PERFORMANCE TEST OF AN OWENS-CORNING "DUST-STOP TYPE C" AIR FILTER

by

Carl W. Coblentz and Paul R. Achenbach

Report to

Public Buildings Service
General Services Administration
Washington 25, D. C.

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
FOR OFFICIAL USE ONLY
THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau’s unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau’s research are published either in the Bureau’s own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau’s publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
PERFORMANCE TEST OF AN OWENS-CORNING "DUST-STOP TYPE C" AIR FILTER

by

C. W. Coblentz and P. R. Achenbach
Mechanical Systems Section
Building Research Division

to

Public Buildings Service
General Services Administration
Washington 25, D. C.

IMPORTANT NOTICE

Approved for public release by the Director of the National Institute of Standards and Technology (NIST) on October 9, 2015.
PERFORMANCE TEST OF AN OWENS-CORNING
"DUST-STOP TYPE C" AIR FILTER

by

C. W. Coblentz and P. R. Achenbach

1. INTRODUCTION

At the request of the Public Buildings Service, General Services Administration, the performance characteristics of two specimens of a new type "C" throw-away type "Dust-Stop" air filter were determined. The scope of this examination included the determination of the arrestance of Cottrell precipitate in the laboratory air, the pressure drop, and the dust-holding capacity when the filters were operated at 350 ft/min face velocity.

2. DESCRIPTION OF TEST SPECIMENS

The filters were manufactured and supplied for test purposes by the Owens-Corning Fiberglas Corporation of Toledo, Ohio. Two specimens were arbitrarily selected from a factory-sealed carton containing six filters of the same kind.

The nominal 20x20x1 inch filters actually measured 19 1/2 x 19 1/2 x 15/16 inches with a net face area of 17 7/8 inches square, i.e. 2.22 square feet. The filter media consisted of a mat of bonded glass fibers. According to the manufacturer's information, hexachlorophene had been added to the adhesive to provide a means for absorbing odors. The filter media was supported on both faces by perforated sheets of thin metal; the perforations consisted of 1 1/2 inch diameter cut-outs with approximately 1/32 inch material left between the holes. The downstream face was further reinforced by a V-shaped brace, the ends of which were held in the channel-shaped cardboard frame. The weights of the two specimens were 392 grams and 375 grams (13 7/8 and 13 1/4 ounces), respectively.

3. TEST METHOD AND PROCEDURE

The performance of the test specimens was determined at a face velocity of 350 ft/min, i.e. an air flow rate of 780 cfm. The arrestance measurements were conducted in accordance with the "NBS Dust Spot Method," as described in a paper by

The filter under test was supported in a wooden frame that fitted the test apparatus and was carefully sealed to prevent any by-pass of air or inward leakage into the test apparatus, except through the measuring orifice. The desired rate of air flow through the filter was established, and samples of air were drawn from the center points of the test duct 2 feet upstream and 8 feet downstream of the test specimen at equal rates, and passed through known areas of Whatman No. 41 filter paper. The arrestance determinations were made with laboratory air, into which Cottrell precipitate was injected and diffused at a ratio of 1 gram per 1,000 cubic feet of air.

The two sampling papers used in every test were selected to have the same light transmission when clean. The light transmission of the same portion of each paper was measured before and after the tests. In order to obtain similar increases of opacity with both sampling papers, different-size areas were used upstream and downstream of the filter. The arrestance, A (in percent), was then calculated by the following formula:

$$A = \left(1 - \frac{SD}{SU} \times \frac{AD}{AU}\right) \times 100$$

where SD and SU are the downstream and upstream areas and AD and AU the changes of the opacity of the exposed areas of the downstream and upstream sampling papers, respectively.

Whereas the arrestance determinations were made with Cottrell precipitate only, cotton lint was added during the loading process in a ratio of 4 parts to every 96 parts by weight of Cottrell precipitate, including that amount used for arrestance measurements. The Cottrell precipitate had been previously sifted through a 100-mesh screen and the lint was prepared by grinding No. 7 cotton linters through a Wiley mill with a 4 millimeter screen.

Arrestance determinations were made at the beginning and at the end of the loading period of each specimen and at several intermediate load conditions. The pressure drop across the filter under test was recorded after each increment of 20 grams of dust had been introduced into the test duct. The test was terminated after the pressure drop reached 0.5 in. W.G.
4. TEST RESULTS

The results observed during tests of the two specimens are presented in Table 1, which shows the dust load, the pressure drop, and the arrestance values.

Table 1
Performance of Owens-Corning "Dust-Stop" Air Filter
1-inch thick, 350 ft/min Face Velocity

<table>
<thead>
<tr>
<th>Pressure Drop</th>
<th>Dust Load</th>
<th>Arrestance</th>
</tr>
</thead>
<tbody>
<tr>
<td>In. W. G.</td>
<td>g/sq ft</td>
<td>%</td>
</tr>
<tr>
<td>Specimen No. 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.095</td>
<td>4</td>
<td>64*</td>
</tr>
<tr>
<td>0.190</td>
<td>54</td>
<td>70*</td>
</tr>
<tr>
<td>0.265</td>
<td>106</td>
<td>73*</td>
</tr>
<tr>
<td>0.353</td>
<td>157</td>
<td>77*</td>
</tr>
<tr>
<td>0.491</td>
<td>225</td>
<td>75*</td>
</tr>
<tr>
<td>0.511</td>
<td>231</td>
<td>--</td>
</tr>
<tr>
<td>Specimen No. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.095</td>
<td>4</td>
<td>69</td>
</tr>
<tr>
<td>0.216</td>
<td>60</td>
<td>74</td>
</tr>
<tr>
<td>0.264</td>
<td>85</td>
<td>76</td>
</tr>
<tr>
<td>0.314</td>
<td>111</td>
<td>81</td>
</tr>
<tr>
<td>0.378</td>
<td>135</td>
<td>82</td>
</tr>
<tr>
<td>0.447</td>
<td>160</td>
<td>82</td>
</tr>
<tr>
<td>0.501</td>
<td>177</td>
<td>81</td>
</tr>
</tbody>
</table>

* Indicates average of two arrestance determinations.

The "dust load" shown in this table is the weight of dust received per 1 square foot of net filter area. It is the amount of Cottrell precipitate and lint introduced into the test apparatus divided by the net face area of the filter, and diminished by the percentage of dust fall-out upstream of the filter. This dust fall-out was determined at the conclusion of the test of each specimen by weighing the amount of dust that was swept out of the upstream part of the test duct, and calculating the percentage of fall-out to the total amount of dust introduced. The "dust-holding capacity" shown in Table 2, the Summary of Test Results, presents the dust load at the final pressure drop of 0.50 in. W.G. across the filter.
Table 2

Summary of Test Results

<table>
<thead>
<tr>
<th></th>
<th>Specimen No. 1</th>
<th>Specimen No. 2</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Drop,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean, in. W.G.</td>
<td>0.093</td>
<td>0.090</td>
<td>0.092</td>
</tr>
<tr>
<td>Arrestance,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean, %</td>
<td>64</td>
<td>69</td>
<td>67</td>
</tr>
<tr>
<td>Arrestance,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Loaded, %</td>
<td>75</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td>Arrestance,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average during loading, %</td>
<td>73</td>
<td>77</td>
<td>75</td>
</tr>
<tr>
<td>Dust-Holding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity, g/sq ft</td>
<td>227</td>
<td>175</td>
<td>201</td>
</tr>
</tbody>
</table>

There was a considerable difference in the performance of the two test specimens. The difference may have been caused by different density of the filter media or unlike amounts of adhesive applied to the media. Specimen No. 1, which was 17 grams (about 5%) heavier than the second specimen, showed an initial pressure drop of 0.093 in. W.G. against 0.090 in. W.G. of the lighter filter. The initial arrestance of the two specimens differed considerably; it was 64 percent and 69 percent for specimens 1 and 2, respectively. Corresponding to the lower arrestance, the dust-holding capacity of the first specimen was about 130 percent of that for the second one.

Figure 1 is a graphical representation of the values shown in Table 1 with smooth curves approximating the lines of the least mean square distances from the respective points of observation. The curves indicate a dust-holding capacity of 227 grams for specimen No. 1 and of 175 grams for specimen No. 2 at the limiting value of 0.50 in. W.G. Both specimens revealed an increase in arrestance as the filters were loaded up to approximately 0.4 in. W.G. Thereafter, the arrestance values decreased, which may indicate that some dust was being pulled off the media. The average arrestance of the two specimens during the loading period, up to a maximum pressure drop of 0.50 in. W.G., was approximately 73 and 77 percent, respectively. Table 2 shows a summary of the test results of each specimen and the averages for the two specimens.
Owens-Corning "Dust-Stop, Type C"

1-inch thick, 350 ft/min Face Velocity

Figure 1
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Office of Weights and Measures.

BOULDER, COLO.

