with random Initial points and different schemes of ascent.

Secondly, the discretizing of the problem which was effected in order

to be able to approximate the function has introduced some error into

(?)
the numerical results. Although theoretically the mesh can be refined

to obtain any accuracy desired, the limitations set by time and the size

of computer memory make it Impossible to refine the mesh Indefinitely.

4. A Related Topic

A topic related to the methods discussed in III of this report is

that of maximizing an "unknown" function whose every evaluation requires

physical experimentation and so, besides being costly, involves experi-

mental errors. Since the classical paper of Box and Wilson '^appeared, much

work has been published in statistical journals on the design of efficient

exploration schemes for such "response surfaces"; we mention here only a

paper of Box and Hunter^^^ and those by Brooks^^*^^.

(6) "Point" is used here to mean an element in a vector space, i.e., a
vector.

(7) The mesh is refined by multiplying the appropriate variables by a
constant factor; this doesn't sound like refinement but it amounts to
the same

.

( 8 ) G.E.Po Box and K.B. Wilson, "On the experimental attalnm.ent of

optimum conditions," J« Roy. Stat. Soc. (Series B), 13 (l95l);> PP* l-^5»

(9) G.E.P. Box and J.S. Hunter, "Multi-factor experimental designs for
exploring response surfaces", Ann. Math. Stat. (1957), PP- 195-241.
(10) S.H. Brooks, "A Discussion of Random Methods for Seeking Maxima",
Operations Research 6

( 1958 ), pp. 244-251, and "A Comparison of
Maximum- Seeking Methods", Operations Research 7 (1959), PP« 430-457»
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IV. THE COMPUTER PROGRAM

1. SpeQlB.lizations and Subroutines

The technique we have described was programmed^^^ and

coded in FORTRAN and SAP for use on an IBM 704 electronic

computer. The code has been debugged and a large body of data

has been collected. There are several things which didn't appear

in the preceding description of the method but were necessary

additions Or at least were clearly indicated.

The procedure for choosing an initial "vector" X to begin

a search was left unspecified in the foregoing. As the ccmiputer

code was written, the selection is made as follows:

(i) UsiFig "steepest ascent", the initial X is chosen by

randomly generating a certain number of vectors and selecting

the one that achieves the highest function value.

(ii) Using either "slowest ascent" or "first positive ascent",

the initial X is selected by a single random generation.

(ill) Using any of the methods, the initial X may be read

into the computer as an input variable.

Another variation on the general method that was present in

the program was refinement of the mesh. In III- 2 we required

that R and r be positive Integers and that the centers of the discs

be grid- points (i.e. X^ and must be integers for all i). The

value of R is further limited by the program to the powers of 2,

and each time a relative maximum is achieved with some value of R

the mesh is refined by doubling R, r and X. This is effectively

the same as if we had actually refined the mesh of grid- points

by constructing new lines halfway between those that already

define our grid- points. After this refinement has been carried out,

the search is continued until a relative maximum is found. The mesh

is then refined once again and so on until the mesh is as fine as

we desire. Since the fineness of the mesh is indicated by the value

of R, we specify as an input to the program the maximum value of R

indicating the final mesh size. The reason for this successive

refinement is that if the search is begun with a coarse mesh.

IT) See Appendix III
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the bulk of the searching process can he done in a lesser amount

of time; this is because the amount of computation depends very

strongly on the number of grid-points, as might be expected.

There are ten subroutines that are called for by the main

.program; a listing of these and a brief description of each follows:

MK2T- computes and stores in memory a table of the squares

of all positive integers less than 1000.

XBAE- randomly generates n pairs of coordlnates(X. , Y. )
where

2 2 2
^ ^

X + Y < R with X. and Y. integers.
i i

SUMX- computes for the current X and mesh size R, the number

of grid-points which lie inside the large circle A and at least

one of the discs. This number is called NSUM.

RAT- computes the total mmaber of grid-points in A and divides

NSUM by this number to get RATIO, our F(x).

VECTOR- for each particular value of r, selects those points

near the boundary of a disc which should be scanned to determine

( 2 )whether some movement of a disc represents a gain or loss in NSUM

NEAR- for each disc C. a determination is made of those discs
J

near enough to C . so that they might overlap C . if C . were moved
J J J

by one unit in some direction. For example, in Figure 1 it should

be quite clear that disc need not be considered when we are

interested in knowing what effect small changes in the position

of have on the value of NSUM.

SCAN 1- computes the change in NSUM due to one of the four

possible changes in the position of a particular disc C., when the
J

disc is entirely within the boundary of A and would still be so

even after one of the four changes in its position.

SCAN 2-performs the same computation as SCAN 1 when the disc

C. is partially outside A or might be after a single move.
J

XNEW- changes the "vector" X^ to the new "vector" X^ indicated

by the search procedure.

REFINE-muliplies the variables R, r and X by two, thereby

effecting the mesh refinement.

(2) See IV-2(v) for details
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For each qf the different methods of ascent a separate program

has been 'written. Each program uses the ten subroutines to do the

bulk of the -work.

2. Short Cuts in the Program

Some special techniques and short-cuts -were used in the prcjgram

and subroutines; they -were divised partly to save time in computation

and partly as a result of certain peculiarities of the specific

problem to he solved.

(i) The restrictions that were imposed on the problem in III-

2

may seem somewhat artificial. As a matter of fact^ there was a

definite reason for recasting the problem in such a way that almost

all the variables involved are integers. The computer for which the

program was written (IBM 70^) has separate sets of Instructions to

deal with integer variables and non- Integer variables^ and the time

( 7 )required to add two integers is two machine cycles^ ^ where the

(floating) addition of two non-integers takes from 7 'to 11 cycles.

It was thought that this difference would affect greatly the total

time required for a run.

(ii) The computation of the table of integer squares up to

1000 which is done by the subroutine MK2T was Inserted into the

program to save time also. A single multiplication takes 20

machine cycles on the IBM 70^ whereas looking up the square of an

integer from a table stored in the memory takes only h cycles.

(ill) In the calculation of NSUM, the total number of grid-

points that are covered by the configuration it is possible to

simplify the computation procedure by the following short-cut:

The calculation of NSUM is performed by scanning all the grid-

points on some vertical line x=k, an integer. The lowest grid-point

on the line that is also inside A, is the first to be scanned. For

each successive grid-point proceeding in the direction of positive

y values^ a decision is made as to whether or not the point falls

(3) A machine cycle in the IBM 70^ requires 12 micro- seconds

.
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in one of the discs C . » Suppose that a certain grid-point
eJ

(X.Y) is determined to be inside a disc C. with center (X.,Y.)
J J J

as in Figure 6. Rather than continuing on to the next adjacent

point, we calculate the quantity (Y.-Y) and draw the conclusion
J

that all points between (X, Y) and

(X,Y + 2(Y -Y))=(X,2Y -Y)
J J

are also Inside . The number of points to be scanned has thus

been substantially reduced.

(iv) The subroutine M!AR (see IV-l) saves some time in

computation by selecting from the set of discs, those that have

no effect on small movements of a certain disc . For example,

if the program were about to determine what changes occur in

WSUM as a result of moving disc of Figure 1 to any of the four

positions possible, it would not be necessary to consldei* discs

or in making this calculation. When the total number

of discs is larger this short-cut in the computation should be

quite effective

o

(v) The general method calls for computing the function value

F(x) for all vectors X that are "neighbors" of the current vector

X^. From our definition of neighbor we can see that a neighbor of

X^ corresponds to a configuration derived from that of X^ by moving

some Cj one mesh-unit in one of four directions. Fortunately it is

not necessary to compute F(x) at all neighboring points. Whichever

method of ascent is to be used, the important value to be computed is

^ F=F(x) -F(X^), and for each X this can be com,puted without

computing either F(X) of f(X^). We ask the questions: How many

mesh-points that were not covered by X^ are covered by X? How many

points that were covered by X^ are not covered by X? The answer

to the first question tells us how many points have been gained

and the answer to the second, how many have been lost. The

difference between these two .is the net gain in covered points

due to changing X^ to X. In Figure 7 the two separate sets of

mesh-points indicate respectively the set of points that could

either be "lost" or "gained" by moving the disc to the right.

Furthermore, for any direction, two similar sets of mesh-points can
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be selected to scan in computing ^ F.

(vi) Using the terminology of the preceding section (y )

,

only points that are within A are candidates for classification

as gains or losses. Therefore^ if the disc C. being scanned is
J

inside A by at least a mesh-unit (that is^ all points of C are
J

Inside A and no closer than one mesh-unit from the boundary of A)^

then all the points on the periphery of C. are inside A and qualify

as possible gains or losses. In this case SCAN 1 is used to

compute A F. However if C. overlaps A^ we must determine for
<3

each mesh-point being scanned whether if lies Inside A. In this

case SCAN 2 is used.

3 . Inputs and Outputs

Very few input variables are required for the program. A list

of the most important and a description of each follows^ ^

:

N7“the number of separate cases to be done.

J7-this variable Indicates whether or not the initial 'Vector"

is to be read in as an input.

KO- Initial radius of large area A (this must be some power of 2)

NC-The number of covering discs*

N-The number of random selections of a "vector" to choose

the initial vector.

KBIG-This number represents the finest mesh to be used.
typo

JXPO- Satisfies the equation 2 =K0.

IRC- Initial radius of covering discs (satisfies IRC < KO)

.

n4- Number of times each case is to be repeated with different

initial "vectors".

As far as outputs are concerned^ a fairly readable format has

been devised. Initially^ a general description of the casei'-tO: )be

done and the Important inputs are printed out. Next the initial

"vector" is printed out with its function value RATIO. Each

move that occurs is printed out and the final configuration at each

mesh size is recorded with its RATIO. The total number of moves

that have been made is also printed out when the final configuration

has been attained.

( 4) Integer variables in a FORTRAN code must be designated by a
symbol beginning with one of the letters I^ J^K^L^M^N, This is
why the radius R of the disc A to be covered is denoted by KO.
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V. RESULTS OF COMPUTER RUES

1, Description of Cases Studied

A systematic series of runs was completed of cases involving

between two and ten discs where the ratio r/R took on interesting

values^^^ between 0 and 1. Table 1 gives the fraction of A that

was covered by the best configuration found during the search for

the global maximum. Diagrams of these configurations can be found

in Figures 8- 44 . These numbers are accurate to about +.002. A

detailed explanation of the convergence properties of the approximation

is given in Part VI.

2. Closeness of Relative Maxima

In the cases where 2^3 or 4 discs were used to cover, the final

configurations were all global maxlmax, In the other cases there were

as many as 5 different local maxima found. Two configurations were

considered to be different if the configurations were geometrically

unlike. For example, the configurations of Figures 45 and 46 are

considered to be the same whereas both are different from that of

Figure 47 .

Diagrams of the local maxima that were found in several cases

are depicted in Figures 45~60» The value of RATIO is included with

each configuration* It should be pointed out that the three best
z'p)

configurations for the case'' ^
(6,1/2) differ in function values

by at most .OO6 , In case (10,3/8) the two best local maxima differ

by less than .002, and in case (9^5/l6), with the mesh refined to

256 , the two local maxima differ by less than .0002. In the latter

case the ratios must be considered as indistinguishable due to
( ^)the error of the approximation at this mesh^-^L

( 1 ) A case is not interesting if complete coverage is possible with
a smaller number of ctiscs, or if all discs can be placed inside A
so as not to overlap,

( 2 ) The following notation specifies the situation n=6 , r=l/2 (and
R=l) . This method of denoting cases will be used consistently in
the rest of the paper.

( 3 ) See Part VI.
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TABLE 0

Mean Xoverage Ratio^ ^ with Case (n, r)

r n=2 3 4 5 6 7 8 9 10

5 /i6 --- --- .373 .409 .442

3/8 --- ---- »32l .371 *4l8 ,46l ,501 0538

7/i6 — .322 = 385 ,442 ,494 .541 ,583 .622

1/2 ,298 0376 ,445 ,507 ,562 ,610 —
9/i6 ,242 o3^1 ,426 ,500 ,565 --- —

-

—

-

5/8 ,274 »38i -.473 .551 — —
ll/l6 .304 ,420 ,516 --- ___ —

-

3/^ .334 ,456 ,556 --- --- --- —

-

13/16 .362 ,490 ___ ---

7/8 0388 .521 ___ --- —

-

--- ---

15/16 c4l4 — --- --- --- —
1 .437 ___ —

.

___ —

(*) The centers of the discs are randomly chosen '•from a uniform

distribution on the circular disc of radius (l+r)o

The entry in the table is the expected value of the ratio of

coverage "where n discs of radius r are randomly placed as described*

This table contains the mean coverage for the same cases for which

Table 1 gives the maximum coverage*
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TABLE 1

Maximum Ratio of Coverage vith Case (n, r)

r n= 2 3 k 5 6 7 8 9 10

5/16 o773 .824 .879

3/8 — — — .700 .794 .896 .950 .978 .992

VO
1

—1 — -- .7^7 .846 .915 .979 .999 1,000 1.000

1/2 -- .721 ,862 *936 »979 000
I

—

1

1,000 X X

9/16 ,600 .815 «937 .989 1.000 X X X X

5/8 ,686 .883 ,982 ]L.OOO X X X X X

VO1
—

1

1
—

1

rH ,762 »935 ,999 X X X X X X

3/^ ,829 »972 1.000 X X X X X X

13/16 .889 ,994 X X X X X X X

7/8 .939 i-ooo X X X X X X X

15/16 .979 X X X X X X X X

1 1 oOOO X X X X X X X X

indicates all discs can be packed into large circle.

ft X " indicates total coverage is possible

»
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In general it was found that the differences between the local

maxima in each case were on the order 'of one or two per cent of

the total coverage. The largest such difference that was observed

was in case (8^3/8) "where peaks of height .905 . 9^7 were found;,

constituting a difference of about 4^.

3. Details for the Six- Pi sc Case

A more detailed study was made of the local maxima achieved

with 6 covering discs at radii of 5/16^ 3/8; and 9/16. The

case (6,^jl6) is one that we termed "not- interesting" in

because all of the discs can be placed inside A so as not to overlap

each other; thus the ratio of cbverage can be calculated accurately.

The case (6,^/l6) is also "not- interesting" because total coverage

is possible. Figures 48-52 and 6I-67 contain diagrams of the local

maximum configurations for these cases.

An interesting phenomenon occurs in these cases. The best

placement of the discs in case (6,^/l6) is a "central" or "flower-

petal" configuration (see Figure 64)^ but in the case ( 6^l/2 ) the

same "central" configuration is merely the third best. This seems

to indicate that there is an intermediate value of r between "J/16

and 1/2, where the "central" and "triangular" (see Figure 48 )

configurations both cover equal portions of the total area. The

"ring" (see Figure 63 or 65) configuration of case {6,j/l6) seems

to be a fairly natural analogy to either the "triangular"

configuration or the "diamond" (see Figure 51) configuration of

case (6,1/2).

A further comparison was made between the "triangular" and

"diamond" configurations. Three cases were used-- (
6

, 17/32=« 53l)

j

(6, 69/128=» 539 ) j (
6

, 35/64=« 547 ) • In each case the "triangular"

configuation of discs was the best, but its margin of victory

decreased as the value of r increasedo Table 2 (see p. 23)
( 4 )contains the results of the comparison^

( 4 ) The final mesh was 256 for all cases.
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TABLE 2

Com-parlson of Two Six- Disc Configurations

r triangular diamond difference

531 .99591 .99496 .00095

539 .99802 .99768 .00034

547 .99932 .99928 .00004

TABLE 3

Comparison of TVo Ten- Disc Configurations

r Central Other Difference

375 .9924 .9911 .0013

383 .9973 .9957 .0016

391 .9996 .9985 .0011

398 1.0000 .9998 .0002
4o6 1.0000 1.0000 .0000
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The chart shows that both conflgixratlons achieve total coverage

at approximately equal values of r»

Runs were also made of several cases involving ten discs at radii

between 3/Q=»31'? and 13/32=«4o6, The two types of relative maxima

were compared at five different values of the radius r. Diagrams of

these relative maximum configurations for r-3/8 are contained in

Fibres 45 and 47. In all five cases the "central" configuration

(Figure 47) was the best placement but usually by only a tenth of

a percent. This data appears in Table 3 (see p.23).

Once again the two types of relative maxima achieve total coverage

almost simultaneously.

4. Com.parlson with Analytical Solution

A run was made to compare our method with the analytical

results of Neville for the case of five discs which was mentioned

in II- 3 » According to Neville the smallest value of r for which

coverage with 5 discs is possible is . 609375 ;
this is called

the "critical radius". The results of the run were quite surprising.

'The ratio of coverage was »999942_, just less than total coverage.

It had not been suspected that the method we used would achieve a

configuration exactly like that of Neville (see Figure 3')^ since

other runs seemed to show that the ratio of coverage for configurations

that are associated with almost total coverage is rather insensitive

to changes in the configuration. This made it seem likely that the

configuration achieved by the computer run would not resemble the

Neville configuration too closely. The configuration arrived at by

our searching technique (see Figure 68
) bears a remarkable resemblance

to that of Neville. Each configuration contains three discs that

intersect in a point very near the center of A and two others

symmetrically placed with centers substantially displaced from the

center of A.

An analytical solution to the covering problem for the cases

where n=2 and l/2 < r < 1 is contained in Appendix II* A comparison

of the numbers gotten from computer runs with the true values showed

excellent agreement^ usually differing by less than . 002 .
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5 o Comparison of Search Methods

A comparison vas made of different methods of search to

determine the frequency of occurrence of "global" maxima and

to get some idea of the time required by the different methods.

Five "methods" were programmed and run. They are all derived from

the three described in III-l, with minor variations.

(l) Plateau Steepest Ascent : this is basically the "steepest-

ascent" method with two exceptions. First-- if at some stage of the

search there are no positive moves^^^ indicated for the current

configuration X, then the neighborhood of X is effectively enlarged

by allowing each disc to move to any one of the eight grid-points

surrounding its center (points A through H in Figure 69 ). This is

done only when no moves are possible under the original definition

of "neighbor". Second-- if both of these searches fail to obtain

a positive move then a search is made to determine if all four moves

(that is, a move from 0 to one of B,D, F, H in Figure 69 )
of some

disc are zero moves (i.e. leave RATIO unchanged). If such a disc

is found, successive random placements of its center are tried until

the value of RATIO is Increased. If 25 trials fail to accomplish

anything the search is abandonned, and the refinement of mesh is made, etc.

This second feature is what gives the procedure the name "Plateau".

In a function of a single variable f(x) one says that a point x is on
points ^

a plateau of the function if all in some neighborhood of x^ have

equal function values. In two dimensions a plateau, analogously

defined, can be visualized as being a flat portion of the surface

represented by the function g(x,y). An intuitive idea of the meaning

of "plateau" is possible in these two cases precisely because a

"picture" of the function can be represented in three dimensions or less.

( 5 ) A positive move from a configuration X is effected by changing
X to one of its neighbors X^ such that F(X^) > F(x). It is accomplished
by a change in the position of a single disc in one of the coordinate
directions by one mesh unit.
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Althoiigh we can't visualize plateaus in higher dimensional spaces,

we nevertheless define plateau analogously a§ a nelghhorhood of

the space on which the function is defined throughout which the

function is constant. In our case we have considered F as a

function of two vaiiahles^ the coordinates of the center of a single

disc^ and so we have the type of plateau that makes sense visually.

It should be mentioned here that this particular feature of

the "Plateau Steepest Ascent" method did not have nearly the same

significance as did the first feature (the enlargement of neighborhood)

That is to say, the results in using the steepest ascent method were

more drastically altered by neighborhood enlargement than by the

"plateau" featijpre.

(li) Least Positive Ascent : this is the "slowest ascent"

described in III-l.

(ill) First Positive Ascent : as described in III-l,

(iv) Cycle First Positive Ascent : this is the same as (iii)

except that the first disc whose moves are to be tried is the disc

immediately following the disc that was last moved. The discs are

ordered in a cyfcle
**°-’*^n l-’*^n^*^l

this purpose.

This variation of (iii) was used because the return to at each

stage seemed to introduce some bias that was -undesirable.

(v) Cycle First Positive Ascent with Eight Degrees of Freedom :

this resembles (iv) except that throughout the search the neighbor-

hood of X is the enlarged neighborhood employed by the Plateau

Steep Ascent.

Two cases, (6,l/2) and (10,3/8)^ were selected to be used in

the comparison. Each case -was known to have non-global local maxima

that occured quite frequently, and the configurations were quite

distinct from a visual standpoint. Table A describes the frequency

of occurrence^^^ of the global maximum in both cases, according to

(6) Two final configurations are deemed equivalent, in this comparison
if they are similar gemetrically and achieve nearly Identical values
of RATIO,
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TABLE k

Comparison of the Five Ascent Methods for Two Cases

Method Case Trials Global
Maxima

Time Global Max
Per Trial

Time Per
Trial

Glob M
Per Min

1 . i (6,1/2) 25 13 44m .52 1,76m .295

2. 11
Tt TT 10 47m .40 1.88m .213

3 » 111
'

TT TT 11 3^m .44 1,36m .324

4 . Iv TT TT

7 19m .28 .76m .368

5 . V T! TT 8 52m •32 2,08m .154

6* 1 ( 10 , 3/8 ) 25 5 82m .20 3.28m .061

7 . 11
rr 21 0 89m .00 4 .24m .000

8» 111 !t 24 0 71m .00 2.96m .000

9 <» Iv tt

25 5 40m .20 1.60m .125

10. V TT 20 5 90m .25 4.50m .056
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which method was used. The last column is probably the most

significant because the cost depends on the time consijmed and not

the number of trials.

From this point of view the Cycle First Positive Ascent (iv) is

clearly the best. There is another point of view, however, that may

be still more significant in a comparison of these five methods. The

point is this-— the method to be preferred is the method that tends

to reach more different peaks. Such a method would reach the global
one

maximum less oft^n but woiild feel more confident of the highest

peak among five or ten than he wo\lLd if only two or three distinct

peaks had been found. Table 5 contains a record of the number of

distinct peaks that were found by each method# It seems to indicate

that the variations of the "first positive ascent" method are better

than the others at locating different peaks.

6. Critical Values of Radius

Considering problems (c) and (d) of 1-2 once again, we define

the "low critical radius" of n discs r^(n) as the answer to problem

(d) and the "high critical radius," r (n) as the answer to problem (c),

(l) ^
.

Neville^ ' refers to the latter simply as the "critical radius" but

we want to study both. For any number of discs n the cases that are

"interesting" are the cases (n,r) where r^(n) < r < r
2
(n)

,

A determination was made of r^(n) and r
2
(n) for all n in the

range 1 < n < 10 (Table 6). Some of the values were found by using

the search methods and others could be determined analytically.

For example we can calculate r^(n) for 2 < n < 5 ^7 the following

argument

:

We want to place the n discs in a ring around the center of A in

such a way that the discs are packed in as tightly as possible without

overlapping. Under these conditions each disc requires a sector cut off

by an angle e = 2:n:/n. Referring to the diagram in Figuhe "JO we can

immediately write

r/(X-r) = sin e/2 and e = 27t/n

which reduces finally to

r =
l+sln(Tt/n)

(T) 6p« cit., footnote 2 of Part I
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TABLE 9

KiJinber of Different Peaks Found by the Five Methods

Method

Peaks

Case (6,1/2)

11 111 IV V

Method

Peaks

i

3

ii

3

iii iv V

4 5 3

TABLE 6

Low and High Critical Radii for up to Ten Rises

n 1 2 3 4 5 6 7 8 9 10

r^(n) 1.0 0 ,50 .414 .370 .333 •333 .302 .276 .266

r2(n) 1.0 1.0 .866 .707 .609 .555 .500 .437 .422 .398

Ar 0 .500 .402 .293 *239 .222 .167 •135 .l46 .132



- 30 -

and this formula is valid so long as the ring configuration is clearly

the optimum packing.

For small values of n r^{n) can be calculated by noting that to

achieve total coverage^ all of the circumference of A must be covered.

For a given n the minimum r required to cover the circumference is

given by:

r = sin jt/n

If total coverage is in fact achieved at this value of r then

r
2
(n) has been found. This argument was found to be valid for n=2^3^^»

Table 6 shows that the lengthier of the interval (r^(n)^r
2
(n)

)

shows a tendency to decrease with n_, although not monotonlcally.

Thus for larger n there is a smaller range of interesting cases.

In fact when n=10 the interval is («266,»398) whose length iB only

.132 ,
whereas when n=2 the Interval is (.50,1.0) of length .500.

7 . Efficiency of Covering Configuration

It was thought that some measure of the efficiency of a covering

might be useful in some applications. The efficiency should give

some indication of ratio of coverage versus total covering area availa.ble»

We therefore define the efficiency E(n,r) as the ratio between the

maximum area (not per cent I) coverable by n discs of radius r, and the

total composite area of the n discs. If we denote the best per cent

coverage by C(n, r) and remember that we have been assuming R-1 we

obtain the formula for efficiency:

E(n,r) = --p = C(n,r)
nnr“^ —

nr^

The values of C(n, r) are contained in Table 1, and E(n, r) in Table 7-

For most pairs (n, r) the efficiency is greater than l/2 but two cases

were found where it was less than l/2. Specifically, E(3, 7/8)=*^35 and

E(4,3A) = .444.

Several run's were made to obtain data pertaining to problem

(e) of II-2. The value of P-nr^ vas set at I .5 (or as nearly as possible

(8) The possible values of r are restricted to numbers of the form
k/64 where k is a positive Integer < 64,
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TABLE 7

Efficiency of Coverage, E(n, r)

r n=2 3 4 5 6 7 8 9 10

5/i6 1 I 1 1 1 1 .985 .93^ .900

3/8 1 1 1 .989 .936 .907 .842 .772 • 0 o^

T/i6 1 1 .974 0883 0796 • 731 .653 .580 .522

1/2 1 .961 .863 • 749 •653 .571 .500 X X

9/i6 .948 .858 o740 .625 •527 X X X X

5/8 .878 o753 .629 .512 X X X X X

ll/l6 ,807 .659 .528 X X X X X X

3/^ .737 .576 .444 X X X X X X

13/16 .674 .502 X X X X X X X

7/8 .614 • 435 X X X X X X X

15/16 .556 X X X X X X X X

1 .500 X X X X X X X X

"X” indicates total coverage is possible. so increases in

2
P=nr are Just wasted.

TABLE 8

2
Comparison of Covering Efficiency with nr Held Constant

Case (4,39/64) (5.35/64) (6,1/2) (7.15/32) (8.7/16) (9.13/32) (10,25/64)

Ratio .973409 .980666 .979418 .995094 .999432 .999130 .999626

2
nr 1.485 1.495 1.500 1.538 1.531 1.485 1,526

E(n, r) .655 .656 .653 .647 .653 .673 ,655
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and the corresponding efficiencies were calculated- At first it was

suspcted that efficiency would always be better when n was larger^

but the results in Table 8 contradict the conjecture. The efficiency

of (5^35/64) is .656 and that of
(
6 , 1/2 ) is only .653» This discrepancy

could hardly be due to the errors Involved in the approximation because

the approximation tends almost always to be an under estimate of the

true value (see Vl),

The Kerschner resiilt cited in Part I- 3 can be rewritten slightly

to read:

lim A =9/27t = *827

r «_«40 N(r) jtr
2

n_—i» Qo

The expression on the left is the limit of the efficiency in the

case of total coverage as the number of circles increases and r decreases.

Denoting X = 2 -fT/9 we get the following corollary to the

Kerschner theorem:

Given a set S of area p/x, and e > o, there exists a number r >0
2

such that
I

r N (r) - P
[

< c when r < r^.

This follows immediately by writing Kerschner ’s theorem as:

p
lim r N (r) = X (p/x) = P
r —> o

If we define the potential P of a set of W discs of radius r as
2

P=Nr , the above corollary says that any set of area p/x can be covered

by a set of discs with potential arbitrarily close to P.

In particular, if the set is a disc of radius R, then we have

jtR^ = p/x or R = (p/nX)^^^ where l/jtX = .SPY- If we put P = 1»5 "we

get R = 1.114 and this means that a disc of radius 1.114 can be "almost”

covered by discs with a potential of 1 « 5 .



- 33 -

VI* CONVERGENCE OF THE APPROXIMATION

Some estimates of the accuracy of the approximation used in

the search methods have heen determined. The approximation was

introduced in the calculation of the ratio of coverage (RATIO).

The convergence of the approximation as the mesh is refined was

studied by an auxiliary computer program called RATIO CONVERGENCE

which calculates the value of RATIO for a particiilar configuration

at mesh sizes 8^ l6^ 32 , 64, 128. Several of the configurations

were simple enough so that the ratio of coverage could also be

calculated accurately by analytical methods. Table 9 gives the

results of several runs performed to estimate the convergence.

The configuration of the first case in Table 9 consists of a

single disc of radius r=l/2 centered at the center of A. This means

that the ratio of coverage should be exactly ,250. The table indicates

that at a mesh of 64 the approximation differs by only .OOO6 from the

correct ratio of coverage^^-^ , At a mesh of 256 the difference is only

.00016 .

In the first three cases the change in RATIO between mesh 64 and

mesh 128 was less than or equal to ,0004.

In the fourth case the configuration involved two discs and the

correct ratio of coverage was computed using the algorithm referred

to in II- 2, The true ratio of coverage was found to be ,40225 which

means the approximation differs by less than ,001 from the correct

value at mesh 64.

( 1 ) A final mesh of 64 was the one used in most of the computer
maximization experiments.
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TABLE 9

Comparison of Ratio Convergence at Different Meshes

Case Me sh=8 16 32 64 128

1 .233161 .243380 .247426 ,249436 .249840

2 .865285 .894073 .897972 .899681 .899998

3 ,860104 .882724 .885179 .886295 .885882

4 .378238 .392182 „ 398440 .401354 .402049

TABLE 10

Results of Several Cases Showing Positive Second Difference In C(njr)

Case

( 5 , 3/8 )

( 6 , 3/8 )

( 7 , 3/8 )

Ratlo(Mesh of 256)

.700365

•794168

.895913

First Difference

+ .093803

+ .101745

Second Difference

+ .007942

(8,5/16)

(9,5/16)

(10,5/16)

.773017

.824466

+ .051449

+ .056352

+ .004903

880818
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Two other configurations were tried in which all discs lie

entirely inside A and no overlap occurs. The cases were (6,5/16)

and (6,2/8). In the former case the approximate ratio at mesh

256 was .5849^0 and the true ratio was .585937^ a difference of

.001 . In the latter case the approximate ratio was . 37^503 a-nd

the exact value .375000^ a- difference of .0005

.

These tests of the accuracy of the approximation seem to

( 2)indicate that at a mesh of 6h one can expect accuracy^ on the

order of ±.002 , At a mesh of 256 the accuracy is usually about

twice as good. Most runs used a final mesh of 64 since the additional

time required to increase to a mesh of 256 did not seem to be

warranted by the additional accuracy obtained.

An attempt was made to obtain rigorous limits for the error

involved in approximating the covered area by the number of grid-points.

Let L(r) denote the number of lattice points inside the disc
2 2 2

defined by x +y < r , and let

D(r) = |3ir -L(r)
|

,

(3)
It is easily shown^"^^ that D(r) converges to zero as r->oo, but the

question of just how fast is another matter entirely.

(3)

This refers to the error in estimating F(x) by the approximation
n /n defined in III- 2 . The error involved in estimating a
relative maximum of F(x) by one of the final configurations
produced by the computer program is som.ewhat larger.
D. Hilbert and S. Cohen-Vossen, Geometry and the Imagination
(Chelsea: New York, 1952 ) pp. 32- 34 .
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Hilbert and Cohen-Vos sen show that

or in other words

Landau

in fact (5)

D(r) VI '^[2 -KT

D(r) = 0 (r)

_(4) shows that

D(r) = 0 (rVi),

D(r) = 0
(j,37/56+f

D(r) ^ 0
OJ11

but that

These have been somewhat improved^ to read,

D(r) =0 for any c > o.

The best result to date seems to be

D(r) =0

which was shown by Loo-Keng Hua in 1940^ '

,

The "conjectured” result is

D(r) =0 for e > o

and it has already been pointed out above that this Is the best

result possible

o

( 4) E» Landau, Vorlesungen uber Zahlentheorle , Vol<> 2, pp* 183- 278 *

( 5 ) Op. Cit., p. 271 .

(6) E.C. Titchmarsh, "The Lattice- Points in a Circle", Proc. Lond.
Math. Soc,, Series 2, (1935)^ PP» 96-115»

( 7 ) Loo-Keng Hua, "The lattice points in a circle". Quarterly Journal
of Math (Oxford Series), I 3 (1942), pp»l8-29.



- 37 “

Obtaining numerical upper 'boimds for D(r) from these results

would Involve a great deal more effort than seems worthwhile here.

The problem is clearly tied in with fairly high-powered number

theoretical investigations and is considerably non-trivial. Furthermore,

the error bounds that may be derived from the Hilbert and Cohen-Vossen

inequality are so bad that there is some real doubt as to whether the

subsequent tightening of this inequality is substantial enoiogh to

help us out.

There is also the problem of estimating the error for n possibly

(and indeed probably) overlapping discs. The above results pertain

to the estimation of the area of a single disc without any bites

taken out of it, whereas we have a considerably more involved situation,

especially since we really want as tight an inequality as possible.
/ o\

A recent paper by H.L® Mitchell, gives a large amount of

numerical results concerning L(l’), the mmiber of lattice-points

(grid-points) in a circle of radius r. The paper Includes calculations
1/2

of D(r) and also D(r)/r . The latter values were calculated to get

some evidence for the conjecture that D(r) = 0(r^^^"''^) for every c > o

mentioned above.

(3) H.L. Mitchell III, '^Numerical Experiments on the Number of Lattice
Points in a Circle", Technical Report No, I7 Contract Nonr-225(37),
(NR-044-211)

,
Applied Mathematics and Statistics Laboratories,

Stanford University, California.
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VII. A CONJECTURE REFUTED BY THE STUDY

During the research on the covering problem the following

conjecture_, essentially a "law of diminishing returns", was foiraulated:

If C(n,r) denotes the maximum ratio of coverage attainable with

n discs of radius r, then

C(n+l,r)~C(n,r) < C(n, r)-C(n-l, r)

This means that the successive gains in coverage by the addition

of discs one at a time are monotonlcally non- increasing. Unfortunately

two of the cases that were studied produced results that contradict

the conjecture. Table 10 gives the values of the ratio of coverage

for the cases involved and the differences. According to the conjecture

the second difference should be a negative number, but Table 10 shows

the two cases found in which it is positive. The amount by which it

is positive is large enough so that the error of the approximation

couldn't be responsible for the sign of the second difference.



- 39 -

VIII. THE SECOND COVERING PROBLEM

1. Description of Problem

The second covering problem that was studied is somewhat more

complex. We are given a circular area A of radius R and a certain

number of straight lines which intensect the area A and divide it

into m regions R^ (l < i < m). In addition, we are given a certain

number n of circular discs of radius r < R. The problem is to find

that placement of the n discs which "covers" the largest amount of

the area of A subject to the following restriction:

A point is considered to be covered if and only if it lies

inside some disc whose center lies within the same region as the

point in question.

For example, the area of A that is covered by the three discs

of Figure 7I is shaded. Note that the part of disc C^ that is in

R^ is not covered because is not Centered in R^, but rather in R^.

2. Analysis of Problem

A configuratloh of n discs that maximizes the coverage will

necessarily have a given number n^ of discs centered in each region R^.

Furthermore, the placement of the n^ discs in R^ constitutes the best

coverage of R^ by n^ discs independently of what occurs in other regions.

This observation enables us to separate the problem into two parts

and solve it as follows;

(i) For each pair (i,j) subject to 1 < i < m and 1 < j < n,

calculate the maximum area of region R^ that can be covered by j discs.

Denote this area by A(l,j).

(li) Let $ be the family of m-dimenslonal vectors,

V=(n^,n
2

, .. .,n^) such that the n^ are all non-negative integers and

m
n.=n. Now for each V6^ define the sum,

1=1 ^



- 4o -

m
S(V) = S A(l^n );

i=l

the maximum coverage we seek is then given by

S =Max [S(V) : V€#}o
lUQ-X

Portion (ii) of the solution is a purely conibinatorlal

problem whose solution depends only on the values of the entries

in the matrix A(i^j). We shall return to this problem later,

3 » Computing A(i,j)

According to the above formulation, the first step in a solution

to the problem is the calculation of the matrix A(i,j) for 1 < i < m,

1 < j < n. For a particular (i,j) this means finding the maximum

area of a specific region that can be covered with j discs. If

the region R^ were circular, then the calculation would be that of

the problem described earlier (Part l). This strong similarity suggested

the possibility of using a similar method to calculate A(i,j), As it

turned out, only very minor changes were necessary to transform the

methods of solving the earlier problem into methods which will compute

A(i,j)« The changes essentially amount to restricting the centers of

discs to grid-points inside R^, and not counting points outside R^ when

computing the coverage of a particular conflgurationo So far as the

computer programs were corveerned, these changes were effected with a

minimum of difficulty, considering the usual consternation that results

from, altering computer nodes. The basic reason for this was that the new

problem differed from the former only in the region to be covered, and

therefore many of the complexities of the program were unchanged.

The program accepts as inputs certain parameters specifying the

lines that, along with the boundary of the large circle, form the

boundaries of each region R. in questiono A line is specified as a
1

"lower slope" or an "upper slope" at input time, according as the region

R^ lies above or below the line. As is well known, any line in the plane

(excepting vertical lines) can be written in the form

y=px+q
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We assumed further that our lines have rational slopes and y- Intercepts

That is, p=Pj^/p2
and q^q^/q^ "where integers. This

will he true whenever the line passes through at least two grid-points

Our equation then can he written as^

( 1 )

or (P2 q-2 ) y=(P2^)^+('iiP2 )^

which is of the form ay=hx+c^

where a^h^c are integers. These three integers a^ih^c are the input

parameters that specify a line L. If L were further specified as

a lower slope for the region then any point (x,y) which lies in R^

must satisfy

y > px+q=(h/a)x+(c/a),

that Is^ ay > hx+c. It should he noted that this inequality can

he tested hy the computer using integer arithmetic. This is precisely

why we required that p and q he rational. For any (x^y)^ only a finite

number of tests need he made to decide if (x^y) lies in R^.

An example of the results of using this program to compute A(i^j)

for a particular region R^ (r=3/8) is given in Figures 72-75® The

only interesting cases are j=l_,2^3^^ since total covera.ge would certainly

he possible with 5 discs of the same radius. Since the computer program

is essentially the same as that used in the solution of the former

covering prohlem_, there seemed no need for an exhaustive examination of

cases. The particular difficulties in the second problem may in. fact lie

in the combinatorial question described in Part VIII- 2.

(l) Suppose the line y=px+q goes through points R=(r, s) and P
2
=(t,u);

then it can he shown easily that p=(u- s)/( t-r; and q=6“pr.
Therefore if r, s_,t,u are integers^ then p and q are rational.



- 42

4® Combinatorial Aspect

Retuirning to the second part of the problem described in VIII-2
(2)

we find that the combinatorial problem can be reformulated^ ' as an

Integer linear programming problem. We shall use a. . instead of

A(l^j) belo-w, "Where "1" indexes subregions including a

fictltiouB zero-th subregion to absorb any unused discs, Ret the .

matrix (x. .), 0<1<M^ 0<j<]\fbe defined as follows;
^ J

x^j=l if exactly discs are allotted to the i~th subregion and x^.=0

otherwise® We can. then express the problem as follo-ws;

(a)

(t)

(c)

(d)

As such, the problem can be handl.ed at least in pplnciple by
(3)the methods developed by Gomory . Perhaps an especially effective

algorithm can be constructed for the special problem involved here.

This remailk is added because the general method of Gomory has been

found to converge unacceptably Slowly in some cases.

Maximize S a. .x.

.

i,j

subject to constraints

X. . > 0
ij - 0<1<M, 0<j<W

N
S X. .=1

j=0
0 < i < M

S jx

j
^

X,. . an Integer 0 < i < M,
1 ,]

0 < j < R

( 2) This integer programming formulation was suggested by A.J. Goldman
(NBS Operations Research Section).

(3) R» Gomory, ’’Outline of an Algorithm for Integer Solutions to Linear
Programs", Bull. Amer. Math. Soc. 64 (1958)> P» 275*
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APPENDIX I. ALGORITHM AND ANALYSIS FOR TWO

DISC COVERAGE FORMULA

1. Description of Parameters

Suppose given a circle A of radius =1^ and two other circles

B and 0^ of radius r < 1, whose centers are at respective distances

d^ and from the center of circle A. Let 0 he the angle between

(l) the segment joining the center of B to that of A, and

(li) the segment joining the center of C to that of A (see

Figure 4)

.

We construct an algorithm to compute the area^^^ of the "coverage set"

M which is common to circle A and at least one of the two circles

B and C;, M=A fl (B U C).

We may assume that the Interiors of B and C both meet the Interior

of A(i<»e., both A fl B and A fl C are non empty). Further restrictions

on parameters (r^G^d^^d^) are as follows:

(1) 0 < r < 1

(ii) d^-r < 1; d^-r < 1

(lii) 0 < 0 < jt since

change area.

(iv) we may

since A fl B and A fl C are non empty.

further from A’s center than C^s center is.

We shall create an additional parameter c(depending on 0_,d^,d2)^

c^(d^ + dg - Pd^d^ cos 0)^/^;

then c is the Length of the segment joining the center of B to that

of C as can be shown easily from the law of cosines.

(l) [-X| shall mean the area of X; thus area of M=|Mj^etc.



^ kk -

There follows an analysis^ case by case, of the various

configurations that require different treatment when calculating

the coverage area in terms of the given parameters r, 0 , and

the defined parameter Co

2. Intersection of Two Discs .

We begin by calculating the area common to two discs of radii

r and R respectively with distance of centers d^ < r + R (see

Figure 76a)® In case a < tt/2 the area may be calculated as follows

Area = Sector (Q^O^Q^) - + Sector (Q^O^Q^) -

Sector (Q^O^Q^) = (2p/2it)TtR^ = R^p,

Sector (Q^OpQ^) = (2oi/2rt)Tcr^ = T^a,

We finally get the formula

2 2
Area = R P + r a. ~ d^R sin P

In case OL> Tij 2. (see Figure T^b) the area is:

Area = Sector (Q2
O
2
Q
1 ) + (Sector (Q^O^Q^) - .

This formula reduces to the same formula as the case O' < «/2 by-

a

similar argument®

Furthermore in case a = ic/2 our formula gives
2 2

Area = R P + nr /2 - d^R sin p which is correct also® We have thus

shown that for 0 < Oi < n,

( 1 ) Area = R^p + r^a •^d-R-'sin P®-- - -

Use of the law of cosines on yields

2 2 2
r = d^ + R - 2d^ Rcos P

2 2 2
R = d^ + r - 2rd^ cos OL,

( 2) The symbol means the triangle with these vertices.

Sector (Q^O^Q^) shall denote the area of the sector taken in

a clockwise sense from to about 0^.
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whence we get a and 3 as

2 2 2
a = arc cos ((r + - R )/2rd^)

P = arc cos ((R^ + d^ - r^)/2Rd^).

In particular we notice that if both discs are of equal radius r^

and d^ = c, then we get

2
(2) Area = 2r are cos (c/2r) -cr sin (arc cos (c/2r)).

If R = 1 and r < !_, the coimnon area becomes

2
(3) Area = P + r o; - d^ sin

where a and p are given as

2 2
(4) O' = arc cos ((r + d^ - l)/2rd^),

(5) P = arc cos ((l + d^ - r^)/2d^).

3 . Intersection of Three Discs .

We now calculate the area common to three discs where the common

area is bounded by three circular arcs (see Figure TTa) • this

figure represent the respective centers of A^B and C

and P^Q^S represent the points of intersection of the three circular

arcs. The common area will be calculated by adding together the area

of APQS and the three areas each bounded by one of the arcs and its

associated chord. We call these slivers (see Figure 77b).

First we must calculate P, the angle subtended at A^ by the arc

^ of disc A. Using the law of cosines on and remembering

(3)
that B^S = r = C^P and putting R = 1, we get

2 2
0: + P = arc cos ((d^ - r + l)/2d^)

P + y = arc cos ((d^ - r^ + l)/2d2)

Adding the two equations and subtracting the equation O'+P + y=0^
we get

P = arc cos ((d^ - r^ + l)/2d^) + arc cos ((d^ - r^ + l)/2d2)-0.

(3) This assumption involves no loss of generality since the ratio
of coverage of A depends only on (r/R)

,
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Referring to Figure JTbj we calculate the area of the sliver

associated with angle 6 as the difference between the sector (A^PS)

and M^PS. Denoting the area of the sliver as we have^

Sp = Sector (A^PS) - ^PS

= (6/27t) Tt -xy

= 3/2 - sin ( 3/2 )
cos ( 3/2 )

(
6

) = (3 - sin 3)/2

We must now qalculate the angles 6 and e of Fig 77a» We shall

present the argument leading to the calculation of 6 ; the calculation

of c is similar.

Referring to Fig 78 ve wish to calculate the angle ^ QC^p=5^+6^=6.

Notice that P might lie on the left side of say at P'^ in

which case the angle 6
g

if measured by
( 62^- 62 ) would be negative. The

formulas we shall derive will not be affected by this difference, as

can be readily checked.

We note immediately that

(7) 6 = 6
-,

+ 6
|,

- 6
^

so that we need only

to calculate 6^^ 6^} 6^*

Using the law of cosines or sines on the proper triangles and

noticing that is isosceles we obtain

cos 6
^

= (c/2)/r = c/2r,

sin 6
^

/'i-L
= sin 0/c,

2 2
1 = r + d^ - 2rd^ cos

Solving for we get

6
^

= arc cos (c/2r)

6^
= arc sin (d^ sin 6/c)

= arc cos ((r^ ^2
~

( 8 )

(9)

( 10 )
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Substituting into equation
( 7 ) we get

2 2
(
11

) 6 = arc cos(c/2r)+arc cos((r +d^ -l)/2rd.
2
)-arc sin (d^ sin 0/c)

We get a similar expression for

2 2
( 12 ) e = arc cos((r +d^»l)/2rd^)+arc cos(c/2r)-arc sin(d

2
sin 0/c)

An argument similar to that leading to equation (6) can be

used to show that

Sg = r^(6 - sin 6)/2^

= r^(c - sin e)/2.

Referring to Figures 77a, b we can readily see that the sides

Si, Sg, s^ of ^QS are given by

s^ = 2 sin (3/2)

s^ = 2r sin ( 6/2 )

s^ = 2r sin (e/2)

The area of ^QS can then be gotten from the semiperimeter formula

( 13 ) Area ^ ^ s( s-s^) ( s-s^) ( s-s^)

'

where s = ( s^+S
2
+S

2
)/2 *

In our case s=sln(3/2)+r sln(6/2)+r sln(e/2), and the

common area of the three discs is

(14) Area = ^
s(s-s^) (s-s^) (s-S2)'+(l/2) (3~sin3+r^(6-sin6+C-sine) ) *

4« Additional Parameters

In the algorithm which is to follow shortly it is necessary

to calculate the distance from A^, the center of A, to the two

points, Q and Q^, where the discs B and C intersect* We label these

points so that Q is the closer to A^ and refer to their distapces

from A^ as u and v,

u = A^Q; y = u < v

If we consider the discs B and C as already occupying fixed positions



» 48 -

in the plane and consider all possible positions of we notice

almost immediately (referring to Fig 79 ) that must lie below

C-, and to the left of QQ . This is because d, < d_ and u < v*

¥e distinguish two cases.

( 15 )

If A^ lies in the region we have the following equations;

2 2 2
u = r cos {o <

(p^ < /2 )

(o < (p < V2)(16) ^"^^2 ~ cos(c/2r),

(17) sin (p^/h^ = sin 0/c

2
and these can be solved for the value of u as:

(18) u^ = r^+d2“2rd2 c'oS|[”iij^shc cos (c/2r)-arc sin(d-^ sin 6/c)
J

If A^ lies in region R^^ say at A^ in the figure^ then we get

the equations:

2 2 2
u = r +d2~2rd2 cos (p^

cos (c/2r)

(o < < 72)

5<f>i< Vs)

sin 7V1
= sin e/c

and these can be solved for the value of u as:

U9 ) u^ = r^+d2“2rd2 cos|^arc sin (d^ sin 6/c)- arc cos (c/2r)J .

We notice that the expressions in brackets in equations ( 4 )

and (8) differ only in sign and since cos x is an even function
2

(cos(-x)=cos x) the formulas for u are identical.

In the first case (A^ in R^) we have the following expressions

( 20 )

2 2 2
V = r +d^ -2rd^ cos

2 ^-.^2 where tp^ is given by

and is given by(21) (p^
= arc cos (c/2r)

(22) = arc sin (d^ sin 9/c)

In the second case (A^ in R^) we have

2 2 2
(23) V = r +d^ -2rd2 cos(<p^+0j^) where ^ is given by
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(24)

if)^
- arc sin (d^ sin 6/c) and

(p^
is given by (lO).

2
Once again the formulas for v are identical so there is no

need to make a distinction between the cases.

Recalling that ve are assuming R=l, the situation that Q lies
2

inside A is expressed by u < 1 or equivalently u <1. Similarly
2

lies inside A if and only if v < Thus we have a perfectly

effective test for this situation*

5* Analysis of Cases .

We suppose thoughout that both discs B and C meet the large

circle A, and that B is at least as close as C to the center of A.

We also assume that the radius r of B and C is less than that of A

and that 0 measures the smaller angle formed at the center of A.

These assiamptions are equivalent to the algebraic restrictions on

parameters contained in (i)^ (ii), (iii) and (iv) of this Appendix 1-2.

Case F^: Both discs are entirely within A. This is the case when

( 25 ) d^ + r < 1 .

This says that disc C is inside A^ but we agreed that B was e^t least

as close in, so both m.ust lie inside. We distinguish two subcases.

Subcase B and C overlap. This is true when

( 26 ) c < 2r^^^,

and the formula for the cpmmon area covered is

( 27 ) Area = 2nr^ - [. B fl C
|

.

where
[

B fl C
|

is found according to equation (2).

Subcase F^^* ® ^ don't overlap. This is true when

( 28 ) c > 2r,

end the formula for the area covered is

( 29 ) Area = 2jrr^.

TO The quantity c denotes the distance of centers of B and C and is
calciilated by c = (d^ +d^ - 2d^d

2
cos 0)^/^.
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Case Fg.' B is entirely Inside C partially so. This is true when

d^+r < 1 < d
2
+r. Again we distinguish two subcases.

Subcase Fp-. : B and C overlap. The condition is (26) and the area

is given by

( 30 )
Area = jtr^+ |Af)c| - |Bnc|.

where
|

A D C
|

is given by (3)^(^)^(5) with d^ replacing d^^ in all

three formulas for obvious reasons.
[

B fl C I
is given by (2).

Subcase Fp^: B and C don't overlap. The condition is (28) and the

formula for the area is

( 31 ) Area = «r^+
[
A H C

|
.

Case F^; Both B and C are only partially inside A and they overlap.

The condition is (
26 ) and d^+r >1.

We now consider in orderthe subcases of F^ beginning with the case

0=jt and the case c=o. We eliminate the possibility c=o early in the game

since we call for division by c in many dases.

Subcase F^q: The denters of B_, A and C are colllnear in the order

Indicated so that the condition is 6=tc; it can be easily established

that in this case u < 1 necessarily and that the common region B fl C

lies entirely within A. The area is then given by

(32) Area = |AriB|+|Anc B n C

Subcase F^^: B and C are coincident. The conditions are

(33) 0 = o;

and the area is given by

( 3^) Area =
[

A H B
|

which is calculated by equations (3)^(^)^(5)»
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Subcase F-^2
' centers of A, B and C are colllnear but B and C

are not coincident, and the tvo intersection points of discs B and

C lie iualde A* The conditions are

( 35 ) e = o; d^T^d^; u^ < 1

where u is given by

(36) u^ = r^+d^d^.

It can be readily verified that equation (18) reduces to (36) under

the conditions of ( 35 )* The area is given by

( 37 ) Area =nr^+|Anc|-|Bnc|«

Subcase F23' same conditions hold as for except the two

Intersection points of B and C lie outside A. The condition is

(38) u^=r^+d^d2>l
-s

and the area is given by

(39) Area =
|

A fl B
[

,

In the following situations we shall describe the cases according

to the conditions on the parameters and let the reader figure out the

geometry for himself. First we define two new parameters 0
^
and

(^0)
®i

~ ( (l+l^~^^)/2d^) i=l,2 .

Referring to Figure 78b 0
^

is the angle "^^QA^B^ and 0
^

the angle

(5)Subcase conditions are

( 41 ) 0^0; u^ < 1 ; v“ < 1; 0 < 6
^

and the area is given by

( 42 ) Area = :tr^+|Anc|-|Bnc|
.

(5) See Appendix 1-6 for an explanation of the inequalities on the 0 .

.

See Appendix 1-4 for definitions of u and v.
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Subcase F The conditions are ( 6 )

e^oj <1; < 1;(^3)

and the area is given by

(kk) Area =|AnBi+|AnC
Subcase F^^: The conditions are

^
(45) u^ < Ij v^ > 1

and the area iS; given by

(46) Area ^lAnBl+lAflC

> Sr

B n c

B n c n A

where the last tem is the common area of the triangular region whose

area is calculated in Appendix 1-3^ equation (l4)

.

Subcase conditions are

(47) u^ < 1; v^=lj 0 < 02

and the area is given by

(48) Area =|AnB|+[Anc
Subcase F^n: The conditions are

3o

B n c n A

(^9)
2 2

u < 1; V =1; 0 > 0 .

and the area is given by

(50)

Area = |AriB|+|Anc

Subcase F The conditions are
39

B n c

( 51 ) u^ = 1; v^ = 1

and the area is given by

(52) Area =
|
A fl B I

(6) 0^0 will be true for all cases F^j^ through
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Subcase The conditions are

(53) u = Ij V > 1; 0 < 0^

and the area is given by

(5^) Area =
|

A fl B
[

.

Subcase F, : The conditions
4l

are

( 55 ) u^ = 1; v^ > 1; e >

and the area is given by

( 56 ) Area =
I A fl B

|

+
1 A n c

Subcase F, The conditions
42

are

(57)
2 2

u >1; V > 1; 0 < 0^

and the area is given by

( 58 ) Area =
j

A fl B
|

.

Subcase F|^
2

* The conditions are

(59)
2 2

U > Ij V > Ij 0 > 0^

and the area is given by

( 60 ) Area =
|

A fl B
|

+
1
A n c

The final case occurs vhen both discs B and C meet A but not

each other

o

Case The conditions are

(
61) d^ + r > Ij d^ + r > 1 ; c > 2r

and the area is given by

( 62 ) Area =|AnB|+|Anc|.
6 „ Special Cases

Most of the formulas for the area covered that are presented

in Appendix 1-5 can be verified by a consideration of the geometry

of the configurations. An exception to this is the fomnula
2nr+|Anc|-|Bnc| which appears in cases
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Referring to Figure 80 and denoting the areas indicated as and

we get the following expression for the area covered:

( 63 ) Area =|Anc|+|AnB|-G.
1

hut we also have the equations

2
(64)

(65)

(
66

)

Gi+G2+G3=Trr

G1.G3 =

B n c

A n B

Solving for G^ and substituting in ( 63 ) we get

2
(67) Area =

|

A fl C B n C + «r

As regards the inequalities on the if 0 < 0^ then the portion

of disc B that lies outside A is inside C* If 0 > 0^ then this portion

doesn’t meet C and the area is calculated accordingly® Figures 8la

and 8lh refer respectively to cases F^^^ and F^^ and the inequalities

can be seen geometrically. The inequalities on 0 and 0^ are similarly

motivated®

on
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APPENDIX II. ANALYTICAL SOLUTION^ FOR N=2

This section deals -with the maximization of F(x) in the

very simple case n=2. As noted in the main text, and explained

in detail in Appendix I, F(x) is given hy one of eight different

formulas, depending on the nature of the configuration formed hy

the fixed circle A of radius R=1 (this is the circle "to he covered")

and the two "covering circles" and of radius r < 1. Despite this

complication, we shall show that the problem can he solved analytically.

To avoid trivial cases, the assumption l/2 < r < 1 will he made

throi:ighout . As in Appendix I, the following notation will he used:

d^= distance from ' s center to A’s center,

dg= distance from C^'s center to A's center,

c = distance between ' s center and 02*3 center,

e = angle between radius of A through C^'s center and that

thro-ugh Cg's center.

Thus we have, by the Law of Cosines,

(1) c^=d^^ + d
2
^ -2d^ d

2
cos ©.

The function to be maximized is given, in set theoretic notation, by

(2) nF(X)= G(d^,d
2
,e)= Area (Ar^C^) + Area (AAC

2
)-Area (A/^C^ACg)*

A preliminary remark which greatly simplifies the situation

is that ©=Tt for any configuration which maximizes F(X)« To prove this,

temporarily regard d^ and d
2

as fixed, but © as variable. That is,

regard as fixed but as rotatable around the center of A. Then

the first two areas in the right hand side of eq(2) are constant, but

the third area is a decreasing fiinction of C and therefore (cf, eq(l))

is a decreasing function of © for o < © < n and an increasing function

of © for 7t < © < 2jt.

In what follows, therefore, ©=jt will be assumed, so that eqs(l)

and (2) become, respectively,

(3) c=d^+d2,

(4) G(d^,d2,7r)=g(d^,d2)=Area (AnC^)+ Area (AAC
2
)-Area (C^/^C

2 ),

where eq(4) follows from the observation that AH C^=C^C^ when e=n»

(l) This solution is due to B.K. Bender and A.J. Goldman (NBS Operations
Research Section). C.T. Zahn Jr. suggested several expository improvements.
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Next it vill "be shown that_, for every configuration maximizing F(x)^

(5)

(6) +r > 1 i=l^ 2.

Condition (5) asserts that and meet^ while condition
( 6 ) asserts

that and "stick out" past or at least are not entirely interior

to A»

For the proofs first ass\mie tentatively that c > 2r for some

comfiguration which maximizes F(x). Then d^ +r < 1 cannot hold for

both i=l and i=2, since this would imply

4r < c+2r=(d^+r)+(d2+r) < 2 ,

contradicting the hypothesis r > 1/2. Thus at least one of the functions

Area (AACj^) (i=l;,2) is a strictly decreasing function of d^ near the

configuration in questiono For such an ±, we can slightly decrease d^

and thus increase Area (AHC^) witho^it violating the condition c > 2r.

Thus one of the-tdrst two areas in eq(4) is increased, the other is

unchanged, and the third remains zero since and are disjoint when

c > 2ro Therefore g(d^,d
2 ) has been increased, violating the assiimption

that the original configuration was maximizlrig. So the tentative

assumption that c > 2r is untenable, i<>e» condition (5) holds for every

maximizing configuration®

Now temporarily regard c and thus the third area in eq(4), as fixed,

so that eq(3) is a constraint on d^ and d^® For any configuration in

which d^ +r > 1 but d^ +r < 1, it would be possible to decrease d^^

slightly (thus increasing Area (A/1C^)) and to increase d^ by the same

amount so that d^ +r < 1 is not violated and Area (AflCp) retains the
2 ^

value rtr . Thus g(d^,d
2 ) would be increased, and so the original

configuration could not have been maximizing. A similar argument applies

with i=l and i=2 interchanged. Therefore a maximizing configuration

either obeys (6) for i=l, 2, or obeys

(6a) d^+r < 1 for 1=1,2.

Under the condition (6a), however, the first two areas in eg(4)

2
have the value -kt and only the third one is variable. This area is

minimized (i.e. g(d^,d^) is maximized) by choosing d^ and (and thus

c=d^+d
2 ) as large as possible. Subject to (6a), these choices are



d.^=l-r {
1-1 , 2), -which still satisfy (5) since

c=2-2r < 2r because r > l/2*

But these choices also obey ( 6)* This completes the proof that (5)

and (6) hold for all configurations maximizing F(x)«

In what follows, therefore, conditions (5) and (
6

) will be assumed.

It is convenient to introduce the following quantities:

2©^= angle intercepted at A's center by subtended arc of C^,

2^_^= angle intercepted at C^'s center by subtended arc of A,

= length of common chord of A and

2y,= angle intercepted at center of either or Cg by

subtended arc of the other of or Q^,

z = length of common chord of and C^.

It is readily fo-und that

(7) cos ©. = (l-r^+d.^)/2d.,

(8) cos = (l-r^-d^“)/2rd^,

(9) cos ^ = c/2r

(10) sin e^= r sin - -gz^, r sin^ =-^z,

f 11 ) 2 22
^ Area(A^C^)=3tr +e^-^sin 2©^-r sin 2^^,

(12) Area(C^OC2)=2r|^ -r^ sin 2)6.

From the geometry of the situation, it follows that

(13) d(Area {k(\ C.))/d(d.)= -z.;

an analytical derivation of this will be given later. Exactly the

same argument shows that

5 (Area(C^O C2))/Sd^= -z,

so that (see eq( 4 )) we have

(14 ) 9g/3 d^ =z -z^ (i=l, 2)®

Now it will be sho-wn that there is precisely one maximizing

configuration, the one characterized rather elegantly by

(15) Z^=Zg=Z

or equivalently, via eq(lO), by

(16)

Note that as might be expected, the maximizing configuration is

symmetric in the sense that d^^d^.
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To prove eq(l5)^ tentatively suppose it false* Without loss of

generality suppose z* Then the function g(d^^d
2 ) assumes its

maximum on the triangle

T: ^ ^2 — '^l ^2 —
defined in the conditions(5) and (6), at a point

at vhich Bg/Sd^ does not vanish. Such a point must lie on the

boundary of T^, and in fact not on its horizontal leg (endpoints

excluded); this follows from standard calculus arguments® If the

point is on the vertical leg of T (upper end-point excluded)^ then

on the one hand Bg/dd^ must be non-^positive and thus negative^ so that

z < z^ by eq(l4)^ and on the other hand d^ + r=l so that is internally

tangent to implying z^ '=o® Since z < z^ and z^ =o are incompatible^^

this case is ruled out® If the point is on the hypotenuse of T

(upper endpoint excluded)^ then on the one hand Bg/Bd^ must be non-

negative and thus positive^ so that z > z^^ and on the other hand

c=2r so that and ai*e internally tangent^ implying z=o. Since

z > z^ and z=o are incompatible^ this case is also ruled out.

Finally;, if the point is the upper vertex of T^ then on the one hand

consideration of the directional derivative along the hypotenuse of

T yields

( 17 ) Bg/Sd^ - = (z-^Zj_)-(z-z^)=z^ -z^ < o^

while on the other hand z^=o and z=o as above. This implies z^=o^

so that and are externally tangent to each other and internally

tangent to A. Such a configuration can only occur if r=l/2, contradicting

our assumption that r > l/2« So every alternative to eq(l5) has been

ruled out_, and the equation must hold. To describe the maximizing

configuration more explicitly^, let x denote the common value of

d^ and d^® Eqs(8), (9) and (l6) then yield

(l-r^-x^) /2rx=x/r,

which -implies that

(18) x=((l-r^)/3)^/^.

As a check, note that x—>l/2 as r—>l/2 and x—>o as r.—jl,
as would be anticipated.
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The maximum coverage ratio F can now be found in terms of r*
max

First we have, from eq(4), (ll)^ (12) and (l6)

2 2 2
= 2:rtr + (2©^ - 4r ^ )-sin 2©^ + 2r sin 2TtF

max
From eq(7) and (l8), however,

cos ©^=2((l-r^)/3)^/^=2x,

which with the aid of eqs(9)^(l0) and (l6) yields
2 2

2r sin 2^ =4r sin cos^=4r(sin ©^)(x/r)=2 sin ©^ cos ©^=sin 2©^.

Thus the last two terms in the above expression for jtF cancel each
max

other, leading to

(19)

where x is given by (l8).

The value of x and maximum coverage (f /it) are compared in Table 11
max^ ^

^2)
with the corresponding values x and RATIO obtained by the computer^ .

c IH3/X

As can be seen, the agreement is excellent.

We conclude with an analytical derivation of eq(l3)»

First use eq(ll) to write

2 2
jtF =2Ttr +2arc cos(2x)-4r arc cos(x/r),
max \ y

d(Area(4/) C^) ) /d(d^)=2sin^ ©^(d©^/d(d^) )-2r^sln^

By eq(lO), this can be written

(20) d(Area(A/) C^) )/d(d^)=z^sin ©^(d©^/d(d^) )-r sin
y

From eqs(7) and (8), however,

-sin ©^(d©^/d(d^))= -(l-r^-d^^)/2d^^,

-r sin jz^^(d;z^^/d(d^))= -(l-r^ +d^"^)/2d^*^»

Substitution of these results into eq(20) yields eq(l3)*

(d|!(,/d(d.))

f.(d|!i./d{d.)).

(2) This table was prepared by C.T.Zahn, Jr.

USC0M}4-IiBS-DC
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TABLE 11

(*)
Comparison of Analytic and Computer Solutions^ ' for

the Case n=2

r X £c F /n
max'

RATIO
]

9/16 .47735 ,47754(**) ,601 »6oo

5/8 .45069 .45069 .686 .686

11/16 .41926 .41753 .762 .762

3/^ .38188 ,38181 .829 .829

13/16 .33657 .33802. .889 « 00 COVO

7/8 .27951 .28128 .§39 .939

15/16 .20091 .979 .979

^ ' X is the distance of the centers of each of and C^

from that of A in the optimal configuration^ and F /jt is the
lUQ/X

value of coverage obtained from the configuration^ ioCe the

maximum coverage.. The corresponding values x and RATIO
c mSrX

those obtained from the computer simulation at a mesh of 256

At the coarser mesh of 6k^ the value is x^=»A76 *

are
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t/)
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APPENDIX III. THE FORTRAN PROGRAM _
C FIRST POSITIVE GRADIENT SEARCH METHOD MAIN PROGRAM
S ONE , OCT 1000000
S P2 OCT 237105624673

READlOOl
PRINTlOOl

1001 FORMAT(72H
1 )

DIMENSION A(50) *IP(50) »JO(50) flPOISO) JQO ( 50 ) K2 I 1 000 ) *IT(4»512)e
,

XJT(4»512) IBI4.512) JB(4*512)
DIMENSION NXI4)»IPX(50)*JOX(50)
READ1*N7
IDX2=1
CALL MK2TIK2)
PRINT 2010

1000 READI J7»K0»NC »N»KBIG»JXPO »JFACT IR0*N4
1 F0RMAT(7I10)

IDX = 1

CLA P2
STO 14
PRINT 2011*IDX2
PRINT 2012»NC» IR0»K0»N»KBIG»NA

. 2 K=K0
IR=IR0
NEWX=0
JXP=JXPO

50 IF(J7)3»10,10
10 RFAD9, (TP (IX)» JO (IXTs IX=1*NC)

GO TO 4

3 CALL XBAR( JXP*K»IP» J0»K2»NC» 14)
4 CALL SUMX(K,IP ,J0 > I R NC NSUM K2

)

PRINT 2020» IDX» ( IX» IP{

I

X) , JQ( IX ) IX=1 »NC

)

CALL RAT (K»K2 »NSUM*RATI0)
PRINT 2021 », RATIO
PRINT 20?2» K

6 KS0=K2(K)
IR0=K2(IR)
CALL VECT0R(IT»JT*I8OB»!<2'*IR)
CLA IR
ALS 1

STO IR3
SUB ONE
STO MAX

9 FORMAT(10I7)
7 ’DO 2005 10=1 *NC

CALL NEAR ( NS » I 0 » I PX JQX I R 3 9 I P JO NC

)

INT5=IP( 10)
I NT6= J0( 10

)

, IMT7=K-IR-1
IF(K2(INT5)+K2(INT6)~K2( INT7) )12349l?349l235

1234 IF(NS) 1238*2005*1238
1238 DO 13'00 IXS=1*4

CALL SCANl IIT*IB*JT»JB*I09K2*JD*IP»JO*IXS9MAX*NS» IPX*J0X*<S09 IRO)
IF( JD)1300*1300*1307

1300 CONTINUE
GO TO 2005



1235 DO 1250 IXS=1 »4

CALL SCAN2 (IT*IB*JT«JB»IO?K?»JD» I P » JO » I X S ^ M AX » NS » IPX UQX KSOs I RQ 5

IF( JD) 1250? 1 250# 1307
1250 CONTINUE
2005 CONTINUE

I F ( X-KPI O) IR ? 10, IQ

13071X0=10
MX2= I X5
CALL XNEW(MX2» IP»JO» IXO)
NEWX=NEWX+1
GO TO 7

18 PRINT 2027? NEWX
PRINT 2030?K?( IX?IP( IX) ?J0(IX)?IX=1»NC)
CALL SUMXIK? IP? J0« I R ? NC ? NSUM ? K 2

)

CALL RAT (K?K2 ?NSUM?RATTO)
PRINT 2021?RATIO
CALL REEINE ( I T ? JT ? I B , JB ? NC ? K » I R ? I P ? JO ? JXP ? JF ACT )

PRINT 2032? K

GO TO 6

19 CALL SUMXIK? IP?JO? IR?NC?NSUM?K2)
CALL RAT(K?K2?NSUM?RATI0)
PRINT 2040? K? ( IX? IP( rx) ?J0( IX) » IX = 1 ?NC)
PRINT 2041? RATIO
PRINT 2042? NEWX

53 I F( IDX-N4)41 ?42?42
41 IDX=IDX+1

GO TO 2

42 IF( IDX2-N7)43?44?44
44 CALL RETURN
43 inX2=IDX2+]

GO TO 1000
2010 F0RMAT(1H1?19X?55HFIRST POSITIVE GRADIENT SEARCH FOR MAXIMUM CIRCL

XE COVER)
2011 FORMAT ( IHl ?19X ?5HCASE ?I2//)
2012 FORMAT(20X?10HTHERE' ARE ?I2?26H COVERING DISCS OF RADIUS ?I3?1H/?I

X3/20X?25HMONTE CARLO IS USED WITH »I3»8H TR I ALS ? /20X » 19HF I NAL MESH
X SIZE IS ?I4?13H. KICK OFF ?I3?7H TIMES*)

2020 FORMAT(///15X?22HINITIAL CONFIGURATION ? I 4/ / ( 1 5 X * I 2 ?4H ) »I5?^R))
2021 FORMAT ( //I 5X ? OHRAT 10 IS.?F10*6)
2022 FORMAT ( /////lOX ?8HMFSH IS ?I4//)
2027 FORMAT { //lOX? I 3?21H MOVES HAVE BEEN MADE)
2030 FORMAT ( ///15X , 31HR.ELATIVE MAXIMUM UNDER MESH OF ,I4«21H IS THE CON

lFIGURATION//( 15X?I2?4H) ?I5?I8))
2032 FORMAT ( /////10X?19HMESH IS REFINED TO ?IA)
2040 FORMAT I ////15X ?41HRELAT I VE MAXIMUM WITH FINAL MESH SIZE OF 9l4?21H

X IS THE CONFIGURATION// ( 15X? I2^4H) »I5»I8)) I

2041 FORMAT I //15X 924HFINAL VALUE OF RATIO IS *F1066 )

2042 FORMAT ( //15X?26HTOTAL NUMBER OF MOVES WAS ? I 3////Z5 ( lOX ? lOHXXXXXXX
XXXX)/////)

END
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The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and
Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work.
In general, each section carries out specialized research, develo^ent, and engineering in the field indicated by
its title. A brief description of the activities, and of the resultant publications, appears on the inside of the
front cover.

WASHINGTON, D. C.

Electricity. Resistance and Reactance. Electrochemistry. Electrical Instruments. Magnetic Measurements!
Dielectrics. High Voltage.

Metrology. Photometry and Colorimetry. Refractometry. Photographic Research. Length. Engineering Metrology.
Mass and Scale. Volumetry and Densimetry.

Heat. Temperature Physics. Heat Measurements. Cryogenic Physics. Equation of State. Statistical Physics.

Radiation Physics. X-ray. Radioactivity. Radiation Theory. High Energy Radiation. Radiological Equipment.
Nucleonic Instrumentation. Neutron Physics.

Analytical and Inorganic Chemistry. Pure Substances, ^ectrochemistry. Solution Chemistry. Standard Refer-
ence Materials. Applied Analytical Research. Crystal Chemistry.

Mechanics. Sound. Pressure and Vacuum. Fluid Mechanics. Engineering Mechanics. Rheology. Combustion
Controls.

Polymers. Macromolecules: Synthesis and Structure. Polymer Chemistry. Polymer Physics. Polymer Charac-
terization. Polymer Evaluation and Testing. Applied Polymer Standards and Research. Dental Research.

Metallurgy. Engineering Metallurgy. Microscopy and Diffraction. Metal Reactions. Metal Physics. Electrolysis
and Metal Deposition.

Inorganic Solids. Engineering Ceramics. Glass. Solid State Chemistry. Crystal Growth. Physical Properties.
Crystallography.

Building Research. Structural Engineering. Fire Research. Mechtmical Systems. Organic Building Materials.
Codes emd Safety Standards. Heat Transror. Inorganic Building Materials. Metallic Building Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics. Op-
erations Research.

Data Rrocessing Systems. Components and Techniques. Computer Technology. Measurements Automation.
Engineering Applications. Systems Analysis.

Atomic Physics. Spectroscopy. Infrared Spectroscopy. Solid State Physics. Electron Physics. Atomic Physics.

Instrumentation. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical Instru-
ments. Basic Instrumentation.

Physical Chemistry. Thermochemistry. Surface Chemistry. Organic Chemistry. Molecular Spectroscopy. Mole-
cular Kinetics. Mass Spectrometry.

Office of Weights and Measures.

BODLDER, COLO.

Cryogenic Engineering Laboratory. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Cryo-
genic Technical Services.

CENTRAL RADIO PROPAGATION LABORATORY

Ionosphere Research and Propagation. Low Fre^ency and Very Low Fremency Research. Ionosphere Re-
search. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. Vertical
Soundings Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Radio Noise. Tropospheric Measurements.
Tropospheric Analysis. Propagatioi^Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics.

Radio Systems. Applied Electromagnetic Theory. High Frequency and Very High Frequency Research. Modula-
lation Research. Antenna Research. Navigation Systems.

Upper Atmonhere and S^iace Physics. Upper Atmosphere and Plasma Physics. Ionosphere and Exosphere Scatter.

Airglow and Aurora. Ionospheric Radio Astronomy.

RADIO STANDARDS LABORATORY
Radio Physics. Radio Broadcast Service. Radio and Microwave Materials. Atomic Frequency and Time-Interval
Standards. Millimeter-Wave Research.

Circuit Standards. High Frequency Electrical Standards. Microwave Circuit Standards. Electronic Calibration
Center.




