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INTERMEDIARY EQUATORIAL ORBITS OF AN ARTIFICIAL SATELLITE 
1 

by 

John P. Vinti 

A previous paper derived the solution for the drag-free motion of 

an artificial satellite in the gravitational field of an oblate planet. 

The corresponding potential, expressed in oblate spheroidal coordinates, 

leads to separability and represents the even zonal harmonics exactly 

through the second, for any oblate planet, and approximately through the 

fourth, in the case of the earth. 

The previous paper contained a restriction on the orbital inclina¬ 

tion I, viz., I < I < 180° - I , where I might be as large as 1° 54' 
c c c 

for an orbit sufficiently close to the earth. The present paper removes 

this restriction and shows that many of the formulae for the periodic 

terms may be simplified, when the orbit is equatorial or almost so. The 

results agree with those obtained by a direct two-dimensional solution, 

when the orbit is purely equatorial. 

1. This work was supported by the U.S. Air Force, through the Office 

of Scientific Research of the Air Research and Development Command. 



1. Introduction. 

This paper is a sequel to a recent paper , concerning an accurate 

intermediary orbit for satellite astronomy, and will accordingly follow 

the notation thereof. It there followed that if 

7\ e b1/b2 <1, (1) 

all the p-integrals are expressible in terms of rapidly converging series 

2 -h 
involving products of Legendre polynomials with arguments A and (1-e ) 

Condition (1) Is equivalent to a restriction on the orbital inclination 

I, viz., 

I < I < 180° - I , (2) 
c c 

where, to the first order in k, 

2 2 
tan I = k = (r /p) J_ (3) 

c e 2 

For the earth J = 0.00108, so that for orbits so close that ps: r , 
2 e 

I = 1° 54' (4) 
c 

I imposed the condition A < 1 in order that 

(1 + A (l-2Ah + h 
2 

(5) 

should be a generating function for the Legendre polynomials P (A). 
n 

It now appears that such a restriction is unnecessary. Thus 

(1 - 2Ah 4- hV* = £ 
n=0 

h P (A) n 
(6) 

2. J.P. Vinti, J. Research National Bureau of Standards, 65B,169-201,(1961), 

hereafter referred to as (A). Any reference in the present paper to an 

equation with,® decimal number, such as(5.30), denotes an equation in (A). 
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even when 7\ > 1, provided only that 

h < A " (A2 * D* (7) 

We need show only that(7) is always satisfied, in order that all the results 

of (A) hold for all orbital inclinations. The only changes will be a few 

simplifications, especially for the cases I = 0° or 180° of purely equatorial 

orbits. 

2. The p- Integrals 

To show that (7) is always satisfied when A > 1» note that 

(8) 

By (4.12), (4.13), and (5.6) it follows that b and b are both real and 
2 JL 2 

non-negative for c < ap, a relation that always holds for satellite orbits. 

Thus (7) is satisfied if and only if 

bj/p < gOv) , 

where 

g(A) = A2-A(A2 ~ l)2 

We shall next show that 

(9) 

(10) 

1/2 < g(A) < 1 (A >1) (ll) 

To show that g(A) < 1, note that for A > 1, we have 1 > 1~A 2 > 0, 

so that (1~A )^ > 1 - A , 1-(1~A 2)^ < A 2» and finally A2“A(A2_1)^ < 1. 

Thus g(A) < 1. 

To show that g(A) > 1/2, note that for A > 1 

0 < 1 - A"2 < (1-i A”2)2, (12) 

3. E.W. Hobson, "The Theory of Spherical and Ellipsoidal |Jarmonics", 

page 15, Cambridge University Press, Cambridge 1931. 
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so that 

(i-A~2)* < i - i a'2 (13) 

or 

i-a-A"V > h >;2 U4) 

Then 

g(A) = >2-A(A2-l)^ > i, (15) 

as was to be shown. 

From (9) and (11) it follows that when A > 1 the condition b^/p < 1 

is necessary for the validity of (7) and that the condition b^/p < 1/2 is 

sufficient for its validity. 

To show that b^/p < 1/2 for all bound orbits, note that p> px. 

so that 

Vp = Vpi (16) 
2 2 

From the relation c = kp and the relation p = a(l-e), e < 1, for a 

bound orbit, we then find from (3.25), (4.12), and (5.6) that 

bx k(l+e)(l-^ )[l-k^(l-e2)] 

Pi [l-k(l-e2) ] [1-k ^2(l-e2) ]+ 4k^2 

Here the numerator < k(l+e) and the denominator >(l-k)2, so that 

L. 

-1 < kd+e) < 2k 

Pi = (1-k)2 = (1-k)2 

(17) 

(18) 

a function monotonic in k for (K k < 1. 

For the earth k < 0.00108, so that 

b1/p1 < 0.00216 < \ 
(19) 

4. Past participle of the verb "to bind", taken from the terminology 

of atomic theory. 

.t 
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From (16) and (19) it follows that for the earth 

b;[/p < 1/2 (20) 

This is the condition sufficient for the validity of (7) and thus of 

the expansion (6), for all X > !• 

All the developments of (A) then hold for the p-integralsp in 

particular (5.30) through (5.33) for the integral , (5.35) through (5.40) 

for R , and (5.60) through (5.65) for R„, where the D ’ s are again given 
2 3 m 

by (5.50) and (5.53). 

To show the rapid convergence of the various series that there occur;, 

we note first that since 

(21) 

and since X = b/b > 1, we have 
~ 1 2 = 

(22) 

Then 

(~r>n Pn('A)l < p n 1 = f (23) 

From (5.14) and (5.34) the series S and S that occur in the 
1 2 

expressions for the p-integrals and Rare 

v 

(1 + e cos x)n nJ dx (j=l>2) (24) 

where n = 2 and n = 0. Thus 
i z 
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oe (25) 2b 

j' = 
< v S ( 

Ln., , yn-n . 
-) (1 + e) j 

n=n 

oa 2b 2b, oo 2b 

< V v ( _i)n+nj (l+e)n < vC -^Hj 2 [ -^ (1 + e)]n (26) 

n=0 P P ~n=Q ' P 

< 

2b, 

v(—fj 
P 

2b. 

1 - —- (1+e ) 
P 

(j = 1,2) (27) 

But p = a(l-e ) = p (1+e), so that by (18) 

< k(l - k ) (28) 

and 

2b (1+e) p’"1 < 2k(1+e) (1-k) 2 < 4k(l-k)~ 2, (29) 

-2 
where 4k(l-k) < 0,0043 for the earth. It follows that the series for 

R and R > and thus the series for the secular coefficients A and A„, 
12 12 

converge absolutely and more rapidly than a geometric series of common 

ratio 0.0043. 

By (5.49), (5.50), and (5.53) the series S_ that occurs in the 
J 

expression for the n-integral R is 
r 3 

s„ = s + s , 
3 -e o 

v 

S 
e 

60 

2 

n=0 
2n 

(1 + ecos x)2nSI 

(30) 

(31) 



s = 
CO 
2 D 

n=0 
2n+l 

,, „ 2n+3 
(1 4- ecos x) dx (32) 

D = 2 (-irJ(c/p)2n'2J(b /p)2j P t\) 

2n j=0 2 2J 
(33) 

D2„+X ■ ^ (-l)n-J(c/p)2n-2J(b2/p)2J+1 P2J+1(A> (34) 

2 2 
From(33) and (23) and the relation c = kp , it follows that 

D2 | = kU 2 (2b /c)2j < k 2 (2b /c)2J 

j=0 j=0 

< 
(2bJ/c)J 

(35) 

and from (34) and (23) that 

I i n ^ 9 • 00 
'°2n+l' = k (2bi/p) S (2b /c) J < k°(2b /p) 2 (2b /c)2j 

3=0 - 1 j=0 1 

kn(2b /p) 

<-p (36) 
1 - (2b^/c) 

Thus, by (31) and (35) 

S | < 
e ■ = 

(1-fe) v 
2 [ k(1-fe) ]n 

(2b.,/c) n=( 

< 
(1 + e) v 

[1- (2b /c)2][l-k(l+e)2] 

(37) 

7- 



and by (32) and (36) that 

(l+e)3v(2b /p) os Q 

S | < -~~2 S [k(l+e)2]n 
[1 -(2b1/c) ] n=0 

(l+e)3v(2b,/p) 

< -2--T <38) 
[1-(2b /c) ][l-k(l+e).] 

JL 

Then, by (30), (37), and (38), we have 

(l+e)^v[ l+(l+e) (2b /p) ] 

Is | < -5-3- <39) 
[1"(2b^/c) ][l-k(l-t-e) ] 

But p = p1(l+e), so that by (18) 

and 

2b /p < 2k(1-k) 
1 = 

-2 

_1 1 -o 

2b /e = (2b /p) k 2 < 2k2(1-k) 
X X = 

(41) 

Thus 

s3i s 
(l+e)2v[l+2k(l+e)(l-k)~2] 

[l-4k(l-k)~4][l-k(l+e)2 j 

(42) 

The series for S_ thus converges absolutely and more rapidly than the 

power series in k of the function on the right side of (42), where 

k < 0.0011 for the earth. On replacing v by we can then say the 

same thing about the secular coefficient A , 

3. Simplification of the p-Goefficients when A > 1 

From \ = b-j,A>2 ^ that 

’2 = bi S bl (A > 1) 



Since b =0(k), it then follows that b is also of order k when A > 1. 
1 ^ 

This fact enables us to simplify the coefficients A^ and A^, which 
2 

are needed only to 0(k ),and the coefficients A3n> which are needed 

only to 0(k). 

Thus (5.32) and (5.33) lead to 

An = 0(k3) A12 = 0(k4), (44) 

(5.39)and (5.40) lead to 

A23 = °(k3) A24 = 0(k4)' (45) 

and (5.37) and (5.38) lead to 

A21 = (l-e )^ p 1e[b1P 1+ (3-A 2)k2 cos4l] (46) 

A22 = (1-e2)^ p 1 (3-A 2) k2 cos4I (47) 

Here we have used 

b^p 1 = k cos2I + 0(k2) (48) 

2 -2 
in the terms involving b^ p 

Similarly, for the coefficients A„ , which are needed only to 
3n 

0(k), we obtain from (5.62) through (5.65) 

A = (1-e2)^ p 3e[2+ (3+ ^ e2) k cos2I-(4+ 3e2)k] (49) 

A32 = (1-e2)^ p 3e2[-| 4- | k cos2I - ( ^ + |)k] (50) 

A33 = (1-e2)^ p 3e3[ cos2I - | ) (51) 

A34 = " U-e2)^ p”3 e4 k/32 (52) 

-9- 



ForA>l we need also to rewrite (5.31), (5.36), (5.50), and (5.53) 

for the secular coefficients A,, A0, D_ , and D0 , which all contain 
1 2 2n Zn+l 

terms of the form (b0/p) P (A). As sin I approaches zero, b0 also 
2 m 2 

approaches zero and A becomes infinite, so that such a term takes the 

indeterminate form zero times infinity. To remove this indeterminacy, 

note that 

V-l 
P “ b^ p “ p ’ 

(53) 

so that 

( ~ )m P (A) = ( —)m \ m P (A) 
pm p m 

(54) 

= (-p)m r a-1) 
p m 

(55) 

Here R (x) is a function that has already appeared in (A), viz., 
m 

R (x) = xm P (x *) 
m m 

(56) 

a polynomial of degree [m/2] in x . 

. m 
To determine (b0/p) P 00 for sin 1=0, first write 

2 m 

P (A) = [z/2] Am-2j 
m 

j=0 2m j!(m-j)!(m-2j)! 

(57) 

so that 

R 0T1) = A~m P (A) = 1 
m m 

(m=0,1) 

(2m) 
[m/2] 

2m(m! )^ j=l 2m j .*(m-j) ! (m-2j) J 

+ 2 
(-l)J(2m-2j)*A~2j 

m 
(m =2,3,4, 

(58) 

-10- 



Thus 

R (0) = 
(2m) ! 

m _ m >. 
2 (m*) 

2 ’ 

(m = 0,1,2,3,...) (59) 

so that by (55) and (59) 

(b_/p)‘“ P (70 = 
2 m 

(2m) f 

(m!) 
2 ' 2p 

10^m 
(sin 1=0) (60) 

where b is the value of b for '•J = sin 1=0. 
10 1 

From (5.31), (5.36), (55), and (60) it then follows that 

) (A > 1) 
X 00 

A = (l-e~)2p S (b /p)“ R (A *) R V’ /•v /^n « D (,s/T^e2" 

n=2 
n-2 

(61) 

„ 2 J “ (2n)! , b10,n „ , 
(1-e )^p 2 —*-5- ( —) R Wl-e ) 

n=2 (n!)2 2P n 2 
(sin 1=0) (62) 

A = (l-eMp"1 2 (b7p)n R 0T1) R (v/l^e ) 
2 .Inn 

n=0 
a > 1) (63) 

= (l-eMp"1 2 ( 7— )n R t^T?) (sin I = 0) (64) 
n , 1.2 2p n 

n=0 (n:) 

2 0 
Note that A = 0(k ) and A = 0(k ) 

-L Z 

Then, from (5.61) 

A = (l-e2)^p"3 2 D R 
3 . m m+2 

m=0 
(65) 

-11- 



2 2 
where, by (5.50), (5.53), (55), (60), and the relation c = kp , we find 

d = 2 (-i)n'j(c/P)2n'2j(b2/p)2Jp (A) 
2n j=o 2 2j 

2 (-Dn"J kn-J(b/P)2j I^OT1) 

j=0 1 2j 
(A > 1) (66) 

l (-D-J k"-J W>! 
j=o [(2j)!]2 2p 

(sin 1=0) (67) 

D2„+l " ,2 <c/p)2n-2J(b2/p)2J+1 P2j+1(X) 
3 ^ 

n 

2 (-Dn"J kn_J(b /P)2j+1 R (x"1) (A > 1) 
j=o 1 2j+1 

(68) 

, x'n-j , n-j (4j+2) ! ^lO^j+l , . 
= 2 (-D k -- (~—) (sin 1 = 0) 

j=0 [(2j+l)?]2 2P 

4. Simplification of Other Coefficients when A > 1 

To simplify the ^-coefficients when A > 1> we must first note that 

from page (176) of (A) we have 

k p cos I 
A 

b2^k‘ap sin I , (70) 

so that 

. A 2 
A = bi^b2a:k cos 1 csc 1 (71) 

(69) 

-12- 



or 

= sin l£rk^*A 1 cos2I (72) 

Thus 

70 = O(k^) (A > 1) (73) 

-1 1 
Also, since ^ = 0(kz), by (3.42), it follows that 

q 5 \/nh = °(k) (A > 1 ) (74) 

There also arises an indeterminacy in the ^-coefficients, from the 

2 2 -4 
quantity (Q^-C^) 2 ' which takes the form infinity times zero as 

■= s;ln I approaches zero. To remove this indeterminacy, use (4.15a), 

viz. , 

2 2 
c i 

a3 = a2C±-—)2 cos I, 
p„ 

0 0 

to find 

<a2 - a3)47o - a21(1 + rir cos2l)'i 

0 0 

(75) 

(76) 

Then, from (8.27) and (7.23) 

ipg = 2n ^2[t + + f32 O:"1 (a + ^ a"1 ] (77) 

2 

2, = a2U + jS-jj- COS2!)* A2 B^1 (a + ^ + c2^2 A2 b’1)'1 

(78) 

From (8.33) 

4 2 1 

*0 = «2(1 + oos r>4 A2 B2X vo (79) 
0 0 

-13- 



From (8.37) 

M1 = (a + b1)"1[-(A1 + c2 ~j2 A2 B1 B~X) vQ 

2 i , 2 
+ ^ (-2^)2 a21(i + a p cos2I)^ ^2 sin(2tyg + 2fQ)] (80) 

0 0 

of order k . Then, by (8.39) 

-1. 
E = [1 - e'cos(M + En)] M, 

1 s 0 1 
(81) 

2 4 2 
since = 0(k ). Then E^ and are both of order k . Also, by (8.40), 

2 , 

I'i = <-2a!>’ V1 + cos i/b/ia,, Vj + A21sin(Ms + vQ)+ A22sin(2Ms + 2v0>] 

2 
+ Sg- B2 sin (2^ + 21()) (82) 

By (8.45), M2 and thus E2 and are of order k and, by (8.48), 

is also of order k2. Thus all the second-order periodic terms of (A) 

become of the third order and thus negligible, when >^ > 1. 

By (8.50) the right ascension becomes 

* = fi3 + a3a21(1 +rV 
0 H0 

cos21) ^[(1 - *£2) ^(1 - ~f22) ^ X + 

2 -A ^ 
- c a (“2a ) 2 (A v + 2 A sin nv) 

3 1 3 , 3n 
n=l 

(83) 

2 -4 
Here we have dropped the periodic term (3/32) #»^2 sin 2if/ of (8.50) 

since it is of order k for > 1. 

-14- 



5. Summary for \ > 1 

For an almost equatorial orbit, corresponding to \ > 1, the right 

ascension^ is given by (83). The spheroidal coordinates p and are 

given by 

p = a(l -e cos E) = (1 + e cos v) ‘'"p 

7 = 70 sin ^ 

Here the expressions 

E = M+E^ + E. v = M+vrY + vi ip = tp + ipn + 1p^ 
s 0 1 s 0 1 r ys r0 rl 

are sufficiently accurate to give the secular terms exactly and the 

2 
periodic terms correctly through order k , provided that M is calculated 

s 

by (8.24), ib by (77), E by (8.31), En by (80) and (81), v„ and v. by the 
s 0 1 0 1 

anomaly relations (8.1), ip^ by (79), and ip^ by (82). 

6. The Case of a Purely Equatorial Orbit, I = 0° or 180° 

m 

by 

For I = 0° or 180° we have ^ = 0» cos2I = 1, *]£ = ip by (6.51), 

= 0 by (6.66), 

V= 1“(1 - ^22) 

(6.65), and |Ct [ = a , so that 
U Za 

VS = Sgn a3 

(84) 

(85) 

Then, by (83), 

c -42 -4 * 
Y = + (sgn a3^(1 + ^ip - c Ct3(-2ai) 2(A3v + Z sin nv) 

0 *0 n=l 

(86) 

Also, by (8.24) with = 0, 

Ms = (~2ai)^(a + b1 + A1)"1(t + P1) (87) 

-15- 



and by (77) and (78), with = 0, cos 1 = 1, and = 1, 

*' - V1 + irrr/ + a2 V1 + A: >* (a + b! + V'1(t + P1> (88) 

0 1 0 

Thus, by (87) and (88), 

= V1 + + V1 + 
0 0 

0 "0 

—-)^(-2a,)"^ A M 
an 1 2s 

0 0 

(89) 

Then, by (79) and (82), with *7n = 0, 
' 0 

2 

to = V1 + A2 V0 
(90) 

2 i i 2 

*1 = a2(1 + rT‘> <"2ai) [A2 V1 + 2 A2n Sin(n MS + n V0)] 
0 0 n=l 

(91) 

Addition of (89) through (91) then gives 

* = P2<1+ ^>i+“2<1+ a„p 

2 ^ < 2 

)*(-2a )”* [A v 4- 2 A sin(n M +nvn)] 

0-0 1 2 n=l 2n S 0 

(92) 

Since v = M + v + v , where v is of order k , and since A and A 
S U JL J. /j x. ££ 

2 
are of orders k and k respectively, it follows that 

2 A0 sin(n M + n v') = Z A. sin nv 
_ 2n s 0 , 2n 

n=l n=X 

(93) 

2 2 
to order k . Thus, to order k 

t = M1 + rhr1* + V1 + 
0 0 

T~T)i(-2a )'J(A v + S A sin nv) 

0 *0 n=l 

(94) 

-16- 



On inserting (94) into (86), we then find 

l ^ 

^ = P3 + P2 sg" «3 + OL^i-TaJ s(A2v + S A2n sin nv) 
n=l 

2 -A H 
•c QL (-2a ) 2 (A v + £ A sin nv) 

n=l 
3n 

(95) 

It is a simple exercise to check these results for a purely 

equatorial orbit. To do so, let X and Y be the usual Cartesian 

coordinates, define p and by 

X + iY = (p2 + c2)^exp i< (96) 

i «2 l 

write down the kinetic energy 5(X + Y ) in terms of p and <p and 

their time derivatives, write the potential as ~ f*" p ^ > construct the 

Hamiltonian, and then write down the Hamilton-Jacobi equation. Separate 

the latter, to obtain the solution 

W = Q!3<£ + f (p + c ) 1F(pJdpi 

L 

(97) 

where 

F(p) =. c a3 + (p + c ) (-a.^ + 2yW.p + 2«1p2) (98) 

The kinetic equations are then 

^ _ * 4. ft 
tof 1 + pi 

= + p2 F(p)^dp 

Pi 

(99) 

-17- 



dw _ 

55 - p3 = <t> + <*, 
2 2-12 -4 

(p + c ) p F(p) 2 dp (100) 

Pi 

= <p + 0L^ I F(p) ^ dp + c CCg f (p + c ) F(p) ^ dp (101) 

'Pi 'Pi 

On then following the procedure 

the results of section 5 of the 

zero, and that tp is given by 

in (A), we find that p is given by just 

present paper, with placed equal to 

■ P3 
+ a3(-2ax) -i 

<V 
+ 

2 
2 A sin nv) 

, 2n 

°!3(“2ai) 
(A3v + 

4 

2 
n=l 

sin nv) (102) 

Comparison of (102) with (95) shows that the results agree if 

P3 = P3 + P2 Sgn a3 (103) 

2 2 2 
In the equatorial plane r = p + c , so that r is at minimum whenever p 

is at minimum. That is, the satellite is at perigee whenever v = 2n T* , 

T = 0,1,2,... . By (102) the right ascension^ thus changes value from 

one perigee to the next. For an equatorial orbit about a planet of zero 

oblateness, however, the coefficient of v in (102), viz., 

_1 2 
Ctg(-2Q!1) 2 (A2 - c Ag)) would reduce to sgn dig, so that in such a limiting 

case 

4 = p; + 2n r Sgn a, (r= 0,1,2,...) (104) 
~ p 3 3 
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so that the actual position of perigee would remain fixed and woujd be 

its right ascension. 

But for the case of a non-equatorial orbit around a planet of zero 

oblateness {3 is simply the right ascension JTL of the ascending node 
o 

and (3 is the argument tJ of perigee. Thus for the limiting case of a 
A 

purely equatorial orbit about a planet of zero oblateness (103) would take 

the expected form 

R.A. of perigee = J7 + cj> , (105) 

where the sign would be plus for a direct orbit and minus for a retrograde 

orbit. Thus the result (103) is reasonable. 
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