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Thermal Conductivity of Semiconductive Solids;
Method for Steady-State Measurements on

Small Disk Reference Samples

by

D. R. Flynn1.

ABSTRACT

Thermal conductivity measurements were conducted
over the temperature range 200° to 1200°C on the bar of
60% platinum-40% rhodium alloy from which the hot and cool
contacting bars of the high-temperature apparatus are to be
fashioned. The tentative results, not yet corrected for
individual thermocouple variations, plot smoothly from
0. 57 w/cm-C at 200°C to 0.79 w/cm-C at 1200°C. A paper
"Thermal Guarding of Cut-Bar Apparatus," which was presented
at the Invitational Conference on Thermal Conductivity
Methods held at Battelle Memorial Ins titute ,

.Columbus
,
Ohio,

on October 26-28, 1961, is reproduced following the main
body of this report.

2.

STATEMENT OF PURPOSE

To develop a method and apparatus for steady-state
thermal conductivity measurements at temperatures to 800°C
and above, and suitable for solids in the form of small
specimens (1/2-in. by 1-in. diameter disks), with the
objective of providing samples for use by other laboratories
as thermal conductivity reference specimens in connection
with their measurements on solid semiconductors.

3.

WORK PERFORMED IN REPORTING PERIOD
(July 1 to September 30, 1961)

During this quarter additional measurements of the
thermal conductivity of the 60% platinum-hO% rhodium alloy
were completed, using the high temperature model of the
absolute cut-bar apparatus. (For a description of this
equipment, see NBS Report 7323.)

In the course of these measurements, it was found that
to maintain the desired temperature distributions along the
alumina guard cylinder, two additional heaters of platinum-
20% rhodium wire were required near the ends of the cylinder.
These heaters, shown in the schematic diagram of the apparatus
(Fig. 1), are controlled by variable voltage transformers to
minimize end heat losses from the central portion of the guard
cylinder

.
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The thermal conductivity of the 60% platinum-hO% rhodium
alloy was remeasured over the temperature range 200° to
1200°C. The alloy was supported between the alumina tube
below and the alumina rod above. The thermal insulation used
throughout the apparatus was alumina powder. The power
generated in the specimen heater was determined by current
and potential drop measurements, using a calibrated volt box
and shunt box in conjunction with a precision potentiometer.

The temperature distribution along the platinum-rhodium
bar was determined by means of four butt -welded platinum:
platinum-10% rhodium thermocouples, fabricated from cali-
brated reference grade wire, pressed into four 0.3 mm grooves
in the convex surface of the bar. Each of the four specimen
thermocouples could be read against an ice junction, so that
temperature gradients could be determined by difference.

When the 60% platinum-40% rhodium alloy bar was pur-
chased, a 0.5 mm wire was drawn by the manufacturer from the
same material. A thermocouple, fabricated from a length of
this wire and a length of 0.38 mm reference grade platinum
wire, was calibrated by the NBS Pyrometry Laboratory over the
temperature range 0°-1100°C. Using this calibration curve,
the thermoelectric power of the platinum-4-0% rhodium alloy
against platinum and against platinum-10% rhodium was derived.

The insulated room-temperature zone box was wired to
enable determination of the emf developed between similar
leads of different thermocouples. The emf was measured
between the platinum wires of the lower two junctions, the
platinum wires of the upper two junctions, the platinum-10%
rhodium wires of the lower two junctions, and the platinum-
10% rhodium wires of the upper two junctions. Thus, the 60%
platinum-hO% rhodium bar served as the central portion of
four differential thermocouples.'

Thermal conductivity measurements were made in increasing
order of temperature from 200° to 1200°C at 200 deg C inter-
vals, and then in decreasing order of temperature at 800° and
400°C. Each conductivity determination involved two tests.
First, an "isothermal” test, in which there was no power
input to the specimen heater, was made to determine varia-
tions between specimen thermocouples. This test was followed
by a "gradient" test with' sufficient power input to the
specimen heater to maintain a longitudinal temperature gra-
dient in the specimen of about 2 deg C/cm. In all of the
tests, the guards were adjusted so that there was very little
net heat exchange between the specimen bar assembly and the
surrounding insulation.

The results of the gradient tests are plotted in Figure
2. The conductivities shown are computed from ,f re.w ,f

dcits.
only. That is, the temperature readings from the gradient
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tests have not been corrected for the thermocouple variations
determined by the isothermal tests. These corrections have
been postponed pending installation of improved digital com-
puter facilities at NBS.

The solid symbols shown in Figure 2 represent measure-
ments made with temperatures increased, and open symbols those
made with temperatures decreased. Thermal conductivity values
indicated represent the average of two conduct ivities i one
computed using the temperature difference between the lower
two specimen thermocouples and the other that between the
upper two specimen thermocouples. The circles (solid and
open) were obtained using temperature gradients as determined
by differences between the platinum

:
platinum-10^ rhodium

thermocouples read against an ice junction. The triangles
(solid and open) were obtained using temperature gradients as
determined by the platinum: plat inum-4-0^ rhodium

:
platinum dif-

ferential thermocouples in which the specimen was the central
leg.

The solid line shown in Figure 2 is the least-mean-squares
quadratic through all of the points shown. The dashed lines
above and below the solid line bound the region plus and minus
5 percent of the solid line. The data shown are to be con-
sidered tentative, since corrections have not been made for
variations between thermocouples. When these corrections are
made, the data should be significantly smoother.

b. FUTURE ACTIVITIES

Measurements will begin in a few weeks on a specimen of
the nickel-chrome alloy that was measured in the modified
prototype absolute cut-bar apparatus. This material has also
been measured in two models of the NBS metals apparatus and
in the NBS steam calorimeter apparatus. Its conductivity is
believed to be well known (±2 percent) over the temperature
range -150° to 1000°C and hence this material should be quite
suitable for confirming the accuracy of the high temperature
absolute cut-bar apparatus.

A 1/2-inch by 1-inch diameter disk of Pyroceram 9606 is
currently being optically polished. This specimen will be
ultrasonically cleaned and the flat surfaces coated with
vapor-deposited platinum. Thermocouples will be affixed in
small grooves cut in the convex surface of the specimen to
enable determination of the temperature gradient in the speci-
men. A large specimen of the same material has been prepared
for measurement in the NBS metals apparatus. These indepen-
dent measurements in the absolute cut-bar apparatus and the
metals apparatus will provide a cross-check on a material of
conductivity similar to that of many thermoelectric materials
of interest and will assist in determining the suitability of
this material for thermal conductivity reference purposes.
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5. USE OF A REFERENCE MATERIAL

The ultimate objective of this research is the provision,
for use by other laboratories, of suitable thermal conduc-
tivity reference specimens. Of equal importance, it is felt,
is the proper use of such standards.

The problems encountered in the design and operation of
the absolute cut-bar apparatus have pointed out some of the
difficulties arising in measurements of this type on small
samples. The two most serious difficulties are due to the
thermal resistances at the contacting surfaces of the specimen
and the extraneous exchange of heat with the surrounding insu-
lation. In order to avoid the problem of attempting to measure
contact resistance, it is recommended that thermocouples be
placed in the specimen not too near its contact surfaces. In
order to evaluate heat exchanges with the insulation, a mathe-
matical analysis was made. The general form of this analysis
was presented in Appendix A of NBS Report 7135 (April 28,
1961 ).

A detailed analysis of heat flow in the insulation of a
simplified cut-bar apparatus was presented by this author at
the Invitational Conference on Thermal Conductivity Methods
held at Battelle Memorial Institute, Columbus, Ohio, on
October 26-28, 1961. In view of the similarity of this analy-
sis to that used for the NBS absolute cut-bar apparatus, this
paper "Thermal Guarding of Cut -Bar Apparatus" is reproduced
at the end of this report.

Many laboratories are currently utilizing various forms
of a comparative cut-bar apparatus for their thermal conduc-
tivity measurements. A typical example would be the apparatus
of Francl and Kingeryd). As has been pointed out, shunting
heat flows through the insulation are a serious problem in an
apparatus of this type. While these heat flows are evaluated
analytically in this laboratory, it is realized that many
laboratories will not find it convenient to resort to a digital
computer for evaluation of their particular apparatus.

The effects of these unwanted heat flows can be avoided
by means of a suitable calibration if suitable thermal conduc-
tivity reference specimens can be made available. The best
use of these reference specimens is summed up in another paper
presented at the above-mentioned conference. In his paper
"Current NBS Steady-State Thermal Conductivity Methods," H. E.
Robinson, Chief of the NBS Heat Transfer Section, concluded
by saying:

1. J. Am. Ceram. Soc. 2>Z [2] 80-6L ( 19 5V ) -
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"The idea of a thermal conductivity reference standard
is manifest. Nevertheless

,
such standards involve other

problems than merely those of selecting suitable materials
and determining their conductivity as accurately as possible,

"For example, the best use of a reference material is
to use it as a substitute specimen, as is done for instance
in precise determinations of electrical resistance. When
the reference is used in this way in a particular apparatus,
it is presumably subject to the same unwanted heat flows,
resulting from what might be termed the accessory conditions
of the apparatus, as would be a test of specimen of equal
conductivity. If the reference is thus used to calibrate a
metering device of some sort, as it would be in a comparative
type of testing apparatus, the calibration of the meter would
inherently contain the effects of these perturbations. This
consideration is of special importance In the case of heat
flow measuring equipment, because there is no perfect thermal
insulation or guarding to eliminate .unwanted heat flows.
Such use of the reference as a substitute specimen carries
with it, however, the strict requirement that the accessory
conditions of the apparatus be duplicable in ordinary tests,
as in the calibrating tests. Thus, in this sense, the best
use of a reference standard involves the design of the appa-
ratus to be calibrated with it, in regard to the precision
with which the accessory conditions can be controlled and
duplicated.

"As an illustration, it would not be the best use of a
reference material of known conductivity to employ it as the
heat flow meters in a series arrangement such as meter-
specimen-meter. The better use would be to employ for the
metering bodies some suitable material, and obtain a cali-
bration for them, by using the reference in place of the spec!
men. If reference substitute specimens covering a range of
conductivities were used, and accessory conditions were ade-
quately reproduced, it is probable that test measurements on
unknown specimens of conductivities within the range covered
by the references could be made with results not seriously
inferior in absolute value to those of the reference speci-
mens o.o..."
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THRUST

Figure 1. High temperature absolute cut -bar apparatus for
determination of the thermal conductivity of small
solids ^
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THERMAL GUARDING OF CUT-BAR APPARATUS

D. R. Flynn*
National Bureau of Standards

Washington, D. C.

ABSTRACT

A mathematical analysis of heat transfer in the insulation sur-
rounding "cut -bar" thermal conductivity apparatus is presented. A general
solution is derived for arbitrary temperature distributions along the inner
and outer boundaries of the hollow cylinder of insulation.

For small heat exchanges between the insulation and metering bars
and specimen, the temperature distribution at the inner boundary is
approximated by three straight lines. Where temperature distribution along
the guard matches that along the meter bars and specimen, the heat gains or
losses to the insulation are proportional to:

1') The thermal conductivity of the insulation,

2 ) The difference between the thermal resistivities of the
specimen and meter bar,

3) A geometrical factor.

The choice of a meter bar becomes critical for low specimen con-
ductivities. Several conclusions are reached concerning the design and
operation of a cut -bar apparatus.

1. INTRODUCTION

The thermal conductivity of solid materials is of considerable
theoretical and practical interest. Unfortunately, published results for
this property are often widely divergent. While some variation among
literature data may be attributed to differences in sample composition and
mechanical properties, it is evident from the magnitude of these dis-
crepancies that errors exist in the various methods of measurement. These
errors can frequently be attributed to unaccounted for heat losses or gains
in a measuring apparatus.

One common method of determining thermal conductivity Involves
the comparison of an unknown material with one of known conductivity. In
the comparative method, as usually employed, a sample of the unknown
material is placed in series with one or more samples of a known material
and a heat flow is established through this tandem assembly. A determina-
tion of the temperature gradient in th,e known material serves to define the
heat flow through the unknown sample.

A special case of the comparative method, sometimes designated as
the "cut-bar" method, ‘'has been used extensively and is the subject of this
paper. An unknown .specimen is placed between two identical bars of a
"known" material, which, in

4
actuality

,
serve as heat flow meters. (This

composite assembly, consisting of three bars in series will hereafter be

•

* Physicist, Heat Transfer Section
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referred to as "the assembly.") The contacting surfaces of the meter bars
and of the specimen are made flat and parallel, and a thrust is exerted on
the assembly to assist good thermal contact. A temperature difference is

maintained between opposite ends of the assembly, causing a heat flow along
the bars and specimen. Thermocouples are employed to determine tempera-
tures in the meter bars and specimen.

If data acquired by the cut -bar method are to be valid, care must
be taken to minimize and account for heat gains or losses from the curved
surfaces of the assembly. In this paper, analytical techniques are pre-
sented which assist in reducing and determining the magnitude of unwanted
heat exchanges in the cut-bar method.

In order to minimize
-

these .heat exchanges, it is customary to
provide a guard cylinder coaxial with the assembly, the space between the
assembly and the guard cylinder being filled with thermal insulation.
Usually, an attempt is made to maintain the same temperature distribution
along the guard cylinder as along the assembly, so that guard temperatures
match those of the assembly at corresponding longitudinal positions. This
paper shows that this guarding technique does not preclude unwanted heat
exchanges, and provides a means of computing and correcting for these
exchanges

.

2. MATHEMATICAL ANALYSIS

Figure 1 is a schematic of the assembly and surrounding insula-
tion. For simplicity in the mathematical development, the meter bars are
assumed to be identical in length and thermal conductivity.

Km? Ks ,
and Ki are the thermal conductivities of the meter bars,

the specimen,- and the insulation, respectively. The radius, r, of the
assembly is A; the inner radius of the guard is B; and the length of each
reference bar is M; that of the specimen is L; and the over-all length is
W=2M+L.

2.1 General Case

Consider the region consisting of the powder insulation between
the assembly and the guard cylinder. The boundary conditions for this
region can be expressed as:

1. r=A 0*z£W v=G(z)

2. r=B O^z^W v=H(z)

3 . Alr^B z=0 v=H(0)+{G(0)-H(0)}^|^

4 . AlrlB ?=W v=H(W)+{G(W)-H(W)}|^^

where temperature is denoted by the symbol, v. G(z) and H(z) are the tem-
perature distributions along the .boundaries r=A and r=B, respectively. It
has been assumed that the radial temperature distribution at the ends of
the insulation, z=0 and z=W, can be represented logarithmically.

It is helpful to reduce all previously defined quantities to
dimensionless forms:



p=z/W
;

m=M/W
,

’ <t=L/W

p=r/W
;

a=A/W
,

b=B/W

0=(v-G(W) )/T, where T=G(0)

hs =Ks/Km , Pi=Ki/Kd

10

( 2 )

In these reduced variables, the boundary conditions become

1 .) p=a 0<p<l e=g(p)

2 .) p=b 0<p<l 9=h(p)

3.) a^p^b p=0

4.) a<p<b H=1

where all dimensionless temperatures, 9, have been referenced to g(l)=0
,

g(0)=l.

The heat flow in the hollow cylinder, a<p<b, must satisfy
Laplace’s equation in cylindrical coordinates, which in dimensionless
parameters is, assuming angular symmetry

’ a
2 0

,

l a 0 a
2 9 _ n

8 p
2

p bp 3p 2 oo

Assume as a
(i

solution v 1

06

- +^fn (p)sin mrpe=.[i+[h(°)-i}^s_e^] d-U +h ( 1)f^ (5)

in which fn ( P )

=

cnl o (nmp ) +EnK0 (nmp

)

• ( 6 )

The boundary conditions (3) and (h) are satisfied by Equation ( 5) • Io
Ko are the zero order modified Bessel functions of the first and second
kind, respectively .

(

2 )

and

If fn(a) and fn(b)' are the coefficients of the Fourier sine
series at p=a and p=b, respectively, then

fn(a)Kp (nmb)-fn(b)Ko(nrra)
Fo(n7ra;n7rb)

and

where

fn(b)Io(n7ra)-fn (a)Io(nTrb)
n Fo(n7ra;n7rb.)

F 0 (x;y)=I 0 .(x)Ko(y)-Io(y)Ko(x)

,

(7)

( 8 )

and Equation ( 6 ) becomes

and'

r , n \ _ fnCa)Fo(n7rp;nTrb)-fn (b)Fo(mrp;nTra)n P Fo(nva;mrb)

Boundary conditions (1) and (2) are satisfied if

fn(a)=2 f {g (p )

-

1+p] sin rrrp dp
l

J°

fn(h)=2^ [h(l)-h( 0 )+[h( 0 )-h(l)}p]sinn7rp dp

(.9)

( 10 )

(ID

* References appear under the heading REFERENCES .
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Equation
Since the heat flux crossing the surface p=a is of interest,
(5) is differentiated with respect to p, and evaluated at p=a:

90\ _
9pp=

‘
[h(0)-l] (l-p)+h(l)p

a-tn h/

a

oo

+ ^n7rfn(a ) s in nrrp (12)

where fn(p)
fn (a)Fj (n7rp ;nTrb)-fn (b)F 1 (mrp ;n77;a)

Fq (nira ;n7rb)
(13)

and Fi (x;y)=Ii (x)Kq (y)+Io (y)Ki (x) (il0

The radial flow of. heat at the surface, r=A, through a cylindri-
cal element of' length dz is

dP=27rA Ki(|^) dz
3r r=a

(15)

In the dimensionless parameters, this becomes

dp=2iraOi’(~) dp
°P p=a

where dp=dP/(WTKm )

.

( 16 )

The total dimensionless power flowing across the surface p=a
between p=0 and p=p 1 ,

where Pi is any arbitrary value (0<Pi<l), is

p(Pi )=2TraOi
^ae

o 3p ) dp
P~a

(17)

, , , _ r2 f h (o)-i]iu+{i+h(i)-h(o)}w
2

pCm )=2TTa0l [ Ltnb/a

00

+ £fn(a) (1-cos nrrp x )J

n=l
(18)

Equation (18) is valid for any temperature distribution, g(p), at
p=a and any temperature distribution, h(p), at p=b. It will now be of
interest to select a particular temperature distribution along the curved
surface ' of the assembly, p=a.

2.2 Idealized Temperature Distribution on Inner Boundary

Returning to the apparatus of Figure 1, fn(a) will be evaluated
for a particular choice of g(p) (see Equation (10)). If the region A<r<B
contains a good inshlation, the longitudinal temperature distribution at
r=A will approximate that which would exist in the absence of heat gains or
losses. If Sm denotes the constant longitudinal temperature gradient in
the meter bars and Ss that in the specimen (in the absence of any heat
gains or losses), the temperature distribution, G(z), at r=A is

O^zAM v=T-Smz

M^z^M+L v=T-SmM-S s (z-M) (19)

M+L^z^W v=T-SmM-S sL-Sm (z-M-L)=Sm (W-z)

The dimensionless temperature

Q^p^m

m^p^m+t *
•

m+i^p^l

distribution, g(p), at P=a is

9=l-tmP

0=l-^mm-ts (H-m)

0=tm (l-p)

( 20 )
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o, = ' = i§W
YU) rjn T S £

Substituting g(p) from Equation (20) into Equation (10) and per-
forming the indicated integration,

fn(a)
n 2

7r
2

nrr nul
cos—sin—

—

2 2
( 21 )

It will now be helpful to eliminate \]rm and \]rs from. Equation (21).
If 0 represents the total power that would be flowing longitudinally
through the assembly if there were no heat gain or loss, then

Q=7rA 2KmSm=7rA
2KsS s ,

. (22)

where ttA2 is the cross-sectional area of the assembly'. In dimensionless
parameters, this becomes

q = _J1_
WTK r

= 7ra
2
tm=Tr,a

2 O s^ s

Since tym=bs1''s j
2m.+l=l, and 2\]qnm.-h]/s l=l, then

ds -- -i i 1
1m -

ds + (l-bs )l
and \j/ s =

o s +(l-o s )t

(23)

(24)

which can be substituted into Equations (21) and (’23).

It is of interest. to investigate the net fraction of power lost
or gained between p=0 and

T(hi

)

q
(25)

2.3 Matched Guarding .

Since it is customary in thermal conductivity measurements to
match the guard temperature distribution to that along the assembly, the
first case to be studied will be that of a guard exactly matched in this
respect. If the guard temperature distribution, H(z), is identically equal
to that along the bars and specimen, G(z), the following equalities hold:

h(n)=g(|i)
,

fn (b)=fn(a)

and Equation (5) becomes
oo

0=l-p- fn(p)sin mr\i

n=l-

(26

)

where now

fn ( o ) =fn ( a )
Fo ^ nTrP *

nT,?1
? )

~Fo ( n7rP ; n7ra )^nv
F 0 (nma jrarb) (27)

From Equation (25)

,

the net fraction of power lost or gained
between p=0 and q=Pi becomes

Y(di )=b 3 (1 - ~)D(p! )=Ki(j^ - j^)D(q 1 ) (28 )



13

CO

where D(p x )
)Un(l-cos 2mr\x 1 )

n=l

(29)

and < = 3^ (30)

since Fi (x;x)=l/x. Also, since cos rnr/2=0 for odd values of n, n has been

replaced by 2n wherever it appears.

2.4 Unmatched Guarding

Any type of guarding desired can be studied by evaluating fn(b)
in Equation (11) for an arbitrary guard temperature distribution, H(z).

However, in this paper attention will be confined to cases of matched
guarding.

3. NUMERICAL EXAMPLES FOR MATCHED GUARDING

The quantity of most interest in the above development is y(M-i)
(Equations (25) and (28)), which is the net fraction of power lost to or

gained from the insulation between p=0 and p.=Pi

.

Since D(pi) in Equation (28) is a function of dimensionless
geometric parameters only, it represents a geometrical factor which depends
only on the shape of the particular apparatus being considered. . For a
given geometry, the fractional parasitic heat flow is proportional to the
thermal conductivity of the surrounding insulation and to the difference of
the reciprocal thermal conductivities . (resistivities ) of the meter bars and
specimen.

A sphematic diagram of a particular cut-bar apparatus is shown in
the upper left-hand corner of Figure 2. The meter bars and specimen are
equal in length; this length is equal to twice their diameter. The radius
of the guard has been chosed as 1.5 times that of the bars. For numerical
evaluation, the specimen and insulation have been chosen to have, respec-
tively, thermal conductivities 1/5 and 1/100 that of the meter bars.

The graph in the lower left-hand corner of Figure 2 illustrates
the dimensionless longitudinal temperature distribution that. would exist
along the meter bars arid specimen in the absence of heat exchanges with the
insulation. The vertical dashed lines indicate the, positions of the inter-
faces between the meter bars and the specimen. Since, in this case, an
exactly matched guard is being considered, the temperature distribution
shown is also that which exists along the guard.

The graph in the upper right-hand 'corner' of Figure 2 illustrates
the dimensionless radial temperature gradient which exists in the insula-
tion at the convex surface of the meter bars and specimen. The quantity
shown, which is plotted against dimensionless' length, is (30/3p)pr=a from
Equation (12), where appropriate substitutions have been made corresponding
to the case of matched guarding. In this particular case, the radial gra-
dient is substantially zero

,
except in the regions near the interfaces. In

this graph, the peaks at the interfaces have arbitrarily been cut off at
-1.0 and +1.0.

The effect of such a radial gradient distribution is shown in the
graph in the lower right-hand corner of Figure 2.* The fractional power
change Y(p-i), from Equation (28), is plotted versus dimensionless length.
The quantity plotted is actually 100Y (pi ) ,

which expresses the percentage
change of power flowing longitudinally through the meter bars and specimen.
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In this graph, the power flowing in the first meter bar is seen
to remain constant until the interface is approached. The power drops
rapidly near the interface, then levels off in the specimen to a constant
value approximately 2.2 percent less than that which was flowing in the
first meter bar. Near the second interface, the longitudinal heat flow
increases so that its rate is the same in the second meter bar as it was in
the first.

3 • 1 Influence of Thermal Conductivity

It was seen in Equation (28) that, for matched guarding

Y(Hi)=Ki(-^ -^y)D(p) . (28)

where D(p) is a geometrical factor. To illustrate the errors that would
arise if a range of materials were measured using the same meter bar and
insulation, .the fractional power change is plotted in Figure 3 versus
dimensionless length for a variety of specimen thermal conductivities.
The geometry of the apparatus and the ratio of the thermal conductivity of
the insulation to that of the meter bars are the same as in Figure 2. The
quantity 100Y(pi) is shown for specimens having a thermal conductivity
ranging from one-tenth to ten times that of the meters.

The effect of varying specimen thermal conductivity for different
meter bars is shown in greater detail in Figure 4. Here the coefficient
conductivity-term of Equation (28)

Ki(
_L

Km
.JL.

Ks
)

is plotted against Ks ,
the thermal conductivity of the specimen, for four

values of,Km, the thermal conductivity of the meter bars. The thermal con-
ductivity of the insulation is held fixed at 0.001 w/cm-C. The quantity
plotted goes through zero at Ks-Km, approaches -oo as Ks becomes quite
small, and asymptotically approaches Ki/Km. as Ks becomes large.

'As will be illustrated later, a typical geometrical factor, D(p),
would probably not exceed a value of 2.5* If the vertical scale in Figure
4 were multiplied by 2.5, each scale division, 0.02, would become 0 . 05

,

or 5 percent. Hopefully, the geometrical .factor might be made as small as
0.5, or 1.0, so that each vertical scale division would become 1 or 2 per-
cent, respectively.

If both the specimen and the meter bars have at least one hundred
times the thermal conductivity of the insulation,, the choice of a particu-
lar meter bar is not critical. If the specimen to be measured has a ther-
mal conductivity on the order of ten times that of the insulation, or less,
the choice of a suitable meter bar becomes quite important.

It can be seen from Figure 4 that the conductivity of the meter
oars should be near the lower end of the range to be covered, if it is
desired to measure a wide range of specimen thermal conductivities,
utilizing a single pair of meter bars. ’ If

v - 2 ( ) max ( Ks ) min .

m
(Ks )max+ (Ks )min ^

where (Ks ) max and (Ks )min ar $ the maximum and minimum spe-cimen thermal con-
ductivities to be measured, then the maximum error to be expected within
the range is

±
Kj 1

2 (Ks )max (Ks )min
)D(

*
l) (32)
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For relatively large (Ks )max 5
Equation (31) reduces to

Km-- 2 (Ks) min (33)

and the maximum error over the range (Equation (32)) becomes

± 1

2

Kj

(Ks )m.in
D(p) (34)

It is of interest to investigate numerically the significances of

Equations (31) and (32). Table 1 gives several ranges of thermal conduc-
tivity, the preferred meter bar for each range, and the maximum error to be
expected for a given geometrical factor (1.0) and insulation thermal con-
ductivity (0.001 w/cm-C).

TABLE 1. MAXIMUM ERROR FOR VARIOUS RANGES OF SPECIMEN
THERMAL CONDUCTIVITY

Ks
Minimum Maximum Optimal Km

Maximum
Error

in Ks Range
w/cm-C w/cm-C w/cm-C ± °/o"~

0.005 0.01 0.006

7

'

5.0
.01 .015 .0120 1.7
.01 .02 .0133 2.5
.01 .05 .0167 • 4.0
.01 .10 .0182 4.5
.01 1.00 .0198 5.0
.05 .10 .0667 .50

.
.05 .50 . .0909 .90

' .10 ' .50 .167 .40
.10 1.00 .182 .45
.10 10.00 .198 • 50

1.00 10.00 1.82 ’ .045

3 • 2 Geometrical Factor

Returning to Equation (28), it is of interest to investigate the
behavior of the geometrical factor D(p). The numerical evaluation of D(p)
from Equation (29) has been made with the use of a digital computer, and
required summing the first hundred terms of the series in order to obtain
sufficient accuracy.

Figure 5 shows the geometrical factor, D(p), plotted versus p,
the dimensionless length. The geometry chosen is such that the meter bars
and specimen are of equal length. The radius of the guard is taken as 1.5
times that of the bars'. The geometrical factor is shown for five values of
L/2A, the ratio of specimen length to specimen diameter. Due to the
boundary' conditions imposed, D(p) is zero at p=0 and p=l, regardless of the
particular geometry. Sinc.e these geometrical factors are symmetrical about
the center line of the specimen, they are not shown for p greater than 0.5.

For the case of L/2A=0*. 2, a stack of disks each only 1/5 as thick
as it is across, the geometrical factor is changing over the entire length
of the meter bars and specimen; there is no substantial region whe.re the
longitudinal, heat flow is constant. Similarly, there is no substantial
region within the meter bars and specimen free of radial temperature
gradients.
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For the case of L/2A=0.5, the geometrical factor at the center of
the specimen is significantly larger than that for L/2A=0.2. However, as
L/2A increases further, the geometrical factor, near the center of the
specimen approaches a limiting value of about 0.54.

As the ratio of specimen length to specimen diameter, L/2A,
increases, the fraction of the specimen length over which D(p) is substan-
tially constant also becomes larger. Similarly, the fraction of the meter
bars over which D(p) is substantially zero becom.es larger. To illustrate
this effect, a somewhat arbitrary criterion has been chosen.

Consider the dashed curve superimposed on Figure 5 . The portion
of each D(p) curve above the point at which the dashed line intersects a
D(p) curve is within 5 percent of the peak value of that curve. This
dashed_curve and its mirror image (not illustrated here) bound the frac-
tion, L/L, of specimen length over which D(|i) is within 5 percent of D(l/2).

In the insert in Figure 5, the fraction of specimen length, L/L,
bounded by the dashed curve and its mirror image, is plotted against the
ratio, L/2A, of specimen length to specimen diameter. This graph indicates
that only 4l percent of the specimen length satisfies the arbitrary flat-
ness criterion f or • L/2A=0. 2 ,

while for L/2A=5*0, 93 percent of the specimen
length satisfies the criterion.

Figure 6 is similar to Figure -5) except that the radius of the
guard is taken as 3.0 times that of the bars. The vertical scale is five
times as large as that in Figure 5* The curves shown do not reach their
limiting value until L/2A=5-0 and even then, only 72 percent of the speci-
men satisfies the flatness criterion.

Figure 7 shows the 'geometrical factor plotted against dimension-
less length for a specimen length to specimen diameter ratio fixed at 2.0.
Curves are shown for guard to specimen radius ratios, B/A, ranging from
1.125 to 3-5. The geometrical factor at the center of_the specimen
increases rapidly with B/A. For small values of B/A, L/L is quite large,
but decreases rapidly with increasing B/A, as shown on the inset.

As was noted in Figures 5 and 6, D(p) reaches a limiting value
for a fixed' B/A as L/2A becomes quite large. This limiting value,
D(l/2) max ,

is shown plotted against B/A in Figure 8. Regardless of the
apparatus geometry, D(p) will never exceed D(l/2)u]ax for a given guard to
bar radius ratio.

Considerable insight into the nature of D(l/2) ffiax can be gained
by consideration of- a simplified model. It has been shown that, for suffi-
ciently long meter bars and specimen, the power flowing longitudinally in
the meter bars is constant, until the interface with the specimen is
approached, and that the power flowing in the central portion of the speci-
men is also constant, but at a different value. The portion of the insula-
tion near the bar assembly will exchange heat only with the assembly;
similarly

?
the remainder of the insulation will exchange heat only with the

guard. The geometrical factor, D(l/2) max ,
can be regarded as the ratio of

the cross-sectional area of the insulation which exchanges heat only with .

the assembly, to the cross-sectional area of the bar assembly.

4. DISCUSSION

The error due to neglecting the longitudinally shunting effect of
the insulation has been analyzed for a cut-bar apparatus having an exactly
matched guard. For such a guard, longitudinal heat flow in the insulation
can be minimized by making the radius of the guard very nearly that of the
bar. In practice, an exactly matched guard is not feasible, so that
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radial heat exchange between the assembly and guard due to a mismatch also
must be considered.

Assume that the largest probable mismatch between corresponding
longitudinal positions of the bars and guard is e

,
a dimensionless tempera-

ture difference. The worst case would be that of the entire guard being
displaced by an amount, e, so that h(p)=g(p)+e . In this case, Equation
(11) is the same as Equation (10). Therefore, the radial heat flow between
the assembly and the guard is independent of the shunting heat flow and,
from Equation (18), the heat flow to the guard due to a uniform mismatch is
seen to be given by the usual logarithmic expression. The error due to
radial flow can be computed for various guard diameters and, by comparison
with the error due to shunting heat flow, a guard can be selected so that
the sum of these errors is approximately minimized.

An analysis similar to that presented in this paper is being used
at MBS to correct for heat exchanges in the absolute cut-bar apparatus.
The analysis has been very helpful in aiding our understanding of the prob-
lems involved, and is in fact regarded as essential in the effort to reduce
uncertainties in the results obtained with the apparatus.

It is hoped that the analysis and discussion presented .in this
paper will be of assistance to those who are utilizing a cut-bar apparatus.
It is realized that many laboratories will not find it convenient to resort
to a digital computer for evaluation of their particular geometrical
factors. Mr. Robinson pointed out the advantages of utilizing a substitu-
tion method for calibrating a thermal conductivity apparatus. By using
several references as substitute specimens, the effect of shunting heat
flows in the insulation can be included in the calibration, and the geomet-
rical factor, if desired,' can be experimentally evaluated.
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