Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.
NATIONAL BUREAU OF STANDARDS REPORT
7196

PROJECTS and PUBLICATIONS
of the
APPLIED MATHEMATICS DIVISION
A Quarterly Report
January through March 1961

For Official Distribution

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
The functions and activities of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Publications

The results of the Bureau's research are published either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of non-periodical publications: Monographs, Applied Mathematics Series, Handbooks, Miscellaneous Publications, and Technical Notes.

A complete listing of the Bureau's publications can be found in National Bureau of Standards Circular 460, Publications of the National Bureau of Standards, 1901 to June 1947 ($1.25), and the Supplement to National Bureau of Standards Circular 460, July 1947 to June 1957 ($1.50), and Miscellaneous Publication 240, July 1957 to June 1960 (Includes Titles of Papers Published in Outside Journals 1950 to 1959) ($2.25); available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.
PROJECTS and PUBLICATIONS
of the
APPLIED MATHEMATICS DIVISION
A Quarterly Report

January through March 1961

IMPORTANT NOTICE

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
APPLIED MATHEMATICS DIVISION

January 1 through March 31, 1961

TECHNICAL ADVISORY PANEL

Albert H. Bowker, Stanford University
Jesse Douglas, City College of New York
William Feller, Princeton University
A. S. Householder, Oak Ridge National Laboratory
Mark Kac, Cornell University (Chairman)

B. O. Koopman, Columbia University
Philip M. Morse, Massachusetts Institute of Technology
J. L. Walsh, Harvard University

DIVISION OFFICE

Edward W. Cannon, Ph.D., Chief
Franz L. Alt, Ph.D., Assistant Chief
Mildred R. Bethany, Secretary
Myrtle R. Kellington, M.A., Technical Aid
Luis O. Rodriguez, M.A., Administrative Officer
Yates S. Sladen, Administrative Assistant

W. J. Youden, Ph.D., Consultant
Mary B. Sherlin, Secretary
Ida Rhodes, M.A., Consultant
Luba Ross, Clerical Assistant

Owen L. McArdle (Sgt.)
Valentino D. Monroe, B.A.
Irene R. Robinson, B.A.

Numerical Analysis Section

Norman W. Bazley, Ph.D.
Richard B. Brown, Sec'y**
John R. Edmonds, M.A.
Jane C. Gager, B.A.**
Karl Goldberg, Ph.D.
Alan J. Goldman, Ph.D.
Kenneth E. Kloss*
Marvin Marcus, Ph.D.
Morris Newman, Ph.D.
Patricia A. Payne, B.A., Sec'y
Charles T. Zahn, Jr.

Computation Laboratory

Don I. Mittleman, Ph.D., Chief
Irene A. Stogun, M.A., Assistant Chief
Joseph H. Wegstein, M.S., Assistant Chief

Kathleen Amouri, Sec'y**
Robert J. Arms, Ph.D.
Jean F. Barbour
Alfred E. Beam, B.A.
Karen A. Bedefau, B.A.
Jeanne M. Beiman, B.S.
Bernice K. Bender, M.A.
Wolfgang Borsch-Supan, Ph.D.
Caldwell E. Bouware, D.Ed.
Doris M. Burrell, Sec'y
Ruth E. Capuano
Vernon Dantzler, M.A.
Charles R. Drew
Mary M. Dunlap, B.S.
Elizabeth F. Godefroy
William G. Hall, B.S.
Robert J. Herbold, B.A.
Kathleen Amouri, Sec'y**
Robert J. Arms, Ph.D.
Jean F. Barbour
Alfred E. Beam, B.A.
Karen A. Bedefau, B.A.
Jeanne M. Beiman, B.S.
Bernice K. Bender, M.A.
Wolfgang Borsch-Supan, Ph.D.
Caldwell E. Bouware, D.Ed.
Doris M. Burrell, Sec'y
Ruth E. Capuano
Vernon Dantzler, M.A.
Charles R. Drew
Mary M. Dunlap, B.S.
Elizabeth F. Godefroy
William G. Hall, B.S.
Robert J. Herbold, B.A.
Eugene A. Herman, B.S.*
Gloria F. Holmes, B.S., Sec'y
Lambert S. Joel, B.A.
Pearle M. Johnson
Louis Joseph, M.A.
James C. Larkin, Jr., B.S.
Eula M. Lawson
David S. Liepman
Marion McClain, Sec'y
John P. Menard, B.A.
Joyce L. Miles
Harold Z. Moss, B.S.
Kermit C. Nelson
Peter J. O'Hara, B.S.
Hansjorg Oser, Ph.D.
Betty J. Palfen
Maxine L. Paulsen, B.S.
Sally T. Peavy, B.S.
B. Stanley Prusch, B.S.
George W. Reitwiesner, M.S.
Patricia L. Ruttenberg, B.A.**
Arthur B. Scott, B.A.
Andrew Selepak
Mary W. Shultz
John M. Smith, B.S.**
Elizabeth F. Sutton
Lois M. Talley
Ruth N. Varner, B.A.
J. D. Waggoner, B.A.
Philip J. Walsh, B.S.
Bertha H. Walter
John H. Wilson
Guy G. Ziegler, B.S.
Ruth Zucker, B.A.

Statistical Engineering Laboratory

Churchill Eisenhart, Ph.D., Chief
Joseph M. Cameron, M.S., Assistant Chief

Marion T. Carson
Mary C. Dannemiller, B.A.
Lola S. Deming, M.A.
Anna M. Gliniski, M.S.

Ann D. Smith, B.A.
Phyllis K. Tapscott, Sec'y
John Van Dyke, M.A.
Marvin Zelen, Ph.D.**

Mathematical Physics Section

William H. Pell, Ph.D., Chief

James H. Bramble, Ph.D.**
Marian V. Coleman, Sec'y

Abolghassem Ghaffari, Ph.D.
Lawrence E. Payne, Ph.D.**

Chan Mou Tchen, Ph.D.
John P. Vinti, Sc.D.

*On leave of absence
**Part time
°Guest Worker
Contents

Status of Projects* as of March 31, 1961............. 1

1. Numerical analysis.. 1
2. Mathematical tables and programming research.. 6
3. Probability and mathematical statistics....... 8
4. Mathematical physics................................. 11
5. Mathematical and computational services...... 14
6. Statistical engineering services............... 25

Current applications of automatic computer........ 27
Lectures and technical meetings.................... 31
Publication activities.................................. 34

*Only unclassified projects are included in this report.
Status of Projects

March 31, 1961

1. NUMERICAL ANALYSIS

RESEARCH IN NUMERICAL ANALYSIS AND RELATED FIELDS
Task 1101-12-11110/55-55

Origin: NBS
Manager: P. Davis
Full task description: July-Sept 1954 issue, p. 1

Status: CONTINUED. W. Borsch-Supan has performed computations using the eigenvalue estimation method of N. Bazley and D. Fox on the IBM 704. A code has been written to compute lower and upper bounds for the eigenvalues of the spheroidal wave equations. First results show that the method of N. Bazley and D. Fox gives very satisfactory bounds in that case.

A method of estimating the errors of a given set of approximations to the zeros of a polynomial has been found by W. Borsch-Supan. With this method rounding errors and errors in the coefficients of the polynomial may be taken into account.

N. Bazley has completed a joint paper with D. Fox which gives new numerical estimates to the eigenvalues of the helium atom, an anharmonic oscillator, and a radial Schrödinger equation. Several recent developments in the theory of intermediate problems are also presented. The paper has been submitted for publication to a technical journal.

O. Shisha has worked in the following areas:
(1) Approximation by analytic functions whose Taylor coefficients are (geometrically) restricted, e.g., lie in a given sector.
(2) Best Tchebycheff approximation by rational functions.
(3) Infrapolynomials and their generalizations; problems of location of zeros and structure.
(4) Approximation to convex or monotone functions by means of convex or monotone polynomials and trigonometric polynomials.
(5) Mechanical translation (with Mrs. Ida Rhodes).

P. Davis and O. Shisha are preparing a survey on the theory of the transfinite diameter.

M. Marcus completed a recent manuscript entitled "The sum of the elements of the powers of a matrix" (with K. Goldberg and M. Newman). At present research is being done on inequalities for symmetric functions of positive numbers. Also M. Marcus is assisting M. Newman and F. May in the preparation of notes on integral matrices.

S. Haber obtained a posteriori bounds on the total error in certain methods of numerical solution of ordinary differential equations. He is continuing work on the propagation of error in such methods.
Status of Projects

Publications:

(10) Regions containing the characteristic roots of a matrix. E. Haynsworth. Submitted to a technical journal.

(12) Criteria for the reality of matrix eigenvalues. M. P. Drazin (RIAS) and E. V. Haynsworth. Submitted to a technical.

(21) Linear operations on matrices. M. Marcus. In manuscript.

Status of Projects

OPERATIONS RESEARCH
Task 1101-12-11115/61-546

Origin: NBS
Manager: A. J. Goldman
Full Task Description: Oct-Dec 1960 issue, p. 3

Status: CONTINUED. Work proceeded on the IBM 704 Boolean simplification program, and on preparation of two papers on related theoretic questions.

J. Edmonds has found an algorithm for zero-one linear programming --that is, where the constraint matrix and solution vector are to consist of zeros and ones. It is applicable to several well-known combinatorial topics, e.g. the problem of Quine, block designs, error-correcting codes, and graph coloring. Abstract follows:

A cover of a finite class of sets is a subclass whose union contains all the elements of these sets. For the problem of finding a cover with fewest sets, the algorithm takes the form given by the following theorem: If a cover C of a class S (C ⊆ S, ∪C = ∪S) is not minimum then there exists a tree whose vertices are alternately distinct sets of C and S - C and whose edges are distinct elements contained in the sets which they join, such that each S - C vertex meets exactly two edges of the tree, and such that interchanging the roles of the vertex-sets yields a smaller cover.

Publications:
(1) Partial algorithms for minimal covers. B. K. Bender (11.2) and A. J. Goldman. In manuscript.
(2) Some results on Boolean functions. B. K. Bender (11.2) and A. J. Goldman. In manuscript.
(3) On the range of a fleet of aircraft. A. J. Goldman. Submitted to a technical journal.
Status of Projects

RESEARCH IN MATHEMATICAL TOPICS APPLICABLE TO
NUMERICAL ANALYSIS
Task 1101-12-11411/55-56

Origin: NBS
Sponsor: Office of Naval Research
Manager: M. Newman
Full task description: July-Sept 1954 issue, p. 5

Status: CONTINUED. K. Goldberg continued his investigation of combinatorial inequalities, with an emphasis on equalities between positive forms which imply certain inequalities. For example, if \(p_r \) denotes the normalized \(r \)th elementary symmetric function of \(x_1, \ldots, x_n \) and \(p_r(i,j) \) the same function for the same set excluding \(x_i \) and \(x_j \), then the equality

\[
2(n-1)^2 \left(p_r^2 - p_{r+1} p_{r-1} \right) = (n-r-1)(r-1) \sum_{i<j} \left[p_{r-1}^2(i,j) - p_r(i,j)p_{r-2}(i,j) \right] (x_i - x_j)^2
\]

proves the inequality \(p_r^2 \geq p_{r+1} p_{r-1} \) by induction for all real \(x_1, \ldots, x_n \).

K. Goldberg continued to accumulate data for a test of his baseball model based on the 1959 American League season. Preliminary results indicate excellent agreement.

K. Goldberg continued his investigation of conditions for commutativity of formal power series under substitution.

M. Newman has completed a study of a certain subgroup of the modular group, which implies arithmetic results about the number of representations of an integer \(n \) by the form

\[
\sum_{i=1}^{r} x_i^2 + q \sum_{i=1}^{s} y_i^2, \quad q \text{ an odd prime.}
\]

In addition, the structure of the subgroup of the modular group generated by the \(p \)th powers of the elements has been determined.

Publications:

Status of Projects

STUDY OF DIFFERENTIAL EQUATIONS FOR NERVE EXCITATION
Task 1101-12-11414/56-148

Origin and Sponsor: National Institutes of Health Authorized 9/30/55
Manager: P. Davis
Full task description: July-Sept 1955 issue, p. 7

Status: TERMINATED. The code for the computations with ordinary
differential equations has been turned over to the sponsor, who is acquiring
his own computing machine.
2. MATHEMATICAL TABLES AND PROGRAMMING RESEARCH

MATHEMATICAL TABLES

The following long-range mathematical table projects are being carried in the Computation Laboratory. Progress continues as dictated by the relative priority in the overall program of the Laboratory and by available funds. All of the table projects were inactive during the past quarter, with priority being given to preparation of the forthcoming "Handbook of Mathematical Functions."

1102-40-11112/47-2 TABLES OF COULOMB WAVE FUNCTIONS

1102-40-11112/51-8 TABLES OF POWER POINTS OF ANALYSIS OF VARIANCE TESTS

1102-40-11112/52-37 SPHEROIDAL WAVE FUNCTIONS

1102-40-11112/52-57 SIEVERT'S INTEGRAL

HANDBOOK OF MATHEMATICAL FUNCTIONS
Task 1102-40-11421/57-216

Origin and Sponsor: National Science Foundation Authorized 12/27/56
Manager: I. A. Stegun
Full task description: Oct-Dec 1956 issue, p. 10

Status: CONTINUED. Chapters 12 (Struve Functions and Related Functions), 25 (Numerical Interpolation, Differentiation, and Integration), and 26 (Probability Functions) are in press. Review of remaining chapters continues for consistency of notation, updating of references, cross-references, etc. Preparation of graphs and line cuts is also being continued.

AUTOMATIC CODING
Task 1102-12-11120/55-65

Origin: NBS Authorized 9/29/54
Manager: J. Wegstein
Full task description: July-Sept 1954 issue, p. 11

Status: CONTINUED. A manual "BS BEL, An Input-Output and Monitor System for the IBM 704" was completed by G. M. Galler and G. G. Ziegler.

The development of a string manipulation language has continued along two lines. Several special purpose languages such as LISP, IPL, and COMIT have been examined for basic ideas and common features. Various data processing problems such as file maintenance, report generating, natural language translation, and program compilation have been examined for basic and often recurring operations which should be included in a string manipulation language. The results of these investigations are leading to the design of a string manipulation language.
Status of Projects

R. Herbold has modified the plotting subroutine in the Tablemaker system to give the user the option of setting the printer to 8 lines per inch or 40 lines per inch for plotting data. Linear interpolation was also added as an option to permit smoother curve plotting. During this quarter, the Tablemaker system was used for a total computer time of 522 minutes. The following table indicates the number of times that the various functions were used.

<table>
<thead>
<tr>
<th>Function</th>
<th>Number of times used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Curve fit</td>
<td>218</td>
</tr>
<tr>
<td>Plot</td>
<td>110</td>
</tr>
<tr>
<td>Finite Difference</td>
<td>15</td>
</tr>
<tr>
<td>Standard deviation, mean, sum</td>
<td>136</td>
</tr>
</tbody>
</table>

MATHEMATICAL SUBROUTINES
Task 3911-61-39952/56-160

Origin: NBS
Managers: Staff
Full task description: July-Sept 1955 issue, p. 13

Status: INACTIVE.
3. PROBABILITY AND MATHEMATICAL STATISTICS

MISCELLANEOUS STUDIES IN PROBABILITY AND STATISTICS
Task 1103-12-11131/51-2

Origin: NBS
Manager: C. Eisenhart
Full task description: July-Sept 1950 issue, p. 58

Status: CONTINUED. Using the normal approximation to the distribution of $\bar{x} + ts$ and the NBS "Tables of the Bivariate Normal Distribution and Related Functions" (Applied Mathematics Series 50), C. Eisenhart and A. Glinski investigated for sample sizes $n = 4, 9, 16,$ and 25 and nominal confidence level $1-\alpha = 0.95$, the magnitude of the reduction in the level of confidence that would result from always selecting the narrower of the two confidence intervals $\bar{x} + K_1\sigma$, $\bar{x} + t_{1/2}\sigma$ when σ is known.

In connection with the NBS Theory of Errors Colloquium:
(1) A. Glinski evaluated the ratio of the mean deviation δ to the standard deviation σ for a variety of unimodal symmetrical distributions ranging in kurtosis from the rectangular distribution ($\beta_2 = 1.8$) to Student's distribution for 3 degrees of freedom ($\beta_2 = \infty$), obtaining the following results:

<table>
<thead>
<tr>
<th>β_2</th>
<th>Distribution</th>
<th>$\delta/\sigma \sqrt{\frac{1}{2\pi}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.8</td>
<td>Rectangular</td>
<td>1.085</td>
</tr>
<tr>
<td>2.4</td>
<td>Pearson II</td>
<td>1.032</td>
</tr>
<tr>
<td>3.0</td>
<td>Normal</td>
<td>1.000</td>
</tr>
<tr>
<td>4.2</td>
<td>Sech2 Pearson VII</td>
<td>0.965</td>
</tr>
<tr>
<td>5.0</td>
<td>Sech2 Pearson VII</td>
<td>.958</td>
</tr>
</tbody>
</table>

(2) For the same distributions, C. Eisenhart prepared a table of standardized deviates corresponding to central areas of .50, .60, .80, .90, .95, .98, .99, and .999, showing great sensitivity of all but the 95% points to the kurtosis of the underlying distribution; the 95% points being amazingly stable for $\beta_2 \geq 3$.

| β_2 | $|\frac{\bar{x}-\mu}{\sigma}|$ |
|-----------|-------------------------------|
| 1.8 | 1.645 |
| 2.4 | 1.844 |
| 3.0 | 1.960 |
| 4.2 | 1.995 |
| 5.0 | 2.020 |
| 6.0 | 2.061 |
| 9.0 | 2.118 |
| ∞ | 1.837 |

(3) C. Eisenhart, A. D. Smith, and J. Van Dyke began numerical evaluation of probability points of coverage distributions corresponding to Wilks' unbiased tolerance intervals in small samples from a normal distribution.
Status of Projects

Work on the calculation of tables of the non-central F and χ^2 distributions is continuing. The non-central parameter φ for $\nu_1 = \infty$ has been calculated for all contemplated percentage points. Trial calculations have been made and a code written by M. C. Dannemiller for the calculation with respect to the non-central χ^2 distribution. The code is currently being checked.

J. Van Dyke is continuing the numerical investigation of the distributions of the family of random variables

$$z = Au^\alpha - B(1-u)^\beta + C$$

where u is uniformly distributed on $(0, 1)$. The case $\alpha = 0.1$, $\beta = 0.2$ has been completed and the computation scheme has been written up in preparation for computer programming.

W. J. Youden developed a simple statistic particularly suited for limited amounts of data. The statistic consists of an interval formed by adding k times the sample range to the maximum value and subtracting k times the sample range from the maximum value in the sample. Confidence limits for $n = 2, 3, 4, \text{and } 5$ for several values of k were established largely by sampling normal deviates.

Publications:

STUDIES IN THE MATHEMATICS OF EXPERIMENT DESIGN
Task 1103-12-11131/53-1

Origin: NBS
Manager: J. M. Cameron
Full task description: Oct-Dec 1952 issue, p. 60

Status: CONTINUED. W. J. Youden continued the study of a special class of weighing designs particularly appropriate for the determination of physical constants. These designs also find application in the evaluation of routine testing procedures.

M. Zelen and B. Kurkjian (DOFL) are continuing work on a calculus for factorial designs and are attempting to extend it to include fractional factorial designs. A paper has been written for presentation at the 1961 meeting of the International Statistical Institute summarizing their work on the use of the direct product in factorial designs.

Publications:
(1) Fractional factorial designs for experiments with factors at two and three levels. W. S. Connor and Shirley Young. To appear as NBS Applied Mathematics Series 58.
Status of Projects

(2) Partial confounding in fractional replication. W. J. Youden. Submitted to a technical journal.
(4) A calculus for factorial arrangements. Badrig Kurkjian (DOFL) and M. Zelen. Submitted to a technical journal.

STUDY OF NON-PARAMETRIC STATISTICAL TECHNIQUES
Task 1103-12-11131/56-170

Origin: NBS
Manager: J. R. Rosenblatt
Full task description: Oct-Dec 1955 issue, p. 14

Status: CONTINUED. In 1954, W. S. Connor proposed a "method of line segments" for obtaining simultaneous confidence limits for a straight line $y = a + bx$ when observations have been taken at two values of x. J. R. Rosenblatt has noticed that this can be extended to "method of parabolic segments" for obtaining simultaneous confidence limits for a parabola $y = a + bx + cx^2$ when observations have been taken at three values of x. The attractive simplicity of Connor's method is lost in the generalization. A study of Connor's method is being prepared for publication.

Publication:

MEASUREMENT OF RELIABILITY
Task 1103-12-11130/56-182

Origin: NBS
Managers: M. Zelen, J. R. Rosenblatt
Full task description: Jan-Mar 1956 issue, p. 13

Status: CONTINUED. M. C. Dannemiller and M. Zelen have written an expository paper summarizing their recent work on robustness of life tests at the invitation of the editor of Missile Design and Development.

Publications:
4. MATHEMATICAL PHYSICS

RESEARCH IN MATHEMATICAL PHYSICS AND RELATED FIELDS

Task 1104-12-11141/55-57

Origin: NBS
Manager: W. H. Pell
Full task description: July-Sept 1954 issue, p. 27

Status: CONTINUED. A. Ghaffari has found earlier (see July-Sept 1960 issue, p. 11) the most general solution on the interval \((0,\infty)\) of the Chapman-Kolmogoroff functional equation for the transition probability \(f(x,s;y,t)\) of a one-dimensional Brownian motion, where \(x\) refers to the state of a particle at instant \(s\), and \(y\) to the state at instant \(t\). The corresponding second-order partial differential equation satisfied by \(f\) is

\[
\alpha(x,s) \frac{\partial^2 f}{\partial x^2} + \beta(x,s) \frac{\partial f}{\partial x} + 2 \frac{a(s)}{a'(s)} \frac{\partial f}{\partial s} = 0
\]

where \(\alpha\) and \(\beta\) are known rational functions of \(x\) and \(\theta(s,t) = \frac{a(s)}{a(t)}\).

Analyticity and probability properties of the solutions for the interval \((-\infty,\infty)\) as well as \((0,\infty)\) (see Jan-Mar 1960 and succeeding issues) and the asymptotic behavior of the probability functions have been investigated previously. The study has now been concluded.

L. E. Payne and J. H. Bramble continued their work on pointwise bounds in elastic plate problems. They completed a manuscript on "A Priori Bounds in the First Boundary Value Problem in Elasticity". In this paper they obtain upper and lower bounds for the strain energy and pointwise bounds for the displacements and stresses in an elastic medium if the displacements are prescribed on the boundary. These bounds are of a priori type; they involve undifferentiated data and are expressed in terms of integrals on which the Rayleigh-Ritz method may be employed to make the error small.

Publications:

- 12 -

Status of Projects

PLASMA RESEARCH
Task 1104-12-11140/59-422

Origin: NBS
Manager: C. M. Tchen
Full task description: Apr-June 1959 issue, p. 15

Status: CONTINUED. C. M. Tchen continued an investigation of the structure of turbulence in a plasma from two points of view: (1) the Vlasov equation with the self-consistent electric field is integrated to obtain the equations of moments, which are reduced to a non-linear equation of velocity fluctuations; (2) the magnetohydrodynamic equations are reduced to two equations of fluctuations in the velocity and magnetic field. The two cases correspond, respectively, to electrohydrodynamic turbulence and magnetohydrodynamic turbulence. The fluctuations may be subjected to a Fourier analysis. Kolmogoroff and Heisenberg's hypothesis is used to describe the mechanism of transfer of energy between the various harmonics. The spectral functions are obtained for the turbulent kinetic and magnetic energies.

RESEARCH ON SATELLITE ORBITS
Task 1104-12-11440/59-420

Origin: NBS
Sponsor: Office of Scientific Research, ARDC, USAF
Manager: J. P. Vinti
Full task description: Oct-Dec 1958 issue, p. 15

Status: CONTINUED. J. P. Vinti has prepared a manuscript for publication on "Theory of an Accurate Intermediary Orbit for Satellite Astronomy". This gives an orbit which corresponds to the gravitational potential proposed by J. P. Vinti in the Journal of Research, NBS, 63B, 105-116 (1959). The solution presented in the present paper gives the results in terms of certain uniformizing variables the periodic parts of which are correct through the second order in the oblateness parameter k (proportional to J_2, which is a measure of the planetary oblateness, and is the coefficient of the second harmonic in the spherical harmonic expansion of the potential) and the secular parts of which are exact for the intermediary orbit. These exact results for the secular terms are expressed without the use of elliptic integrals of the third kind and involve only certain rapidly converging series.

Publication:
(1) Mean motion in conditionally periodic separable systems. J. Vinti. To appear in the Journal of Research of the National Bureau of Standards, Sec. B.
Status of Projects

FOURIER TRANSFORMS OF PROBABILITY DISTRIBUTION FUNCTIONS
Task 1104-12-11626/56-154

Origin: NBS
Sponsor: Office of Naval Research
Manager: F. Oberhettinger
Full task description: July-Sept 1955 issue, p. 20

Status: CONTINUED. The manuscript was completed and the Introduction was prepared.
5. MATHEMATICAL AND COMPUTATIONAL SERVICES

3911-61-39952/54-30 SPECTRUM ANALYSIS
Origin: NBS, Division 4
Manager: W. Bozman (4.1)
Full task description: Jan-Mar 1954 issue, p. 46
Status: Continued. The intensity table arranged in order of wavelength is ready for publication; the list by elements is nearly ready for printing of the master sheets on the card-controlled typewriter. Wavelengths and wavenumbers were calculated for approximately 5,000 praseodymium lines, and least squares calculations for constants involving wavelength were determined for approximately 10,000 lines. Calculations for energy levels of the third spectrum of praseodymium (Pr III) are nearly completed; 7 new levels were found for the F^2 configuration, 15 for the F^2d, 15 for the 4F^6p, and 5 for the 4F^6s configurations. Theoretical matrix calculations were made for both Pr III and Yb III.

3911-61-39952/55-68 CRYSTAL STRUCTURE CALCULATIONS
Origin: NBS, Division 9
Managers: P. J. O'Hara, S. Block (9.7)
Full task description: Jan-Mar 1955 issue, p. 18
Status: Continued. Production runs were made under the sponsor's direction.

3911-61-39952/55-82 THERMOMETER CALIBRATIONS
Origin: NBS, Section 3.1
Manager: B. S. Prusch
Full task description: Jan-Mar 1955 issue, p. 20
Status: Continued. ITS constants were calculated for 58 thermometers under test, and LTS constants for 21 thermometers.

1102-40-11645/56-166 SCF-LCAO SOLUTION OF SOME HYDRIDES
Origin and Sponsor: NBS, Section 5.9
Manager: P. J. Walsh
Full task description: Jan-Mar 1956 issue, p. 27
Status: Continued. Programming of the direct integrals for Td symmetry has been completed. The exchange integrals are being programmed.

1102-40-11645/56-186 MECHANICAL MEASUREMENTS OF GAGE BLOCKS
Origin and Sponsor: NBS, Section 2.5
Manager: B. S. Prusch
Full task description: July-Sept 1956 issue, p. 33
Status: Continued. Computations were performed to check 20 laboratory sets of gage blocks.
Status of Projects

1102-40-11645/57-236 SELF CONSISTENT FIELD--EIGENVALUES
Origin and Sponsor: NBS, Section 3.6
Manager: P. Walsh
Full task description: Apr-June 1957 issue, p. 30
Status: Continued. Some cases were run using the SCF program. Further checks are being made on the program for transforming integrals to a new basis.

3911-61-39952/56-266 DEPOLYMERIZATION, II
Origin: NBS, Section 7.6
Manager: L. S. Joel
Full task description: July-Sept 1957 issue, p. 36
Status: Inactive.

1102-40-11645/58-269 MOLECULAR STRUCTURE, IV
Origin and Sponsor: Naval Research Laboratory, USN
Manager: P. J. O'Hara
Full task description: July-Sept 1957 issue, p. 38
Status: Inactive.

1102-40-11645/58-270 MATHEMATICAL PROBLEMS RELATED TO POSTAL OPERATIONS
Origin: NBS
Sponsor: Post Office Department, Office of Research and Engineering
Managers: B. K. Bender, A. J. Goldman
Full task description: Oct-Dec 1958 issue, p. 22
Status: Continued. Work continued on analytical problems in the optimization of distribution networks. Literature pertaining to some experimental automated sorting centers was examined, and visits to these installations were made.

1102-40-11645/58-272 THERMODYNAMIC PROPERTIES OF REAL GASES
Origin and Sponsor: NBS, Section 3.2
Manager: J. P. Menard
Full task description: Oct-Dec 1957 issue, p. 32
Status: Inactive.

1102-40-11645/58-339 COMPUTATION OF VISCOELASTICITY PROPERTIES OF MATERIALS
Origin and Sponsor: NBS, Section 3.4
Manager: H. Oser
Full task description: Jan-Mar 1958 issue, p. 38
Status: Continued. Theoretical studies have been concluded on questions concerning inverse Laplace transformations by means of asymptotic series. A paper on these investigations is being prepared.
Status of Projects

1102-12-11513/59-348 RUSSIAN-TO-ENGLISH MACHINE TRANSLATION

Origin: NBS
Sponsor: Office of Ordnance Research, U. S. Army
Manager: I. Rhodes (11.0)
Full task description: Oct-Dec 1958 issue, p. 26
Status: Continued. An NBS Report entitled "Handling of Adapted and Compound Words in the National Bureau of Standards' Scheme of Mechanical Translation" has been prepared. It deals with such problems as word stems not found in the dictionary, including words of non-Russian origin, and composite stems. Work continued on the other aspects of the project.

1102-40-11645/58-358 REDUCED CROSS-SECTIONS

Origin and Sponsor: NBS, Section 3.2
Manager: S. Peavy
Full task description: Apr-June 1958 issue, p. 30
Status: Reactivated. A small program and subroutine have been written and are in the process of being checked out. The program involves calculating b^*, g^*, for a certain g_m and $\rho(r)$.

1102-40-11645/58-361 CALCULATIONS FOR SPECTRUM OF DIPOLE RADIATION

Origin and Sponsor: Naval Research Laboratory
Manager: R. J. Arms
Full task description: Apr-June 1958 issue, p. 33
Status: Continued. New programs for data generation have been checked out.

1102-40-11645/58-366 RADIATION PATTERNS OF ANTENNAS

Origin and Sponsor: U. S. Information Agency, Department of State
Manager: P. J. Walsh
Full task description: Apr-June 1958 issue, p. 35
Status: Continued. Production runs were made under the direction of the sponsor.

1102-40-11645/58-368 INTENSITY FUNCTIONS AND CROSS SECTIONS OF LIGHT SCATTERED BY SPHERICAL PARTICLES

Origin and Sponsor: U. S. Army Signal Research and Development Laboratories, Atmospheric Physics Branch, Belmar, N. J.
Manager: H. Oser
Full task description: July-Sept 1958 issue, p. 32
Status: Inactive.
Status of Projects

1102-40-11645/59-389 FREQUENCY ALLOCATION
Origin and Sponsor: Civil Aeronautics Administration
Manager: L. S. Joel
Full task description: Oct-Dec 1958 issue, p. 29
Status: Continued. The revised computer program is being debugged. The interim program was used to solve several problems.

1102-40-11645/59-394 VARIATIONAL CALCULATION OF SLOW ELECTRON SCATTERING BY HYDROGEN ATOMS, II
Origin and Sponsor: NBS, Section 4.6
Manager: A. E. Beam
Full task description: Oct-Dec 1958 issue, p. 30
Status: Continued. The variational calculation of electron-hydrogen atom scattering has been extended to include p and d configuration in the trial function. Coding for this is essentially completed. A code is being prepared to calculate the energy eigenvalues of H^-, making use of part of the scattering trial function. As the lowest eigenvalue of H^- is well known, this will serve as a check on various subroutines used in the scattering calculation as well as allowing us to search for the existence of any higher bound eigenvalues.

1102-40-11645/59-435 ELECTROCARDIOGRAPHIC ANALYSIS
Origin: NBS, Division 12.5
Sponsor: Veterans Administration
Manager: R. J. Arms
Full task description: Apr-June 1959 issue, p. 29
Status: Continued. Production has been continued. New test codes are in progress. A wave recognition procedure, utilizing smoothing transformations has been successful.

1102-40-11645/59-445 OIL SUPPLY
Origin and Sponsor: Military Petroleum Supply Agency, Department of the Navy
Manager: L. S. Joel
Full task description: Apr-June 1959 issue, p. 30
Status: Inactive.

1102-40-11645/59-458 DOMESTIC AIRLINE TRAFFIC SURVEY
Origin and Sponsor: Civil Aeronautics Board
Managers: J. M. Beiman, W. G. Hall
Full task description: July-Sept 1959 issue, p. 31
Status: Continued. Production runs of the four quarters for 1960 data have been made and the results submitted to the sponsor.
Status of Projects

1102-40-11645/60-462 CORRELATION OF FUNCTIONS
Origin and Sponsor: Diamond Ordnance Fuze Laboratories, Department of the Army
Manager: G. W. Reitwiesner
Full task description: July-Sept 1959 issue, p. 33
Status: Completed. Results transmitted to the sponsor.

1102-40-11645/60-465 CALCULATIONS IN MOLECULAR QUANTUM MECHANICS
Origin and Sponsor: NBS, Section 3.2
Managers: P. J. Walsh, J. D. Waggoner
Full task description: Oct-Dec 1959 issue, p. 26
Status: Inactive.

1102-40-11645/60-466 ELECTRONIC PROPERTIES OF SIMPLE MOLECULAR SYSTEMS
Origin and Sponsor: NBS, Section 3.2
Manager: P. J. Walsh
Full task description: Oct-Dec 1959 issue, p. 27
Status: Continued. An attempt is being made to increase the accuracy of the integral evaluation by introducing more points in the Gaussian quadrature evaluation. Some runs were made with this modification and the results have been submitted to the sponsor for analysis.

1102-40-11645/60-467 TRANSISTOR SIMULATION
Origin and Sponsor: NBS, Section 12.1
Manager: G. W. Reitwiesner
Full task description: Oct-Dec 1959 issue, p. 27
Status: Inactive.

1102-40-11645/60-475 IONOSPHERIC SOUNDINGS
Origin and Sponsor: NBS, Section 82.40
Manager: M. L. Paulsen
Full task description: Oct-Dec 1959 issue, p. 29
Status: Completed. The Boulder Laboratories have written their own code to replace the IBM 704 Fortran Program and other calculations performed by their IBM 650. This new code was prepared especially for their CDC 1604 and is not an assembly of the Fortran code as was indicated in the last report.

1102-40-11645/60-476 GAS TUBE CHARACTERISTICS, II
Origin and Sponsor: Diamond Ordnance Fuze Laboratories, Department of the Army
Managers: H. Oser, W. Borsch-Supan
Full task description: Oct-Dec 1959 issue, p. 30
Status: Continued. Additional production runs have been completed, showing the dependence upon different parameters. The truncation errors have been reduced by formal solution of the corresponding finite and infinitesimal problem with constant field. A publication is in preparation.
Status of Projects

1102-12-11122/60-479 PROCESSING OF DIAGRAMS
Origin and Sponsor: NBS, Section 11.0
Managers: F. L. Alt (11.0), S. T. Peavy, R. J. Herbold
Full task description: Oct-Dec 1959 issue, p. 30
Status: Continued. The results so far obtained on the computer have been analyzed. It appears that the "truncation errors" caused by using a finite grid, as well as the errors due to noise, were small enough to be tolerated in all the cases studied. They do not interfere, for example, with discrimination of patterns as similar as "O" and "Q". In fact, moments of order up to 4 or 5 seem to be sufficient for such purposes.

1102-40-11645/60-486 MORSE WAVE FUNCTIONS AND FRANCK-CONDON FACTORS
Origin and Sponsor: NBS, Section 3.0
Manager: R. Zucker
Full task description: Jan-Mar 1960 issue, p. 28
Status: Continued. Additional results of continued production runs were forwarded to the sponsor.

1102-40-11645/60-501 KANSAS RIVER SYSTEM
Origin and Sponsor: Corps of Engineers, U. S. Army, Office of District Engineers, Kansas City District
Manager: S. Peavy
Full task description: Apr-June 1960 issue, p. 24
Status: Inactive.

1102-40-11645/60-504 ELECTROSTATIC-FOCUSING PROBLEM
Origin and Sponsor: Diamond Ordnance Fuze Laboratories, Department of the Army
Manager: A. Beam
Full task description: Jan-Mar 1960 issue, p. 30
Status: Reactivated. Several production runs were made for the sponsor.

1102-40-11645/60-506 COMMODITY PRICE INDICES
Origin and Sponsor: U. S. World Bank, Statistics Division
Manager: J. C. Lamkin, Jr.
Full task description: Oct-Dec 1960 issue, p. 19
Status: Continued. Programming of price index computations is complete. Production runs will be made when data is received from the sponsor.

3911-61-39952/60-508 MODEL ADSORPTION ISOTHERMS
Origin and Sponsor: NBS, Section 5.2
Manager: J. P. Menard
Full task description: Apr-June 1960 issue, p. 25
Status: Inactive.
Status of Projects

1102-40-11645/60-510 \(\text{H}_2 \) BOMBARDMENT
Origin and Sponsor: Naval Research Laboratory
Manager: W. Borsch-Supan
Full task description: Apr-June 1960 issue, p. 26
Status: Completed. A report on the results of this project has been prepared, and publication is planned.

1102-40-11645/60-513 RADIATIVE ENVELOPES OF MODEL STARS
Origin and Sponsor: National Aeronautics and Space Administration
Managers: S. Haber (11.1) and P. J. Walsh
Full task description: Jul-Sept 1960 issue, p. 23
Status: Continued. Improvements were made in the program and further solutions were obtained.

1102-40-11645/61-516 RADIATION FIELD FROM A CIRCULAR DISK SOURCE
Origin and Sponsor: NBS, Section 4.8
Manager: R. J. Herbold
Full task description: Jul-Sept 1960 issue, p. 24
Status: Continued. A new program to compute \(p(\rho, h) \) in double precision mode is checked out and results have been transmitted to the sponsor.

3911-61-39952/61-528 ANALYSIS OF EXPERIMENTAL DATA ON TRANSISTOR AGING
Origin and Sponsor: NBS, Section 14.1
Manager: R. Varner
Full task description: Jul-Sept 1960 issue, p. 28
Status: Completed. Several minor modifications were made in the existing programs. Production runs are being made under the direction of the sponsor.

1102-40-11645/61-530 SPECIMEN WAVELENGTH
Origin and Sponsor: NBS, Section 9.4
Manager: L. Joseph
Full task description: Jul-Sept 1960 issue, p. 28
Status: Inactive.

1102-40-11645/61-531 HEAT TRANSFER IN CRYSTALS
Origin and Sponsor: NBS, Section 3.1
Manager: H. Oser
Full task description: Jul-Sept 1960 issue, p. 29
Status: Continued. During this period code checking has been completed and trial production runs were made. The trial runs with maximum time interval \(\Delta t \) show that optimal programming, for the subroutine to multiply two matrices, is necessary in order to obtain reasonable computing times. With smaller time steps the method is satisfactory with respect to speed and accuracy. The stability against propagation of round-off errors is quite good for obtaining at least five-place accuracy for a signal which propagates completely through a system of 200 mass-points.
Status of Projects

1102-40-11645/61-532 CALCULATION OF VIBRATIONAL ENERGY LEVELS FOR IONIC MOLECULES
Origin and Sponsor: Georgetown University
Manager: P. J. Walsh
Full task description: Oct-Dec 1960 issue, p. 21
Status: Continued. Code checking on the problem described in the previous report (Oct-Dec 1960) has been completed and some production runs were made. These results were submitted to the sponsor for analysis.

1102-40-11645/61-536 SECULAR EQUATIONS
Origin and Sponsor: NBS, Section 13.2
Manager: Ruth Zucker
Full task description: Oct-Dec 1960 issue, p. 22
Status: Continued. Production runs were continued as requested by the sponsor.

1102-40-11645/61-537 MASS ACTION LAW
Origin and Sponsor: NBS, Section 5.2
Manager: H. Oser, J. Lamkin
Full task description: Oct-Dec 1960 issue, p. 23
Status: Continued. Program completed and being operated by sponsor.

1102-40-11645/61-538 SPECTRAL REFLECTANCE
Origin and Sponsor: NBS, Section 9.4
Manager: W. Borsch-Supan
Full task description: Oct-Dec 1960 issue, p. 23
Status: Continued. Programs are running which allow tabulation of the reflectance as a function of the wave length as well as a least square fit by changing all of the parameters. The results indicate that a reasonable approximation of the measurements by the given functions over the whole range of measured wave length is not possible. For shorter intervals of the wave length, however, approximations are quite good.

1102-40-11645/61-540 DIFFUSION CALCULATIONS
Origin and Sponsor: Army Chemical Center
Manager: L. Joseph
Objective: To calculate the areas in the x,y - plane bounded by certain constant density curves.
Background: The density distributions treated describe the diffusion through the atmosphere of a substance which deteriorates with time. The cases treated include the point source, the normal line source and the finite line source. The equations used are modifications of equations given by Sutton. The problem was transmitted by C. G. Whitacre, (ACC).
Status: New. Fortran programs have been written for the normal line source and the finite line source. Preliminary production runs have been made and given to the sponsor for further study.
Status of Projects

1102-40-11645/61-542 STUDENT LOAN DATA
Origin and Sponsor: Department of Health, Education, and Welfare
Manager: R. Zucker
Full task description: Oct-Dec 1960 issue, p. 24
Status: Continued. Approximately 140 cross-tabulation tables, with their corresponding negative and non-response tables, were computed and submitted to the sponsor.

1102-40-11645/61-551 PARTICLE SIZE CALCULATIONS
Origin and Sponsor: NBS, Section 10.7
Manager: R. Zucker
Objective: To calculate the number, volume, and weight distributions, as well as surface area and number per unit weight, of glass beads sampled from two populations.
Background: The calculations arise in the study of experimental and computational problems entailed in the preparation of a particle size standard of known size distribution. Since some of the beads contained air bubbles, their weight and sedimentation rate did not correspond to their diameter.
Status: New. The code has been written and checked out. The data have been processed in groups of 100 and 1,000 to determine the variation from sample to sample for two populations. These results have been transmitted to the sponsor.

1102-40-11645/61-556 TCHEBYCHEF APPROXIMATION BY RATIONAL FUNCTIONS
Origin and Sponsor: NBS, Section 11.1
Manager: P. J. Walsh
Objective: Given a real function \(f(x) \), its (finite, real) domain \(S \), and non-negative integers \(m \) and \(n \); let

\[
J = \inf \max_{x \in S} \left| f(x) - \sum_{\nu=0}^{n} \frac{a_{\nu} x^{\nu}}{m} \sum_{\nu=0}^{\nu} \frac{b_{\nu} x^{\nu}}{\nu} \right|
\]

where the inf is taken over all possible choices of real numbers \(a_0, \ldots, a_n, b_0, \ldots, b_m \) subject to

\[
\sum_{\nu=0}^{m} b_{\nu} x^{\nu} > 0 \quad \text{throughout } S.
\]
Status of Projects

To prepare a code:

a) To compute J.

b) Given a positive δ, to determine a_ν and b_ν (subject to (2)), such that

$$\max_{x \in S} \left| f(x) - \frac{\sum_{\nu=0}^{n} a_\nu x^\nu}{\sum_{\nu=0}^{m} b_\nu x^\nu} \right| \text{ will differ from } J \text{ by less than } \delta.$$

Background: This problem of approximation arises in many physical and engineering problems. Experience shows that in many cases one gets a much closer approximation to a given function by using rational functions than by using polynomials having the same number of parameters (i.e., coefficients). Hence it is desirable to calculate Tchebycheff approximations to a given function by rational functions.

The problem was transmitted by O. Shisha (11.1).

Status: New. The problem has been programmed and code checking is in progress.

1102-40-11645/61-557 STRUCTURE DETERMINATION
Origin and Sponsor: NBS, Section 13.5
Manager: K. Bedeau
Objective: To compute $\sum_{k=1}^{x} S_k$ for various values of α, β and sets of x triples $(h_{1,k}, h_{2,k}, h_{3,k})$ where S_k is of the form:

$$\sum_{i=1}^{2} \cos 2\pi \left[(a_{i} + b_{i} \alpha) h_{1,k} + (c_{i} + d_{i} \alpha) h_{2,k} + (e_{i} + f_{i} \beta) h_{3,k} \right]$$

$$+ \sum_{i=1}^{2} \sin 2\pi \left[(a_{i} + b_{i} \alpha) h_{1,k} + (c_{i} + d_{i} \alpha) h_{2,k} + (e_{i} + f_{i} \beta) h_{3,k} \right]$$

Background: The above summations arise in the structure determination of solid β-oxygen.

The problem was transmitted by E. M. Horl (13.5).

Status: New. A code has been written and checked out. Several production runs have been made and the results turned over to the sponsor.

1102-40-11645/61-559 THERMOCOUPLE CALIBRATION
Origin and Sponsor: NBS, Section 3.1
Manager: K. Bedeau
Objective: To write a program for processing raw data taken directly from measuring instruments and to derive temperature-EMF tables for thermocouples. The program will consist of three independent phases:

1. To determine a set of from three to nine EMF-temperature relationships for the thermocouple.
2. To fit the results of phase 1 to a set of polynomials for EMF in terms of temperature from 0°C to 1450°C.
3. To generate a table for each thermocouple.
Status of Projects

Background: Potentiometer and resistance readings are at present processed by hand to calibrate thermocouples. A considerable saving in time, an increase in accuracy, and a decrease in the temperature intervals at which the EMF is tabulated will be made possible by the program.

The problem was transmitted by J. P. Evans (3.1).

Status: New. A program is being written for phase 1.
6. STATISTICAL ENGINEERING SERVICES

COLLABORATION ON STATISTICAL ASPECTS OF NBS RESEARCH AND TESTING
Task 3911-61-39951/51-1

Origin: NBS
Managers: W. J. Youden, J. Cameron
Full task description: July-Sept 1950 issue, p. 60

Status: CONTINUED. The following examples are representative of the statistical assistance and advice that members of this section provided during the quarter to Bureau personnel of other divisions:

(1) Pyrometer calibrations. H. H. Ku analyzed data on pyrometer calibrations for H. J. Kostkowsky of the Temperature Physics Section. The between-day and between-observer components of variance were estimated in connection with the study of precision of the calibration process.

(2) Ship steel. H. H. Ku collaborated with C. Staugaitis of the Mechanical Metallurgy Section on the statistical aspects of his final report on the notch-toughness of ship steel.

(3) Modulus of rupture of glass specimens. M. C. Dannemiller and J. M. Cameron completed the study of the modulus of rupture of glass specimens. A memorandum describing the results and the statistical techniques which were employed was sent to M. J. Kerper of the Glass Section.

(4) Distribution of standardized gaps. M. C. Dannemiller collaborated with J. Mandel of the Organic and Fibrous Materials Division in an empirical sampling study to determine the distribution of standardized gaps arising from a normal population.

Publications:

(6) Variability of color-mixture data. I. Nimeroff (Photometry and Colorimetry), J. R. Rosenblatt, and M. C. Dannemiller. In manuscript.
Status of Projects

STATISTICAL SERVICES FOR COMMITTEE ON SHIP STEEL, NRC
Task 1103-40-11430/52-1

Origin and Sponsor: Ship Structure Committee, NRC
Manager: W. J. Youden
Full task description: Oct-Dec 1951 issue, p. 58

Status: INACTIVE.

MANUAL ON EXPERIMENTAL STATISTICS FOR ORDNANCE ENGINEERS
Task 1103-40-11433/55-93

Origin and Sponsor: Office of Ordnance Research
Manager: C. Eisenhart
Full task description: Oct-Dec 1954 issue, p. 28

Status: CONTINUED. Page proofs of the Tables Section have been corrected. Text for two other sections are in the hands of the contractor to the Office of Ordnance Research, Department of the Army. The remaining two sections are in the final stages of preparation for publication.

STATISTICAL SERVICES
Task 1103-40-11625/58-346

Origin and Sponsors: Various Agencies
Manager: J. M. Cameron
Full task description: Jan-Mar 1958 issue, p. 45

Status: CONTINUED. A discriminant analysis was performed on data from the Veteran's Administration Cooperative Chemotherapy Study V.
Current Applications of Automatic Computer

The record of the use of the IBM 704 for the period January 1 through March 31 is as follows:

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Title</th>
<th>Assembly</th>
<th>Checking</th>
<th>Production (M I N U T E S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11110/55-55</td>
<td>Research in numerical analysis</td>
<td>33</td>
<td>4</td>
<td>272</td>
</tr>
<tr>
<td>11411/55-56</td>
<td>Research in mathematical topics applicable to numerical analysis</td>
<td>9</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>11120/55-65</td>
<td>Automatic coding</td>
<td>6</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>39952/56-160</td>
<td>Mathematical subroutines</td>
<td>236</td>
<td>122</td>
<td>474</td>
</tr>
<tr>
<td>39951/51-1</td>
<td>Statistical engineering</td>
<td>91</td>
<td>30</td>
<td>382</td>
</tr>
<tr>
<td>39952/54-30</td>
<td>Spectrum analysis</td>
<td>180</td>
<td>94</td>
<td>1627</td>
</tr>
<tr>
<td>39952/56-68</td>
<td>Crystal structure calculations</td>
<td>28</td>
<td>4</td>
<td>414</td>
</tr>
<tr>
<td>39952/55-82</td>
<td>Thermometer calibrations</td>
<td>8</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>39952/56-131</td>
<td>Calculations in optics*</td>
<td>12</td>
<td>3</td>
<td>59</td>
</tr>
<tr>
<td>11645/56-166</td>
<td>SCF-LCAO solution of some hydrides*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/56-171</td>
<td>Collision integrals used in transport theory**</td>
<td>95</td>
<td>139</td>
<td>77</td>
</tr>
<tr>
<td>11645/57-219</td>
<td>Thermal properties*</td>
<td>123</td>
<td>84</td>
<td>312</td>
</tr>
<tr>
<td>11645/57-223</td>
<td>Self-consistent fields</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/57-246</td>
<td>Radiation diffusion**</td>
<td>1154</td>
<td>501</td>
<td>1456</td>
</tr>
<tr>
<td>39952/57-250</td>
<td>Automatic reduction in spectrophotometric data*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/57-251</td>
<td>Current noise and fixed resistors*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/57-252</td>
<td>Detecting efficiency in a neutral meson experiment**</td>
<td>35</td>
<td>14</td>
<td>74</td>
</tr>
<tr>
<td>39952/58-254</td>
<td>Reproduction of color- and spectral-energy distribution of daylight*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/58-255</td>
<td>Chi functions**</td>
<td>923</td>
<td>259</td>
<td>999</td>
</tr>
<tr>
<td>11645/58-256</td>
<td>Composite walls**</td>
<td>78</td>
<td>72</td>
<td>73</td>
</tr>
<tr>
<td>11645/58-260</td>
<td>Prototype accounting**</td>
<td>29</td>
<td>120</td>
<td>152</td>
</tr>
<tr>
<td>11645/58-271</td>
<td>Simultaneous equations for potential flow**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/58-272</td>
<td>Thermodynamic properties of real gases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/58-274</td>
<td>Calculations for d-spacings II*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/58-275</td>
<td>Crystallography**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11645/58-294</td>
<td>Nuclear scattering of photons*</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Current Applications of Automatic Computer

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Title</th>
<th>Assembly</th>
<th>Checking</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>11645/58-308</td>
<td>Oscillating sphere*</td>
<td>212</td>
<td>274</td>
<td>415</td>
</tr>
<tr>
<td>11645/58-314</td>
<td>Approximations for gas mixtures*</td>
<td>63</td>
<td>5</td>
<td>93</td>
</tr>
<tr>
<td>/58-333, 9.0</td>
<td>Calcium hydroxide*</td>
<td>60</td>
<td>24</td>
<td>313</td>
</tr>
<tr>
<td>/58-357 3.3</td>
<td>Eigenvalues**</td>
<td>127</td>
<td>42</td>
<td>220</td>
</tr>
<tr>
<td>/58-358 3.2</td>
<td>Reduced cross-sections</td>
<td>152</td>
<td>752</td>
<td>1503</td>
</tr>
<tr>
<td>/59-387 30.4</td>
<td>Nuclear reactor design**</td>
<td>9</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>/59-388 10.3</td>
<td>Heat pump calculations*</td>
<td>120</td>
<td>108</td>
<td>21</td>
</tr>
<tr>
<td>/59-395 7.7</td>
<td>Adsorption study**</td>
<td>52</td>
<td>60</td>
<td>41</td>
</tr>
<tr>
<td>/59-403 2.1</td>
<td>Computation of color fadings*</td>
<td>152</td>
<td>752</td>
<td>1503</td>
</tr>
<tr>
<td>/59-409 12.5</td>
<td>Bank Board**</td>
<td>9</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>/59-414 3.0</td>
<td>Infinite systems</td>
<td>120</td>
<td>108</td>
<td>21</td>
</tr>
<tr>
<td>/59-417 2.4</td>
<td>Spectrum analysis of ruthenium**</td>
<td>174</td>
<td>97</td>
<td>171</td>
</tr>
<tr>
<td>/59-418 4.8</td>
<td>P-Wave equation*</td>
<td>18</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>/59-421 12.5</td>
<td>Traffic simulation**</td>
<td>199</td>
<td>33</td>
<td>583</td>
</tr>
<tr>
<td>/59-428 12.5</td>
<td>Radio intensities**</td>
<td>104</td>
<td>617</td>
<td>1402</td>
</tr>
<tr>
<td>/59-433 2.3</td>
<td>Color of signals**</td>
<td>13</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>/59-440 82.10</td>
<td>Mapping**</td>
<td>133</td>
<td>189</td>
<td></td>
</tr>
<tr>
<td>/60-449 2.1</td>
<td>Spectral line colorimetry</td>
<td>343</td>
<td>133</td>
<td>189</td>
</tr>
<tr>
<td>/60-457 12.5</td>
<td>Public Housing problem**</td>
<td>63</td>
<td>69</td>
<td>9</td>
</tr>
<tr>
<td>/60-466 3.2</td>
<td>Electronic properties of simple molecular systems</td>
<td>158</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>/60-474 2.5</td>
<td>Gage block stability*</td>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>/60-484 7.6</td>
<td>Polymer crystallization</td>
<td>148</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/60-486 3.6</td>
<td>Morse wave function</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/60-489 3.1</td>
<td>Inversion of line probe data</td>
<td>343</td>
<td>133</td>
<td>189</td>
</tr>
<tr>
<td>/60-493 3.7</td>
<td>Poisson distribution function**</td>
<td>163</td>
<td>125</td>
<td>483</td>
</tr>
<tr>
<td>/61-508 5.2</td>
<td>Model adsorption isotherms</td>
<td>7</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>/61-514 3.9</td>
<td>Flame spectra**</td>
<td>7</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>/61-515 13.5</td>
<td>Convolution integral**</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/61-516 4.8</td>
<td>Radiation field from a circular disk source</td>
<td>55</td>
<td>131</td>
<td>34</td>
</tr>
<tr>
<td>/61-520 2.4</td>
<td>Heat expansion</td>
<td>163</td>
<td>125</td>
<td>483</td>
</tr>
<tr>
<td>/61-523 4.0</td>
<td>Neutron cross section computations**</td>
<td>163</td>
<td>125</td>
<td>483</td>
</tr>
<tr>
<td>/61-525 3.8</td>
<td>Curve fitting of wave functions**</td>
<td>163</td>
<td>125</td>
<td>483</td>
</tr>
<tr>
<td>/61-526 3.0</td>
<td>Crystal field calculations</td>
<td>55</td>
<td>54</td>
<td>296</td>
</tr>
<tr>
<td>/61-528 14.1</td>
<td>Transistor aging</td>
<td>29</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>/61-530 9.4</td>
<td>Specimen wave lengths</td>
<td>104</td>
<td>59</td>
<td>132</td>
</tr>
<tr>
<td>/61-531 3.1</td>
<td>Heat transfer in crystals</td>
<td>163</td>
<td>125</td>
<td>483</td>
</tr>
<tr>
<td>/61-536 3.2</td>
<td>Secular equations</td>
<td>163</td>
<td>125</td>
<td>483</td>
</tr>
<tr>
<td>/61-537 15.2</td>
<td>Mass action law</td>
<td>63</td>
<td>69</td>
<td>9</td>
</tr>
<tr>
<td>/61-538 9.2</td>
<td>Curve fitting for spectra reflectance data</td>
<td>63</td>
<td>69</td>
<td>9</td>
</tr>
</tbody>
</table>
 Current Applications of Automatic Computer

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Title</th>
<th>Assembly (MINUTES)</th>
<th>Checking</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>11645/61-546</td>
<td>11.1 Operations research in optimization techniques</td>
<td>21</td>
<td>27</td>
<td>22</td>
</tr>
<tr>
<td>/61-549</td>
<td>Least squares computations</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/61-551</td>
<td>Particle size calculations</td>
<td>7</td>
<td>12</td>
<td>24</td>
</tr>
<tr>
<td>/61-553</td>
<td>Card-to-tape conversion</td>
<td>38</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>/61-557</td>
<td>Structure determination</td>
<td>9</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miscellaneous</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (NBS Services). 5,340 4,698 15,005

OUTSIDE:

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Title</th>
<th>Assembly (MINUTES)</th>
<th>Checking</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>11645/57-200</td>
<td>DTMB (DTMB)**</td>
<td>449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/58-269</td>
<td>NRL Molecular structure, IV</td>
<td>109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/58-270</td>
<td>PO Post Office problem</td>
<td>8</td>
<td>62</td>
<td>32</td>
</tr>
<tr>
<td>/58-276</td>
<td>NOL General kinetics, I**</td>
<td>7658</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/58-325</td>
<td>VA Covariance analysis</td>
<td>14</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>/58-335</td>
<td>DOFL Roots of Bessel functions**</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/58-348</td>
<td>OOR Russian-to-English machine translation</td>
<td>18</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>/58-361</td>
<td>NRL Spectrum of dipole radiation</td>
<td>90</td>
<td>33</td>
<td>57</td>
</tr>
<tr>
<td>/58-366</td>
<td>USIA Radiation patterns of antennas</td>
<td>11</td>
<td>26</td>
<td>80</td>
</tr>
<tr>
<td>/58-368</td>
<td>SC Intensity functions of light scattered by spherical particles</td>
<td>3</td>
<td>23</td>
<td>13</td>
</tr>
<tr>
<td>/59-371</td>
<td>NRL ASWAP°</td>
<td>1628</td>
<td>3</td>
<td>2347</td>
</tr>
<tr>
<td>/59-373</td>
<td>DOFL Rhinitis**</td>
<td>23</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>/59-389</td>
<td>CAA Frequency allocation</td>
<td>4</td>
<td>9</td>
<td>34</td>
</tr>
<tr>
<td>/59-407</td>
<td>DOFL Fourier coefficients*</td>
<td>142</td>
<td>58</td>
<td>36</td>
</tr>
<tr>
<td>/59-408</td>
<td>NASA NASA**</td>
<td>3</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>/59-411</td>
<td>HEW Fitting of exponential curves**</td>
<td>237</td>
<td>202</td>
<td>782</td>
</tr>
<tr>
<td>/59-415</td>
<td>DOFL Complex Legendre functions*</td>
<td>209</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>/59-416</td>
<td>DOFL Analysis of power supply experiments**</td>
<td>31</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>/59-419</td>
<td>DOFL Neutrons°</td>
<td>6</td>
<td>62</td>
<td>892</td>
</tr>
<tr>
<td>/59-423</td>
<td>WB Weather Bureau**</td>
<td>1251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/59-425</td>
<td>CU Molecular orbitals*</td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/59-434</td>
<td>CIW Petrological computations*</td>
<td>10</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>/59-435</td>
<td>VA Electrocardiographic analysis</td>
<td>114</td>
<td>358</td>
<td>1116</td>
</tr>
<tr>
<td>/59-437</td>
<td>BPR Highway study</td>
<td>41</td>
<td>167</td>
<td>1271</td>
</tr>
<tr>
<td>/59-441</td>
<td>GK Systems engineering**</td>
<td>77</td>
<td>107</td>
<td>555</td>
</tr>
<tr>
<td>/59-447</td>
<td>BPRO Public Roads study**</td>
<td>302</td>
<td>657</td>
<td>7530</td>
</tr>
<tr>
<td>/60-454</td>
<td>GE G.E.**</td>
<td>39</td>
<td>79</td>
<td>297</td>
</tr>
<tr>
<td>/60-458</td>
<td>CAB Domestic airline traffic survey</td>
<td>205</td>
<td>624</td>
<td>3809</td>
</tr>
<tr>
<td>/60-462</td>
<td>DOFL Correlation of functions</td>
<td>153</td>
<td></td>
<td>271</td>
</tr>
</tbody>
</table>
Current Applications of Automatic Computer

<table>
<thead>
<tr>
<th>Task No.</th>
<th>Title</th>
<th>Assembly</th>
<th>Checking</th>
<th>Production (MINUTES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11645/60-476</td>
<td>DOFL Gas tube characteristic II</td>
<td>21</td>
<td>20</td>
<td>552</td>
</tr>
<tr>
<td>/60-481</td>
<td>SC Radar study*</td>
<td>21</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>/60-492</td>
<td>IMF Monetary research reports**</td>
<td>181</td>
<td>12</td>
<td>468</td>
</tr>
<tr>
<td>/60-496</td>
<td>BPA Short circuit program**</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>/61-499</td>
<td>DOFL Equilibrium calibration</td>
<td>25</td>
<td>81</td>
<td>86</td>
</tr>
<tr>
<td>/60-502</td>
<td>USA Quartermaster mathematics programming**</td>
<td>213</td>
<td>21</td>
<td>465</td>
</tr>
<tr>
<td>/60-504</td>
<td>DOFL Electrostatic focusing</td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>/60-506</td>
<td>WB World Bank**</td>
<td>4</td>
<td>24</td>
<td>2</td>
</tr>
<tr>
<td>/60-512</td>
<td>DOFL Data transformation**</td>
<td>28</td>
<td>9</td>
<td>61</td>
</tr>
<tr>
<td>/60-517</td>
<td>DOFL Shock tube**</td>
<td>139</td>
<td>41</td>
<td>489</td>
</tr>
<tr>
<td>/61-518</td>
<td>DOFL Reliability of binary counter**</td>
<td></td>
<td></td>
<td>144</td>
</tr>
<tr>
<td>/61-532</td>
<td>GU Vibrational energy levels for ionic molecules**</td>
<td>4</td>
<td>52</td>
<td>115</td>
</tr>
<tr>
<td>/61-533</td>
<td>U MD Datatrol computations**</td>
<td>9</td>
<td>392</td>
<td>70</td>
</tr>
<tr>
<td>/61-540</td>
<td>EDARS Edgewood Arsenal°</td>
<td>51</td>
<td>40</td>
<td>170</td>
</tr>
<tr>
<td>/61-542</td>
<td>HEW Student loan data</td>
<td></td>
<td></td>
<td>1140</td>
</tr>
<tr>
<td>/61-543</td>
<td>DOFL Fourier analysis°</td>
<td>16</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>/61-545</td>
<td>WEST Nuclear reactor design**</td>
<td></td>
<td></td>
<td>6788</td>
</tr>
<tr>
<td>/61-550</td>
<td>GWU Logistics research**</td>
<td>14</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>/61-552</td>
<td>DOFL Transistor data**</td>
<td>34</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>/61-561</td>
<td>OSR Zone refinements for quartz**</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Totals (Outside) 4,131 3,349 39,541

Total time for the quarter (MINUTES) 9,471 8,047 54,546

Total time for the quarter (HOURS) 158 134 909

* Problem programmed in the Computation Laboratory; production runs continued under direction of sponsor.

** Problem programmed by sponsor and run under his direction.

° Classified task.
Lectures and Technical Meetings

Note: In general, copies of papers or talks listed in this section are not available from the National Bureau of Standards. If and when a paper is to be published, it will be listed in the section of this report on Publication Activities.

Applied Mathematics Division Lectures

MORDELL, L. J. (St. Johns College, Cambridge University and University of Notre Dame) Dedekind sums. February 17.

Theory of Errors Colloquium

EISENHART, C. This series, open to members of the Bureau staff, aims to provide a thorough consideration of selected topics in the Theory of Errors that are especially pertinent to the calibration and basic measurements programs of the Bureau. The following subjects have been treated this quarter: (1) The postulate of direct measurement and the strong law of large numbers. January 12; (2) Some mathematical models of measurement processes. January 26; (3) The measurement of unprecision. February 23; (4) The probable error—never was what it used to be. March 9; (5) More on intervals of the form (\(\bar{x}-kS, \bar{x}+kS\)). March 23.

Papers and Invited Talks
Presented by Members of the Staff
at Meetings of Outside Organizations

Lectures and Technical Meetings

DAVIS, P. J. Weak theory convergence and its application to approximation. Presented at the Department of Mathematics, Georgetown University, Washington, D. C., January 6.

EISENHART, C. Precision and accuracy—experiment design aspects. Presented before the American Society for Quality Control, Metropolitan Section, Seton Hall University, South Orange, New Jersey, February 9. To fit or not to fit; that is the question... (1) Presented at the Statistics Seminar, Yale University, March 20. (2) Presented at the Statistics Colloquium, Harvard University, March 22.

ROSENBLATT, J. R. Statistical problems in colorimetry and paired comparison experiments. Presented before the Department of Statistics, Virginia Polytechnic Institute, Blacksburg, Va., February 23.

Lectures and Technical Meetings

Publication Activities

1. PUBLICATIONS THAT APPEARED DURING THE QUARTER

1.3 Technical Papers

The following papers appeared in J. Research NBS 65B (Math. and Math. Phys.), Jan-Mar 1961:

(3) Special types of partitioned matrices. E. Haynsworth. Pp. 7-12.

* * * * *

2. MANUSCRIPTS IN THE PROCESS OF PUBLICATION

2.2 Technical Notes, Manuals, and Bibliographies

(2) Fractional factorial designs for experiments with factors at two and three levels. To appear as Applied Mathematics Series 58.

2.3 Technical Papers

(2) Automatic screening of normal and abnormal electrocardiograms by means of a digital electronic computer. R. J. Arms with H. V. Pipinger and F. W. Stallman (Veterans Administration, Mt. Alto, and Georgetown University School of Medicine).

(8) Criteria for the reality of matrix eigenvalues. M. P. Drazin (RIAS) and E. V. Haynsworth. Submitted to a technical journal.
Publication Activities

(9) Combination of observations. C. Eisenhart. To appear as Chapter 7 in "Boscovich—Essays on His Life and Work", ed. by Launcelot Law Whyte.

(14) The range of a fleet of aircraft. A. J. Goldman. Submitted to a technical journal.

(15) Regions containing the characteristic roots of a matrix. E. V. Haynsworth. Submitted to a technical journal.

(22) A new approach to the mechanical syntactic analysis of Russian. I. Rhodes. To appear in Mechanical Translation.

Publication Activities

(26) Mean motion in conditionally periodic separable systems. J. Vinti. To appear in the Journal of Research, NBS, Sec. B.

Government regulations require the maintenance of up-to-date distribution lists for all periodicals. The form below is for your convenience to indicate necessary changes or corrections. Do not return this sheet if your present listing is correct. Please send to National Bureau of Standards, Applied Mathematics Division 11.0, Washington 25, D.C.

☐ REVISE AS INDICATED BELOW

☐ DELETE FROM DISTRIBUTION LIST

(Please print or type)

<table>
<thead>
<tr>
<th>From: PRESENT ADDRESS (A complete copy of the present name and address, as it appears on the envelope, MUST be listed here.)</th>
<th>To: CORRECT ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNATURE</td>
<td>DATE</td>
</tr>
</tbody>
</table>

24172—U.S.Dept.of Comm—DC—1961
THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front cover.

WASHINGTON, D.C.

Office of Weights and Measures.

BOULDER, COLO.

