NATIONAL BUREAU OF STANDARDS REPORT

 7192Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds

(Supplement to NBS Reports 6297, 6484, 6645, 6928, and 7093)

1 July 1961

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT
0300-11-03419
0302-11-03426
0307-11-03471
0501-11-05496
0903-11-09430
1501-11-15513
1504-11-15491

NBS REPORT
1 July 19617192

Preliminary Report on the Thermodynamic Properties of Selected Light-Element and Some Related Compounds

(Supplement to NBS Reports 6297, 6484, 6645, 6928, and 7093)

Sixth Technical Summary Report to the Advanced Research Projects Agency on the Thermodynamic Properties of Light-Element Compounds

Reference: ARPA Order No. 20-61

Important notice

NATIONAL BUREAU OF STA for use within the Government. E and review. For this reason, the whole or in part, is not authoriz Bureau of Standards, Washingtor the Report has been specifically p

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
accounting documents intended ibjected to additional evaluation isting of this Report, either in Office of the Director, National ie Government agency for which ies for its own use.

U. S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS

This is the sixth report on the current experimental, theoretical, and evaluative program, at the National Bureau of Standards, on the thermodynamic properties of selected light-olement and other compounds of primary interest in high-temperature research. The emphasis in the NBS work has been on the simpler substances-metals and alloys, a few of the oxidizer compounds, and especially the combustion products. The first part of the report discusses the accomplishments of the various NBS groups in the program during the past year and their plans for the coming year. The development of new apparatus and special techniques is fast apbroaching the stage where they can yield original data. A method recently developed in the program is described for the calibration, to an accuracy of 1 to 2%, of the electrical-energy input to an exploding wire.

During its first two years the program was limited in scope to the compounds of $\mathrm{Li}, \mathrm{Be}, \mathrm{Mg}, \mathrm{Al}$, and Ti with the elements $\mathrm{H}, \mathrm{O}, \mathrm{F}, \mathrm{Cl}, \mathrm{N}$, and C. During the past year practical considerations have made it desirable to expand the coverage to include (a) "mixed" systems of the simpler compounds of interest (principally, compounds containing pairs of the above metallic elements), and (b) compounds of a number of other elements (especially $\mathrm{Zr}, \mathrm{Hg}, \mathrm{Pb}, \mathrm{W}, \mathrm{K}, \mathrm{Br}, \mathrm{I}, \mathrm{B}$, and Si).

Several surveys of the existing thermodynamic data on the expanded ensemble of substances were initiated. These are up-to-date, but in most cases critical evaluation is still lacking. Preliminary results were given six months ago (in NBS Report 7093). The coverage in the present report includes: (a) the borates of $\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Ca}$, and Pb (with "best" values for the heats of formation of about 25); (b) heats of formation of "mixed" oxides (with data on about 25); (c) the heats of formation of inorganic fluorine compounds of all the elements (covering several hundred substances); (d) low-temperature heat-capacity data on various compounds containing $\mathrm{W}, \mathrm{Pb}, \mathrm{Br}$, or I (with discussions of about 20); (e) high-temperature heat-content data (references and temperature ranges for several hundred substances); and (f) phase relations, x-ray parameters, and heats of formation of intermetallic compounds in about 12 binary systems of the elements $\mathrm{Al}, \mathrm{Li}, \mathrm{Mg}, \mathrm{Si}, \mathrm{Ti}$, and Zr 。 Also included are tables of ideal-gas thermodynamic functions of $\mathrm{NF}_{2}, \mathrm{~N}_{2} \mathrm{~F}_{4}$, and (up to $10,000^{\circ} \mathrm{K}$) the single-charge positive ions of approximately 25 monatomic gases.

chaos W Becker
Charles W. Beckett
Assistant Division Chief for Thermodynamics
Heat Division
Page
Abstract ii
PART A. SUMMARY OF RESEARCH ACCOMPLISHMENTS AND PLANS FOR FUTURE WORK 1
INTRODUCTION 1
Metal Hydrides and Intermetallic Compounds 1
Oxidizer Compounds 2
Metal Fluorides and Chlorides 3
Metal Oxides, Hydroxides, and Oxyfluorides. 4
Other Substances; Additional Tables 5

1. THERMOCHEMISTRY. 6
2. FLUORINE CALORIMETRY 6
3. LOW-TEMPERATURE CALORIMETRY. 8
4. HIGH-TEMPERATURE CALORTMETRY 10
5. HYDRIDES AND INTERMETALLIC COMPOUNDS OF LIGHT ELEMENTS 12
6. LIGHT-ELEMENT EQUATION OF STATE. 13
7. SHOCK WAVE DETERMINATION OF THERMODYNAMIC DATA 16
8. HIGH-TEMPERATURE MICROWAVE SPECTROSCOPY. 16
9. HALIDE SOLID-VAPOR EQUILIBRIA (TRANSPIRATION METHOD) 17
10. VAPORIZATION OF REFRACTORY SUBSTANCES. 20
PART B. THERMODYNAMIC PROPERTIES OF LIGHT-ELEMENT COMPOUNDS 23
Chap. 1. PRELIMINARY REPORT ON THE CALORIMETRIC CALIBRATION OF THE ELECTRICAL ENERGY MEASUREMENT IN AN EXPLODING WIRE EXPERDMENT
(by D. H. Tsai and J. H. Park). 23
11. Introduction 23
12. Calorimetric Calibration 24
Requirements for Calorimeter 25
Fig. 1: Schematic Diagram of Experimental Apparatus. 26
Fig. 2: Balanced Cable Connections for Reducing Ground Current Effect. 26
Requirements for Current and Voltage Measurements 27
13. Experimental Apparatus and Instrumentation 28
14. Results. 30
Fig. 3: Typical Current and Voltage Records. 31
15. Conclusions 32
References 32
Chap. 2. EXPLANATORY NOTES FOR TABLES OF IDEAL-GAS THERMODYNAMICS FUNCTIONS OF N $\mathrm{N}_{2} \mathrm{~F}_{4}$ AND NF 2 (by D. R. Lide, Jr.) 33
References 34

TABLE OF CONTENTS (continued)

Chap. 3. ALLOYS AND INTERSTITIAL COMPOUNDS OF ALUMINUM,
LITHIUM, AND MAGNESIUM WITH EACH OTHER AND WITH
SILICON, TITANIUM, AND ZIRCONIUM

(by Thomas W. Mears) 35
Introduction 35
Aluminum-Lithium System 35
Aluminum-Magnesium System 36
Aluminum-Silicon System. 37
Aluminum-Titanium System 37
Aluminum-Zirconium System 38
Lithium-Magnesium System 39
Magnesium-Silicon System 39
Magnesium-Titanium and Magnesium-Zirconium Systems 39
References 41
Table 1: Percent increase in volume of alloy or intermetallic as compared to elements 43
Fig. 1: Phase Diagram of $\mathrm{Mg}-\mathrm{Al}$ System 45
Fig. 2: Change of "a" Lattice Spacing with Percent Mg in Al Solution 46
Fig. 3: Variation of "a" Lattice Constant and Density with Change of Mg Concentration in Al Solution. 47
Fig. 4: Variation of "a" and "c" Lattice Spacings with Variation of Al Concentration in Mg Solution. 48
Fig. 5: Variation of Crystal Lattices with Concentration of Al in Ti Solution. 49
Chap. 4. LITERATURE SURVEY ON LON-TEMPERATURE HEAT CAPACITY AND ENTROPY AT $298.15^{\circ} \mathrm{K}$ OF W AND Pb AND SOME OF THEIR COMPOUNDS AND OF THE BROMIDES AND IODIDES OF Li, Be, Mg, AND Al
(by George T. Furukawa) 50
Introduction 50
Substances Containing W. 51
Substances Containing Pb 51
Substances Containing 54
Substances Containing 54
Substances Containing Mg 54
Substances Containing Al 54
Table 1: Entropy of Same Compounds of Tungsten and of Lead in the Solid State. 55
Table 2: Entropy of the Bromides and Iodides of $\mathrm{Li}, \mathrm{Be}, \mathrm{Al}$, and Mg 55
References 56
TABLE OF CONIENTS (contimed)
Page
Chap. 5. A RECENT SURVEY OF REPORTED HIGH-TEMPERATURE HEAT CONTENTS AND HEAT CAPACITIES
(by Thomas B. Douglas and Willis R. Thurber). 60
Introduction 60
Substances Covered, and Order of Listing. 60
Sources of Information Covered. 61
Further Comments on Table 1 61
Heat Content, Melting Point, and Heat of Fusion of Beryllium Oxide 62
Table l: Reported Investigations of the High- Temperature Heat Contents and Heat Capacities of Selected Substances. 63
Al Compounds 63
Be Compounds 64
B Compounds. 65
Hf Compounds 66
Pb Compounds 66
Li Compounds 67
Mg Compounds 68
Hg Compounds 70
K Compounds. 70
Ti Compounds 71
W Compounds. 72
Zr Compounds 73
References. 74
Chap. 6. THERMODYNAMIC PROPERTIES OF BORATES
(by William H. Evans) 77
$\mathrm{Li}_{2} \mathrm{O}_{-2} \mathrm{~B}_{2} \mathrm{O}_{3}$ System. 77
$\mathrm{Na}_{2}-\mathrm{B}_{2} \mathrm{O}_{3}$ System 77
$\mathrm{K}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3}$ System 78
$\mathrm{CaO}-\mathrm{B}_{2} \mathrm{O}_{3}$ System 79
$\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}$ System 80
Chap. 7. HEATS OF FORMATION OF BINARY MIXED-OXIDE SYSIEMS OTHER THAN BORATES
(by R. F. Walker, E. S. Newman, and T. B. Douglas) 82

1. Introduction. 82
2. Heats of Formation of Binary Oxides 82
Table 1: Heats of Formation of Some Mixed Oxides 83
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{MgO}$ 84
$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ System 84

TABLE OF CONTENTS (continued)
Page
$\mathrm{Al} \mathrm{O}_{3}-\mathrm{BeO}$ System 86
$\mathrm{Al}^{2} \mathrm{O}_{3}-\mathrm{SiO}_{3}$ System
$\mathrm{Al}^{2} \mathrm{O}_{3}-\mathrm{SiO}_{3}$ System 87 87
$\mathrm{Al}_{2}^{2} \mathrm{O}_{3}^{3}-\mathrm{Li}_{2} \mathrm{O}$ and $\mathrm{Li}_{2} \mathrm{O}-\mathrm{SiO}_{2}$ Systems 87
3. Possiblê Measuring Techniques for
Determining Additional Heats of Formation 87
References 89
Chap. 8. THE HEATS OF FORMATION OF INORGANIC FLUORINE COMPOUNDS-- A SURVEY
(by George T. Armstrong and Leslie A. Krieger). 92
Abstract. 92

1. Introduction 93
2. Scope and Completeness of Survey 93
3. Arrangement of the Tables 98
4. Evaluation of the Data 100
5. Status of Data on the Heats of Formation of Fluorine Compounds 101
6. Some problems and New Developments in the Calorimetry of Fluorine Compounds 104
7. Symbols and Abbreviations Used in Tables 1-8 108
Table 1. Fluorine 110
8. Binary Fluorides 111
9. Ternary Fluorides 129
10. Quaternary and Higher Fluorides 142
11. Aqueous Fluoride Ion 152
12. Binary Aqueous Species 152
13. Ternary Aqueous Species 158
14. Quaternary and Higher Aqueous Species 160
15. Bibliography 161
Page
APPENDIX A. IDEAL GAS THERMODYNAMIC FUNCTIONS
(by Joseph Hilsenrath and William H. Evens). 197
Introduction. 197
References. 198

Table	Molecule	Page	Table	Molecule	Page
A-2-1	He^{+}	199	A-16-1	S^{+}	227
A-3-1	Li^{+}	201	A $\leqslant 17-1$	Cl^{+}	229
A-4-1	Be^{+}	203	A-1.8-1	A^{+}	231
A-5-1	B^{+}	205	A-70	NF_{2}	233
A-6-1	C^{+}	207	A-71	$\mathrm{N}_{2} \mathrm{H}_{4}$	235
A-7-1	N^{+}	209	A-72-1	Ti ${ }^{+4}$	237
A-8-1	0^{+}	211	A-73-1	Br^{+}	239
A-9-1	F^{+}	213	A-7a-1	W^{+}	241
A-10-1	Ne^{+}	215	A-75-1	Zr^{+}	243
A-11-1	Na^{+}	217	A-76-1	Mo^{+}	245
A-12-1	Mg^{+}	219	A-77-1	I^{+}	247
A-13-1	Al^{+}	221	A-78-1	K^{+}	249
A-14-1	Si^{+}	223	A-79-1	Pb^{+}	251
A-15-1	P^{+}	225	A-80-1	Hg^{+}	253

APFENDIX B. THERMODYNAMIC FUNCTIONS OF THE HYDRATES OF SODIOM,
POTASSIUM, AND AMMONIUM PENTABORATES
(by George T. Furukawa and Martin L. Reilly) 255
Introduction. 255
Table $\mathrm{B}-55: \mathrm{NaB}_{5} \mathrm{O}_{8} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ 256
Table B-56: $\mathrm{KB}_{5} \mathrm{O}_{8}{ }^{\circ} 4 \mathrm{H}_{2} \mathrm{O}$ 258
Table B-57: $\mathrm{NH}_{4} \mathrm{~B}_{5} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. 260
8

INTRODUCTION

From the first the NBS program was planned and implemented to evaluate and provide, so far as possible, all the major thermodynamic properties contributing to chemical propulsion under equilibrium conditions. The first phase of the program, now largely completed, is the evaluation of existing data and the computation of the best tables possible therefrom. The second phase, active from the beginning and now the principal one, is the measurement of new data, both with existing apparatus and with new apparatus that has had to be developed.

With the aim of maximizing the number of important chemical systems for which there will exist a complete set of satisfactory thermodynamic properties, the experimental program is with few exceptions being deliberately limited to the simpler compounds involving $\mathrm{Be}, \mathrm{Al}, \mathrm{Li}, \mathrm{Zr}$, $\mathrm{H}, \mathrm{F}, \mathrm{O}, \mathrm{Cl}$, and N (potential fuel components such as hydrides and free metals, potential oxidizer components, and resulting combustion products such as metal fluorides and oxides). As the data status on two-element compounds has improved, the NBS program has been shifting its scope of research to include an increasing number of the numerous compounds of "mixed" type (such as intermetallic compounds, double fluorides, and oxyfluorides) which are inevitably important when, as is often the case, the fuel or oxidizer contains two oxidizable or two oxidizing elements.

The behavior of a given substance in propulsion depends on the simultaneous operation of a number of complementary thermodynamic properties, with no regard to the different techniques by which these properties are separately measured in the laboratory. For this reason the following summary of plans for further NBS work during the next fifteen months is subdivided by class of substance instead of by property or method of measurement. In this summary, the plans for future work are described in relation to the most important data gaps believed to exist at present. Following the summary is a more detailed account of the accomplishments during the past year of each working group, and of its plans for the next fifteen months.

Metal Hydrides and Intermetallic Compounds

Except with discriminating methods like spectroscopy, accurate measurements are of limited value except on samples which are either highly pure or else well characterized. This problem has been most acute with some of the metal hydrides. A series of NBS measurements of the heat of formation of one hydride, probably the most accurate presently in existence for this compound, is nearly completed and will be extended only in the event that better samples become available. It is planned to make a systematic survey of the available data on light-metal hydrides to see
where further research is most needed. Those of next priority seem to be the "two-metal" hydrides. Previously unknown entropies of relatively stable hydrides will be available through NBS low-temperature calorimetry almost completed on LiH and LiAlH_{4}, and were recently calculated for several zirconium-hydride compositions from earlier NBS work in another program.

The four metals being emphasized (Li , Be, Al, Zr) form six possible pairs, but the available data indicate that $B e$ forms no intermetallic compounds or solid alloys with Al or Li. Upon completion of the current survey, priority will be assigned to two of the remaining four pairs ($\mathrm{Al}-\mathrm{Zr}$ and $\mathrm{Al}-\mathrm{Li}$). The corresponding intermetallic compounds will be studied, with analysis and possibly density measurements on those samples which can be procured.

Oxidizer Compounds

Accurate heats of formation were measured earlier in the program for several solid perchlorates (those of armonium, lithium, sodium, and potassium), and that of nitronium perchlorate ($\mathrm{NO}_{2} \mathrm{ClO}_{4}$) is expected to be completed soon. Proposed plans for subsequent work on a few additional compounds which may be classed as oxidizers include not solids, but rather, typical simple substances in the N-O-F system. There are several practical reasons why their heats of formation need careful determination, especially the following: (1) In the absence of actual data, the heats of formation of larger molecules containing N-F or $0-F$ bonds must often be estimated and compared using bond energies derived from the simpler molecules. (2) For many of the simpler compounds in the N-O-F system, no data exist or those that do exist disagree seriously--e.g., the values for OF_{2} cover a range of 14 kilocalories per mole.

It is planned that after the combustion calorimetry on aluminum and beryllium in fluorine discussed below have been completed, the heat of formation of the gas OF_{2} will be measured by flame calorimetry. However, if a sample of OF_{2} is unavailable the compound NOF may be substituted. Two important simple N-F compounds are NF_{3} and $\mathrm{N}_{2} \mathrm{~F}_{4}$. Their heats of formation were measured at the Bureau in other programs, which will sponsor further measurements on $\mathrm{N}_{2} \mathrm{~F}_{4}$ (heat of formation, low-temperature heat capacity and entropy, and the $\frac{4}{m i c r o w a v e ~ s p e c t r u m ~ o f ~ t h e ~} \mathrm{NF}_{2}$ produced by its dissociation) when purer samples become available. However, shockwave techniques have already reached a state of refinement at the Bureau, and the present program plans to include during the next year an extension of this method to the rate of dissociation of a simple $N-F$ compound such as $\mathrm{N}_{2} \mathrm{~F}_{4}$ or NF_{3}, with accompanying spectroscopic determinations of the composition.

Metal Fluorides and Chlorides

The planned continuation of this phase of the experimental program is based on priority of materials to be measured in the order (a) onemetal fluorides (as AlF_{3}), (b) two-metal fluorides (as Li3 AlF_{6}), and (c) chlorides (as BeCl_{2}). Work on these substances involves four different apparatuses and methods already in use to measure heats of formation, entropies, and heat capacities of solids (and liquids), and three in the last stages of testing before being ready for measurements to define the composition and the heat and free energy of formation of the corresponding vapors. While individual problems (such as the tendency of BeF_{2} to solidify as a glass, and the common complexity of most of the metal-halide vapors) create difficulties, the above techniques are virtually capable of giving a complete set of thermodynamic properties for this class of substances.

The one-metal fluorides and chlorides whose heats of formation have been seriously in doubt have been $\mathrm{AlF}_{3}, \mathrm{BeF}_{2}$, and $\mathrm{BeCl}{ }_{2}$. Earlier experimental work in the program provided what seems to be an accurate value for BeCl_{2}, and is expected to do so very soon for AlF_{3}. The existing published values for BeF_{2} cover a range of 17 kilocalories per mole. It is planned to measure the heat of formation of this compound by direct combustion of the metal in fluorine, with the prospect that the technique successfully developed earlier for AlF_{3} will yield so near complete combustion as to give an unambiguous result for BeF_{2}.

The low- and high-temperature heat capacities of the one-metal fluorides and chlorides are generally well-known except for those of beryllium. (The accepted high-temperature results for LiF and LiCl resulted from NBS measurements several years ago.) Low-temperature measurements are planned on AlCl_{3}, and also on BeF_{2} and BeCl_{2} if samples can be obtained. Heat-capacity measurements on some two-metal fluorides also are tentatively planned: At low temperatures, on $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ or $\mathrm{Li}_{2} \mathrm{BeF}_{4}$; at high temperatures, $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ is expected to be completed soon. These mixed fluorides will be synthesized by melting together their components unless, as seems likely, an external source of pure samples becomes available. Although the important $\mathrm{AlF}_{3}-\mathrm{ZrF}_{4}$ system is believed to form no stable "mixed-metal" compound, an effort is being made to verify this fact.

With the above types of thermal data avallable, the vapor-pressure curves form the most reliable source of the heats of formation of the vapors of such relatively involatile compounds as the metal halides when the vapor composition is unambiguous or can be determined independently. A new vapor-pressure apparatus of the transpiration type, now being tested, will be used. The vapor pressure of BeF_{2} and LiF have been measured with fairly good precision elsewhere, although the composition of LiF vapor is complex and still in considerable doubt. Measurements are planned on AlF_{3} in inert atmospheres and also in an atmosphere of HF, to detect and measure the possible formation of Al-H-F gas species. If the latter search gives negative results, it is planned to make measurements on ZrF_{4}, because there are serious discrepancies in the existing data.

The extension of the thermodynamic properties of metal-halide vapors to very high temperatures requires an accurate knowledge of their molecular structure, and for this purpose a microwave spectrometer which will operate up to about $1200^{\circ} \mathrm{K}$ is being constructed. If high-temperature tests in the near future show as satisfactory sensitivity as the instrument has shown at room temperature, measurements will be made on fluorides and chlorides of aluminum and beryllium. Diatomic species such as AlF are believed to be within the range of the apparatus, and the spectra of more complex molecules such as AlClF_{2} and corresponding beryllium species will be sought for study.

Metal Oxides, Hydroxides, and Oxyfluorides

The heats of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}, \mathrm{Li}_{2} \mathrm{O}$, and LiOH are believed to be known reliably. It is planned, however, to measure that of BeO , since it is presently uncertain by several kilocalories per mole. Although some attention has been devoted to the possibility of obtaining values for the "two-metal" oxides (such as $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{BeO}$, for which a rather uncertain value is available by an indirect method), no plans were made for such work owing to the apparent lack of straightforward techniques and the priority of other tasks. The entropies and heat capacities of the onemetal oxides are generally well known to near the respective melting points. It is planned to measure the heat capacity of BeO from 1200° to $1800^{\circ} \mathrm{K}$, and that of $\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$ from room temperature to $1800^{\circ} \mathrm{K}$, as recent attempts to procure pure samples of macroscopic particle-size promise to be successful. The entropies of these two compounds are in doubt, so that heat-capacity measurements may be carried out over the low-temperature range too.

The properties of oxide, hydroxide, and oxyfluoride gaseous species of the above metals are unknown or far more uncertain, and several apparatuses are being developed to measure them at the high temperatures required. High priority will be given to obtaining results with a newly acquired mass spectrometer, with investigation first of the Be-0-F system. If beryllium oxyfluoride molecules are detected, it should be possible to evaluate their relative importance at different temperatures and pressures. Since such gaseous systems will almost certainly contain also $\mathrm{Be}-0$ and $\mathrm{Be}-\mathrm{F}$ species, it is planned to perform similar complementary experiments on BeF_{2} alone and BeO alone. Some work on these two compounds has appeared in the literature; further work on BeF_{2} will serve to check the apparatus and method, and work on BeO is expected to be more reliable than the earlier results by allowing the vapors to diffuse from relatively inert rhenium containers. If definitive results are obtained on the $\mathrm{Be}-0-\mathrm{F}$ system soon enough, additional tasks undertaken will be (1) measurement of the rate of vaporization of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in vacuo and in the presence of water vapor under pseudo-equilibrium conditions, using the existing arc-image furnace, and (2) mass-spectrometric studies of the $\mathrm{Al}-\mathrm{O}-\mathrm{F}$ system. Important gaseous aluminum-hydroxide species would undoubtedly be present in the former system.

The exploding-wire experiment is another method currently under development to study metal-oxide gas systems (such as $\mathrm{Al}-0$ and $\mathrm{Zr}-0$) at still higher temperatures $\left(2000^{\circ}-6000^{\circ} \mathrm{K}\right)$ and up to pressures as high as 100 atmospheres. The apparatus has been built and is now in operation, but before measurements on the extremely transient and unusually complex hot system can be converted into reliable thermodynamic data, the detailed instrumentation and conditions of operation must be carefully investigated along several separate lines. High-speed photographic observations and pressure measurements are now well in hand, and during the past year a major goal was achieved when the accuracy of measuring the total electrical energy entering an exploding wire was verified. Two independent types of comparison with the heat energy produced gave agreement to better than 2 percent, which is considered unusually good for such short time intervals (a few microseconds). The additional phases of measurement also have been under study, but need much more work which is expected to occupy the next year. These phases are as follows: (1) Time- and space-resolved vapor-density measurements will be undertaken with X-rays (both soft and hard to accommodate systems containing different metals). (2) The metal vapor and surrounding gas must mix thoroughly. The hydrodynamic and diffusion aspects of this problem are being investigated theoretically. The experimental approach will seek empirically the conditions of power input, wire shape, etc. needed for uniform explosion, using photographic, X-ray, and chemical analytical criteria. (3) To determine the chemical composition of the vapor, it is planned to modify an existing type of grating spectrograph to provide adequate time and space resolution.

Other Substances; Additional Tables

Light-metal compounds containing $\mathrm{B}, \mathrm{N}, \mathrm{C}, \mathrm{Mg}$, and Ti will receive considerably less priority than those discussed above. Among the nitrides and carbides, $\mathrm{Be}_{3} \mathrm{~N}_{2}$ and $\mathrm{Al}_{4} \mathrm{C}_{3}$ are two of the most important lacking heatcapacity data, and there are tentative plans for a series of measurements on each. In addition, heats of reaction of certain beryllium alkyls are planned in order to determine the strength of the $\mathrm{Be}-\mathrm{C}$ bond. Methods for preparing pure samples were reviewed earlier in the program. The thermodynamic properties of numerous non-metal boron compounds have been measured and reviewed thoroughly in earlier programs at the Bureau; and in a new program supported by the Air Force the heats of formation of the borides of aluminum and other metals will be measured by fluorine calorimetry. Tables of the thermodynamic functions of approximately 125 solids, liquids, and gases have been computed and issued earlier in the present program, and those for which better data become available will be revised.

1. THERMOCHEMLSTRY

Experimental Thermochemical Studies:

Measurement of the heat of hydrolysis of nitronium perchlorate, $\mathrm{NO}_{2} \mathrm{ClO}_{4}$, has been started. These results will be combined with data previously determined in this Laboratory on other perchlorates to yield the heat of formation of nitronium perchlorate.

Future plans include measurements on the heat of solution of BeCl_{2} in order to resolve the apparent discrepancy in the heat of formation of the solid compound between the work of this Laboratory and unpublished data from Dow Chemical Company. Planned for measurement are also heats of reaction of certain beryllium alkyls to determine the strength of the Be-C bond, and the heat of formation of beryllium oxide.

Tables of Thermodynamic Properties and of Heats of Formation:

The available thermochemical and thermodynamic data on the compounds of boron with hydrogen, oxygen, fluorine, chlorine, and bromine were reviewed, and a revised set of selected "best" heats of formation prepared. In addition, 49 tables of thermodynamic functions were calculated for individual boron compounds as either ideal gases or condensed phases. A critical discussion of the data used was included, to serve as a guide to the reliability of the values, and to indicate areas where additional work is needed.

Future activities of the compilation group will be directed toward a comprehensive review of the available thermochemical data for a complete revision of NBS Circular 500. This will include all of the compounds of the elements of interest, as part of the systematic coverage of the data. Special reports covering particular substances will be prepared as the data are reviewed.

2. FLUORINE CALORIMETRY

The heats of combustion of teflon and of aluminum-teflon mixtures in fluorine have been determined in a series of experiments. At the present, only preliminary values can be cited for the heats of these reactions as some calculations remain to be made and some of the corrections are not completely under control. The energy in the bomb process (constant volume) for the reaction of fluorine with the teflon used was found to be $10.344 \mathrm{kj} / \mathrm{gram}$ as the mean of five experiments with a standard
deviation of the mean of $0.007 \mathrm{kj} / \mathrm{gram}$. For the se reactions fluorine was injitially present at about 21 atm pressure and the product was CF_{4} with no higher fluorocarbons being observed. About 4 grams of teflon in the form of a powder were burned in each experiment.

For the combustion of aluminum-teflon mixtures, powdered materials were mixed in a proportion of about 1 part aluminum to 4 parts teflon by weight, the amounts being sufficient to cause a total heat release of about 43 kj . In these experiments, the teflon is burned essentially completely to CF_{4} - The solid product $\left(\mathrm{AlF}_{3}\right)$ is white except for scattered traces of gray material. It is found on all the bomb walls, indicating that at least part of the reaction occurs in the vapor phase. The product is a fine powder, of which the particle size has not been determined. The most successful combustions have been carried out with the pellet of aluminum-teflon mixture in a shallow recess in a nickel or monel plate resting on the bottom of the bomb. Rapid thermal equilibration was found to occur in this system, whereas in some earlier arrangements, the equilibration had been very slow. Using the energy of combustion of teflon described above, the energy of combustion of aluminum in fluorine under the bomb conditions (i.e., constant volume, and 21 atm of F_{2}) is in the neighborhood of $1,490 \mathrm{kj} /$ mole ($357 \mathrm{kcal} / \mathrm{mole}$). Because of uncertainties in some of the corrections, at the time of writing, an uncertainty of about one percent must be attached to this value. The principal uncertainty appears to be in a determination of the heat to be attributed to combustion of the fuse. A nichrome fuse with aluminum supports was used, and combustion of the fuse was not complete in every case. The quantity of reaction is based upon the sample weight. Our preliminary value, which is the average of six measurements, agrees with that determined by Gross and co-workers within the experimental errors as known at this time.

Material of value to the work of this project in the critical evaluation of heats of formation of fluorine compounds, has been obtained in an independent project, in which a complete survey of material related to the heats of formation of inorganic fluorine compounds of all elements has been made, covering the period since 1948. That is, it begins at the close of the literature compiled for NBS Circular 500.

The combustion of aluminum in fluorine and the determination of the heat of formation of aluminum fluoride has proceeded to a point where it can be stated definitely that the work will be completed by September 30, 1961. The study of beryllium combustion will then begin, and the heat of formation of beryllium fluoride will be determined by a similar approach. The heat of formation of lithium fluoride (crystal) is not subject to uncertainties as large as those which we have named, and we will not expect to determine it. If time and personnel assignments permit, we shall undertake a study of the heat of formation of $\mathrm{OF}_{2}(\mathrm{~g})$ or of $\operatorname{NOF}(\mathrm{g})$, depending partly upon the availability of samples.

3. LOW-TEMPERATURE CALORIMETRY

The primary functions of the low-temperature heat-capacity phase of the program are the accurate measurement of the heat capacity of substances of interest in the condensed phases from about 15° to $400^{\circ} \mathrm{K}$ and the calculation of the thermal functions from the results of the measurements. During the period July 1, 1960 to July 31, 1961, the efforts of the group have been directed also, with the increase in the number of elemental species important to the program, to literature survey. Investigations of methods of preparation and of sources of procurement were made of those substances where heat data were lacking or considered questionable. Low-temperature heat-capacity data were analyzed wherever available and joined smoothly with high-temperature heat-content data, and the thermal functions were calculated from the results of the analysis.

Measurements were completed on a high-purity (99.9 percent) BeO sample in the form of pellets prepared by compressing and sintering a powder of "sub-micron" size. The material did not sinter as well as materials of lower purity are known to sinter. The pellets were very fragile and broke readily into fine particles. The analysis of the heat data showed significant deviation from results previously published. In order to ascertain whether the difference is caused by the effect of particle size, further measurements are planned on BeO of larger particle size as soon as a sample becomes available.

Gross (sample-plus-container) measurements on LiAlH 4 have been completed from 15° to $320^{\circ} \mathrm{K}$, and the measurements on the empty container are in progress. Similar to LiBH , no solid-phase transition was observed. Heat measurements on $\mathrm{K}_{4} \mathrm{H}_{4}$, if available, would be interesting since KBH_{4} as well as other alkali borohydrides are known to have solid phase transitions. The gross measurements on a LiH sample have also been completed. Measurements on the empty container are expected to start soon. Apparatus was designed for the purification of AlCl_{3} and for the subsequent transfer in the liquid phase to a platinum sample container. The purification of AlCl_{3} is in progress.

Recently published low-temperature heat-capacity data on Li and LiCl were analyzed and revised tables of their thermal functions were obtained. Analysis and calculation of thermal functions were extended to the following compounds: $\mathrm{TiO}, \mathrm{Ti}_{2} \mathrm{O}_{3}, \mathrm{Ti}_{3} \mathrm{O}_{5}, \mathrm{TiO} 2$ (rutile and anatase), $\mathrm{Zr}, \mathrm{ZrO}_{2}, \mathrm{ZrN}$, and ZrCl_{4}. These tables were issued in NBS Report No. 7093 (Jãnuary 1, 1961). ${ }^{4}$

The phase behavior of binary systems of $\mathrm{Li}, \mathrm{Al}, \mathrm{Be}, \mathrm{Mg}$, and Zr fluorides and chlorides was investigated preparatory to possible procurement of mixed binary compounds of these halides for heat measurements. The results of this study were given in NBS Report No. 7093. Literature survey of heat data has been extended to compounds of lead and tungsten, and these results are given elsewhere in this report.

During the next year heat-capacity measurements in progress on LiH and LiAlH_{4} will be completed. Measurements will be completed on AlCl_{3} which is now being prepared for the measurements. A sample of BeO of large crystal size will be investigated whenever it becomes available. Measurements will also be made on an $\mathrm{Al}_{4} \mathrm{C}_{3}$ sample now on hand. Depending upon the complexity of each task about two to four of the following substances are planned for study:
a) Li3 HAFF_{6}. This substance may be prepared by heating stoichiometric portions of LiF and AlF_{3} to a temperature above the melting point of LiF ($848^{\circ} \mathrm{C}$). The melting point of Li3 AlF_{6} is $790^{\circ} \mathrm{C}$. The subsequent cooling of the melt should yield crystaline $\mathrm{Li}_{3} \mathrm{AlF}_{6}$. To save time it is hoped that this material could be prepared elsewhere for us. Meanwhile, samples of AlF_{3} and LiF will be obtained for possible preparation of $\mathrm{Li}_{3} \mathrm{AlF}_{6}$. A furnace for this purpose has been obtained.
b) BeCl_{2}. A group willing to supply a vacuum-sublimed sample free of $\mathrm{AlCl}_{3}, \mathrm{FeCl}_{3}$, and BeO was located. As soon as the total purity of the sample that group intends to supply can be firmly established, a sample will be purchased.
c) BeF2. The commercial process used to obtain BeF_{2} by thermal decomposition of $\left(\mathrm{NH}_{4}\right) \mathrm{BeF}_{4}$ at about $1000^{\circ} \mathrm{C}$ yields a glassy material. Sublimation of BeF_{2} and decomposition of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$ below the melting point of $\mathrm{BeF}_{2}\left(548^{\circ} \mathrm{C}\right)$ are known to yield crystalline BeF2. Crystalli-
 crystalline BeF_{2}. A possible source of crystalline BeF_{2} is being contacted.
d) $\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$. Work is in progress at NBS to prepare this material, probably by heating a stoichiometric mixture to about $1900^{\circ} \mathrm{C}$.
e) $2 \mathrm{LiF} \cdot \mathrm{BeF}_{2}$. This material can be prepared by heating a stoichiometric mixume to about 500° to $600^{\circ} \mathrm{C}$. Efforts are being made to have a sample prepared. If unavailable, the substance will be prepared in the furnace mentioned earlier. Samples of LiF and BeF_{2} are available.
f) $\mathrm{AlF}_{3}-\mathrm{ZrF}_{4}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$. Compounds of these binary systems are not knowno Eutectic nixtities of these systems may be investigated.
g) $\mathrm{Be}_{3} \mathrm{~N}_{2}$ and $\mathrm{Li}_{3} \mathrm{~N}$. These substances can be prepared directly from the elements. Efforts will be made to prepare $\mathrm{Be}_{3} \mathrm{~N}_{2}$ and, if time permits, $\mathrm{Li}_{3} \mathrm{~N}$ for heat measurements.
h) Others. The interest of the program has extended to compounds of $\mathrm{K}, \mathrm{Br}, \mathrm{I}, \mathrm{Hg}, \mathrm{Pb}$, and W . Possible heat measurenents on some of these compounds are being considered with, however, a low priority in mind.

4. HIGH-TEMPERATURE CALORTMETRY

These measurements supplement low-temperature calorimetry in providing enthalpy-temperature data on which the thermodynamic functions of solids and liquids are based and, in many cases, estimated by extrapolation to still higher temperatures if the actual data are reliable. In contrast to the work at low temperatures, the high-temperature calorimetry conducted in the present program uses the "drop method" exclusively. The two available apparatuses are adapted to two adjoining temperature ranges (300° $1200^{\circ} \mathrm{K}$ and $1200^{\circ}-1800^{\circ} \mathrm{K}$). Although some work was done with both apparatuses during the past year, no new final data were obtained owing to difficulties of the three most formidable types commonly encountered in high-temperature measurements of this kind. These three problems; which are discussed below under separate headings, are believed to be under sufficient control for reliable measurements soon.

Finding Inert Container Materials:

Measurements on $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ over the range $273^{\circ}-1200^{\circ} \mathrm{K}$ were undertaken. Since it had proved difficult to procure a sample of this congruently melting compound, samples were synthesized by melting together, directly in the sealed calorimetric container, high-purity LiF and sublimed AlF_{3} in stoichiometric proportions. The thermodynamic properties indicate that a silver container would be inert to the sample. The apparatus did not permit exceeding the high melting point of AlF_{3}. But there was good reason to believe that in a reasonable time at $1173^{\circ} \mathrm{K}$ this solid would completely dissolve in the molten LiF to form the pure liquid mixed fluoride, and that completion of this process would be verified by lack of upward drift with time of subsequent enthalpy measurements, owing to the considerable heat of fusion of aluminum fluoride.

After a few hours of such heating, three subsequent enthalpy measurements at the same temperature showed no appreciable drift and thus indicated success in forming the pure sample. However, a welded seal of the silver container opened, so that a considerable amount of the sample escaped by vaporization during each run, making the corrections too large to be reliable. A Pt-10\%Rh container, next tried, was tight for awhile, but sprang a leak before any measurements could be made. This parallels a report in the literature that this alloy failed to contain molten $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ above $1373^{\circ} \mathrm{K}$, as well as earlier difficulties in this laboratory in containing molten NaOH , and is believed to be due to intergranular penetration of the metal without the occurrence of chemical corrosion. Further work with $\mathrm{Li}_{3} \mathrm{AlF}_{6}$ has been postponed till a pre-formed sample can be procured that requires no prolonged heating in the calorimetric apparatus.

Accurate Measurement of Sample Temperatures in the Furnace:

This is no problem with the lower-temperature apparatus, owing to the large isothermal region afforded by a massive silver core. In the case
of the higher-temperature furnace, where silver cannot be used for this purpose, an alumina insert was procured and installed in the center of the core to reduce to 1 mm or less the gap between wall and suspended sample. While no tests of the modified arrangement have yet been made, it is believed that the improved heat conduction will hold the sample much closer to the measured wall temperature than earlier tests had shown.

During the past year this apparatus (for enthalpy measurements up to $1800^{\circ} \mathrm{K}$) was described in very extensive detail in an NBS publication.* The top of the ice calorimeter had been constructed of an $\mathrm{Fe}-\mathrm{Co}-\mathrm{Ni}$ alloy to approximate the thermal expansion of the glass container, but on standing for many months in ice or cold water, this alloy began to corrode seriously. The rate of corrosion was recently reduced considerably by the well-known expedient of setting up a permanent electrical potential which keeps the alloy cathodic.

Procurement and Analysis of Pure Samples:

The availability of pure samples, or accurately analyzed ones whose impurities can be corrected for, is necessary for accurate measurements. The NBS Applied Analytical Research Section has recently been able to begin the careful analysis of samples of AlF_{3} and $\mathrm{Al}_{4} \mathrm{C}_{3}$. An extensive search was recently made for sources of the best samples of the substances listed in the next section. Members of the Reactor Chemistry Division, Oak Ridge National Laboratory, have kindly offered to assist so far as possible in the problem of obtaining pure samples of metal fluorides and mixed metal fluorides for this program. In a long-term program of their own they have had extensive experience in determining the exact phase relations of metal fluoride systems, and may be able to make a few tests soon for the existence of stable mixed fluorides in some of the heretofore uninvestigated systems of primary chemical-propulsion interest. In addition, the Oak Ridge National Laboratory has recently been able to produce BeO of relatively large particle size which may be available on a limited scale for NBS measurements. The NBS Engineering Ceramics Section is cooperating by investigating alternative methods of preparing the pure mixed oxide $\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$ from the two binary oxides, with x-ray examination as a criterion of complete compound formation. It appears feasible to use similar tests to look for compound formation in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ system.

[^0]If present tests of apparatus performance progress as expected, the enthalpy of $\mathrm{Al}, \mathrm{C}_{3}$ over the range $273^{\circ}-1200^{\circ} \mathrm{K}$ will be measured within the next three months. The high-temperature measurements of enthalpy planned for the following year consist of $\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\left(273^{\circ}-1800^{\circ} \mathrm{K}\right)$, $\mathrm{Li}_{3} \mathrm{AlF}_{6}\left(273^{\circ}-1200^{\circ} \mathrm{K}\right)$, and $\mathrm{BeO}\left(1200^{\circ}-1800^{\circ} \mathrm{K}\right)$. But in the unlikely event that tests described in the preceding section reveal stable compounds in the $\mathrm{AlF}_{3}-\mathrm{ZrF}_{4}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ systems, enthalpy measurements on them will be given high priority if samples can be obtained.

5. HYDRIDES AND INTERMETALLIC COMPOUNDS OF LIGHT ELEMENTS

The work on the light metal hydrides was continued. Improvements in synthetic and analytical techniques have provided a better insight into the nature of the structure of these materials. However, there are still some disturbing facts which indicate that the presently accepted structures are not perfect. Most of the samples of the light-metal hydrides were used by the group making heat-of-formation measurements. This work will be summarized completely in a separate report.

The studies of the aluminum hydride-trimethylamine adducts were reported suspended as of June 1960. However, one preparation was made of aluminum hydride-bis-trimethylamine, but the product was not considered pure enough for further vapor-equilibrium studies.

A survey has been made of the alloys and intermetallic compounds of aluminum, beryllium, lithium, and magnesium with each other and with silicon, titanium and zirconium. This survey contains primarily phase-composition relations, crystallographic data, density and volume data, and heats of formation. The material on the beryllium alloys was reported in the last semi-annual report (NBS Report 7093, January 1, 1961). The data on the other systems is included as a separate chapter in this report.

Due to activation of projects elsewhere, the preparation of binary light-metal hydrides will be deemphasized at the Bureau. Small amounts of these materials will be prepared as required by other groups in the Bureau or by the over-all ARPA program. Searches will be continued for better methods of preparing and analyzing the light hydrides, and liaison will be maintained with other laboratories with the aim of finding realistic structures for these materials. As an aid to the calculation of heats of formation of these materials, samples of the related organometallic compounds, free of polar adduct, will be prepared for heat-of-formation studies. Research will be performed on the preparation of mixed hydrides of the light elements.

Since a satisfactory heat of formation has not been obtained for aluminum hydride, it has been suggested that a study be made of the trimethylamine adducts of aluminum hydride using mass-spectrometric techniques. By this means, vapor and decomposition pressures may be obtained, along with decomposition potentials and mass data for the adduct. By using the heat of addition of the trimethylamine moiety to the aluminum hydride it should be possible to arrive at a heat of formation of aluminum hydride. It will be the responsibility of this group to prepare or procure, purify, and analyze the aluminum-hydride adduct, and to coordinate the program on this compound.

The survey of alloys and intermetallic compounds of the light elements will continue. The study of specific systems will be pursued. This phase of the program will include procurement and analysis of samples, and determination and calculation of properties. For the present, these studies will be limited to one system.

Purification work as required by other groups will be carried out on request.

6. LIGFT-ELEMENT EQUATION OF STATE

The over all objective of this project is to determine, by experimental measurements, the equation of state of selected elements (Be, Al and Zr) and their compounds at temperatures between 2000 and $6000^{\circ} \mathrm{K}$ and pressures up to 100 atmospheres. The immediate objective is the systematic exploration of the exploding wire method as the means for producing a two-component (e.g. Al vapor and oxygen), high temperature, high pressure system so that the thermodynamic properties of the system under quasi-equilibrium conditions may be measured. Thus far, this study of the feasibility of the exploding wire method has entailed the design, construction and instrumentation of an experimental apparatus. It has also required the exploration and development of techniques of high-speed observation and measurement, so as to permit a time-resolved study of the state of the exploding wire system. These tasks are in various stages of completion, and will be continued during the next year.

Activity Summary - July 1, 1960 to June 30, 1961
The basic design of the experimental setup and the experimental method are described in some detail in NBS Report 6484 (July 1, 1959). During the past year, because of difficulties with unreliable triggering, the experimental setup was modified in several ways. The two parallel spark gaps used earlier were replaced with a new, single gap which is housed in a sealed chamber. This chamber is charged with nitrogen or argon in order to reduce the problem of electrode erosion by oxidation.

The new electrodes are made of a copper alloy, tipped with a tungstencopper material known as "elkonite". Tests showed that these electrodes withstood the high current (220,000 amps peak) discharges somewhat better than the smaller tungsten-tipped electrodes used earlier. The electronic triggering circuit was also modified. The trigger spark gap and the trigger condensers were removed, and a high-energy pulse from a thyratrontriggered, 15 kv pulse generator is now used directly for breaking down the spark gap. Test results show this new setup to be more reliable. The jitter is about 1 to 2 microseconds.

The main effort during the past year was concentrated on the development of techniques of high-speed measurement for determining the state of the exploding wire system under transient conditions. The techniques for measuring the current and the voltage in the discharge circuit received the major attention. A new coaxial shunt and a special low inductance voltage divider, designed and constructed for this experiment by Mr. John H. Park of the Electrical Instruments Section of this Bureau, were installed. In addition, a calorimetric method for calibrating the total electrical energy dissipated in the discharge was developed. Using this method, we were able to achieve agreement to within 1 to 2 percent between the measured electrical energy (obtained from the voltage and current measurements) and the measured calorimetric heating energy. This work is described in detail in Part B of this report. A full report is soon to be submitted for publication in the NBS Journal of Research.

Considerable effort was also devoted to the development of techniques suitable for high-speed photographic observation of the exploding wire. A Beckman and Whitley, Model 189 Framing Camera was installed, and has been used to make preliminary observations of the explosion phenomena. The problem of multiple exposure imposed by the camera's slow ($1 / 25 \mathrm{sec}$) mechanical shutter has been overcome by the development of a high-speed shutter. This shutter is made up of two parts: a fast-opening part and a fast-closing part. The fast-closing action is obtained from the blackening of a window by exploding a series of parallel lead wires. This was first developed by H. E. Edgerton (Review of Scientific Instruments, Vol. 27, No. 3, March, 1956). The fast-opening part of the shutter was developed specifically for this experiment and represents an original contribution. It consists of a piece of aluminum foil (approximately 1 in . X 3 in .) placed directly in front of the framing camera's diamond-shaped stop so that no light may pass into the camera. The opening action is obtained when a capacitor, charged to high voltage, is suddenly discharged through the foil. During the discharge the magnetic forces set up by the passage of current compress the fojl toward its center line, thus allowing light to pass into the camera. Experiments showed that the shutter is 75% open in $60-80$ microseconds. At the present time, another shutter of this type is under development. In this case two slightly overlapping foils are used to prevent passage of light into the camera. The foils are arranged to form the two arms of a loop circuit. Here the increased magnetic forces inside the foil
loop may be expected to give still faster opening action. The use of this combination fast-opening, fast-closing shutter with the framing camera will permit high-speed, time-resolved photographic observation of any portion of the exploding wire phenomenon.

For the pressure measurement, the transient pressure in the exploding wire vessel during the explosion was measured by means of a water-cooled, strain-gauge type pressure transducer. Although there was some difficulty with arcing from the exploding wire to the transducer, this technique may be considered fairly well developed.

For the density measurements, a simulated x-ray system was set up for working out the various problems associated with measuring the density of the exploded wire vapor by soft x-ray absorption. In this system, different thicknesses of Al foil are used to simulate the variable-density Al vapor. The time features of the experiment are simulated by passing the x-ray beam through a hole in a rotating wheel. The intensity of the transmitted beam is detected by means of a NaI crystal bonded to a photomultiplier, the output of which is displayed on an oscilloscope. This system has not progressed to a point where it can be applied to the exploding wire experiment. In addition to this soft x-ray work, a four-channel flash x-ray system was ordered. This unit will be used to study the density distribution of heavier vapors (such as zirconium and titanium) and the breakup process of the wire in the solid and liquid states.

Some work has also been done toward modifying a Jarrell-Ash spectrograph for the time-resolved determination of composition in the exploding wire system by spectrographic studies.

Another phase of our work, a theoretical stuay of the hydrodynamic aspect of the exploding wire system, was initiated during the past year. This study will concentrate primarily on the analysis of the flow field surrounding the exploding wire and the diffusion at the interface between the expanding wire vapor and the surrounding gas. Thus far this work has included a review of the open literature on related problems with cylindrical shocks.

Plans for Period July 1, 1961 to September 30, 1962

The work in this next period will be a continuation of all phases of the work described above. Special attention will be given-to the remaining problems in the determination of the density and composition of the wire vapor as a function of space and time, by means of x-ray and spectrographic measurements. Concentrated effort will also be devoted to the problem of mixing of the metal vapor and the surrounding gas. It is hoped that the solution to these problems can be worked out in sufficient detail in the next 15 months, so that a full-scale effort may later be made in the determination of the data of state of the mixed system under conditions of high temperature and high pressure.

Abstract

The objective of the NBS shock tube progrom is the determination of thermodynamic and rate data for atmospheric gases (air, $\mathrm{O}_{2}, \mathrm{~N}_{2}$, NO) by the method of shock wave compression. In the next fiscal year part of the effort will be devoted to research on one of the simple $N \sim F$ compounds such as $\mathrm{N}_{2} \mathrm{~F}_{4}$ or NF_{3}. Most of the previous activity in this program has been concerned with the refinement of techniques for the measurement of data for the gas behind the shock wave. In preliminary experiments with Mach 1.6 to 2.0 shocks in air the density (interferometric) and shock velocity (with light screens) were determined with an accuracy of 1 percent; pressure measurements (with a pressure transducer) were accurate to 3 percent. Similar measurements along with spectroscopic composition determinstions will be employed in an investigation of the rate of dissociation of $\mathrm{N}_{2} \mathrm{~F}_{4}$ behind weak shock waves. Plans were made to set-up the spectroscopic equipment soon after July l, 1961.

8. HIGH-TEMP ERATURE MICROWAVE SPECTROSCOPY

Microwave spectroscopy offers considerable promise for obtaining detailed structural information on some of the simpler molecular species which exist in high-temperature systems. The microwave spectrun provides very accurate values of the moments of inertia of a molecule, as well as information on vibrational energy levels and other molecular properties. A microwave spectrometer which will operate up to 800° $1000^{\circ} \mathrm{C}$ has been under construction for this project. The spectrometer consists of a folded nickel waveguide suspended in an evacuated tank. The nickel Stark electrodes are supported by ceramic spacers. Resistance heating elements are mounted parallel to the waveguide. The various components have been assembled and tested at room temperature. The spectrometer showed satisfactory sensitivity and resolution in these room-temperature tests, which indicates that the waveguide design is probably suitable for high-temperature operation.

As soon as the final engineering details are taken care of, preliminary heating tests will be made. The spectrometer performance at high temperatures will be checked by observing the known spectra of suitable salts. The first new systems to be studied will probably involve the halides of aluminum and beryllium. The three most promising systems for the initial studies are: (1) the $\mathrm{Al}-\mathrm{AlCl}_{3}$ system, where it should be possible to detect the spectrum of AlCl , and possibly that of AlCl ; (2) the $\mathrm{Al}-\mathrm{AlF} 3$ system, where similar studies could be made; (3) the $\mathrm{BeCl}_{2}-\mathrm{BeF}_{2}$ system, where there is a chance of detecting the spectrum of BeFC .

9。 HALIDE SOLID-VAPOR EQUILIBRIA (TRANSPIRATION METHOD)

Construction of a transpiration apparatus and associated controlling mechanisms has been completed. Preliminary measurements of the vapor pressure of Calorimetry-Conference Standard-Sample benzoic acid at $100^{\circ} \mathrm{C}$ have been started. These measurements will permit evaluation of the behavior of the flow apparatus independently of the furnace.

It is the purpose of this section to describe the new apparatus with special emphasis on those features by which it differs from previous transpiration equipment.

Furnace:

The $\mathrm{Pt}-20 \% \mathrm{Rh}$ wire wound resistance furnace is one meter long with a $42-\mathrm{cm}$ copper cylinder at the center designed to minimize temperature gradients. Preliminary experiments indicate that the gradients over this 42 cm region can be held to about $0.5^{\circ} \mathrm{C}$ by supplying heat to the ends of the furnace by other heaters associated with 5 cm -long-copper cylinders. The copper is contained in an inert gas to prevent corrosion and consequent reduction in thermal conductivity and melting point. An alternative nickel core has been made to permit furnace operation up to $1700^{\circ} \mathrm{K}$. Furnace temperatures are measured by $\mathrm{Pt} / \mathrm{Pt}-10 \% \mathrm{Rh}$ thermocouples and controlled to $\pm 0.15^{\circ}$ by Leeds and Northrop three-mode controllers feeding to magnetic amplifiers.

Flow System:

The inert gas flow into the transpiration apparatus is monitored qualitatively by two National Instrument Laboratories Vol-0-Flo meters with ranges of 3 to 100 and 10 to $300 \mathrm{ml} / \mathrm{min}$. These meters can be read to about 0.2% of the full scale deflection.

After passing through the vapor cell and condenser the inert gas is collected in an American Meter Company 60-liter "meter prover" which measures the total volume continuously at a pressure within 0.002% of atmospheric pressure. The "prover" volume can be measured with a precision of 0.03% or better for a normal experiment. The gas is collected over vacuum-pump oil, with precautions to minimize absorption of gas by the oil.

Vapor Cell Condenser:

The vapor cell and condenser are made of $\mathrm{Pt}-10 \% \mathrm{Rh}$. The essential features of the design are concentric construction (after Beusman*) and the use of pyrolytic graphite to prevent sticking of metal surfaces at high temperatures. The vapor cell is 20 cm long and 1.1 cm in diameter. The two sample boats are made of $\mathrm{Pt}-10 \% \mathrm{Rh}$.

[^1]The concentric design aids in bringing the flow gas to the furnace temperature. A l-mm-I. D. capillary of 10 cm length separates the vapor cell from the condenser and minimizes vapor transport by diffusion and heat loss out the ends by radiation. The major features of the apparatus are illustrated in the accompanying figure.

Measurements on Benzoic Acid:

The few preliminary measurements which have been made on benzoic acid indicate the following advantageous features of the present design.
(1) The sample mass lost from the boats can be compared with the mass gained by the condenser. Preliminary experiments indicate that these two methods agree within the precision of weighing the condenser.
(2) The use of two boats of nearly identical dimensions permits extrapolation to low flow rates for measurements at flow rates too high for attainment of saturation. This may eliminate the need for complete saturation in an actual experiment if this is inconvenient to achieve.
(3) The vapor cell design will permit saturation of the flow gas at flow rates which are relatively high for a transpiration measurement. The present measurements indicate that 99% of saturation is achieved for benzoic acid at $100^{\circ} \mathrm{C}$ (vapor pressure about 1 mm) with an argon flow rate of $35 \mathrm{ml} / \mathrm{min}$.

The values for the vapor pressure of benzoic acid determined by these measurements agree with those obtained by Davies and Jones* within the estimated precision of either experiment (about 1\%). The tests on benzoic acid will be continued in order to evaluate other features of the apparatus such as reproducibility of measurements and starting and stopping errors. Certain improvements in the apparatus are already planned as a result of these preliminary tests.

Future Plans:

Following completion of the benzoic acid tests the system (AlF3 + argon) will be studied between 1150° and $1400^{\circ} \mathrm{K}$. It is believed that this study may help to clarify the problem of association in saturated aluminum fluoride vapor.

Modifications in the existing flow system will precede study of the ($\mathrm{AlF}_{3}+\mathrm{HF}$) system. Preliminary order-of-magnitude experiments are planhed. If these indicate appreciable reaction, quantitative measurements will be made. It is anticipated that empirical volatility data itself would have practical utility, but in addition it is hoped that such data would be interpretable in terms of heats and equilibrium constants of speciaic chemical reactions.
*M. Davies and J. Ifor Jones, Trans. Faraday Soc. 50, 1042 (1954).

Since the existing vapor pressure data for ZrF_{4} indicate considerable uncertainty as to pressure and vapor composition, it is planned to study the system ($\mathrm{ZrF}_{4}+$ argon) between 925° and $1200^{\circ} \mathrm{K}$.

10. VAPORIZATION OF REFRACTORY SUBSTANCES

The general philosophy of the experimental program to study the vaporization of refractory oxides and similar substances was discussed in the Fourth Technical Summary Report, NBS Report No. 6928, page 12 (July 1, 1960). The discussion centered around four measuring techniques which were under development at that time. Progress in the development of the techniques and changes of emphasis during the ensuing period are summarized below. Plans for continuing the activity during the forthcoming year are then presented.

Statement of Accomplishments July 1, 1960 - June 30, 1961:

1. Mass Spectrometric Technique.

Owing to the importance of this approach, much of the experimental
work of the group has been subordinated to the task of expediting the construction, installation, and testing of this apparatus, and to training personnel. The direction-focussing mass spectrometer, custom built by Nuclide Analysis Associates, State College, Pa., has now been installed at NBS. During the year preliminary testing of the apparatus was carried out at State College, and one member of the group also spent a threemonth training period with W. A. Chupka at the Argonne National Laboratory. The last few months since installation have been devoted to a final checking of the instrument, to the removal of minor "bugs" or inconveniences in its operation, and to calibration of the Knudsen-cell inlet system. A temperature controller for use with the Knudsen cell, primarily in the $1800-2500^{\circ} \mathrm{C}$ temperature range, has yet to be obtained. Data on the power requirements of the electron-bombardment heat source have also been obtained, and will be used as basis for designing the controller. The apparatus is now ready for definitive measurementstobemade on selected systems, at least in the temperature range up to $1800^{\circ} \mathrm{C}$.

2. Image Furnace Technique.

Initial effort was devoted to the adaption or modification of the commercial arc image furnace in order to make measurements of rate of vaporization within reasonably well defined limits of precision. Two modifications permitted the arc to be operated at 300 amps 。 without overheating the ellipsoidal mirror. The measurement of the temperature of the heated sample was a major problem, but the overall uncertainty of corrected values has been considerably reduced: Visual flicker when observing the surface with an optical pyrometer has been eliminated by speeding up the beam-chopping mechanism. The rotating shutter and sector disc
which form integral parts of the mechanism were redesigned to give a more uniform chopping action. A technique was also developed for obtaining an approximate value of the emittance of the surface and will be useful in converting observed brightness temperatures to true temperatures.

Measurements of the rate of vaporization of aluminum oxide as a function of the pressure and composition of a surrounding gas phase have cormenced. Assuming the heated surface is always the same, the precision of measured rates of vaporization in vacuo is about $\pm 50 \%$. Temperature fluctuations account for much of the uncertainty, but better measurement and control of the area of the heated surface can be readily effected and should lead to a significant improvement in the precision. In the meantime, exploration of the problems involved in introducing controlled partial pressures of other gases, such as $\mathrm{H}_{2} \mathrm{O}$, into the system is progressing, and preliminary data is being obtained.

Using the arc image furnace, a technique has also been developed for vacuum-sealing a piece of tungsten inside an aluminum oxide sample. The usefulness of this type of sample is under investigation, as discussed below.

3. Microbalance Technique.

By vacuum-sealing a piece of tungsten inside an aluminum oxide sample (as mentioned above) it has been found possible to obtain rates of vaporization of the sample by suspending it in vacuum from a microbalance and heating it by induction. This method is comparatively free of the errors which were encountered when the sample was enclosed with an external heater, but it is too early to define how far the approach will be limited by diffusion of tungsten through the alumina. Measurements up to about $1700^{\circ} \mathrm{C}$ have so far been made, but they will be extended to higher temperatures before a full analysis of the data is made.
4. Knudsen Effusion Technique.

Little progress with this technique has been made, owing to the transfer of personnel to the mass spectrometric technique. Measurements of absolute effusion rates of the equilibrium vapors is, however, not outmoded by the mass spectrometric approach, because the accuracy of the latter method is limited by approximate values of the ionization cross-sections of the molecules. Interest in the technique is being maintained, therefore, but an active program is severely restricted by man-power shortages. In particular, the long-standing search for rhenium Knudsen cells has continued. A suitable composition from which to produce the cell is believed to have been found, and fabrication work on a cell is in progress.

Program Plans July 1, 1961 - October 1, 1962

The following summarizes in order of priority the plans for the next 15 months. The plans reflect the current belief that major experimental problems will not restrict progress, except as indicated.

Mass Spectrometric Technique.

1. Identification of gaseous species and determination of their equilibrium partial pressures in the following systems:
(a) $\mathrm{Be}-\mathrm{F}$
(b) $\mathrm{Be}-\mathrm{O}-\mathrm{F}$
(c) $\mathrm{Be}-\mathrm{O}$ (in W and Re Knudsen cells).
2. Of high priority, but subject to technique development, comparable studies to those listed above on the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{BeO}-\mathrm{H}_{2} \mathrm{O}$ systems.
3. Similar studies to those given under 1。) on Al-0-F systems.

Arc Image Furnace Technique.
4. Measurements of rates of vaporization of $\mathrm{Al}_{2} \mathrm{O}_{3}$ under pseudoequilibrium conditions.in
(a) Various partial pressures of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(b) Other gases ($\mathrm{A}, \mathrm{H}_{2}, \mathrm{O}_{2}$; etc.).

Microbalance Techniaue.

5. Completion of measurements of rate of vaporization of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in vacuum. It is not anticipated that this activity will continue beyond September 30, 1961.

Knudsen Cell Technique.
6. Absolute effusion measurements of BeO and $\mathrm{Al}_{2} \mathrm{O}_{3}$ from W and Re cells. Activity to be held in abeyance pending availability of adequate man-power.

CHAPTER 1

PRELIMINARY REPORT ON THE CALORIMETRIC CALIBRATION OF THE ELECTRICAL ENERGY MEASUREMENT IN AN EXPLODING WIRE EXPERIMENT

by D. H. Tsai and J. H. Park

A discussion is present on the requirements and the methods for measuring the current and voltage during the transient discharge of a capacitor bank employed in an exploding wire experiment (see Part A, Section 6 of this report). A method is described for accurately calibrating the measured current, voltage and electrical energy by comparing the calorimetric heating of a fixed resistance element with the electrical energy dissipated in the element. Preliminary results here show that the accuracy of the energy measurement is about $1-2 \%$. Work is in progress to study the refinement of measurement techniques and sources of error.

1. Introduction

The present investigation has been carried out in connection with an exploding wire experiment, which involves the vaporization and explosion of a thin metallic wire by means of a sudden discharge of electrical energy through the wire. In order to understand and explain the temperature and energy relations in the exploding wire system, the propagation of the shock wave, and other related problems, it is important to be able to measure accurately the energy dissipated during the transient discharge. Such energy measurements are also needed in other applications of capacitor discharge experiments such as: (1) magnetic confinement in plasma experiments, (2) high-speed impact studies, (3) heat capacity measurement using a pulsed technique, (4) high voltage or high current impulse testing, and others.

This report described some results of an investigation of a calorimetric method for calibrating the electrical measurement of total energy dissipated in a fixed resistance element under the transient conditions of a capacitor-bank discharge. This method employed the fixed resistance element as a calorimeter, and compared the total heat energy measured by the calorimeter with the electrical energy obtained from the measured current through the element and the measured voltage drop across the element. Since the current and the voltage drop were measured independently of each other, the calibration also provided a separate check on these measurements. The check on the current measurement was especially interesting, because some confirmatory data were obtained on the performance of a coaxial shunt [I] ${ }^{1}$ that was used in this investigation.
$I_{\text {Figures }}$ in brackets indicate the literature references at the end of this paper.

Since the publication of reference [1], there have been some doubts expressed about the high-frequency performance of a shunt of this design. Although the present experiment was quite limited in frequency range, the method employed here was perfectly general, and obyiously could be applied in a higher frequency range.

The present results are of a preliminary nature. Only one sample test will be described to indicate the accuracy of the measurement. Further refinement of the experimental technique is being developed, and a study of the measurement accuracy under different test conditions is in progress. The final results will be given in a full report, and will be submitted for publication in the open literature.

2. Calorimetric Calibration

The basic principle of the calorimetric calibration is straightforward. The energy involved in the calorimetric heating of the resistance element is

$$
M C_{p} \Delta T,
$$

where M is the mass of the element, C_{p} its specific heat at constant pressure, and ΔT the temperature rise due to heating. The ohmic heating of the element is

$$
\int R i^{2} d t,
$$

where R is the resistance of the element, i the instantaneous current, and t the time of heating, the integration being performed over the entire period of heating, usually from $t=0$ to $t=\infty$ in a discharge experiment. The instantaneous electrical energy involved is

$$
\text { e } 1 \mathrm{dt},
$$

where e is the voltage drop across the element. For an oscillatory discharge the area under the curve of ei vso t goes alternately positive and negative as the energy is stored alternately in the magnetic and electric field. The total energy dissipated in the resistance element is

$$
\int_{0}^{\infty} e i d t,
$$

i.e., the net algebraic sum of the total area under the ei curve.

It there were no energy loss by heat conduction, convection or radiation, then

$$
M C_{p} \Delta T=\int_{0}^{\infty} R i^{2} d t=\int_{0}^{\infty} e i d t
$$

This equation is the basis for the calorimetric calibration investigated. The problems involved are two-fold. First is the achievement of the experimental conditions under which this equation holds true, and second is the accurate measurement of the various parameters. These are discussed below.

Requirements for Galorimeter. The exploding wire apparatus used in this investigation is shown in Fig. 1. This apparatus is similar to the one described in reference [2], except for minor modifications. For the present purpose, the fixed-resistance element (calorimeter) is installed in place of the exploding wire vessel. This arrangement preserves the symmetry of the current path, and allows the study of the problems of voltage measurement under conditions closely similar to those encountered in an actual exploding wire experiment. In addition to the geometrical requirements, the requirements of good calorimetry are: (I) Uniform heating along the entire length of the resistance element so that a representative temperature change may be obtained. (2) Small or known heat loss from the calorimeter. (3) Accurately known mass, heat capacity, and electrical resistance of the resistance element. (4) Accurate temperature measurement.

To satisfy requirements (1) and (2), the resistance element should be of a uniform cross-section, with known current paths along the entire length of the element, including the ends. To minimize the skin effect, (in order to achieve uniform current density over the cross-sectional area) the element should be cylindrical, with a wall thickness small compared to the diameter. To minimize the heat loss by conduction, the length of the element should be long compared to the diameter and tre wall thickness, and the temperature should be measured near the midpoint of the length. to minimize the heat loss by radiation and convection, the surface of the resistance element should be smooth and polished. In addition to the above physical characteristics, the mass and the resistance of the element and the energy input to the element should be so chosen that the temperature rise of the element is not too high. A high temperature rise not only would increase the heat loss, but also would, in general, affect the specific heat and resistance (requirement 3) of the element, and thus make it very difficult to determine both the heat energy in the calorimeter and the ohmic heating. On the other hand, too small a temperature rise would result in greater percentage error in the temperature measurement (requirement 4) and adversely affect the accuracy of the calorimetric heat energy measurement. Also, for maximum accuracy, the damping of the discharge circuit as a whole should not be too low, for then the discharge would be more oscillaroty, and it would be correspondingly more difficult to obtain an accurate measurement of the net area under the ei vs. t curve.

The above are some of the more important general requirements in the design of the resistance calorimeter. In the present preliminary experiment, these requirements were only partially satisfied. However, in the experiments being planned, an effort is being made to satisfy the se requirements more fully.

One additional point is worth noting. In this investigation, the temperature of the resistance element was measured by means of a pair of thermocouple wires welded individually to the element at two

FIGURE I SCHEMATIC DIAGRAM OF EXPERIMENTAL APPARATUS

FIGURE 2 BALANCED CABLE CONNECTIONS FOR REDUCING GROUND CURRENT EFFECT
neighboring points at the mid-section of the element. During an oscillatory discharge, the potential at the thermocouple functions coild be as high as several thousand volts above or below ground potential. It was therefore necessary to disconnect the thermocouple circuit from the main discharge circuit during the discharge, and to re-connect the thermocouple circuit for temperature measurement after the discharge was over. The measured temperature therefore was not the instantaneous temperature. The maximum temperature rise was obtained by extrapolating the recorded temperature during the cooling period to the time just after the discharge took place. Fortunately, under the experimental conditions encountered, the error introduced by this.method was small.

Requirements for current and voltage measurements. The requirements for the accuratie measurement of current and of voltage have been studied in detail by Park in references [1] and [3]. For the present purpose, it was convenient to borrow directly from the earlier results, and make use of the coaxial shunt described in [I] for current measurement, and the non-inductive resistance divider described in [3] for voltage measurement.

As in references [1] and [3], the main difficulty in measurement arises from the high current flowing in the main discharge circuit and the high rate of change of this current with time. A part of this current flows through the ground system of the measuring circuits as well, and induces extraneous voltage signals which may be several times higher than the true voltage signals.

The effect of the ground current on a measuring circuit may be tested by disconnecting the center conductor of the coaxial cable at the input end ${ }^{2}$ and shorting it to the cable sheath. Then any signal in the measuring circuit produced by the discharge of the main circuit would be an extraneous signal.

It was found that the ground-current effect could be largely eliminated by measuring only the difference between the total voltage and the voltage induced by the ground current. This was done by using two identical cables in the measuring circuit connected to the same point at the input end by means of a "T" connector, except that one cable was connected in the "normal" manner for measuring the total voltage, and the other was connected in the "shorted" manner described above for measuring the induced voltage (see Fig。2). The signals from these two cables were fed into a differential amplifier (of a cathode ray oscilloscope) which then measured only the difference between the two signals.

The foregoing method of using this" "balanced" arrangement of the measuring cables did not completely eliminate the extraneous signals.
2^{2} This is the end where the cable is normally connected to the shunt or the voltage divider.

This was probably due to some slight mismatch of the cables, and to the lack of symmetry of the current paths, especially at the input end of the cables. A further source of difficulty was the inter-connected ground system. In the present case a dual-beam oscilloscope was used for simultaneous measurement of the current and the voltage. The current and voltage measuring cables were therefore grounded to a common point at the oscilloscope end. However, at the input end, these cables were grounded to different points of the main discharge circuit, because the construction of the current shunt and of the voltage divider did not permit a common connection. Thus the ground potential at the oscilloscope must fluctuate during a discharge of the main circuit. This would cause ground currents to flow in the chassis of the oscilloscope which could induce extraneous voltages in the amplifier input circuits. In addition to the above mentioned difficulties, the pairs of cables in the two measuring circuits formed two loops which were inductively coupled to the main discharge circuit. The voltages induced in these loops were able to cause currents producing iR drops in the cables which were not self-cancelling in the present balanced arrangement for measuring the differential voltages.

No quantitative data has been obtained on the errors arising from each of these sources (cable mismatch, lack of symmetry of current paths, etc.). However, the total error could be measured rather easily by shorting all the cables at the input ends, and by repeating the discharge under identical conditions.

3. Experimental Apparatus and Instrumentation

The major components of the experimental apparatus are shown schematically in Figure 1. The capacitance of the condenser bank was $400 \mu \mathrm{f}$, and at the maximun voltage of 10 kv , the stored energy was 20,000 joules. When installed as in Fig. 1, the natural frequency of the discharge circuit was 11.4 kc .

The spark gap and the triggering system were similar to those described in reference [4]. The electrodes were tipped with a tungstencopper alloy (Elkonite). The spark gap was assembled in a transparent enclosure, which could be charged with nitrogen or argon at different pressures for better control of the timing of the discharge. The nitrogen or argon atmosphere presumably also cut down the erosion of the electrodes due to oxidation.

The resistance element was made of a Ni-Cr-Fe alloy (inconel) tubing 10 in. long, $1.051 \mathrm{in} .0 . \mathrm{d}_{0}, 0.912 \mathrm{in}$. i.d. The ends of this piece of tubing were silver-soldered to clamps for connection to the main circuit at points 1 and 2 (Fig. 1). The soldered joints were lap joints, each 1/4 in. wide. The effective length of the tubing was taken as the length between the mid-sections of the two lap joints, or 9.75 in . long. The mass of the tubing based on this length was 288.9 grams. The specific heat at constant pressure $\left(C_{p}\right)$ for the inconel was taken from reference [5]
as $0.1074 \mathrm{cal} / \mathrm{gram-deg} C$ (average of three inconel samples) at $40 \mathrm{deg} C$ average temperature. (This was based on a temperature rise of about 30 $\operatorname{deg}($ from a room temperature of $25 \mathrm{deg} \mathrm{C}$.)

The temperature of the inconel tubing was measured by means of an iron-constantan thermocouple, with No. 28 wires, welded directly to the inconel tubing at two neighboring points, $1 / 4 \mathrm{in}$. apart, at the midsection of the tubing. The temperature recorder was a Leeds and Northrup millivolt recorder, with a full-scale response time of about $1 / 2$ second. The thermocouple circuit was conventional, except for the switching device mentioned earlier for isolating the recorder from the high potential at the resistance element during a discharge.

The resistances of the various parts of the circuit (between points l to 5) were determined by the Electricity Division at the NBS by means of a Kelvin double bridge. These resistances were as follows:

Between Points	Component	Resistance, ohms
1-2	Resistance element (calorimeter)	0.001803
2-3	Coaxial shunt	0.000325
1-2-3-5		0.002180
1-4	High-side of voltage divider	202.60
4-5	Low-side of voltage divider	1.1054

The high-side of the voltage divider, made up of a ribbon-wound noninductive resistor [3], was mounted at an angle relative to the common axis of the inconel tubing and of the outer cylinder (see Fig. 1) which served as the current return passage. This was done in order to reduce the capacitance between this resistor and the rest of the circuit near-by. Except for this part, the main discharge circuit around the inconel element preserved a cylindrical symmetry. The low-side of the voltage divider was made up of low-inductive carbon resistors, arranged symmetrically in a small cylindrical housing in order to keep the inductive effect to a minimum. The voltage measured was the voltage drop between points 1 and 5 . If this is denoted by e_{1-5}, then the electrical energy associated with this part of the circuit would be

$$
\int_{0}^{\infty} e_{1-5^{i}} d t .
$$

The electrical energy associated with the inconel element would then be

$$
\frac{R_{1-2}}{R_{1-2-3-5}} \int_{0}^{\infty} e_{1-5} i d t,
$$

where R is the resistance of the part of the circuit denoted by the subscripts.

For the measuring circuit, the cables used were four RG58/U coaxial cables, each 11 ft . in length. These cables were not terminated with matched impedance because of the relatively low frequency (11.4 kc) involved. The oscilloscope was a Tektronix Model 555 Dual-beam
oscilloscope, equipped with two type G differential pre-amplifiers. The vertical scales (voltage scales) were calibrated against the calibration signals provided in the oscilloscope, and the horizontal scale (time scale) was calibrated against the NBS Standard 100 kc frequency.

4. Results

Fig. 3 shows a representative series of measurements obtained on the experimental set-up described in the preceding section. The conditions of the test are given in the figure caption. Fig. 3a was obtained with the balanced arrangement of the measuring cables described earlier. The top trace of Fig. 3a shows the measured current through the circuit, the bottom trace shows the measured voltage drop between points 1 and 5 of Fig. l. Fig. 3b was obtained with the measuring cables shorted to ground at the input end. The top trace shows the ground current effect in the current measuring circuit, the bottom trace shows the same effect in the voltage measuring circuit. (Note the difference in the vertical scales in these figures.)

From these data, the ohmic heating and the electrical energy were obtained by evaluating the integrals $\int_{R i}{ }^{2} d t$ and Seidt. This was done both graphically with the aid of a planimeter, and numerically with the aid of an automatic digital computer (at a step size of $3 \mu \mathrm{sec}$ in dt). In both cases, the Seidt integral was evaluated twice: once without the correction for the ground-current effect on the voltage curve, and once with the correction. No correction was made on the current curve, because the gr-und current effect on the current-measuring circuit appeared to be negligible.

The results are tabulated below. The percentage figures show the percent difference compared with the measured calorimetric heating. The calorimetric heating did not include the heat losses by convection, radiation and conduction. With a temperature rise of about 30 deg C, the convective heat loss was about 4 joules/sec. The radiative and conductive heat losses were both negligible.

	Calorimetric Heating, joules	$\mathrm{S} \mathrm{i}^{2} \mathrm{dt}$ joules	Without Correction for Ground Current Effect		
Graphicai Method Numerical Method	4076	$4082+0.1 \%$	With Correction for Ground Current Effect		

These results show the importance of the correction for the ground-current effect on the measured voltage. This was somewhat surprising, because Fig. 3b shows that this effect amounted to only about 2% (in maximum amplitude) of the measured voltage shown in Fig. 3a. The differences between the graphical method and the numerical method are not conclusive. Further work is needed to investigate the accuracy of both methods.

	f	\pm	
	\ddagger	\ddagger	
	\pm	\pm	
		\pm	
++			\cdots
	\pm	ID	
	\pm	\pm	
	\pm	I	

(b)
(a)

Typical current and voltage records showing (a) the measured current through the calorimeter and the voltage across it, and (b) the effect of ground current on the current and voltage measuring circuits.

$$
\begin{aligned}
& \text { Capacitor bank: } 380 \mu \mathrm{f} \text { charged to } 7 \mathrm{kv} \text {; } \\
& \text { Calorimeter: see text for details. tembe }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Calorimeter: see text for details, temperature rise }=31.4 \mathrm{deg} C \\
& \text { Horizontal scale (time) } 100 \mu \mathrm{sec} / \text { large division }(\mathrm{cm}) \text { for both (a) and (b) ; }
\end{aligned}
$$

$$
\text { Vertical scale (voltage): (a) top curve } 40 \mathrm{v} / \mathrm{cm} \text { for current shunt, bottom curve }
$$

Figure 3

$$
10 \mathrm{~V} / \mathrm{cm} \text { for voltage divider; (b) top curve } 1 \mathrm{v} / \mathrm{cm} \text { for current measuring circuit, }
$$

Cable connection: balanced connections as described

Cable connection: balanced connections as described in text.

5. Conclusions

The results so far have indicated that the equipment and the methods described here for meauring the current and voltage during the transient discharge of a capacitor bank are capable of yielding results which are in fair agreement with the result obtained independently from a calorimetric method. These results therefore suggest that it will be worthwhile to refine the experimental technique by a more careful calibration procedure, and a more detailed investigation of the sources of error and the experimental range in which the technique is applicable. These investigations are now in progress, and appropriate reports will be issued as the results become available.

REFEREMCES

[1] J. H. Park, NBS J. Research, 39, 191 (1947).
[2] Preliminary report on the thermodynamic properties of lithium, beryllium, magnesium, aluminum and their compounds with hydrogen, oxygen, nitrogen, fluorine, and chlorine, NBS report 6484, chap 4, (1959).
[3] J. H. Park and H. N. Cones, Sphere-gap volt-time curves--reference standards for steep front measurements, AIEE paper no. CP 57-215, 1957.
[4] E. H. Cullington, W. G. Chace and R. L. Morgan, Lovotron-a low voltage triggered gap switch, Instrumentation for geophysical research no. 5, AFCRC-TR-55-227, Sept. 1955.
[5] T. B. Douglas and A. C. Victor, NBS J. Research, 65C, 65 (1961).

EXPLANATORY NOTES FOR TABLES OF IDEAL-GAS THERMODYNAMIC FUNCTIONS OF $\mathrm{N}_{2} \mathrm{~F}_{4} \mathrm{AND} \mathrm{NF}_{2}$
by D. R. Lide, Jr.

Tables of ideal-gas thermodynamic functions are given in Appendix A for $N_{2} \mathrm{~F}_{4}$ (Table $\mathrm{A}-71$) and for NF_{2} (Table $\mathrm{A}-70$). The basis of arriving at each of the molecular constants underlying these two tables is as follows.

Since the microwave spectrum ${ }^{1}$ of $\mathrm{N}_{2} \mathrm{~F}_{4}$ shows that the gaushe form (C_{2} symmetry, with internal rotation angle of approximately 65°) is a major constituent at ordinary temperatures, and since the infrared spectrum ${ }^{2}$ indicates that there is only one form present in significant amounts, we have assumed for purposes of calculation that $\mathrm{N}_{2} \mathrm{~F}_{4}$ exists entirely as the gaushe isomer. The principgl moments of inertia ($15.0517,26.2484$ and $29.8378 \times 10^{-39} \mathrm{gm} \mathrm{cm}^{2}$) are experimental values determined from the microwave spectrum. The estimated vibrational frequencies are based on infrared measurements of M. K. Wilson ${ }^{2}$, which have been confirmed by L. J. Schoen of NBS. While a detailed assignment has not been made, it is reasonable to associate bands at 1011, 962, 933 , and $850 \mathrm{~cm}^{-1}$ with the NF stretching modes. Infrared bands at $736,589,537,517,500$ (estimated), and $390 \mathrm{~cm}^{-1}$ apparently correspond to the NF_{2} deformations and to the twisting and wagging modes. In view of the low $\mathrm{N}-\mathrm{N}$ bond energy ${ }^{3}$, the band at $285 \mathrm{~cm}^{-1}$ is a reasonable choice for the $\mathbb{N}-\mathbb{N}$ stretch. The remaining fundemental is the torsion about the $N-\mathbb{N}$ bond, which has been estimated as about $100 \mathrm{~cm}^{-1}$ from the microwave spectrum. The major uncertainty in the ideal-gas thermal functions results from this frequency; for example, the calculated entropy at $300^{\circ} \mathrm{K}$ would be off by about l eu if the estimated torsional frequency is in error by $50 \mathrm{~cm}^{-1}$, which is entirely possible.

The NF_{2} molecule is a bent triatomic with vertex, angle of 104° according to the infrared results of Schoen, Lide, and Mann ${ }^{4}$. The stretching frequencies of 1075 and $940 \mathrm{~cm}^{-1}$ have been observed, while the bending mode was estimated as $510 \mathrm{~cm}^{-1}$ from a force-constant $\mathrm{ct}^{\text {treatment }} 4$. The moments of inertia ($1.2037,7.3748$, and $8.5702 \times 10^{-39} \mathrm{gm} \mathrm{cm}^{2}$) were calculated from the single rotational constant obtained from a resolved infrared bend ${ }^{4}$ on the assumption that the N-F bond distance is 1.370 A. Since the molecule contains an odd number of electrons, an electronic multiplicity of 2 has been assumed.

The entropy change for the dissociation

$$
\mathrm{N}_{2} \mathrm{~F}_{4} \rightarrow 2 \mathrm{NF}_{2}
$$

is calculated from Tables A-70 and A-71 to be 45.6 eu at $400^{\circ} \mathrm{K}$. From measurements of the dissociation constant of $\mathrm{N}_{2} \mathrm{~F}_{4}$ in the $350^{\circ}-450^{\circ} \mathrm{K}$ region Colburn and Johnson ${ }^{3}$ have obtained ΔS vaIues ranging from 38 to 45 eu .

REFERENCES

1. D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys. 31, 1129 (1959).
2. M. K. Wilson, private comunication.
3. C. B. Colburn and F. A. Johnson, J. Chem. Phys. 33, 1869 (1960) and private communication.
4. L. J.Sehoen, D. R. Lide, Jr., and D. E. Mann, NBS Report 7129 (April 1961).

ALLOYS AND INTERSTITIAL COMPOUNDS OF ALUMINUM, LITHIUM, AND MAGNESIUM WITH EACH OTHER AND WITH SILICON, TITANIUM, AND ZIRCONIUM
 by Thomas W. Mears

The alloys and interstitial compounds of beryllium with aluminum, lithium, magnesium, silicon, titanium, and zirconium were surveyed in the last semi-annual report (NBS Report 7093, 1 January 1961). In the present survey, the alloys and interstitial compounds of aluminum, lithium, and magnesium with each other and with silicon, titanium, and zirconium are covered. The phase diagrams of most of these systems were reproduced from Hansen [1] in the last semi-annual report and will be alluded to throughout this survey. ${ }^{\text {a }}$

When alloy and intermetallic compounds are formed, it is often the case that the material formed will be more dense than that calculated from partial atomic volumes. Unfortunately, it is also true that energy is lost as heat of mixing (formation) of the alloy or interstitial compound. Further, it is generally true that the greater the density of the alloy as compared to the elements, the greater the heat of mixing. This heat of mixing may be partially, completely, or even excessively offset by the heats of mixing of the mixed combustion products. However, if the heats of mixing do not cancel out, there would be no advantage in using an alloy or interstitial compound over the mixture of elements, unless a possible improvement in the kinetics of combustion is to be had.

Aluminum-1ithium system

A partially complete phase diagram for the aluminum-1ithium system is given in Hansen [1]. This diagram is reproduced as figure 3, p. 189 of the last semi-annual report. This diagram shows two intermediate phases LiA1 and $L i_{2} A 1$. The lattice spacings of aluminum solid solutions in lithium are [2]:

At. \% of 玉1	a (kXat $25^{\circ} \mathrm{C}$)
0	4.04134
3.44	4.03967
4.83	4.03927
7.11	4.0382

[^2]The average coefficient of expansion of an alloy containing 4.83
at. percent lithium is [3].
$\alpha=24.3 \times 10^{-6}\left(-50^{\circ} \mathrm{C}\right.$ to $\left.25^{\circ} \mathrm{C}\right)$
Lattice spacings: 4.03196 at $-50^{\circ} \mathrm{C}$ 4.0393 at $25^{\circ} \mathrm{C}$

Alli melts at a maximum in the liquidus at approximately $718^{\circ} \mathrm{C}$ and exists over a range of composition [4]. It exists as a face-centered cube of $B 32$ type structure, $a=6.360 \mathrm{KX}$, and the x-ray density is $1.75 \mathrm{~g} / \mathrm{cm}^{3}$ [5]. Its heat of formation ${ }^{\text {a }}$ is $-6.0 \mathrm{Kcal} / \mathrm{g}$. atom ($-12 \mathrm{Kcal} / \mathrm{mole}$) [6].

A1Li 2_{2} forms peritectically at $523^{\circ} \mathrm{C}$ [5].

Aluminum-magnesium system

The phase diagram for the aluminum-magnesium system bas been worked out by Eickhoff and Vosskuhler [7] and augmented by Clark and Rhines [8]. This is attached as figure 1. A similar phase diagram from Hansen [1] is given as figure 4, p. 190 of the last semi-annual report. The Bphase, $\mathrm{Al}_{3} \mathrm{Mg}_{2}$ melts at a maxima from the liquidus at $451.5^{\circ} \mathrm{C}$. The γ phase, Al 12 Mg 17 melts at a maxima at $462^{\circ} \mathrm{C}$. The $\epsilon-$ phase, $\mathrm{Al}_{4} \mathrm{Mg}_{3}$ (?), exists between a eutectoid at $210^{\circ} \mathrm{C}$ and a peritectoid at $390^{\circ} \mathrm{C}$.

The lattice spacings of solid solutions of magnesium in aluminum have been measured by many workers $[2,3,9,10,11,12,13,14,15]$. A composite graph of these values is attached as figure 2. The thermal expansion of solutions of approximately the same composition have also been measured [3], and are listed in the following table.

At. \%Mg	$-50^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+200^{\circ} \mathrm{C}$	$a_{-50 \times 10^{6}}^{25}$	$\chi^{2000}{ }_{2}^{0} \times 10^{6}$
0	4.0347	4.04142			
2.35	4.04275	4.0496		22.7	
6.36	4.0614	4.0685	4.0858	23.2	24.7
10.56	4.0782	4.0861	4.10375	25.9	26.7

The ${ }_{+} \beta$-phase, $\mathrm{Al}_{3} \mathrm{Mg}_{2}$, has a face-centered cubic unit cell, with $a=28.16 \pm 2 \mathrm{KX}, \mathrm{Dm}=2.23 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{Dx}=2.28 \mathrm{~g} / \mathrm{cm}^{3}$ for an alloy containing 35 atomic percent magnesium $[16,17]$. The heat of formation ${ }^{a}$ is $-0.37 \mathrm{Kcal} / \mathrm{mole}$ [8].

The γ-phase, $\mathrm{Al}_{12} \mathrm{Mg}_{17}$, occurs in the region 50 to 60 atomic percent (theory 58.6 at. percent) magnesium. It is a body-centered cubic in which $a=10.54-2 \mathrm{KX}$, and the macroscopic density is $2.068 \mathrm{~g} / \mathrm{cm}^{3}$ at $21^{\circ} \mathrm{C}$ [18]. The lattice spacings and densities have been determined for this region [19,20] and are shown graphically in figure 3 .

The $\epsilon-p h a s e$ at approximately 43 atomic percent aluminum has not been characterized. The empirical formula corresponds to about $\mathrm{Mg}_{4} \mathrm{Al}_{3}$.

[^3]The lattice spacings of solid solutions of aluminum in magnesium are shown in figure 4 [21,22,23].

The heats of formation of the aluminum-magnesium system hate been determined by Kubashewski: and Catterall [6] as follows:

At. $\% \mathrm{Mg}$	$\Delta \mathrm{H}_{3}(\mathrm{kcal} / \mathrm{mole})$
10	-.140
40	-.390
50	-.620

Aluminum-silicon system

Not much work has been done on the aluminum-silicon system because of the mutual insolubility in the solid state. There is little evidence of compound formation. The phase diagram is given by Hansen [1]. This diagram was reproduced as figure 5 on p. 191 in the last semiannual report. This shows a eutectic at 11.3 atom percent silicon at $577^{\circ} \mathrm{C}$. There is some slight evidence of terminal solubility. Lattice spacings for silicon concentrations up to 1 percent are reported by Axon and Hume-Rothery [2].

Aluminum-titanium system

The phase diagram from Hansen [1] for the aluminum-titanium system was reproduced in the previous semi-annual report. The α-solid solution transforms into the β-solid solution at temperatures ranging from $882^{\circ} \mathrm{C}$ for pure titanium to $1240^{\circ} \mathrm{C}$ for solution containing 42 atom percent (29 weight percent) aluminum. The γ-form, A1Ti, forms peritectically at $1460^{\circ} \mathrm{C}$. $\mathrm{A} 3_{3} \mathrm{Ti}$ forms peritectically at $1340^{\circ} \mathrm{C}$ and has invariant composition [24].

The solid solubility of titanium in aluminum is very small. Supersaturated solutions were obtained by rapid quenching and the lattices determined [25].

At. \%Ti	a (kX)
0	4.0415
0.085	4.04054
0.090	4.0405
0.20	4.0395

The solid solution of aluminum in titanium is much broader than the aluminum solutions. Several workers [24,26,27] have prepared these alloys and determined their crystal lattices. These data are combined in figure 5. The humps at $10-14$ atomic percent aluminum may be due to oxide or nitride impurities [28].
$\mathrm{Al}_{3} \mathrm{Ti}$ is a body-centered, tetragonal DO 22 type of structure, where $a=3.84 \mathrm{kX}, \quad c=8.579 \mathrm{KX}, \mathrm{c} / \mathrm{a}=2.234, \mathrm{Dm}=3.31 \mathrm{~g} / \mathrm{cm}^{3}$, and $\mathrm{Dx}-\mathrm{ray}=3.37 \mathrm{~g} / \mathrm{cm}^{3}[29,30]$.

The alloy may be prepared by heating aluminum with potassium fluotitanate at $1200^{\circ} \mathrm{C}$, cooling slowly, and dissolving away the excess aluminum. Calculations have also been made [31] where $\mathrm{A} 1_{3} \mathrm{Ti}$ is considered as a face-centered tetragonal cell in which case a $=5.424 \mathrm{Kx}$, $f_{+}=8.574 \mathrm{Kx}$, and $\mathrm{c} / \mathrm{a}=1.58$. The heat of formation ${ }^{\text {a }}$ is given as -35.3 - $1.2 \mathrm{kcal} / \mathrm{mole}$ (8.8 Kcal per atom) [32].

A1Ti has an ordered cubic $\mathrm{L} 1_{0}$ structure where $a=3.997 \mathrm{KX}, \mathrm{c}=4.062 \mathrm{KX}$, $c / a=1.02$ at the stoichimetric 50 percent point [33). The alloy is prepared by arc melting "iodine" titanium with aluminum. The heat of forma$t^{2} \mathrm{n}^{\text {a }}$ of AlTi is given as $-19.3 \pm 0.05 \mathrm{Kcal} / \mathrm{mole}(-9.7 \mathrm{Kcal} / \mathrm{g}$ atom) [32].

Aluminum-zirconium system

The aluminum-zirconium system is quite complex as shown by the phase diagram from Hansen [1] which was reproduced as figure 7 on p. 193 of the last semi-annual report. There are three phases which melt at maxima in the liquidus, namely $\mathrm{Al}_{3} \mathrm{Zr}_{\mathrm{r}}$ at $1580^{\circ} \mathrm{C}, \mathrm{Al}_{2} \mathrm{Zr}$ at $1645^{\circ} \mathrm{C}$, and $\mathrm{Al}_{3} \mathrm{Zr}$ at $1530^{\circ} \mathrm{C}$ a Possibly six others form peritectically; $\mathrm{Al}_{3} \mathrm{Zr}_{2}{ }^{3}$ (?) at $15950 \mathrm{C}, \mathrm{A1} \mathrm{Zr}_{3}$ at $1480^{\circ} \mathrm{C}, \mathrm{Al}_{3} \mathrm{Zr}_{5}$ at $1395^{\circ} \mathrm{C}, \mathrm{AlZr}_{2}$ at $1250^{\circ} \mathrm{C}$ $\mathrm{AlZr}_{3}{ }^{2}$ at $975^{\circ} \mathrm{C}$ and A1Zr at ${ }^{3} 250^{\circ} \mathrm{C}$ [34].
$\mathrm{Al}_{2} \mathrm{Zr}_{3}$ is a tetragonal unit cell $, \quad a=7.630 \pm 0.001 \mathrm{~A}^{\circ}, \quad c=6.998$ $\pm 0.001 \mathrm{~A}^{\mathrm{G}}, \mathrm{B} / \mathrm{a}=0.9054, \mathrm{Dx}=5.34{ }_{3} \mathrm{~g} / \mathrm{cm}^{3}$ on the basis of $4 \mathrm{Zr}^{\prime} \mathrm{A}^{2}$ units per unit cell, and $\mathrm{Dm}=5.35 \mathrm{~g} / \mathrm{cm}$. The sample was prepared by arc melting under argon and annealing for two weeks at $1100^{\circ} \mathrm{C}$ [35].
$\mathrm{Al}_{3} \mathrm{Zr}_{5}$ is an hexagonal structure with an x-ray density of $5.43 \mathrm{~g} / \mathrm{cm}^{3}$ [36].
A1 Zr has an ordered cubic structure with $a=4.372 \mathrm{~A}^{\circ}$ and $\mathrm{Dx}=5.976$ $\pm 0.013 \mathrm{~g} / \mathrm{cm}^{3}$ [37].
$\mathrm{Al}_{3} \mathrm{Zr}$ is a body-centered tetragonal (DO_{23}) type of structure, where $A^{3}=4.005 \mathrm{KX}, \quad c=17.285 \mathrm{KX}, \quad c / a=4.316, D^{23}=4.11 \mathrm{~g} / \mathrm{cm}^{3}$, and $D^{\circ} \mathrm{m}=4.11 \mathrm{~g} / \mathrm{cm}^{3}$ [30, 35, 21]
$\mathrm{Al}_{2} \mathrm{Zr}$ has an orthorhomble unit cel1, where $\mathrm{a}=1040 \mathrm{KX}, \mathrm{b}=7.21 \mathrm{KX}$, and $c=4.97 \mathrm{KX}$ for an alloy containing 37.6 weight percent aluminum [34]. The heat of formation is given as $-30.0 \mathrm{Kcal} / \mathrm{mole}(-10.0 \mathrm{Kcal} / \mathrm{g}$ atom) [6].

AlZr , was prepared by arc melting and annealing for three weeks at $900^{\circ} \mathrm{C}$. It has been indexed as an hexagpnal unit cell where $a=4.8939 \pm 0.005 \mathrm{~A}$, $c=5.9283-0.0005 \mathrm{~A},{ }_{3} c / a=1.211-0.001$ and $D x=5.67 \mathrm{~g} / \mathrm{cm}$. A macroscopic density of $5.78 \mathrm{~g} / \mathrm{cm}$ was obtained, but the sample was contaminated with $\mathrm{Zr}_{3} \mathrm{Al}$ whose density is $5.98 \mathrm{~g} / \mathrm{cm}^{3}$. [39].
$\mathrm{Al}_{3} \mathrm{Zr}_{4}$ was also prepared by arc melting undeq argon. It is indexed ${ }^{3} \mathrm{as}^{4}$ an hexagonal unit cell, where $a=5.433 \geq 0.002 \mathrm{~A}$ and
$c=5.390 \pm 0.0$ Q2A. On the basis of one $\mathrm{Al}_{3} \mathrm{Zr}_{4}$ unit per unit cell, ${ }_{3}$ $\mathrm{Dx}=5.37 \mathrm{~g} / \mathrm{cm}^{3}$. The macroscopic density was measured at $5.28 \mathrm{~g} / \mathrm{cm}^{3}$ [35].

Lithium-magnesium system

The diagram for the lithium-magnesium system given by Hansen [1] was reproduced as figure 12 on p. 198 in the last report. This curve shows a eutectic at 77 atom percent (92 weight percent) magnesium at $588^{\circ} \mathrm{C}$. The lithium solid solution extends to 75.5 atomic percent (91 weight percent) magnesium at $588^{\circ} \mathrm{C}$ and 70.1 atomic percent (89 weight percent magnesium at $100^{\circ} \mathrm{C}$. The magnesium solid solution extends to 83.0 atomic percent (94.5 weight percent) magnesium at $588^{\circ} \mathrm{C}$ and 82 atomic percent (94.3 weight percent) at $300^{\circ} \mathrm{C}$. Apparently no intermetallic compounds are formed.

Magnesium-silicon system

The magnesium-silicon phase diagram given by Hansen [1] was reproduced as figure 13 on p. 199 of the last semi-annual report. This shows the existence of a compound $\mathrm{Mg}_{2} \mathrm{Si}$ which melts at a maximum at $1102^{\circ} \mathrm{C}$. Eutectics occur at 53 atom percent (50.5 weight percent) silicon at approximately $950^{\circ} \mathrm{C}$ and at 1.16 atom percent (1.34 weight percent) silicon at $637.6^{\circ} \mathrm{C}$. There is very little termina solubility.

The lattice spacing of a two-phase alloy quenched from just below the melting point gave the lattices: $a=3.2026, c=5.1998 \mathrm{KX}$ and $\mathrm{c} / \mathrm{a}=1.6236$ at $25^{\circ} \mathrm{C}$ as compared withpowdered magnesium metal with lattices a $=3.2023$, $c=5.1994 \mathrm{kx}$, and $\mathrm{c} / \mathrm{a}=1.6234$ [21].
$\mathrm{Mg}_{2} \mathrm{Si}$ is a face-centered cubic (C1) type structure with a $=6.338$ $\pm .002 \mathrm{KX}$ [40]. Thẹ density calculates to $1.95 \mathrm{~g} / \mathrm{cm}^{3}$. The heat of formation ${ }^{\text {is }}-19.0 \pm 1.0 \mathrm{Kcal} / \mathrm{mole}(-6.16 \mathrm{Kcal} / \mathrm{g}$ atom) [41].

Magnesium-titanium and magnesium-zirconium systems
The systems for both magnesium-titanium and magnesium-zirconium have only been studied slightly. The very limited curves given by Hansen [1] are reproduced as figures 14 and 15 on ps. 200 and 201 of the last semi-annual report.

The lattice spacings of a two-phase alloy containing 1 weight percent titanium and annealed just below the solidus show lattices of $\mathrm{a}=3.2025, \mathrm{c}=5.2017 \mathrm{KX}$ and $\mathrm{c} / \mathrm{a}=1.6242$ at $25^{\circ} \mathrm{C}$ as compared to pure magnesium with $a=3.2023, c=5.1994 \mathrm{kX}$, and $\mathrm{c} / \mathrm{a}=1.6236$ at $25^{\circ} \mathrm{C}$ [21]. Titanium apparently does not dissolve in magnesium [42], but both α and β-titanium dissolve magnesium to the extent of not more than 1.5 weight percent [43].

No intermediate phases have been found for the magnesium-zirconium system [44]. The lattice spacings for a two-phase alloy containing 1 weight percent zirconium quenched just below the solidus are

${ }^{\text {a }} \Delta_{\mathrm{Hf}}$

The various heat, volume, and density data available are tabulated in table 1. For information, the data on the beryllium alloys given in the last semi-annual report is also tabulated. Also included are values for several of the zirconium-silicon alloys, the heat data for which is reported by Robins and Jenkins [45]. The atomic volumes for the elements used in the calculation were taken from Heslop and Robinson [46]. Certain of the molecular volume data for silicon-titanium and silicon-zirconium systems are from VanArkle's recent paper [47]. The percent increase in volume values are probably good to 1 percent in the case of aluminum alloys and 3 percent in the remainder of the cases. It should be stressed that these percent increases are small differences in larger numbers and should be considered accordingly.

1. M. Hansen, "Constitution of Binary Alloys", second edition, McGraw Hill Book Co., Inc., New York (1958).
2. H.J. Axon and W. Hume-Rothery Proc. Roy. Soc. A193, 1 (1958).
3. W. Hume-Rothery and T.H. Boultbee, Phil. Mag. 40, 71 (1949).
4. K. Schubert, Z. Metallk. 41, 63 (1950).
5. E. Zintl and J. Woltersdorf, Z. Electrochem. 41, 876 (1935).
6. O. Kubaschewski and J.A. Catteral, "Thermochemical Data on Alloys ${ }^{\text {sin }}$, Pergammon Press, London (1956).
7. K. Eickhoff and H. Vosskühler, Z. Metallk. 44, 223 (1953).
8. J.B. Clark and F.N. Rhines, J. Metals 9, 6 (1957).
9. E.C. Elwood, J. Inst. Metals 80, 605 (1952).
10. D.M. Poole and H.J. Axon, J. Inst. Metals 80 , 599 (1952).
11. J.E. Dorn, P. Pietrokowski, and T.E. Tietz, J. Metals 2, 933 (1950)
12. H. Küstner, Z. Metallk. 34, 114 (1942).
13. V.G. Kuznetsov and L.N Guseva, Izv. Akad, Nauk: SSSR, 905 (1940)
14. G. Siebel and H. Vosskühler, Z. Metallk. 31, 359 (1939).
15. J.J. Trillat and M. Paic Rev. Aluminum 15, 1109 (1938).
16. H. Perlitz, Nature 154, 606 (1944).
17. H. Perlitz, Trans. Chalmers University of Technology, Gothenberg, Sweden 50 (1946).
18. F. Laves, K. Lohberg, and P. Rahlfs, Nachr. Ges. Wiss: Gottingen, Math. phys. Klasse Fachgruppe 1, 67 (1934).
19. E.C. Makarov, Doklady Alead, Nauk. SSSR 74, 935 (1950).
20. F. Laves and K. Moellor, Z. Metallk. 30, 232 (1938).
21. R.S. Busk, J. Metals 2, 1460 (1950).
22. G.V. Raynor, Proc. Roy. Soc. Al80, 107 (1942).
23. W. Hume-Rothery and G.V. Raynor, Proc. Roy. Soc A177, 27 (1940).
24. E.S. Bumps, H.D. Kessler, and M. Hansen, J. Metals 4, 609 (1952).
25. J. Folkenhagen and W. Hofmann, Z, Metallk. 43, 69 (1952).
26. H.R. Ogden, D.J. Maykuth, W.L. Finlay, and R.I. Jaffee, J. Metals 3, 1150 (1951).
27. W. Rostoker, J. Metals 4, 212 (1952).
28. H.J. Clark, Jr., J. Metals 1, 588 (1949).
29. G. Brauer, Z. anorg. u. allgem Chem. 242, 1. (1939).
30. G. Brauer, Naturwỉs . 26, 710 (1938).
31. W.L. Fink, K.R. vanHorne, and P.M. Budge, Trans. AIMME 93, 421 (1931).
32. O. Kubaschewski and W.A. Dinch, Acta Metallurg. 3, 339 (1955).
33. P. Durez and J.V. Taylor, J. Metals 4, 70 (1952).
34. D.J. McPherson and M. Hansen, Trans. Am . Sec. Metals 46, 354 (1954).
35. C.G. Wilson, D.K. Thomas, and F.J. Sperner, Acta. Cryst. 13 56 (1960).
36. G. Brauer, Z. Electrochem 49, 208 (1943).
37. J.H. Kieler and J.H. Mallory, J. Metals 7, 394 (1955)
38. W.L. Fink and L.A. Wilby, Trans. AMME $\frac{133}{71} 69$ (1939).
39. C.G. Wilson and D. Sams, Acta Cryst. 14, 71 (1961)
40. W. Klemm and H. Westlinning, Z. anorg. Chem. 245, 365(1941).
41. O. Kubaschewski and H. Villa, Z. Electrochem, 53, 32 (1949).
42. K.T. Oust and L. M. Pidgeon, J. Metals 1 , 585 (1949).
43. J.W. Frederickson J. Metals 7, 368(1955).
44. H. Nowotny, E. Wormnes, and A. Mohrnheim, Z. Metallk. 32, 39 (1940).
45. D.A. Robins and I. Jenkins, Acta Metallurg. 3, 598 (1955).
46. R.B. Heslop and P.L. Robinson, "Inorganic Chemistry", Elsevier Publishing Co., New York (1960).
47. A. VanArkle, "Alloys as Solid Rocket Fuels", report of National Research Corporation, Cambridge, Mass., October 7, 1960.
Table I．Percent increase in volume of alloy or intermetallic as compared to elements， Heat of formation
$\Delta \boldsymbol{H f}$
$\triangle \mathrm{Hf}$
Kcal／at $\begin{array}{ll}0 & \hat{O} \\ 0 & 0 \\ 0 & 1\end{array}$ $\begin{array}{ll}\infty & 0 \\ \infty & 0 \\ 1 & 1\end{array}$
0
$\stackrel{+}{1}$
\cdots

m
$\underset{1}{n}$
1

-0.06
 -4.78
-2.79
-1.29
-1.10
-2.89
-3.27 $+0.26$ -0.98
-0.87 $+7.59$ t
0
0
i
i
i
i 0.00 Sum of
atomic
volumes
$\sum_{3} V A$
$\mathrm{~cm}^{3} /$ atom 23.1 57.8 356.3 40.6
20.6
44.0 86.0
62.0
100.0
38.0
52.0 순 NMッ～！ 39.3 Molecular
volume
VM
$\mathrm{cm}^{3} / \mathrm{mole}$
19.4
57.4
356.1
38.6
19.5
41.9
$83 .-6$
61.2
98.9
36.9
50.3
77.2 － 25.5
37.9
76.6
109.0 n
in

1.75
3.37
3.84
4.11

 1.95
Compound Density
Compound
 C－1
盛

$\mathrm{Mg}_{2} \mathrm{Si}$

LITERATURE SURVEY ON LOW-TEMPERATURE HEAT CAPACITY AND ENTROPY

AT $298.15^{\circ} \mathrm{K}$ OF W AND Pb AND SOME OF THEIR COMPOUNDS
AND OF THE BROMIDES AND IODIDES OF $\mathrm{Li}, \mathrm{Be}, \mathrm{Mg}$, and Al
by George T. Furukawa

The substances of interest to the program have increased. As a part of the program to determine the thermodynamic properties of these substances, a literature survey was made on the low-temperature heat capacity of tungsten and lead and some of their compounds with oxygen and the halogens. A literature survey was made also on the bromides and iodides of lithium, beryllium, magnesium and aluminum, and found that no heat-capacity data on these substances exist. The Bureau of Mines (BM) Bulletin 592 [22] ${ }^{1}$ and the Ohio State University [2] bibliography on low-temperature calorimetry were used to locate references to experimental measurements. The Annual Review of Physical Chemistry, Volumes 10 and 11 [38,27] and the bibliography compilation for 1960 by Zwolinski and Danti [43], that appeared in the Bulletin of Chemical Thermodynamics, No. 4, 1961 in advance of its publication in the 1961 issue of the Annual Review of Physical Chemistry, were also examined for experimental data. The Bulletin of Chemical Thermodynamics No. 4, 1961 [5] was consulted for sources of unpublished measurements. The original papers were examined and the data evaluated. Time was, however, insufficient to obtain smoothed values of heat capacities at equally spaced temperature intervals from which the various thermal functiona would be derived. For this report, values of heat capacity selected from a largescale plot were compared with those given in the BM Bulletin 592 [22]. When the experimental data are reliable, the selected values of heat capacity were found to be in good agreement with those given in the BM Bulletin 592 [22]. Wherever the investigator evaluated the entropy at $298.15^{\circ} \mathrm{K}$ (Sg98), the value was compared with that given in the BM Bulletin 592 [22] and in the Natignal Bureau of Standards (NBS) Circular 500 [34]. The adopted values of S_{298} were taken from the above compilations or from the original publications.

The substances are discussed. separately after listing the lowtemperature heat-capacity measurements in chronological order, with the reference and the temperature range of each investigation. Information on the chemical and physical state of the substance is given wherever available. Tables of the adopted values of S_{298} are given at the end of the discussion. References given in the tables are those from which the adopted values were obtained.
${ }^{I_{\text {Numbers }}}$ in brackets refer to literature references at the end of this chapter.

Measurements of the heat capacity of tungsten metal have-been reported by a number of investigators: Nordmeyer and Bernoulli [32] (-1850 to $20^{\circ} \mathrm{C}$) ; Dewar [10] (20° to $80^{\circ} \mathrm{K}$); Lange [25] (26° to $91^{\circ} \mathrm{K}$); Zwikker and Schmidt [41,42] (920 to $2521^{\circ} \mathrm{K}$); Bronson, Chisholm, and Dockerty [3] $\left(-20^{\circ}\right.$ to $\left.501^{\circ} \mathrm{C}\right)$; Silvidi and Daunt [37] (1. 5° to 3.00 K); Horowitz and Daunt [15] (0.03° to $0.34^{\circ} \mathrm{K}$); Rayne [33] (0.2° to $1^{\circ} \mathrm{K}$); Waite, Craig, and Wallace [39] (4° to $15^{\circ} \mathrm{K}$); DeSorbo [9] (13 0 to $93^{\circ} \mathrm{K}$); Clusius and Franzosini [7] (12° to $274^{\circ} \mathrm{K}$). The extensive measurements of Clusius and Franzosini [7] were based on a sample of 99.99 percent purity. $S_{298}=7.83$ eu reported by Clusius and Franzosini [7] was adopted. DeSorbo [9] reported $S_{298}=8.2 \pm 0.2$ eu. Kelley and King [22] give $S_{298}^{\circ}=7.80 \pm$ 0.10 eu and the NBS Circular 500 [34] 8.0 eu.

Tungsten Dioxide, $\mathrm{WO}_{2} 215.86$

Heat-capacity measurements on tungsten dioxide have been reported by King, Weller, and Christensen [24] (520 to $297^{\circ} \mathrm{K}$). The sample was prepared from pure tungstic acid by reduction with hydrogen at 600° to $625^{\circ} \mathrm{C}$. The product from eight separate preparations were mixed and heated for 11 hours in helium at $990^{\circ} \mathrm{C}$. The analysis of the final product was reported to be 14.80 percent oxygen (theoretical $=14,82$ percent). The x-ray diffraction pattern was reported to agree with that given for TiO_{2} in the A.S.T.M. catalog. The value $\mathrm{S}_{298}^{0}=12.08 \pm 0.07$ eu obtained by Kîng et al. [24] was adopted.

Tungsten Trioxide, $\mathrm{WO}_{3}, 231.86$
Heat-capacity measurements on tungsten trioxide have been reported by Russell [35] (-1890 to $47^{\circ} \mathrm{C}$); by Seltz, Dunkerley, and DeWitt [36] (63° to $299^{\circ} \mathrm{K}$) ; and by King, Weller, and Christensen [24] (53° to $297^{\circ} \mathrm{K}$). The WO_{3} sample investigated by King et al. [24] was prepared from reagent-grade tungstic acid by heating at $770^{\circ} \mathrm{C}$ for 16 hours. The analysis of the product by hydrogen reduction was reported to be 20.72 percent oxygen (theoretical $=20.70$ percent). The value $S_{298}^{0}=18.15 \pm 0.12$ eu obtained by King et al. [24] was adopted.

Lead, $\mathrm{Pb}, 207.21$
Heat-capacity measurements on lead have been reported by Nernst [30] (23° to $273^{\circ} \mathrm{K}$) ; Hacken and Schwers [12] (160 to 2760 K); Griffiths and Griffiths [14] (23° to $380^{\circ} \mathrm{K}$); Keesom and Onnes [20] (14° to $80^{\circ} \mathrm{K}$); Keesom and Andrews [17] (2° to $21^{\circ} \mathrm{K}$); Keesom and Ende [18,19] (2° to $20^{\circ} \mathrm{K}$) ; Bronson and Wilson [4] (-80° to $120^{\circ} \mathrm{C}$); Meads, Forsythe and Giauque [28] (14° to $300^{\circ} \mathrm{K}$); Clement and Quinnell [6] (60 to 80 K) ; and Horowitz, Silvidi, Malaker, and Daunt [16] (10 to $75^{\circ} \mathrm{K}$). Measurements of Meads et al. [28] and Horowitz et al. [16] which together cover the range 1° to $300^{\circ} \mathrm{K}$, join fairly continuously. Meads $\frac{\text { et }}{15}$ al. [28] calculated S_{298}^{0} to be 15.51 eu. Kelley and King [22] give $15.49 \pm 0.05 \mathrm{eu} . \mathrm{NBS}$ Circuiar 500 [34] lists $S_{298}^{0}=15.51 \mathrm{eu}$, which was adopted.

Lead Monoxide (yellow, rhombic), $\mathrm{PbO}, 223.21$

Nernst and Schwers [31] (21° to $93^{\circ} \mathrm{K}$), Russell [35] (-1910 to 44° C), and King [23] (54° to $296^{\circ} \mathrm{K}$) measured the heat-capacity of the rhombic, high-temperature form of PbO . The sample investigated by King [23] was prepared by heating lead carbonate, precipitated by treating a solution of reagent grade lead nitrate with an excess of ammonium carbonate solution, for 10 hours at $725^{\circ} \mathrm{C}$ and quenching to room temperature. Analysis of the sample was reported to be 92.84 percent. lead (theoretical $=92.83$ percent). No reconversion to the red PbO was observed. The x-ray diffraction pattern for the sample was reported to be in agreement with that listed for yellow PbO in the ASTM catalog. King [23] reported $\mathrm{S}_{298}^{\circ}=16.1 \pm 0.2 \mathrm{eu}$, which was adopted.

Lead Monoxide (red, tetragonal), $\mathrm{PbO}, 223.21$

King [23] $\$ 53^{\circ}$ to $296^{\circ} \mathrm{K}$) measured the heat capacity of the tetragonal, low-temperature form of PbO . The sample of red PbO was prepared by heating electrolytic PbO_{2} under vacuum at 430° to $480^{\circ} \mathrm{C}$ for about 8 weeks, The chemical analysis on the sample was reported to be 92.69 percent lead (theoretical $=92.83$ percent). X-ray diffraction pattern was reported to indicate a presence of a small amount of yellow Pbo. King [23] reported $S_{298}^{\circ}=15.6 \pm 0.2$ eu, which was adopted.

Lead Orthoplumbate, $\mathrm{Pb}_{3} \mathrm{O}_{4}, 685.63$
Millar [29] (72° to $293^{\circ} \mathrm{K}$) reported heat-capacity measurements on lead orthoplumbate. The sample was prepared by thermal decomposition of PbO_{2} at $460^{\circ} \mathrm{C}$. An average of five analyses for active oxygen on the product indicated 97 percent of the theoretical quantity. The analysis for the lead content was reported to be 90.62 percent (theoretical $=90.66$ percent). Millar [29] reported $S_{298}^{0}=60.53$ eu. Kelley and King [22] lists 50.5 ± 1.6 eu. In an earlier bulletin No. 350 Kelley [21] pointed out an arithematic error in Millar's value for entropy. NBS Circular 500 [34] lists 50.5 eu. The value 50.5 eu was adopted.

Lead Sesquioxide, $\mathrm{Pb}_{2} \mathrm{O}_{3}, 462.42$
King [23] (53° to $297^{\circ} \mathrm{K}$) measured the heat capacity of $\mathrm{Pb}_{2} \mathrm{O}_{3}$. The sample was prepared by heating in air PbCO_{3}, precipitated from a solution of reagent grade $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ with an excess of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ solution, for 40 hours at $290^{\circ} \mathrm{C}, 64$ hours at $310^{\circ} \mathrm{C}$, and 10 days at $320^{\circ} \mathrm{C}$. Chemical analysis of the product was reported to be 89.64 percent lead (theoretical $=89.62$ percent). The x-ray diffraction pattern was reported to agree with that listed in the ASTM catalog. King [23] reported $S_{298}^{\circ}=36.3 \pm 0.7$ eu, which was adopted.

Russell [35] (-188° to $46^{\circ} \mathrm{C}$) and Millar [29] (70° to $297^{\circ} \mathrm{K}$) reported heat-capacity measurements on lead dioxide. The sample investigated by Millar [29] was prepared by electrolysis of an acidic solution of lead nitrate. The average of three analyses for active oxygen on the product indicated 99.5 percent of the theoretical quantity. Millar [29] reported $\mathrm{S}_{298}^{\circ}=18.27 \mathrm{eu}$. Kelley and King [22] lists $18.3 \pm 0.5 \mathrm{eu}$, which was adopted. NBS Circular 500 [34] lists 18.3 eu.

Lead Fluoride, $\mathrm{PbF}_{2}, 241.21$
No low-temperature heat-capacity data were found. NBS Circular 500 [34] lists an estimated $S_{298}^{2}=29$ eu。 Kelley and King [22] estimated $S_{298}^{\circ}=23.0 \pm 0.5 \mathrm{eu}$, which was adopted.

Lead Chloride, $\mathrm{PbCl}_{2}, 278.124$
Eucken [11] (at three mean temperatures: $+17.5^{\circ},-67.5^{\circ}$, and $-166.5^{\circ} \mathrm{C}$) and Nernst [30] (16° to $880^{\circ} \mathrm{K}$) measured the heat capacity of PbCl_{2}. The purity of the samples investigated is not known. From these measurements Kelley and King [22] estimated $\mathrm{S}_{298}=34.0 \pm 1.082$. From cell measurements, Gerke [13] obtained $\Delta S_{298}^{\circ}=-8.58$ eu for the reaction:

$$
\mathrm{Pb}(\mathrm{c})+\mathrm{AgCl}(\mathrm{c})=\mathrm{PbCl}_{2}(\mathrm{c})+2 \mathrm{Ag}(\mathrm{c})
$$

and $\Delta S_{298}^{\circ}=6.70$ eu for the reaction:

$$
\mathrm{Pb}(\mathrm{c})+2 \mathrm{HgCl}(\mathrm{c})=\mathrm{PbCl}_{\mathrm{Z}}(\mathrm{c})+2 \mathrm{Hg}(1) .
$$

The entropies at $298.15^{\circ} \mathrm{K}$ of $\mathrm{PbCl}_{2}(\mathrm{c})$ corresponding to the above reactions calculated by Kelley and King [22] are 32.5 ± 0.5 and 32.2 ± 1.0 eu, respectively. NBS Circular 500 [34] lists $\mathrm{S}_{298}=32.6$ eu. This value was adopted.

Lead Bromide, $\mathrm{PbBr}_{2}, 367.042$
Heat measurements on PbBr_{2} have been reported by Barschall [1] (-183° to $-75^{\circ} \mathrm{C}$) and by Latimer and Hoenshel [26] (180 to $297^{\circ} \mathrm{K}$). Latimer and Hoenshel [26] prepared the PbBr_{2} sample from $\mathrm{c} \cdot \mathrm{p} . \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and KBr by precipitation. The PbBr_{2} precipitate was washed and finaliy dried at $120^{\circ} \mathrm{C}$. Latimer and Hoenshel [26] reported $\mathrm{S}_{298}^{\circ}=39.7 \pm 0.45$ eu. Kelley and King [22] calculated $S_{298}^{0}=38.6 \pm 0.5$ eu on the basis of the same data. NBS Circular 500 [34] 1ists $S_{298}^{\circ}=38.6$ eu, which was adopted.

Lead Iodide, $\mathrm{PbI}_{2}, 461.03$
Nernst and Schwers [31] (22° to 960 K) measured the heat capacity of PbI_{2}. Recently, Westrum [40] measured the heat capacity of this substance in the range 60 to $300^{\circ} \mathrm{K}$. The latter results, however, have not been published as yet. Kelley and King [22] estimated $S_{298}^{a}=41.3 \pm 1.5$ eu based on the measurements of Nernst and Schwers [31]. Gerke [13] obtained $\Delta S 299=-1.20$ for the reaction:

$$
\mathrm{Pb}(\mathrm{c})+\mathrm{I}_{2}(\mathrm{c})+\mathrm{PbI}_{2}(\mathrm{c})
$$

from cell measurements, from which Kelley and King [22] calculated $\mathrm{S}_{298}^{0}=$ 42.2 ± 0.5 eu for $\mathrm{PbI}_{2}(\mathrm{c})$. NBS Circular 500 [34] Iists $\mathrm{S}_{298}^{\circ}=42.3$ eu。 The latter value was tentatively adopted until Westrum's low-temperature heat-capacity data become available.

Lithium Bromide, $\mathrm{LiBr}, 86.856$

No low-temperature heat-capacity data have been found. Kelley and King [22] give an estimated value of $S_{298}^{0}=16.0 \pm 0.5 \mathrm{eu}$, which was tentatively adopted.

Lithium Iodide, LiI, 143.850
No low-temperature heat-capacity data have been found. Kelley and King [22] give an estimated value of $\mathrm{S}_{298}=17.5 \pm 0.5 \mathrm{eu}$, which was tentatively adopted.

Beryllium Bromide, $\mathrm{BeBr}_{2}, 168.845$
No low-temperature heat-capacıty data have been found.
Beryllium Iodide, $\mathrm{BeI}_{2}, 262.833$
No low-temperature heat-capacity data have been found.
Magnesium Bromide, MgBr_{2}, 184.152
No low-temperature heat-capacity data have been found. Kelley and King [22] give an estimated value of $S_{298}^{\circ}=28.0 \pm 1.0 \mathrm{eu}$, which was tentatively adopted.

Magnesium Iodide, $\mathrm{MgI}_{2}, 278.14$
No low-temperature heat-capacity data have been found. Kelley and King [22] give an estimated value of $S_{298}^{\circ}=31.0 \pm 1.0$ eu, which was tentatively adopted.

Aluminum Bromide, $\mathrm{AlBr}_{3}, 266.728$
No low-temperature heat-capacity data have been found. NBS Circular 500 [34] lists an estimated value of $S_{298}=44$ eu, which was tentatively adopted。

Aluminum Iodide, $\mathrm{AlI}_{3}, 407.71$
No low-temperature heat-capacity data have been found. Corbett and Gregory [8] investigated the equilibrium of the reaction:
$\mathrm{AlI}_{3}(\mathrm{c})+3 \mathrm{HCl}(\mathrm{g})+\mathrm{AlCl}_{3}(\mathrm{c})+3 \mathrm{HI}(\mathrm{g})$
and obtained $\Delta F_{298}^{0}=-8.7 \pm 0.2 \mathrm{kcal}$ for the reaction. Using values of ΔF_{f}° (at $298.150^{\circ} \mathrm{K}$) given in NBS Circular 500 [34], Corbett and Gregory [8] calculated ΔF_{f}° (at $298.15^{\circ} \mathrm{K}$) for $\mathrm{AlI}_{3}(\mathrm{c})$ to be -74.4 kcal . NBS Circular 500 [34] Iists -75.0 kcal for this quantity. Corbett and Gregory [8] calculated $S_{298}^{0}=46.0$ eu. Kelley and King [22] assigned the uncertainty ± 2.0 eu to this. 18 Circular 500 [34] lists an estimated value of $S_{298}^{\circ}=48$ eu. The value $\mathrm{S}_{298}^{2}=46.0 \pm 2.0$ eu was adopted.

```
Entropy of Some Compounds of Tungsten
    and of Lead in the Solid State
```

Chemical Formula	Gram Formula Mass	$\begin{gathered} \mathrm{S}_{298}^{0} \\ \mathrm{cal} / \mathrm{deg} \mathrm{~mole} \end{gathered}$	References
W	183.86	7.83	[7]
WO_{2}	215.86	12.08 ± 0.07	[24]
WO_{3}	231.86	18.15 ± 0.12	[24]
WF_{6}	297.86	no data	---
WCl_{6}	396.602	no data	----
Pb	207.21	15.51	[34]
PbO (yellow)	223.21	16.1 ± 0.2	[23]
PbO (red)	223.21	15.6 ± 0.2	[23]
$\mathrm{Pb}_{3} \mathrm{O}_{4}$	685.63	50.5 ± 1.6	[22,34]
$\mathrm{Pb}_{2} \mathrm{O}_{3}$	462.42	36.3 ± 0.7	[23]
PbO_{2}	239.21	18.3 ± 0.5	[22,34]
PbF_{2}	241.21	23.0 ± 0.5	[22]
PbCl_{2}	278.124	32.6	[22,34]
PbBr_{2}	367.042	38.6 ± 0.5	[22,34]
PbI_{2}	461.03	42.3	[22,34]

TABLE II
Entropy of the Bromides and Iodides of $\mathrm{Li}, \mathrm{Be}, \mathrm{Al}$, and Mg

Chemical Formula	Gram Formula Mass	$\begin{gathered} \mathrm{S}_{298}^{0} \\ \mathrm{cal} / \mathrm{deg} \mathrm{~mole} \end{gathered}$	Reference
LiBr	86.856	16.0 ± 0.5	[22]
LiI	143.850	17.5 ± 0.5	[22]
BeBr_{2}	168.845	no data	---
BeI_{2}	262.833	no data	--
MgBr_{2}	184.152	28.0 ± 1.0	[22]
MgI_{2}	278.14	31.0 ± 1.0	[22]
AlBr_{3}	266.728	44	[34]
AlI_{3}	407.71	46.0 ± 2.0	[22]

REFERENCES

[1] H. Barschall; "Uber spezifische Warmen fester Stoffe bei tiefen Temperaturen; Z. Elektrochem. 17, 341-345 (1911).
[2] T. W. Bauer, C. W. Beckett, and H. L. Johnston; Calorimetry at Low Temperatures; TECH INT REPORT NO. F-TR-2262-IA, The Ohio State University, March 15, 1949。
[3] H. L. Bronson, H. M. Chisholm, and S. M. Dockerty; On the Specific Heats of Tungsten, Molybdenum, and Copper; Can. J. Research 8, 282-303 (1933).
[4] H. L. Bronson and A. J. C. Wilson; The Heat Capacities of Silver, Nickel, Zinc, Cadmium, and Lead from -80° to $120^{\circ} \mathrm{C}$; Can. J. Research 14A, 181-193 (1936).
[5] Builetin of Chemical Thermodynamics, No. 4, 1961, International Union of Pure and Applied Chemistry, March 20, 1961.
[6] J. R. Clement and E. H. Quinnell; The Atomic Heat of Lead in the Region of the Transition to Superconductivity; Phys. Rev. 85, 502-503 (1952).
[7] K. Clusuis and P. Franzosini; Ergebnisse der Tieftemperaturforschung. XXIII. Atom-- und Elektronenwarme des Molybdäns und Wolframs zwischen $10^{\circ} \mathrm{K}$ und $273^{\circ} \mathrm{K}$; Z. Naturforsch. 14A, 99-105 (1959).
[8] J. D. Corbett and N. W. Gregory; The $\mathrm{AlI}_{3}-\mathrm{HCl}-\mathrm{AlCl}_{3}-\mathrm{HI}$ System. The Free Energy of Formation of Aluminum Iodide; J. Am. Chem. Soc. 76, 1446-1447 (1954).
[9] W. DeSorbo; Low Temperature Heat Capacity of Bismuth and Tungsten; J. Phys. Chem. 62, 965-967 (1958).
[10] J. Dewar; Atomic Specific Heats between the Boiling Points of Liquid Nitrogen and Hydrogen. I. The Mean Atomic Specific Heats at 50° Absolute of the Elements a Periodic Function of the Atomic Weights; Proc. Roy. Soc. (London) 89A, 158-169 (1913).
[11] A. Eucken; ther die Bestimmung spezifischer W"rmen bei tiefen Temperaturen: Physik. Z. 10, 586-589 (1909).
[12] A. Eucken and F. Schwers; Eine experimentelle Pruffung des T3 ${ }^{3}$ Gesetzes fur den Verlauf der spezifischen Warme fester Kolrper bei tiefen Temperaturen; Ber. deut. physik. Ges. 15, 578-588 (1913).
[13] R. H. Gerke; Temperature Coefficient of Electromotive Force of Galvanic Cells and the Entropy of Reactions; J. Am. Chem. Soc. L4, 1684-1704 (1922).
[14] E. H. Griffiths and E. Griffiths; The Capacity for Heat of Metals at Low Temperatures; Proc. Roy. Soc. (London) 90A, 557-560 (1914).
[15] M. Horowitz and J. G. Daunt; The Electronic and Lattice Specific Heats in W, Mo, and Re; Phys. Rev. 21, 1099-1106 (1953).
[16] M. Horowitz, A. A. Silvidi, S. F. Malaker, and J. G. Daunt; The Specific Heat of Lead in the Temperature Range $l^{6} \mathrm{~K}$ to $75^{\circ} \mathrm{K}$; Phys. Rev. 88, 1182-1186 (1952).
[17] W. H. Keesom and D. H. Andrews; The Specific Heats of Solid Substances at the Temperatures Attainable with the Help of Liquid Helium. I. Measurements of the Atomic Heat of Lead; Comm. Phys. Lab. Univ. Leiden No. 185a, 2-13 (1927).
[18] W. H. Keesom and J. N. van den Ende; The Specific Heat of Solid Substances at the Remperatures Obtainable with the Aid of Liquid Helium. II. Measurements of the Atomic Heats of Lead and Bismath; Proc. Acad. Sci. Amsterdam 33, 243-245 (1930). Corm. Phys. Lab. Univ. Leiden No. 203d, 25-38 (1930).
[19] W. H. Keesom and J. N. van den Ende; The Specific Heat of Solid Substances at the Temperatures Obtainable with the Aid of Liquid Helium. III. Measurements of the Atomic Heats of Lead and Bismuth. A Correction; Proc. Acad. Sci. Amsterdam 34, 210-211 (1931). Corm. Phys. Lab. Univ. Ieiden No. 213c, 27-31 (1931).
[20] W. H. Keesom and H. K. Onnes; The Specific Heat at Low Temperatures. I. Measurements on the Specific Heat of Lead between 14° and $80^{\circ} \mathrm{K}$ and of Copper between 15° and $22^{\circ} \mathrm{K}$; Corm. Phys. Lab. Univ. Leiden No. 143,13, 2-26 (1914).
[21] K. K. Kelley; Contributions to the Data on Theoretical Metailurgy. I. The Entropies of Inorganic Substances, U. S. Bureau of Mines Bulletin 350 (1932).
[22] K. K. Kelley and E. G. King; Contributions to the Data on Theoretical Metallurgy. XIV. Entropies of the Elements and Inorganic Compounds, U. S. Bureau of Mines Bulletin 592, August, 1961.
[23] E. G. King; Low Temperature Heat Capacities and Entropies at $298.15^{\circ} \mathrm{K}$. of Lead Sesquioxide and Red and Yellow Lead Monoxide; J. Am. Chem. Soc. 80, 2400-2401 (1958).
[24] E. G. King, W. W. Weller, and A. U. Christensen; Thermodynamics of Some Oxides of Molybdenum and Tungsten; U. S. Bureau of Mines Report of Investigations No. 5664, 1960.
[25] F. Lange; Untersuchungen "̈ber die spezifische W "̈rme bei tiefen Temperaturen; Z. physik. Chem. 110, 343 (1924).
［26］W．M．Latimer andH．D．Hoenshel；The Heat Capacity and Entropy of Lead Bromide and Bromine；J．Am．Chem．Soc．48，19－28（1926）．
［27］John PoMcCullough；Thermochemistry and Thermodynamic Properties of Suistances，Annual Review of Physical Chemistry，Volume 11 ， Annual Reviews，Inc．，Palo Alto， 1961.
［28］P．F．Meads，W．R．Forsythe，and W．F。Giauque；The Heat Capacities and Entropies of Silver and Lead from 15° to $300^{\circ} \mathrm{K}$ ；J．Am．Chem． Soc．63，1902－1905（1941）．
［29］R．W．Millar；The Heat Capacities at Low Temperatures of the Oxides of Tinand Lead；J．Am．Chem．Soc．51，207－214（1929）．
［30］W．Nernst；Der Energieinhalt fester Stoffe；Ann。Physik（4）36， 395－439（1911）．
［31］W．Nernst and F．Schwers；Untersuchungen Hber die spezifische Wärme bei tiefen Temperaturen．VIII；Sitzber．könig．preuss．Akad．Wiss． 1914，355－370（1914）．
［32］P．Nordmeyer and A．L．Bernoulli；Determination of the Specific Heat of Some Elements；Alloys，and Compounds between -185° and $20^{\circ} \mathrm{C}$ ； Verhandl．deut．physik．Ges．2，175－183（1907）．
［33］Jo Rayne；Specific Heat of Metals Below One Degree Absolute；Phys． Rev．25，1428－1434（1954）．
［34］F．．D．Rossini，D．D．Wagman，W．H．Evans，S．Levine，and I。Jaffe；－ Selected Values of Chemical Thermodynamic Properties，National Bureau of Standards Circular 500 （1952）．
［35］A．S．Russell；Messungen von spezifischen Warmen bei tiefen Temperaturen； Physik．13，59－64（1912）．
［36］H．Seltz，F．J．Dunkerley，and B．J。 DeWitt；Heat Capacities and Entropies of Molybdenum and Tungsten Trioxides；J．Am．Chem．Soc． 65，600－602（1943）．
［37］A．A．Silvidi and J。G．Daunt；Electronic Specific Heats in Tungsten and Zinc；Phys．Rev．77，125－129（1950）．
［38］J．M．Sturtevant；Thermochemistry and Thermodynamic Properties of Substances，Ann．Rev．of Phys．Chemo；Volume 10，Annual Reviews， Inc．，Palo Alto，1960．
［39］T．R．Waite，R．S．Craig，and W．E．Wallace；Heat Capacity of Tungsten between 4 and $15^{\circ} \mathrm{K}$ ；Phys．Rev．104，1240－1241（1956）．
[40] E. F. Westrum, Jr.; Bulletin of Chemical Thermodynamics, No. 4, 1961, p. 44, International Union of Pure and Applied Chemistry, March 20, 1961.
[41] C. Zwikker, Messungen der spezifischen $W^{\prime \prime}$ rme von Wolfram zwischen 90 und 2600° abs.; Z. Physik 52, 668-77 (1928).
[42] C. Zwikker and G. Schmidt; Metingen over de Soortelijke Warmte van Wolfraam tusschen 90 en 2600° Absoluut; Physica 8, 329-346 (1928).
[43] B. Zwolinski and A. Danti, Bibliography of Recent Papers and Substance Property Index, Appendix l, Bulletin of Chemical Thermodynamics, No. 4, 1961, International Union of Pure and Applied Chemistry, March 20, 1961.

A RECENT SURVEY OF REPORTED HIGH-TEMPERATURE

HEAT CONTENTS AND HEAT CAPACITIES

by Thomas B. Douglas and Willis R. Thurber

Beginning with the first report of this series (NBS Report 6297, January 1, 1959), heat-content and heat-capacity data on condensed phases of propulsion interest have been compiled. It was not, however, until the second report (NBS Report 6484, July 1, 1959) that the extensive task was seriously begun to select "best" values of these properties and to make adjustments of the values such that the resulting tables of thermodynamic functions would not have discontinuities reflecting the many obvious discordances of data covering different temperature ranges. All the tables of thermodynamic functions of condensed phases issued so far in our NBS program are to be found in the fourth and fifth reports (NBS Report 6928, 1 July 1960; NBS Report 7093, I January 1960).

Because new data are constantly being reported, and also especially because additional elements and their compounds have acquired considerable propulsion interest, we recently began an up-to-date survey of the available data on heat contents and heat capacities of a selected list of light-element substances "at high temperatures" (above the ice-point, $273^{\circ} \mathrm{K}$). The results thus far obtained are tabulated below (Table 1). They are preliminary and incomplete in two respects: (1) We have made no attempt so far to assess many of the data and arrive at "best" values, and (2) the sources of information covered, while complete in principle, do not include such obvious alternative sources as abstract journals (except in the case of a few substances). The survey began with a welld known critical compilation (U. S. Bur. Mines Bulletin 584), and to that extent (1) covers all early data still considered of value, and (2) includes values for gases based on published experimental or estimated molecular constants.

With the following specific statement of substances and sources of information covered, the table should be useful as a starting point for more detailed surveys, and also by indicating in which cases hightemperature heat-content data are probably inadequate or totally lacking.

Substances Covered, and Order of Listing -- Table 1 is divided into twelve sections. Each section covers one of the following elements and its compounds (listed in the order of presentation): $\mathrm{Al}, \mathrm{Be}, \mathrm{B}, \mathrm{Hf}, \mathrm{Pb}$, $\mathrm{Li}, \mathrm{Mg}, \mathrm{Hg}, \mathrm{K}, \mathrm{Ti}, \mathrm{W}$, and Zr . (All compounds including two of these elements are listed twice -- i.e., in the sections for both elementso) For each of these elements are included only the free element, compounds with others of the above elements, and compounds with $\mathrm{H}, \mathrm{O}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$,

I, N, C, and/or Si. For each substance the reported investigations are listed in chronological order, on the basis that a later investigation is often (though frequently not) more accurate or more extensive than an earlier one.

Sources of Information Covered -- The dates in parentheses indicate the period of time for which literature coverage is claimed by the given reference source.

1. U. S. Bureau of Mines Bulletin 584, 1960 (same as reference [37]) (to September 1958).
2. "Annual Review of Physical Chemistry," Volume 10--chapter entitled "Thermochemistry and Thermodynamic Properties of Substances," by J. M. Sturtevant -- Annual Reviews, Inc., Palo Alto, Calif., 1959, pp. 1-30 (Dec. 1957 to Dec. 1958).
3. NAnnual Review of Physical Chemistry," Volume ll -- chapter entitled "Thermochemistry and Thermodynamic Properties of Substances," by J. P. McCullough -- Annual Reviews, Inc., Palo Alto, Calif., 1960, pp. 1-20 (Dec. 1958 to Dec. 1959).
4. "Bibliography on the High Temperature Chemistry and Physics of Materials in the Condensed State" (covering the literature of several countries), International Union of Pure and Applied Chemistry, Commission on High Temperatures and Refractories, Sub-Commission on Condensed States, Jan. 1960 through Mar. 1961 (5 issues), 172 pages.
5. Journal of Physical Chemistry, Jan. 1959 through June 1961.
6. Journal of Chemical Physics, Jan. 1959 through June 1961.
7. Journal of the American Chemical Society, July 5, 1960, through June 5, 1961.
8. Bulletin of Chemical Thermodynamics, "No. 4, 1961," March 20, 1961 (same as reference [38]).

Further Comments on Table 1 -- As is customary, the empirical formulas are given for condensed states, but the true molecular formulas are given for gases. The physical state is designated as crystalline(c), liquid (ℓ), gas (g), amorphous, or glass, with a distinction among different crystalline forms if the existence of more than one is recognized. The actual temperature range of measurements on a condensed phase is given where it was possible to ascertain it in the time available, with an attempt to indicate the cases where the temperature scale referred to is ambiguous. Even the sources of information listed above were not covered completely with respect to "low-temperature" measurements which extend only up to or slightly above room temperature, as this temperature region has been covered thoroughly for many of the elements listed above (but yet incompletely for many of the other elements) by another group in the NBS program. Finally, it may be mentioned that the absence from the table of the description "critical compilation" is in some cases due to lack of information rather than real evidence that critical selection was not used.

For the substances covered in the present survey, all individual investigations included in U. S. Bureau of Mines Bulletin 584 have been given separately in the table below, but the Bulletin must be consulted for the original references. For each particular substance and state where that Bulletin lists more than one reference, the column "Rating by Bulletin 584" lists "1" if the Bulletin italicized the reference ("given greatest weight") or " 2 " if not italicized ("not given greatest weight").

Heat Content, Melting Point, and Heat of Fusion of Beryllium Oxide -- As noted in Table 1, measurements of the heat content of Be 0 from $1200^{\circ} \mathrm{K}$ to the melting point have recently been reported by Kandyba, Kantor, Krasovitskaya, and Fomichev [14]. The samples, $99.9 \% \mathrm{BeO}$ after sintering finally at $1800^{\circ} \mathrm{C}$, were contained in molybdenum below $2400^{\circ} \mathrm{K}$ and in tungsten above this temper ature. They used a vacuum furnace, measured temperatures with an optical pyrometer, and reported they found the melting point of BeO to be $2820^{\circ} \pm 9^{\circ} \mathrm{K}$, which agrees with earlier measurements within the stated precisions. Their smoothed values of the heat content of BeO (c) are represented by the equation (in cal/mole at $\left.T^{\circ} \mathrm{K}\right)\left(1200^{\circ}-2820^{\circ} \mathrm{K}\right)$

$$
\mathrm{H}_{\mathrm{T}}-\mathrm{H}_{298.16}=9.471 \mathrm{~T}+1.045\left(10^{-3}\right) \mathrm{T}^{2}-3540
$$

The above results may be compared with values in NBS Report 6484 (July 1, 1959), which gave (in Table 2-8) thermodynamic functions for BeO (c) up to $2800^{\circ} \mathrm{K}$ based on the long and hence inaccurate extrapolation of the heat capacity from precise measurements made only up to $1200^{\circ} \mathrm{K}$. The smoothed heat capacities of KKKF are 1.8% lower at $1200^{\circ} \mathrm{K}, 4.4 \%$ higher at $2000^{\circ} \mathrm{K}$, and 13.5% higher at $2800^{\circ} \mathrm{K}$ and should of course be more reliable than the estimated values at the higher temperatures.

In the same report (NBS Report 6484, p.59), the heat of fusion of BeO was estimated as being about $17 \mathrm{kcal} /$ mole by analogy with the entropies of fusion of MgO and FeO . Although KKKF's heat-content data obviously reflect varying amounts of melting at 2820°, 2822°, and $2840^{\circ} \mathrm{K}$, if fusion were complete at the last temperature (which they apparently do not claim), their data would give a heat of fusion of $15 \mathrm{kcal} / \mathrm{mole}$. Although based on a single experimental heat-content value in the liquid range, this value thus represents a lower limit to the true heat of fusion.

TABLE 1. REPORTED INVESTIGATIONS OF THE HIGH-TEMPERATURE
HEAT CONTENTS AND HEAT CAPACITIES OF SELECTED SUBSTANCES

Formula	Physical State	Year Reported	Author(s) and Reference No.	Temp. $\text { Range (} \mathrm{OK} \text {) }$	$\begin{aligned} & \text { Rating } \\ & \text { by }[37] \end{aligned}$	Comments
			Aluminum Compounds			
Al	c	1888	Naccari [37]	293-593	2	
	c	1903	Tilden [37]	288-708	1	
	c	1910	Magnus [37]	289-820	1	
	c	1914	Sçrnubel [37]	291-875	1	
	c, ℓ	1918	Wust, Meuthen, Durrer [37]	273-1273	2	
	c	1924	Eastman, Williams, \& Young [37]	293-873	1	
	c, 2	1926	Awbery and Griffiths [37]	293-1036	1	
	c, ℓ	1926	Umino [37]	273-1273	2	
	c	1931	Seekamp [37]	291-873	1	
	c	1935	Ssto [37]	273-871	2	
	c	1937	Tscherboff and Tsherniah [37]	290-373	2	
	c, ℓ	1938	Awbery [37]	932	2	
	c	1939	Avramescu [37]	373-873	2	
	c, ℓ	1952	Wittig [37]	932	1	
	c, ℓ	1955	Oelsen, Oelsen, and Thiel [37]	932	1	
	c, ℓ	1955	Oelsen,Rieskamp, \& Oelsen [37]	932	1	
	g	1957	Kolsky,Gilmer, \& Gilles [37]	0-8000		critical compilation
$\mathrm{Al}_{3} \mathrm{Mg}_{4}$	c	1910	Schimpff [37]	290-373		
AlH	g	1950	Herzberg [37]	298-2000		molecular constant data
AlO	g	1950	Herzberg [37]	298-2000		$\begin{aligned} & \text { molecular constant } \\ & \text { data } \end{aligned}$
$\mathrm{Al}_{2} \mathrm{O}_{3}$	c	1912	Lyashenko [37]	290-1483	2	
	c	1926	Miehr, Immke, \& Kratzert [37]	281-1676	2	
	c	1929	Roth and Bertram [37]	293-1187	2	
	c	1930	Kolossowsky and Skoulski [37]	291-624	2	
	c	1930	Newman and Brown [37]	300-1300	2	
	c	1932	Wilkes [37]	303-1973	2	
	c	1933	Esser, Averdieck, \& Grass [37]	273-1473	2	
	c	1933	Gronow and Schwiete [37]	293-1973	1	
	c	1935	Laschschenko \& Kompanskii [37]	289-1443	2	
	c	1936	Auzhbikovich [37]	295-1420	2	
	c	1945	Shomate and Naylor [37]	298-1788	1	
	c	1947	Ginnings and Corruccini [37]	273-1173	1	
	c	1950	Egan,Wakefield, \& Elmore [37]	273-1573	1	
	c	1951	Blomeke and Ziegler [37]	303-1172	1	
	c	1953	Ginnings and Furukawa [37]	273-1200	1	
	c	1954	Ewing and Baker [37]	303-978	1	
	c	1954	Oriani and Murphy [37]	273-786	1	
	c	1955	Rodigana and Gomel'skii [37]	273-1673	1	
	c	1955	Shomate and Cohen [37]	298-1362	1	
	c.	1956	Furukawa, Douglas,McCoskey, \& Ginnings [37]	273-1200	7	
	c	1956	Lucks and Deem [37]	298-1508	2	
	c	1956	Walker, Grand, and Miller [37]	303-976	1	
	c	1957	Olette [24]	$1173,1500$		
	c	1958	Gomel'skiy [12]	373-1173		
	c	1958	Margrave and Grimley [19]	$686-1261$		
	c	1958	McKeown [21]	273-1373		
	c	1958	Medvedev [22]	?		
	c	1960	Kirillin,Sheindlin, Chekhovski[17]	$\begin{aligned} & 500-2000 \\ & \left({ }^{\circ} \text { Cor }{ }^{\circ} \mathrm{K} ?\right. \text {) } \end{aligned}$		
	c	1960	Romanovsky and Tarasov [26]	65-300		
	c	1960	Shmidt and Sokolov [28]	$326-987$		
	c	1961	Hoch and Johnston [42] 1555-2278	1200-2250		
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	c	1946	Shomate and Cook [37]	298-520		
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	c	1946	Shomate and Cook [37]	298-424		
$\mathrm{BeAl}_{2} \mathrm{O}_{4}$	c	1880	Nilson and Pettersson [37]	273-373		
LiAlO_{2}	c	1960	Christensen, Conway, \& Kelley [5]	298-1796		

Formula	Physical State	Year Reported	Author(s) and Reference No.	Temp. Range (OK)	Rating by [37]	Comments
Aluminum Compounds (cont.)						
$\mathrm{Mg} \mathrm{Al}_{2} \mathrm{O}_{4}$	c	1955	Bonnickson [37]	298-1806		
$\mathrm{Al}_{2} \mathrm{TiO}_{5}$	c	1955	Bonnickson [37]	298-1803		
$\begin{aligned} & \mathrm{Al}_{2} \mathrm{SiO}_{5} \\ & \text { (sillimanite) } \end{aligned}$	c	1924	Cohn [37]	293-1673	2	
$\begin{aligned} & \mathrm{Al}_{2} \mathrm{SiO}_{5} \\ & \text { (andalusite) } \end{aligned}$	c	1925	Neumann [37]	273-1573		
$\begin{aligned} & \mathrm{Al}_{2} \mathrm{SiO}_{5} \\ & \text { (kyanite) } \end{aligned}$	c	$\begin{aligned} & 1925 \\ & 1930 \end{aligned}$	Neumann [37] Kolossowsky \& Skoulski [37]	$\begin{aligned} & 273-1573 \\ & 289-615 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
$\begin{aligned} & \mathrm{Al}_{6} \mathrm{Si}_{2} \mathrm{O}_{13} \\ & \text { (mullite) } \end{aligned}$	c	1931	Kolossowsky [37]	290-576		
KAlSiO_{4}	c	1953	Kelley, Todd, Orr, King, and Bonnickson [37]	298		
$\mathrm{KAlSi}_{2} \mathrm{O}_{6}$	c	1953	Kelley,Todd,Orr,King and Bonnickson [37]	298		
$\mathrm{KAlSi}_{3} \mathrm{O}_{8}$	c,gls	1909	White [37]	273-1373		
$\mathrm{AlMg}_{3} \mathrm{Si}_{3} \mathrm{O}_{10} \mathrm{~F}_{2}$	c, ℓ	1959	Kelley, Barany, King, \&Christensen [37]	298-1804		
$A l F$	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1950 \\ & 1959 \end{aligned}$	Herzberg [37] Altman [1]	$\begin{array}{r} 298-2000 \\ 0-6000 \end{array}$	1	molec.-const.data molec.-const.data
AlF_{3}	c	1935	Lyashenko [37]	$290-1305$	2	
	c	1957	0 Brien and Kelley [37]	298-1401		
$\mathrm{AlF}_{3} \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O}$	c	1903	Baud [37]	288-326		
AlCe	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1950 \\ & 1959 \end{aligned}$	Herzberg [37] Altman [1]	$\begin{array}{r} 298-2000 \\ 0-6000 \end{array}$	1	molec.-const.data molec.-const.data
AlCl_{3}	$\begin{aligned} & c, l \\ & c, l \end{aligned}$	1931 unpubl.	```Fischer [37] McDonald and Stull [38]```	$\begin{aligned} & 2^{\prime} 73-504 \\ & 298-500 \end{aligned}$		
$\mathrm{AlCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	c	1903	Baud [37]	288-327		
AlBr	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1950 \\ & 1959 \end{aligned}$	$\begin{aligned} & \text { Herzberg [37] } \\ & \text { Altman [1] } \end{aligned}$	$\begin{array}{r} 298-2000 \\ 0-6000 \end{array}$		molec.-const.data molec.-const.data
AlBr_{3}	c, ℓ	1931	Fischer [37]	273-456		
AlI	g	1950	Herzberg [37]	298-2000		molec.-const.data
AlI_{3}	c, ℓ	1931	Fischer [37]	273-480		
AlN	c	1936	Sato [37]	273-871		
	c c	unpubl. unpubl.	$\begin{aligned} & \text { Mezakii } \\ & \text { Kelley } \end{aligned} \frac{T 11 l e u x, ~ \& M a r g r a v e ~[38] ~}{40]} \text {, }$	$\begin{aligned} & ?(>298) \\ & <298-1800 \end{aligned}$		
$\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	c	1944	Shomate and Kelley [37]	298		
Beryllium Compounds						
Be		1880	Nilson and Pettersson [37]	273-573	2	
		1929	Lewis [37]	282-463	2	
	c	1929	Magnus and Holzmann [37]	295-1173	2	
	c	1934	Jaeger and Rosenbohm [37]	273-1338	2	
	c	1951	Ginnings, Dougles, \&Ball [37]	273-1170	1	
	c, 2	1956	Stull and Sinke [37]	298-2700	1	
	$\begin{gathered} g \\ c, 2 \end{gathered}$	$\begin{aligned} & 1957 \\ & 1960 \end{aligned}$	Kolsky,Gilmer, \& Gilles [37] Kanter,Krasovitskaya, Kisel [15]	600-2200	1	compilation
BeH	g	1950	Herzberg [37],			molec.-const.data
BeO	c	1880	Nilson and Pettersson [37]	273-373	2	
	c	1926	Magnus and Danz [37]	293-1175	1	

Formula	Physical State	Year Reported	Author(s) and Reference No.	$\begin{aligned} & \text { Temp. } \\ & \text { Range }(\mathrm{OK}) \end{aligned}$	$\begin{aligned} & \text { Rating } \\ & \text { by [37] } \end{aligned}$	Comments
Boron Compounds (cont.)						
BBr_{3}	g	1956	NBS [37]			
BI_{3}	g	1958	Wentink and Tiensuu [37]			molec.-const.data
BN	$\begin{gathered} c \\ c \\ c(c u b i c) \end{gathered}$	$\begin{aligned} & 1926 \\ & \text { unpubl. } \\ & \text { unpubl。 } \end{aligned}$	```Magnus and Danz [37] McDonald and Stull [38] Mezaki,Tilleux, & Margrave [38]```	$\begin{aligned} & 294-1174 \\ & 298-1550 \\ & ?(>298) \end{aligned}$		
$\mathrm{B}_{4}{ }^{\text {c }}$	c	1949	King [37]	298-1726		
$\mathrm{BH}_{3} \mathrm{CO}$	g	1960	Sundaran and Cleveland [30]	100-1000		molec.-const.data
			Hafnium Cormpounds			
Hf		1950	Skinner, Beckett, \& Johnston[37]			
	c, ℓ	1951	Litton [37]		2	melting point
	c, ℓ	1952	Adenstedt [37]		2	melting point
	c, ℓ	1956	Deardorff and Hayes [37]		1	melting point
	c, ℓ	1956	Stull and Sinke [37]	298-3000		crit. compilation (estd.values)
HPO_{2}	c	1953	Orr [37]	298-1804		
HfF_{4}	c	1959	Kaylor,Walden, \& Smith [16]	273-1103		
	c, g	1959	Kelley and King [37]	298-1500	1	estimated values
HfCl_{4}	c, g	1953	Orr [37]	298-486	1	
	c, g	1959	Kelley and King [37]		1	estimated values
HfBr_{4}	c, g	1959	Kelley and King [37]	298-700		estimated values
HfI_{4}	c, g	1959	Kelley and King [37]	298-800		estimsted values
HfN	c	1959	Kelley and King [37]	298-2000		estimated values
HfC	c	1959	Kelley and King [37]	298-2000		estimated values
HfB_{2}	c	unpubl.	Mezaki, Tilleux, Margrave [38]	? (>298)		
			Lead Compounds			
Pb	c, ℓ	1849	Person [37]	293-724	2	
	c	1855	Bede [37]	287-445	2	
	c	1881	Lorenz [37]	293-403	2	
	c	1886	Spring [37]	286-566	2	
	c	1887	Naccari [37]	287-560	1	
	c	1892	LeVerrier [37]	273-57.3	2	
	c, ℓ	1904	Glëser [37]	290-670	2	
	c	1905	Stücker [37]	293-593	2	
	c	1910	Magnus [37]	289-529	1	
	c	1913	Griffiths and Griffiths [37]	273-371	1	
	c	1914	Schübel [37]	291-576	2	
	c, ℓ	1918	Wüst, Meuthen, \& Durrer [37]	273-1273	1	
	c, ℓ	1919	Iitaka [37]	293-914	1	
	c, ℓ	1926	Awbery and Griffiths [37]	291-759	2	
	c, ℓ	1926	Umin [37]	273-1073	2	
	ℓ	1927	Dixon and Rodebush [37]	627-692	2	
	c, ℓ	1927	Klinkhardt [37]	323-773	2	
	c, ℓ	1928	Magnus and Oppenheimer [37]		2	heat of fusion
	c	1936	Bronson and Wilson [37]	273-393	1	
	c, ${ }^{\text {d }}$	1948	Bartenev [37]	273-673	2	
	c, ℓ	1954	Douglas and Dever [37]	273-1173	1	
	ℓ	1955	Oelsen [37]	621-719	2	
	c, ℓ	1955	Oelsen, Oelsen, and Thiel [37]		1	heat of fusion
	c, l	1955	Oelsen, Rieskamp, \& Oelsen [37]		2	heat of fusion
	c, ℓ	1956	Stull and Sinke [37]	$298-3000$	$\tilde{1}$	crit. compilation
	$c, \ell, \mathrm{~g}$		Hultgren and co-workers [37]	$298-2100$	1	crit.compilation
Pb_{2}	g	1950	Herzberg [37]	298-2000		mslec.-const.data
PbH	g	1950	Herzberg [37]			molec.-const.data
PbO		1913	Magnus [37]	289-542	1	

Formula	Physical State	Year Reported	Author(s) and Reference No.	$\begin{gathered} \text { Temp. } \\ \text { Range }\left({ }_{\mathrm{K}}\right. \text {) } \end{gathered}$	$\begin{aligned} & \text { Rating } \\ & \text { by }[37] \\ & \hline \end{aligned}$	Corments
Lead Compounds (cont.)						
Pbo (cont.)	red	1942	Spencer and Spicer [37]	298-823	1	
	jellow	1942	Spencer and Spicer [37]	298-923	1	
	g	1950	Herzberg [37]	298-2000	1	molec.-const.data
		1954	Richardson and Webb [37]			heat of fusion
	red	1958	King [37]	51-298		
	yellow	1958	King [37]	51-298		
PbO_{2}		1923	Palmaer [[37]	289-542	1	
	c	1950	Kelley [37]	298	1	crit. compilation
$\mathrm{Pb}_{2} \mathrm{O}_{3}$	c	1958	King [37]	51-298		
$\mathrm{Pb}_{3} \mathrm{O}_{4}$	c	1950	Kelley [37]	298		crit. compilation
PbWO_{4}	c	1957	Zharkova and Rezukhina [35]	401-749		*
PbF_{2}	c	1909	Schottky [37]	273-307		
$\mathrm{PbF}{ }^{2}$	g	1950	Herzberg [37]	298-2000		molec.-const.data
$\mathrm{PbC} \mathrm{\ell}$	g	1950	Herzberg [37]	298-2000		molecó-const.data
PbCl_{2}	c, \&	1885	Ehrhardt [37]	273-813	1	
	c, ℓ	1909	Goodwin and Kalmus [37]	298-841	1	
	c	1910	Magnus [37]	288-623	1	
	c, ℓ	1936	Krestovnikov and Karetnikov [37]	288-1073	2	
PbBr	g	1950	Herzberg [37]			molec.-const.data
PbBr_{2}	c, ℓ	1885	Ehrhardt [37]	273-796	1	
	c, 2	1909	Goodwin and Kelmus [37]	298-860	1	
PbI	g	1950	Herzberg [37]	298-2000		molec.-const.data
PbI_{2}	c, ℓ	1885	Ehrhardt [37]	273-776	1	
	c	1910	Magnus [37]	290-523	1	
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$	c	1865	Kopp [37]	289-320		
PbCO_{3}	c	1935	Kelley and Anderson [37]	298-800		crit.compilation (estd.values)
PbSiO_{3}	c, amorph	1950	Kelley [37]	298		crit.compilation
$\mathrm{Pb}_{2} \mathrm{SiO}_{4}$	c	1959	King [37]	298		

Lithium Compounds

Li	c, ℓ	1905	Laermel [37]	273-453	2	
	c, ℓ	1906	Kleiner and Thum [37]	298-455	2	
	c, ℓ	1907	Bernini [37]	273-430	2	
	\&	1950	Kubaschewski [37]	453-550	2	
	c to ℓ	1952	Kilner [37]	453	2	heat of fusion
	ℓ	1952	Redmond and Lones [37]	503-1374	2	
	c, ℓ	1955	Douglas,Epstein, Dever, \&Howland [37]	273-1173	1	
	$c, \ell, \mathrm{~g}$	1955	Evans, Jacobson, Munson, \&Nagmen[37]	298-3500	1	crit. compilation
	c, ℓ	1956	Schneider and Hilmer [37]	403-553	2	
	$c, \ell, \mathrm{~g}$	1956	Stull and Sinke [37]	298-3000	1	orit.compilation
	g	1957	Kolsky,Gilmer, \& Gillis [37]	298-8000	I	crit.compilation
Li_{2}	g	1955	Evans, Jacobson, Munson, 8dNagman [37]	298-3500	1	crit. ampilation crit. compilation
	g	1956	Stull and Sinke [37]	298-3000	1	
$\mathrm{Li} \mathrm{AlO}_{2}$	c	1960	Christensen, Conway, \& Kelley [5]	298-1796		
LiBH_{4}	c	1953	Hallett and Johnston [37]	up to 298		
LiBO_{2}	c, 2	unpubl.	McDonald and Stull [38]	298-1700		
LiK	g	1950	Herzberg [37]	298-2000		molec.-const.data
LiCl-KCl	ℓ	unpubl.	Douglas and Harman [38]	628-1073		eutectic mixture
LiTiO_{3}	c?	1960	Christensen, Conway, \& Kelley [5]	?		

Mg

c	1881
c	1905
c	1910
c	1914
c	1924
c, ℓ	1926
c, ℓ	1928
c	1930
c	1931
c	1935
c	1936
ℓ	1950
c, ℓ	1955
c, ℓ, g	1956
c	1957
c	1959
c, ℓ	

Magnesium Compounds

Lorenz [37]	$293-403$	2
Stupker [37]	$293-923$	2
Magpus [37]	$289-812$	2
Schubel [37]	$291-773$	1
Eastman, Willisms, \& Young [37]	$293-873$	1
Awberry \& Griffiths [37]	$289-1023$	1
Zalesinskil and Zulinski1 [37]	$295-1048$	2
Losana [37]	$293-573$	2
Seekamp [37]	$291-773$	1
Poppema and Jaeger [37]	$273-823$	2
Jaeger and Poppema [37]	$273-823$	1
Kubaschewski [37]	$923-1133$	2
Stull and McDonald [37]	$700-1100$	1
Stull and Sinke [37]	$298-3000$	1
Wallace,Craig,Saba, \& Sterrett[37]	$298-543$	1
Mannchen \& Bronkessel [18]	$12-300$	
Hultgren [37]	$298-1500$	1

crit. compilation

Formula	$\begin{gathered} \text { Physical } \\ \text { State } \\ \hline \end{gathered}$	Year Reported	Author(s) and Reference No.	$\begin{aligned} & \text { Temp; } \\ & \text { Range }\left(O_{K}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Rating } \\ & \text { by [37] } \end{aligned}$	Comments
Magnesium Compounds (cont.)						
$\mathrm{Mg}_{4} \mathrm{Al}_{3}$	c	1910	Schimpff [37]	290-373		
$\mathrm{MgAr}_{2} \mathrm{O}_{4}$	c	1955	Bonnickson [37]	298-1806		
$\mathrm{KMg}_{3} \mathrm{AlSi}_{3} \mathrm{O}_{10} \mathrm{~F}_{2}$	c, ℓ	1959	Kelley, Barany, Kıng, \&Christensen [37]	298-1804		
MgBr_{2}	c	1957	Swift \& White [37]	298		
MgB_{4}	c	1957	Swift \& White [37]	298		
$6 \mathrm{MgO} \cdot \mathrm{MgCl} 2^{\circ} 8^{8 \mathrm{~B}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & c(\alpha), c(\beta) \\ & c(\alpha), c(\beta) \end{aligned}$	$\begin{aligned} & 1883 \\ & 1892 \end{aligned}$	$\begin{aligned} & \text { Mallard [37] } \\ & \text { Kroeker [37] } \end{aligned}$	$\begin{aligned} & 287-612 \\ & 273-573 \end{aligned}$		
$\mathrm{MgCl}_{2}{ }^{\circ \mathrm{KCl}}$	c, ℓ	$\begin{aligned} & 1935 \\ & 1936 \end{aligned}$	Iyashenko [37] Auzh bikovich [37]	$\begin{aligned} & 290-797 \\ & 273-1073 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	
MgTiO_{3}	c	1946	Naylor \& Cook [37]	298-1720		
$\mathrm{Mg}_{2} \mathrm{TiO}_{4}$	c	1952	Orr \& Coughlin [37]	298-1818		
$\mathrm{MgTi}_{2} \mathrm{O}_{5}$	c	1952	Orr \& Coughlin [37]	298-1812		
MgH	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1950 \\ & 1958 \end{aligned}$	```Herzberg [37] Veits,Gurvich, & Rtishcheva[31]```	298-2000	1	molec.-const.data calculated values
Mgo	c	1913	Magnus [37]	288-1040	1	
	c	1914	Steger [37]	289-678	2	
	c	1919	Wartenberg \& Witzel [37]	415-2780	2	
	c	1932	Wilkes [37]	303-2073	1	
	c	1935	Ifashenko [37]	290-1466	2	
	c	1936	Auzhbikovich [37]	298-973	2	
	c	1950	Arthur [37]	296-1104	2	
	${ }_{\text {g }}^{\text {c }}$	1958	Veits,Gurvich, \&Rtishcheva [31]			calculated values
	$c\left(\begin{array}{c} c \\ c \text { macro }) \end{array}\right.$	$\begin{aligned} & 1959 \\ & \text { unpubl. } \end{aligned}$	Barron, Berg, ${ }^{\text {M Morrison }}$ [2] Victor \& Douglas [38]	$273-1173$		
$\mathrm{Mg}(\mathrm{OH})_{2}$	c	1865	Kopp [37] ${ }^{\text {a }}$ [${ }^{\text {a }}$	292-323	2	
	c	1935	Laschshenko \& Kompanskii [37]	283-667		
MgF_{2}	${ }_{\text {c }}^{\text {c }}$	1934	Krestovnikov \& Karentnikov [37]	288-1273	2	
	c, 2	1945	Naylor [37]	298-1760	1	
	g	1950	Herzberg [37]			molec.-const.data
MgCl_{2}	c, ${ }^{\text {l }}$	1935	Lyashenko [37]	292-1025	2	
	c, ℓ	1936	Auzhbikovich [37]	273-1073	2	
	c, !	1943	Moore [37]	298-1428	1	
	g	1950	Herzberg [37]	298-1700		molec.-const.data
MgCl_{2} hydrates	c	1945	Kelley [37]			estimated equations
MgOHCl	c	1945	Kelley [37]	298-850		estimated equations
MgBr	g	1950	Herzberg [37]	298-2000		molec.-const.data
MgI	g	1950	Herzberg [37]	298-2000		molec.-const.data
$\mathrm{Mg}_{3} \mathrm{~N}_{2}$	${ }_{\text {c }}(\alpha)$	1938	Sato [37]	273-690	2	
	$c(\alpha, \beta, r)$	1949	Mitchell [37]	298-1273	1	
$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	c	1944	Shomate [37]	298-623		
MgCO_{3}	c	unpubl.	Shomate [37]	298-743		
$\mathrm{Mg}_{2} \mathrm{SI}$	c	1910	Schimpff [37]	290-373		
MgSiO_{3}		1919	White [37]	273-1173	1	amphibole-type
		1919	White [37]	273-773	1	pyroxene-type
	$\underset{c}{\text { glass }}$	1919	White [37] Wagner [37]	$273-973$ $273-1570$	1	clinoenstatite
$\mathrm{Mg}_{2} \mathrm{SiO}_{4}$		1953	Orr [37]	298-1808		forsterite

TABLE 1 (continued)

Formula
Physical Year Reported

Author(s) and Reference No.

Potassium Compounds (cont.)

KCl (cont.)	c	1956
	g	1957
	c?	1958
	c to \&	1960
	c, ℓ	unpubl.
KCl.Licl	ℓ	unpubl.
KMgCl_{3}	c, ℓ	1935
	c, ℓ	1936
KClO_{3}	c	1934
KClO_{4}	c	1930
KBr	c	1913
	c	1951
	c	1953
		1954
	g	1957
	c to ℓ	1958
	c to ℓ	1960
KBrO_{3}	c	1934
KI	g	1950
		1953
KIO_{3}	c	1934
KNO_{3}	,	1847
	$c(\alpha), c(\beta), \ell$	1909
$\mathrm{K}_{2} \mathrm{CO}_{3}$	c	1841
KalSiO_{4}	c	1953
$\mathrm{KAlSi} 2_{2}{ }_{6}$	c	1953
$\mathrm{KalSi} 3_{3} \mathrm{O}_{8}$	c, gls	1919
$\mathrm{KMg} \mathrm{AlSi}_{3} \mathrm{O}_{10} \mathrm{~F}_{2}$	c, ℓ	1959

Strelkov [29]
Rice and Klemperer
Chernyaer, Palkin, andBaranova [4]
Dworkin and Bredig [7]
Douglas and Harman [38]

```
        ?
        298-2000
        ?
```

 273-1173
 628-1073
 eutectic mixture
 data for transitions
 heat of fusion
 molec.-const.data
 heat of fusion
 melting point
heat of transition melting point crit. compilation crit. compilation

Formula	Physical State	Year Reported	Author(s) and Reference No.	Temp. Range (OK)	$\begin{aligned} & \text { Rsting } \\ & \text { by [37] } \end{aligned}$	Corments
Titanium Compounds (cont。)						
$\mathrm{Ti}_{3} \mathrm{O}_{5}$	$c(\alpha), c(\beta)$	1946	Naylor [37]	298-1340		
$\mathrm{Al}_{2} \mathrm{TiO}_{5}$	c	1955	Bonnickson [37]	298-1803		
LiTiO_{3}	c?	1960	Christensen, Conway, \& Kelley [5]	$?$		
$\mathrm{İ}_{2} \mathrm{THO}_{3}$	$c(\alpha), c(\beta), \ell$	unpubl.	Bonnickson [37]	298-1850		
MgTiO_{3}	c	1946	Naylor and Cook [37]	298-1720		
$\mathrm{Mg}_{2} \mathrm{THO}_{4}$	c	1952	Orr and Coughlin [37]	298-1818		
$\mathrm{MgTi}_{2} \mathrm{O}_{5}$	c	1952	Orr and Coughlin [37]	298-1812		
TiF_{4}	c	1961	Euler and Westrum [8]	6-304		estimated values
TiCl	g	1950	Herzberg [37]	298-2000		molec.-const.data
TiCl_{2}	c	1959	Kelley and Mah [-37]	298-1200		
TiCl_{3}	c	unpubl.	Christensen [37]	298-1002		
TiCl_{4}	$\begin{gathered} g \\ \ell \\ \ell, g \end{gathered}$	$\begin{aligned} & 1938 \\ & 1955 \\ & 1959 \end{aligned}$	```Herman [37] Hawkins and Carpenter [37] Kelley and Mah [37]```	$\begin{aligned} & 273-573 \\ & 298-500 \end{aligned}$	1	molec.-const.data
TiBr_{2}	c	1959	Kelley and Mah [37]	298-1200		estimated values
$\mathrm{T}_{2} \mathrm{Br}_{3}$	c	1959	Kelley and Mah [37]	298-1200		estimated values
TiBr_{4}	$\begin{gathered} c, l, g \\ c, l, g \\ g \end{gathered}$	$\begin{aligned} & 1954 \\ & 1959 \\ & 1960 \end{aligned}$	Skinner, Johnst on, \& Beckett [37] Kelley and Mah [37] Miller and Carlson [23]	$298-3000$ $298-600$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	molec.-const.data molec.-const.data
TiI_{2}	c	1959	Kelley and Mah [37]	298-1200		estimated values
TiI_{3}	c	1959	Kelley and Mah [37]	298-1200		estimated values
TiI_{4}	c, ℓ, g	1959	Kelley and Mah [37]	298-2000		estimated values
TiN	c	1938	Sato [37]	273-773	2	
	c	1946	Naylor [37]	298-1738	1	
TiC	c	1946	Naylor [37]	298-1735		
TiSi	c	1959	Golutvin [11]	378-1352		
TiSi_{2}	c	1959	Golutvin [11]	407-1181		
$\mathrm{Ti}_{5} \mathrm{Si}_{3}$	c	1959	Golutvin [11]	381-1170		
			Tungsten Compounds			
W	c	1901	Defacqz end Guichard [37]	288-696	2	
	c	1912	Corbino [37]	1073-2173	2	
	c	1912	Pirani [37]	613-1623	2	
	c	1918	Gaehr [37]	1416-2465	2	
	c	1918	Worthing [37]	1200-2400	2	
	c	1918	Wust, Meuthen, and Durrer [37]	273-1773	2	
	c	1922	Smith and Bigler [37]	2368-2485	2	
	c	1925	Bockstahler [37]	2371-2486	2	
	c	1926	Magnus and Danz [37]	288-1173	2	
	c	1927	Jones and Langmuir [37]	273-3655	2	
	c	1928	Zwiscker [37]	1415-2521	2	
	c	1929	Bronson and Chisholm [37]	293-553	2	
	c	1929	Megnus and Holzmann [37]	294-1174	1	
	c	1928, -30,-32	Jaeger and Rosenbohm [37]	273-1873	1	
	c	1933	Bronson, Chisholm, endDockerty [37]	$273-773$	1	
	c c	1956 1958	Stull and Sinke [37] DeSorbo [6]	$\begin{gathered} 298-3000 \\ ? \end{gathered}$	1	crit. compllation
		1961	Hoch and Johnstion [41]	1000-3000		

Formula	Physical State.	Year Reported	Author(s) and Reference No.	$\begin{aligned} & \text { Temp. } \\ & \text { Range }\left(\mathrm{O}_{\mathrm{K}}\right) \end{aligned}$	$\begin{aligned} & \text { Rating } \\ & \text { by }[37] \\ & \hline \end{aligned}$	Comments
Tungsten Compounds (cont.)						
WO_{2}	c	1960	King,Willer, \& Christensen [36]	53-1800		
WO_{3}	$c(\alpha), \stackrel{c}{c}(\beta), \ell$	$\begin{aligned} & 1943 \\ & 1960 \end{aligned}$	Seltz, Dunkerley, \& DeWitt [37] King, Willer, \& Christensen [36]	$\begin{aligned} & 298 \\ & 53-1836 \end{aligned}$	1	
WPbO_{4}	c	1957	Zharkova and Rezukhina [35]	401-749		
WF_{6}	$\begin{aligned} & \mathrm{g} \\ & \mathrm{~g} \end{aligned}$	$\begin{aligned} & 1952 \\ & 1953 \end{aligned}$	Burke,Smith, \& Nielsen [37] Gaunt [37]	$\begin{aligned} & 298-1000 \\ & 298-500 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	molec.-const.data molec.-const.dats
WSi_{2}	c	unpubl.	Mazaki,Tilleny, \& Margrave [38] Zirconium Compounds	? (>298)		
Zr	c	1934 1950	Jaeger and Veenstra [37] Coughlin and King [37]	$\begin{aligned} & 294-1074 \\ & 298-1371 \end{aligned}$	1	
	c to 2	1952	Adenstedt [37]		2	melting point
	c	1952	Redmond and Lones [37]	273-1309	1	
	c to ℓ	1954	Oriani and Jones [37]		1	melting point
	c to ℓ	1956	Deardorff and Hayes [37]		1	melting point
	g	1956	Kolsky and Gillis [37]	298-800	1	
	c, ℓ	1956	Stull and Sinke [37]	298-3000	2	crit. compilation
	g	1957	Kolsky,Gilmer, \& Gillis [37]	298-8000	1	crit. compilation
	c	1957	Scott [37]	363-1223	1	
		1958	Douglas and Victor [37]	273-1173	1	
	$c(\alpha), c(\beta)$	unpubl.	Skinner and Johnston [38]	1000-2100		
ZrH	c	1958	Douglas and Victor [37]	273-1173		
ZrH 2	c	1961	Flotow and Osborne [9]	5-350		
ZrO_{2}		1920	Bradshaw and Emery [37]	298-1673	1	
	$c(\alpha)$	1934	Jaeger and Veenstra [37]	294-1073	2	
	$c(\alpha)$	1950	Arthur [37]	300-1265	1	
	$c(\alpha), c(\beta)$	1950	Coughlin and King [37]		2	
ZrF_{4}	c, ℓ	unpubl.	McDonald, Stull, \& Sinke [20]	284-1226		
ZrCl_{4}	c	1950	Coughlin and King [37]			estimated values
	g	unpubl.	Kelley [37]			
Zr N	c	1950	Coughlin and King [37]	298-1672		
$\mathrm{Zr}_{3} \mathrm{~N}_{2}$	c	1938	Sato [37]	273-773		
$\mathrm{Zr}_{5} \mathrm{Si}_{3}$	c	unpubl.	Mezaki,Tilleus, \& Margrave [38]	? ${ }^{>}>298$)		
ZrSiO_{4}	c	1950	Coughi in and King [37]	298-1823		
	c	unpubl.	- Victor and Douglas [38]	273-1173		

REFERENCES

[1] Altman, R. L., Thermodynamic Functions of Some Gaseous Diatomic Halides of Al, B and Li, J. Chem. Phys. 31, 1035 (1959).
[2] Barron, T. H. K., Berg, W. T. and Morrison, J. A., Proc. Roy. Soc. A250, 70 (1959).
[3] Blanc, M., Chaleurs de Fusion de Quelques Halogénures '(Bromures Alcalins), Compt. rend. 246 , 570 (1958).
[4] Chernyaev, I. I., Palkin, V. A. and Baranova, R. A., Zhur. Neorg. Khim. 2, 1512 (1958).
[5] Christensen, A. U., Conway, K. C. and Kelley, K. K., U. S. Bureau of Mines Rept. of Investigations No. 5565 (1960).
[6] DeSorbo, W., J. Phys. Chem. 62, 965 (1958).
[7] Dworkin, A. S. and Bredig, M. A., The Heats of Fusion of the Alkali Metal Halides, J. Phys. Chem. 64, 269 (1960).
[8] Euler, R. D. and Westrum, E. F., Heat Capacity and Thermodynamic Properties of Titanium Tetrafluoride from 6 to $304^{\circ} \mathrm{K}$, J. Phys. Chem. 65, 132 (1961).
[9] Flotow, H. E. and Osborne, D. W., Heat Capacities and Thermodynamic Functions of ZrH_{2} and ZrD_{2} from $5-350^{\circ} \mathrm{K}$ and the Hydrogen Vibration Frequency in ZrH_{2}, J. Chem. Phys. 34, 1418 (1961).
[10] Furby, E. and Wilkinson, K. L., The Melting and Boiling Points of BeCl_{2} and an Investigation of the $\mathrm{NaCl}-\mathrm{BeC} l_{2}$ System, J. Inorg. Nucl. Chem. 14, 123 (1960).
[11] Golutvin, Yu. M., Heat Contents and Heat Capacities in the TitaniumSilicon System, Zhur. Fiz. Khim. 33, 1798 (1959).
[12] Gomel'skiy, K. Z., The Enthalpy of Corundum in the Temperature Range from 100 to $900^{\circ} \mathrm{C}$, Zhur. Fiz. Khim. 32, 1859 (1958).
[13] Hoch, M. and Johnston, H. L. See Bulletin of Chemical Thermodynamics No. 4 (1961).
[14] Kandyba, Kantor, Krasovitskaya, and Fomichev, Determination of Enthalpy and Cp of BeO in the $1200-2820^{\circ} \mathrm{K}$ Temperature Range, Dokl. Akad. Nauk. 131, 566 (1960).
[15] Kantor, P. B., Krasovitskaya, R. M. and Kisel, A. N., Enthalpy and Specific Heat of Be at $600-2200^{\circ} \mathrm{K}$, Fiz. Metall. i Metallov 10, 835 (1960)
[16] Kaylor, C. E., Walden, G. E. and Smith, D. F., High Temperature Heat Content and Entropies of Hafnium Tetrafluoride and Rubidium Fluoride, J. Am. Chem. Soc. 81, 4172 (1959).
[17] Kirillin, V. A., Sheindlin, A. E. and Chekhovskoi, V. J., Enthalpy of Corundum from 500-2000 , Doklady Akad. Nauk. 135, 125 (1960).
[18] Mannchen, Von W. and Bornkessel, K., Die Atomwärme Cp von Reinem und Wasserstoff-haltigem Mg Zwischen $12-300^{\circ} \mathrm{K}$, J. Naturforsch. 14A, 925 (1959).
[19] Margrave, J. I. and Grimley, R. T., The High Temperature Heat Contents of Sodium Ferrite and α-Aluminum Oxide, J. Phys. Chem. 62, 1436 (1958).
[20] McDonald, R. A., Stull, D. R. and Sinke, G. C. (Dow Chemical Co.), Preprint on ZrF_{4} paper to T. B. Douglas, July, 1961.
[21] McKeown, J. J., Ph.D. Thesis, Iowa State College, Dissertation Abstr. 19, 57 (1958).
[22] Medvedev, V.A., Zhur. Fiz. Khim., 32, 1690 (1958).
[23] Miller, F. A. and Carlson, G. L., Infrared and Raman Spectra of TiBr_{4}, Spectrochim. Acta, 16, 6 (1960).
[24] Olette, Michel, Nelnst-Magnus Calorimeter for Measuring Heat Contents up to 1600°, Compt. rend. 244,891 (1957).
[25] Rodigina, E. N., Gomel'skii, K. Z. and Luginina, U. F., Enthalpy and Specific Heat of LiCl at High Temperature, Rus. J. of Inorganic Chem. 4, 442 (1959).
[26] Romanovsky, U. A. and Tarasov, V. V., Solid State Physics, Akad. Nauk. USSR, 2, (No. 6), 1289, 1294 (1960).
[27] Shirley, D. A., The Heat Capacity of Licl from $15-325^{\circ} \mathrm{K}$, J. Am. Chem. Soc. 82, 3841 (1960).
[28] Shmidt, N. E. and Sokolov, V. A., Adiabatic Calorimeter for the Determination of the Specific Heats between 30° and 750° of Substances with Low Thermal Conductivity: Cp of Corundum, Zhur. Neorg. Khim. 2, 1641 (1960).
[29] Strelkov, P. G., Izmeritel' naya Tekh., No. 1, p. 22 (1955); Refarat Zhur., Khim., Abstr. No. 62011.
[30] Sundaran, S. and Cleveland, F. F., Potential Energy Constants, Rotational Distortion Constants, and Thermal Properties of $\mathrm{BH}_{3} \mathrm{CO}$ and BDCO, J. Chem. Phys. 32, 166 (1960).
[31] Veĭts, I. V., Gurvich, L. V. and Rtishcheva, N. P., Thermodynamic Properties of $\mathrm{Mg}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}$, Their Oxides and Monohydrides in the Gaseous State, Zhur. Fiz. Khira. 32, 2532 (1958).
[32] Westrum, E. F. and Burney, G. A., Thermodynamics of the Monohydrogen Difluorides. II. Heat Capacities of Lithium and Sodium Monohydrogen Difluorides from 6 to $305^{\circ} \mathrm{K}$, J. Phys. Chem. 65, 344 (1961).
[33] White, D., Mann, D. E., Walsh, P. N. and Sommer, A., Infrared Emission Spectrum of Gaseous HBO_{2}, J. Chem. Phys. 32, 488 (1960).
[34] Wise, S. S., Margrave, J. L. and Altman, R. L., The Heat Content of Boron at High Temperatures, J. Phys. Chem. 64, 915 (1960).
[35] Zharkova, L. A. and Rezukhina, T. N., The Heat Capacities of Lead and Cadmium Tungstates at High Temperatures, Zhur. Fiz. Khim. 31, 2278 (1957).
[36] King, E. G., Willer, W. W. and Christensen, A. V., Thermodynamics of Some Oxides of Molybdenum and Tungsten, Bur. of Mines Report of Investigations No. 5664 (1960).
[37] Kelley, K. K., "Contributions to the Data on Theoretical Metallurgy: XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds", Bur. Mines Bull. 584, U. S. Government Printing Office, Washington, D. C., 1960.
[38] Bulletin of Chemical Thermodynamics, "No. 4, 1961", International Union of Pure and Applied Chemistry, Commission on Thermodynamics, Subcommissions on Experimental Thermochemistry and on Experimental Thermodynamics, Mar. 20, 1961, 151 pages.
[39] Linevsky, M. J., and Wartik, T., J. Phys. Chem. 62, 1146 (1958).
[40] Kelley, K. K. (private communication, 1960).
[41] Hoch, M., and Johnston, H. L., A High Temperature Drop Calorimeter. The Heat Capacities of Tantalum and Tungsten between 1000° and $3000^{\circ} \mathrm{K}$, J. Fhys. Chem. 65, 855 (1961).
[42] Hoch, M., and Johnston, H. L., The Heat Capacity of Aluminum Oxide from 1000 to 2000° and of Thorium Dioxide from 1000 to 2500°, J. Phys. Chem. 65, 1184 (1961).

CHAPTER 6

THERMODYNAMIC PROPERTIES OF BORATES

by William H. Evans

The available data leading to values for the heats of formation at $25^{\circ} \mathrm{C}$ of the crystalline borates have been reviewed, and "best" values are summarized below.
$\underline{\mathrm{Li}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3} \text { system }}$
$\Delta H f \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{c})=-305.34 \pm 0.3 \mathrm{kcal} / \mathrm{mole}$ (NBS Report 7093)
$\Delta H f \mathrm{Li}_{2} \mathrm{O}(\mathrm{c})=-142.4 \pm 0.8 \mathrm{kcal} / \mathrm{mole}$ (NBS Circular 500)
Based on heats of solution in $2 \mathrm{~N}_{\mathrm{HNO}_{3}}$, reported by L_{0} Shartsis and W. Capps (J. Am. Ceram. Soc. 37, 27 (1954)) and G. S. Smith (Ph.D. Thesis, Penn. State Univ. (1959)). The agreement is good (0.1%) in $\Delta H f$.
$\left.\mathrm{Li}_{2} \mathrm{O}^{-\mathrm{B}_{2} \mathrm{O}_{3} \quad[2 \mathrm{LiBO}}{ }_{2}\right]$ (extrapolated)
$\Delta H f=-40.4+1.0 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides

$$
=-488.2 \pm 1.3 \mathrm{kcal} / \mathrm{mole} \quad \text { from elements }
$$

$\mathrm{Li}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3}\left[\mathrm{Li}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right]$
$\Delta H f=-54.9 \pm 0.7 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides $=-808.0 \pm 1.4 \mathrm{kcal} / \mathrm{mole}$
from elements
$\mathrm{Li}_{2} \mathrm{O} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}$
$\Delta H f=-58.6 \pm 1.0 \mathrm{kcal} / \mathrm{mole}$ $=-1117.0 \pm 1.6 \mathrm{kcal} / \mathrm{mole}$
from oxides from elements
$\mathrm{Li}_{2} \mathrm{O} \cdot 4 \mathrm{~B}_{2} \mathrm{O}_{3}$
$\Delta H f=-56.9 \pm 1.3 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides $=-1420.7 \pm 1.9 \mathrm{kcal} / \mathrm{mole}$
from elements
Shartsis and Capps, and Smith both give data for glasses.
$\xrightarrow{\mathrm{Na}_{2}{ }^{0}-\mathrm{B}_{2} \mathrm{O}_{3} \text { system }}$
$\Delta H f \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{c})=-305.34 \pm 0.3 \mathrm{kcal} / \mathrm{mole}$ (NBS Report 7093)
$\Delta H f \mathrm{Na}_{2} \mathrm{O}(\mathrm{c})=-99.4 \pm 0.5 \mathrm{kcal} / \mathrm{mole}$ (NBS Circular 500)
Based on heats of solution in $2 \mathrm{~N}_{\mathrm{HNO}}^{3}$, reported by L. Shartsis and W. Capps (J. Am. Ceram. Soc. 37, 27 (1954)), G. S. Smith (Ph. D. Thesis, Penn. State Univ. (1959)), and by G. Grenier and D. White (J. Phys. Chem. 61, 1681 (1957)).

The data of Grenier and White, measured directly on the compound, lead to $\Delta H f=-472.0 \pm 1.3 \mathrm{kcal} / \mathrm{mole}$ (from elements). The extrapolated data of Shartsis and Capps (which agree very well with the data of Smith for $\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3}$ and $\mathrm{Na} \mathrm{NO}^{2} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}$) lead to $-462.7 \pm 1.4 \mathrm{kcal} / \mathrm{mole}$. The value from Grenier andWhite seems to be too negative; it leads to a value, from the oxides, of $-67.3 \mathrm{kcal} / \mathrm{mole}$, which gives $-16.8 \mathrm{kcal} / \mathrm{gram}$-atom oxygen. The corresponding Li and K values are -10.1 and -18.4 ; the extrapolated value for Na is $\mathbf{- 1 4 . 5}$. For consistency, we select the extrapolated value.
$\mathrm{Na}_{2} \mathrm{O}^{\circ} \cdot \mathrm{B}_{2} \mathrm{O}_{3} \quad\left[2 \mathrm{NaBO}_{2}\right]$ (extrapolated)

$$
\begin{aligned}
\Delta H f & =-58.0 \pm 1.0 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-462.7 \pm 1.4 \mathrm{kcal} / \mathrm{mole} & & \text { from element }
\end{aligned}
$$

$\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3}\left[\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right]$

$$
\Delta H f=-76.1 \pm 0.7 \mathrm{kcal} / \mathrm{mole} \quad \text { from oxides }
$$

$$
=-786.2 \pm 1.1 \mathrm{kcal} / \mathrm{mole} \quad \text { from elements }
$$

$\mathrm{Na}_{2} \mathrm{O} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}$

```
\(\Delta H f=-85.3 \pm 1.0 \mathrm{kcal} / \mathrm{mole} \quad\) from oxides
    \(=-1100.7 \pm 1.5 \mathrm{kcal} / \mathrm{mole}\)
from elements
```

$\mathrm{Na} \mathrm{a}_{2} \cdot 4 \mathrm{~B}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
\Delta H f & =-91.5 \pm 1.3 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-1412.3 \pm 1.8 \mathrm{kcal} / \mathrm{mole} & & \text { from elements }
\end{aligned}
$$

Shartsis and Capps, and Smith both give data for glasses.
Entropies have been reported for

(Grenier and Westrum, J. Am. Chem. Soc. 78, 6226 (1956))
$\mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3} \quad \mathrm{~S}_{2 \mathrm{Lag}}^{\circ}=45.30 \mathrm{cal} / \mathrm{deg} \mathrm{mole}$
(Westrum and Grenier, J. Am. Chem. Soc. 79, 1799 (1957))
$\underline{\mathrm{K}_{2} \mathrm{O}-\mathrm{B}_{2} \mathrm{O}_{3} \text { system }}$
$\Delta \mathrm{Hff} \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{c})=-305.34 \pm 0.3$ (NBS Report 7093)
$\Delta H f K_{2} O(c)=-86.4 \pm 0.5 \mathrm{kcal} / \mathrm{mole}$ (NBS Circular 500)
Based on heats of solution in $2 \mathrm{NHNO}_{3}$, reported by L. Shartsis and W. Capps (J. Am. Ceram. Soc. 37, 27 (1954)).
$\mathrm{K}_{2} \mathrm{O}^{\circ} \mathrm{B}_{2} \mathrm{O}_{3}\left[2 \mathrm{KBO}_{2}\right]$ (extrapolated)

$$
\begin{aligned}
\Delta H f & =-73.5 \pm 1.0 \mathrm{kcal} / \mathrm{mole} \mathrm{~K}_{2} \mathrm{O}^{\circ} \mathrm{B}_{2} \mathrm{O}_{3} & & \text { from oxides } \\
& =-465.2 \pm 1.2 \mathrm{kcal} / \mathrm{mole} & & \text { from elements }
\end{aligned}
$$

$\mathrm{K}_{2} \mathrm{O} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3} \quad\left[\mathrm{~K}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}\right]$

$$
\begin{aligned}
\Delta H f & =-99.3 \pm 0.7 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-796.3 \pm 1.1 \mathrm{kcal} / \mathrm{mole} & & \text { from elements }
\end{aligned}
$$

$\mathrm{K}_{2} \mathrm{O} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}$
$\Delta H f=-110.1 \pm 1.0 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides $=-1112.5 \pm 1.5 \mathrm{kcal} / \mathrm{mole}$ from elements
$\mathrm{K}_{2} \mathrm{O} \cdot 4 \mathrm{~B}_{2} \mathrm{O}_{3}$
$\Delta H f=-118.3 \pm 1.3 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides

$$
=-1426.1 \pm 1.8 \mathrm{kcal} / \mathrm{mole}
$$

from elements
Shartsis and Capps also give data for glasses.

$\mathrm{CaO}-\mathrm{B}_{2} \mathrm{O}_{3}$ system

$\Delta \mathrm{Hf} \mathrm{CaO}(\mathrm{c})=-151.9 \pm 0.3 \mathrm{kcal} / \mathrm{mole}$ (NBS Circular 500)
$\Delta H f \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{c})=-305.34 \pm 0.3 \mathrm{kcal} / \mathrm{mole}$ (NBS Report 7093)
Heats of solution in IN HCl are reported by D. R. Torgeson and C. H. Shomate (J. Am. Chem. Soc. 69, 2103 (1947)).

$$
\mathrm{CaO} \cdot \mathrm{~B}_{2} \mathrm{O}_{3} \quad\left[\mathrm{Ca}\left(\mathrm{BO}_{2}\right)_{2}\right]
$$

$$
\begin{aligned}
\Delta H f & =-29.42 \pm 0.05 \mathrm{kcal} / \text { mole } & & \text { from oxides } \\
& =-486.7 \pm 0.5 \mathrm{kcal} / \text { mole } & & \text { from element }
\end{aligned}
$$

$\mathrm{CaO} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3} \quad\left[\mathrm{CaB}_{4} \mathrm{O}_{7}\right]$

$$
\begin{aligned}
\Delta H f & =-42.93 \pm 0.05 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-805.5 \pm 0.7 \mathrm{kcal} / \mathrm{mole} & & \text { from element }
\end{aligned}
$$

$2 \mathrm{CaO} \cdot \mathrm{B}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
\Delta H f & =-45.76 \pm 0.05 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-654.9 \pm 0.7 \mathrm{kcal} / \mathrm{mole} & & \text { from elements }
\end{aligned}
$$

High temperature heat contents - King, Torgeson, and Cook (J. Am. Chem. Soc. 70, 2160 (1948)).
$\mathrm{CaO} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3}$ (gls) Data of King, Torgeson, and Cook.
$\Delta H f=-30.29 \pm 0.05 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides $=-792.9 \pm 0.7 \mathrm{kcal} / \mathrm{mole}$ from element s
N. S. Kurnakov, A. V. Nikolaev, and A。 G. Chelishcheva, Compt. rend. acad. sci. UoR:S.S. 16,92 (1937) report the heat of solution of dehydrated inyoite, $\mathrm{Ca}_{2} \mathrm{~B}_{6} \mathrm{O}_{11}\left(2 \mathrm{CaO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}\right)$ in $4 \mathrm{~N}_{2} \mathrm{SO}_{4}$.

$$
\begin{aligned}
\Delta \mathrm{Hf} 2 \mathrm{CaO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3} & =-58.2 \pm 1.0 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-1278 . \pm 4 \cdot \mathrm{kcal} / \mathrm{mole} & & \text { from elements }
\end{aligned}
$$

A second sample, fired at high temperature, gave

$$
\begin{aligned}
\Delta H f & =-118.2 \pm 1.0 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-1338 . \pm 4 . \mathrm{kcal} / \mathrm{mole} & & \text { from element }
\end{aligned}
$$

Interpolation in the data of Torgeson and Shomate gives
$\Delta H f=-73.0 \pm 1.2 \mathrm{kcal} / \mathrm{mole}$ $=-1292.8 \pm 1.9 \mathrm{kcal} / \mathrm{mole}$
from oxides
from elements

Kelley, Todd, and Shomate (J. Am. Chem. Soc. 70, 1350 (1948)) give entropies from low-temperature heat capacity data:
$\mathrm{CaO} \cdot \mathrm{B}_{2} \mathrm{O}_{3} \quad 25.1 \pm 0.5 \mathrm{cal} / \mathrm{deg} \mathrm{mole}$
$\mathrm{CaO} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3} \quad 32.2 \pm 0.5 \mathrm{cal} / \mathrm{deg}$ mole
$2 \mathrm{CaO} \cdot \mathrm{B}_{2} \mathrm{O}_{3} \quad 34.7 \pm 0.5 \mathrm{cal} / \mathrm{deg} \mathrm{mole}$
$3 \mathrm{CaO} \cdot \mathrm{B}_{2} \mathrm{O}_{3} \quad 43.9 \pm 0.5 \mathrm{cal} / \mathrm{deg} \mathrm{mole}$
$2 \mathrm{CaO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3} 48.9 \pm 1.0 \mathrm{cal} / \mathrm{deg}$ mole (estimated)
$\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}$ system
$\Delta H f \mathrm{PbO}(\mathrm{c})=-45.1 \pm 0.3 \mathrm{kcal} / \mathrm{mole}$ (NBS Circular 500)
$\Delta H f \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{c})=-305.34 \pm 0.3 \mathrm{kcal} /$ mole (NBS Report 7093)
L. Shartsis and E. Newman (J. Research NBS 40, 471 (1948)) (also
J. Am. Ceram. Soc. 31, 213 (1948)) measured heats of solution of glasses in $2 \mathrm{NHNO}_{3}$.

According to the phase studies of C. Mazzetti and F. De Carli (Gazz. chim. ital. 56, 19 (1926)) the compounds formed are $\mathrm{PbO} \cdot \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{PbO} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3}$, $\mathrm{PbO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}$, and $2 \mathrm{PbO} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3}$.
$\mathrm{PbO} \cdot \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{gls})\left[\mathrm{Pb}\left(\mathrm{BO}_{2}\right)_{2}\right]$

$$
\begin{aligned}
\Delta H f & =-9.2 \pm 0.5 \mathrm{kcal} / \mathrm{mole} & & \text { from oxides } \\
& =-359.6 \pm 0.7 \mathrm{kcal} / \text { mole } & & \text { from elements }
\end{aligned}
$$

Assuming $\quad \Delta \mathrm{Hm}=7.0 \mathrm{kcal} / \mathrm{mole}$, these become for $\mathrm{PbO} \cdot \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{c})$
$\Delta H f=-16.2 \pm 1.3 \mathrm{kcal} / \mathrm{mole}$
$=-366.6 \pm 1.4 \mathrm{kcal} / \mathrm{mole}$
from oxides
from elements
$\mathrm{PbO} \cdot 2 \mathrm{R}_{2} \mathrm{O}_{3} \quad(\mathrm{gls}) \quad\left[\mathrm{PbB}_{4} \mathrm{O}_{7}\right]$
$\begin{aligned} \Delta H f & =-11.9 \pm 0.7 \mathrm{kcal} / \mathrm{mole} \\ & =-667.7 \pm 1.0 \mathrm{kcal} / \mathrm{mole}\end{aligned}$
from oxides from elements
$\mathrm{PbO} \cdot 2 \mathrm{~B}_{2} \mathrm{O}_{3}$ (c), estimating the heat of fusion

$$
\begin{aligned}
\Delta H f & =-23.3 \pm 1.3 \mathrm{kcal} / \mathrm{mole} \\
& =-689.1 \pm 1.5 \mathrm{kcal} / \mathrm{mole}
\end{aligned}
$$

from oxides from elements
$\mathrm{PbO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}$ (gls)
$\Delta H f=-24.5 \pm 1.0 \mathrm{kcal} / \mathrm{mole} \quad$ from oxides $=-961.1 \pm 1.4 \mathrm{kcal} / \mathrm{mole}$
from elements
$\mathrm{PbO} \cdot 3 \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{c})$, estimating the heat of fusion,
$\Delta H f=-40.5 \pm 1.5 \mathrm{kcal} / \mathrm{mole}$
$=-977 . \pm 2 . \mathrm{kcal} / \mathrm{mole}$
from oxides
from elements
$2 \mathrm{PbO} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3}(\mathrm{gls})$
$\begin{aligned} \Delta H f & =-45.2 \pm 1.8 \mathrm{kcal} / \mathrm{mole} \\ & =-1662.12 .\end{aligned}$ $=-1662.1 \pm 2.3 \mathrm{kcal} / \mathrm{mole}$

from oxides from elements

$2 \mathrm{PbO} \cdot 5 \mathrm{~B}_{2} \mathrm{O}_{3}$ (c), estimating the heat of fusion,
$\Delta \mathrm{Hf}=-72 . \pm 3 . \mathrm{kcal} / \mathrm{mole}$
from oxides $=-1689 . \pm 3.5 \mathrm{kcal} / \mathrm{mole}$ from elements

The values for the glasses should be rather good; those for the crystalline oxides include an estimated - very roughly - heat of fusion, which may be several kcal/mole in error.

Lepinskikh and Esin (Zhur. Neorg. Khim。6, 1223 (1961)) have studied the systems $\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{MnO}-\mathrm{B}_{2} \mathrm{O}_{3}$ at 1000° with cells of the type $\mathrm{Pb}($ liq $)\left|\mathrm{PbO}, \mathrm{B}_{2} \mathrm{O}_{3}\right| \mathrm{Pt} \mid \mathrm{O}_{2}(\mathrm{~g})$. Their results for the $\mathrm{PbO}-\mathrm{B}_{2} \mathrm{O}_{3}$ system are in fair agreement with the results of Shartsis and Newman.

HEATS OF FORMATION OF BINARY MIXED-OXIDE SYSTEMS OIHER THAN BORATES

by R. F. Walker, E. S. Newman, and T. B. Douglas

1. Introduction

A more thorough search of the literature has been undertaken to survey data on the heats of mixing of binary systems of oxides or to find thermodynamic data from which the heats may be computed. Studies of compound formation in binary systems of the oxides of $\mathrm{Hi}, \mathrm{Be}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Ti}$ and Zr were surveyed and available phase diagrams were presented in the last report (NBS NO. 7093). Many compounds are identified on the diagrams for which no thermodynamic data is available. Furthermore, it is probable that the existence of many new compounds will be established during future phase equilibrium studies. In general it can be said that data on heats of formation of the compounds are scarce and even then not of high accuracy. In order to provide additional background in the evaluation of the heats of mixing, data on binary systems containing $\mathrm{BaO}, \mathrm{CaO}$ and $\mathrm{Na}_{2} \mathrm{O}$ have also been noted. Furthermore, the current interest of Si to the program fas also led to the inclusion of data on binary systems with SiO_{2}.

A prime reason for the lack of data has probably been lack of motivation. However, there are two major obstacles to ready experimental measurement: First, the preparation of pure, stoichiometric samples in sufficient quantity to make measurements worthwhile may often be the most difficult part of an investigation. Secondly, the heat of mixing of few oxides can be measured directly; hence, another reaction which the reactant and compound oxides will undergo must be found. The difference between the heats of reaction of the compound and of the reactants is then the required heat of formation of the compound from the oxides. If the difference is small, high precision in the individual measurements is necessary to obtain meaningful data. A brief discussion of calorimetric methods of measuring the heats is given later.

In principle, the phase diagrams can be used to determine heats of mixing. However, the data and phase boundaries given on most high-temperature diagrams are not usually known with sufficient accuracy to yield reliable heats.

2. Heats of Formation of Binary Oxides

Available data on the heats of formation of the mixed oxide systems (Al, Be, $\mathrm{Ca}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Si}, \mathrm{Ti}$ and Zr) are summarized in Table I. In the literature search, Metallurgical Thermochemistry by Kubaschewski and Evans [1] was taken as the point of departure. Data given in the compilations of that volume were checked with original literature. The references to this and other literature are summarized in Table I. The following discussion amplifies some of the background to the selection of the values given in Table I.

TABLE I
HEATS OF FORMATION OF SOME MIXED OXIDES
$-\Delta H_{298}$, Heat of Formation (kcals/mole)

Compound
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{BaO}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{BaO}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{BeO}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{CaO}$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{CaO}$
$1 / 2\left[\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{Li}_{2} \mathrm{O}\right]$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{MgO}$
$1 / 2\left[\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{Na}_{2} \mathrm{O}\right]$
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{SiO}_{2}:$
Andalusite
Kyanite
Sillimanite
$\mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{ZrO}_{2}$
$2 \mathrm{BeO} \cdot \mathrm{SiO}_{2}$
$\mathrm{CaO} \cdot \mathrm{SiO}_{2}$
$2 \mathrm{CaO} \cdot \mathrm{SiO}_{2}$
$3 \mathrm{CaO} \cdot \mathrm{SiO}_{2}$
$\mathrm{CaO} \cdot \mathrm{TiO}_{2}$
$\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{SiO}_{2}$
$2 \mathrm{MgO} \cdot \mathrm{SiO}_{2}$
$\mathrm{MgO}^{\circ} \mathrm{SiO}_{2}$
$2 \mathrm{MgO} \cdot \mathrm{THO}_{2}$
$\mathrm{MsO} \cdot \mathrm{THO}_{2}$
$\mathrm{MgO} \cdot 2 \mathrm{TiO}_{2}$
$\mathrm{Na}_{2} \mathrm{O}^{2} \cdot \mathrm{SiO}_{2}$
$\mathrm{Na}_{2} \mathrm{O}^{-\mathrm{SiO}_{2}}$
$3 \mathrm{Na}_{2} \mathrm{O} \cdot 2 \mathrm{SiO}_{2}$
$2 \mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{SiO}_{2}$

From Oxides **
$24.0 \pm 1.5 \quad[14] \quad 557.8$
45.0 ± 2.0 [14]
4.0 (See text)
3.7 ± 0.4 [15]
1.6 ± 0.4 [15]
$12.9 \pm 1.5 \quad[12]$
Close to zero [2, 16]
20.9 ± 1.2 [12]
$39.3 \pm 7.0 \quad[11] \quad 645.1$
39.7 ± 7.0
[11]
$45.9 \pm 7.0 \quad$ [11]
645.5
651.7

Close to zero (See text) ~659
12.0 ± 5.0 [1]
21.5 ± 0.3 [11]
[1]
27.0 ± 1.5 [1]
19.4
[11]
[11]
[11]
357.8
$24.6 \pm>10$
15.1 ± 1.0
8.7 ± 0.7
4.2
6.4
4.5
$60.5 \pm 3.5 \quad[13]$
55.5 ± 3.5 [11]
[13]
$74.9 \pm 7.0 \quad[1]$

* Heats of formation of the many oxide systems were taken from NBS Report 6928 (July 1, 1960) and NBS Circular 500.
** Numbers in brackets refer to literature references.

Altman and Searcy [2] have recently reported measurements of the vapor pressure of MgO vaporizing from $\mathrm{Al}_{2} \mathrm{O}_{3}$ Knudsen cells. During the experiments the $\mathrm{Al}_{2} \mathrm{O}_{3}$ and MgO reacted to form the spinel $\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} 3^{\circ}$ The weight loss from the cell during the runs ylelding nearly stoichiometric spinel suggested that its heat of formation is close to zero.

A recent value of the heat of formation obtained by Grjotheim, Herstad and Toguri [16] from a study of the reaction:

$$
4 \mathrm{MgO}(\mathrm{c})+2 \mathrm{Al}(\mathrm{l})=\mathrm{MgAl}_{2} \mathrm{O}_{4}(\mathrm{c})+3 \mathrm{Mg}(\mathrm{~g})
$$

is in good agreement with Altman and Searcy's result. Grjotheim et al's value of +1.1 kcals/mole is subject to accumulated experiment errors in the heats of formation of reactants and products, and the removal of these errors could easily result in a small negative value for the heat of formation of $\mathrm{MgO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$.

$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ System

The rates of vaporization of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ mixtures have been crudely investigated at NBS in recent months. Much additional work is necessary before definitive conclusions can be drawn. An x-ray examination of mixtures fused in vacuo with an arc image furnace ylelded no evidence of new compound formation beyond a small quantity of stabilized, cubic ZrO_{2}. Corundum and the monoclinic form of ZrO_{2} formed the bulk of the fused mixture.

The previously published phase diagrams on ternary systems containing $\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZrO_{2} were summarized in the last report (NBS No. 7093). The diagrams show no evidence of compound formation between the oxides. The liquid curve of the binary system was reported by von Wartenberg and Reusch [3] and shows a single minimum, suggesting lack of congruent-melting compounds. The reliability of the curve may be questionable, but the consensus of available evidence is that there is no stable compound formation in the $\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{ZrO}_{2}$ system.

The question may be posed as to how much the total heat of combustion of given amounts of Al and Zr depends on whether the metals are burned separately or together. Numerous intermetallic compounds of the two metals are known, and if the metals are present in such a form, the heat of formation of the intermetallic compound would make a direct additive contribution. For the sake of simplicity, it will be assumed that the Al and Zr are present as a mere mixture of the two elemental phases. The heat of formation of the product compared with the sum of the heats for the separate oxides is then the remaining consideration.

The above evidence of no stable compound between $\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZrO_{2} does not preclude the possibility that the two oxides may be formed together under such rapid conditions that metastable compounds or solid solutions may form and be "frozen" into permanence. Two theoretical factors enter here: (a) the crystal radii。 of Al^{+++}and Zr^{++++}differ substantially (Pauling [4] gives 0.50 and 0.80 A respectively), a fact which would lead to considerable strain energy and
a corresponding lower heat of combustion, and (b) the difference in valence would lead to a considerable concentration of lattice vacancies, which energetically are equivalent to lattice strains. At a given temperature the equilibrium concentrations of such vacancies and "foreign" ions varies more or less exponentially with the added energy, so that the gross enhancement of energy would decrease rapidly with increase in strain energy per foreign ion or vacancy; and, at least qualitatively, one would expect a similar rough parallel for given non-equilibrium conditions. There are methods, at least in principle, for calculating such lattice strains. However, the kinetics of the problem are probably of equal importance, and suggest that empirical tests may, after all, be the simplest and most reliable way to settle the question.
$\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZrO_{2} both form several phases which have appreciably different energies, and there is at least some evidence to show that simultaneous crystallization of the oxides can result in a different proportion of these forms than when they crystallize separately. Furthermore it is possible that different crystal sizes may result from simultaneous quenching of the oxides. Liquid eutectic compositions often crystallize in finely-divided form, and their surface energies could conceivably be different.

No information is at hand as to whether studies of the surface energies of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{ZrO}_{2}$, or comparable substances have been made. Considerable experimental and theoretical work is available for the alkali halides, however, and a rough analogy may be useful. It is worth observing that the experimentally determined surface tensions (and hence, surface energies) of liquid salts are in comparative agreement with the theoretical values.

Numerous investigators have calculated the surface energies of crystalline alkali halides, with and without various refinements. Benson, Balk and White [5]; and Benson, Dempsey, and Balk [6] have given more refined calculations for all the alkali halides, including the effects of van der Waals attraction, polarization, and shifts in position of the surface ions. For NaCl, e.g., they calculate surface energies of 124 and $307 \mathrm{ergs} / \mathrm{cm}^{2}$ for the 100 and 110 planes, respectively; and they find that these values agree with the experimental ones if it be assumed that the experiments were conducted on fine crystals with 75% of the faces as 110 and 25% as 100 - obviously not an equilibrium state.

We may try to apply these results to $\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZrO_{2} in a very rough way, and examine the result. Let us assume for simplicity that these two oxides are formed as uniform cubes each x microns on an edge. The application of a simple Born treatment is known to give a surprisingly good lattice energy for $\mathrm{Al}_{2} \mathrm{O}_{3}$, and it may be assumed that the effective valence product for the two oxides is several times as great as for the (univalent) alkali halides. The molal volumes of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZrO_{2} average about $25 \mathrm{~cm}^{3} / \mathrm{mole}$. If we assume a surface energy of $2000 \mathrm{ergs} / \mathrm{cm}^{2} 2^{3}$, we then get a surface of $1.5\left(10^{6}\right) / \mathrm{x} \mathrm{cm}^{2}$ per mole and a surface energy of $0.08 / \mathrm{x}$ kcal./mole. The heats of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and ZrO_{2} average $33 \mathrm{lkcal} / \mathrm{mole}$, and if we assume a particle size x of 0.1 micron (equivalent to several hundred atoms per edge), this calculation gives a surface-energy contribution of $0.8 \mathrm{kcal} / \mathrm{mole}$,
or only about 0.2% of the total heat of combustion. Unless the particles are considerably smaller than 0.1 micron, it thus seems unlikely that the surface energy makes a contribution to the heat of combustion of much practical importrance.

It is presently believed that the system $\mathrm{AlF}_{3}-\mathrm{ZrF} \mathrm{F}_{4}$ forms no solid compounds. If this is true, similar conclusions may be drawn about the combustion of Al-Zr mixtures in fluorine.

In conclusion, the available evidence indicates that in the combustion of Al-Zr mixtures (to form oxides or fluorides) the heat produced is not likely to be much different from the additively calculated equilibrium values for the separate systems, being more likely to be less than greater.

$\xrightarrow[\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{BeO} \text { System }]{ }$

Young [7] studied by transpiration experiments what seem to be the following three reactions, obtaining for $\Delta \mathrm{H}^{\circ} 167$ the following respective values. (Tolerances stated refer to precision only.)
(1) $\mathrm{BeO}(\mathrm{c})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{Be}(\mathrm{OH})_{2}(\mathrm{~g})$
(2) $(3 / 2) \mathrm{BeO}^{2} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=(1 / 2) \mathrm{BeO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})+\mathrm{Be}(\mathrm{OH})_{2}(\mathrm{~g})$
42.5 ± 0.4
(3) $\mathrm{BeO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})+\mathrm{Be}(\mathrm{OH})_{2}(\mathrm{~g})$
49.4 ± 0.6
43.2 ± 0.8
Linear combination of these results gives
(4) $\mathrm{BeO}(\mathrm{c})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})=\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}$ (c)
(5) $\mathrm{BeO}(\mathrm{c})+3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})=\mathrm{BeO} \cdot 3 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})$
-4.8 ± 0.6
-0.7 ± 0.9

The data yield also, for $\Delta F_{1673}^{\circ},-3.2 \pm 1.1 \mathrm{kcal}$. for reaction (4) and -3.7 ± 1.7 kcal. for reaction (5). There are insufficient data on the heat capacities of these mixed oxides for correction of these heats of reaction to $298^{\circ} \mathrm{K}$. According to early data of Nelson and Peterson [8] on the heat capacity of $\mathrm{BeO} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{c})$, for reaction (4) $\Delta C_{p}=-1.2$ between 273° and $373^{\circ} \mathrm{K}$; if half this value were assumed for the interval from 298° to $1673^{\circ} \mathrm{K}$ one would obtain $\Delta H_{298}^{\circ}=-4.0 \mathrm{kcal}$. for reaction (4).

As Young implies, his assumption that reactions (2) and (3) represent his experiments, and under equilibrium conditions, is subject to some uncertainty, particularly since each equilibrium involved two solid phases. However, considering his qualitative x-ray evidence and the fact that this part of the $\mathrm{BeO}_{-\mathrm{Al}_{2} \mathrm{O}_{3}}$ phase diagram has been well investigated [9, 10], it seems likely that these were the principal reactions occurring in Young's experiments. Unless future solution calorimetry or other relatively straightforward techniques reveal substantially different heats of formation of these mixed oxides, it must be concluded on experimental grounds that the heat of combustion of mixtures of beryllium and aluminum metals in oxygen is not increased more than about one percent through formation of these "mixed" oxides.

$\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}$ System

The three crystalline forms of aluminum monosilicate are naturallyoccurring minerals, which are believed to be formed only under high pressure. In addition, there is some evidence to suggest that impurities may act as "mineralizers," speeding up, if not being essential to, the formation of phases. In the laboratory the minerals can be synthesized in the $700-900^{\circ} \mathrm{C}$ temperature range and under pressures of $10,000-20,000$ atmos. The formation of andalusite and sillimanite in particular appears to be controlled by chemical factors. According to evidence at hand, andalusite has not been formed in the absence of sodium, although one might suspect that lithium would be an alternative; sillimanite has not been formed in the absence of fluorine, and forms a complete series of solid solutions with topaz, $\mathrm{Al}_{2} \mathrm{SiO}_{4}(\mathrm{~F}, \mathrm{OH})_{2}$. Kyanite is the only phase relatively insensitive to the composition of the reaction mixture.

The only aluminum silicate formed at atmospheric pressure is mullite, $3 \mathrm{Al}_{2} \mathrm{O}_{3}$: $2 \mathrm{SiO}_{2}$, for which no heat of formation has yet been located. Another silicate, $\mathrm{AI}_{2}^{2} \mathrm{O}_{3} \cdot 3 \mathrm{SiO}_{2}$, forms at $900^{\circ} \mathrm{C}$ under 40,000 atm. pressure.
$\xrightarrow[\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{IH}_{2} \mathrm{O} \text { and } \mathrm{IH}_{2} \mathrm{O}-\mathrm{SiO}_{2} \text { Systems }]{ }$
Recent data on these systems have been published by Fedorov and Shamrai [17]. This paper has been seen in abstract form only, and the abstract contains some ambiguity of notation. It appears that a heat of formation of $26 \mathrm{kcals} / \mathrm{mole}$ was determined for either $\mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{SiO}_{2},{ }_{2 \mathrm{Ii}_{2}} \mathrm{O} \cdot \mathrm{SiO}_{2}$ or $3 \mathrm{Li}_{2} \mathrm{O} \cdot \mathrm{SiO}_{2}$. For lithium monoaluminate (presumably $\mathrm{Al}_{2}^{2} \mathrm{O}_{3} \cdot \mathrm{Ii}_{2}{ }^{2}$), a heat $\mathrm{cf} 27 \mathrm{kcals} / \mathrm{mole}$ is given. This value compares favorably with the value given in table I, but may not refer to $298^{\circ} \mathrm{K}$. Examination of the actual paper is necessary to resolve these uncertainties, and the data have not, therefore, been included in Taible I.

3. Possible Measuring Techniques for Determining Additional Heats of Formation

The literature has been surveyed to determine what calorimetric techniques have been used in recent years to determine heats of formation and to evaluate prospects for applying the techniques to the mixed oxides discussed in this chapter.

Probably, the most common calorimetric reaction studied is that of combustion. In many cases, the heat of the reaction of metals with oxygen, or other substances, can be determined directly, and this process has been studied in the calorimeter over many years. A great deal of the data on the heats of formation of the oxides of metals has been determined in this manner, many references and much expert knowledge is available, and no further attention will be given to heats of combustion in the present discussion.

A second very common calorimetric reaction is that of solution in water or in aqueous or other solutions, and it is to this reaction that attention is mainly directed. Some refractory oxides, similar to those of concern to this program, are soluble directly in acids or acid mixtures, or their heats of
solution in acid can be calculated fairly directly from the heats of solution of the metals themselves and their heats of combustion. In this manner the heats of formation of calcium [18], barium [14], and strontium aluminates have been determined by measurement of their heats of solution in hydrochloric acid solutions at room temperature, although $\mathrm{Al}_{2} \mathrm{O}_{3}$ has not been dissolved directly.

In mixtures of nitric or hydrochloric acid with hydrofluoric acid, the heats of solution of hydrated and unhydrated calcium silicates [19, 20], as well as more complex materials [21, 22] have been determined at room temperature. Although the silicates are in many cases thus soluble, silica itself is more difficult to dissolve. To deal with SiO_{2}, as well as minerals such as albite, $\mathrm{NaAlSi}_{3} \mathrm{O}_{8}$, nepheline, $\mathrm{NaAlSiO}_{4}$, and jadeite, $\mathrm{NaAl}\left(\mathrm{SiO}_{3}\right)_{2}$ [23] and others [24, 25], Calorimeters using HF solutions have been built to operate at temperatures in the neighborhood of $75^{\circ} \mathrm{C}$. At least one operating at room temperature, the rocking-bomb calorimeter [26], has been built, and this, it seems probable, could be used with aqueous solutions at still higher temperatures.

The oxides with which this project is most immediately concerned are $\mathrm{Li}_{2} \mathrm{O}$, $\mathrm{BeO}, \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{MgO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{TiO}_{2}, \mathrm{ZrO}_{2}$, and SiO_{2}. Of these, BeO and $\mathrm{Al}_{2} \mathrm{O}_{3}$ are listed [27] as the least soluble in acid. It appears that with the others, choices of acids or acid mixtures and temperature of operation would permit calorimetric determinations. Certainly some of the borates should be amenable to calorimetric determination of their heats of solution.

A great deal of work has been done with heat-of-solution calorimeters at elevated temperatures, using molten metal as a solvent, for example, molten tin [28, 29, 30, 31 and 32], and molten silver [33]. Temperatures as high as $1100^{\circ} \mathrm{C}$ have been reached [33], although temperatures of 300 to $500^{\circ} \mathrm{C}$ are more commonly indicated. Molten metals are unsuited as solvents for the oxide compounds with which this project is concerned, but a few similar measurements have been made using molten salts [34, 35]. It has been found that "ih many instances fused salt mixtures are close to ideal solutions" [36]. It would seem that further work with molten salts might well make possible measurements of heats of reaction of substances impossible to dissolve calorimetrically in aqueous solutions. Beryllium oxide, for example, is said to be soluble in fused Kон [27].

Ginnings [37] has suggested the possibility of raising the temperature of a reaction mixture by electrical heating until a desired reaction occurs, carrying out the reaction in an isolated capsule in a calorimeter, and correcting for the electrical energy. Such measurements have indeed been made using a bomb calorimeter and heating the reaction mixture in its crucible [38]. The precision of the calorimetry and the definition of the final products would probably be much poorer both for this type of measurement as well as for measurements made with molten salts than for modern combustion or heat-of-solution calorimetry. Precisions of 0.2 to 1.5 per cent have been given for molten-tin calorimetry.
[l] O. Kubaschewski and E. L. Evans. Metallurgical Thermochemistry. Pergamon Press, New York, 1958.
[2] R. L. Altman and A. W. Searcy. Abstracts of Symposium on Chemical and Thermodynamic Properties at High Temperatures. XVIIIth International Congress of Pure and Applied Chemistry, Montreal. August 6-12, 1961, p. 54 .
[3] H. von Wartenberg and H. J. Reusch. Z. anorg. allgem. Chem. 207, 18 (1932)
[4] L. Pauling. The Nature of the Chemical Bond, Cornell University Press, Ithaca, N. Y. 1945 p. 346.
[5] G. C. Benson, P. Balk, and P. White. J. Chem. Phys., 31, 109 (1959).
[6] G. C. Benson, E. Dempsey, and P. Balk. J. Chem. Phys., 34, 157 (1961).
[7] W. A. Young. J. Phys. Chem. 64, 1003 (1960).
[8] Lo F. Nilson and O. Pettersson. Ber. chem. Gesell. 13, 1459 (1880) as quoted by K. K. Kelley, U. S. Bur. Mines Bulletin No. 584. 1960, p. 26.
[9] W. R. Foster and H. F. Royal. J. Am. Ceram. Soc., 32, 33 (1949)
[10] S. M. Lang, C. I. Fillmore, and L. H. Maxwell. J. Res. Natl. Bur. Stand. 48, 301 (1952).
[11] F. D. Richardson, J. H. E. Jeffes and G. Withers. J. Iron and Steel Inst., 166, 213 (1950).
[12] J. P. Coughlin. J. Am. Chem. Soc., 79, 2397 (1957).
[13] C. Kröger and W. Janetzko. Z. anorg. allg. Chem., 284, 83 (1956).
[14] R. B. Peppler and E. S. Newman, J. Res. Natl. Bur. Stand., 47, 439 (1951).
[15] J. P. Coughlin. J. Amer. Chem. Soc., 78, 5479 (1956)
[16] K. Grjotheim, O. Herstad and J. M. Toguri. Can. J. Chem. 39, 443 (1961).
[17] T. F. Fedorov and F. I. Shamrai. Primenie Vakuuma u Met., Akad. Nauk SSSR., Inst. Met. im. A. A. Baikova p. 137 (1960). Chem. Abstr. 55, 12214d (1961).
[18] T. Thorvaldson, W. G. Brown, and C. R. Peaker, J. Am. Chem. Soc., 52, 3927 (1930).
[19] S. Brunauer, D. L. Kantro, and C. H. Weise. The heat of decomposition of σ. tricalcium silicate into beta-dicalcium silicate and calcium oxide, J. Phys. Chem., 60, 771 (1956).
[20] S. Brunauer, J. C. Hayes, and W. E. Hass. J. Phys. Chem., 58, 279 (1954).
[21] E. S. Newman and R. Hoffman. J. Research NBS 56, 313-318 (1956).
[22] E. S. Newman. J. Research NBS 62, 207-211 (1959).
[23] F. C. Kracek, K. J. Neuvonen, and G. Burley. J. Wash. Acad. Sci., 41, 373-83 (1951).
[24] D. R. Torgeson and Th. G. Sahama. J. Am. Chem. Soc., 70, 2156-60 (1948).
[25] E. G. King. J. Am. Chem. Soc., T3, 656-8 (1951).
[26] S.R.\&unn. Rev. Sci. Inst. 29, 277-80 (1958).
[27] Handbook of Chemistry and Physics, Chemical Rubber Co., Cleveland, Ohio. 41st Eaition, 1960.
[28] O. J. Kleppa. J. Phys. Chem., 59, 175 (1955).
[29] O. J. Kleppa. J. Phys. Chem., 60, 846 (1956).
[30] Raymond L. Orr, A. Goldberg, and R. Hultgren. Rev. Sci. Inst., 28, 767-73 (1957).
[31] R. L. Orr, A. Goldberg, and R. Hultgren. J. Fnys. Chem., 62, 325-7 (1958).
[32] R. A. Oriani and W. K. Murphey. J. Phys. Chem., 62, 327-31 (1958).
[33] R. A. Oriani and W. K. Murphey. J. Phys. Chem., 62, 199-202 (1958).
[34] O. J. Kleppa. J. Phys. Chem., 64, 1937-40 (1960).
[35] Matti Nurmia, Ann. Acad. Sci. Fennicae. Series A; I, No. 243, 27 pp. (in English).
[36] R. P. Seward. J. Phys. Chem., 63, 760-61 (1959).
[37] D. C. Ginnings, Private Communication.
[38] C. Kröger and W. Janetzko. Zeit. für anorg. u. allgem. Chemie, 284, 83-100 (1956).

For other references to measurements of heats of reaction see also:
F. E. Wittig and W. Schilling. Isothermal heat convection calorimeter for high temperature. Z。Elektrochemie, 65, 70-80 (1961).
W. R. Grimes, N. V. Smith, G. M. Watson, Solubility of noble gases in molten fluorides. J. Phys. Chem., 62, 862-6 (1958).
O. Kubaschewski, W. A. Dench, and V. Genta, High temperature calorimeter for slow reactions. Phys. Chem. Metallic Solutions Intermetallic Compounds. Symposium, Teddington, Middlesex, England. 1, 110-16 (1960). Nat'l Pnys. Lab. Symposium No. 9. Vol. l, Paper 1G, 8 pp. (1959).
A. Magnus and F. Oppenheimer. The heat of fusion of silver nitrate. Z. anorg. a.llgem. Chem., 168, 305-9 (1928).
K. K. Kelley, R. Barany, E. G. King, and A. V. Christensen. Heat of formation of synthetic fluorphlogopite mica. U. S. Bureau of Mines. Report of Investigations No. 5436, 1959.
L. A. Resnitskii and K. G. Khomyakov, Calorimetric determination of the heat of reduction of ferrites by hydrogen. I. Calorimeter, Reduction of ferric oxide. Vestnik Moskov. Univ., Ser. Mat., Mekh. Astron., Fiz. i Khim. 14, No. 2, 217-24 (1959). Abstract only seen. $\overline{\mathrm{CA}} 54: 9481 \mathrm{i}$.
N. Karnelis, Thermodynamic Properties of Zinc phosphide. l. Determination of the heat of formation of ZnP during its synthesis from zinc and red phosphorus. Vilniaus Univ. Mokslo Darbai, Chemija 28, 110-17 (1959), Abstract only seen.
S. N. Gadzhiev and K. A. Sharifov. Determination of the heat of formation (antimonide) by melting in a bomb calorimeter. Doklady Akad. Nauk. SSSR, 136, 1339-41 (1961). THtle only seen.

Madeleine Blanc. Heat of fusion of some alkali and alkaline earth halides. Compt. rend. 249, 2012-13 (1959). Abstract only seen. CA 54:16158f.
M. Bizourd and F. Pauty, Measurement of the molar heats of some molten salts and metals. Compt. rend. 252, 514-15 (1961).

CHAPTER 8

THE HEATS OF FORMATION OF INORGANIC FLUORINE COMPOUNDS -- A SURVEY by George T. Armstrong and Leslie A. Krieger

Abstract

This paper examines the current state of measurements leading to heats of formation of the inorganic fluorine compounds, and carbon compounds of one carbon atom per molecule. It is based upon a survey of the literature from 1949 to mid-1961. A bibliography of 625 references is given. Reported values of $\Delta \mathrm{Hf}_{298}^{\circ}$, cited from the literature, are listed for individual compounds in eight tables. Related thermodynamic measurements are also listed. No attempt is made to indicate the best values to be assigned when conflicting data exist. As a group the binary fluorine compounds have been the most thoroughly studied. The availability of the thermodynamic information decreases rapidly as the complexity of the compounds increases. Recent developments in certain phases of the calorimetry of fluorine compounds are discussed.

Acknowledgment

This survey was prepared at the National Bureau of Standards, as part of the basic program of the Heat Measurements Section, and the work was supported by Bureau RTS funds. Because of the wide interest in the material of this survey, it is incorporated in the present ARPA report.

1. Introduction.

This paper presents in brief review and summary form the results of a survey of the recent literature on the thermochemical properties of inorganic fluorine compounds. The purpose of the paper is to indicate the present status of the heats of formation of this group of compounds without attempting an exhaustive critical evaluation of the data.

The fluorine compounds form a group of special interest from a scientific point of view because of the extreme position of fluorine in the periodic table. For many years it received less study than this extreme position warrants, probably for two reasons: the low abundance of fluorine relative to neighboring elements in the periodic table, and the extreme reactivity of the element, which has hindered work with it. In recent years this situation has changed and a large volume of research has been carried out, leading to a rapid growth of the literature of the fluorine compounds and the publication of several general review works $[1,2,3,4,5,6,7,8]$.

2. Scope and Completeness of Survey.

A large amount of effort has been expended by others in searching and evaluating the literature relating to the heats of formation of fluorine compounds. In carrying out the literature search in the present survey, advantage was taken of the results of prior work whenever possible. The National Bureau of Standards Circular 500 [9] was used as a starting point. This critical evaluation was considered to be complete through the 1949 Chemical Abstracts and further search of the literature covered in [9] was thought to be unnecessary. For the period following 1949, the Chemical Abstracts was the primary source searched.

For aqueous species we have not attempted to duplicate in our references the survey on stability constants of metal ion complexes and solubility products of inorganic substances, by Bjerrum, Schwarzenbach, and Sillen [16]. Many thermodynamic studies related to heats of formation of aqueous complex ions are listed there. When reference to a source of work on an aqueous species is made by Bjerrum, et al. [16], in general we refer to [16] rather than to the original source. Material not found in Bjerrum for these species is listed in the usual manner.

A complete search of the literature pertaining to such a large group of compounds, and covering all modes of information of potential value to the calculation of heats of formation, is a complex, painstaking task. A considerable amount of ingenuity is required to ferret out sources of information. In some instances, a source may contain the only applicable information available on a particular compound, but because the article is principally about a subject other than thermochemistry, the information may not be revealed in the abstract. A search of Chemical Abstracts, therefore, can hardly be expected to be complete in itself.

For this reason use was also made of other reviews in order to complete the search. The principal published reviews searched are listed as references $[10,11,12,13,14,15,16,17]$. Of these, several may be commented on. In two lengthy reviews Brewer, Bromley, Gilles and Lofgren [12] and Brewer [13] gave the heats of formation, fusion, and vaporization and other thermodynamic properties of most of the binary fluorides for which data were available. They also estimated values for many compounds for which measurements had not been made. They discussed briefly the sources of the selected values. Their references
were essentially completed in 1946, though reference was made to some additional work published through 1948. For many values of heats of formation they depended heavily upon Bichowsky and Rossini [10].

Herzberg [11] and Gaydon [14] are standard references for the dissociation energies of diatomic molecules. Additional information on dissociation energies might have been found in Cottrell [18] which, however, was not specifically searched. Kubaschewski and Evans [15] list many heats of formation, principally of materials of interest to metallurgists. Bjerrum [16] has compiled stability constants for complex ions in aqueous solutions, summarizing a good deal of literature which should be applicable to the calculation of enthalpies and free energies of formation of aqueous ions. Fluoride ion, forming many strongly bonded complex ions, is well represented. The second edition of Lewis and Randall's Thermodynamics, revised by Pitzer and Brewer, [17] contains extensive tables of thermodynamic properties including heats of formation. Of these the values for the gaseous alkali halides, based on a recent survey by Brewer and Brackett [19], are new.

Glassner, in an informal publication [20], tabulates the heats of formation of a great many binary fluorides, including estimates for many compounds for which experimental values are lacking. Aside from the estimates he depends upon Brewer, et al. [12], Kubaschewsky and Evans [15] or NBS Circular 500 [9], and lists data from other sources only for the fluorides of polonium and the actinide elements.

The Annual Reviews of Physical Chemistry have provided a review chapter on thermodynamics and thermochemistry each year since 1950. These chapters have become more complete and more uniform in coverage so that they formed a useful source for checking the completeness of our search. In addition, chapters on heterogeneous equilibrium and phase diagrams, high temperature chemistry, and bond energies supplied useful information. Volumes 1 - 11 were examined. The Bulletin of Chemical Thermodynamics (1958-1961) has provided a guide to very recent work. The "Table of Contents" of several journals and the serial publication Current Chemical Papers have been examined for new work each month for about three years.

Advantage was also taken of the current active interest in twenty or thirty elements, particularly of the low atomic weights, as potential ingredients of rocket fuels or oxidizers. This interest has led to surveys of thermochemical properties, with emphases on compounds which could occur as ingredients, products or intermediate species. Such surveys by Sinke [21], Gordon [22], Mickle [23], Hildenbrand [24] and Gordon [25] have appeared as listed reports. Others [26,27,28,29,30,31,32] have come in the form of informal communications to the authors. Still others $[33,34,35,36,37]$ represent unpublished communications by the authors. These surveys differ widely in the extent to which they resort to the original literature or to prior surveys, and also in the extent to which they attempt to justify the values they list. The values presented include estimates of the properties of some species considered to be possible, but for which no experimental data exist. Fluorine is a prominent element in most of these surveys, and so these have been scanned for information suitable for this paper.

The search of Chemical Abstracts included a page-by-page scanning of unindexed issues, sections $1,2,3,6,9$ and 24 (Apparatus, General and Physical Chemistry, Electronic Phenomena, Inorganic Chemistry, Metallurgy, and Propellants, respectively). This portion of the search began with the 1957 volume, and is complete through 18 issues of 1961. The issues from 1950 to 1956 have been searched in the formula index for all references to fluorine compounds, excluding carbon compounds C_{2} or higher. In addition, a limited number of subject index headings have been searched, including the names of fluorine compounds cross-referenced from the formula index, as well as certain headings involving heat processes.

Although the search of Chemical Abstracts has been intensive and detailed, it is probable that certain sources have been missed, because of the primary dependence upon the mention of the compound and the heat measurement in the abstracts studied. It is also probable that resort to other surveys did not completely fill the gap, because the other surveys in general did not cover all the fluorine compounds in any systematic manner.

The present examination and evaluation of the sources of data on fluorine compounds are expected to continue. Therefore, information about data not referred to in this article will be welcomed by the authors.

The information selected from the various references was limited to energy changes occurring at constant temperature. In particular, this criterion excludes the listing of specific heat measurements. It permits the inclusion of energies of phase changes, free energy changes (or the related equilibrium constants), as well as enthalpy changes occurring in chemical processes of all types and determined by any means.

For the preparation of this survey gaseous ions as chemical species were not covered. It is believed, however, that all other clearly recognized classes of chemical species have been included.

3. Arrangement of the Tables.

The information relating to heats of formation is summarized in Tables 1 to 8. There the chemical species are separated into fluorine (Table 1), binary fluorides (Table 2), ternary fluorine compounds (containing three elements including fluorine) (Table 3), quaternary and higher fluorine compounds (containing four or more elements) (Table 4), aqueous fluoride ion (Table 5), binary aqueous species (Table 6), ternary aqueous species (Table 7), and quaternary and higher aqueous species (Table 8). Hydrates, ammoniates, and hydrofluorides are treated consistently with other compounds in these tables, in which each element that occurs is counted without regard to chemical relationships or tightness of binding. Within Tables 2 and 5, the compounds are arranged alphabetically with respect to the symbol of the non-fluorine element.

In the remaining tables, the compounds are arranged in the order of the formula index in Chemical Abstracts, with a single modification: compounds containing water or other coordinated molecules and compounds containing C and H are not treated as exceptions to the general rules for arrangement. The rule for arrangement of elements within a compound is that they are in alphabetical order according to their symbols. The rule for arrangement of compounds within a table is that the compounds are in alphabetical order except that for the first element in a compound, for example Al, all formulas with Al come before those with Al_{2} and so on. This rule is maintained for each successive
element in the formula.
When this procedure leads to a formula not easily recognizable in terms of the molecular configuration, a more conventional formula is listed in parenthesis.

A compound whose existence has not been demonstrated, but for which a heat of formation is presented is followed by the abbreviation, hyp.

Table 2 lists all binary fluorides which were encountered in the search, whether or not thermodynamic data were found. The binary compounds listed were found by scanning the formula indices of Chemical Abstracts, 1950-1957; such monographs as Simons [1] and Ryss [2]; and the recent summaries by George [4] and Peacock [5]. The practice of including compounds for which no thermochemical data have been reported is not continued in the other tables.

The data for each compound are listed according to the phase of the compound in the order gas, liquid, crystal.

The purpose of these tables is to provide a very brief summary of new data related to the heat of formation of each compound, and its relation to prior data. For this purpose, in the column labelled " $\Delta H f_{298}^{\circ}$ " are listed the experimental values for the heat of formation found in the search. In addition, the heat of formation listed in NBS Circular 500 or a more recent authoritative review is listed. References are given for each value listed. It should be emphasized that appearance of a number in the column does not mean that it has been critically evaluated, or that precedence over other values or partial data listed elsewhere in these tables is intended. In addition, no effort has been spent toward making the values consistent.

In the column headed "Remarks" are described the processes by which heats of formation have been derived. In this column are listed data which are not reported as heats of formation, but which are applicable to the evaluation of a heat of formation when the data are combined with suitable other data. Also listed are values for heats of formation given by some other reviews, and estimated values.

The usual chemical process which can be used to derive a value suitable for listing in these tables involves more than one fluorine compound. To avoid duplication, cross references are given as needed. When two phases of the same substance are involved, as in a vaporization process, any enthalpy change reported is arbitrarily listed by the substance formula in the phase that results from an increase in energy; i.e., the vapor phase in this instance. This procedure is adopted in order to avoid ambiguity in those cases in which more than one molecular formula may be found in the vaporizing gases. Vapor pressure measurements are listed for the condensed phase in equilibrium with the vapor. These vapor pressure studies may provide additional information on the heat of vaporization or sublimation.

4. Evaluation of the Data.

Due to the lack of time, it has not been possible in this survey to give an evaluation of the available data, or any calculation of heats of formation on a consistent and critical basis, from the reported heat measurements of particular processes, and from the reported free energy and entropy data for equilibrium processes. The values given must, therefore, be taken as citations from the original literature.

It must be left to future critical analysis to indicate the greater or lesser degree of reliability of different experimental reports; to place the calculations upon a consistent basis, particularly with regard to the values to be used for auxiliary thermodynamic quantities required in the calculation; and to apply the most appropriate schemes for correlation or analysis of the data.

Similarly, as stated earlier, it has not been possible to discriminate definitely between the listed values which were taken from various other reviews. Each value listed in the second column of the tables, as coming from a review, is, therefore, merely a recent value from a competent review, and is not to be considered as necessarily superior to other values found in other reviews listed under "Remarks". The reason for listing such a value selected from a review is to provide a fair picture of the situation with regard to compounds for which data adequate for evaluation of a heat of formation may have existed prior to the period covered by the present survey. No values are listed in this column which are based to any important degree upon estimation.

5. Status of Data on the Heats of Formation of Fluorine Compounds.

In the absence of a critical evaluation of the data, a judgment of the reliability of the existing thermochemical measurements on the fluorine compounds as a group will not be attempted here. Of some interest is an estimation of the extent to which thermochemical data are lacking as compared to the extent to which measurements have been made. A careful estimate of this status for all classes of inorganic compounds would require a more thorough counting of the polyatomic

Pluorine compounds than has been possible for this review. At best such a count would be incomplete at any given time because the number of know compounds is continually being augmented. It is possible, however, on the basis of the information in these tables to make some limited and tentative estimates of the situation.

Let us consider for example the binary compounds. Two hundred seventy-eight (278) compounds are listed in Table 2, an average of about three fluorides for each element. Of these we find listed in the table a value for the heat of formation based on experimental work for 93 compounds; and data, in some instances sufficient for the calculation of a heat of formation, for 32 additional compounds, a total of 125 . This leaves 153 binary compounds, somewhat more than half of all the binary fluorine compounds, with insufficient data to permit a statement of the heat of formation based upon experiment.

Estimates have been made for many of these. The adequacy of such estimates is a moot point. The possible uncertainties are suggested by a few examples from the table. For AcF_{3} (c) estimates of the heat of formation range from -395 to $-477 \mathrm{kcal} / \mathrm{mole}$. For $\mathrm{AlF}_{3}(\mathrm{c})$ a value of $-311 \mathrm{kcal} / \mathrm{mole}$ was given in NBS Circular 500 [9] for which an estimate of the heat of solution was used to complete a cycle of thermochemical data. A more recently measured value reported on the basis of non-aqueous reactions was $-356.2 \mathrm{kcal} / \mathrm{mole}$. A recently measured value for $\mathrm{PF}_{5}(\mathrm{~g})$ is $-381.4 \mathrm{kcal} / \mathrm{mole}$, whereas Gordon [26] estimated $-420 \mathrm{kcal} / \mathrm{mole}$, and Kapustinskii [38] estimated $-315 \mathrm{kcal} / \mathrm{mole}$. Undoubtedly some estimates are better than these; nevertheless, the illustrations given above are by no means only for exotic or exceptional compounds.

The estimates of the completeness of existing data can be extended to the case of more complex compounds only in a qualitative way. In Table 3, 147 ternary compounds are listed, for which some thermochemical data have been presented. Of these there are sufficient data for 41 compounds for us to present a value of $\Delta H f$. For the remainder some relevant data or estimates of the heats of formation are available. The various monographs on fluorine chemistry and the Chemical Abstracts indices were not scanned for the purpose of obtaining a count of ternary compounds, so we do not have even an approximate count of the total number of known ternary fluorine compounds. However, examination of a single source (George [4]) gives an approximate number of the ternary compounds involving elements of groups Vb and VIb. This source lists 45 ternary compounds involving nine elements from these two groups, compared to 17 binary compounds involving the same elements. The ratio of ternary to binary compounds is somewhat over 2.5 to 1. Assuming the same ratio to hold for the ternary and binary fluorine compounds of all the elements, we find that the total number of ternary fluorine compounds would be somewhat in excess of 700. The validity of this assumption is not easy to justify, and the number could be made very far in error by the discovery of a group of compounds such as chain linked molecules analogous to the carbon compounds. Thus estimates of the number of compounds in the area for which measurements remain to be made can only be suggestive of the magnitude of the tasks involved if measurements were contemplated on all compounds. The contrast between 41 compounds for which measurements have been made, leading to an experimental value for the heat of formation, and
approximately 700 for which measurements might be contemplated is striking, and indicates the need for a very careful consideration of the desirability of closing the gap, and of ways in which it might be done.

6. Some Problems and New Developments in the Calorimetry of Fluorine Compounds.

The calorimetry of fluorine compounds has been hindered by the fact that in comparison with oxygen the use of elemental fluorine in reaction is attended with difficulties due to its great reactivity and its toxicity. Procedures for reactions of oxygen have been refined to such a degree, that reaction vessels, and materials compatible with oxygen are not lacking for almost any reaction process desired, either in a flame or a bomb calorimeter. Recent developments suggest that calorimetry of fluorine will also be possible in a comparably wide range of experiments. Already promising procedures have been worked out for a very satisfying variety of measurements directly on elemental fluorine. Gross [39,40, 568] and co-workers have developed procedures for the use of fluorine at 1 to 2 atm pressure in glass vessels in which the fluorine can be kept separate from the other reactant until reaction is desired. Hubbard and co-workers [41,42,43, 44, 241, 567] have demonstrated the feasibility of fluorine-bomb calorimetry, using nickel or monel bombs. They have applied their method to measurements of metals and metalloids forming volatile fluorides, such as those of titanium and boron. Armstrong and Domalski [45] have been able to extend fluorine bomb calorimetry to metals such as aluminum, which form relatively non-volatile fluorides. Other laboratories are also attempting work in this direction [46].
: Thustior of rganic and hydrogeneous compounds in a fluorine bomb orimeter apparently has not been attempted for precise measurements. The use of hydrogenous materials offers difficulties in the great non-ideality, the probable condensation of part of the hydrogen fluoride that would be formed, as well as the extreme corrosiveness of the gas it elevated temperatures. The presence of water in the bomb $_{\text {e }}$ in to dissolve the $H F$ reduces the amount of corrosion to an extent that ma: make it tolerable, as was shown by Armstrong, Marantz and Coyle [47] smont rat, involvıng elemental fluorine. The use of water 2. esence of fluorine to dissolve the hydrogen fluoride as it is fced would be precluded by the reaction of water with fluorine. Nevertheless these difficulties may be susceptible to a careful approach. There seems to be no a priori reason why, for instance, hydrogen fluoride formed by combustion in a bomb could not be absorbed in sodium fluoride, much as it is absorbed in NaF traps in flame calorimetry experiments [48]. "Teflon" has been shown [45] to burn readily in fluorine and is now - in the wosealable thin films, from which it should be possible to fabricate sample containers for liquids or spontaneously igniting substances. Such an experiment could open up the whole field of the thermochemistry of the fluorocarbons and the partially fluorinated hydrocarbons, as well as other substances not now accessible to such reactions. Of more immediate importance to the thermochemistry of fluorocarbons has been the development of methods for the satisfactory combustion of such materials in oxygen by Good, Scott and Waddington $[49,50]$.

Of equal importance to the development of bomb calorimetric methods with fluorine has been the development of a flame calorimeter suitable for burning gaseous samples in an atmosphere of fluorine [48]. This procedure, successfully used in the combustion of methane and ammonia, should be adaptable to the combustion of other gaseous materials in which either a fluoride is formed, or a fluorine oxidizer burns another material such as hydrogen or ammonia.

The difficulties in the use of elemental fluorine are at least, in part, compensated by another aspect of fluorine thermochemistry: the very great utility of hydrofluoric acid as a solvent. It is probable that the dissolving characteristics of hydrofluoric acid solutions have not been used to their fullest extent for ths decermination of heats of formation of fluorine compounds. There have been many applications to the determination of the heats of formation of mineral products, mostly oxides and silicates. More satisfactory anả more frequent application to the determination of the heats of formation of fluorine compounds should follow a better understanding of the species equilibria and rate processes involved in solutions of complex fluoride ions.

In some areas, it is apparent that uncertainties in the heacs of various processes exert a significant effect upon the thermochemical calculations, and that there is room for improvement of some of the more basic quantities of fluorine thermochemistry. A few instances will be briefly cited.
(1) The heat of formation for $\mathrm{HF}(\mathrm{g})$ is listed in NBS Circular 500 as $\Delta H f=-64.2 \mathrm{kcal} / \mathrm{mole}$. This value is less negative than the value obtained by Von Wartenberg and Schutza [51] in their careful experiments. A more negative value is also indicated by the experiments of Armstrong and Jessup [48]. If a value as negative as -64.6 kcal/mole were the proper value, the determinations of the heat of formation of CF_{4} by Jessup, McCoskey and Nelson [52] and by Scott, Good and Waddington [49], would be brought into essential agreement at -220 kcal/mole and the value determined by Neugebauer and Margrave [173] would be only 1 kcal different at $-219 \mathrm{kcal} / \mathrm{mole}$ rather then these determinations being separated by 2 or 3 kilocalories.
(2) The non-ideality of hydrogen fluoride in the low pressure region is so poorly known that use of one set of P-V-T data or another can lead to differences up to nearly l kcal/mole for the heat of formation at various pressures (see [48] for a discussion).
(3) A great deal of work has been done on the dissociation energy of fluorine (Table l). Despite the large amount of work, the value which lies near $38.7 \mathrm{kcal} / \mathrm{mole}$, as indicated by most of the recent work, still has not been as precisely established as would be desirable. This value enters into all calculations of average bond energies of fluorine compounds.

7. Symbols and Abbreviations Used in Tables 1-8.

amorph.	amorphous
assoc.	association
dissoc.	dissociation
$\mathrm{D}_{0}, \mathrm{D}$	dissociation energy
equil.	equilibrium
est.	estimate
e.v.	electron volts
hyp.	hypothetical compound
K	equilibrium constant
K i	ionization constant
K sp	solubility product constant
$\log \mathrm{K}$	logarithm to the base 10 of the equilibrium constant
meas.	measured
thermodyn. prop.	thermodynamic properties
v.p.	vapor pressure
(aq)	aqueous
(c)	crystal
(g)	gas
(1)	liquid
(var.)	various concentration of real solutions are als ven
($400 \mathrm{H}_{2} \mathrm{O}$)	in 400 moles of water
$\Delta \mathrm{Fr}$ reac.	free energy of reaction
$\triangle \mathrm{Ff}$	free energy of formation
$\Delta \mathrm{H}$	enthalpy change
$\Delta H f$	heat of formation

$\Delta H f_{298}^{\circ}$	standard heat of formation at $298^{\circ} \mathrm{K}$.
ΔH fus.	heat of fusion
ΔH hydr.	heat of hydrolysis
ΔH pptn.	heat of precipitation
ΔH reac.	heat of reaction
ΔH soln.	heat of solution (in $H_{2} \mathrm{O}$ unless otherwise specified)
ΔH sub.	heat of vaporization
ΔH vap.	

TABLE 1. FLUORINE

Substance	D_{0} or ΔH° ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
F (g)		N.B.S. Circ. 500 [9] gives 18.3 for $\Delta \mathrm{Hf}_{298}^{\circ}$. See $\mathrm{F}_{2}(\mathrm{~g})$ for extensive later information.
$\mathrm{F}_{2}(\mathrm{~g})$	Experimental measurements leading to D_{0} or ΔH° for dissociation have been reported as follows: $66[54], 50 \pm 6[55],<45[56],$ 37.7 at 759 to $1115^{\circ} \mathrm{K}$ or 38.9 at $1000^{\circ} \mathrm{K}[57],>45[58]$, 40-45[59], 37.7[60], 39.9 $\pm 0.8[61], 37.0 \pm 2[62], 31.5$ $\pm 0.9[63], 37.6 \pm 1.6[64]$, $37.6 \pm 0.8[65], 31[66,67]$, $38 \pm 0.4[68,69], 32 \pm 3[70]$, $37.5[71], 41.3 \pm 0.5[73]$, $37.1[92], 31.6 \pm 4.3[606]$, $\leq 39.0[606]$.	Discussions and calculations of the dissociation energy have been reported by $[9,11,14,18,75,76,77,78,79,80,81,82$, $83,84,85,86,87,89,90,91,93,94,95,96,97,98,99,100$, 101, 102, 103, 104, 508]. [105] meas. v.p. and ΔH vap. [540] meas. ionization and dissociation by electron impact. [580] est. D_{o} values from -34 to +180 .
$\mathrm{F}_{2}(\mathrm{l})$		[105] meas. $\triangle H$ fus.
$\mathrm{F}_{2}(\mathrm{c})$		[105] meas. ΔH trans. $(\mathrm{c}, \mathrm{I}) \rightarrow(\mathrm{c}, \mathrm{II})$.

Data in tables $1-8$ are citations from the literature and have not been critically reviewed for this paper.
All numerical values are in kcal mole ${ }^{-1}$ unless otherwise specified.
See [9] for additional references prior to 1949.
Superscript a on $\triangle H f$ values for Br and I compounds indicates that such values are based on $\mathrm{Br}_{2}(\mathrm{~g})$ or $\mathrm{I}_{2}(g)$ as standard states.

Compound	$\Delta H f_{298}^{\circ}(\mathrm{kcal} /$ mole $)$	Remarks
$\mathrm{AcF}_{3}(\mathrm{c})$		[20] est. $\Delta H f_{298}^{\circ}=-395$. [12] est. -420 ± 10. [106] reports $\cong-477$ from consideration of the high temp. reaction: $3 \mathrm{Li}(\mathrm{g})+\mathrm{AcF}_{3}(\mathrm{c})=\mathrm{Ac}(\mathrm{c})+3 \mathrm{LiF}(\ell)$.
AgF, c)	-48.5 [9]	[107] lists ΔH soln. [108] calc. lattice energy. Other reviews give for $\Delta H f_{298}^{\circ}:-48.5 \pm 1.0[15],-48.7[12,20]$.
$\mathrm{AgF}_{2}(\mathrm{c})$	-88.5 [9]	Other reviews give for $\Delta 4 \mathrm{f}_{298}$: -83.0 ± 2.5 [15], -83 ± 4 [12].
$\mathrm{Ag}_{2} \mathrm{~F}(\mathrm{c})$	-50.4 [9]	[12] lists -50.3 for $\Delta H \mathrm{f}_{298}{ }^{\circ}$.
AIF (g)	$\begin{aligned} & -61.3 \pm 2.0[35] \\ & -49[510] \\ & -59.2[115] \\ & -61.4[116] \\ & -50.9[607] \end{aligned}$	The equilibrium: $2 \mathrm{Al}+\mathrm{AlF}_{3}=3 \mathrm{AlF}$, was studied by $[111,113,115,510,607]$. Spectroscopic measurements of D_{0} were reported by [74, 112]. [114] lists many ΔF reac. of $\operatorname{AlF}(\mathrm{g})$. D_{0} is also reported or discussed by $[11,12,14,18,37,109,110$, 111, 115, 116]. [547] calc. binding energy. Other reviews give for $\Delta H f_{298}^{\circ}$: $\begin{aligned} & -50 \pm 5[109],-51.4[9],-55[12],-60[25],-60.1 \pm 1[26]-60.5[21], \\ & -60.97 \pm 1[24],-61 \pm 5[17],-61.0 \pm 2[15],-61.3[27,37] . \end{aligned}$
AIF $\mathrm{h}^{\prime} \mathrm{hyp}$.		[109] est. $\Delta H f_{298}^{\circ}=-103$. [12] lists -102 . [34] lists -102 ± 10. See also [514].
ALP, (3) hyy.		$\begin{aligned} & \text { [34] lists } \Delta H f_{298}^{\circ}=-114 \pm 5 . \quad[25,27] \text { est. }-157 .[24] \text { est. }-172 \pm 15 \text {. } \\ & \text { [26] est. }-172 \pm 20 . \end{aligned}$
ALIe ! hy		[109] est. $\mathrm{\Delta Hf}_{298}=-184$. [33] lists -184 ± 10.
$\mathrm{AlF}_{3}(\mathrm{~g})$	$\begin{aligned} & -284.8 \pm 6[34] \\ & -285.3 \pm 2[122] \end{aligned}$	[111, $120,122,123,510]$ calc. ΔH sub. [121] calc. ΔH vap. [9] lists and [32] reviews ΔH sub. Other reviews give for $\Delta H f_{298}^{\circ}:-270$ [33], -283.0 ± 2 [24, 26], $-283.8[21],-284.8 \pm 6[25,37],-285.4 \pm 5[27]$. See $\mathrm{Al}_{2}{ }_{2}{ }_{6}(\mathrm{~g})$ and $\mathrm{ALF}_{4} \mathrm{Li}(\mathrm{g})$.
$\mathrm{AlF}_{3}(\ell)$		[121] meas. v.p. [124] meas. ΔH fus.
$\mathrm{AlF}_{3} \mathrm{c}$)	$\begin{aligned} & -356.2 \pm 2[35] \\ & -355.7[115] \\ & -356.15[116] \\ & -356.3[116,117, \\ & \quad 118] \\ & -357.0 \pm 2.0[119] \end{aligned}$	[115, 117, 119] meas. $\Delta \mathrm{H}$ for the reaction: $\mathrm{Al}+3 / 2 \mathrm{PbF}_{2}=\mathrm{AlF}_{3}+3 / 2 \mathrm{~Pb}$. See also [116, 118]. See [45] for ΔH f. [124] moas. ΔH trans. $a-A_{3} \rightarrow \beta-A l F_{3}{ }_{3}$ [514] gives e.m.f. of $\mathrm{Al}-\mathrm{AlF}_{3}$ electrode. [111, $\left.120,121,122,123\right]$ meas. v.p. [38, 516, 517, 518] est. $\Delta H f_{298}^{\circ}$. Other reviews give for $\Delta H f_{298^{\circ}}^{:-311}$ (est.) [9], -323 ± 5 (est.) $[12,20],-331.5[2],-355.7[21,24,26,33],-355.8 \pm 2[15],-356.3$ [25], -356.3 ± 1 [17], -356.3 ± 2 [37], -356.3 ± 5 [34]. [517] also reviewed $\Delta H f_{298}^{\circ}$ See also $\operatorname{AlF}(\mathrm{g}), \mathrm{AlF}_{6} \mathrm{Na}_{3}(\ell)$.
$\mathrm{Al}_{2} \mathrm{~F}$: (g)		For the reaction: $\mathrm{Al}_{2} \mathrm{~F}_{6}(\mathrm{~g})=2 \mathrm{AlF}_{3}(\mathrm{~g})$, [125] meas. $\mathrm{AH}_{1000}=48.0$. See alao [32].
${ }^{1 m^{3}}{ }_{n}(\mathrm{c})$		
$\begin{aligned} & \operatorname{AmF}_{3}(\mathrm{~g}) \\ & \mathrm{AmF}_{3}(\mathrm{c}) \end{aligned}$		[128] calc. ΔH sub. See also v.p. meas. for AmF_{3} (c). See also [106]. [126, 127, 128] meas. v.p. [20] est. $\Delta 4 f_{298}^{\circ}=-382$.
$\mathrm{AsF}_{3}(\mathrm{~g})$	-218.3 [9]	[9] lists $\Delta \mathrm{H}$ vap. [17] lists -218.3 for $\Delta \mathrm{Hff}_{298}{ }^{\circ}$
$\begin{aligned} & \mathrm{AsF}_{3}(\ell) \\ & \mathrm{AsF}_{3}(\mathrm{c}) \end{aligned}$	-226.8[9]	[129] meas. ΔH fus. [9] lists ΔH fua. [20] lists $\Delta H \mathrm{H}_{298}^{\circ}=-198.3$.
$\begin{aligned} & \mathrm{AsF}_{5}(\mathrm{~g}) \\ & \mathrm{AsF}_{5}(\ell) \\ & \mathrm{AsF}_{5}(\mathrm{c}) \end{aligned}$		[2] lists ΔH sub. [9] lists ΔH vap. [20] est. $\Delta H f_{298}^{\circ}=-265$. [9] 1ists ΔH fus.
AuF (c) hyp.		[1,J] calc. 1attioe energy and est. $\Delta H f=39$ and 45. [12] est. $\Delta H f_{298}=-18 \pm 4$. [20] est. -18.
$\mathrm{AuF}_{2}(\mathrm{c})$		[12] est. $\Delta H \mathrm{f}_{298}^{\circ}=-57 \pm 20$. [20] est. -57.
$\mathrm{AuF}_{3}(\mathrm{c})$	$\begin{aligned} & -83.3 \pm 2[15] \\ & -83.3[131] \end{aligned}$	[131] meas. ΔH hydr. of $\mathrm{AuF}_{3}(\mathrm{c})$. [12] est. $\mathrm{AHf}_{298}^{\circ}=-100 \pm 40$. [20] est. -100 .

[^4]TABLE 2. BINARY FLUORIDES(continued)

Compound	$\mathrm{LHf}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{BiF}_{5}(\mathrm{~g})$		[150] calc. ΔH vap.
$\mathrm{BiF}_{5}(\mathrm{l})$		For the reaction: $\mathrm{BiF}_{5}(\ell)=\mathrm{BiF}_{3}(\mathrm{c})+\mathrm{F}_{2}(\mathrm{~g})$, [150] reports $\Delta \mathrm{F}$ reac. is negative at 200° (decomposition pressure exceeded range of available apparatus). [150] meas. v.p.
$\operatorname{BrF}(\mathrm{g})$	-18.36^{9} [102]	$\begin{aligned} & {[11,14,102,152,153,154,155,156,157,158] \text { report } D_{0} \cdot[505] \text { calc. } \Delta 4 f_{298}^{0}=} \\ & -17.7^{\text {a }} \pm 0.5 . \operatorname{See~} \operatorname{BrF}_{3}(\mathrm{~g}), \operatorname{BrF}_{5}(\mathrm{~g}) . \end{aligned}$
$\mathrm{BrF}_{3}(\mathrm{~g})$	$-64.8^{\text {a }} \pm 0.2[505]$	[505] meas. ΔH for the reaction of $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g})$ forming BrF_{3} and BrF_{5}. For the reaction: $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{BrF}_{3}(\mathrm{~g})=3 \mathrm{BrF}(\mathrm{g}),[151]$ meas. $\Delta F=+1.2, \Delta H=11.9$. See also [524]. [154] est. average bond energy ($\mathrm{Br}-\mathrm{F}$) in BrF_{3}. [159] calc. $\Delta \mathrm{H}$ vap. [25] lists $\Delta \mathrm{Hf}_{298}^{\circ}=-75 . \operatorname{See} \mathrm{BrF}_{5}(\mathrm{~g}), \mathrm{Br}_{2} \mathrm{~F}_{6}(\mathrm{~g})$.
$\begin{aligned} & \mathrm{BrF}_{3}(l) \\ & \mathrm{BrF}_{3}(\mathrm{c}) \end{aligned}$	-75 [151]	[159] meas. v.p., ΔH fus. See [155] for general review.
$\mathrm{BrF}_{5}(\mathrm{~g})$	$\begin{aligned} & -124.0^{8}[102] \\ & -106.2^{a} \pm 0.3[505] \end{aligned}$	For the reaction: $1 / 2 \mathrm{Br}_{2}(\mathrm{~g})+5 / 2 \mathrm{~F}_{2}(\mathrm{~g})=\mathrm{BrF}_{5}(\mathrm{~g})$, [505] meas. $\Delta \mathrm{H}=-106.2 \pm 0.3$. For the reaction: $2 \mathrm{BrF}_{3}(\mathrm{~g})=\mathrm{BrF}(\mathrm{g})+\mathrm{BrF}_{5}(\mathrm{~g})$, [163] est. $\Delta \mathrm{F}=-10.8$. [154] est. average bond energy ($\mathrm{Br}-\mathrm{F}$) in $\mathrm{BrF}_{5^{\circ}}$. [160] gives thermodyn. prop. [162] calc. $\mathrm{\Delta H}$ vap. [9] lists ΔH vap. See $\nabla . p$. studies for $\mathrm{BrF}_{5}(\ell)$. [221] studied dissociation. [17] lists $\Delta H f^{\circ}{ }_{98}=-120$. See [155] for a general review.
$\begin{aligned} & \mathrm{BrF}_{5}(\ell) \\ & \mathrm{BrF}_{5}(\mathrm{c}) \end{aligned}$		[161, 162, 164] meas. v.p. [164] meas. ΔH fus. [9] lists ΔH fus.
$\mathrm{BrF}_{7}(\mathrm{~g})$		
$\mathrm{Br}_{2} \mathrm{~F}_{6}(\mathrm{~g})$		[525] est. K for the reaction: $1 / 2 \mathrm{Br}_{2} \mathrm{~F}_{6}=2 \mathrm{BrF}_{3}$.
$\mathrm{CF}(\mathrm{g})$		[526, 527] meas. D_{0}. [14] lists D_{O}. [357] meas. ion appearance potential from $\mathrm{CF}_{3} \mathrm{Br}$ and $\mathrm{CF}_{3} \mathrm{I}$. [17, 22] calc. $\Delta \mathrm{Hf}_{298}^{\circ}=+74$. [28] lists +74.409 . [21, 24, 25] calc. +74.5. [26] calc. $+82.8 \pm 10$.
$\mathrm{CF}_{2}(\mathrm{~g})$		[165, 357] meas. appearance potential of CF_{2}^{+}. [167, 169] meas. energies of bond dissoc. leading to CF_{2}. [22, 531] est. $\Delta H f_{298}^{\circ}=-17$. [169] est. $\leq-18 . \quad$ [26] est. $-18 \pm 5 .[21,24]$ est. -23 . [25] est. -30 . [165] est. -30 ± 20. [28] est. -46 ± 5. [28] gives as sources [528, 529, 530].
$\mathrm{CF}_{3}(\mathrm{~g})$		[166] meas. ionization potential. [104, 166, 167, 169, 177, 358, 359] evaluate energies of bond dissoc. leading to CF_{3}. $[166,357,532]$ meas. ion appearance potential. [624] est. $\Delta 4 f_{298}^{\circ}=-113.5 \pm 2$. [166] est. -117 . [168] est. -119 . [169] est.-119.5. [21, 24, 26] est. -120. [22, 25, 167] est. -120.5. [28] est. -130 ± 10.
$\mathrm{CF}_{4}(\mathrm{~g})$	$\begin{aligned} & -162.5[9] \\ & -231[170] \\ & -225[171] \\ & -212.7[172] \\ & -218.3[49,50] \\ & -217.2[173,176, \\ & 537] \\ & -218 \pm 2[174] \\ & -219.2 \pm 2.3[175] \end{aligned}$	[49] (see also [50]) meas. $\Delta \mathrm{H}$ for the combustion of $\mathrm{C}_{2} \mathrm{~F}_{4}(\mathrm{~s})$ in O_{2} with CF_{4} as a product. [52] meas. ΔH for the reaction: $\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{~F}_{2}(\mathrm{~g})=4 \mathrm{FF}(\mathrm{g})+\mathrm{CF}_{4}(\mathrm{~g}) . \quad$ [170, 171, 174] meas. ΔH for the reaction: $\mathrm{CF}_{4}(\mathrm{~g})+\mathrm{K}(\mathrm{c})=4 \mathrm{KF}(\mathrm{c})+\mathrm{C}$. [175] meas. $\Delta \mathrm{H}$ for the reaction: $\mathrm{CF}_{4}(\mathrm{~g})+\mathrm{Na}(\mathrm{c})=4 \mathrm{NaF}(\mathrm{c})+\mathrm{C} . \quad[172,173]$ (see also [176, 537]) meas. $\Delta \mathrm{H}$ for the reactions: $\mathrm{C}_{2} \mathrm{~F}_{4}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{C}+4 \mathrm{HF}(\mathrm{aq})$, and $\mathrm{C}_{2} \mathrm{~F}_{4}(\mathrm{~g})=\mathrm{CF}_{4}(\mathrm{~g})$ + C. $[166,167,169,177]$ report bond energy $\left(F_{3} C-F\right)$. [9] lists ΔH vap. [610] calc. ΔH vap. [314] compared observed reactions with those calculated from thermodyn. data. [625], correlates $\Delta H f$. Other reviews give for $\Delta H f_{298}^{\circ}:-162.5$ [20], -164 [12], -218 [17, 21, 22, 24, 25, 26, 28], -218 ± 2 [361], -220 ± 3.5 [15].
$\begin{gathered} \mathrm{CF}_{4}(\ell) \\ \mathrm{CF}_{4}(\mathrm{c}) \end{gathered}$		[610] meas. v.p. [135] meas. ΔH fus. [9] lists ΔH fus. [135] meas. ΔH trans. [9] lists ΔH trans.
$\mathrm{CaF}(\mathrm{g})$	-9.3 [9]	[11, 14] list $\mathrm{D}_{0} \cdot[547]$ calc. binding energy. [25] lists $\Delta 4 \mathrm{f}_{298}^{\circ} \mathrm{Ca}=-9.3$.
$\mathrm{CaF}_{2}(\mathrm{~g})$		[9] lists ΔH vap. [548, 610] calc. binding energy. [25] lists $\Delta H \mathrm{f}_{298}^{\circ} \mathrm{O}=-199$.

[^5]

TABLE 2. BINARY FLUORIDES (continued)

Compound	$\Delta H f_{298}^{0}(\mathrm{kcal} / \mathrm{mole})$	Remarks
CsF (c)	-126.9 [9]	```[194] tabulates }\DeltaH\mathrm{ for reactions: CsF + MCl (M=Li, K, etc.). [192, 195] meas. }\Delta soln. [192] meas. \DeltaH soln. in Cs. [195] meas. \DeltaH hydration. [190, 191] meas. v.p. [544,613] calc. lattice energy. Other reviews give for \DeltaHff298: -126.9\pm4 [15], -131.7\pm0.2 [12, 20].```
$\mathrm{CsF}_{3}(\mathrm{c})$		
$(\mathrm{CsF})_{2}(\mathrm{~g})$		For the reaction: $(\mathrm{CsF})_{2}(\mathrm{~g})=2 \mathrm{CsF}(\mathrm{g}),[189,512] \mathrm{calc} . \Delta \mathrm{H}_{1121}{ }^{\circ} \mathrm{K}=41.4$. [546] calc. energy of dimeriz. [190] reports dissoc. energy and ΔH sub. See $\operatorname{CsF}(\mathrm{g}), \mathrm{CsF}_{2} \mathrm{Rb}(\mathrm{g})$.
$(\mathrm{CsF})_{3}(\mathrm{~g})$		[196] reports binding energy. [189] reports species abundances.
$\mathrm{CuF}(\mathrm{g})$	+44 [9]	[11, 14] list $\mathrm{D}_{0} \cdot[17]$ lists $\Delta H \mathrm{f}_{298}=+44$.
$\mathrm{CuF}(\mathrm{c})$		[130] calc. lattice energy and est. $\Delta H f=-14,-18$, and $-36 . \quad[15,20]$ est. $\Delta H f_{298}^{\circ}=$ -60. [12] est. -60 ± 3.
$\mathrm{CuF}_{2}(\mathrm{c})$	-126.9 [9]	[178] reports $\Delta F f$. Other reviews give for $\Delta H f_{298}^{\circ}$: $-128 \pm 4[12,15,20]$.
$\mathrm{DF}(\mathrm{g})$		
$(\mathrm{DF})_{6}(\mathrm{~g})$		
$\mathrm{DyF}_{3}(\mathrm{c})$		[12] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-398 \pm 7$.
$\mathrm{ErF}_{3}(\mathrm{c})$		[12] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-392 \pm 7$.
$\mathrm{EuF}_{2}(\mathrm{c})$		[12] est. $\Delta H \mathrm{f}_{298}^{\circ}=-300 \pm 7$.
$\mathrm{EuF}_{3}(\mathrm{c})$		[12] est. $\Delta H \mathrm{f}_{298}^{\circ}=-391 \pm 7$.
$\mathrm{FeF}_{2}(\mathrm{c})$	$-168 \pm 2[12]$	[15] lists $\Delta \mathrm{Hf}_{298}^{\circ}=-168 \pm 5$.
$\mathrm{FeF}_{3}(\mathrm{c})$	-235 ± 13 [12]	Other reviews give for $\Delta H \mathrm{Sf}_{298}$: - $235[15,20]$.
FrF (g)		[614] calc. ${ }^{\text {ar }}$ sub.
$\mathrm{GaF}(\mathrm{g})$		[14] lists $\mathrm{D}_{0} \cdot[110,197,198]$ report $\mathrm{D}_{0} \cdot[$ [547] calc. binding energy.
$\mathrm{GaF}(\mathrm{c})$		$[12,20]$ est. $\Delta 4 f_{298}^{\circ}=-56 \pm 10$.
$\mathrm{GaF}_{2}(\mathrm{c})$		[12] est. $\Delta H f_{298}^{\circ}=-165 \pm 10$. [20] est. -160 .
$\mathrm{GaF}_{3}(\mathrm{c})$		[12, 20] est. $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-255 \pm 10$.
$\mathrm{GdF}_{3}(\mathrm{c})$		[181] reports $\Delta \mathrm{Ff}_{298}^{\circ} \mathrm{O}=-388.7$. [12] est. $\Delta H f_{298}^{\circ}=-404 \pm 7$.
$\mathrm{GeF}(\mathrm{g})$		[515] meas. $\mathrm{D}_{0} \cdot[11,14]$ list $\mathrm{D}_{0} \cdot[25]$ lists $\Delta 4 \mathrm{f}_{298}^{\circ}=-16.6$.
$\mathrm{GeF}_{2}(\mathrm{c})$		[12, 20] est. $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-170 \pm 15$.
$\mathrm{GeF}_{4}(\mathrm{~g})$		[9] lists ΔH sub. [199, 200] calc. thermodyn. prop. [201] compares halides of Ge and Si. [314] compares observed reactions with those calcd. from thermo. data. [20] est. $\Delta H f_{298}^{\circ}=-281 . \quad$ [12] est. -290.
$\mathrm{GeF}_{4}(\mathrm{c})$		
$\mathrm{HF}(\mathrm{g})$	$\begin{aligned} & -64.2[9] \\ & -64.4 \pm 0.25 \end{aligned}$	[48] meas. ΔH for the reaction: $\mathrm{NH}_{3}(\mathrm{~g})+3 / 2 \mathrm{~F}_{2}(\mathrm{~g})=3 \mathrm{HF}(\mathrm{g})+1 / 2 \mathrm{~N}_{2}(\mathrm{~g})$. [541] meas. 203, 204, 205] report $D_{0} \cdot$ [540] reports ionization and diasoc. by electron impact. [206, 207] give ΔH for the reaction: $(H F)_{n-1}(g)+H F(g)=(H F)_{n}(g) . \quad[105,207,209$, 215] est. assoc. factors. [105, 211] meas. ΔH vap. [209, 210] calc. ΔH vap. [9] lists ΔH vap. [208] reports general thermodyn. prop. Other reviews give for $\Delta H f_{298}^{\circ}:-64.2[15,17,20,21,22,24,25,26,97],-64.4 \pm 0.3$ [28], -64.43 [12]. See also $\mathrm{NaF}(\mathrm{c}), \mathrm{F}_{2} \mathrm{HNa}(\mathrm{c}), \mathrm{SiF}_{4}(\mathrm{~g})$.

\begin{tabular}{|c|c|c|}
\hline Compound \& \(\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})\) \& Remarks \\
\hline \(\mathrm{HF}(\ell)\) \& -71.8[212] \& [212] meas. \(\Delta H\) soln. of salts in HF . [209, 211] meas. v.p. [210, 213] meas. v.p. over solns. of alkali fluorides in \(\mathrm{HF}(\ell)\). [178] meas. v.p. of HF over solns. of \(\mathrm{HgF}, \mathrm{CdF}_{2}, \mathrm{PbF}_{2}\). [220] meas. v.p. of HF over solns. of \(\mathrm{IF}_{5}\). [105, 164] meas. \(\Delta H\) fus. [210] calc. \(\Delta H\) fus. [9] lists \(\Delta H\) fus. [214] gives thermodyn. prop. See \(\mathrm{BF}_{3}\). \\
\hline \multicolumn{3}{|l|}{\(\mathrm{HF}(\mathrm{c}) \mathrm{l}\)} \\
\hline \((\mathrm{HF})_{2}(\mathrm{~g})\) \& \& For the reaction: \(2 \mathrm{HF}(\mathrm{g})=(\mathrm{HF})_{2}(\mathrm{~g})\), [507] reports \(-5<\Delta \mathrm{H}<-7\). See also [206, 207]. \\
\hline \((\mathrm{HF})_{3}(\mathrm{~g})\) \& \& See [206, 207]. \\
\hline \((\mathrm{HF})_{4}(\mathrm{~g})\) \& \& For the reaction: \(4 \mathrm{HF}(\mathrm{g})=(\mathrm{HF})_{4}(\mathrm{~g})\), [215] reports \(\Delta \mathrm{H}=-19\). See also [206, 207]. \\
\hline \((\mathrm{HF})_{6}(\mathrm{~g})\) \& -426.0 [9] \& For the reaction: \(6 \mathrm{HF}(\mathrm{g})=(\mathrm{HF})_{6}(\mathrm{~g})\), [215] reports \(\Delta H=-40\). See also [206, 207]. \\
\hline \(\mathrm{HfF}_{2}(\mathrm{c})\) \& \& [20] est. \(\Delta H f_{298}^{\circ}=-230\). \\
\hline \(\mathrm{HfF}_{3}(\mathrm{c})\) \& \& [20] est. \(\Delta \mathrm{Hf}^{\circ} \mathrm{O} 98 \mathrm{C}=-350\). \\
\hline \(\mathrm{HfF}_{4}\) (c) \& \& See [43] for \(\Delta H f .[12,20]\) est. \(\Delta H^{\circ} \mathrm{O} 988\) \\
\hline \(\mathrm{HgF}(\mathrm{g})\) \& 14 [9] \& [11, 14] list \(D_{0} \cdot[216]\) est. \(\Delta H f_{298}^{\circ}=-15\). Other reviews give for \(\Delta H f_{298}^{\circ}\) : 14 [17, 25]. \\
\hline \(\mathrm{HgF}(\mathrm{c}\)) \& \& See \(\mathrm{Hg}_{2} \mathrm{~F}_{2}(\mathrm{c})\). \\
\hline \(\mathrm{HgF}_{2}(\mathrm{~g})\) \& \& [9] lists \(\Delta H\) sub. \\
\hline \(\mathrm{HgF}_{2}\) (c) \& \& [216] est. \(\Delta H^{(1)}{ }_{298}=-69.5 .[12,15,20]\) est. \(-95 \pm 10\). \\
\hline \[
\begin{aligned}
\& \mathrm{Hg}_{2} \mathrm{~F}_{2}(\mathrm{c}) \\
\& (\mathrm{HgF})_{2}
\end{aligned}
\] \& \& For the reaction: \(\mathrm{TiF}_{4}(\mathrm{~g})+\mathrm{Hg}(\bar{\ell})=\mathrm{HHg}_{2} \mathrm{~F}_{2}(\mathrm{c})+\mathrm{TiF}_{3}(\mathrm{c}),[217]\) meas. \(\Delta H=-24.4\), \(\Delta F=-11.84, \Delta S=-42.1\) e.u. [178] reports \(\Delta F f_{0}^{\circ}=-104.5\). [178] meas. v.p. over \(\mathrm{Hg}_{2} \mathrm{~F}_{2}-\mathrm{HF} .[216]\) est. \(\Delta H \mathrm{H}_{298}^{\circ}=-77\). For \(\frac{1}{2} \mathrm{Hg}_{2} \mathrm{~F}_{2}(\mathrm{c}),[12,15,20]\) est. \(\Delta H f_{298}^{\circ}=\) \(-46.0 \pm 7.0\). \\
\hline \(\mathrm{HoF}_{3}(\mathrm{c})\) \& \& [12] est. \(\Delta H f_{298}^{\circ}=-395 \pm 7\). \\
\hline IF (g) \& \(-30.089^{\text {a }}\) [102] \& [102, \(154,156,157,158]\) report or discuss \(D_{0}\). Other reviews give for \(\Delta H f_{298}^{\circ}\) : -9.59 [25], -22.5 [17]. \\
\hline \multicolumn{3}{|l|}{\(\mathrm{IF}_{3}(\mathrm{~g})\)} \\
\hline \begin{tabular}{l}
IF \(5^{(g)}\) \\
\\
\hline \(\mathrm{F}_{5}(\ell)\)
\end{tabular} \& \[
\begin{array}{r}
-202.6^{a} \pm 1.6 \\
{[102]} \\
-194.6[218] \\
-212.4^{\mathrm{a}} \pm 1.5 \\
{[102]} \\
-204.7[218]
\end{array}
\] \& [218] meas. \(\Delta H\) hydr. [154] est. average bond energy (I-F) in \(\mathrm{IF}_{5}{ }^{\circ}\) [219] calc. \(\Delta H\) vap. [9] lists \(\Delta H\) vap. [155] lists general thermodyn. prop. Other reviews give for \(\Delta H_{298}^{\circ}\) : -195.1 [17], -196 [25]. See \(\mathrm{IF}_{7}(\mathrm{~g})\). [219] meas. v.p. [220] meas. v.p. of \(\mathrm{IF}_{5}-\mathrm{HF}\). [220] meas. \(\Delta H\) fus. [9] lists \(\Delta H\) fus. \\
\hline \multicolumn{3}{|l|}{\(\mathrm{IF}_{5}(\mathrm{c})\)} \\
\hline \(I F_{7}(\mathrm{~g})\)

IF

7 (c) \& $$
\begin{aligned}
-231.7^{a} \pm & 1.8 \\
& {[102] }
\end{aligned}
$$ \& For the reaction: $I F_{7}(g)=I F_{5}(g)+F_{2}(g),[221]$ reports $\Delta H^{\circ}=28.5, \Delta S^{\circ}=43.5$ e.u. [154] est. average bond energy (I-F) in IF_{7}. [9] lists ΔH sub. [155] gives general thermodyn. prop. [25] lists $\Delta H f_{298}^{\circ}=-225.1$.

\hline $\operatorname{InF}(\mathrm{g})$ \& \& [197] meas. $\mathrm{D}_{0} \cdot[14,110]$ list $\mathrm{D}_{0} \cdot[$ [547] calc. binding energy.

\hline InF (c) \& \& $[12,20]$ est. $\Delta H f_{298}^{\circ}=-70 \pm 5$.

\hline $\mathrm{InF} \mathrm{S}_{2}(\mathrm{c})$ \& \& [12] est. $\mathrm{\Delta Hf}_{2}^{\circ}{ }_{298}=-165 \pm 5 .[20]$ est. -160.

\hline $\mathrm{InF}_{3}(\mathrm{c})$ \& \& $[12,20]$ est. $\Delta H f_{298}^{\circ}=-250 \pm 5$.

\hline
\end{tabular}

[^6]| Compound | $\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$ | Remarks |
| :---: | :---: | :---: |
| $\mathrm{IrF}(\mathrm{c})$ | | |
| $\mathrm{IrF} \mathrm{S}_{2}(\mathrm{c})$ | | |
| $\mathrm{IrF}_{3}(\mathrm{c})$ | | [20] est. $\Delta H \mathrm{Hf}_{298}=-140$. |
| $\mathrm{IrF}_{4}(\mathrm{c})$ | | [12] est. $\Delta H^{\prime}{ }_{298}^{\circ}=-175 . \quad$ [20] est. -210. |
| $\mathrm{IrF}_{5}(\mathrm{c})$ | | [20] est. $\Delta 4{ }_{2}{ }_{298}^{\circ}=-200$. |
| $\mathrm{IrF}_{6}(\mathrm{~g})$ | | [222] calc. ΔH vap., ΔH sub. [9] lists ΔH vap. |
| $\mathrm{IrF}_{6}(\mathrm{l})$ | -130 [9] | [222] meas. v.p. and calc. ΔH fus. [12] lists $\Delta H^{\text {f }}{ }_{298}=-130$. |
| $\mathrm{IrF}_{6}(\mathrm{c})$ | | [222] meas. v.p. and calc. ΔH trans. [20] lists $\Delta \mathrm{Hf}_{298}^{\circ}=-130$. |
| KF(g) | | [11, 14] list D_{0}. [19] reviews sub.and dissoc. data. See also [64]. [203] determined bond energy ($\mathrm{K}-\mathrm{F}$). [549] calc. binding energy. [190, 191] calc. ΔH sub. [9] lists ΔH vap. [17] lists $\Delta \mathrm{Hf}_{298}^{\circ}=-77.2$. [25] est. -81. See $\mathrm{K}_{2} \mathrm{~F}_{2}(\mathrm{~g})$. |
| KF (ℓ) | | [140] meas. ΔH fus. [9, 19] list ΔH fus. [541] est. ΔH fus. of mixtures. |
| KF (c) | -134.46 [9] | [194] correlates ΔH for reactions: $\mathrm{KF}+\mathrm{MCl}(\mathrm{M}=\mathrm{Li}, \mathrm{Cs}$, etc.). [195] reviews ΔH soln. [192] meas. ΔH soln. in K. [190, 191] meas. v.p. [544, 613] calc. lattice energy. Other reviews give for ΔH_{298}° : -134.46 [20], $-134.5[12,15,17]$. |

For the reaction: $(\mathrm{KF})_{2}(\mathrm{~g})=2 \mathrm{KF}(\mathrm{g})$, [189] reports $\Delta \mathrm{H}_{1121}{ }_{\mathrm{K}}=52.3$. For the same reaction [190] reports $\Delta \mathrm{H}=47.6$, [191] reports $\Delta \mathbb{E}_{960{ }^{\circ} \mathrm{K}}=45$. See also [512, 543]. [546] calc. energy of dimeriz. [190, 191] calc. $\Delta \mathrm{H}$ sub. [19] reviewa sub. and dissoc. data. See $\mathrm{F}_{2} \mathrm{KRb}, \mathrm{F}_{2} \mathrm{KNa}$.
[189,543] report ion intensity ratios of KF polymers.
$[12,20]$ est. $\Delta H_{298}^{\circ}=-421 \pm 7$. See alao [181].
[11, 14, 33] liat $D_{0} . \quad[203]$ gives bond energy (Li-F). [190, 191, 224, 225, 226, 227, 615] calc. ΔH sub. See also [512, 543] and v.p. meas. on $\operatorname{LiF}(c)$. [19, 32] review sublimation data. [9] lists ΔH vap. Other reviews give for $\Delta H f_{298}$: $-77.2[33],-77.60[21],-78.8 \pm 5[26],-79.3 \pm 3[24,25,28,37],-80.2[17]$. See also $\mathrm{Li}_{2} \mathrm{~F}_{2}(\mathrm{~g}), \mathrm{Li}_{3} \mathrm{~F}_{3}(\mathrm{~g}), \mathrm{Li}_{4}{ }_{4}(\mathrm{~g})$.
$\operatorname{LiF}(\ell)$

LiF (c)
$(\mathrm{LiF})_{2}(\mathrm{~g})$
[230] reviews v.p. $[140,235,236]$ meas. ΔH fus. [9, 19] list ΔH fus. [542] est. ΔH fus. of mixed fluorides.
[622] (see also [119]) meas. ΔH neutralization of $H F(a q)$ and $L i O H(a q)$ and ΔH soln. of LiF(c). [194] correlates ΔH for reactions: LiF + MCl (M=K, Cs, etc.). [232, 233] est. or meas. ΔH aoln. [234] meas. ΔH soln. of MgF_{2} and $\mathrm{Li}_{2} \mathrm{O}$ in Lif. [544, 545, 613] calc. lattice energy. [190, 191, 225, 226, 227, 228, 229, 231, 615] meas. v.p. [38, 233] correlate $\Delta H_{298^{\circ}}^{\circ}$ Other reviews give for $\Delta H f_{298}^{\circ}:-145.10[27],-145.1 \pm 1$ $[24],-145.6 \pm 2[12,20],-145.7 \pm 2[17],-146.3[9,25,33],-146.3 \pm 2[15,26,37]$.

For the reaction: $(\mathrm{LiF})_{2}(\mathrm{~g})=2 \mathrm{LiF}(\mathrm{g})$, [189] reports $\Delta \mathrm{H}_{11210 \mathrm{~K}}=64.4$. For the same reaction, [190] gives $\Delta E_{11270}=58.9 \pm 2.1$; [191] gives $\Delta E_{1060^{\circ} \mathrm{K}}=57.3 \pm 2.7$; [227] gives $\Delta H_{1073}{ }^{\circ}=64.1$; [546] calc. ΔE. See [512]. [191, 226, 231, 512, 543] meas. v.p. [190, 191, 226,.227, 615] calc. ΔH sub. [19, 32, 230] review vap. and sub. data. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}$: -213.5 ± 7 [24, 27], -219.2 [33], $-222.6 \pm 5[25,37],-227.2 \pm 10[26] . \operatorname{See}(\operatorname{LiF}){ }_{3}(\mathrm{~g}), \mathrm{F}_{2} \mathrm{LiNa}(\mathrm{g}), \mathrm{F}_{2} \mathrm{LiRb}(\mathrm{g})$.

Compound	$\Delta H f_{298}^{\circ}(\mathrm{kcal} / \mathrm{mola})$	Remarks
$(\mathrm{LiF})_{3}(\mathrm{~g})$	-345.3 ± 8 [34]	For tha reaction: $(\mathrm{LiF})_{3}(\mathrm{~g})=(\mathrm{LiF})_{2}(\mathrm{~g})+\mathrm{LiF}(\mathrm{g}),[226]$ reports $\Delta H=50.7 \pm 2.6$. For tha same reaction, [190] gives 38.3 ± 2.3; [227, 512] give $50<\Delta H_{1073}<65$. [227, 512] report for the reaction: $(\mathrm{LiF})_{3}(\mathrm{~g})=3 \mathrm{LiF}(\mathrm{g}), 115<\Delta \mathrm{H}_{1073}<130$. [196] calc. binding enargy. [189, 213, 512, 543] obs. spacies abundanca. [190, 226, 615] meas. v.p. and calc. ΔH sub. [230] reviews v.p. data. [19] reviews sub. and dissoc. data. Othar reviaws give for $\Delta \mathrm{Hf}_{298}^{\circ}$: -339.6 ± 10 [26], $-345.3 \pm 8[25,37],-355.5$ [33], -357.6 [27].
$(\mathrm{LiF})_{4}(\mathrm{~g})$		[543] obs. spacies abundance. [33, 34] discuss the stability.
$\mathrm{LuF}_{3}(\mathrm{c})$		[12] est. $\Delta 4 \mathrm{f}_{298}^{\circ}=-392 \pm 7$.
$\mathrm{MgF}(\mathrm{g})$	-20.44 [34]	```[11, 14, 33, 34] list D.0 [547] calc. binding energy. Other reviews give for \DeltaHf(298: -20 [9, 17, 23], -20.4\pm 20 [21, 24], -20.44 [33], -21 \pm 16 [27], -41 \pm 10 [26], -43.2 [25].```
$\mathrm{MgF}_{2}(\mathrm{~g})$	$\begin{array}{r} -178.8 \pm 6[37] \\ -181.2 \pm 2[224, \\ 237] \end{array}$	[224, 237] calc. ΔH sub. [9] lists ΔH vap. [32] reviews vap. data. [610] calc. binding anargy. Other reviaws give for $\Delta H f_{298}^{\circ}:-169.7 \pm 5[26],-175.3 \pm 5$ [24], $-177.0 \pm 4[27],-178.37$ [21], -178.8 ± 6 [36], $-182.8 \pm 6[25,34],-182.9$ [17].
$\mathrm{MgF}_{2}(\mathrm{l})$		[238] calc. ΔH fus. [9] lists ΔH fus. See $\mathrm{F}_{3} \mathrm{MgNa}(\ell)$.
$\mathrm{MbF}_{2}(\mathrm{c})$	$\begin{aligned} & -264 \pm 4[37] \\ & -268 \pm 1.8[115] \end{aligned}$	For the reaction: $\mathrm{PbF}_{2}+\mathrm{Mg}=\mathrm{Pb}+\mathrm{MgF}_{2}$, [115] meas. $\Delta \mathrm{H}$. [234] meas, anergy of soln. of MgF_{2} in LiF. [224, 237, 238] meas. v.p. [138, 545] correlate $\Delta H f_{298^{\circ}}^{\circ}$ Other revieus giva for $\Delta H f_{298}^{\circ}:-262.6 \pm 3.2$ [27], -263 ± 1 [12], -263.5 [9, 20, 33], $-263.5 \pm 2[21,24],-263.5 \pm 5[26],-264.0 \pm 4[36],-266.0 \pm 2[15]$, -268.0 [17, 25, 34].
$\mathrm{MnF}(\mathrm{g})$		[11, 14] list D_{0}.
$\mathrm{MnF}_{2}(\mathrm{c})$	-189 [9]	[239] meas. ΔH soln. Other reviaus give for $\Delta H f_{298}^{\circ}:-190 \pm 6[15],-190 \pm 5$ $[12,17,20]$.
$\mathrm{MnF}_{3}(\mathrm{c})$		[12, 20] est. $\Delta H f_{298}^{\circ}=-238 \pm 5$. [15] gives -238 ± 7.
$\mathrm{MnF}_{4}(\mathrm{c})$		[12, 20] est. $\Delta H f_{298}^{\circ}=-230 \pm 7$.
$\mathrm{MoF}_{2}(\mathrm{c})$		
$\mathrm{MoF}_{3}(\mathrm{c})$		
$\mathrm{MoF}_{4}(\mathrm{c})$		[20] est. $\Delta H \mathrm{f}_{298}^{\circ} \mathrm{O}=-256$.
$\mathrm{MoF}_{5}(\mathrm{~g})$		[240] calc. ΔH vap.
$\mathrm{MoF}_{5}(\mathrm{l})$		[240] meas. v.p.
$\mathrm{MoF}_{5}(\mathrm{c})$		[20] est. $\Delta 4 \mathrm{f}_{298}^{\circ} \mathrm{O}=-335$.
$\mathrm{MoF}_{6}(\mathrm{~g})$	$\begin{array}{r} -382[17] \\ -372.35 \pm 0.22 \\ {[241]} \end{array}$	[241] meas. ΔH of direct combination of the elaments. See [43]. [222] calc. ΔH vap. and ΔH sub. [242] est. ΔH vap. [9] lists ΔH vap. and ΔH sub.
$\mathrm{MoF}_{6}(\ell)$ $\mathrm{MoF}_{6}(\mathrm{c})$	-388.6 [405]	[405] meas. $\Delta H f_{298}^{\circ}$ by soln. calorimetry. [242] meas. ΔH fus. [222] meas. v.p. and calc. ΔH fus. [9] lists ΔH fus. [15, 20] ast. $\Delta H f_{298}^{\circ}=-405$. [242] meas. ΔH trans. [222] meas. v.p. and calc. ΔH trans.
$\mathrm{MO}_{2} \mathrm{~F}_{9}(\mathrm{c})$		
$\mathrm{NF}(\mathrm{g})$		$\begin{aligned} & {[24,27] \text { ast. } \Delta H f_{298}^{\circ}=58.6 \pm 10 \cdot[243] \text { ast. } 62.4 \pm 4 \cdot 2 \cdot[25] \text { est. } 63 . \operatorname{See} \mathbb{N F}_{2}(g),} \\ & \mathrm{NF}_{3}(\mathrm{~g}) . \end{aligned}$
$\mathrm{NF}_{2}(\mathrm{~g})$	$\begin{aligned} & 8.9[214,550] \\ & 9.8[243] \end{aligned}$	From studias of tha aquilibrium: $N_{2} F_{4}=2 \mathrm{NF}_{2},[244,550]$ calc. $\Delta H=19.8 \pm 0.8$. [243] finds 21.5. [25] est. $\Delta H \mathrm{Hf}_{\mathrm{O}}^{\mathrm{O}}=17$. Sea $_{2} \mathrm{~N}_{4}(\mathrm{~g})$.

table 2. binary fluorides (continued)

Compound	$\Delta H \mathrm{f}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mola})$	Remarks
$\mathrm{NF}_{3}(\mathrm{~g})$	$\begin{aligned} & -27.2[9] \\ & -29.7 \pm 1.8[47] \end{aligned}$	For the reactions: $\mathrm{NF}_{3}(\mathrm{~g})+4 \mathrm{NH}_{3}(\mathrm{~g})=3 \mathrm{NH}_{4} \mathrm{~F}(\mathrm{c})+\mathrm{N}_{2}(\mathrm{~g})$, and $\mathrm{NF}_{3}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})=$ $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{FF}(\mathrm{aq}),[47]$ meas. $\Delta \mathrm{H}=-259.5 \pm 1.0$ and -205.3 ± 3.2 respectively. [243, 551] discuss dissoc. by alectron impact and give bond energies. [246] meas. ΔH vap. [245] calc. ΔH vap. [9] lists ΔH vap. Other reviews give for $\Delta H f_{298}^{\circ}$: $-26[12],-27.2[22],-29[25],-29.7 \pm 1.8[27,28]$.
$\mathrm{NF}_{3}(\mathrm{c})$		[246] meas. ΔH trans.
$\mathrm{N}_{2} \mathrm{~F}_{2}(\mathrm{~g}$, trana $)$	$\begin{aligned} & 19.4 \pm 1.3 \text { [24.7] } \\ & 219 \pm 20[243] \end{aligned}$	For the reaction: $\mathrm{N}_{2} \mathrm{~F}_{2}(\mathrm{~g})+8 / 3 \mathrm{NH}_{3}(\mathrm{~g})=2 \mathrm{NH}_{4} \mathrm{~F}(\mathrm{c})+4 / 3 \mathrm{~N}_{2}(\mathrm{~g})$, [247] meas. $\Delta H=-211.7 \pm 0.2$. [243] meas. dissoc. by electron impact and gives $D(F N=N F)$. [248] meas. equil. (active $=$ trans) and calc. $\Delta H=27.5 . \quad$ [247] recalc. ΔH to be 2.1. [248] calc. ΔH vap.
$\mathrm{N}_{2} \mathrm{~F}_{2}(\ell$, trans $)$		[248] meas. v.p.
$\mathrm{N}_{2} \mathrm{~F}_{2}(\mathrm{~g}, \text { active })^{\mathrm{b}}$	$\begin{aligned} & 16.4 \pm 1.2[247] \\ & 219 \pm 20[243] \end{aligned}$	See $\mathrm{N}_{2} \mathrm{~F}_{2}\left(\mathrm{~g}\right.$, trans). For the same reaction with $\mathrm{NH}_{3}(\mathrm{~g})$, [247] meas. $\Delta \mathrm{H}=-209 \pm 0.02$. [243] meas. dissoc. by elactron impact. [248] calc. ΔH vap.
$\mathrm{N}_{2} \mathrm{~F}_{2}(\mathrm{l}, \text { activa })^{\mathrm{b}}$		[248] meas. v.p.
$\mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g})$	$-2.0 \pm 2.5[250]$	For the reaction: $\mathrm{N}_{2} \mathrm{~F}_{4}(\mathrm{~g})+16 / 3 \mathrm{NH}_{3}(\mathrm{~g})=4 \mathrm{NH}_{4} \mathrm{~F}(\mathrm{c})+5 / 3 \mathrm{~N}_{2}(\mathrm{~g})$, [250] meas. $\Delta H=-383.1 \pm 0.2$. $[243,244,249,552]$ meas. $\mathrm{F}_{2} \mathrm{~N}-\mathrm{NF}_{2}$ bond dissoc. energy. [251] calc. $\Delta \mathrm{H}$ vap.
$\mathrm{N}_{2} \mathrm{~F}_{4}{ }^{(l)}$		[251] meas. v.p.
$\mathrm{N}_{3} \mathrm{~F}(\mathrm{~g})$		
$\mathrm{NaF}(\mathrm{g})$	-69.2 [17]	[11, 14] list $D_{0} \cdot[203]$ reports D_{0}. Sae also [64]. [190, 191, 227, 253, 512] calc. ΔH sub. [121, 144, 253] calc. ΔH vap. [9] lists ΔH vap. and ΔH sub. [19] reviews sub. and dissoc. data. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}$: -67.00 [21, 27], -68.7 [25], $-68.9 \pm 2[26],-72[9] . \operatorname{See}\left(\mathrm{NaF}_{2}(\mathrm{~g}),(\mathrm{NaF})_{3}(\mathrm{~g}),(\mathrm{NaF})_{4}(\mathrm{~g}), \mathrm{BeF}_{3} \mathrm{Na}(\mathrm{g})\right.$.
$\mathrm{NaF}(\ell)$		[608] calc. $\Delta \mathrm{F}$ hydr. [121, 144, 253] meas. v.p. [124, 553] meas. ΔH fus. [254, 255] calc. ΔH fus. $[9,19]$ list ΔH fus. See $\mathrm{AlF}_{6} \mathrm{Na}_{3}(\ell), \mathrm{F}_{3} \mathrm{MgNa}(\ell)$.
NaF (c)	$\begin{aligned} & -136.0[9] \\ & -136.3[256] \end{aligned}$	[259] gives ΔH for the reaction: $3 \mathrm{NaF}+2 \mathrm{Al}_{2} \mathrm{O}_{3}=3 \mathrm{NaAlO}_{2}+\mathrm{AlF}_{3}$. [194, 257] correlate ΔH for exchange reactions: $N a F+M X$. [256] meas. ΔH soln. in $\mathrm{HCl}(\mathrm{aq})$. [258] meas. $\Delta \mathrm{H}$ soln. in water \& HClO_{4} (aq). [212] meas. $\Delta \mathrm{H}$ soln. in $\mathrm{HF}(\ell)$. [192] meas. ΔH soln. in Na . [195] correlates ΔH soln. and hydration. [514] meas. e.m.f. of Al-NaF electrode. [544, 613] calc. lattice energy. [190, 191, 227, 253, 512] meas. v.p. $[38,138,545]$ correlate $\Delta H^{2}{ }_{298}^{\circ}$. Other reviows give for $\Delta H f_{298}^{\circ}$: $-136.0[20],-136.0 \pm 0.2[12],-136.17 \pm 0.3$ [175], -136.3 [17, 21, 25, 26, 27], -136.5 ± 0.5 [15]. See $\mathrm{NaF}(\mathrm{aq}), \mathrm{F}_{2} \mathrm{HNa}(\mathrm{c}), \mathrm{F}_{9} \mathrm{Na}_{3} \mathrm{O}(\mathrm{c}), \mathrm{SiF}_{4}(\mathrm{~g})$.
$(\mathrm{NaF})_{2}(\mathrm{~g})$	-197.5 ± 4 [26]	For the reaction: $\left(\mathrm{NaF}_{2}(\mathrm{~g})=2 \mathrm{NaF}(\mathrm{g})\right.$, [190] reports $\Delta \mathrm{H}_{1170{ }^{\circ} \mathrm{K}}=54.3$; [191] gives $\Delta E_{1098}{ }^{\circ}=52 ;$ [227] gives $\Delta H_{1121}{ }^{\circ} \mathrm{K}=62.0$; [252] gives $\Delta E_{11460 \mathrm{~K}}=42.9$. See also [512, 554]. [512] compares ΔH dissoc. of $\mathrm{Na}_{2} \mathrm{~F}_{2}, \mathrm{Li}_{2} \mathrm{~F}_{2}, \mathrm{~K}_{2} \mathrm{~F}_{2}$. [546] calc. dissoc. energy. [19] reviews dissoc. and sub. date. [189, 190, 191, 227, 252, 512, 543, 554] meas. v.p. or obs. species abundance in vapor. [190, 191, 227, 512] calc. ΔH sub. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}$: -197.5 [25]. See (NaF$)_{3}(\mathrm{~g}), \mathrm{F}_{2} \mathrm{LiNa}(\mathrm{g})$, $\mathrm{F}_{2} \mathrm{KNa}(\mathrm{g})$.
$(\mathrm{NaF})_{3}(\mathrm{~g})$		For the reaction: $(\mathrm{NaF})_{3}(\mathrm{~g})=(\mathrm{NaF})_{2}(\mathrm{~g})+\mathrm{NaF}(\mathrm{g}),[252,554]$ report $\Delta E=86.5$. [196] calc. binding energy. [189, 512, 543] obs. species abundance in vapor.
$(\mathrm{NaF})_{4}(\mathrm{~g})$		[543] obs. species abundance in vapor.
$\mathrm{NbF}_{5}(\mathrm{~g})$		[260] calc. ΔH sub. [260,261] calc. ΔH vap. [9] lists ΔH vap.

TABLE 2 - BINARY FLUORIDES (continued)

Compound	$\Delta H_{298}(\mathrm{kcal} / \mathrm{mole}$	Remarks
$\begin{aligned} & \mathrm{NbF}_{5}(\ell) \\ & \mathrm{NbF}_{5}(\mathrm{c}) \end{aligned}$	-432 [405]	[260, 261] meas. v.p. [242] meas. ΔH fus. [260] calc. ΔH fus. [405] meas. $\Delta H f_{298}^{\circ}$ and reports $\Delta F f_{298}^{\circ}=-405$. [260, 261] meas. v.p. [20] est. $\Delta H f_{298}^{\circ}=-342$.
$\mathrm{NdF}_{3}(\mathrm{c})$		$[12,20]$ est. $\Delta H \mathrm{f}_{298}=-410 \pm 7$.
$\mathrm{NiF}_{2}(\mathrm{~g})$		[262] calc. ΔH sub., ΔS vap.
NiF $\mathrm{NiF}_{2}(\mathrm{c})$	-159.5 [9]	```For the reaction: NiF (c) + + H2 (g) = Ni(c) + 2HF(g), [263] meas. }\mp@subsup{\textrm{HH}}{298}{\prime}=30.06 For the reaction: NiCl (c) + 2HF(g) = NiF (c) + 2HCl(g), [264] meas. }\Delta\textrm{F}. [262] meas v.p. Other reviews give for \Hfiog: -156\pm2 [17], -158 [12, 15, 20].```
$\mathrm{NPF}_{3}(\mathrm{c})$		[9, 15, 20] est. $\Delta 4 \mathrm{f}_{298}^{\circ}=-360 \pm 8$. [555] est. -360 ± 2.
$\mathrm{NpF}_{4}(\mathrm{c})$		[9, 20] est. $\Delta 4 \mathrm{f}_{298}^{\circ}=-428 . \quad$ [555] est. -428 ± 3.
$\mathrm{NPF}_{5}(\mathrm{c}, \mathrm{a})$		[20] est. $\Delta_{H} \mathrm{f}_{298}=-467$. [555] est. -467 ± 3.
$\mathrm{NPF}_{6}(\mathrm{~g})$		[265] calc. ΔH sub. and ΔH vap. See v.p. studies for $N_{p F} 6(l, c)$. [555] est. $\Delta H \hat{f}_{298}=-463 \pm 3$.
$\mathrm{NPF}_{6}(\mathrm{l})$		[265,267$]$ meas. v.p. [265, 266] calc. ΔH fus.
$\mathrm{NPF}_{6}(\mathrm{c})$		[265, 266, 267] meas. V.P. [20] est. $\Delta H^{\circ} \mathrm{O} \mathrm{V}_{98}=-472$.
OF (g)		$\begin{aligned} & \text { [14] lists } D_{0} \cdot[80,268,556] \text { est. } D_{0} \cdot[25] \text { est. } \Delta H f_{298}^{\circ}=26.6 .[24,27] \text { est. } \\ & 32.4 \pm 10 . \end{aligned}$
$\mathrm{OF}_{2}(\mathrm{~g})$ $\mathrm{OF}_{2}(\mathrm{l})$	$+7.6 \pm 2$ [102]	[76, 80, 268, 557] give dissoc. energy. [9] lists ΔH vap. [75] gives thermodyn. prop. Other reviews give for $\Delta H f_{298}^{\circ}$: $5.5[9,24], 7 \pm 2[12], 7.6 \pm 2[25,28]$. [270] meas. V.p.
$\mathrm{OF}_{4}(\mathrm{~g})$		
$\mathrm{O}_{2}{ }^{(\mathrm{g}}$)		For the reaction: $\mathrm{FO}_{2}(\mathrm{~g})=\mathrm{F}(\mathrm{g})+20(\mathrm{~g}),[271]$ est. $\Delta H_{298}<100$.
$\mathrm{O}_{2} \mathrm{~F}_{2}(\mathrm{~g})$	$+4.73 \pm 0.3$ [273]	[272] est. ΔH vap. and calc. $\Delta H \mathrm{f}_{298}^{\circ}=4.65$. [1] discusses dissoc. energy. [558] lists $\Delta H f^{\circ}=16.0$.
$\mathrm{O}_{2} \mathrm{~F}_{2}(\ell)$		For the reaction: $0_{2} \mathrm{~F}_{2}(\ell)=\mathrm{O}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}),[273]$ meas. ΔE.
$\mathrm{O}_{3} \mathrm{~F}_{2}(\mathrm{~g})$	$\begin{aligned} +6.24 \pm & 0.75 \\ & {[273] } \end{aligned}$	[272] est. ΔH vap. and calc. $\Delta H f_{298}^{\circ}=+6.18 . \quad$ [558] est. $\Delta H f_{298}^{\circ}=-24.1$.
$\mathrm{O}_{3} \mathrm{~F}_{2}(\ell)$		For the reaction: $0_{3} \mathrm{~F}_{2}(\ell)=\mathrm{O}_{2} \mathrm{~F}_{2}(\ell)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}),[273]$ meas. $\Delta \mathrm{E}$.
$\mathrm{O}_{4} \mathrm{~F}_{2}(\mathrm{~g})$		
$\mathrm{O}_{4} \mathrm{~F}_{2}(\ell)$		[274] meas. v.p.
$\mathrm{O}_{5} \mathrm{~F}_{2}(\mathrm{~g})$		[558] est. $\Delta H f_{298}^{\circ} \mathrm{O}=-53.6$.
$\mathrm{O}_{6} \mathrm{~F}_{2}(\mathrm{~g})$		
$\mathrm{OSF}_{2}(\mathrm{c})$		[20] est. UHf $_{298}=-100$.
$\mathrm{OSF}_{3}(\mathrm{c})$		[20] est. $\Delta 4 f_{298}^{\circ}=-150$.
$\mathrm{OSF}_{4}(\mathrm{c})$		
$\mathrm{OSF}_{5}(\mathrm{~g})$		[240] calc. $\triangle \mathrm{H}$ vap.
$\mathrm{OSF}_{5}(\mathrm{l})$		[24,0] meas. v.p.
$0_{0-5 F_{6}(\mathrm{~g})}$		[222] calc. ΔH vap. and ΔH sub.
$0 \mathrm{sF}_{6}(\ell)$		[222] meas. v.p. and calc. ΔH fus.

Compound	$\Delta H f_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{OSF}_{6}(\mathrm{c})$		[222] meas. $\mathrm{\nabla} . \mathrm{P}$. and calc. ΔH trans. [12, 20] est. $\Delta H \mathrm{f}_{298}=\mathbf{- 2 2 5}$.
$\mathrm{OsF}_{8}(\mathrm{~g})$		[9] lists ΔH vap.
$\mathrm{OsF}_{8}(\ell)$ ($)$ (${ }^{\text {c }}$		
$\mathrm{OSF}_{8}(\mathrm{c})$		[12] est. $\Delta 4 \mathrm{f}_{298}=-240$. [20] est. -300.
PF (g)		[275] calc. $\mathrm{D}(\mathrm{P}-\mathrm{F}) . \mathrm{C} 5,26,27]$ est. $\Delta H \mathrm{f}_{298}^{\circ}=-17 \pm 15$.
$\mathrm{PF}_{2}(\mathrm{~g})$		[26, 27] est. $\Delta H f_{298}=-109 \pm 15 .[25]$ est. -120.
$\mathrm{PF}_{3}(\mathrm{~g})$		[10] lists ΔH soln. in $\mathbb{K O H}(\mathrm{aq})$. [26] calc. $\Delta H f_{298}=-220.7 \pm 10$, based on corrected soln. data reported in [10]. [275, 566] est. (P-F) bond energy. [2] lists v.p. studies. [9] lists ΔH vap. [20] est. $\Delta H f_{298}=-170$. [4] est. -189 . [25, 27] list -220.7 ± 10.
$\mathrm{PF}_{3}(\ell)$		
$\mathrm{PF}_{5}(\mathrm{~g})$	$-381.4 \pm 0.4[40]$	[40] meas. ΔH for direct combination of the elements. [276] meas. $\Delta H f_{298}^{\circ}$ [9] lists ΔH sub. and ΔH vap. [25] est. $\Delta H f_{298}^{\circ}=-420$. [38] est. -315 .
$\mathrm{PF}_{5}(\mathrm{l})$		[9] lists $\triangle H$ fus.

Compound	$\mathrm{AHf}_{298}(\mathrm{kcsl} / \mathrm{mole})$	Remarks
$\mathrm{PaF}_{3}(\mathrm{c})$		
$\mathrm{PaF}_{4}(\mathrm{c})$		[106] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-477$ from consideration of the high temp. reaction: $\mathrm{PaF}_{4}(\mathrm{c})+2 \mathrm{Ba}(\mathrm{g})=\mathrm{Pa}(\mathrm{c})+2 \mathrm{BaF}_{2}(\mathrm{~g}) . \quad[277]$ gives chem. properties.
$\mathrm{PaF}_{5}(\mathrm{c})$		
$\mathrm{PbF}(\mathrm{g})$		
$\mathrm{PbF}_{2}(\mathrm{~g})$		[280] calc. ΔH sub. [9] lists ΔH vap.
$\mathrm{PbF}_{2}(\mathrm{l})$		[281] meas. ΔH fus. [9] lists ΔH fus.
$\mathrm{PbF}_{2}(\mathrm{c})$	-158.9 [9]	$[115,119]$ meas. ΔH for reaction: $3 / 2 \mathrm{PbF}_{2}(\mathrm{c})+\mathrm{Al}(\mathrm{c})=\mathrm{AlF}_{3}(\mathrm{c})+3 / 2 \mathrm{~Pb}(\mathrm{c})$. [115] meas. ΔH for the reaction: $\mathrm{PbF}_{2}(\mathrm{c})+\mathrm{Mg}(\mathrm{c})=\mathrm{MgF}_{2}(\mathrm{c})+\mathrm{Pb}(\mathrm{c})$. [116] (see also [118]) meas. ΔH for the reaction: $3 / 2 \mathrm{PbF}_{2}(\mathrm{c})+\mathrm{Al}(\mathrm{c})+3 \mathrm{NaF}(\mathrm{c})=$ $3 / 2 \mathrm{~Pb}(\mathrm{c})+\mathrm{Na}_{3} \mathrm{AlF}_{6}(\mathrm{c}) .[178]$ reports $\Delta \mathrm{Ff}=-149.3$. [282] studied thermodyn. properties and obs. transition. [280] meas. v.p. [178] meas. v.p. of system: $\mathrm{PbF}_{2}-\mathrm{HF}$. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}$: -158 ± 2 [12], -158.5 [20], -158.5 ± 0.8 [15]. See C1FPb(c).
$\mathrm{PbF}_{3}(\mathrm{c})$		
$\mathrm{PbF}_{4}(\mathrm{c}$)	-222.3 [9]	Other reviews give for $\Delta 4 \mathrm{f}^{\circ} \mathrm{O} 98:-222 \pm 2[12,20],-222.3 \pm 2.5$ [15].
$\mathrm{PdF}_{2}(\mathrm{c}$)		
$\mathrm{PaF}_{3}(\mathrm{c})$		$[12,20]$ est. $\Delta H f_{298}^{\circ}=-122 \pm 20$.
$\mathrm{PmF}_{3}(\mathrm{c})$		[12] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-408 \pm 7$.
$\mathrm{PrF}_{3}(\mathrm{c})$		For the reaction: $\operatorname{PrF}_{3}(\mathrm{c})+1 / 2 \mathrm{~F}_{2}(\mathrm{~g})=\mathrm{PrF}_{4}(\mathrm{c}),[283]$ est. $\Delta F=-72 \pm 24$. $[12,20]$ est. $\Delta H f_{298}^{\circ}=-413 \pm 7$.
$\mathrm{PrF}_{4}(\mathrm{c})$		[283] est. $\Delta \mathrm{Sf}_{298}^{\circ} \mathrm{C}=-454 \pm 21$. See $\mathrm{PrF}_{3}(\mathrm{c})$.
PtF(c)		
$\mathrm{PtF}_{2}(\mathrm{c})$		[20] est. $\Delta H^{\circ} \mathrm{O}{ }_{298}=-82$.
$\mathrm{PtF}_{3}(\mathrm{c})$		[20] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-135$.
$\mathrm{PtF}_{4}(\mathrm{c})$		[20] est. $\mathrm{\Delta Hf}_{298}^{\circ} \mathrm{O}=-190$.
$\mathrm{PtF}_{5}(\mathrm{c})$		
$\mathrm{PtF}_{6}(\mathrm{c})$		[284] meas. v.p.
$\mathrm{PuF}_{3}(\mathrm{~g})$		[128, 286, 287, 560] calc. ΔH sub. See v.p. studies on PuF $_{3}(c) .[286,560]$ calc. ΔH vap. [9] lists ΔH sub. and ΔH vap. [106] compares ΔS sub. with that of $A m F_{3}$.
$\mathrm{PuF}_{3}(\ell)$		[289, 561, 571] meas. $\Delta F f_{15730 \mathrm{~K}}=93$. [286, 560] meas. v.p. and calc. ΔH fus. See $\mathrm{UF}_{3}(\mathrm{c}), \mathrm{UF}_{4}(\ell)$.
$\mathrm{PuF}_{3}(\mathrm{c})$	$\begin{aligned} & -375.0 \pm 3[15] \\ & -375[288] \end{aligned}$	[288] reports $\Delta \mathrm{H}$ pptn. of PuF_{3}. [290, 291] studied the equilibrium: $3 \mathrm{PuF}_{4}+\mathrm{PuO}_{2}=$ $4 \mathrm{PuF}_{3}+\mathrm{O}_{2}$. For this reaction [290] reports $\Delta \mathrm{F}_{2980 \mathrm{~K}}=14.8$ and $\Delta \mathrm{F}_{10000^{\circ} \mathrm{K}}=10.6$. $[126,127,128,286,287,560]$ meas. $v . p .[20]$ lists $\Delta \mathrm{Hff}_{298}^{\circ}=-374.6$. See PuF ${ }_{4}(\mathrm{c})$.
$\begin{aligned} & \mathrm{PuF}_{4}(\mathrm{~g}) \\ & \mathrm{PuF}_{4}(\ell) \end{aligned}$		[562] lists ΔH sub. and ΔH vap. See also [563].
$\mathrm{PuF}_{4}(\mathrm{c})$		For the reaction: $3 \mathrm{PuF}_{4}+\mathrm{PuO}_{2}=4 \mathrm{PuF}_{3}+\mathrm{O}_{2}$, [290] meas. $\Delta \mathrm{F}_{2980 \mathrm{~K}}=14.8$, $\Delta F_{10000^{\circ} \mathrm{K}}=10.6$ and calc. $\Delta F \mathrm{I}_{2980^{\circ} \mathrm{K}}=400, \Delta F \mathrm{P}_{1000^{\circ} \mathrm{K}}=354$. On this basis, [106] reports $\Delta \mathrm{HfO}^{\circ}{ }_{298}=-400$. [291] discusses relative stabilities of $\mathrm{PuF}_{3}, \mathrm{PuF}_{4}, \mathrm{PuF}_{5}{ }^{\circ}$ [148, 506] meas. v.p. [562] lists $\Delta H f_{298}^{\circ}=-424$ 土4. (See also [563]). [20] lists -424. See $\mathrm{PuF}_{5}(\mathrm{c}), \mathrm{PuF}_{6}(\mathrm{~g})$.

Compound	$\Delta_{4} \mathrm{~F}_{298}$ (kcal/mole)	Remarks
$\begin{aligned} & \operatorname{PuF}_{5}(\mathrm{~g}) \\ & \operatorname{PuF}_{5}(\mathrm{c}) \end{aligned}$		[552] 1ists $\Delta 4 f_{298}^{\circ}=-453 \pm 5$ (est.). See [563]. [291] discusses relative stabilities of $\mathrm{PuF}_{3}(\mathrm{c}), \mathrm{PuF}_{4}(\mathrm{c})$, and $\mathrm{PuF}_{5}(\mathrm{c})$.
$\begin{aligned} & \operatorname{PuF}_{6}(\mathrm{~g}) \\ & \operatorname{PuF}_{6}(\mathrm{l}) \\ & \operatorname{PuF}_{6}(\mathrm{c}) \end{aligned}$		For the reactiont $\mathrm{PuF}_{4}(\mathrm{c})+\mathrm{F}_{2}(\mathrm{~g})=\mathrm{PuF}_{6}(\mathrm{~g}),[292]$ meas. $\Delta H=6.09$, [294] meas. 8.3. [265, 293] calc. ΔH sub. and ΔH vap. See v.p. studies for PuF $_{6}(c)$. [265, 293] meas. v.p. [265, 266, 293] calc. $\Delta 4$ fus. [265, 293, 295] meas. v.p.
$\mathrm{Pu}_{4} \mathrm{~F}_{17}(\mathrm{c})$		
$\mathrm{RaF}_{2}(\mathrm{c})$		
$\mathrm{RbF}(\mathrm{g})$ $\mathrm{RbF}(\ell)$	-77.7 [17]	[11, 14] list $D_{0} .[55,64]$ report dissoc. energy. [190, 191] give species abundance and calc. $\Delta \mathrm{H}$ sub. See v.p. studies for RbF(c). [9] lists $\Delta \mathrm{H}$ vap. See v.p. studies for RbF (ℓ). [25] est. $\Delta H f_{298}^{\circ}=-87$. See (RbF$)_{2}, \mathrm{~F}_{9} \mathrm{RbZr}_{2}$, $\mathrm{F}_{6} \mathrm{Rb}_{2} \mathrm{Zr}$. [228, 229] meas. v.p. [193, 296] meas. ΔH fus. [9, 19] list ΔH fus.
$\mathrm{rbF}(\mathrm{c})$	-131.28 [9]	[194] correlates ΔH for the exchange reactions: $\mathrm{RbF}(\mathrm{c})+\mathrm{MCl}(\mathrm{c})(\mathrm{M}=\mathrm{Li}, \mathrm{K}, \mathrm{Na}, \mathrm{Cs})$. [195] reviews heats of solution and hydration. [544, 613] calc. lattice energy. [190, 191, 228, 229] meas. v.p. [545] correlates $\Delta 4 f$. Other reviews give for А $\mathrm{Hf}_{298}^{\circ}:-131.3 \pm 2[15],-133.2[12,20]$.
$\mathrm{RbF}_{3}(\mathrm{c})$		
$(\mathrm{RbF})_{2}(\mathrm{~g})$		For the reaction: $(\mathrm{RbF})_{2}(\mathrm{~g})=2 \mathrm{RbF}(\mathrm{g}),[190]$ calc. $\Delta \mathrm{H}_{951^{\circ} \mathrm{K}}=42.0 \pm 6 ;[189,512]$ calc. $\Delta H_{1121^{\circ} \mathrm{K}}=48.3 \pm 3.0 ;[546]$ calc. ΔH. [512] compares dimerization energy of RbF with those of KP, CsF, Lif. [19] reviews dissoc. and sub. data. [190] calc. $\Delta \mathrm{H}$ sub.
$(\mathrm{RbF})_{3}{ }^{(\mathrm{g})}$		[189] meas. species abundance.
$\mathrm{ReF}_{3}(\mathrm{c})$		[20] est. $\Delta 4 f_{298}^{\circ}=-170$.
$\mathrm{ReF}_{4}(\mathrm{c})$		[12] est. $\mathrm{\Delta Hf}_{298}<-186 .[20]$ est. -220.
$\mathrm{ReF}_{5}(\mathrm{~g})$		[240] calc. $\Delta \mathrm{H}$ vap.
$\mathrm{ReF}_{5}\left({ }^{(l)}\right.$		[240] meas. v.p.
$\mathrm{ReF}_{5}(\mathrm{c})$		$[12,20]$ est. $\Delta 4 f_{298}=-225 \pm 15$.
$\mathrm{ReF}_{6}(\mathrm{~g})$	-273 [9]	[222] calc. ΔH sub. and ΔH vap. See v.p. studies for ReF ${ }_{6}(\mathrm{c})$. [9] lists ΔH vap. [17] lists $\Delta H f_{298}^{\circ}=-273$. See ReF $\mathrm{F}_{7}(\mathrm{~g})$.
$\mathrm{ReF}_{6}(2)$	-278 ± 3 [12]	[222, 297] meas. v.p. [222] calc. ΔH fus. [9] 1ists ΔH fus. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}$: -278 ± 12 [15], -278 [20].
$\mathrm{ReF}_{6}(\mathrm{c})$		[222, 297$]$ meas. v.p. [222] calc. $\Delta \mathrm{H}$ trans.
$\mathrm{ReF}_{7}(\mathrm{~g})$		[297] discusses the reactions: $\operatorname{ReF}_{6}(\mathrm{~g})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})=\mathrm{ReF}_{7}(\mathrm{~g})$, and $6 \mathrm{ReF}_{7}(\mathrm{~g})+$ $\operatorname{Re}(\mathrm{c})=7 \mathrm{ReF}_{6}(\mathrm{~g})$.
$\mathrm{ReF}_{7}(\mathrm{c})$		[297] meas. v.p.
$\mathrm{PhF}(\mathrm{c})$		
$\mathrm{RhF}_{2}(\mathrm{c})$		[12] est. $\Delta 4 f_{298}=-110 \pm 10 .[20]$ est. -117.
$\mathrm{RhF}_{3}(\mathrm{c})$		[12] est. $\Delta 4 f_{298}^{\circ}=-160 \pm 20 .[20]$ est. -175.
$\mathrm{RhF}_{4}(\mathrm{c})$		
$\mathrm{RhF}_{5}(\mathrm{c})$		

Compound	$\mathrm{UHf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{RuF}_{3}(\mathrm{c})$		[20] est. $\mathrm{UHf}_{298}^{\circ}=-180$.
RuF_{4} (c)		[20] est. $\Delta 4 f_{298}^{\circ}=-230$.
RuF_{5} (c)		[20] est. $\Delta 4 f_{298}^{\circ}=-300$.
RuF_{6} (c)		
$\mathrm{RuF}_{8}(\mathrm{c})$		
SF (g)		[25,26] est. $\mathrm{UHf}_{298}^{\circ}=-1 \pm 10$. See also [300].
$\mathrm{SF}_{2}(\mathrm{~g})$		[25, 26] est. $\Delta 4 \mathrm{f}_{298}^{\circ}=-68 \pm 10$. See also [300].
$\mathrm{SF}_{4}(\mathrm{~g})$	$-171.7 \pm 2.5[298]$	[298] meas. ΔH of the reaction with H_{2}. [299] calc. ΔH vap. [9] lists ΔH vap. See v.p. studies on $\mathrm{SF}_{4}(\mathrm{l}) .[25]$ est. $\Delta \mathrm{Hf}_{298}^{\circ}=-156$. See also [300].
$\mathrm{SF}_{4}{ }^{(l)}$		[299, 564] meas. v.p.
$\mathrm{SF}_{5}(\mathrm{~g})$		For the reaction: $\mathrm{SF}_{6}(\mathrm{~g})+\mathrm{Na}(\mathrm{g})=\mathrm{SF}_{5}(\mathrm{~g})+\mathrm{NaF}(\mathrm{g}),[300]$ states $\Delta \mathrm{H} \tilde{=}-37$.
$\mathrm{SF}_{6}(\mathrm{~g})$	$\begin{aligned} & -262[9] \\ & -288.5 \pm 0.7[568] \end{aligned}$	[568] meas. ΔH of the direct combination of the elements. See also [39, 301]. [9] lists ΔH sub. and ΔH vap. See v.p. studies on $\mathrm{SF}_{6}(l)$. Other reviews give for $\Delta H f_{298}^{\circ}:-262[22,25],-262.0 \pm 0.4[15],-277.5[12],-288.5$ [27], -289 [17].
$\mathrm{SF}_{6}(\ell)$		[303, 304, 305] meas. v.p. [9] lists ΔH fus.
$\mathrm{SF}_{6}(\mathrm{c})$		[9] lists ΔH trans.
$\mathrm{S}_{2} \mathrm{~F}_{2}(\mathrm{~g})$		[25, 26] est. $\Delta^{4} \mathrm{f}_{298}^{\circ}=-63 \pm 10$.
$\mathrm{S}_{2} \mathrm{~F}_{10}(\mathrm{~g})$	-485 [12]	[9] lists ΔH vap.
$\mathrm{S}_{2} \mathrm{~F}_{10}(\ell)$	-492 [12]	
$\mathrm{SbF}(\mathrm{g})$	0 [9]	[11, 14] list D_{0}.
$\mathrm{SbF}_{3}(\mathrm{c})$	-217.2 [9]	Other reviews give for $\Delta H f_{298}^{\circ}$: -216.6 [12, 20], -217.2 ± 4.0 [15].
$\mathrm{SbF}_{5}(\mathrm{~g})$		[306] calc. ΔH vap. See v.p. studies for $\mathrm{SbF}_{5}(\ell)$.
$\mathrm{SbF}_{5}(l)$		[306, 307] meas. v.p. [20] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-305$.
$\mathrm{Sb}_{2} \mathrm{~F}_{8}(\mathrm{c})$		
$\mathrm{Sb}_{3} \mathrm{~F}_{11}$ (c)		
$\mathrm{Sb}_{4} \mathrm{~F}_{11}$ (c)		
$\mathrm{Sb}_{5} \mathrm{~F}_{17}(\mathrm{c})$		
$\mathrm{Sb}_{6} \mathrm{~F}_{20}(\mathrm{c})$		
$\mathrm{ScF}_{3}(\mathrm{c})$		[12, 20] est. $\Delta H f_{298}^{\circ}=-367 \pm 7$.
$\mathrm{SeF}_{4}(\mathrm{~g})$		[308] calc. ΔH vap. See v.p. studies for $\operatorname{SeF}_{4}(\ell)$.
$\mathrm{SeF}_{4}(l)$		[308, 565] meas. v.p.
$\mathrm{SeF}_{4}(\mathrm{c})$		[308] meas. v.p.
$\mathrm{SeF}_{6}(\mathrm{~g})$	-246 [9]	[9] lists ΔH vap. and ΔH sub. Other reviews list for $\Delta H f_{298}^{\circ}:-246$ [12, 17, 20], -246.0 ± 3 [15].
$\mathrm{SeF}_{6}(l)$		[9] lists ΔH fus.
$\mathrm{SeF}_{6}(\mathrm{c})$		
$\mathrm{Se}_{2} \mathrm{~F}_{2}(\mathrm{~g})$		

Compound	А Hf_{298} ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
SIF (g)		[26] lists 9.2. [25, 27] list 10.3.
$\mathrm{SiF}_{2}(\mathrm{~g})$		For the reaction: $6 \mathrm{~A} I \mathrm{~F}(\mathrm{~g})+3 \mathrm{SiC}(\mathrm{c})=\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{c})+3 \mathrm{SiF}_{2}(\mathrm{~g})+2 \mathrm{AI}(\mathrm{l})$. [114] reports $\Delta F_{1150-1200}=83.0 .[26,27]$ est. $\Delta \mathrm{Hf}_{298}^{9}=-118 \pm 10 \cdot[21,25]$ est. -127 .
$\mathrm{SiF}_{3}(\mathrm{~g})$		[26] est. $\mathrm{\Delta Hf}_{298}=-246 \pm 10$. [25] est. -249 .
$\mathrm{SiF}_{4}(\mathrm{~g})$	$\begin{aligned} & -370[9] \\ & -370.8[310] \\ & -372.4 \pm 0.4[311] \end{aligned}$	[310] meas. ΔH for reactions of $\mathrm{SiF}_{4}(\mathrm{~g})$ with ($\mathrm{HF}+\mathrm{HCl}$) (aq) and HCl (aq) . [311] meas. ΔH for reactions of $\mathrm{SiF}_{4}(\mathrm{~g})$ with $\mathrm{Na}(\mathrm{c})$, HF (aq), and $\mathrm{H}_{2} \mathrm{O}$. [312] meas. $\mathrm{K}\left(200^{\circ}-800^{\circ}\right)$ for the equilibrium: $\mathrm{SiF}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=\mathrm{SiO}_{2}(\mathrm{c})+4 \mathrm{HF}(\mathrm{g})$. [612] calc. ΔF for reaction with CaH_{2} to form CaF_{2} and SiH_{4}. [313] Iists $\Delta F_{1300^{\circ} \mathrm{K}}$ for several reactions. [314] calc. ΔH for several reactions. [201] compares $\Delta H f$ of Ge and Si halides. [9] lists ΔH vap. and ΔH sub. Other reviews give for $\Delta H_{298}^{\circ}:-360 \pm 2[12],-370.8$ [20], -372.5 [17], -372.9 [21, 25, 26, 27], -374.0 ± 6.0 [15]. See $\mathrm{F}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{Si}(\mathrm{c}), \mathrm{F}_{6} \mathrm{Na}_{2} \mathrm{Si}(\mathrm{c})$, $\mathrm{AlF}_{6} \mathrm{Na}_{3}(\ell)$.
$\begin{aligned} & \mathrm{SiF}_{4}(\ell) \\ & \mathrm{SiF}_{4}(\mathrm{c}) \end{aligned}$		[135] meas. ΔH fus. [9] lists ΔH fus.
$\mathrm{Si}_{2} \mathrm{~F}_{6}(\mathrm{~g})$		[9] lists ΔH sub. and ΔH vap.
$\mathrm{Si}_{2} \mathrm{~F}_{6}(\ell)$		[9] lists ΔH fus.
$\mathrm{Si}_{2} \mathrm{~F}_{6}(\mathrm{c})$		
$\mathrm{SmF}_{2}(\mathrm{c})$		[20] est. $\Delta H^{\circ} \mathrm{O} \mathrm{O}_{298}=-237$. [12] est. -290 ± 7.
$\mathrm{SmF}_{3}(\mathrm{c})$		[12, 20] est. $\Delta H f_{298}^{\circ}=-405 \pm 7$.
$\mathrm{SnF}(\mathrm{g})$		[11, \mathcal{L}_{4}] list $D_{0} . \quad[25] ~ 11 s t s ~ \Delta H f 09880$.
$\mathrm{SnF}_{2}(\mathrm{c})$		[12, 20] est. $\Delta 4 \mathrm{f}_{298}^{0}=-158 \pm 4$.
$\mathrm{SnF}_{4}(\mathrm{c})$		
$\mathrm{SrF}(\mathrm{g})$	-5 [9]	[11, 14] list D_{0}. [547] calc. binding energy.
$\mathrm{SrF}_{2}(\mathrm{l})$		[140] meas. ΔH fus. [9] lists ΔH fus.
$\mathrm{SrF}_{2}(\mathrm{c})$	-290.3 [9]	[139] reports $\Delta \mathrm{H}$ reac. for $\mathrm{SrF}_{2}+\mathrm{CaCl}_{2}$ and other reactions. [315] calc. $\Delta \mathrm{Afo}$ and $\Delta \mathrm{Sf}^{\circ}$. [138] correlates $\Delta H f$. Other reviews give for $\Delta H f_{298}^{\circ}$: -289.0 ± 0.1 [12, 20], -289.0 ± 0.4 [15].
$\mathrm{TaF}_{2}(\mathrm{c})$		[20] est. $\mathrm{\Delta Hf}_{298}=-180$.
$\mathrm{TaF}_{3}(\mathrm{c})$		[20] est. $\Delta H_{298}^{\circ}=-260$.
$\mathrm{TaF}_{5}(\mathrm{~g})$		[261] calo. 4 H vap. [9] lists $\Delta \mathrm{H}$ vap.
$\mathrm{TaF}_{5}(\mathrm{l})$		[261] meas. v.p.
TaF_{5} (c)		[12] est. $\Delta H f_{298}^{\circ}=-300$. [20] est. -360 .
$\mathrm{TbF}_{3}(\mathrm{c})$		[12] est. $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-400 \pm 7$.
$\mathrm{TcF}_{3}(\mathrm{c})$		[20] est. $\Delta^{4 H}{ }_{298}^{\circ}=-190$.
$\mathrm{T} . \mathrm{CF}_{4}(\mathrm{c})$		[20] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-250$.
$\mathrm{TcF}_{5}(\mathrm{c})$		
$\mathrm{TcF}_{6}(\mathrm{c})$		[20] est. $\Delta H f_{298}^{\circ}=-300$.

Compound	$\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}$ (kcal/mole)	Remarks
$\mathrm{TeF}_{4}(\mathrm{~g})$		[316] calc. ΔH vap. and ΔH sub.
$\mathrm{TeF}_{L}(\ell)$		[316] meas. v.p. and calc. ΔH fus.
$\mathrm{TeF}_{4}(\mathrm{c})$		[316] meas. v.p. [20] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-205$.
$\mathrm{TeF}_{6}(\mathrm{~g})$	-315 [9]	[9] lists ΔH vap. and ΔH sub. Other reviews give for $\Delta H f_{298}^{\circ}:-315[12,17,20]$, -315.0 ± 3.0 [15].
$\mathrm{TeF}_{6}(l)$		[9] lists ΔH fus.
TeF_{6} (c)		[9] lists ΔH trans.
$\mathrm{Te}_{2} \mathrm{~F}_{10}(\mathrm{~g})$		[317] calc. ΔH vap.
$\mathrm{Te}_{2} \mathrm{~F}_{10}{ }^{(\ell)}$		[317] meas. v.p.
$\mathrm{ThF}_{3}(\mathrm{c})$		[20] est. $\Delta H^{\circ}{ }_{298}=-355$.
$\mathrm{ThF}_{4}(\mathrm{~g})$		[319] calc. ΔH sub., ΔH vap. See F_{2} OTh.
$\mathrm{ThF}_{4}(\mathrm{l})$		[319] meas. v.p.
$\mathrm{ThF}_{4}(\mathrm{c})$	-482.4[318]	For the equilibrium: $\mathrm{ThF}_{4}(\mathrm{c})+\mathrm{SiO}_{2}(\mathrm{c})=\mathrm{ThO}_{2}(\mathrm{c})+\mathrm{SiF}_{4}(\mathrm{~g})$, [318] found $\Delta F=-459.9$. See [43] for $\Delta H f .[319]$ meas. v.p. [9, 20] est. $\Delta H f_{298}^{\circ}=-477$. [12] est. $-477 \pm 10 .[15]$ est. -477 ± 15. See $\mathrm{F}_{4} \mathrm{HO}_{\frac{1}{2}} \mathrm{Th}(\mathrm{c}), \mathrm{F}_{4} \mathrm{H}_{5} \mathrm{O}_{5} / 2 \mathrm{Th}$ (c).
$\mathrm{TiF}(\mathrm{g})$		[11] lists D_{0}.
$\mathrm{TiF}_{2}(\mathrm{~g})$		[25, 26, 27] est. $\Delta 4 f_{298}^{\circ}=-132 \pm 10$.
$\mathrm{TiF}_{2}(\mathrm{c})$		[114] reports $\Delta F_{1150-1200}=198.5$ for the reaction: $6 \mathrm{AlF}(\mathrm{g})+3 \mathrm{SiC}(\mathrm{c})=\mathrm{Al}_{4} \mathrm{C}_{3}(\mathrm{c})+$ $3 \mathrm{TiF}_{2}(\mathrm{c})+2 \mathrm{Al}(\ell) . \quad[9,12,20]$ est. $\Delta \mathrm{Hf}_{298}^{\circ}=-198 \pm 15 .[26,27]$ est. -218.0 ± 5.
$\mathrm{TiF}_{3}(\mathrm{~g})$		$[25,26,27]$ est. $\Delta H f_{298}^{\circ}=-255.3 \pm 10$.
$\mathrm{TiF}_{3}(\ell)$		[27] lists $\Delta H f_{298}^{\circ}=-324.078$.
$\mathrm{TiF}_{3}(\mathrm{c})$		For the reaction: $\mathrm{TiF}_{4}(\mathrm{~g})+\mathrm{Hg}(\mathrm{l})=\frac{1}{2} \mathrm{Hg}_{2} \mathrm{~F}_{2}(\mathrm{c})+\mathrm{TiF}_{3}(\mathrm{c}),[217]$ meas. $\Delta H=-24.4$, and est. $\Delta \mathrm{Hf}_{298}^{\circ}\left[\mathrm{TiF}_{4}(\mathrm{c})\right]-\Delta \mathrm{Hf}_{298}^{\circ}\left[\mathrm{TiF}_{3}(\mathrm{c})\right]=-57.3$. [9, 12, 20] est. $\Delta H f_{298}^{\circ}=-315 \pm 15 .[26,27]$ est. -335 ± 3.
$\mathrm{TiF}_{4}(\mathrm{~g})$		[320] calc. ΔH sub. [25, 26, 27] list $\Delta H \mathrm{H}_{298}^{\circ}=-369.6 \pm 2$. See $\mathrm{TiF}_{3}(\mathrm{c})$.
$\mathrm{TiF}_{4}(\mathrm{c})$	-392.5 [568]	[568] meas. ΔH for the reaction: $\mathrm{Ti}(\mathrm{c})+2 \mathrm{~F}_{2}(\mathrm{~g})=\mathrm{TiF}_{4}(\mathrm{c})$. See also [39, 43, 301]. [320] meas. v.p. [9, 12, 15, 20] est. $\Delta H f_{298}^{\circ}=-370 \pm 20 .[26,27]$ list -392.5 ± 0.1.
TIF (g)	-33 [9]	[278] meas. D_{0} and est. $\Delta H f$. [110] meas. D_{0}. [14] lists D_{0}. [547] calc. binding energy. [321] calc. ΔH sub.
TIF (c)	$-74.0 \pm 1.5[15]$	[56] meas. ΔH soln. [569] calc. lattice energy. [321] meas. v.p. Other reviews list for $\Delta \mathrm{Hf}_{298}^{\circ}:-65 \pm 5$ (est.) $[12,20],-74 \pm 5$ [17].
$\mathrm{THF}_{3}(\mathrm{c})$	$\begin{aligned} & -136.9 \pm 2.5[15] \\ & -136.9[131] \end{aligned}$	[131] meas. ΔH hydr. $=-8.4$. Other reviews est. for $\Delta H f_{298}^{\circ}$: -175 ± 10 [12, 20].
$(T \mathcal{F})_{2}(\mathrm{~g})$		
$\mathrm{TmF}_{3}(\mathrm{c})$		[12] est. $\Delta H f_{298}^{\circ}=-391 \pm 7$.
$\begin{aligned} & \mathrm{UF}_{3}(\mathrm{~g}) \\ & \mathrm{UF}_{3}(\ell) \end{aligned}$		[569] est. ΔH sub. and ΔH vap. [569] est. ΔH fus.
$\mathrm{UF}_{3}(\mathrm{c})$	-357 [9]	[289] determined K for the equilibrium: $1 / 3 \mathrm{Pu}(\ell)+1 / 3 \mathrm{UF}_{3}(\mathrm{c})=$ $1 / 3 \mathrm{PuF}_{3}(\ell)+1 / 3 \mathrm{U}(\ell) \cdot[20]$ est. $\Delta \mathrm{Hf}_{298}^{\circ}=-340 .[569]$ lists -357 ± 4. [15] lists -357 .

Compouna	$\operatorname{AHf~}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{UF}_{4}(\mathrm{~g})$		[570] calc. ΔH sub. $[9,569]$ list ΔH sub. and ΔH vap. See $\mathrm{UF}_{4}(l), \mathrm{UF}_{4}(\mathrm{c})$ for v.p. studies.
$\mathrm{UF}_{4}{ }^{(l)}$		[289) detd. K for the equilibrium: $1 / 3 \mathrm{Pu}(l)+\frac{1}{4} \mathrm{VF}_{4}(l)=1 / \mathrm{SPuF}_{3}(\ell)+\frac{1}{4} \mathrm{O}(\ell) .[322]$ meas. v.p. See also [329]. [569] reviews v.p. data and lists Δt fus.
$\mathrm{UF}_{4}(\mathrm{c})$	-4/43 [9]	[325] studied free energy changes in the reaction $\mathrm{UF}_{4}(\mathrm{c})$ and O_{2}. [326] studied K for the equilibrium: $\mathrm{UF}_{6}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})=\mathrm{UF}_{4}(\mathrm{c})+2 \mathrm{FF}(\mathrm{g})$. [323] studied equilibria in the disproportionation of intermediate J-F compds. [324, 572] review thermodynamic data and calc. ΔF for several reactions. [329, 570] meas v.p. [328] meas. ΔH trans. Other reviews list for $\Delta H f_{298}^{\circ}:-443$ [15, 17, 20], $-L 43 \pm 3$ [569], $-4 / 3.5 \pm 2$ [323]. See $\mathrm{F}_{4} \mathrm{H}_{5} \mathrm{O}_{5} / 2^{\mathrm{U}(\mathrm{c})}, \mathrm{UF}_{5}$.
$\begin{aligned} & U F_{5}(\mathrm{~g}) \\ & \mathrm{UF}_{5}(\mathrm{l}) \end{aligned}$		[330] calc. ΔH sub. and ΔH vap. [569] est. ΔH sub. and ΔH vap. [330] meas. v.p. and calc. ΔH fus. [569] est. ΔH fus.
UF_{5} (c)	-488 [9] (a) -483.7 ± 1.3 [323] (B) -485.2 ± 1.4 [323]	[323] meas. disproportionation equil. of $\mathrm{UF}_{5}(\mathrm{c}, \alpha)$ and $\mathrm{UF}_{5}(\mathrm{c}, \mathrm{B})$. From a study of the disproportionation equilibrium: $2 \mathrm{UF}_{5}(\mathrm{c})=\mathrm{UF}_{4}(\mathrm{c})+\mathrm{UF}_{6}(\mathrm{~g})$, [327] calc. $\Delta H=15.53$. [330] meas. v.p. Other reviews give for $\Delta H f_{298}^{\circ}:-488[15,20,569]$.
$\mathrm{UF}_{6}(\mathrm{~g})$	-505 [9]	See [43] for $\Delta H f^{\circ}$. [331] meas. ΔH sub. and ΔH vap. [265, 332, 333] calc. ΔH sub. and ΔH vap. $[9,569]$ list ΔH sub. and ΔH vap. See also $\mathrm{UF}_{6}(\mathrm{c})$ for v.p. studies. [334] calc. thermodyn. prop. and compares with calorimetric values. [335] gives a general review of thermodgn. prop. Other reviews give for $\Delta H^{\circ} 0$ -504 ± 3 [323], $-505[25,569]$. See $\mathrm{UF}_{4}, \mathrm{UF}_{5}, \mathrm{~J}_{2} \mathrm{~F}_{9}, \mathrm{U}_{4} \mathrm{~F}_{17}, \mathrm{~F}_{2} \mathrm{O}_{2}{ }^{2}, \mathrm{~F}_{5} \mathrm{NaU}$, $\mathrm{F}_{6} \mathrm{NaU}, \mathrm{F}_{7} \mathrm{NaU}, \mathrm{F}_{8} \mathrm{Na}_{3} \mathrm{U}, \mathrm{F}_{9} \mathrm{Na}_{3} \mathrm{U}$.
$\mathrm{UF}_{6}\left({ }^{\text {l }}\right.$)		[332, 333] meas. v.p. and ΔH fus. [266] calc. ΔH fus. [331] correlates v.p. and ΔH fus. [336] correlates v.p. [9, 569] list ΔH fus. See [335].
UF_{6} (c)	-517 [9]	[265, 332, 333, 337, 338] meas. v.p. [331] correlates v.p. Other reviews list
$\mathrm{U}_{2} \mathrm{~F}_{9}(\mathrm{c})$	-933.8 ± 3 [323]	[323] meas. disproportionation pressure of $\mathrm{UF}_{6}(\mathrm{~g})$ over $\mathrm{U}_{2} \mathrm{~F}_{9}$.
$\mathrm{U}_{4} \mathrm{~F}_{17}$ (c)	-1820.5 ± 4 [323]	[323] meas. disproportionation pressure of $\mathrm{UF}_{6}(\mathrm{E})$ over $\mathrm{U}_{4} \mathrm{~F}_{17}(\mathrm{c})$.
VF_{2} (c)		[12] est. $\Delta 4 \mathrm{f}_{298}^{\circ} \mathrm{O}=-180 \pm 20$. [20] est. -200 .
$\mathrm{VF}_{3}(\mathrm{c})$		[20] est. $\Delta 4 f_{298}^{9}=-271$. [12] est. -285 ± 30.
$\mathrm{VF}_{4}(\mathrm{c})$		[12, 20] est. $\Delta 4 \mathrm{f}_{298}^{\circ} \mathrm{O}=-325 \pm 30$.
$\mathrm{VF}_{5}(\mathrm{~g})$		[339,340] calc. ΔH vap.
$\mathrm{VF}_{5}(2)$		[339, 340] meas. v.p. [340] calc. ΔH fus.
VF_{5} (c)		[340] meas. v.p. $[12,20]$ est. $\Delta H \mathrm{f}_{298}^{0}=-335 \pm 20$.
WF_{4} (c)		[20] est. $\Delta 4 \mathrm{f}_{298}^{\circ}=-250$.
WF_{5} (c)		[20] est. UHf $_{298}=-280$.
$\mathrm{WF}_{6}(\mathrm{~g})$	-416 [405]	[405] reports $\mathrm{AHf}_{298}^{\circ}$ on the basis of solution calorimetry. [222, 341] calc. ΔH vap. [222] calc. ΔH sub. [20] est. $\Delta H f_{298}^{\circ}=-300$. [17] 11sts -416 .
$\mathrm{WF}_{6}{ }^{(\ell)}$		[405] reports $\Delta \mathrm{Ff}_{298}^{\circ}=-397$. [222, 341] meas. v.p. [222] calc. ΔH fus. [9] lists ΔH fus.
WF_{6} (c)		[222] meas. v.p. and calc. ΔH trans. [9] lists ΔH trans.
$\mathrm{YF}_{3}(\mathrm{c})$		[12, 20] est. $\Delta 4 f_{298}^{0}=-397 \pm 7$.
$\mathrm{YbF}_{2}(\mathrm{c})$		[12] est. $\Delta H_{298}^{\circ}=-280 \pm 7$.
$\mathrm{YbF}_{3}(\mathrm{c})$		[12] est. $\Delta 7 \mathrm{fl}_{298}^{\circ}=-376 \pm 7$.

Compound		$\Delta H f_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{AcFO}(\mathrm{c})$		$\begin{aligned} & \text { [106] gives } \Delta \mathrm{Hf}_{298} \sim-265 \text { from consideration of the equilibrium: } \mathrm{AcF}_{3}(\mathrm{c})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\ & =\mathrm{AcOF}(\mathrm{c})+2 \mathrm{HF}(\mathrm{~g}) \text {, at } 1000^{\circ} \mathrm{K} \text {. } \end{aligned}$
$\mathrm{AgAuF}_{4}(\mathrm{c})$	-149.4 [131]	[131] meas. $\Delta \mathrm{H}$ hydr.
$\begin{gathered} \mathrm{AgF}_{2} \mathrm{H}(\mathrm{c}) \\ (\mathrm{AgF} \cdot \mathrm{HF}) \end{gathered}$		For the reaction: $\mathrm{Ag}(\mathrm{c})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{HF}(l)=\mathrm{AgF} \cdot \mathrm{HF}(\mathrm{c}),[178]$ est. $\Delta \mathrm{F}_{0}^{\circ}=-49.0$ on the basis of electrode potentials.
$\mathrm{AlClF}(\mathrm{g})$		[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-121 .[24,27]$ est. $-123 \pm 15 .[26]$ est. -124 ± 20.
$\mathrm{AlClF}_{2}(\mathrm{~g})$		[24, 26, 27] est. $\Delta H f_{298}^{\circ}=-235 \pm 15 .[25]$ est. -235.5 .
$\mathrm{AlCl}_{2} \mathrm{~F}(\mathrm{~g})$		[27] est. $\mathrm{HHf}_{298}^{\circ}=-181.8 \pm 15 .[24,26]$ est. $-186 \pm 15 .[25]$ est. -186.3.
AlFO(g)		$\text { [24] est. } \Delta \mathrm{Hf}_{298}^{\circ}=-103 \pm 20 .[25] \text { est. }-110 .[26,27] \text { est. }-121 \pm 20 .$
$\begin{aligned} & \mathrm{AlF}_{4} \mathrm{~K}(\mathrm{c}) \\ & \left(\mathrm{KAlF}_{4}\right) \end{aligned}$		See $\mathrm{AlF}_{5} \mathrm{H}_{2} \mathrm{~K}_{2} \mathrm{O}(\mathrm{c})$.
$\begin{aligned} & \mathrm{AlF}_{4} \mathrm{Li}(\mathrm{~g}) \\ & \left(\mathrm{LiAlF}_{4}\right) \\ & \mathrm{AlF}_{4} \mathrm{Li}(\mathrm{c}) \end{aligned}$		```For the reaction: LiF:AlF (g) = LiF(g) + AlF 3 (g), [125]meas. }\Delta\mp@subsup{H}{1000}{\prime}=73\pm4\cdot [122] calc. }\DeltaH\mathrm{ sub. [122] est. }\DeltaH\mp@subsup{H}{298}{O}=-447\pm7 [122] meas. v.p. [122] est. \DeltaHfo```
$\begin{aligned} & \mathrm{AlF}_{4} \mathrm{Na}(\mathrm{~g}) \\ & \left(\mathrm{NaAlF}_{4}\right) \\ & \mathrm{AlF}_{4} \mathrm{Na}_{4}(\mathrm{l}) \end{aligned}$		[121] meas. ΔH vap. See $\mathrm{AlF}_{4} \mathrm{Na}(\ell)$ for v.p. studies. For the reaction: $\mathrm{Na}_{3} \mathrm{AlF}_{6}(\ell)=\mathrm{NaF}(\ell)+\mathrm{NaAlF}_{4}(\ell),[344]$ meas. $\Delta \mathrm{H}_{1000}^{\circ}=22 . \quad[121$, 577] meas. v.p.
$\mathrm{AlF}_{4} \mathrm{Na}$ (c)		[345] discusses stability.
$\begin{aligned} & \mathrm{AlF}_{6} \mathrm{~K}_{3}(\mathrm{c}) \\ & \left(\mathrm{K}_{3} \mathrm{AlF} \mathrm{~F}_{6}\right) \end{aligned}$	-777.9 [9]	
$\begin{aligned} & \mathrm{AlF}_{6} \mathrm{Na}_{3}(\mathrm{~g}) \\ & \left(\mathrm{Na}_{3} \mathrm{AlF}_{6}\right) \\ & \mathrm{AlF}_{6} \mathrm{Na}_{3}(\mathrm{l}) \end{aligned}$		See $\mathrm{AlF}_{6} \mathrm{Na}_{3}(l)$ for $v . p$. meas. [121, 238, 577] meas. v.p. [259] calc. $\Delta F f$ and $\Delta H f$ vs. T. [616] calc. ΔF of reactions with $\mathrm{SiO}_{2}+\mathrm{Al}_{2} \mathrm{O}_{3} \cdot[608,609]$ calc. $\Delta \mathrm{F}$ of reaction: $\mathrm{AlF}_{3}(\mathrm{c})+3 \mathrm{NaF}(\ell)=\mathrm{Na}_{3} \mathrm{AlF}_{6}(l) . \quad[124]$ meas. ΔH fus. [9] lists ΔH fus. See also [604]. See AlF, $\mathrm{Na}(\ell)$.
$\mathrm{AlF}_{6} \mathrm{Na}_{3}$ (c)	$\begin{aligned} & -759.6[9] \\ & -784.8[256] \\ & -784.95[116] \end{aligned}$	[256] meas. $\triangle H$ soln. of $\mathrm{Na}_{3} \mathrm{AlF}_{6}, \mathrm{Al}, \mathrm{NaF}$, and NaCl in $\mathrm{HCl}(\mathrm{aq})$. [116] meas. $\triangle H$ for the reaction: $\frac{3}{2} \mathrm{PbF}_{2}(\mathrm{c})+\mathrm{Al}(\mathrm{c})+3 \mathrm{NaF}(\mathrm{c})=\frac{3}{2} \mathrm{~Pb}(\mathrm{c})+\mathrm{Na}_{3} \mathrm{AlF}_{6}(\mathrm{c})$. See also [118]. [259, 313] calc. ΔF for several reactions. [124] meas. ΔA trans. [9] lists ΔH trans.
$\begin{aligned} & \mathrm{Al}_{3} \mathrm{~F}_{1} \mathrm{Na}_{5}(\mathrm{c}) \\ & (3 \mathrm{AlF} \\ & 3 \cdot 5 \mathrm{NaF}) \end{aligned}$		See [345].
$\begin{aligned} & \mathrm{AsBrF}_{2}(\ell) \\ & \mathrm{AsBrF}_{2}(\mathrm{c}) \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ fus.
$\mathrm{AsBr}_{2} \mathrm{~F}(\ell)$		[623] calc. $\Delta \mathrm{H}$ fus.
$\mathrm{AsBr}_{2} F(\mathrm{c})$		
$\begin{aligned} & \mathrm{AsClF}_{2}(\ell) \\ & \mathrm{AsClF}_{2}(\mathrm{c}) \end{aligned}$		[623] calc. ΔH fus.
$\begin{aligned} & \mathrm{AsCl}_{2} F(\ell) \\ & \mathrm{AsCl}_{2} F(c) \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ fus.
$\mathrm{BBrF}_{2}(\mathrm{~g})$		[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-194.4 \cdot$ [31] est. $-198.71^{\text {a }}$.
$\mathrm{BBr}_{2} \mathrm{~F}(\mathrm{~g})$		[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-118.8$. [31] est. $-129.59{ }^{\text {a }}$.

a Value based upon $\mathrm{Br}_{2}(\mathrm{~g})$ as standard state.

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
BCIF (g)		$\begin{aligned} & \text { [25] est. } \Delta \mathrm{Hf}_{298}=-76 . \text { [27] est. }-77.8 \pm 6 . \text { [31] est. }-77.81 .[26] \text { est. }-90 \pm 15 \text {. } \\ & \text { [24] est. }-91 \pm 20 . \end{aligned}$
$\mathrm{BilF}_{2}(\mathrm{~g})$	-211.65 [31]	[346] est. $\Delta \mathrm{Hf} \mathrm{f}^{\circ}=-211.53$ by considering the equilibria: $2 \mathrm{BF}_{2} \mathrm{Cl}=\mathrm{BF}_{3}+\mathrm{BFCl}_{2}$, and $2 \mathrm{BFCl}_{2}=\mathrm{BF}_{2} \mathrm{Cl}+\mathrm{BCl}_{3}$. [346, 347] meas. K for the reaction: $\mathrm{BF}_{3}(\mathrm{~g})+\mathrm{BCl}_{3}(\mathrm{~g})$ $=\mathrm{BClF}_{2}(\mathrm{~g})+\mathrm{BCl}_{2} \mathrm{~F}(\mathrm{~g})$. See also [348]. Other reviews give for $\Delta \mathrm{Hf}_{298}$: -210.3 (est.) [25], -211.65 [28], -212 ± 15 (est.) [24, 26].
$\begin{aligned} & \mathrm{BCl}_{2} \mathrm{~F}(\mathrm{~g}) \\ & \mathrm{BCsF}_{4}(\ell) \\ & \left(\mathrm{CsBF}_{4}\right) \end{aligned}$	-153.97 [31]	[346] est. $\Delta H \mathrm{H}^{\circ}=-153.9$. [346, 347] meas. K for the reaction: $\mathrm{BF}_{3}(\mathrm{~g})+\mathrm{BCl}_{3}(\mathrm{~g})=$ $\mathrm{BClF}_{2}(\mathrm{~g})+\mathrm{BCl}_{2} \mathrm{~F}(\mathrm{~g})$. See also [348]. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}:-133 \pm 15$ (est.) [24], -153.7 (est.) [25], -153.97 [28], -155 ± 15 (est.) [20́]. See BC1F $\mathrm{F}_{2}(\mathrm{~g})$. [520] lists dissoc. pressure.
$\mathrm{BCsF}_{4}{ }^{\text {(c) }}$		[349] meas. ΔH soln.
$\mathrm{BFO}(\mathrm{g})$	-145.3 ± 3 [231]	From an equilibrium study of the reaction: $\frac{1}{2} \mathrm{MgF}_{2}(\mathrm{c})+\frac{1}{2} \mathrm{~B}_{2} \mathrm{O}_{3}(\boldsymbol{l})=\mathrm{BOF}(\mathrm{g})+\frac{1}{2} \mathrm{MgO}(\mathrm{c})$, [231] calc. $\Delta \mathrm{H}_{298}=66.4 \pm 1$. [24] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-129 \pm 20$. [31] est. -139.9. [27] lists -142.923 ± 8. [26] est. -146 ± 15. [25] est. -172 .
$\begin{aligned} & \mathrm{BF}_{4}^{\mathrm{K}(\ell)} \\ & \left(\mathrm{KBF}_{2}\right) \end{aligned}$		[520] lists dissoc. pressure.
$\mathrm{BF}_{4} \mathrm{~K}(\mathrm{c})$	-451.6 [350]	From solution calorimetry, [350] meas. $\Delta H_{298}^{\circ}=-451.6$. [349] calc. ΔH soln. [351] calc. lattice energy and ΔH soln. [29] lists $\Delta H_{298}^{\circ}=-433$. [351] est. -424 .
$\begin{aligned} & \mathrm{BF}_{4} \mathrm{Na}(\mathrm{c}) \\ & \left(\mathrm{NaBF}_{4}\right) \end{aligned}$		[29,520] list v.p. and dissoc. pressure.
$\begin{aligned} & \mathrm{BF}_{4}^{\mathrm{Rb}}(\ell) \\ & \left(\mathrm{RbBr}_{4}\right) \end{aligned}$		[520] lists dissoc. pressure.
$\begin{aligned} & \mathrm{BF}_{7} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{BF}_{3} \cdot \mathrm{SF}_{4}\right) \end{aligned}$		[352] calc. $\Delta \mathrm{H}$ sub.
$\mathrm{BF}_{7} \mathrm{~S}(\mathrm{c})$		[352] meas. v.p.
$\begin{aligned} & \mathrm{B}_{3} \mathrm{~F}_{3} \mathrm{O}_{3}(\mathrm{~g}) \\ & \left((\mathrm{BOF})_{3}\right) \\ & \mathrm{B}_{3} \mathrm{~F}_{3} \mathrm{O}_{3}(\mathrm{c}) \end{aligned}$	$\begin{aligned} & -567 \pm 8[31] \\ & -566.2[237] \\ & -582 \pm 8[31] \end{aligned}$	[237] studied the reaction of $\mathrm{BF}_{3}(\mathrm{~g})$ and $\mathrm{B}_{2} \mathrm{O}_{3}$. See also [224]. Other reviews list for $\Delta H f_{298}^{\circ}$: -567 ± 8 [28]. [31] reviews unpublished values for $\Delta H f_{298}^{\circ}$. [31] reviews unpublished work.
$\mathrm{BaClF}(\mathrm{c})$		See $\mathrm{Ba}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}(\mathrm{c})$.
$\begin{aligned} & \mathrm{BaF}_{6} \mathrm{Si}^{(\mathrm{c})} \\ & \left(\mathrm{BaSiF}_{6}\right) \end{aligned}$	-691.6 [9]	
$\begin{aligned} & \mathrm{Ba}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}(\mathrm{c}) \\ & \left(\mathrm{BaF}_{2} \cdot \mathrm{BaCl}_{2}\right) \end{aligned}$	-508.4 [257]	[257] meas. $\Delta \mathrm{H}$ soln. of $\mathrm{BaF}_{2}+\mathrm{BaCl}_{2}$ and $\mathrm{Ba}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$ in $\mathrm{AgNO}_{3}(\mathrm{aq})$. [139] reports $\triangle \mathrm{H}$ for several reactions of $\mathrm{Ba}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$.
$\operatorname{BeClF}(\mathrm{g})$		[24, 27] est. $\Delta \mathrm{Hf} \mathrm{2}_{298}^{\circ}=-124 \pm 15$. [26] est. -132 ± 15. [25] est. -138.
$\mathrm{BeF}_{3} \mathrm{Li}(\mathrm{g})$		From ion abundances [353] calc. bond energy $\cong 53$ at $900^{\circ} \mathrm{K}$.
$\begin{aligned} & \mathrm{BeF}_{3} \mathrm{Na}(\mathrm{~g}) \\ & \left(\mathrm{NaBeF}_{3}\right) \end{aligned}$		See [147, 149].
$\mathrm{BeF}_{3} \mathrm{Na}(\ell)$		See $\mathrm{BeF}_{4} \mathrm{Na}_{2}(\ell)$
$\begin{aligned} & \mathrm{HeF}_{4} \mathrm{Na}_{2}(\mathrm{~g}) \\ & \left(\mathrm{Na}_{2} \mathrm{BeF}_{4}\right) \\ & \mathrm{BeF}_{4} \mathrm{Na}_{2}(\ell) \end{aligned}$		See [147, 149]. For the dissoc. to $2 \mathrm{NaF}+\mathrm{BeF}_{2}$, [144] reports $\Delta \mathrm{H}=48.646$. [144] obs. insignificant dissoc. to $\mathrm{NaBeF}_{3}(l)$.
$\operatorname{Br} \sim \mathrm{F}(\mathrm{g})$		[357] meas. ion abundance and appearance potential from $\mathrm{CF}_{3} \mathrm{Br}$.

Species	$\Delta \mathrm{Hf} \mathrm{Z}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{BrCF}_{2}(\mathrm{~g}) \\ & \left(\mathrm{CBrF}_{2}\right) \end{aligned}$		
BriF_{3} $\left(\mathrm{CBrF}_{3}\right.$) $\mathrm{BrCF}_{3}(\ell)$		[357, 532] meas. ion appearance potentials or aburdances. [177] est. ($0,-\mathrm{F}$, bord energy. [104, 177, 357, 358,.359] report (c-Er) bord energj. [355, 356] cale. LH vap. [354] est. $\Delta 4 f_{298}^{\circ}=-156 .[177]$ est. -132 . [355, 356] meas. v.p.
BrFHg (c) (HgBrF)		[216] est. $\Delta \mathrm{Hf}_{298}=-55$.
$\begin{aligned} & \mathrm{BrFHg}_{2}(\mathrm{c}) \\ & \left(\mathrm{H}_{2} \mathrm{BrF}\right) \end{aligned}$		[216] est. $\Delta \mathrm{Hf}_{298}{ }^{\circ}=-53$.
$\begin{aligned} & \mathrm{BrF}_{2} \mathrm{P}(\mathrm{~g}) \\ & \left(\mathrm{PBrF}_{2}\right) \\ & \mathrm{BrF}_{2} \mathrm{P}(\ell) \end{aligned}$		[9] lists ΔH vap. [623] calc. ΔH vap.
$\begin{aligned} & \mathrm{BrF}_{3} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiBrF}_{3}\right) \\ & \mathrm{BrF}_{3} \mathrm{Si}^{(}(\mathrm{l}) \end{aligned}$		[9] lists $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{BrF}_{4}^{\mathrm{K}(\mathrm{c})} \\ & \left(\mathrm{KBrF}_{4}\right)^{\prime} \end{aligned}$		[360] meas. dissoc. pressure.
$\begin{aligned} & \mathrm{BrF}_{4} \mathrm{Ta}(\mathrm{~g}) \\ & \left(\mathrm{TaBrF}_{4}\right) \\ & \left.\mathrm{BrF}_{4} \mathrm{Ta}^{(} \ell\right) \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{BrF}_{8} \mathrm{So}(\mathrm{c}) \\ & \left(\mathrm{BrF}_{2} \mathrm{SbF}_{6}\right) \end{aligned}$		[360] meas. dissoc. pressure.
$\mathrm{Br}_{2} \mathrm{CF}(\mathrm{g})$		[624] est. $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-14 \cdot 2$.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{CF}_{2}(\mathrm{~g}) \\ & \left(\mathrm{CBr}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{Br}_{2} \mathrm{CF}_{2}(\ell) \end{aligned}$		$\begin{aligned} & \text { [355] calc. } \Delta \mathrm{H} \text { vap. [354] est. } \Delta \mathrm{Hf}_{298}^{\circ}=-100 . \\ & \text { [355] meas. v.p. } \end{aligned}$
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{FP}(\mathrm{~g}) \\ & \left(\mathrm{PBr}_{\mathrm{F}} \mathrm{~F}\right) \\ & \mathrm{Br}_{2} \mathrm{FP}(\ell) \end{aligned}$		[9] lists ΔH vap. [623] calc. ΔH vap.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiBr}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{Br}_{2} \mathrm{~F}_{2} \mathrm{Si}(\ell) \end{aligned}$		[9] lists $\triangle H$ vap.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{Ta}(\mathrm{~g}) \\ & \left(\mathrm{TaBr}_{2} \mathrm{~F}_{3}\right) \\ & \mathrm{Br}_{2} \mathrm{~F}_{3} \mathrm{Ta}(\ell) \end{aligned}$		[623] calc. AH vap.
$\begin{aligned} & \mathrm{Br}_{3} \mathrm{CF}(\mathrm{~g}) \\ & \left(\mathrm{CBr}_{3} \mathrm{~F}\right) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-4.4 . \quad$ [624] lists $\mathrm{D}\left(\mathrm{CBr}_{3}-\mathrm{F}\right)$.
$\begin{aligned} & \mathrm{Br}_{3} \mathrm{FSi}(\mathrm{~g}) \\ & \left(\mathrm{SiBr}_{3} \mathrm{~F}\right) \\ & \mathrm{Br}_{3} \mathrm{FSi}(\ell) \end{aligned}$		[9] lists $\triangle H$ vap.
$\begin{aligned} & \mathrm{Br}_{3} \mathrm{~F}_{2} \mathrm{Ta}(\mathrm{~g}) \\ & \left(\mathrm{TaBr}_{3} \mathrm{~F}\right) \\ & \mathrm{Br}_{3} \mathrm{~F}_{2} \mathrm{Ta}(\ell) \end{aligned}$		[623] calc. $\mathrm{HH}^{\text {r vap. }}$

Species	$\Delta H f_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{Br}_{4} \mathrm{FTa}_{4}(\mathrm{~g}) \\ & \left(\mathrm{TaBr}_{4} \mathrm{~F}\right) \\ & \mathrm{Br}_{4} \mathrm{FTa}_{4}(\mathrm{l}) \end{aligned}$		[623] calc. HH vap.
CClF (g)		[26] est. $\Delta H^{\circ} \mathrm{O} 298=33 \pm 10$.
$\mathrm{CClF}_{2}(\mathrm{~g})$		[177] meas. $\mathrm{D}\left(\mathrm{CClF}_{2}-\mathrm{Cl}\right), \mathrm{D}\left(\mathrm{CCIF}_{2}-\mathrm{F}\right)$, and $\mathrm{D}\left(\mathrm{ClF}_{2} \mathrm{C}-\mathrm{CClF} \mathrm{F}_{2}\right) \cdot[26]$ est. $\Delta H \mathrm{f}_{298}^{\circ}=-60 \pm 5$.
$\mathrm{CClF}_{3}(\mathrm{~g})$	$\begin{aligned} & -167[171] \\ & -171 \pm 1[174] \end{aligned}$	[171, 174] meas. ΔH of reaction with $\mathrm{K} .[580$, 581] list ion abundances and appearance potentials. [166, 167, 169, 177] report $D(C-C l)$. [177] reports $D(C-F) .[365$, $366,579]$ calc. ΔH vap. [352, 363, 364] list thermo prop. [357] est. $\Delta H^{\circ} \mathrm{f}_{298}=-163.2$. [354] est. -165. [25] lists -169.8. [26, 361] list -171 $\pm 1 .[27]$ lists -171.9 ± 2. [363, 364] report thermodyn. properties of sat. liquid.
$\mathrm{CCl}_{2} \mathrm{~F}(\mathrm{~g})$.		[177] meas. $\mathrm{D}\left(\mathrm{CFCl}_{2}-\mathrm{Cl}\right)$ and $\mathrm{D}\left(\mathrm{CFCl}_{2}-\mathrm{F}\right)$. [26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-18 \pm 10$. [624] est. -29.0.
$\mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{~g})$	$\begin{aligned} & -113[171] \\ & -112 \pm 2[174] \end{aligned}$	[171, 174] meas. ΔH of the reaction with K. [177] meas. D (C-Cl) and D (C-F). [580, 581] obs. ion abundances and appearance potentials. [365, 369, 579] calc. $\triangle 4$ vap. [446] meas. dissoc. pressure of solid hydrate. [9] lists ΔH vap. [371, 372, 373, 374] list thermo. prop. [26, 361] list $\Delta \mathrm{Hf}_{298}^{\circ}=-112 \pm 2$. [357] est. -112.5. [354] est. -119. [25] est. -121.7.
$\begin{aligned} & \mathrm{CCl}_{2} \mathrm{~F}_{2}(\ell) \\ & \mathrm{CCl}_{2} \mathrm{~F}_{2}(\mathrm{c}) \end{aligned}$		[371, 372, 445] list $\nabla \cdot p$. [9] lists ΔH fus. See also [370, 373].
$\mathrm{CCl}_{3} \mathrm{~F}(\mathrm{~g})$ $\begin{aligned} & \mathrm{CCl}_{3} \mathrm{~F}(\ell) \\ & \mathrm{CCl}_{3} \mathrm{~F}(\mathrm{c}) \end{aligned}$	$\begin{aligned} & -67[171] \\ & -70 \pm 4[174] \\ & -56.2[176] \end{aligned}$	[171, 174] meas. ΔH of the reaction with K. [176] meas. ΔH of the bomb reaction with Mg . [580, 581] meas. ion abundance and appearance potential. [166-; 177] meas. $D(C-F)$. [177] meas. $D(C-C l) . ~[446]$ meas. dissoc. pressure of solid hydrate. [368, 365, 579] calc. ΔH vap. [9] lists ΔH vap. [367] est. $\Delta H f_{293}^{\circ}=-67.7$. [26, 361] list $-70 \pm 4 \cdot[27]$ lists $-71 \pm .2$. [354] est. -72 . [25] lists -73.6 . [368, 445] meas. v.p. [9] lists ΔH fus.
$\mathrm{CDF}_{3}(\mathrm{~g})$		[362] calc. thermo. properties.
CFH (g)		[26] est. $\mathrm{HHf}_{298}^{\circ}=34 \pm 10$.
$\mathrm{CFH}_{2}(\mathrm{~g})$		[169] meas. $D\left(\mathrm{CFH}_{2}-\mathrm{Cl}\right) \cdot[177]$ est. $\mathrm{D}\left(\mathrm{CFH}_{2}-\mathrm{H}\right)$ and $\mathrm{D}\left(\mathrm{CFH}_{2}-\mathrm{F}\right) \cdot\left[26\right.$] est. $\Delta \mathrm{Hf}_{2}{ }_{2} 98$ = -5 ± 5.
$\mathrm{CFH}_{3}(\mathrm{~g})$ $\mathrm{CFH}_{3}(\ell)$		[88] calc. $\Delta \mathrm{Hf}_{298}^{\circ}=-59$ from mass spectrometric and calorimetric studies. [376] meas. ΔH soln. and ΔH hydration. [177, 375] list $D\left(\mathrm{CH}_{3}-\mathrm{F}\right)$. [177] lists $\mathrm{D}\left(\mathrm{CH}_{2} \mathrm{~F}-\mathrm{H}\right)$. [365, 579] calc. ΔH vap. [9] lists ΔH vap. [223] est. $\Delta H f_{298}^{\circ}=-44$. [367] est. -57 . [625] est. -58.5 . [21, 25] list -59. [26] lists -59 ± 5. [177] est. -60 . [354] est. -67 . [22, 23]list -67.8 . [375] lists -69 .
CFI (g)		[357] meas. ion abundance and appearance potential from $\mathrm{CF}_{3} \mathrm{I}$.
$\mathrm{CFI}_{3}(\mathrm{~g})$		[624] lists $\mathrm{D}\left(\mathrm{CF}_{3}-\mathrm{I}\right) .[354]$ calc. $\Delta \mathrm{Hf}_{2}^{\circ} \mathrm{O} 98 \mathrm{l}=2$.
CFN(g)		[9] lists ΔH sub. [26] est. $\Delta \mathrm{Hf}_{298}=4 \pm 15$. [367] est. -8.7. [28] est. -12.8 [22, 23, 25] est. -18.7 . [24] est. -25 ± 15.
CFN(c)		
CFO(g)		[177] est $D(\mathrm{COF}-\mathrm{F})$ and $D\left(\mathrm{CH}_{3} \mathrm{COF}\right)$. [26] est. $\Delta \mathrm{Hf}_{2}^{\circ} \mathrm{O} 98=-49 \pm 15$.
$\mathrm{CF}_{2} \mathrm{H}(\mathrm{g})$		[169] meas. $D\left(\mathrm{CF}_{2} \mathrm{H}-\mathrm{Cl}\right) \cdot$ [177] est. $\mathrm{D}\left(\mathrm{CF}_{2} \mathrm{H}-\mathrm{H}\right)$ and $\mathrm{D}\left(\mathrm{CF}_{2} \mathrm{H}-\mathrm{F}\right) \cdot$ [26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=$ -60 ± 5.

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{CF}_{2} \mathrm{H}_{2}(\mathrm{~g})$	$-105.50 \pm 0.22[377]$	[377] meas. $\Delta \mathrm{H}$ of reaction with oxygen in a bomb calorimeter. See also [176]. [177] est. $D\left(\mathrm{CH}_{2} \mathrm{~F}-\mathrm{F}\right)$ and $\mathrm{D}\left(\mathrm{CHF}_{2}-\mathrm{F}\right) .[21,25]$ list $\Delta \mathrm{Hf}_{298}^{\circ}=-105.50$. [26] lists -105.5 ± 1. [177] est. -110. [354] calc. -115. [22,23] est. -117.9.
$\mathrm{CF}_{2} \mathrm{I}(\mathrm{g})$		[357] meas. ion abundance and appearance potential from $\mathrm{CF}_{3} \mathrm{I}$. [624] est. $\Delta \mathrm{Hf}_{298}=$ -50.2.
$\mathrm{CF}_{2} \mathrm{I}_{2}(\mathrm{~g})$		[354] calc. $\Delta \mathrm{Hf}_{298}^{\circ}=-70$.
$\begin{aligned} & \mathrm{CF}_{2} \mathrm{O}(\mathrm{~g}) \\ & \left(\mathrm{COF}_{2}\right) \end{aligned}$	$\begin{aligned} & -149.9 \pm 3.0[15] \\ & -150.35 \pm 0.5[170] \\ & -166.6[172] \end{aligned}$	[170] meas. $\Delta \mathrm{H}$ hydr. $=26.73 \pm 0.2$. [172, 176] meas. heat of combustion of fluorocarbons, forming some COF_{2}. [378] discusses heat of formation. [177] meas. $D\left(\right.$ COF-F). [9] lists ΔH vap. [176] calc. $\Delta \mathrm{Hf}_{298}^{\circ}=-143$. Other reviews give for $\Delta \mathrm{Hf}_{298}^{\circ}:-149.9 \pm 3$ [26], -150.2 ± 5 [27], -150.45 [21], -159.7 [22,25].
$\mathrm{CF}_{2} \mathrm{O}(\ell)$		
$\mathrm{CF}_{3} \mathrm{H}(\mathrm{g})$	-162.6 ± 0.6 [377]	[377] meas. ΔH of reaction with oxygen in a bomb calorimeter. See also [176]. [362, 379] list thermo. properties. [104, 166, 168, 177] list D(CF -H$)$. [177] est. $D\left(\mathrm{CF}_{2} \mathrm{H}-\mathrm{F}\right)$. See also [80]. [9] lists ΔH vap. [21, 25] list $\Delta H f_{298}^{\circ}=-162.6$. [26] lists $-162.6 \pm 1 .[354]$ calc. $-164 . \cdot[22,23,177]$ est. -168.0. [166] lists -169.
$\mathrm{CF}_{3} \mathrm{H}(t)$		
$\mathrm{CF}_{3} \mathrm{I}(\mathrm{g})$		[357] meas. ion abundances and appearance potentials and calc. $D\left(\mathrm{CF}_{3}-\mathrm{I}\right)$. [354] calc. $\Delta \mathrm{Hf}_{298}^{\circ}=-141$.
$\mathrm{CF}_{3} \mathrm{O}(\mathrm{g})$		[381] gives $\mathrm{D}\left(\mathrm{CF}_{3} \mathrm{O}-\mathrm{F}\right)=47$.
$\begin{aligned} & \mathrm{CF}_{4} \mathrm{O}(\mathrm{~g}) \\ & \left(\mathrm{CF}_{3} \mathrm{OF}\right) \end{aligned}$	-177.3 [381]	For the reaction: $\mathrm{CF}_{4} \mathrm{O}(\mathrm{g})=\mathrm{CF}_{2} \mathrm{O}(\mathrm{g})+\mathrm{F}_{2}(\mathrm{~g})$ [381] meas. K and calc. $\Delta \mathrm{H}_{298}=26.9$. See $\mathrm{CF}_{3} \mathrm{O}(\mathrm{g})$.
$\begin{aligned} & \mathrm{CF}_{5} \mathrm{~N}(\mathrm{~g}) \\ & \left(\mathrm{CF}_{3} \mathrm{IF} 2\right) \end{aligned}$		[382] calc. $\Delta \mathrm{H}$ vap.
$\mathrm{CF}_{5} \mathrm{~N}(\ell)$		[382] meas. v.p.
$\begin{aligned} & \mathrm{CF}_{5} \mathrm{~N}(\mathrm{c}) \\ & \left(\mathrm{CF}_{3} \mathrm{NF}_{2}\right) \end{aligned}$		[382] meas. v.p.
$\begin{aligned} & \mathrm{CF}_{12} \mathrm{~S}_{2}(\mathrm{~g}) \\ & \left(\mathrm{CF}_{2}\left(\mathrm{SF}_{5}\right)_{2}\right) \end{aligned}$		
$\mathrm{CF}_{12} \mathrm{~S}_{2}(\ell)$		[383] meas. v.p.
CdClF (g)		[623] calc. $\Delta \mathrm{H}$ vap.
CdClF (ℓ)		
$\mathrm{ClFHg}(\mathrm{c})$		[216] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-62$.
(HgOLF)		
$\mathrm{ClFHg}_{2}(\mathrm{c})$	[216] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-70$.	
$\left(\mathrm{Hg}_{2} \mathrm{ClF}\right)$		
$\mathrm{ClFLi}_{2}(\mathrm{~g})$ hyp. ($\mathrm{Li}_{2} \mathrm{ClF}$)	[27, 33] est. $\Delta_{H}{ }_{298}^{\circ}=-180.2 .[25,34,37]$ est. -183.3.	
CIFMg(g) hyp.	$\begin{aligned} & \text { [26] est. } \Delta H f_{298}^{\circ}=-137 \pm 15 .[27] \text { est. }-138.9 \cdot[24] \text { est. }-139 \pm 20 .[25] \text { est. } \\ & -145.2 \text {. } \end{aligned}$	
(MgClF)		
$\mathrm{ClFNa} \mathrm{Z}_{2}(\mathrm{~g})$ hyp. ($\mathrm{Na}_{2} \mathrm{ClF}$)	[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-167$.	
$\begin{aligned} & \mathrm{ClFO}_{2}(\mathrm{~g}) \\ & \left(\mathrm{ClO}_{2} \mathrm{~F}\right) \end{aligned}$		[9] lists ΔH vap:

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{ClFO}_{2}(\ell)$		
$\begin{aligned} & \mathrm{ClFO}_{3}(\mathrm{~g}) \\ & \left(\mathrm{ClO}_{3} \mathrm{~F}\right) \end{aligned}$ $\begin{aligned} & \mathrm{ClFO}_{3}(l) \\ & \mathrm{ClFO}_{3}(\mathrm{c}) \end{aligned}$	$-5.12 \pm 0.68[53]$	```[53] meas. }\triangle\textrm{H}\mathrm{ of reaction with H2 (g). See also [176]. [384] meas. ion appearance potentials and est. }\Delta\textrm{Hf}=-5.3. [384] est. D(O_Cl-F). [385] reports decompositio energy studies. [388] meas. }\Delta\textrm{H}\mathrm{ vap. [386, 387] calc. }\triangleH\mathrm{ vap. [28] lists \DeltaHf+O [386, 387, 388, 389] meas. v.p. [388] meas. }\DeltaH\mathrm{ fus.```
$\begin{aligned} & \mathrm{CIFP}(\mathrm{~g}) \\ & (\mathrm{PCIF}) \end{aligned}$		[25, 26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-61 \pm 15$.
$\begin{aligned} & \mathrm{ClFPb}(\mathrm{c}) \\ & (\mathrm{PbClF}) \end{aligned}$		[282] meas. heat of formation from PbF_{2} and PbCl_{2}. [264] meas. ΔF for exchange reaction producing PbClF. [390] tabulates $K \mathrm{sp}$ and related thermodynamic functions.
$\begin{aligned} & \text { ClFS(g) hyp. } \\ & \text { (SCIF) } \end{aligned}$		[26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-37 \pm 15$. [25] est. -47.
CIFSr (c)		See $\mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{Sr}_{2}(\mathrm{c})$.
$\mathrm{ClFZn}(\mathrm{g})$		[623] calc. ΔH vap.
ClFZn(ℓ)		
$\begin{aligned} & \mathrm{ClF}_{2} \mathrm{Li} i_{3}(\mathrm{~g}) \text { hyp. } \\ & \left(\mathrm{Li}_{3} \mathrm{ClF} \mathrm{~F}_{2}\right) \end{aligned}$		[25] est. $\Delta^{4}{ }_{298}^{\circ}=-305$.
$\begin{aligned} & \mathrm{C} 1 \mathrm{~F}_{2} \mathrm{~N}(\mathrm{~g}) \\ & \left(\mathrm{NCIF}_{2}\right) \\ & \mathrm{ClF}_{2} \mathrm{~N}(\ell) \end{aligned}$		[391] calc. ΔH vap. [391] meas. v.p.

Compounds	$\Delta \mathrm{Hf}^{\circ} \mathrm{O}{ }^{\text {a }}$ ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
$\begin{aligned} & \mathrm{ClF}_{2} \mathrm{P}(\mathrm{~g}) \\ & \left(\mathrm{PClF}_{2}\right) \\ & \mathrm{ClF}_{2} \mathrm{P}(\ell) \end{aligned}$		[9] lists ΔH vap. [623] calc. $\Delta \mathrm{H}$ vap. [25, 26] est. $\Delta H f{ }_{298}^{\circ}=-171 \pm 15$.
$\begin{aligned} & \mathrm{ClF}_{3} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiClF}_{3}\right) \\ & \mathrm{ClF}_{3} \mathrm{Si}(\ell) \end{aligned}$		[9] lists ΔH vap. [26, 27] est. $\Delta H f_{298}^{\circ}=-315 \pm 15$.
$\mathrm{ClF}_{4} \mathrm{H}(\mathrm{g})$		For the reaction: $\mathrm{HF}+\mathrm{ClF}_{3}=\mathrm{HF} \cdot \mathrm{ClF}_{3}$, [392] meas. K and calc. $\Delta \mathrm{H}=-3.9$. For this same reaction [393] gives $\Delta H=-4$.
$\begin{aligned} & \mathrm{ClF}_{4} \mathrm{Sb}(\mathrm{~g}) \\ & \left(\mathrm{SbF}_{4} \mathrm{Cl}\right) \\ & \mathrm{CIF}_{4} \mathrm{Sb}(\ell) \end{aligned}$		[623] calc. ΔH vap.
$\begin{aligned} & \mathrm{ClF}_{4} \mathrm{Ta}(\mathrm{~g}) \\ & \left(\mathrm{TaF}_{4} \mathrm{Cl}\right) \\ & \left.\mathrm{CIF}_{4} \mathrm{Ta}^{(}\right) \end{aligned}$		[623] calc. ΔH vap.
$\begin{aligned} & \mathrm{CLF} \mathrm{~F}_{5} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{SClF}_{5}\right) \\ & \mathrm{CLF}_{5} \mathrm{~S}(\mathrm{l}) \end{aligned}$	-245 [394]	```[394] meas.\DeltaH hydr. in NaOH(aq). [395] celc. \DeltaH vap. [395] meas. v.p.```
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{FLi}{ }_{3}(\mathrm{~g}) \mathrm{hgp} . \\ & \left(\mathrm{Li}_{3} \mathrm{Cl}_{2} \mathrm{~F}\right) \end{aligned}$		[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-266$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{FP}(\mathrm{~g}) \\ & \left(\mathrm{PCl}_{2} \mathrm{~F}\right) \\ & \mathrm{Cl}_{2} \mathrm{FP}(\ell) \end{aligned}$		[9] lists ΔH vap. [623] calc. ΔH vap. [25, 26] est. $\Delta H f_{298}^{\circ}=-121 \pm 15$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{2}^{\mathrm{Ge}(\mathrm{~g})} \\ & \left(\mathrm{GeCl}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{G}_{\mathrm{e}}(\ell) \end{aligned}$		[9] lists $\Delta \mathrm{H}$ vap.

Species	$\Delta \mathrm{Hf}_{298}^{\circ}$ (kcal/mole)	Remărks
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiCl}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{Si}(\ell) \end{aligned}$		[9] Ifsts ΔH vap. [26] est. $\Delta^{\text {Hf }}{ }_{298}^{\circ}=-258 \pm 15$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{2} \mathrm{Sr}_{2}(\mathrm{l}) \\ & \left(\mathrm{SrCl}_{2} \cdot \mathrm{SrF}_{2}\right) \end{aligned}$	-498[257]	[257] meas. $\Delta \mathrm{H}$ soln. of $\mathrm{SrF}_{2}+\mathrm{SrCl}_{2}$, and $\mathrm{Sr}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$ in AgNO_{3} (aq). [139] reports ΔH for several reactions of $\mathrm{Sr}_{2} \mathrm{Cl}_{2} \mathrm{~F}_{2}$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{Sb}(\mathrm{~g}) \\ & \left(\mathrm{SbCl}_{2} \mathrm{~F}_{3}\right) \\ & \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{Sb}(\mathrm{l}) \end{aligned}$		[623] calc. ΔH vap.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{Ta}(\mathrm{~g}) \\ & \left(\mathrm{TaCl}_{2} \mathrm{~F}_{3}\right) \\ & \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{Ta}(\mathrm{l}) \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{Cl}_{3} \mathrm{FGe}(\mathrm{~g}) \\ & \left(\mathrm{GeCl}_{3} \mathrm{~F}\right) \\ & \mathrm{Cl}_{3} \mathrm{FGe}(\ell) \end{aligned}$		[9] lists ΔH vap.
$\begin{aligned} & \mathrm{Cl}_{3} \mathrm{FSi}(\mathrm{~g}) \\ & \left(\mathrm{SiCl}_{3} \mathrm{~F}\right) \\ & \mathrm{Cl}_{3} \mathrm{FSI}(\mathrm{l}) \end{aligned}$		[9] lists ΔH vap. [26, 27] est. $\Delta H f_{298}^{\circ}=-201 \pm 15$.
$\begin{aligned} & \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{Sb}(\mathrm{~g}) \\ & \left(\mathrm{Sb}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{Sb}(\ell) \end{aligned}$		[623] calc. 4 H vap.
$\begin{aligned} & \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{Ta}(\mathrm{~g}) \\ & \left(\mathrm{TaCl}_{3} \mathrm{~F}_{2}\right) \\ & \mathrm{Cl}_{3} \mathrm{~F}_{2} \mathrm{Ta}(l) \end{aligned}$		[623] calc. ΔH vap.
$\begin{aligned} & \mathrm{Cl}_{4} \mathrm{FSb}(\mathrm{~g}) \\ & \left(\mathrm{SbCl}_{4} \mathrm{~F}\right) \\ & \mathrm{Cl}_{4} \mathrm{FSb}(\mathrm{l}) \end{aligned}$		[623] calc. 4 H vap.
$\begin{aligned} & \mathrm{Cl}_{4} \mathrm{FTa}(\mathrm{~g}) \\ & \left(\mathrm{TaCl}_{4} \mathrm{~F}\right) \\ & \mathrm{Cl}_{4} \mathrm{FTa}(\ell) \end{aligned}$		[623] calc. ΔH vap.
$\begin{aligned} & \mathrm{CrF}_{2} \mathrm{O}_{2}(\mathrm{~g}) \\ & \mathrm{CrF}_{2} \mathrm{O}_{2}(\mathrm{l}) \\ & \mathrm{CrF}_{2} \mathrm{O}_{2}(\mathrm{c}) \end{aligned}$		[396] calc. ΔH sub. and ΔH vap. [396] meas. v.p. and calc. ΔH fus. [396] meas. v.p.
$\begin{aligned} & \mathrm{CsF}_{2} \mathrm{H}(\mathrm{c}) \\ & \left(\mathrm{CsHF}_{2}\right) \end{aligned}$	-216.1 [9]	
$\begin{aligned} & \mathrm{CsF}_{2} \mathrm{Li}_{1}(\mathrm{~g}) \\ & (\mathrm{CsF} \cdot \mathrm{LiF}) \end{aligned}$		[196] calc. energy of formation.
$\begin{aligned} & \mathrm{CsF}_{2} \mathrm{Rb}(\mathrm{~g}) \\ & (\mathrm{CsF} \cdot \mathrm{RbF}) \end{aligned}$		For the equilibrium: $\mathrm{Cs}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{Rb}_{2} \mathrm{~F}_{2}(\mathrm{~g})=2 \mathrm{CsRbF}_{2}(\mathrm{~g}) \cdot[512]$ meas. K $\left(883-925^{\circ} \mathrm{K}\right)=4.3 \pm 1.0$.
$\begin{aligned} & \mathrm{Cs}_{2} \mathrm{~F}_{6} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{Cs}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	-669.5 [9]	
FHO (g)		[223] est. $\Delta \mathrm{Hf}^{\circ} \mathrm{O} 98 \mathrm{C}=-9 .[24,27]$ est. -26.1 ± 15.
$\begin{aligned} & \mathrm{FH}_{2} \mathrm{~N}(\mathrm{~g}) \\ & \left(\mathrm{NH}_{2} \mathrm{~F}\right) \end{aligned}$		[223] est. $\Delta \mathrm{Hf}^{\circ} \mathrm{O} 98 \mathrm{C}=-5$.

Species	$\Delta 4 \mathrm{~F}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{FH}_{3} \mathrm{Si}(\mathrm{g})$ (SiFH_{3}) $\mathrm{FH}_{3} \mathrm{Si}(\ell)$		[9] lists ΔH vap. [25] est. $\Delta 4 f_{298}^{\circ}=-86.8$. [26, 27] est. -105 ± 15. See ${ }^{\mathrm{Br}} 2^{\mathrm{H}} \mathrm{HNS}_{2}$ and $\mathrm{BCF}_{2} \mathrm{H}_{6}{ }^{\mathrm{NSI}}$. [397] meas. v.p.
$\begin{aligned} & \mathrm{FH}_{4} \mathrm{~N}(\mathrm{~g}) \\ & \left(\mathrm{NH}_{4} \mathrm{~F}\right) \end{aligned}$		[398] calc. ΔH sub.
$\mathrm{FH}_{4} \mathrm{~N}(\mathrm{c})$	$\begin{aligned} & -111.6[9] \\ & -111.0[212] \end{aligned}$	[212] meas. $\Delta \mathrm{H}$ soln. of NH_{3} and $\mathrm{NH}_{4} \mathrm{~F}(\mathrm{c})$ in $\mathrm{HF}(\ell)$. [399] calc. lattice energy and ΔF soln. [398] meas. v.p. [400] reports thermody. study of the system $\mathrm{NH}_{4} \mathrm{~F}-\mathrm{NH}_{4} \mathrm{HF}_{2}$.
$\begin{aligned} & \mathrm{FHgI}(\mathrm{c}) \\ & (\mathrm{HgFI}) \end{aligned}$		[216] calc. $\Delta \mathrm{Hff}_{298}=-47$.
${ }^{\mathrm{FLiO}}(\mathrm{g})$ (L 1 OF)		$[24,27]$ est. $\Delta 4 \mathrm{f}_{298}^{0}=-10 \pm 20$.
$\begin{aligned} & \mathrm{FMnO}_{3}(\mathrm{~g}) \\ & \left(\mathrm{MnO}_{3}{ }^{\mathrm{F})}\right. \end{aligned}$		
$\mathrm{MrnO}_{3}(l)$		[401] meas. v.p.
$\begin{aligned} & \text { FNO(g) } \\ & \text { (NOF) } \end{aligned}$	-15.8 [402]	[402] meas. the heat of reaction of $\mathrm{NO}(\mathrm{g})$ and $\mathrm{F}_{2}(\mathrm{~g})$. See also [582]. [9] 11sts ΔH vap. [22, 25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-14.9$. [26, 27] 11st -15.65 ± 1. [44] est. -32.7 ± 15.
FNO(ℓ)		
$\begin{aligned} & \mathrm{FNO}_{2}(\mathrm{~g}) \\ & \mathrm{FNO}_{2}(\ell) \end{aligned}$		[9] lists 4 Al vap.
$\mathrm{FNO}_{3}(\mathrm{~g})$		[583] meas. rate of thermal decompn. vs. temp. and est. $D\left(\mathrm{NO}_{3}-\mathrm{F}\right)=29.7$. See also [584].
$\begin{aligned} & \mathrm{FNS}(\mathrm{~g}) \\ & (\mathrm{NSFF}) \end{aligned}$		[403] calc. 4 H vap.
FNS(ℓ)		[403] meas. v.p.
$\begin{aligned} & \operatorname{FOP}(\mathrm{g}) \\ & (\mathrm{POF}) \end{aligned}$		
FOS(g) (Sof)		[25, 26] est. $\Delta 4 f_{298}^{\circ}=24 \pm 15$.
$\begin{aligned} & \text { FPS (g) } \\ & (\mathrm{PSFF}) \end{aligned}$		[25,26, 27] est. $\Delta 4 f_{298}^{\circ}=-41 \pm 15$.
$\begin{aligned} & \mathrm{F}_{2} \operatorname{HK}(\ell) \\ & \left(\mathrm{KHF} \mathrm{~F}_{2}\right) \end{aligned}$		[404] meas. ΔH fus. [9] 1ists $\Delta 4$ fus.
$\mathrm{F}_{2} \mathrm{HK}(\mathrm{c})$	-219.98 [9]	For ΔH soln. in $H F(\ell)$, [212] meas. -9.81. For the reaction: $\mathrm{KHF}_{2}(\mathrm{c})=\mathrm{KF}(\mathrm{c})+\mathrm{HF}(\mathrm{g})$ [404] meas. $\Delta H_{226.80 C}=18.52 \pm 0.05$. [404] meas. ΔH trans. $(B-\alpha)=2.682 \pm 0.010$. See also [585]. [9] lists ΔH trans. See $A 1 F_{5} H_{2} \mathrm{~K}_{2} \mathrm{O}(c)$.
$\mathrm{F}_{2} \mathrm{HLi}^{(\mathrm{c})}$ (LiHF_{2})	-224.2 ± 1 [34]	For the reaction: $\operatorname{LiHF}_{2}(\mathrm{c})=\operatorname{LiF}(\mathrm{c})+\mathrm{HF}(\mathrm{g}),[406]$ meas. $\Delta \mathrm{H}=13.7$. [406] meas. ΔH trans. See also [409]. Other reviews list $\Delta \mathrm{Hf}_{298}^{\circ}=-224.2[25,37]$.
$\begin{aligned} & \mathrm{F}_{2} \operatorname{HN}(\mathrm{~g})^{\left(\mathrm{NFF}_{2}\right)} \\ & \mathrm{F}_{2} \operatorname{HNN}^{2}(\ell) \end{aligned}$		$[407,623]$ calc. $\Delta \mathrm{H}$ vap. [25] est. $\Delta 4 f_{298}^{\circ}=-23$. [407] meas. v.p.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{HNa}(\mathrm{c}) \\ & \left(\mathrm{NaHaF}_{2}\right) \end{aligned}$	$\begin{aligned} & -216.6[9] \\ & -218.0[212] \end{aligned}$	[212] meas. $\Delta \mathrm{H}$ soln. of $\mathrm{NaF}(\mathrm{c})$ and $\mathrm{NaHF}{ }_{2}(\mathrm{c})$ in $\mathrm{HF}(\mathrm{l})$. For the reaction: $\mathrm{NaFF}_{2}(\mathrm{c})=\mathrm{NaF}(\mathrm{c})+\mathrm{HF}(\mathrm{g}),[408]$ meas. K and calc. $\Delta \mathrm{H}=16.1$.

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{F}_{2} \mathrm{HRb}(\mathrm{c}) \\ & \left(\mathrm{RbHF}_{2}\right) \end{aligned}$	-217.3 [9]	
$\begin{aligned} & \mathrm{F}_{2} \mathrm{HTI}(\mathrm{c}) \\ & \left(\mathrm{T} I \mathrm{HF}_{2}\right) \end{aligned}$		[409] reports thermodyn. studies.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{H}_{2} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiF}_{2} \mathrm{H}_{2}\right) \end{aligned}$		[9] lists ΔH vap. [25] est. $\Delta H f_{298}^{\circ}=-181.2 .[26,27]$ est. -194 ± 15.
$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{Si}(\mathrm{l})$		[9] lists ΔH fus.
$\mathrm{F}_{2} \mathrm{H}_{2} \mathrm{Si}$ (c)		
$\begin{aligned} & \mathrm{F}_{2} \mathrm{H}_{5} \mathrm{~N}(\mathrm{c}) \\ & \left(\mathrm{NH}_{4} \mathrm{HF}_{2}\right) \end{aligned}$	$\begin{aligned} & -191.4[212] \\ & -190.8[410] \end{aligned}$	[212] meas. ΔH soln. of $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{~F}$, and $\mathrm{NH}_{4} \mathrm{HF}_{2}$ in $\mathrm{HF}(l)$. [410] meas. ΔH neutralization of $\mathrm{NH}_{3}(\mathrm{aq})$ and $\mathrm{HF}(\mathrm{aq})$, ΔH soln. and ΔH diln. of $\mathrm{NH}_{4} \mathrm{HF}_{2}$. [400, 409] report thermodynamic studies. See $\mathrm{F}_{4} \mathrm{H}_{7} \mathrm{~N}(\mathrm{c})$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{KNa}(\mathrm{~g}) \\ & \left(\mathrm{KNaF}_{2}\right) \end{aligned}$		For the equilibrium: $\mathrm{K}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{Na}_{2} \mathrm{~F}_{2}(\mathrm{~g})=2 \mathrm{KNaF}_{2}(\mathrm{~g})$, [512] meas. $\mathrm{K}\left(891-951^{\circ} \mathrm{K}\right)=4.9 \pm 2.0$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{KRb}(\mathrm{~g}) \\ & \left(\mathrm{KRbF}_{2}\right) \end{aligned}$		For the equilibrium: $\mathrm{Rb}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{K}_{2} \mathrm{~F}_{2}(\mathrm{~g})=2 \mathrm{KRbF}_{2}(\mathrm{~g})$, [512] meas. $\mathrm{K}\left(965-994^{\circ} \mathrm{K}\right)=4.2 \pm 1.0$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{LiNa}(\mathrm{~g}) \\ & \left(\mathrm{LiNaF}_{2}\right) \end{aligned}$		For the reaction: $\mathrm{Na}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{Li}_{2} \mathrm{~F}_{2}(\mathrm{~g})=2 \mathrm{LiNaF} \mathrm{N}_{2}(\mathrm{~g})$, [227] calc. $\Delta \mathrm{H} \cong 0$. See [512]. [227, 512] meas. Ion abundances. [546] calc. energy of formation from the ions.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{~L} 1 R \mathrm{R}(\mathrm{~g}) \\ & \left({\left.\mathrm{L} 1 \mathrm{RbF}_{2}\right)}\right. \end{aligned}$		For the equilibrium: $\mathrm{Li}_{2} \mathrm{~F}_{2}(\mathrm{~g})+\mathrm{Rb}_{2} \mathrm{~F}_{2}(\mathrm{~g})=2 \mathrm{LiRbF} \mathrm{I}_{2}(\mathrm{~g})$, [512] meas. $K\left(897-958^{\circ} \mathrm{K}\right)=25.3 \pm 7$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{~N}_{2} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{SN}_{2} \mathrm{~F}_{2}\right) \end{aligned}$		[412] calc. 4 H vap.
$\mathrm{F}_{2} \mathrm{~N}_{2} \mathrm{~S}(\ell)$		[412] meas. v.p.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{OP}(\mathrm{~g}) \text { hgp. } \\ & \left(\mathrm{POF}_{2}\right) \end{aligned}$		[25, 26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-180 \pm 15$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{OS}(\mathrm{~g}) \\ & \left(\mathrm{SOF}_{2}\right) \\ & \mathrm{F}_{2} \mathrm{OS}(\ell) \end{aligned}$		[9] lists ΔH vap. [25, 26, 27] est. $\Delta H^{\circ}{ }_{298}^{\circ}=-113 \pm 10$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{OSI}(\mathrm{~g}) \\ & \left(\mathrm{SiOF}_{2}\right) \end{aligned}$		[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-222$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{OTh}^{(\mathrm{c})} \\ & \left(\mathrm{ThOF}_{2}\right) \end{aligned}$	-389.6[413]	[413] meas. dissoc. pressure of the reaction: $2 \mathrm{ThOF}_{2}(\mathrm{c})=\mathrm{ThO}_{2}(\mathrm{c})+\mathrm{ThF}_{4}(\mathrm{~g})$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{OT}_{1}(\mathrm{~g}) \\ & \left(\mathrm{T}_{1} \mathrm{OF}_{2}\right) \end{aligned}$		[25] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-220$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{SO}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{l}) \\ & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{~S}(\mathrm{c}) \end{aligned}$	-205 [414]	[414] meas. appearance potential of SO_{2}^{+}ion, as well as other ions. [415] meas. ΔH vap. [416]. lists ΔH vap. [27] est. $\Delta H f_{298}^{\circ}=-150 .[25,26]$ list -205 ± 5. [415, 417] meas. v.p. [416] lists v.p. [415] meas. ΔH fus. [417] meas. $v . p$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{Se}(\mathrm{~g}) \\ & \left(\mathrm{SeO}_{2} \mathrm{~F}_{2}\right) \\ & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{Se}(l) \end{aligned}$		[418] calc. ΔH rap. $\text { [418] meas. } v \cdot p .$
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{U}(\mathrm{c}) \\ & \left(\mathrm{UO}_{2} \mathrm{~F}_{2}\right) \end{aligned}$	-391.4 ± 3.6 [419]	[419] meas. ΔH soln. of $\mathrm{UF}_{6}(\mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{UO}_{2} \mathrm{~F}_{2}(\mathrm{c})$ in $\mathrm{HF}(\mathrm{aq})$. [325] calc. ΔF vs. T for several reactions.

Species	$\Delta \mathrm{Hf}^{\circ} \mathrm{O} 98$ ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{SO}_{3} \mathrm{~F}_{2}\right) \\ & \mathrm{F}_{2} \mathrm{O}_{3} \mathrm{~S}(\mathrm{l}) \end{aligned}$		[420] meas. v .p.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}(\mathrm{~g}) \\ & \left(\mathrm{S}_{2} \mathrm{O}_{2}\right) \\ & \mathrm{F}_{2} \mathrm{O}_{6} \mathrm{~S}_{2}(l) \end{aligned}$		[421] meas. v.p.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{8} \mathrm{~S}_{3}(\mathrm{~g}) \\ & \left(\mathrm{S}_{3} \mathrm{O}_{8} \mathrm{~F}_{2}\right) \\ & \mathrm{F}_{2} \mathrm{O}_{8} \mathrm{~S}_{3}(\ell) \end{aligned}$		[422] calc. ΔH vap. [422] meas. v.p.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{PS}(\mathrm{~g}) \\ & \left(\mathrm{PSF}_{2}\right) \end{aligned}$		$[25,26]$ est. $\Delta H f_{298}^{\circ}=-133 \pm 15$.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{HSi}_{1}(\mathrm{~g}) \\ & \left(\mathrm{SiF}_{3} \mathrm{H}\right) \\ & \mathrm{F}_{3} \mathrm{HSi}^{(\ell)} \end{aligned}$		[9] Insts ΔH vap. [25] est. $\Delta H f_{298}^{\circ}=-275.6 .[26,27]$ est. -283 ± 15.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{2} \mathrm{~K}(\mathrm{c}) \\ & (\mathrm{KF} \cdot 2 \mathrm{HF}) \end{aligned}$	-296.7 [9]	
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{2} \mathrm{Na}(\mathrm{c}) \\ & (\mathrm{NaF} \cdot 2 \mathrm{HF}) \end{aligned}$	-292.5 [212]	[212] meas. ΔH soln of NaF and $\mathrm{NaF} \cdot 2 \mathrm{HF}$ in $\mathrm{HF}(\ell)$:
$\mathrm{F}_{3} \mathrm{MgNa}(\ell)$		[609] calc. Δs for the reactions: $\mathrm{NaF}+\mathrm{MgF}_{2}=\mathrm{NaMgF}_{3}$, and $\frac{1}{3} \mathrm{Na}_{3} \mathrm{AlF}_{6}+\mathrm{MgF}_{2}=$ $\mathrm{NaMgF}_{3}+\frac{1}{3} \mathrm{AIF}_{3}{ }^{\circ}$
$\begin{aligned} & \mathrm{F}_{3} \mathrm{NS}_{(\mathrm{g})} \\ & \left(\mathrm{SNF}_{3}\right) \\ & \mathrm{F}_{3} \mathrm{NS}^{(\ell)} \end{aligned}$		[423] calc. $\Delta \mathrm{H}$ vap. [423] meas. v.p.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{OP}(\mathrm{~g}) \\ & \left(\mathrm{POF}_{3}\right) \\ & \mathrm{F}_{3} \mathrm{OP}(\ell) \\ & \mathrm{F}_{3} \mathrm{OP}(\mathrm{c}) \end{aligned}$		For the reaction: $\mathrm{PF}_{3}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{POF}_{3}(\mathrm{~g}),[275]$ gives $\Delta H=-129.8$. [275] est. $D(P-F)$ and $D(P=0)$. See also [566]. [9] lists ΔH vap. and ΔH sub. See $F_{3} O P(l)$ for $\nabla . p$. [425] lists thermodyn. properties. [25, 26] est. $\Delta H_{298}^{\circ}=-292.5 \pm 10$. [424] meas. v.p. [9] lists ΔH fus.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{O}_{2} \mathrm{Re}(\mathrm{~g}) \\ & \left(\mathrm{ReO}_{2} \mathrm{~F}_{3}\right) \\ & \mathrm{F}_{3} \mathrm{O}_{2} \mathrm{Re}(l) \end{aligned}$		[240] calc. ΔH vap. [240] meas. v.p.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{PS}(\mathrm{~g}) \\ & \left(\mathrm{PF}_{3} \mathrm{~S}\right) \\ & \mathrm{F}_{3} \mathrm{PS}(\ell) \end{aligned}$		[9] lists ΔH vap. [425] lists thermodyn. prop. [25, 26] est. $\Delta H^{\circ}{ }_{298}{ }_{29}=-245 \pm 10$.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{3} \mathrm{~K}(\mathrm{c}) \\ & (\mathrm{KF} \cdot 3 \mathrm{HF}) \end{aligned}$	-373.0 [9]	
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{7} \mathrm{~N}(\ell) \\ & \left(\mathrm{NH}_{4} \mathrm{~F} \cdot 3 \mathrm{HF}\right) \end{aligned}$		[426] meas. ΔH fus.
$\mathrm{F}_{4} \mathrm{H}_{7} \mathrm{~N}$ (c)	-337.4[212]	[212] meas. ΔH soln. of NH_{3} and $\mathrm{NH}_{4} \mathrm{~F}$. 3 HF in $\mathrm{HF}(\ell)$. [426] meas. dissoc. pressure and calc. for the reaction: $\mathrm{NH}_{4} \mathrm{H}_{3} \mathrm{~F}_{4}(\mathrm{c})=2 \mathrm{HF}(\mathrm{g})+\mathrm{NH}_{4} \mathrm{HF}_{2}(\mathrm{c}), \Delta H=10.5 \pm 1$. [426] meas. ΔH trans. (3 transitions).
$\begin{aligned} & \mathrm{F}_{4} \mathrm{MoO}(\mathrm{~g}) \\ & \left(\mathrm{MoOF}_{4}\right) \\ & \mathrm{F}_{4} \mathrm{MoO}(\ell) \\ & \mathrm{F}_{4} \mathrm{MoO}(\mathrm{c}) \end{aligned}$		[240] calc. ΔH sub. and ΔH vap. [240] meas. v.p. and calc. ΔH fus. [240] meas. V.p.

Species	$\Delta H^{\circ} \mathrm{O}{ }_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{F}_{4} \mathrm{ORe}(\mathrm{~g}) \\ & \left(\mathrm{ReOF}_{4}\right) \end{aligned}$		[240] calc. ΔH sub. and ΔH vap. [9] lists ΔH sub.
$\mathrm{F}_{4} \mathrm{ORe}(\ell)$		[240] meas. V.p. and calc. ΔH fus.
$\mathrm{F}_{4} \mathrm{ORe}(\mathrm{c})$		[240] meas. v.p.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{OS}(\mathrm{~g}) \\ & \left(\mathrm{SOF}_{4}\right) \\ & \mathrm{F}_{4} \mathrm{OS}^{(\mathrm{l})} \end{aligned}$		[427] meas. v.p.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{OW}(\mathrm{~g}) \\ & \left(\mathrm{WOF}_{4}\right) \end{aligned}$		[240] calc. ΔH vap. and ΔH sub.
$\mathrm{F}_{4} \mathrm{OW}(\mathrm{l})$		[240] meas. v.p. and calc. ΔH fus.
$\mathrm{F}_{4} \mathrm{OW}(\mathrm{c})$		[240] meas. v.p.
$\begin{aligned} & \mathrm{F}_{5} \mathrm{NaU}(\mathrm{c}) \\ & \left(\mathrm{NaOF}_{5}\right) \end{aligned}$		[433] obs. the dissoc. $\mathrm{UF}_{5} \cdot \mathrm{NaF}(\mathrm{c})=\mathrm{UF}_{4} \mathrm{NaF}(\mathrm{c})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g})$ above 450°.
$\begin{aligned} & \mathrm{F}_{5} \mathrm{ORe}(\mathrm{~g}) \\ & \left(\operatorname{Re} \mathrm{F}_{5}\right) \end{aligned}$		[240] calc. ΔH sub. and ΔH vap.
$\mathrm{F}_{5} \mathrm{ORe}(\ell)$		[240] meas. v.p. and calc. ΔH fus.
$\mathrm{F}_{5} \mathrm{ORe}(\mathrm{c})$		[240] meas. V.p. and calc. ΔH trans.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{~K}_{2} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{K}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	-671 [9]	
$\begin{aligned} & \mathrm{F}_{6} \mathrm{~K}_{2} \mathrm{TH}_{1}(\mathrm{c}) \\ & \left(\mathrm{K}_{2} \mathrm{TiF}_{6}\right) \end{aligned}$		[428] meas. ΔH trans. $\gamma=\beta$ ($623^{\circ} \mathrm{K}$) and $\beta=\alpha$ ($873^{\circ} \mathrm{K}$).
$\begin{aligned} & \mathrm{F}_{6} \mathrm{~L}_{2} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{L}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	-688.9 [9]	
$\begin{aligned} & \mathrm{F}_{6} \mathrm{~N}_{3} \mathrm{P}_{3}(\mathrm{~g}) \\ & \left(\left(\mathrm{PNF}_{2}\right)_{3}\right) \end{aligned}$		[$429,430,431]$ calc. ΔH sub. $[429,430]$ calc. ΔH vap.
$\mathrm{F}_{6} \mathrm{~N}_{3} \mathrm{P}_{3}(\ell)$		[429, 430] meas. v.p. and calc. ΔH fus.
$\mathrm{F}_{6} \mathrm{~N}_{3} \mathrm{P}_{3}(\mathrm{c})$		[429, 430, 431] meas. v.p.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{NaU}(\mathrm{c}) \\ & \left(\mathrm{NaUF}_{6}\right) \end{aligned}$		See $\mathrm{F}_{5} \mathrm{UNa}$.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{Na}_{2} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{Na}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	$\begin{aligned} & -677[9] \\ & -659[432] \\ & -681.1[311] \end{aligned}$	For the reaction: $\mathrm{Na}_{2} \mathrm{SiF}_{6}(\mathrm{c})=2 \mathrm{NaF}(\mathrm{c})+\mathrm{SiF}_{4}(\mathrm{~g}),[432]$ meas. $\Delta \mathrm{H}=26.83$. For the reaction: $\mathrm{SiF}_{4}(\mathrm{~g})+2 \mathrm{NaF}(\mathrm{aq})=\mathrm{Na}_{2} \mathrm{SiF}_{6}(\mathrm{c}),[311]$ meas. $\Delta H=-37.01$.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{OS}(\mathrm{~g}) \\ & \left(\mathrm{SF}_{5} \mathrm{OF}\right) \\ & \mathrm{F}_{6} \mathrm{OS}(\ell) \end{aligned}$		[427] meas. v.p.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{OSI}_{2}(\mathrm{~g}) \\ & \left(\mathrm{Si}_{2} \mathrm{OF}_{6}\right) \\ & \mathrm{F}_{6} \mathrm{OS}_{2}(\mathrm{l}) \end{aligned}$		[9] lists ΔH vap.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{Rb}_{2} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{Rb}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	-678.4 [9]	
$\begin{aligned} & \mathrm{F}_{7} \mathrm{NaU}(\mathrm{c}) \\ & \left(\mathrm{UF}_{6}{ }^{*} \mathrm{NaF}\right) \end{aligned}$		[433] meas. v.p. of UF_{6} over $\mathrm{UF}_{6} \cdot \mathrm{NaF}$.
$\begin{aligned} & { }_{8} \mathrm{~N}_{4} \mathrm{P}_{4}(\mathrm{~g}) \\ & \left(\left(\mathrm{NNF}_{2}\right)\right. \\ & \mathrm{F}_{8} \mathrm{~N}_{4} \mathrm{P}_{4}(\mathrm{l}) \end{aligned}$		[429, 430] calc. ΔH sub. and ΔH vap. [429, 430] meas. v.p. and calc. ΔH fus.

Species	${ }_{4 H f}{ }_{298}^{0}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{F}_{8} \mathrm{~N}_{4} \mathrm{P} 4$ (c)		[429, 430] meas. v.p.
$\begin{aligned} & \mathrm{F}_{8} \mathrm{Na} \mathrm{Na}_{3} \mathrm{O}(\mathrm{c}) \\ & \left(\mathrm{FF}_{5} \cdot 3 \mathrm{NaF}\right) \end{aligned}$		[433] obs. the dissociation: $\mathrm{UF}_{6} \cdot 3 \mathrm{NaF}(\mathrm{c})=\mathrm{UF}_{5} \cdot 3 \mathrm{NaF}(\mathrm{c})+\frac{1}{2} \mathrm{~F}_{2}(\mathrm{~g}),\left(200-450{ }^{\circ} \mathrm{C}\right)$.
$\begin{aligned} & \mathrm{F}_{9} \mathrm{H}_{5} \mathrm{~Pb}_{2}(\mathrm{c}) \\ & \left(2 \mathrm{PbF}_{2} \cdot 5 \mathrm{HF}\right) \end{aligned}$		[178] meas. decomp. pressure at $0^{\circ} \mathrm{C}$.
$\begin{aligned} & \mathrm{F}_{9} \mathrm{Li} Z \mathrm{r}_{2}(\mathrm{~g}) \\ & \left(\mathrm{LiF} \cdot 2 Z \mathrm{~F} \mathrm{~F}_{4}\right) \end{aligned}$		[229] meas. ion abundances in vapor. See also [147, 228].
$\begin{aligned} & \mathrm{F}_{9} \mathrm{NaZr} r_{2}(\mathrm{~g}) \\ & \left(\mathrm{NaF} \cdot 27 \mathrm{FF}_{4}\right) \end{aligned}$		[229] meas. ion abundance in vapor. See also [147, 228].
$\begin{aligned} & \mathrm{F}_{9} \mathrm{Na}_{3} \mathrm{O}(\mathrm{c}) \\ & \left(\mathrm{OF}_{6} \cdot 3 \mathrm{NaF}\right) \end{aligned}$		For the reaction: $\mathrm{JF}_{6}(\mathrm{~g})+3 \mathrm{NaF}(\mathrm{c})=\mathrm{UF}_{6} \cdot 3 \mathrm{NaF}(\mathrm{c})$, [433] meas. K and calc. $\Delta t=-23.2$
$\begin{aligned} & \mathrm{F}_{9} \mathrm{RbZr}_{2}(\mathrm{~g}) \\ & \left(\mathrm{RbF} \cdot 2 \mathrm{ZFF}_{4}\right) \end{aligned}$		[229] meas. ion abundance in vapor. See also [147, 228].
$\begin{aligned} & \mathrm{F}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}(\mathrm{~g}) \\ & \left(\mathrm{SOF}_{5}\right)_{2} \end{aligned}$		
$\mathrm{F}_{10} \mathrm{O}_{2} \mathrm{~S}_{2}(\ell)$		[617] meas. v.p.
$\begin{aligned} & \mathrm{F}_{12} \mathrm{NiP}_{4}(\mathrm{~g}) \\ & \left.\left(\mathrm{Ni}^{\left(\mathrm{PF}_{3}\right)}\right)_{4}\right) \\ & \mathrm{F}_{12} \mathrm{NiP}_{4}(l) \end{aligned}$		[434] meas. v.p.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES
Compound
a. Compounds of four elements.

$\mathrm{AgFH}_{2} \mathrm{O}(\mathrm{c})$	-120.4 [9]
$\left(\mathrm{AgF} \cdot \mathrm{H}_{2} \mathrm{O}\right)$	
$\mathrm{AgFH}_{4} \mathrm{O}_{2}$	$-191.2[9]$
$\left(\mathrm{AgF} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$	
$\mathrm{AgFH}_{8} \mathrm{O}_{4}(\mathrm{c})$	$-331.5[9]$
$\left(\mathrm{AgF}_{4} \mathrm{H}_{2} \mathrm{O}\right)$	$-357.4[9]$
$\mathrm{AlF}_{3} \mathrm{HO}_{\frac{1}{2}}(\mathrm{c})$	
$\left(\mathrm{AlF}_{3} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right)$	See $\mathrm{AlF}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{c}, \mathrm{a})$.

$\mathrm{AlF}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{c}, \alpha)$	-549.1 [9]
$\left(\mathrm{AlF}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}-\alpha\right)$	

[9] does not distinguish α - and β-crystals. See [2] pp 585 ff for a discussion of stability of this and other AlF_{3} hydrates.

See $\mathrm{AlF}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{c}, \alpha)$.
See $\mathrm{AlF}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(c, \alpha)$.
See $\mathrm{AlF}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{c}, \mathrm{a})$.
See $\mathrm{AlF}_{3} \mathrm{H}_{6} \mathrm{O}_{3}(c, a)$.
[623] calc. ΔH fus.
[435] meas. v.p.
[9] lists ΔH vap.
[9] lists ΔH vap.
[520] reviews v.p.
[436] calc. $\Delta \mathrm{H}$ vap.
[436] meas. v.p.
For the reaction: $\mathrm{BF}_{3}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})=\mathrm{BF}_{3} \mathrm{CO}(\mathrm{g})$, [513] est. $\Delta \mathrm{H}_{300}=17$. [29] est. $\Delta \mathrm{Hf}_{298}=-307$.
[437] reports v.p. studies showing non-existence of this complex.
[438] calc. $\Delta \mathrm{H}$ vap.
[438] meas. v.p. See [520].
For the reaction: $\mathrm{BF}_{3}(\mathrm{~g})+\mathrm{NH}_{3}(\mathrm{~g})=\mathrm{BF}_{3} \cdot \mathrm{NH}_{3}(\mathrm{~g})$, [439] reports $\Delta \mathrm{H}=-27.5$.
[440] reports v.p. studies.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compound	$\Delta \mathrm{Hf}_{298}^{\circ}$ ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{H}_{3} \mathrm{P}(\mathrm{~g}) \\ & \left(\mathrm{BH}_{3} \cdot \mathrm{PF}_{3}\right) \\ & \mathrm{BF}_{3} \mathrm{H}_{3} \mathrm{P}(\mathrm{l}) \end{aligned}$		```For the equilibrium: 2F }\mp@subsup{3}{3}{}\mp@subsup{\textrm{PBH}}{3}{}(\textrm{g})=2\mp@subsup{\textrm{PF}}{3}{}(\textrm{g})+\mp@subsup{\textrm{B}}{2}{}\mp@subsup{\textrm{H}}{6}{}(\textrm{g}),[438] est. K [438] calc. \DeltaH vap. [438] meas. v.p. See [520].```
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{H}_{6} \mathrm{~N}_{2}(\ell) \\ & \left(\mathrm{BF}_{3} \cdot 2 \mathrm{NH}_{3}\right) \end{aligned}$		[440] reports v.p. studies.
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{H}_{9} \mathrm{~N}_{3}(l) \\ & \left(\mathrm{BF}_{3} \cdot 3 \mathrm{NH}_{3}\right) \end{aligned}$		[440] reports v.p. studies.
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{H}_{12} \mathrm{~N}_{4}(\ell) \\ & \left(\mathrm{BF}_{3} \cdot\left\langle\mathrm{NH}_{3}\right)\right. \end{aligned}$		[440] reports v.p. studies.
$\begin{aligned} & \mathrm{BF}_{4} \mathrm{H}_{4} \mathrm{~N}(\ell) \\ & \left(\mathrm{NH}_{4} \mathrm{BF}_{4}\right) \end{aligned}$		[520] reviews v.p.
$\begin{aligned} & \mathrm{BF}_{4} \mathrm{H}_{5} \mathrm{O}_{2}(\mathrm{c}) \\ & \left(\mathrm{BF}_{4}\left(\mathrm{H}_{3} \mathrm{O}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[442] reports $\Delta \mathrm{H}$ dissoc. $=22.3$.
$\begin{aligned} & \mathrm{B}_{3} \mathrm{~F}_{6} \mathrm{Na}_{3} \mathrm{O}_{3}(\mathrm{c}) \\ & \left(\mathrm{Na}_{3} \mathrm{~B}_{3} \mathrm{O}_{3} \mathrm{~F}_{6}\right) \end{aligned}$		[442] reports ΔH soln.
$\begin{aligned} & \operatorname{BrCclF}_{2}(\mathrm{~g}) \\ & \left(\mathrm{CBrClF}_{2}\right) \\ & \operatorname{BrCClF}_{2}(\ell) \end{aligned}$		$\begin{aligned} & \text { [355] calc. } \Delta \mathrm{H} \text { vap. [354] est. } \Delta \mathrm{Hf}_{298}^{\circ}=-110 . \\ & \text { [355] meas. v.p. } \end{aligned}$
$\begin{aligned} & \mathrm{BrCCl}_{2} \mathrm{~F}(\mathrm{~g}) \\ & \left(\mathrm{CBrCl}_{2} \mathrm{~F}\right) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-63$.
$\begin{aligned} & \operatorname{BrCFH}(\mathrm{g}) \\ & (\mathrm{CHBrF}) \end{aligned}$		[624] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-15.5$.
$\begin{aligned} & \mathrm{BrCFH}_{2}(\mathrm{~g}) \\ & \left(\mathrm{CH}_{2} \mathrm{BrF}\right) \end{aligned}$		[354] est. 土ff $_{298}=-59$.
$\begin{aligned} & \mathrm{BrCFI}_{2}(\mathrm{~g}) \\ & \left(\mathrm{CBrFI}_{2}\right) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}=-14$.
$\begin{aligned} & \mathrm{BrCFO}(\mathrm{~g}) \\ & (\mathrm{COBrF}) \end{aligned}$		[25] est. $\Delta \mathrm{Hf}_{298}=-94.8$.
$\begin{aligned} & \mathrm{BrCF}_{2} \mathrm{H}(\mathrm{~g}) \\ & \left(\mathrm{CHF}_{2} \mathrm{Br}\right) \end{aligned}$		[354] est. $\mathrm{UHf}_{298}=-108$.
$\begin{aligned} & \mathrm{BrCF}_{2} \mathrm{I}(\mathrm{~g}) \\ & \left(\mathrm{CBrF}_{2} \mathrm{I}\right) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}{ }^{\text {a }}=-85$.
$\begin{aligned} & \operatorname{BrClFP(g)} \\ & (\text { PBrClF) } \\ & \operatorname{BrClFP}(\ell) \end{aligned}$		[623] calc. ΔH vap.
$\mathrm{BrClF}_{3} \mathrm{Ta}(\mathrm{g})$ ($\mathrm{Ta} \mathrm{BrClF}_{3}$) $\mathrm{BrClF}_{3} \mathrm{Ta}(\ell)$		[623] calc. ΔH vap.
$\begin{aligned} & \mathrm{BrCl}_{2} \mathrm{FSi}^{(\mathrm{g})} \\ & \left(\mathrm{SiBrCl}_{2} \mathrm{~F}\right) \\ & \mathrm{BrCl}_{2} \mathrm{FSi}^{(\ell)} \end{aligned}$		[9] lists ΔH vap.
$\mathrm{BrCl}_{3} \mathrm{Fra}(\mathrm{g})$		[623] calc. ΔH vap.

($\mathrm{TaErCl}_{3} \mathrm{~F}$)
$\mathrm{BrCl}_{3} \mathrm{FTa}(\ell)$

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compound	$\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{l}$ ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
$\begin{aligned} & \mathrm{Br} \mathrm{FOS}(\mathrm{~g}) \\ & (\mathrm{sOFBr}) \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ rap.
$\mathrm{BrFOS}(\ell)$		
$\begin{aligned} & \mathrm{BrFO}_{3}^{\mathrm{S}}(\mathrm{~g}) \\ & \left(\mathrm{BrSO}_{3} \mathrm{~F}\right) \end{aligned}$		[443] calc. $\Delta \mathrm{H}$ vap.
$\mathrm{BrFO}_{3} \mathrm{~S}(\ell)$		[443] meas. v.p.
$\begin{aligned} & \mathrm{BrF}_{2} \mathrm{OP}(\mathrm{~g}) \\ & \left(\mathrm{POBrF}_{2}\right) \\ & \mathrm{BrF}_{2} \mathrm{OP}(\ell) \end{aligned}$		[9] lists ΔH vap. [623] calc. ΔH vap.
$\begin{aligned} & \mathrm{BrF}_{2} \mathrm{PS}(\mathrm{~g}) \\ & \left(\mathrm{PSBrF}_{2}\right) \\ & \mathrm{BrF}_{2} \mathrm{PS}(\ell) \end{aligned}$		[9] lists ΔH vap. [623] calc. ΔH vap.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{CClF}(\mathrm{~g}) \\ & \left(\mathrm{CBr}_{2} \mathrm{ClF}\right) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-54$.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{CFH}(\mathrm{~g}) \\ & \left(\mathrm{CHBr}_{2}^{\mathrm{F})}\right. \end{aligned}$		[354] est. $\Delta^{4 \mathrm{H}} \mathrm{O}_{298}=-52$.
$\begin{aligned} & \mathrm{Er}_{2} \mathrm{CFI}(\mathrm{~g}) \\ & \left(\mathrm{CBr}_{2} \mathrm{FI}\right) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}=-29$.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{ClFSi}^{\mathrm{Cl})} \\ & \left(\mathrm{SiBr}_{2} \mathrm{ClF}\right) \\ & \mathrm{Br}_{2} \mathrm{ClFSi}(\ell) \end{aligned}$		[9] lists ΔH vap.
$\begin{aligned} & \mathrm{Er}_{2} \mathrm{FOP}(\mathrm{~g}) \\ & \left(\mathrm{POBr}_{2} \mathrm{~F}\right) \\ & \mathrm{Br}_{2} \mathrm{FOP}(\ell) \end{aligned}$		[623] calc. ΔH vap. [9] lists ΔH vap.
$\begin{aligned} & \mathrm{Br}_{2} \mathrm{FPS}(\mathrm{~g}) \\ & \left(\mathrm{PSBr}_{2} \mathrm{~F}\right) \\ & \mathrm{Br}_{2} \mathrm{FPS}(\ell) \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{Er}_{3} \mathrm{ClFTa}(\mathrm{~g}) \\ & \left(\mathrm{TaBr}_{3} \mathrm{ClF}\right) \\ & \mathrm{Er}_{3} \mathrm{ClFa}^{\mathrm{Cl}(\ell)} \end{aligned}$		[623] calc. $\Delta \mathrm{H}$ vap.
$\mathrm{CClFH}(\mathrm{g})$		[26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-9 \pm 10$.
$\mathrm{CClFH}_{2}(\mathrm{~g})$ $\mathrm{CClFH}_{2}(\ell)$		```From the reaction: Na(atoms) + CH2ClF(g), [169] reports D(CFH2-Cl). [9] lists \DeltaH vap. [26, 27] est. }\DeltaH\mp@subsup{f}{298}{0}=-58\pm15. [625] est. -63. [354] calc. -68. See \(\mathrm{CFH}_{2}(\mathrm{~g})\).```
$\operatorname{CClFI}(\mathrm{g})$		[624] est. $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-8$.
$\mathrm{CClFI}_{2}(\mathrm{~g})$		[354] est. $\Delta 4 \mathrm{f}_{298}^{\circ}=-23$.
$\begin{aligned} & \mathrm{CClFO}(\mathrm{~g}) \\ & \mathrm{CClFO}(\ell) \end{aligned}$		[9] lists ΔH vap. [26] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-96 \pm 15 . \quad[25,27]$ est. -106.5 .
$\mathrm{CClF}_{2} \mathrm{H}(\mathrm{g})$		From the reaction: Na (atoms) $+\mathrm{CHF}_{2} \mathrm{Cl}(\mathrm{g})$, [169] reports $\mathrm{D}\left(\mathrm{CHF}_{2}-\mathrm{Cl}\right)$. [446] meas. dissoc. pressure of solid hydrate. [4/4] meas. ΔH vap., [9] lists ΔH vap. See v.p. studies of $\mathrm{CHClF}_{2}(\ell)$. [625] est. $\Delta \mathrm{Hf}_{298}=-109$ to -112 . [26, 27] est. -112 ± 5. [354] calc. -117.
$\mathrm{CClF}_{2}{ }^{\mathrm{H}}(\ell)$		[445] meas. v.p. [$4 / 4 / 4$ meas. ΔH fus.
$\mathrm{CClF}_{2} \mathrm{H}(\mathrm{c})$		[444] meas ΔH trans.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compounds	Remarks
$\mathrm{CClF}_{2} \mathrm{I}(\mathrm{g})$	[354] est. $\Delta \mathrm{Hf}_{298}=-9.4$.
$\begin{aligned} & \mathrm{CClF}_{3} \mathrm{~S}(\ell) \\ & \left(\mathrm{F}_{3} \mathrm{CSCl}\right) \end{aligned}$	[447] meas. v.p.
$\mathrm{CCI}_{2} \mathrm{FH}(\mathrm{g})$	[476] meas. dissoc. pressure of the hydrate. [365] calc. ΔH vap. [9] lists ΔH vap. See v.p. studies of $\mathrm{CCl}_{2} \mathrm{FH}(\ell) .[26,27]$ est. $\Delta \mathrm{Hf}_{29} 98=-61 \pm 10$. [625] est. -66.5 . [354] calc. -70 .
$\mathrm{CCl}_{2} \mathrm{FH}(\ell)$	[445] meas. v.p.
$\mathrm{CCI}_{2} \mathrm{FI}(\mathrm{g})$	[354] est. $\Delta \mathrm{Hf}_{298}{ }^{\text {a }}$ = -48.
$\begin{aligned} & \mathrm{CFHI}_{2}(\mathrm{~g}) \\ & \mathrm{CFHI}_{2}(\ell) \end{aligned}$	[9] lists ΔH vap. [354] est. $\Delta H \mathrm{Hf}_{298}=-21$.
CFHO(g)	[26] est. $\Delta^{4 H}{ }_{298}=-78 \pm 15 . \quad[25,27]$ est. -94. [223] est. -103.
$\mathrm{CFH}_{2} \mathrm{I}(\mathrm{g})$	[354] est. $\Delta \mathrm{Hf}_{298}=-44$.
$\begin{aligned} & \mathrm{CFK}_{3} \mathrm{O}_{3}(\mathrm{c}) \\ & \left(\mathrm{K}_{3} \mathrm{CO}_{3} \mathrm{~F}\right) \end{aligned}$	[586] discusses energy of formation.
$\begin{aligned} & \mathrm{CFRb}_{3} \mathrm{O}_{3}(\mathrm{c}) \\ & \left(\mathrm{Rb}_{3} \mathrm{CO}_{3} \mathrm{~F}\right) \end{aligned}$	[586] discusses energy of formation.
$\mathrm{CF}_{2} \mathrm{HI}(\mathrm{g})$	[9] lists ΔH vap. [354] est. $\Delta H^{\text {f }}$ 298 $=-92$.
$\mathrm{CF}_{2} \mathrm{HI}(\ell)$ (ℓ (${ }^{\text {a }}$	
$\begin{aligned} & \mathrm{CF}_{2} \mathrm{H}_{3} \mathrm{~N}(\mathrm{~g}) \\ & \left(\mathrm{CH}_{3} \mathrm{NF}_{9}\right) \end{aligned}$	[448] calc. ΔH vap.
$\mathrm{CF}_{2} \mathrm{H}_{3} \mathrm{~N}(\ell)$	[448] meas. v.p.
$\mathrm{CF}_{3} \mathrm{HS}(\mathrm{g})$	[449]. calc. $\Delta H_{\text {vap. }}$
$\mathrm{CF}_{3} \mathrm{HS}(\ell)$	[449] meas. v.p. and ΔH fus.
$\mathrm{CF}_{3} \mathrm{HS}$ (c)	
$\begin{aligned} & \mathrm{CF}_{3} \mathrm{H}_{3} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiF}_{3}\left(\mathrm{CH}_{3}\right)\right) \end{aligned}$	[9] lists ΔH vap. [27] 11sts $\Delta \mathrm{Hf}_{298}^{\circ}=-294.625$.
$\mathrm{Cr}_{3} \mathrm{H}_{3} \mathrm{Si}(\ell)$	
$\begin{aligned} & \mathrm{CF}_{3} \mathrm{NO}(\mathrm{~g}) \\ & {[\text { trifiuoronit }} \end{aligned}$	[$450,451,452,453]$ cale. ΔH vap. [9] lists ΔH vap.
$\mathrm{CF}_{3} \mathrm{HO}(\ell)$	[450, 451, 452, 453] meas. v.p.
$\begin{aligned} & \mathrm{CP}_{3} \mathrm{NO}(\mathrm{~g}) \\ & \left(\mathrm{FCONF}_{2}\right) \end{aligned}$	[9] lists ΔH vap.
[N, N-difluor fluoroforma	
$\mathrm{CF}_{3} \mathrm{HO}(\ell)$	
$\mathrm{CF}_{3} \mathrm{HO}_{2}(\mathrm{~g})$	[451, 452, 453] arle. An wap.
$\mathrm{CF}_{3} \mathrm{NO}_{2}(\ell)$	[451, 452, 453] meas. v.p.
$\begin{aligned} & \mathrm{CF}_{4} \mathrm{O}_{2} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{CF}_{3} \mathrm{SO}_{2} \mathrm{~F}\right) \end{aligned}$	[454] calc. ΔH vap.
$\mathrm{CF}_{4} \mathrm{O}_{2} \mathrm{~S}(\mathrm{l})$	[454] meas. v.p.
$\mathrm{Ca}_{5} \mathrm{FO}_{12} \mathrm{P}_{3}(\mathrm{c})$	[455] gives a summary of reactions leading to formation or decomposition of $\mathrm{Ca}_{5} \mathrm{FO}_{12} \mathrm{P}_{3}$. See $\mathrm{Ca}_{10} \mathrm{~F}_{2} \mathrm{O}_{24} \mathrm{P}_{6}(\mathrm{c})$.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compounds	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{Ca}_{10} \mathrm{~F}_{2} \mathrm{O}_{24} \mathrm{P}_{6}(\mathrm{c}) \\ & \left(\mathrm{CaF}_{2} \cdot 3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right) \end{aligned}$	-3,262 [456]	[456] meas. $\Delta \mathrm{H}$ for reaction with $\mathrm{HNO}_{3}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{CeF}_{3} \mathrm{HO}_{3}(\mathrm{c}) \\ & \left(\mathrm{CeF}_{3} \cdot \frac{e^{2} \mathrm{H}_{2} \mathrm{O}}{}\right. \end{aligned}$	3	For the reaction: $\mathrm{Ce}^{+3}(\mathrm{aq})+3 \mathrm{HF}(\mathrm{aq})+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{CeF}_{3} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{c})+3 \mathrm{H}^{+}(\mathrm{aq}), \quad$ [181] meas. $\Delta H=10.0 \pm 0.7$. From soln. data [181] reports $\Delta \mathrm{Ff}_{298}^{\circ}=-425.3$. See $\mathrm{CeF}_{3}(\mathrm{aq})$.
$\mathrm{ClFOP}(\mathrm{g})$ (POFCl)		[25, 26] est. $\Delta_{\cdot} \mathrm{Hf}_{298}=-128 \pm 15$.
$\begin{aligned} & \operatorname{C1FOS}(\mathrm{g}) \\ & (\mathrm{SOFCl}) \end{aligned}$		
CIFOS(ℓ)		
$\begin{aligned} & \mathrm{ClFO}_{2} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{SO}_{2} \mathrm{FCl}\right) \\ & \mathrm{ClFO}_{2} \mathrm{~S}(\mathrm{l}) \end{aligned}$		[9] lists $\Delta \mathrm{H}$ rap.
$\begin{aligned} & \mathrm{ClFO}_{5} \mathrm{~S}_{2}(\mathrm{~g}) \\ & \left(\mathrm{S}_{2} \mathrm{O}_{5} \mathrm{ClF}\right) \end{aligned}$		[457] calc. ${ }^{\text {H }}$ vap.
$\mathrm{ClFO}_{5} \mathrm{~S}_{2}(\ell)$		[457] meas. v.p.
C1FPS(g) (PSFCI)		$[25,26]$ est. $\Delta 4 \mathrm{H}_{298}=-82 \pm 15$.
$\begin{aligned} & \mathrm{ClF}_{2} \mathrm{OP}(\mathrm{~g}) \\ & \left(\mathrm{POF}_{2} \mathrm{Cl}\right) \\ & \mathrm{ClF}_{2} \mathrm{OP}(\mathrm{l}) \end{aligned}$.	[623] calc. ΔH vap. [9] lists ΔH vap. [25, 26] est $\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}=-240 \pm 15$.
$\begin{aligned} & \mathrm{ClF}_{2} \mathrm{PS}(\mathrm{~g}) \\ & \left(\mathrm{PSF}_{2} \mathrm{Cl}\right) \\ & \mathrm{ClF}_{2} \mathrm{PS}(\ell) \end{aligned}$		[9] lists ΔH vap. [25,26$]$ est. $\Delta 4 f_{298}^{\circ}=-193 \pm 15$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{FHSI}^{(\mathrm{g})} \\ & \left(\mathrm{SiHCl}_{2} \mathrm{~F}\right) \\ & \mathrm{Cl}_{2} \mathrm{FHSI}^{(\ell)} \end{aligned}$		[9] lists ΔH vap.
$\mathrm{Cl}_{2} \mathrm{FHSI}(\ell)$		
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{FOP}(\mathrm{~g}) \\ & \left(\mathrm{POFCl}_{2}\right) \\ & \mathrm{Cl}_{2} \mathrm{FOP}(\ell) \end{aligned}$		[623] calc. ΔH vap. [9] lists ΔH vap. [25, 26] est. $\Delta H{ }^{(1)}{ }_{298}=-188 \pm 15$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{FPS}(\mathrm{~g}) \\ & \left(\mathrm{PSFCl}_{2}\right) \\ & \mathrm{Cl}_{2} \mathrm{FPS}(\ell) \end{aligned}$		[9] lists ΔH vap. [25,26$]$ est. $\Delta 4 \mathrm{H}_{298}^{\circ}=-142 \pm 15$.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{4} \mathrm{OSI}_{2}(\mathrm{~g}) \\ & \left(\mathrm{Si}_{2} \mathrm{OF}_{4} \mathrm{Cl}_{2}\right) \\ & \mathrm{CI}_{2} \mathrm{~F}_{4} \mathrm{OSH}_{2}(\mathrm{l}) \end{aligned}$		[9] lists $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{Cl}_{2} \mathrm{~F}_{6}{ }_{4} \mathrm{P}_{4}(\mathrm{~g}) \\ & \left(\mathrm{N}_{4} \mathrm{P}_{4}{ }^{\mathrm{Cl}}{ }_{2} \mathrm{~F}_{6}\right) \\ & \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{H}_{4} \mathrm{P}_{4}(\mathrm{l}) \end{aligned}$		[9] lists $\triangle H$ vap.
$\begin{aligned} & \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{OSI}_{2}(\mathrm{~g}) \\ & \left(\mathrm{Si}_{2} \mathrm{OF}_{3} \mathrm{CI}_{3}\right) \\ & \mathrm{Cl}_{3} \mathrm{~F}_{3} \mathrm{OSI}_{2}(\mathrm{l}) \end{aligned}$		[9] lists ΔH vap.
$\begin{aligned} & \mathrm{CoF}_{2} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{c}) \\ & \left(\mathrm{CoF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[9] lists \triangle Ff ${ }_{298}{ }^{\text {a }}$

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compounds	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \left.\mathrm{CrFK}_{3} \mathrm{O}_{4} \mathrm{c}\right) \\ & \left(\mathrm{K}_{3} \mathrm{CrO}_{4} \mathrm{~F}\right) \end{aligned}$		[458] meas. $\triangle \mathrm{H}$ soln. of $\mathrm{X}_{3} \mathrm{CrO}_{4} \mathrm{~F}$ and of an equimolar mixt. of KF and $\mathrm{K}_{2} \mathrm{CrO}_{4}$, and reported for: $\mathrm{KF}(\mathrm{c})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{c})=\mathrm{K}_{3} \mathrm{CrO}_{4} \mathrm{~F}(\mathrm{c}), \Delta \mathrm{H}=+0.39$.
$\begin{aligned} & \mathrm{CrFO}_{4} \mathrm{Rb}_{3}(\mathrm{c}) \\ & \left(\mathrm{Rb}_{3} \mathrm{CrO}\right. \\ & 4 \end{aligned}$		[458] meas. $\triangle \mathrm{H}$ soln. of $\mathrm{Rb}_{3} \mathrm{CrO}_{4} \mathrm{~F}$ and of an equimolar mixt. of RbF and $\mathrm{Rb}_{2} \mathrm{CrO}_{4}$, and reported for: $\mathrm{RbF}(\mathrm{c})+\mathrm{Rb}_{2} \mathrm{CrO}_{4}(\mathrm{c})=\mathrm{Rb}_{3} \mathrm{CrO}_{4} \mathrm{~F}(\mathrm{c}), \Delta \mathrm{H}=-0.78$.
$\begin{aligned} & \mathrm{CsFH}_{4 / 3} \mathrm{O}_{2 / 3} \text { (c) } \\ & \left(\mathrm{CsF} \cdot 2 / 3 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-176.8 [9]	
$\begin{aligned} & \mathrm{CsFH}_{3} \mathrm{O}_{3} / 2 \text { (c) } \\ & \left(\mathrm{CsF} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-237.2 [9]	
$\begin{aligned} & \mathrm{Cs}_{3} \mathrm{FO}_{4}^{\mathrm{S}}(\mathrm{c}) \\ & \left(\mathrm{Cs}_{3} \mathrm{SO}_{4} \mathrm{~F}\right) \end{aligned}$		[586] discusses energy of formation.
$\begin{aligned} & \mathrm{Cs}_{3} \mathrm{~F}_{3} \mathrm{MoO}_{3}(\mathrm{c}) \\ & \left(\mathrm{Cs}_{3} \mathrm{MoO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[459] calc. AFf. $^{\text {a }}$
$\begin{aligned} & \mathrm{Cs}_{3} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~W}(\mathrm{c}) \\ & \left(\mathrm{Cs}_{3} \mathrm{WO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[460] calc. ${ }^{\text {dFf }}$.
$\begin{aligned} & \mathrm{Cs}_{8} \mathrm{~F}_{2} \mathrm{O}_{15} \mathrm{Ti}_{6}(\mathrm{c}) \\ & \left(3 \mathrm{Cs}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{CsF}\right) \end{aligned}$		[587] discusses energy of formation.
$\begin{aligned} & \mathrm{CuF}_{2} \mathrm{H}_{4} \mathrm{O}_{2}(\mathrm{c}) \\ & \left(\mathrm{CuF}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-274.5 [9]	
$\begin{aligned} & \mathrm{FH}_{2} / 3^{0} 1 / 3 \mathrm{Rb}(\mathrm{c}) \\ & \left(\mathrm{RbF} \cdot 1 / 3 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-156.12 [9]	
$\begin{aligned} & \mathrm{FHO}_{2} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{SO}_{2} \cdot \mathrm{HF}\right) \end{aligned}$		For the reaction: $\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{HF}(\mathrm{g})=\mathrm{SO}_{2} \cdot \mathrm{HF}(\mathrm{g})$, [393] reports $\Delta \mathrm{H}=-2$.
$\begin{aligned} & \mathrm{FHO}_{3} \mathrm{~S}(\ell) \\ & \left(\mathrm{HSO}_{3} \mathrm{~F}\right) \end{aligned}$	-184 [461]	[461] meas. heat of mixing HF and SO_{3} in $\mathrm{HSO}_{3} \mathrm{~F}$.
$\begin{aligned} & \mathrm{FH}_{3} \mathrm{Mo}_{4} \mathrm{O}_{13}(\mathrm{c}) \\ & \left(\mathrm{H}_{3} \mathrm{NO}_{4} \mathrm{O}_{13} \mathrm{~F}\right) \end{aligned}$		[464] reports heat effects of formation and deoomposition.
$\begin{aligned} & \mathrm{FH}_{3} \mathrm{O}_{3 / 2} \mathrm{Rb}(\mathrm{c}) \\ & \left(\mathrm{RbF} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-240.33 [9]	
$\begin{aligned} & \mathrm{FH}_{4} \mathrm{KO}_{2}(\mathrm{c}) \\ & \left(\mathrm{KF} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-277.00 [9]	
$\begin{aligned} & \mathrm{FH}_{8} \mathrm{KO}_{4}(\mathrm{c}) \\ & \left(\mathrm{KP} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-418.0 [9]	
$\begin{aligned} & \mathrm{FKO}_{3} \mathrm{~S}(\mathrm{c}) \\ & \left(\mathrm{KBO}_{3} \mathrm{~F}\right) \end{aligned}$		[462] reports $\triangle H$ soln.
$\begin{aligned} & \mathrm{FK}_{3} \mathrm{NOO}_{4}(\mathrm{c}) \\ & \left(\mathrm{K}_{3} \mathrm{NoO}_{4} \mathrm{~F}\right) \end{aligned}$		See $\mathrm{F}_{3} \mathrm{~K}_{3} \mathrm{MOO}_{3}(\mathrm{c})$.
$\mathrm{FK}_{3} \mathrm{O}_{4} \mathrm{~S}(\mathrm{c})$		[586] discusses energy of formation.
$\begin{aligned} & \mathrm{FNO}_{3} \mathrm{~S}(\mathrm{~g}) \\ & \left(\mathrm{NOSO}_{2} \mathrm{~F}\right) \\ & \mathrm{FNO}_{3} \mathrm{~S}(\mathrm{l}) \\ & \mathrm{FNO}_{3} \mathrm{~S}(\mathrm{c}) \end{aligned}$		[463] meas. dissoc. of vapor at 190. [463] meas. v.p.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compound	$\Delta \mathrm{Hf}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{FNa}_{3} \mathrm{O}_{4} \mathrm{~W}(\mathrm{c})$		[460] discusses energy of formation.
$\mathrm{FO}_{4} \mathrm{Rb}_{3} \mathrm{~S}(\mathrm{c})$		[460] discusses energy of formation.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{H}_{4} \mathrm{MoO}_{4}(\mathrm{c}) \\ & \left(\mathrm{H}_{2} \mathrm{MoO}_{3} \mathrm{~F}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[464] reports ΔH soln. [464] reports endothermic effect of loss of $\mathrm{H}_{2} \mathrm{O}$ and HF .
$\begin{aligned} & \mathrm{F}_{2} \mathrm{H}_{8} \mathrm{NnO}_{4}(\mathrm{c}) \\ & \left(\mathrm{MnF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[239] meas. ΔH soln.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{H}_{8} \mathrm{NiO}_{4}(\mathrm{c}) \\ & \left(\mathrm{NiF}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[9] lists $\triangle \mathrm{Ff}_{298}^{\circ}{ }^{\circ}$
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{15} \mathrm{Rb}_{8} \mathrm{Ti}_{6}(\mathrm{c}) \\ & \left(3 \mathrm{Rb}_{2} \mathrm{Ti}_{2} \mathrm{O}_{5} \cdot 2 \mathrm{RbF}\right) \end{aligned}$		[587] discusses energy of formation.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{HLaO}_{\frac{1}{2}}(\mathrm{c}) \\ & \left(\mathrm{LaF}_{3} \cdot \frac{2 \mathrm{H}_{2} \mathrm{O}}{2}\right) \end{aligned}$		[181] reports $\triangle \mathrm{Ff} \mathrm{f}_{298}=-428.1$.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{3} \mathrm{NSb}(\mathrm{c}) \\ & \left(\mathrm{SbF}_{3} \cdot \mathrm{NH}_{3}\right) \end{aligned}$	-242.3 [9]	
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{Sb}(\mathrm{c}) \\ & \left(\mathrm{SbF}_{3} \cdot 2 \mathrm{NH}_{3}\right) \end{aligned}$	-265.5 [9]	
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{Sb}(\mathrm{c}) \\ & \left(\mathrm{SbF}_{3} \cdot 3 \mathrm{NH}_{3}\right) \end{aligned}$	-285.7 [9]	
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Sb}(\mathrm{c}) \\ & \left(\mathrm{SbF}_{3} \cdot 4 \mathrm{NH}_{3}\right) \end{aligned}$	-304.4 [9]	
$\begin{aligned} & \mathrm{F}_{3} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{Sb}(\mathrm{c}) \\ & \left(\mathrm{SbF}_{3} \cdot 6 \mathrm{NH}_{3}\right) \end{aligned}$	-341.4 [9]	
$\begin{aligned} & \mathrm{F}_{3} \mathrm{~K}_{3} \mathrm{MoO}_{3}(\mathrm{c}) \\ & \left(\mathrm{K}_{3} \mathrm{MoO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		For the reaction: $\mathrm{K}_{3} \mathrm{MoO}_{3} \mathrm{~F}_{3}(\mathrm{c})+\mathrm{l} / 2 \mathrm{O}_{2}(\mathrm{~g})=\mathrm{K}_{3} \mathrm{MoO}_{4} \mathrm{~F}(\mathrm{c})+\mathrm{F}_{2}(\mathrm{~g})$, [465] reports $\Delta \mathrm{H}=$ -358. [459] calc. \triangle Ff.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{~K}_{3} \mathrm{O}_{3}^{\mathrm{W}(\mathrm{c})} \\ & \left(\mathrm{K}_{3} \mathrm{WO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[460] calc. Δ Ff.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{Li}_{3} \mathrm{MoO}_{3}(\mathrm{c}) \\ & \left(\mathrm{Li}_{3} \mathrm{MoO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[459] calc. AFf .
$\begin{aligned} & \mathrm{F}_{3} \mathrm{Li}_{3} \mathrm{O}_{3} \mathrm{~W}(\mathrm{c}) \\ & \left(\mathrm{Li}_{3} \mathrm{WO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[460] calc. AFf .
$\begin{aligned} & \mathrm{F}_{3} \mathrm{MoNa}_{3} \mathrm{O}_{3} \\ & \left(\mathrm{Na}_{3} \mathrm{MOO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[459] calc. \triangle Ff.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{MoO}_{3} \mathrm{Hb}_{3}(\mathrm{c}) \\ & \left(\mathrm{Rb}_{3} \mathrm{MoO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[459] calc. \triangle Ff.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{Na}_{3} \mathrm{O}_{3} \mathrm{~W}(\mathrm{c}) \\ & \left(\mathrm{Na}_{3} \mathrm{WO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[460] calc. Δ Pf.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{O}_{3} \mathrm{Hb}_{3} \mathrm{~W}(\mathrm{c}) \\ & \left(\mathrm{Rb}_{3} \mathrm{WO}_{3} \mathrm{~F}_{3}\right) \end{aligned}$		[460] calc. AFF .
$\begin{aligned} & \mathrm{F}_{4} \mathrm{HO}_{\frac{1}{2}} \mathrm{Th}(\mathrm{c}) \\ & \left(\mathrm{ThF}_{4} \frac{-1}{2} \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		From calorimetric hydration measurements on samples containing varying amounts of $\mathrm{H}_{2} \mathrm{O}$, [466] calc. for the process: $\mathrm{ThF}_{4}(\mathrm{c})\left(\right.$ from $\left.\mathrm{ThF}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\right)+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\ell)=\mathrm{ThF}_{4} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{c})$, $\Delta \mathrm{H}=-1.174$.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compounds	$\Delta \mathrm{Hf}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{5} \mathrm{O}_{5} / 2 \mathrm{Th}(\mathrm{c}) \\ & \left(\mathrm{ThF}_{4} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		From calorimetric hydration measurements on samples containing varying amounts of $\mathrm{H}_{2} \mathrm{O}$, [466] calc. for the process: $\mathrm{ThF}_{4}(\mathrm{c})\left(\right.$ from $\left.\mathrm{ThF}_{4} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}\right)+5 / 2 \mathrm{H}_{2} \mathrm{O}(\ell)=$ $\mathrm{ThF}_{4} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{c}), \Delta \mathrm{H}=-2.073$.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{5} \mathrm{O}_{5} / 2 \mathrm{U}(\mathrm{c}) \\ & \left(\mathrm{UF}_{4} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		For the reaction: $\mathrm{UF}_{4}(\mathrm{c})+5 / 2 \mathrm{H}_{2} \mathrm{O}(\ell)=\mathrm{UF}_{4} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}$ (c) [419] meas. $\Delta \mathrm{H}=-8.21$. From dissoc. pressure meas. [467] gives, for the reverse reaction, $\Delta H=7.23$.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{SiF}_{4} \cdot 2 \mathrm{NH}_{3}\right) \end{aligned}$		From dissoc. pressure meas. [468] reports for: $\operatorname{SiF}_{4} \cdot 2 \mathrm{NH}_{3}(\mathrm{c})=\mathrm{SiF}_{4}(\mathrm{~g})+2 \mathrm{NH}_{3}(\mathrm{~g})$, $\Delta H=18.2$.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{6} \mathrm{O}_{3} \mathrm{Zr}(\mathrm{c}) \\ & \left(\mathrm{ZrF}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		For the reaction: $\mathrm{ZrF}_{4}(\mathrm{c})+3 \mathrm{H}_{2} \mathrm{O}(2)=\mathrm{ZrF}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}(\mathrm{c})$, [469] meas. $\Delta \mathrm{H}=-1.644$.
$\begin{aligned} & \mathrm{F}_{5} \mathrm{H}_{4} \mathrm{NZr}^{(\mathrm{c})} \\ & \left(\mathrm{NH}_{4} \mathrm{ZrF}_{5}\right) \end{aligned}$		From thermal decompn. studies [470] reports $\Delta H \cong 25$ for the decomposition to ZrF_{4} (c).
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{P}(\mathrm{c}) \\ & \left(\mathrm{NH}_{4} \mathrm{PF}_{6} \cdot \mathrm{NH}_{3}\right) \end{aligned}$		[471, 472] report v.p. studies of the system $\mathrm{NH}_{4} \mathrm{PF}_{6}-\mathrm{NH}_{3}$.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Si}(\mathrm{c}) \\ & \left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	-629.7[9]	[588] meas. the solubility in $\mathrm{H}_{2} \mathrm{O}$ vs. T.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Zr}(\mathrm{c}) \\ & \left(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{ZrF}_{6}\right) \end{aligned}$		For the decomposition to $\mathrm{NH}_{4} \mathrm{ZrF}_{5}$, [470] reports $\Delta H \cong 21$.
$\begin{aligned} & \mathrm{F}_{7} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Zr}(\mathrm{c}) \\ & \left(\left(\mathrm{NH}_{4}\right)_{3} \mathrm{ZrF}\right) \end{aligned}$		For the decomposition to ($\left.\mathrm{NH}_{4}\right)_{2} \mathrm{ZrF}_{6}$, [470] reports $\Delta H \cong 21$.

b. Compounds of five elements.

$\begin{aligned} & \mathrm{AlF}_{5} \mathrm{H}_{2} \mathrm{~K}_{2} \mathrm{O}(\mathrm{c}) \\ & \left(\mathrm{AlF} 3 \cdot 2 \mathrm{KF} \cdot \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[576] studied thermal decomposition. [576] studied equilibrium with HF(aq).
$\begin{aligned} & \mathrm{AlF}_{5} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3 / 2}(\mathrm{c}) \\ & \left(\mathrm{AlF}_{3} \cdot 2 \mathrm{NH}_{4} \mathrm{~F} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-673.7 [9]	
$\begin{aligned} & \mathrm{AlF}_{6} \mathrm{H}_{7} \mathrm{~K}_{3} \mathrm{O}_{7 / 2}(\mathrm{c}) \\ & \left(\mathrm{AlF}_{3} \cdot 3 \mathrm{KF} \cdot 7 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-1033.6 [9]	
$\begin{aligned} & \mathrm{AlF}_{6} \mathrm{H}_{7} \mathrm{Na}_{3} \mathrm{O}_{7 / 2}(\mathrm{c}) \\ & \left(\mathrm{Na}_{3} \mathrm{AlF}_{6} \cdot 7 / 2 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$	-1021.0 [9]	
$\begin{aligned} & \mathrm{BCF}_{2} \mathrm{H}_{3} \mathrm{O}(\mathrm{~g}) \\ & \left(\mathrm{BF}_{2} \mathrm{OCH}_{3}\right) \\ & \mathrm{BCF}_{2} \mathrm{H}_{3} \mathrm{O}(\ell) \end{aligned}$		$\begin{aligned} & \text { [473] calc. } \Delta H \text { vap. } \\ & \text { [473] meas. v.p. See [520]. } \end{aligned}$
$\begin{aligned} & \mathrm{BCF}_{3} \mathrm{HN}(\mathrm{c}) \\ & \left(\mathrm{HCN} \cdot \mathrm{BF}_{3}\right) \end{aligned}$	-264.9 [29]	[520] reviews dissoc. pressure meas.
$\begin{aligned} & \mathrm{BF}_{2} \mathrm{H}_{6} \mathrm{NSI}_{2}(\mathrm{~g}) \\ & \left(\left(\mathrm{SiH}_{3}\right)_{2} \mathrm{NBF}_{2}\right) \\ & \mathrm{BF}_{2} \mathrm{H}_{6} \mathrm{NSi}_{2}(\ell) \end{aligned}$		[397] meas. v.p., and est. ΔH association $=+7.5 . \quad$ [520] reviews v.p. data.
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{HKO}(\mathrm{c}) \\ & \left(\mathrm{KBF}_{3} \mathrm{OH}\right) \end{aligned}$	$\begin{aligned} & -430.3[29] \\ & -419.3[475] \end{aligned}$	[475] meas. $\triangle H$ hydr.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)

Compounds	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{BF}_{3} \mathrm{HNaO}^{\text {(c) }}$		[29,520] review v.p. and dissoc. pressure.
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{H}_{9} \mathrm{NSI}_{3}(\ell) \\ & \left(\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}^{\mathrm{N}} \cdot \mathrm{BF}_{3}\right) \end{aligned}$		[474] meas. the dissoc. pressure for: $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{NBF}_{3}(\ell)=\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}(\ell)+\mathrm{BF}_{3}(\mathrm{~g})$. [520] reviews dissoc. pressure meas.
$\begin{aligned} & \mathrm{B}_{3} \mathrm{~F}_{3} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{Si}_{3}(\mathrm{c}) \\ & \left(\left(\mathrm{SiH}_{3} \mathrm{NBF}_{3}\right)\right. \end{aligned}$		[397] meas. v.p.
$\begin{aligned} & \mathrm{B}_{3} \mathrm{~F}_{4} \mathrm{HK}_{2} \mathrm{O}_{4}(\mathrm{c}) \\ & \left(\mathrm{K}_{2} \mathrm{~B}_{3} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{OH}\right) \end{aligned}$	$\begin{aligned} & -889.8[29] \\ & -857.7[475] \end{aligned}$	[475] meas. $\Delta \mathrm{H}$ hydr.
$\begin{aligned} & \mathrm{BrCClFH}(\mathrm{~g}) \\ & (\mathrm{CHFClBr}) \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}=-61$.
$\begin{aligned} & \mathrm{BrCClFI}(\mathrm{~g}) \\ & (\mathrm{CFClBI}) \end{aligned}$		[354] est. $\mathrm{\Delta Hf}_{298}=-38$.
$\mathrm{BrCFHI}(\mathrm{g})$ (CHFBrI)		[354] est. $\Delta \mathrm{Hf}_{298}=-36$.
$\begin{aligned} & \text { CClFHI(g) } \\ & \text { (CHFClI) } \end{aligned}$		[354] est. $\Delta \mathrm{Hf}_{298}=-46$.
$\begin{aligned} & \mathrm{CClF}_{2} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{O}_{\mathrm{n}}(\mathrm{c}) \\ & \left(\mathrm{CHClF}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\right) \end{aligned}$		See [446] for dissoc. pressures.
$\begin{aligned} & \mathrm{CCl}_{2} \mathrm{FH}_{3} \mathrm{Si}(\mathrm{~g}) \\ & \left(\mathrm{SiH}_{3} \mathrm{CFCl}_{2}\right) \\ & \mathrm{CCl}_{2} \mathrm{FH}_{3} \mathrm{Si}(\mathrm{l}) \end{aligned}$		[9] lists $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{CCl}_{2} \mathrm{FH}_{35}{ }^{\mathrm{O}}{ }^{(7)}(\mathrm{c}) \\ & \left(\mathrm{CHCl}_{2} \mathrm{~F}^{\cdot} \cdot 17 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[476] meas. dissoc. pressure.
$\begin{aligned} & \mathrm{CCl}_{2} \mathrm{~F}_{2} \mathrm{H}_{2 n} \mathrm{O}_{\mathrm{n}}(\mathrm{c}) \\ & \left(\mathrm{CCl}_{2} \mathrm{~F}_{2} \cdot \mathrm{nH}_{2} \mathrm{O}\right) \end{aligned}$		See [446] for dissoc. pressures.
$\begin{aligned} & \mathrm{CCl}_{3} \mathrm{FH}_{2 \mathrm{n}} \mathrm{O}_{\mathrm{n}}(\mathrm{c}) \\ & \left(\mathrm{CCl}_{3} \mathrm{~F} \cdot \mathrm{nH}_{2} \mathrm{O}\right) \end{aligned}$		See [446] for dissoc. pressures.
$\begin{aligned} & \mathrm{CF}_{2} \mathrm{H}_{3} \mathrm{OP}(\ell) \\ & \left(\mathrm{CH}_{3} \mathrm{POF}_{2}\right) \end{aligned}$		[477] meas. $\Delta \mathrm{H}$ fus.
$\mathrm{CF}_{2} \mathrm{H}_{3} \mathrm{OP}(\mathrm{c})$		[478] meas. v.p.
$\begin{aligned} & \mathrm{CF}_{2} \mathrm{NPS}(\mathrm{~g}) \\ & \mathrm{CF}_{2} \mathrm{NPS}(t) \end{aligned}$		[9] lists $\Delta \mathrm{H}$ vap.
$\begin{aligned} & \mathrm{CoF}_{3} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}(\mathrm{c}) \\ & \left(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{H}_{2} \mathrm{O}\right] \mathrm{F}_{3}\right) \end{aligned}$	-435.7 [9]	
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{12} \mathrm{MgO}_{6} \mathrm{Si}(\mathrm{c}) \\ & \left(\mathrm{MgSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[588] meas. solubility vs. T.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{Sinn}(\mathrm{c}) \\ & \left(\mathrm{ZnSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right) \end{aligned}$		[588] meas. solubility vs. T.

TABLE 4. QUATERNARY AND HIGHER FLUORIDES (continued)
Compounds $\quad \Delta H f_{298}$ (kcal/mole) \quad Remarks \quad.
c. Compounds of six elements.

$\begin{aligned} & \mathrm{AlF}_{2} \mathrm{KMg}_{3} \mathrm{O}_{10} \mathrm{Si}_{3}(l) \\ & \left(\mathrm{KMg}_{3} \mathrm{AlSi}_{3} \mathrm{O}_{10} \mathrm{~F}\right) \end{aligned}$		[480] reports ΔH fus. [481] reports ΔH crystn.
$\mathrm{ALF}_{2} \mathrm{KMg}_{3} \mathrm{O}_{10} \mathrm{Si}_{3}$ (c)	-1498.1 ± 1 [480]	[480] meas. $\Delta \mathrm{H}$ soln. in $\mathrm{HF}(\mathrm{sq})$. [17] list $\Delta \mathrm{Hf}_{298}=-1497.0 \pm 1$.
$\begin{aligned} & \mathrm{BCF}_{2} \mathrm{H}_{6} \mathrm{NSI}^{(\mathrm{c})} \\ & \left(\mathrm{CH}_{3} \mathrm{SiH}_{3} \mathrm{NBF}_{2}\right) \end{aligned}$		[397] meas. v.p. and est. ΔH association $=-1.5$.
$\mathrm{B}_{2} \mathrm{~F}_{6} \mathrm{~K}_{2} \mathrm{Mg}_{6} \mathrm{O}_{21} \mathrm{Si}_{7}(\mathrm{c})$		[482] reports $\triangle \mathrm{H}$ crystr.
$\mathrm{BeF}_{6} \mathrm{~K}_{2} \mathrm{Mg}_{6} \mathrm{O}_{19} \mathrm{Si}_{7}(\mathrm{c})$		[482] reports $\Delta \mathrm{H}$ crystn.
$\begin{aligned} & \mathrm{CClFH}_{3} \mathrm{OP}(\mathrm{~g}) \\ & \left(\mathrm{CH}_{3} \mathrm{POCIF}\right) \end{aligned}$		
$\mathrm{CClFH}_{3} \mathrm{OP}(\mathrm{l})$		[477] meas. ΔH fus.
$\mathrm{CClFH}_{3} \mathrm{OP}(\mathrm{c})$		[478] meas. v.p.
$\mathrm{F}_{6} \mathrm{Fe}_{2} \mathrm{~K}_{2} \mathrm{Mg}_{6} \mathrm{O}_{19} \mathrm{Si}_{6}(\mathrm{c})$		[482] reports ΔH crystn.

d. Compounds of seven elements.
$\mathrm{Al}_{2} \mathrm{BaCF}_{6} \mathrm{Mg}_{6} \mathrm{O}_{21} \mathrm{Si}_{6}(\mathrm{c})$
[482] reports $\Delta \mathrm{H}$ crystn.
$\mathrm{Al}_{2} \mathrm{~F}_{6} \mathrm{Fe}_{3} \mathrm{~K}_{2} \mathrm{Ng}_{3} \mathrm{O}_{19} \mathrm{Si}_{6}$ (c)
[482] reports $\Delta \mathrm{H}$ crystn.
$\mathrm{BBaF}_{2} \mathrm{LiMg}_{2} \mathrm{O}_{10} \mathrm{Si}_{3}(\mathrm{c})$
[481, 482.] report ΔH crystn.
$\mathrm{BCF}_{3} \mathrm{H}_{3} \mathrm{NOS}(\mathrm{c}) \quad$ [483] meas. dissoc. pressure for; $\mathrm{CH}_{3} \mathrm{NSO}^{2} \cdot \mathrm{BF}_{3}(\mathrm{c})=\mathrm{CH}_{3} \mathrm{NSO}(\mathrm{g})+\mathrm{BF}_{3}(\mathrm{~g})$. Using the
$\left(\mathrm{CH}_{3} \mathrm{NSO} \cdot \mathrm{BF}_{3}\right)$ data of [483], [29] reported $\Delta \mathrm{H}$ dissoc. $=32.8$. See [520].
$\mathrm{CF}_{6} \mathrm{~K}_{2} \mathrm{Mg}_{6} \mathrm{O}_{22} \mathrm{Si}_{7} \mathrm{Zn}_{2}(\mathrm{c})$
[482] reports ΔH crystn.
e. Compounds of eight elements.
$\mathrm{Al}_{4} \mathrm{CF}_{12} \mathrm{~K}_{4} \mathrm{Mg}_{12} \mathrm{NiO}_{40} \mathrm{Si}_{12}$ (c)
[482] reports ΔH crystn.
$\mathrm{B}_{2} \mathrm{Ba}_{2} \mathrm{CF}_{4} \mathrm{Li}_{2} \mathrm{Mg}_{4} \mathrm{O}_{22} \mathrm{Si}_{6}(\mathrm{c})$
[481, 482] report $\Delta \mathrm{H}$ crystn.
$\mathrm{B}_{2} \mathrm{CCO}_{2} \mathrm{~F}_{4} \mathrm{Li}_{2} \mathrm{Mg}_{4} \mathrm{O}_{22} \mathrm{Si}_{6}(\mathrm{c})$
[482] reports $\Delta \mathrm{H}$ crystn.
$\mathrm{B}_{2} \mathrm{CF}_{4} \mathrm{Li}_{2} \mathrm{NH}_{4} \mathrm{O}_{22} \mathrm{Si}_{6} \mathrm{Sr}_{2}(\mathrm{c})$
[482] reports ΔH crystn.
$\mathrm{Ca}_{3 / 2} \mathrm{FHgg}_{9 / 2} \mathrm{Mn}_{1 / 2} \mathrm{NaO}_{23} \mathrm{Si}_{8}(\mathrm{c})$
[479] meas. decomposition to pyroxene, glass, and water and reports $\Delta \mathrm{H}=6.85$.

TABLE 5. AQUEOUS FLUORIDE ION

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{F}^{-}(\mathrm{aq})$	-78.66 [9]	For the equilibrium: $H^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsucceq \mathrm{HF}(\mathrm{aq})$, [16] lists $\Delta H=3.05$, 3.18; $\log \mathrm{K}$ (25 values). [195, 589] calc. $\Delta \mathrm{H}$ hydration of $\mathrm{F}^{-}(\mathrm{g})$. See also $\mathrm{HF}_{2}^{-}(\mathrm{aq})$, $\mathrm{HF}(\mathrm{aq})$, and individual metal ion species.

TABLE 6. BINARY AQUEOUS SPECIES

Species	$\Delta \mathrm{Hr}_{298}^{\circ} \mathrm{l}$ ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
$\mathrm{AgF}(\mathrm{aq})$	$\underset{(\mathrm{var})}{-53.35[9]}$	For the equilibrium: $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nLeftarrow \mathrm{AgF}($. .q $), \quad[16]$ lists $\Delta H=-2.4 ;$ log K (5 values).
$\mathrm{AlF}^{+2}(\mathrm{aq})$		For the equilibrium: $\mathrm{AI}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsubseteq A 1 \mathrm{~F}^{+2}(\mathrm{aq}),[16]$ lists $\Delta \mathrm{H}=1.15$; log K (3 values). [484] recalc. the data for this reaction and reports $\Delta H=1.17$. [488] calc. $\Delta H=1.06$. See $\mathrm{AlF}_{2}^{+}(\mathrm{aq})$.
$\mathrm{AlF}_{2}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{Al} \mathrm{F}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsubseteq \mathrm{A} 1 \mathrm{~F}_{2}^{+}(\mathrm{aq}),[16]$ lists $\Delta \mathrm{H}=0.78$; log K (2 values). [488] calc. $\Delta H=0.92$. [484] recalc. data for the equilibrium: $\mathrm{Al}{ }^{+3}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \nsubseteq \mathrm{AlF}_{2}^{+}(\mathrm{aq})$, and reports $\Delta \mathrm{H}=1.97$. See $\mathrm{AlF}_{3}(\mathrm{aq})$.
$\mathrm{AlF}_{3}(\mathrm{aq})$	-361.4 [9]	For the reaction: $\mathrm{Al}(\mathrm{c})+3 \mathrm{HF}(\mathrm{aq}, 12 \%)=\mathrm{AlF}_{3}(\mathrm{aq})+3 / 2 \mathrm{H}_{2}(\mathrm{~g})$, [485] meas. $\Delta \mathrm{H}=$ -124.4 ± 1. For the reaction: $\mathrm{Al}(\mathrm{c})+3 \mathrm{HF}(\mathrm{aq}, 10 \mathrm{~g})=\mathrm{AlF}_{3}(\mathrm{aq})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}),[486]$ meas. $\Delta H=-139.2$. For the equilibrium: $\mathrm{AlF}_{2}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{AlF}_{3}(\mathrm{aq})$, [16] lists $\Delta H=0.19 ; \log K$ (2 values). [484] calc. $\Delta H=0.18$. [484] recalc. data for the equilibrium: $\mathrm{Al}^{+3}(\mathrm{aq})+3 \mathrm{~F}^{-}(\mathrm{aq}) \nrightarrow \mathrm{AlF}_{3}(\mathrm{aq})$, and reports $\Delta \mathrm{H}=2.18$. See $\mathrm{AlF}_{4}^{-}(\mathrm{aq})$, $\left(\mathrm{Al}_{2} \mathrm{~F}_{6}\right)(\mathrm{aq})$.
$\mathrm{AlF}_{4}^{-}(\mathrm{aq})$		For the equilibrium: $\mathrm{AlF}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{AIF}_{4}^{-}(\mathrm{aq}),[16]$ lists $\Delta H=0.28: \log \mathrm{K}$ (2 values). [488] calc.' $\Delta H=0.04$. [484] recalc. data for the equilibrium: $\mathrm{Al}{ }^{+3}(\mathrm{aq})+4 \mathrm{~F}^{-}(\mathrm{aq}) \rightleftarrows \mathrm{AlF}_{4}^{-}(\mathrm{aq})$, and reports $\Delta \mathrm{H}=2.14$. See $\mathrm{AlF}_{5}^{-2}(\mathrm{aq}), \mathrm{AlF}_{6}^{-3}(\mathrm{aq})$.
$\mathrm{AlF}_{5}^{-2}(\mathrm{aq})$		For the equilibrium: $\mathrm{AlF}_{4}^{-}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \leftrightarrows \mathrm{AlF}_{5}^{-2}(\mathrm{aq}),[16]$ lists $\Delta H=-0.75$; $\log \mathrm{K}$ (2 values). [484] calc. $\Delta H=-0.36$. [484] recalc. data for the equilibrium: $\mathrm{Al}^{+3}(\mathrm{aq})+5 \mathrm{~F}^{-}(\mathrm{aq}) \nRightarrow \mathrm{AlF} \mathrm{F}_{5}^{-2}(\mathrm{aq})$, and reports $\Delta \mathrm{H}=2.27$. See $\mathrm{AlF}_{6}^{-3}(\mathrm{aq})$.
$\mathrm{AlF}_{6}^{-3}(\mathrm{aq})$		For the equilibrium: $\mathrm{AlF}_{5}^{-2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{AlF}_{6}^{-3}(\mathrm{aq})$, [16] lists $\Delta H=-1.55$; log K (1 value). [488] discusses the equilibrium. For the equilibrium: Al^{+3} (aq) + $6 \mathrm{~F}^{-}(\mathrm{aq}) \nsubseteq A \mathrm{FF}_{6}^{-3}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$. [484] recalc. data for this reaction and reports $\Delta H=-1.24$. See $\mathrm{Al}_{2} \mathrm{~F}_{6}(\mathrm{aq})$.
$\mathrm{AlF}_{n}^{3-\mathrm{n}}(\mathrm{aq})$		See [488] for a general review of Al-F complexes.
$\begin{aligned} & \mathrm{Al}_{2} \mathrm{~F}_{6}(\mathrm{aq}) \\ & \left(\mathrm{Al}\left(\mathrm{AIF}_{6}\right)\right) \end{aligned}$		For the equilibrium: $\mathrm{Al}^{+3}(\mathrm{aq})+\mathrm{AlF}_{6}^{-3}(\mathrm{aq}) \nsucceq \mathrm{Al}\left(\mathrm{AlF} \mathrm{F}_{6}\right)(\mathrm{c})$, [16] lists log K sp (1 value).
$\mathrm{AmF}_{2}(\mathrm{aq})$		See [106].
$\mathrm{AmF}_{3}(\mathrm{aq})$		See [106].
$\mathrm{AuF}_{3}(\mathrm{aq})$		[131] meas. $\Delta \mathrm{H}$ hydr. of $\mathrm{AuF}_{3}(\mathrm{c})$
$\mathrm{BF}_{3}(\mathrm{aq})$	$\begin{aligned} & -289.8[9] \\ & -292.2[29] \end{aligned}$	See $\mathrm{BF}_{4}^{-}(\mathrm{aq})$.

table 6. binary aqueous species (continued)

Species	$\Delta H f_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{BF}_{4}^{-}(\mathrm{aq})$	$\begin{aligned} & -365[9] \\ & -371.7[29] \end{aligned}$	[351] calc. $\Delta \mathrm{Hf}_{298}^{\circ}=-342$. For the equilibrium: $\mathrm{BF}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \mathrm{BF}_{4}^{-}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$. For the equilibrium: $\mathrm{BF}_{3} \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \underset{\mathrm{BF}}{4}-(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\ell)$, [16] lists $\Delta H=-3.23 ; \log _{K} \mathrm{~K}$ (8 values). For the equilibrium: $\mathrm{BF}_{4}^{-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \underset{ }{\rightleftarrows}$ $\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq})+3 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{~F}^{-}(\mathrm{aq})$, [489] meas. K , and reports $\Delta \mathrm{F}$ reac., and $\Delta \mathrm{Ff}_{298}^{\circ}$ of $\mathrm{BF}_{4}^{-}(\mathrm{aq})=-352$. For this reaction, [16] lists $\log K$ (l value).
$\mathrm{BaF}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{Ba}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsubseteq \mathrm{BaF}^{+}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (2 values).
$\mathrm{BaF}_{2}(\mathrm{aq})$	-286.0 [9]	For the equilibrium: $\mathrm{Ba}^{+2}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \pm \mathrm{BaF}_{2}(\mathrm{c}),[16]$ lists $\log \mathrm{K} \mathrm{sp}$ (4 values).
$\mathrm{BeF}^{+}(\mathrm{sq})$		For the equilibrium: $\mathrm{Be}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsubseteq \mathrm{BeF}^{+}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (2 values). For the equilibrium: $\mathrm{Be}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{BeF}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\Delta H=-3.40$; $\log \mathrm{K}$ (4 values). See BeF_{2} (aq).
BeF_{2} (aq)	-251.4 [9]	For the equilibria: $\mathrm{BeF}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nRightarrow \mathrm{BeF}_{2}(\mathrm{aq})$, and $\mathrm{Be}^{+2}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \nRightarrow$ $\mathrm{BeF}_{2}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (l value, each). For the equilibrium: $\mathrm{BeF}^{+}(\mathrm{aq})+$ $\mathrm{HF}(\mathrm{aq}) \nleftarrow \mathrm{BeF}_{2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[16]$ lists $\Delta H=-1.735$: $\log \mathrm{K}$ (4 values). See $\mathrm{BeF}_{3}^{-}(\mathrm{aq})$.
$\mathrm{BeF}_{3}^{-}(\mathrm{aq})$		For the equilibria: $\mathrm{BeF}_{2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{BeF}_{3}^{-}(\mathrm{aq})$, and $\mathrm{BeF}_{2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \neq$ $\mathrm{BeF}_{3}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (l and 4 values, resp.). See $\mathrm{BeF}_{4}^{-2}(\mathrm{aq})$.
$\mathrm{BeF}_{4}^{-2}(\mathrm{aq})$		For the equilibrium: $\mathrm{BeF}_{3}^{-}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{BeF}_{4}^{-2}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (1 value).
CaF^{+}(aq)		For the equilibrium: $\mathrm{Ca}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \pm \mathrm{CaF}^{+}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}(2$ values).
CaF_{2} (aq)	-287.09 [9]	For the equilibria: $\mathrm{CaF}_{2}(\mathrm{c}) \not \mathrm{Ca}^{+2}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$, and $\mathrm{CaF}_{2}(\mathrm{c})+\mathrm{H}^{+}(\mathrm{aq}) \not \ddagger$ $\mathrm{Ca}^{+2}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (6 values, and 2 values, resp.).
CdF^{+}(aq)		[16] lists $\log K\left(2\right.$ values) for the equilibrium: $\mathrm{Cd}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{CdF}^{+}(\mathrm{aq})$. See CdF_{2} (aq).
CaF_{2} (aq)	-173.6[9]	[16] lists $\log \mathrm{K}(1 \mathrm{value})$ for the equilibrium: $\mathrm{CdF}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{CdF}_{2}(\mathrm{aq})$.
$\mathrm{CdF}_{12}^{-10}(\mathrm{aq})$		[16] lists $\log K\left(1\right.$ value) for the equilibrium: $\mathrm{Cd}^{+2}(\mathrm{aq})+12 \mathrm{~F}^{-}(\mathrm{aq}) \neq \mathrm{CdF}_{12}^{-10}(\mathrm{aq})$.
CeF^{+2} (aq)		[16] lists $\log K(3$ values $)$ for the equilibrium: $\mathrm{Ce}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{CeF}^{+2}(\mathrm{aq})$. For the equilibrium: $\mathrm{Ce}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{CeF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}), \quad[16]$ lists $\Delta H=-0.5$; $\log \mathrm{K}$ (l value). [181] calc. $\Delta \mathrm{Ff}_{2}^{\circ} \mathrm{og}$ of $\mathrm{CeF}^{+2}(\mathrm{aq})=-242$.
CeF_{3} (aq)		[181] meas. K sp for the equilibrium: $\mathrm{CeF}_{3} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\mathrm{c}) \nRightarrow \mathrm{Ce}^{+3}(\mathrm{aq})+3 \mathrm{~F}^{-}(\mathrm{aq})+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}(\ell)$.
$\mathrm{CmF}_{2}(\mathrm{aq})$		See [106].
$\mathrm{CmF}_{3}(\mathrm{aq})$		See [106].
CoF_{2} (aq)	-173.6[9]	
$\mathrm{CrF}^{+2}(\mathrm{aq})$		[16] lists $\log K$ (2 values) for the equilibrium: $\mathrm{Cr}^{+3}(\mathrm{aq})+\mathrm{F}^{-}$(aq) $\not \approx \mathrm{CrF}^{+2}$ (aq). For the equilibrium: $\mathrm{Cr}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{CrF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[16]$ lists $\Delta H=-0.6$; $\log K$ (1 value). See $\mathrm{CrF}_{2}^{+}(\mathrm{aq})$.
$\mathrm{CrF}_{2}^{+}(\mathrm{aq})$		[16] lists $\log K$ (l value) for the equilibrium: $\mathrm{CrF}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nRightarrow \mathrm{CrF}_{2}^{+}(\mathrm{aq})$. For the equilibrium: $\operatorname{CrF}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nRightarrow \operatorname{CrF}_{2}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[16]$ lists $\Delta H=-0.1$; $\log \mathrm{K}$ (l value). See $\mathrm{CrF}_{3}(\mathrm{aq})$.
$\mathrm{CrF}_{3}(\mathrm{aq})$		[16] lists $\log K(1$ value, each $)$ for the equilibria: $\operatorname{CrF}_{2}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsucceq$ $\mathrm{CrF}_{3}(\mathrm{aq})$, and $\mathrm{CrF}_{2}^{+}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nleftarrow \mathrm{CrF}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$.
CsF (aq)	$\begin{gathered} -137.9[9] \\ (\mathrm{var}) \end{gathered}$	[195, 619] calc. ΔH hydration of ions. [487] calc. free energy of hydration of ions.

TABLE 6. BINARY AQUEOUS SPECIES (continued)

Species	$\Delta \mathrm{Hf}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks

$\mathrm{CuF}^{+}(\mathrm{aq})$
$\mathrm{FeF}^{+}(\mathrm{aq})$
$\mathrm{FeF}_{2}^{+}(\mathrm{aq})$
$\mathrm{FeF}_{2}(\mathrm{aq})$
-177.8 [9]
-243.1 [9]
$\mathrm{FeF}_{4}^{-}(\mathrm{aq})$
$\mathrm{FeF}_{5}^{-2}(\mathrm{aq})$
$\mathrm{FeF}_{6}^{-3}(\mathrm{aq})$
$\mathrm{CaF}^{+2}(\mathrm{aq})$
$\mathrm{GaF}_{2}^{+}(\mathrm{aq})$
$\mathrm{GaF}_{3}(\mathrm{aq})$
$\operatorname{cdF}^{+2}(\mathrm{aq})$
$\mathrm{HF}(\mathrm{aq})$
$\mathrm{HF}_{2}^{-}(\mathrm{qq})$
$\mathrm{HgF}^{+}(\mathrm{aq})$
$\mathrm{Hg}_{2} \mathrm{~F}^{+}(\mathrm{aq})$
$\mathrm{InF}^{+2}(\mathrm{aq})$

For the equilibrium: $\mathrm{Cu}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{CuF}^{+}(\mathrm{aq})$, [16] lists $\Delta \mathrm{H}=0.9 ; \log \mathrm{K}$ (5 values). [490] meas. $\Delta H=0.9 \pm 2.7$, and K. For the equilibrium: $\mathrm{Cu}^{+2}(\mathrm{aq})+$ $\mathrm{HF}(\mathrm{aq}) \underset{\mathrm{CuF}}{ }{ }^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[490]$ meas. $\Delta \mathrm{H}=-2.6 \pm 2.7$, and K .
[16] lists $\log \mathrm{K}$ (l value) for the equilibrium: $\mathrm{Fe}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nRightarrow \mathrm{FeF}^{+}(\mathrm{aq})$.
For the equilibrium: $\mathrm{Fe}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{FeF}^{+2}(\mathrm{aq})$, [16] lists $\Delta H=7.5$, and 2.33; $\log \mathrm{K}$ (ll values). For the equilibrium: $\mathrm{Fe}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \neq \mathrm{FeF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [484] meas. $\Delta \mathrm{H}=-0.58 \pm 0.07$. For the same reaction [16] lists $\Delta H=-0.62 ; \log$ K (5 values). [491] meas. K. See $\mathrm{FeF}_{2}^{+}(\mathrm{aq})$.

For the equilibrium: $\mathrm{FeF}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \neq \mathrm{FeF}_{2}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}), \quad$ [484] meas. $\Delta \mathrm{H}=-1.66$ ± 0.1. For the same reaction [16] lists $\Delta H=-1.65$: log K (5 values). [491] meas.
K. For the equilibrium: $\mathrm{FeF}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsupseteq \mathrm{FeF}_{2}^{+}(\mathrm{aq})$, [16] lists $\Delta \mathrm{H}=1.77$; $\log \mathrm{K}$ (7 values). See $\mathrm{FeF}_{3}(\mathrm{aq})$.

For the equilibrium: $\mathrm{FeF}_{2}^{+}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \ddagger \mathrm{FeF}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [484] meas. $\Delta \mathrm{H}=-2.03$ ± 0.20. For this reaction [16] lists $\log K$ (5 values). [491] meas. K. For the equilibrium: $\mathrm{FeF}_{2}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \underset{\mathrm{FeF}}{3}$ (aq), [16] lists $\Delta H=2.98$; $\log \mathrm{K}$ (6 values). See $\mathrm{FeF}_{4}^{-}(\mathrm{aq})$.

For the equilibrium: $\mathrm{FeF}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nleftarrow \mathrm{FeF}_{4}^{-}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (1 value). See $\mathrm{FeF}_{5}^{-2}(\mathrm{aq})$.
For the equilibrium: $\mathrm{FeF}_{4}^{-}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{FeF}_{5}^{-2}(\mathrm{aq})$, [16] Iists $\log \mathrm{K}$ (1 value).
[16] lists $\log \mathrm{K}$ for the equilibrium: $\mathrm{HFeF}_{6}^{-2}(\mathrm{aq}) \not \mathrm{FeF}_{6}^{-3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$.
For the equilibrium: $\mathrm{Ga}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{GaF}^{+2}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (2 values). For the equilibrium: $\mathrm{Ga}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{GaF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}$(aq), [16] lists $\Delta H=-0.5$, and -1.30: $\log \mathrm{K}$ (5 values). See GaF_{2}^{+}(aq).
For the equilibrium: $\mathrm{GaF}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nleftarrow \mathrm{GaF}_{2}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}), \quad$ [16] lists $\Delta H=-1.49$; $\log K$ (4 values). See GaF_{3} (aq).

For the equilibrium: $\mathrm{GaF}_{2}^{+}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \underset{\mathrm{GaF}}{3}$ (aq) $+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\Delta H=-5.50$; $\log K$ (4 values).

For the equilibria: $\mathrm{Gd}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{GdF}^{+2}(\mathrm{aq})$, and $\mathrm{Gd}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{GdF}^{+2}(\mathrm{aq})$ $+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (2 values, and 1 value, resp.). [181] reports
$\Delta \mathrm{Ff}_{298}^{\circ}=-236.5$.
For the equilibrium: $H^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nleftarrow \mathrm{HF}(\mathrm{aq})$, [16] lists $\Delta H=3.05$, and 3.18; log K (25 values). [491] meas. ΔH ionization. [590] meas. pH vs. concentration. Heats of soln. of various sübstances in $\mathrm{HF}(\mathrm{aq})$ have been determined by [310, 311, 498, 591, 592, 593, 594, 595, 596, 597, 598]. See $\mathrm{HF}_{2}^{-}(\mathrm{aq})$.

For the equilibrium: $\mathrm{HF}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nRightarrow \mathrm{HF}_{2}^{-}(\mathrm{aq}),[16]$ lists $\Delta H=5.07$; log K
(19 values).
For the equilibrium: $\mathrm{Hg}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \rightleftarrows \mathrm{HgF}^{+}(\mathrm{aq}),[16]$ lists $\Delta H=0.85$; log K (4 values).

For the equilibrium: $\mathrm{Hg}_{2}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nRightarrow \mathrm{Hg}_{2} \mathrm{~F}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (2 values).
For the equilibrium: $\mathrm{In}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{InF}^{+2}(\mathrm{aq}),[16]$ lists $\Delta H=2.47$; log K (6 values). For the equilibrium: $\mathrm{In}^{+3}+\mathrm{HF}(\mathrm{aq}) \not \mathrm{InF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\Delta H=-0.51 ; \log K(3$ values $)$. See also [599]. See $\operatorname{InF}_{2}^{+}(\mathrm{aq})$.

TABLE 6. BINARY AQUEOUS SPECIES (continued)

Species	$\Delta \mathrm{Hf} \mathrm{O}_{298}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{InF}_{2}^{+}(\mathrm{aq})$		For the equilibrium: $\operatorname{InF}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \operatorname{InF}_{2}^{+}(\mathrm{aq})$, [16] lists $\Delta H=4.0$: $\log \mathrm{K}$ (6 values). For the equilibrium: $\operatorname{InF}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nsucceq \mathrm{InF}_{2}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\Delta H=1.0: \log K$ (3 values). See also [599]. See $\operatorname{InF}_{3}(\mathrm{aq})$.
$\mathrm{InF}_{3}(\mathrm{aq})$		For the equilibrium: $\operatorname{InF}_{2}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \operatorname{InF}_{3}(\mathrm{aq})$, [16] lists log K (2 values). See also [599]. See $\operatorname{InF}_{4}^{-1}(\mathrm{aq})$.
InF_{4}^{-}(aq)		For the equilibrium: $\operatorname{InF}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsucceq \operatorname{InF}_{4}^{-}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (1 value). See also [599].
KF (aq)	$\underset{(\mathrm{var})}{-138.7}$	[492] reports ΔH dilution. [195] calc. ΔH soln. [619] calc. ΔH hydration of ions. [487, 600] calc. ΔF hydration of ions. [601] reviews degree of dissoc.
$\mathrm{LaF}^{+2}(\mathrm{aq})$		For the equilibria: $\mathrm{La}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nleftarrow \mathrm{LaF}^{+2}(\mathrm{aq})$, and $\mathrm{La}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \rightleftarrows$ $\operatorname{LaF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (2 values and 1 value, resp.).
$\mathrm{LaF}_{3}(\mathrm{aq})$		[181] gives K sp, and ΔH soln.
LiF (aq)	$\underset{(\mathrm{var})}{-145.21}[9]$	[622] meas. ΔH neutralization of $\operatorname{LiOH}(\mathrm{aq})$ and $\mathrm{HF}(\mathrm{aq}) . \quad[622,233]$ meas. ΔH soln. [195, 619, 620] calc. ΔH hydration of ions. [487] calc. Δ F hydration of ions.
$\mathrm{MgF}^{+}(\mathrm{aq})$		For the equilibrium: Mg^{+2} (aq) $+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{MgF}^{+}(\mathrm{aq}),[16]$ lists $\Delta \mathrm{H}=4$; $\log \mathrm{K}$ (3 values). See [493]. For the equilibrium: $\mathrm{Mg}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{MgF}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [493] lists K.
$\mathrm{MgF}_{2}(\mathrm{aq})$		For the equilibrium: $\mathrm{MgF}_{2}(\mathrm{c}) \nRightarrow \mathrm{Mg}^{+2}$ (aq) $+2 \mathrm{~F}^{-}$(aq), [16] lists K sp (2 values).
MmF^{+2} (aq)		For the equilibrium: $\mathrm{Nm}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \neq \mathrm{NaF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}), \quad$ [16] lists $\log \mathrm{K}$ (l value).
$\mathrm{MmF}_{2}(\mathrm{aq})$	-209.2 [9]	
$\mathrm{MmF}_{3}(\mathrm{aq})$	-260 [9]	-
$\mathrm{MmF}_{4}(\mathrm{aq})$		[239] meas. $\Delta \mathrm{H}$ soln. of $\mathrm{MnF}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{MoF}_{6}(\mathrm{aq})$		See $\mathrm{F}_{2} \mathrm{MOO}_{2}(\mathrm{aq})$.
NaF (aq)	$\underset{(\mathrm{var})}{-135.94}[9]$	[256] meas. ΔH soln. in $H C l(a q)$. [195, 619] calc. ΔH hydration of ions. [487] calc. ΔF hydration of ions. See also [258].
$\mathrm{NiF}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{Ni}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{NiF}^{+}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (1 value).
$\mathrm{NiF}_{2}(\mathrm{aq})$	-171.5 [9]	
$\mathrm{NpF}_{6}(\mathrm{aq})$		See [555].
$\mathrm{PbF}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{Pb}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{PbF}^{+}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (2 values). See [490].
$\mathrm{PbF}_{2}(\mathrm{aq})$	-155.7 [9]	For the equilibrium: $\mathrm{PbF}_{2}(\mathrm{c}) \nsupseteq \mathrm{Pb}^{+2}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq})$, [16] lists K sp (4 values). [602] meas. solubility of $\mathrm{PbF}_{2}(\mathrm{c})$. See also [282].
$\mathrm{PuF}^{+3}(\mathrm{aq})$		For the equilibrium: $\mathrm{Pu}^{+4}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \pm \mathrm{PuF}^{+3}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (2 values).
$\mathrm{PuF}_{3}(\mathrm{aq})$	-374.6 [9]	[288] meas. ΔH pptn of $\mathrm{PuF}_{3}(\mathrm{c})$.
$\mathrm{RbF}(\mathrm{aq})$	$\underset{(\mathrm{var})}{-137.6[9]}$	[195,619$]$ calc. ΔH hydration of ions.
$\mathrm{SbF}_{3}(\mathrm{aq})$	-216.1 [9]	

TABLE 6. BINARY AQUEOUS SPECIES (continued)

Species	$\Delta \mathrm{Hf}_{298}^{\circ}$ ($\mathrm{kcal} / \mathrm{mole}$)	Remarks
$\mathrm{ScF}^{+2}(\mathrm{aq})$		For the equilibrium : $\mathrm{Sc}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{ScF}^{+2}(\mathrm{aq}),[16]$ lists $\Delta \mathrm{H}=0.40$; log K (4 values). See [494]. For the equilibrium: $\mathrm{Sc}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nsucceq \mathrm{ScF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [495] meas. K and calc. $\Delta \mathrm{H}=-4.48 \pm 0.05$. See ScF ${ }_{2}{ }^{+}(\mathrm{eq})$.
$\mathrm{ScF}_{2}^{+}(\mathrm{aq})$		For the equilibrium:ScF ${ }^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsucceq \mathrm{SCF}_{2}^{+}(\mathrm{aq}),[16]$ lists $\Delta H=-1.23 ; \log \mathrm{K}$ (4 velues). See [494]. For the equilibrium: $\mathrm{ScF}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \geqq \mathrm{ScF}_{2}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [495] meas. K and calc. $\Delta \mathrm{H}=-3.23 \pm 0.05$. See $\mathrm{ScF}_{3}(\mathrm{aq})$.
$\mathrm{ScF}_{3}(\mathrm{aq})$		For the equilibrium: $\mathrm{ScF}_{2}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \mathrm{ScF}_{3}(\mathrm{aq})$, [16] lists $\Delta \mathrm{H}=-1.26$; log K (4 values). See [494]. For the equilibrium: $\operatorname{ScF}_{2}^{+}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nsucceq \mathrm{ScF}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [495] meas. K and calc. $\Delta \mathrm{H}=-1.59 \pm 0.05$. See $\mathrm{ScF}_{4}{ }^{-}(\mathrm{aq})$.
$\mathrm{ScF}_{4}^{-(\mathrm{aq})}$		For the equilibrium: $\mathrm{ScF}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{ScF}_{4}^{-}(\mathrm{aq})$, [16] iists $\log \mathrm{K}$ (4 values). For the equilibrium: $\mathrm{ScF}_{3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nsupseteq \mathrm{ScF}_{4}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[495]$ meas. K .
$\mathrm{SiF}_{4}(\mathrm{aq})$		For the equilibrium: $\mathrm{Si}^{(\mathrm{OH})_{4}}+\left\langle\mathrm{HF}(\mathrm{aq}) \neq \mathrm{SiF}_{4}(\mathrm{aq})+\left\langle\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.\right.$, [16] lists log K (1 value). See SiF_{6}^{-2} (aq).
$\mathrm{SiF}_{5}^{-}(\mathrm{aq})$		See $\mathrm{SiF}_{6}^{-2}(\mathrm{aq}), \mathrm{Si}_{2} \mathrm{~F}_{10}^{-2}(\mathrm{aq})$.
$\mathrm{SiF}_{6}^{-2}(\mathrm{aq})$	-558.5 [9]	For the equilibrium: $\mathrm{SiF}_{4}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \not \mathrm{SiF}_{6}^{-2}(\mathrm{aq}),[16]$ lists log K (2 values) derived from the equilibria: 1) $\mathrm{SiF}_{4}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \mathrm{SiF}_{5}^{-}(\mathrm{aq})$; 2) $\mathrm{SiF}_{5}^{-}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$ $\nRightarrow \mathrm{SiF}_{6}^{-2}$ (aq). [16] lists log K for the equilibrium $\mathrm{Si}(\mathrm{OH})_{4}+6 \mathrm{HF}(\mathrm{aq}) \underset{\mathrm{C}}{\boldsymbol{S}} \mathrm{SiF}_{6}^{-2}(\mathrm{aq})+$ $2 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}(\ell)$. [496] recalculated previous data for the equilibrium: $\mathrm{SiF}_{6}^{-2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \geq \mathrm{SiO}_{2}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+6 \mathrm{~F}^{-}(\mathrm{aq})$ and reported $\Delta \mathrm{H}_{298}=17.3$, and $\log ^{6} \mathrm{~K}$ vs.t. See $\mathrm{Si}_{2} \mathrm{~F}_{10}^{-2}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{Si}_{2}{ }_{210}^{-2}(\mathrm{aq}) \\ & \left(\mathrm{SiFiF}_{4} \mathrm{SiF}_{6}\right) \end{aligned}$		For the reaction: $4 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{SiF}_{6}^{-2}(\mathrm{aq})+\mathrm{SiO}_{2} \neq 2 \mathrm{H}_{2} \mathrm{O}(\ell)+3\left[\mathrm{SiF}_{6}-\mathrm{SiF}_{4}\right]^{-2}(\mathrm{aq}), \quad[497]$ meas. $\Delta \mathrm{H} \cong-5 \mathrm{kcal} / \mathrm{mole} \mathrm{SiO}_{2}$, and $\log \mathrm{K}$.
$\mathrm{SnF}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{Sn}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{SnF}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}$ (2 values).
$\mathrm{SnF}_{3}^{-(\mathrm{aq})}$		For the equilibrium: $\mathrm{Sn}^{+2}(\mathrm{aq})+3 \mathrm{~F}^{-}(\mathrm{aq}) \geq \mathrm{SnF}_{3}^{-}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (2 values).
$\mathrm{SnF}_{6}^{-2}(\mathrm{aq})$	-474.7 [9]	For the equilibrium: $\mathrm{Sn}^{+4}(\mathrm{aq})+6 \mathrm{~F}^{-}(\mathrm{aq}) \neq \mathrm{SnF}_{6}^{-2}(\mathrm{aq}),[16]$ lists $\log \mathrm{K}$ (1 value).
$\mathrm{SrF}_{2}(\mathrm{aq})$		For the equilibrium: $\operatorname{SrF}_{2}(\mathrm{c}) \neq \mathrm{Sr}^{+2}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}),[16]$ lists K sp (4 values). [603] meas. solubility.
$\mathrm{TaF}_{5}(\mathrm{aq})$		For the reaction: $\mathrm{Ta}(\mathrm{c})+5 \mathrm{HF}\left(\mathrm{aq}, 1.7 \mathrm{H}_{2} \mathrm{O}\right)=\mathrm{TaF}_{5}(\mathrm{aq})+5 / 2 \mathrm{H}_{2}(\mathrm{~g})$ [498] meas. $\Delta \mathrm{H}=$ -99.66.
$\mathrm{ThF}^{+3}(\mathrm{aq})$		For the equilibria: $\mathrm{Th}^{+4}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \mathrm{ThF}^{+3}(\mathrm{aq})$, and $\mathrm{mh}^{+4}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nRightarrow$ $\mathrm{ThF}^{+3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}\left(1\right.$ value and 3 values, resp.). See $\mathrm{ThF}_{2}^{+2}(\mathrm{aq})$.
$\mathrm{ThF}_{2}^{+2}(\mathrm{aq})$		For the equilibrium: $\mathrm{ThF}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{ThF}_{2}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[16]$ lists log K (2 values). For the equilibrium: $\mathrm{ThF}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{4}(\mathrm{c})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightleftarrows \mathrm{ThF}_{2}^{+2}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq})+$ $4 \mathrm{H}_{2} \mathrm{O}(\ell)$, [16] lists $\log \mathrm{K}$ (1 value). See $\mathrm{ThF}_{3}^{+}(\mathrm{aq})$.
$\mathrm{ThF}_{3}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{ThF}_{2}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \mathrm{ThF}_{3}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$ [16] lists $\log \mathrm{K}$ (I value).
teF(aq)	-77.3 [9]	[16] lists $\log \mathrm{K}$ (I value) for the equilibrium: $\mathrm{Tl}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nsubseteq \mathrm{T} \ell \mathrm{F}(\mathrm{aq})$. [56] meas. $\Delta \mathrm{H}$ soln. (TlF in $800 \mathrm{H}_{2} \mathrm{O}$) $=-0.5 \pm 0.2$.
$\mathrm{TlF}_{3}(\mathrm{aq})$		For ΔH hydrolysis [131] meas. -8.4.
$\mathrm{UF}^{+3}(\mathrm{aq})$		For the equilibrium: $\mathrm{U}^{+4}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \geq \mathrm{UF}^{+3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})[16]$ lists $\log \mathrm{K}$ (I value).
$\mathrm{uF}_{2}^{+2}(\mathrm{aq})$		For the equilibrium: $\mathrm{U}^{+4}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq}) \geq \mathrm{UF}_{2}^{+2}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})[16]$ lists $\log \mathrm{K}$ (1 value).

Species	$\Delta 4 f_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\mathrm{YF}^{+2}(\mathrm{aq})$		For the equilibrium: $\mathrm{Y}^{+3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \mathrm{YF}^{+2}(\mathrm{aq})$, [499] meas. K . For the reactions $\mathrm{Y}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nsupseteq \mathrm{YF}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[499]$ meas. K and $\mathrm{calc} . \Delta \mathrm{H}=-0.93 \pm 0.55$. See $\mathrm{YF}_{2}^{+}(\mathrm{aq})$.
$\mathrm{YF}_{2}^{+}(\mathrm{aq})$		For the equilibria; 1) $\mathrm{YF}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \mathrm{YF}_{2}^{+}(\mathrm{aq})$; 2) $\mathrm{YF}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nRightarrow$ $\mathrm{YF}_{2}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[499]$ gives K . See $\mathrm{YF}_{3}(\mathrm{aq})$.
$\mathrm{YF}_{3}(\mathrm{aq})$		For the equilibria: $\mathrm{YF}_{2}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nLeftarrow \mathrm{YF}_{3}(\mathrm{aq})$, and $\mathrm{YF}_{2}^{+}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nRightarrow \mathrm{YF}_{3}(\mathrm{aq})+$ $\mathrm{H}^{+}(\mathrm{aq})$, [499] gives K.
$\mathrm{ZnF}^{+}(\mathrm{gq})$		For the equilibrium: $\mathrm{Zn}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \neq \mathrm{ZnF} \mathrm{F}^{+}(\mathrm{aq}),[16]$ lists $\Delta H=1.5$; $\log \mathrm{K}$ (5 values). For $\mathrm{Zn}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nLeftarrow \mathrm{ZnF}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[490]$ meas. K and calc . $\Delta H=-2.3 \pm 2.4$.
$\mathrm{ZnF}_{2}(\mathrm{aq})$	-187.9 [9]	
$\mathrm{zrF}^{+3}(\mathrm{aq})$		For the equilibria: $\mathrm{Zr}^{+4}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nRightarrow 2 \mathrm{rF}^{+3}(\mathrm{aq})$, and $\mathrm{Zr}^{+4}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightleftarrows$ $2 \mathrm{rF}^{+3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\log \mathrm{K}\left(1\right.$ value each). See $\mathrm{ZrF}_{2}^{+2}(\mathrm{aq})$.
$\mathrm{ZrF}_{2}{ }^{+2}(\mathrm{aq})$		For the equilibrium: $\mathrm{ZrF}^{+3}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \neq \mathrm{ZrF}_{2}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[16]$ 1ists $\log \mathrm{K}$ (I value). See $\mathrm{ZrF}_{3}^{+}(\mathrm{aq})$.
$\mathrm{ZrF}_{3}^{+}(\mathrm{aq})$		For the equilibrium: $\mathrm{ZrF}_{2}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nRightarrow \mathrm{ZrF}_{3}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}),[16]$ lists log K (1 value).

Species $\quad \Delta \mathrm{Hf}_{298}$ (kcal/mole) Remarks

$\mathrm{AgF}_{2} \mathrm{H}(\mathrm{aq})$	-130.8 [9]
$\left(\mathrm{AgHF}_{2}\right)$	
$\mathrm{AlF}_{6} \mathrm{H}_{3}(\mathrm{aq})$	-597.2 [9]
$\left(\mathrm{H}_{3} \mathrm{AlF}_{6}\right)$	
$\mathrm{AlF}_{6} \mathrm{~K}_{3}(\mathrm{aq})$	-775.5 [9]
$\left(\mathrm{K}_{3} \mathrm{AlF}_{6}\right)$	

$\mathrm{AlF}_{6} \mathrm{Na}_{3}(\mathrm{aq})$
$\left(\mathrm{Na}_{3} \mathrm{AlF}_{6}\right)$
$\mathrm{BCsF}_{4}(\mathrm{aq})$
$\left(\mathrm{CsBF}_{4}\right)$
$\mathrm{BF}_{4} \mathrm{H}(\mathrm{aq})$
-365 [9]
(HBF_{4})
$\mathrm{BF}_{4} \mathrm{~K}(\mathrm{aq})$
(KBF_{4})
ClFPb(aq)
(PbFCl)
$\mathrm{CrF}_{2} \mathrm{O}_{2}(\mathrm{aq})$
$\left(\mathrm{CrO}_{2} \mathrm{~F}_{2}\right)$
$\mathrm{CsF}_{2} \mathrm{H}(\mathrm{aq})$
-212.8 [9]
$\mathrm{FH}_{4} \mathrm{~N}(\mathrm{aq})$
$\left(\mathrm{NH}_{4} \mathrm{~F}\right)$
FOTi^{+}(aq)
(TiOF^{+})
FOV^{+}(aq)
(VOF ${ }^{+}$)
$\mathrm{FO}_{2} \mathrm{U}^{+}(\mathrm{aq})$
$\left(\mathrm{UO}_{2} \mathrm{~F}^{+}\right)$
-110.40 [9]
(var)
[256] meas. $\Delta \mathrm{H}$ soln. of $\mathrm{Na}_{3} \mathrm{AlF}_{6}(\mathrm{c})$.
[349] calc. ΔH soln. of $\mathrm{CsBF}_{4}(c)$ from solubility.
[604] meas. K hydr.
[349] calc. ΔH soln. of $\mathrm{KBF}_{4}(\mathrm{c})$. [351] est. ΔH soln. of $\mathrm{KBF}_{4}(\mathrm{c})$. [350] meas. $\Delta H f_{298}^{\circ}$ of KBF_{4} (c) from solution calorimetry.
[390] meas. K sp and ΔF soln. for $\operatorname{PbClF}(c)$. [282] meas. ΔH soln. of $\mathrm{PbClF}(\mathrm{c})$.
[509] meas. K for the equilibrium: $\mathrm{CrO}_{2} \mathrm{~F}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\imath) \not \mathrm{CrO}_{3}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq})$.
[399] calc. ΔF soln. of $\mathrm{NH}_{4} \mathrm{~F}(\mathrm{c})$.
[16] lists $\log \mathrm{K}$ (l value) for the equilibrium: $\mathrm{TiO}^{+2}(\mathrm{eq})+\mathrm{F}^{-}$(aq) $\underset{\mathrm{a}}{\mathrm{T}} \mathrm{TiO}^{+}$(aq). See $\mathrm{F}_{2} \mathrm{OTi}(\mathrm{aq}), \mathrm{F}_{3} \mathrm{OTi}^{-}(\mathrm{aq}), \mathrm{F}_{4} \mathrm{OTi}^{-2}(\mathrm{aq})$.
[16] lists $\log K(1$ value $)$ for the equilibrium: $V^{+2}(a q)+F^{-}(\mathrm{eq}) \nRightarrow \operatorname{VOF}^{+}(\mathrm{aq})$.
[16] lists $\log \mathrm{K}$ (4 values) for the equilibrium: $\mathrm{UO}_{2}^{+2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nleftarrow \mathrm{UO}_{2} \mathrm{~F}^{+}(\mathrm{aq})$. For the equilibrium: $\mathrm{UO}_{2}^{+2}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \nleftarrow \mathrm{UO}_{2} \mathrm{~F}^{+}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$, [16] lists $\Delta H=$ -5.4 and $\log \mathrm{K}$ (9 values). See $\mathrm{UO}_{2} \mathrm{~F}_{2}(\mathrm{aq})$.
[462] reports ΔH hydr. of $\mathrm{SO}_{3} \mathrm{~F}^{-}$gas ion.
[605] reports solubility of KF in $\mathrm{HF}(\mathrm{aq})$.
[605] reports solubility of LiF in HF(aq).
[605] meas. solubility of NaF in HF (aq).
[9] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-212.5$.

TABLE 7. TERNARY AQUEOUS SPECIES (continued)

Species	$\Delta 4 \mathrm{~F}_{298}^{\circ}(\mathrm{kcal} / \mathrm{mole})$	Remarks
$\begin{aligned} & \mathrm{F}_{2} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq}) \\ & \left(\mathrm{NH}_{4} \mathrm{HF}_{2}\right) \end{aligned}$		[410] calorimetrically meas. $\Delta \mathrm{H}$ soln. of $\mathrm{NH}_{4} \mathrm{HF}_{2}(\mathrm{c}), \Delta \mathrm{H}$ diln. of $\mathrm{NH}_{4} \mathrm{HF}_{2}$, and $\Delta \mathrm{H}$ neutralization of NH_{3} and HF (1:2).
$\begin{aligned} & \mathrm{F}_{2} \mathrm{KOO}_{2}(\mathrm{aq}) \\ & \left(\mathrm{MoO}_{2} \mathrm{~F}_{2}\right) \end{aligned}$		[509] meas. K for the equilibrium: $\mathrm{MoF}_{6}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \not \mathrm{MoO}_{2} \mathrm{~F}_{2}(\mathrm{aq})+4 \mathrm{HF}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{OOH}_{1(\mathrm{aq})} \\ & \left(\mathrm{TiOF}_{2}\right) \end{aligned}$		[618] meas. K for the equilibrium: $\mathrm{TiOF}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \geq \mathrm{TiOF}_{2}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{U}(\mathrm{aq}) \\ & \left(\mathrm{UO}_{2} \mathrm{~F}_{2}\right) \end{aligned}$		For the equilibrium: $\mathrm{UO}_{2} \mathrm{~F}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \nLeftarrow \mathrm{UO}_{2} \mathrm{~F}_{2}$ (aq), [16] lists 1 og K (3 values). [509] meas. K for the equilibrium: $\mathrm{UF}_{6}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \neq \mathrm{UO}_{2} \mathrm{~F}_{2}(\mathrm{aq})+4 \mathrm{HF}(\mathrm{aq})$. See $\mathrm{F}_{3} \mathrm{O}_{2} \mathrm{U}^{-}(\mathrm{aq}), \mathrm{F}_{4} \mathrm{O}_{4} \mathrm{U}_{2}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{O}_{2} \mathrm{~W}(\mathrm{aq}) \\ & \left(\mathrm{WO}_{2} \mathrm{~F}_{2}\right) \end{aligned}$		[509] meas. K for the equilibrium: $\mathrm{WF}_{6}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\ell) \not \pm \mathrm{WO}_{2} \mathrm{~F}_{2}(\mathrm{aq})+4 \mathrm{HF}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{OTH}^{-}(\mathrm{aq}) \\ & \left(\mathrm{THOF}_{3}{ }^{-}\right) \end{aligned}$		[618] meas. K for the equilibrium: $\mathrm{TiOF}^{+}(\mathrm{aq})+2 \mathrm{~F}^{-}(\mathrm{aq}) \not \pm \mathrm{THOF}_{3}{ }^{-}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{OV}(\mathrm{aq}) \\ & \left(\mathrm{VOF}_{3}\right) \end{aligned}$		[509] meas. K for the equilibrium: $2 \mathrm{VOF}_{3}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{O}(\ell) \nsupseteq \mathrm{V}_{2} \mathrm{O}_{5}(\mathrm{aq})+6 \mathrm{HF}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{3} \mathrm{O}_{2} \mathrm{U}^{-}(\mathrm{aq}) \\ & \left(\mathrm{UO}_{2} \mathrm{~F}_{3}{ }^{-}{ }^{-}\right) \end{aligned}$		[16] lists $\log \mathrm{K}$ (2 values) for the equilibrium: $\mathrm{UO}_{2} \mathrm{~F}_{2}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}) \not \pm$ $\mathrm{UO}_{2} \mathrm{~F}_{3}{ }^{-}(\mathrm{aq})$. See $\mathrm{F}_{4} \mathrm{O}_{2} \mathrm{U}^{-2}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{4} \text { OT1 }^{-2}(\mathrm{aq}) \\ & \left(\mathrm{TiOF}_{4}{ }^{-2}\right) \end{aligned}$		[618] meas. K for the equilibrium: $\mathrm{TiOF}^{+}(\mathrm{aq})+3 \mathrm{~F}^{-}(\mathrm{aq}) \not \pm \mathrm{THOF}_{4}^{-2}(\mathrm{aq})$.
$\mathrm{F}_{4} \mathrm{O} \mathrm{U}^{-2}$ (aq)		[16] lists $\log \mathrm{K}$ (2 values and 1 value, resp.) for the equilibria 1) $\left.\mathrm{UO}_{2} \mathrm{~F}_{3}^{-}(\mathrm{aq})+\mathrm{F}^{-} \nsupseteq \mathrm{UO}_{2} \mathrm{~F}_{4}^{-2}(\mathrm{aq}) ; 2\right) \mathrm{UO}_{2}^{+2}(\mathrm{aq})+\left\langle\mathrm{F}^{-}(\mathrm{aq}) \not \pm \mathrm{UO}_{2} \mathrm{~F}_{4}^{-2}(\mathrm{aq})\right.$.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{O}_{4} \mathrm{U}_{2}(\mathrm{aq}) \\ & \left(\mathrm{UO}_{2} \mathrm{~F}_{2}\right)_{2} \end{aligned}$		[500] meas. K for the equilibrium: $2 \mathrm{VO}_{2} \mathrm{~F}_{2}(\mathrm{aq}) \not \pm\left(\mathrm{UO}_{2} \mathrm{~F}_{2}\right)_{2}$ (aq). [501] revieus this reaction and indicates a small positive ΔH dimerization. [16] lists log K 13 values) for this reaction.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{FeH}^{-2}(\mathrm{aq}) \\ & \left(\mathrm{HFFF}_{6}^{-2}\right) \end{aligned}$		See $\mathrm{FeF}_{6}{ }^{-3}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{2} \mathrm{Si}(\mathrm{aq}) \\ & \left(\mathrm{H}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$	$\begin{aligned} & -557.2[9] \\ & -556.2[310] \\ & -554.6[502] \end{aligned}$	[310] meas. $\Delta \mathrm{H}$ soln. of SiO_{2} in ($\mathrm{HF}-\mathrm{HCl}$)(aq). [502] meas. $\Delta \mathrm{H}$ soln. of SiO_{2} in HF(aq). See [312].
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{2} \operatorname{Sn}(\mathrm{aq}) \\ & \left(\mathrm{H}_{2} \mathrm{SnF}_{6}\right) \end{aligned}$	-473.1 [9]	
$\begin{aligned} & \mathrm{F}_{6} \mathrm{H}_{2} \mathrm{Ti}(\mathrm{aq}) \\ & \left(\mathrm{H}_{2}{ }^{\mathrm{TiF}}{ }^{2}\right) \end{aligned}$	-555.1 [9]	
$\mathrm{F}_{6}^{\mathrm{F}_{6} \mathrm{H}_{3} \mathrm{Sb}(\mathrm{aq})}$ $\left(\mathrm{H}_{3} \mathrm{SbF}_{6}\right)$	-444.3 [9]	
$\begin{aligned} & \mathrm{F}_{6} \mathrm{Li}_{2} \mathrm{Si}\left(\mathrm{aq}, 1500 \mathrm{H}_{2} \mathrm{O}\right) \\ & \left(\mathrm{Li}_{2} \mathrm{SiF}_{6}\right) \end{aligned}$		[9] est. $\Delta \mathrm{Hf}_{298}^{\circ}=-691.2 \mathrm{in} 1500 \mathrm{H}_{2} \mathrm{O}$.
$\begin{aligned} & \mathrm{F}_{6} \mathrm{Na}_{2} \mathrm{Si}\left(\mathrm{aq}, 600 \mathrm{H}_{2} \mathrm{O}\right) \\ & \left(\mathrm{Na}_{2} \mathrm{SiP}_{6}\right) \end{aligned}$	-671.2 [9]	

TABLE 8. QUATERNARY AND HIGHER AQUEOUS SPECIES

Species	$\Delta \mathrm{Hf}_{298}^{\circ} \mathrm{O}$ (kcal/mole)	Remarks
$\begin{aligned} & \mathrm{BF}_{2} \mathrm{H}_{2} \mathrm{O}_{2}^{-}(\mathrm{aq}) \\ & \left(\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}\right) \end{aligned}$		See $\mathrm{BF}_{3} \mathrm{HO}^{-}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{BF}_{3} \mathrm{HO}^{-}(\mathrm{aq}) \\ & \left(\mathrm{BF}_{3} \mathrm{OH}^{-}\right) \end{aligned}$	-363.1 [29]	[503] meas. K for the equilibrium: $\mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \not \underset{\mathrm{H}_{2} \mathrm{O}}{ }(\ell)+\mathrm{BF}_{3} \mathrm{OH}^{-}(\mathrm{aq})$. [16] lists $\log \mathrm{K}$ (l value) for this equilibrium. For the equilibrium: $\mathrm{BF}_{3} \mathrm{OH}^{-}(\mathrm{aq})+$ $\mathrm{HF}(\mathrm{aq}) \nleftarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{BF}_{4}^{-}(\mathrm{aq})$, [16] lists $\Delta \mathrm{H}=-3.23$ and $\log \mathrm{K}$ (8 values). For the reaction: $3 \mathrm{BF}_{3} \mathrm{OH}^{-}(\mathrm{aq}) \leftrightarrows 2 \mathrm{BF}_{4}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{BO}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq}), \quad[504]$ calc. $\Delta \mathrm{H}=4.2$. For the reaction: $2 \mathrm{BF}_{3} \mathrm{OH}^{-}(\mathrm{aq}) \nleftarrow \mathrm{BF}_{2}(\mathrm{OH})_{2}^{-}(\mathrm{aq})+\mathrm{BF}_{4}^{-}(\mathrm{aq}),[504]$ calc. $\Delta \mathrm{H}<1.4$.
$\begin{aligned} & \mathrm{CrF}_{3} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{aq}) \\ & \left(\left[\mathrm{Cr}\left(6 \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{F}_{3}\right) \end{aligned}$	-704.3 [9]	
$\begin{aligned} & \mathrm{CrF}_{6} \mathrm{H}_{15} \mathrm{O}_{6}(\mathrm{aq}) \\ & \left(\mathrm{H}_{3}\left[\mathrm{Cr}\left(6 \mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{F}_{6}\right) \end{aligned}$	-931.9 [9]	
$\begin{aligned} & \mathrm{FHO}_{3} \mathrm{~S}(\mathrm{aq}) \\ & \left(\mathrm{HSO}_{3} \mathrm{~F}\right) \end{aligned}$	-190.2[461]	[461] meas. $\Delta \mathrm{H}$ hydr. of $\mathrm{HSO}_{3} \mathrm{~F}(\ell)$. [621] meas. heat of ionization.
$\begin{aligned} & \mathrm{FKO}_{3} \mathrm{~S}(\mathrm{aq}) \\ & \left(\mathrm{KSO}_{3} \mathrm{~F}\right) \end{aligned}$		[462] meas. $\Delta \mathrm{H}$ soln. of $\mathrm{KSO}_{3} \mathrm{~F}(\mathrm{c})$.
$\begin{aligned} & \mathrm{FNaO}_{3} \mathrm{~S}(\mathrm{aq}) \\ & \left(\mathrm{NaSO}_{3} \mathrm{~F}\right) \end{aligned}$	-204.6 [461]	[461] reports $\Delta H f$ from the heat of neutralization. See also [621].
$\begin{aligned} & \mathrm{FNO}_{3} \mathrm{Th}^{+2}(\mathrm{aq}) \\ & \left(\mathrm{ThFNO}_{3}^{+2}\right) \end{aligned}$		[16] lists $\log \mathrm{K}$ (1 value) for the equilibrium: $\mathrm{Th}^{+4}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \nleftarrow$ $\mathrm{ThFNO}_{3}^{+2}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{2} \mathrm{NO}_{3} \mathrm{Th}^{+}(\mathrm{aq}) \\ & \left(\mathrm{ThF}_{2} \mathrm{NO}_{3}^{+}\right) \end{aligned}$		[16] lists $\log \mathrm{K}$ (l value) for the equilibrium: $\mathrm{Th}^{+4}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq}) \nleftarrow$ $\mathrm{ThF}_{2} \mathrm{NO}_{3}^{+}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})$.
$\begin{aligned} & \mathrm{F}_{4} \mathrm{H}_{8} \mathrm{O}_{4} \mathrm{Th}(\mathrm{aq}) \\ & \left(\mathrm{ThF}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right) \end{aligned}$		[16] lists $\log \mathrm{K}$ for the equilibrium: $\mathrm{ThF}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{c})+2 \mathrm{H}^{+}(\mathrm{aq}) \not \mathrm{ThF}_{2}^{+2}(\mathrm{aq})+2 \mathrm{HF}(\mathrm{aq})$ $+4 \mathrm{H}_{2} \mathrm{O}(\ell)$.

$\mathrm{F}_{6} \mathrm{HNaSi}\left(\mathrm{aq}, 400 \mathrm{H}_{2} \mathrm{O}\right) \quad-614.1$ [9] (NaHSiF_{6})
$\mathrm{F}_{6} \mathrm{H}_{4} \mathrm{O}_{2} \mathrm{U}(\mathrm{aq})$
$\left(\mathrm{UO}_{2} \mathrm{~F}_{2} \cdot 4 \mathrm{HF}\right)$
$\mathrm{F}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{Si}(\mathrm{aq})$
$\left(\left(\mathrm{NH}_{4}\right) \mathrm{SiF}_{6}\right)$
$\mathrm{Hf}\left(\mathrm{OH}, \mathrm{F}, \frac{1}{2} \mathrm{O}, \mathrm{Cl}\right)_{4}(\mathrm{aq})$
$\mathrm{Hf}\left(\mathrm{OH}, \mathrm{F}, \frac{1}{2} \mathrm{O}, \mathrm{Cl}\right)_{4} \mathrm{~F}^{-}(\mathrm{aq})$
$\mathrm{Hf}\left(\mathrm{OH}, \mathrm{F}, \frac{3}{2} \mathrm{O}, \mathrm{Cl}\right) \mathrm{F}_{2}^{-2}(\mathrm{aq})$
$\mathrm{BF}_{3} \mathrm{HKO}(\mathrm{aq})$
($\mathrm{KBF}_{3} \mathrm{OH}$)
-423.1 [29]
8. Bibliography.

1. Simons, J. H., Editor, Fluorine Chemistry (Academic Press, Inc., New York, Volume I, 1950, Volume II, 1954).
2. Ryss, I. G., Khimiya ftora i ego neorganicheskikh soedinenii,
(Gosudarstvennoe Nauchno-Tekhnicheskoe Izdatel'stvo
Khimicheskoi Literatury, Moskva, 1956).
Available in English as:
The Chemistry of Fluorine and its Inorganic Compounds (Translated from a publication of the State Publishing House for Scientific, Technical and Chemical Literature, Moscow 1956, Haimson, F., translator).
AEC-tr- 3927 (Parts 1 and 2)
Office of Technical Services, Department of Commerce, Washington, D. C., 1960).
3. Slesser, C., and Schram, S. R., Editors, Preparation, Properties, and Technology of Fluorine and Organic Fluoro Compounds (McGraw-Hill Book Company, Inc., New York, 1951).
4. George, J. W., "Halides and Oxyhalides of the Elements of Groups Vb and VIb," pp. 33-107. Progress in Inorganic Chemistry, Volume II, F. A. Cotton, Editor, (Interscience Publishers, Inc., New York, 1960).
5. Peacock, R. D., "Some Fluorine Compounds of the Transition Metals," pp. 193-249. Progress in Inorganic Chemistry, Volume II, F. A. Cotton, Editor, (Interscience Publishers, Inc., New York, 1960).
6. Stacey, M., Tatlow, J. C., Sharpe, A. G., Advances in Fluorine Chemistry, Volume I (Academic Press, Inc., New York, 1960).
7. Lovelace, A. M., Rausch, D. A., and Postelnek, W., Aliphatic Fluorine Compounds (Reinhold Publishing Corporation, New York, 1958).
8. Gmelins Handbuch der Anorganischen Chemie, Achte Auflage. Fluor, System-Nummer 5 (Verlag Chemie, GMBH, Weinheim, 1959).
9. Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I., Selected Values of Chemical Thermodynamic Properties, NBS Circular 500 (U.S. Government Printing Office, Washington, 25, D. C. 1952).
10. Bichowsky, F. R, and Rossini, F. D., The Thermochemistry of the Chemical Substances (Reinhold Publishing Corp., New York, 1936).
11. Herzberg, G., Molecular Spectra and Molecular Structure; I. Spectra of Diatomic Molecules, 2nd Ed. (D. Van Nostrand Co., Inc., New York, 1950).
12. Brewer, L., Bromley, L. A., Gilles, P. W., and Lofgren, N., "The Thermodynamic Properties of the Halides," Paper 6, Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, L. L. Quill, Editor, (Mc-Graw-Hill Book Company, Inc., New York, 1950).
13. Brewer, L., "The Fusion and Vaporization Data of the Halides;" Paper 7, Chemistry and Metallurgy of Miscellaneous Materials: Thermodynamics, L. L. Quill, Editor, (McGraw-Hill Book Company, Inc., New York, 1950).
14. Gaydon, A. G., Dissociation Energies, 2nd Ed. (Chapman and Hall Ltd., London, 1953).
15. Kubaschewski, A., and Evans, E. L. L., Metallurgical Thermochemistry, 3rd Ed. (John Wiley and Sons, Inc., New York, 1958).
16. Bjerrum, J., Schwarzenbach, G., and Sillen, L. G., Stability Constants, Part II. Inorganic Ligands (The Chemical Society, London, 1958).
17. Lewis, G. N., Randall, M., Pitzer, K. S., and Brewer, L., Thermodynamics, 2nd Ed. (McGraw-Hill Book Co., 1961).
18. Cottrell, T. L., The Strengths of Chemical Bonds, 2nd Ed. (Butterworths Scientific Publications, London, 1958).
19. Brewer, L., and Brackett, E., Chem. Revs. 61, 425-32 (1961).
20. Glassner, A., U. S. Atomic Energy Comm. ANL-5750 (1957).
21. Sinke, G. C.,"Thermodynamic Properties of Combustion Products," Report No. AR-IS-59, April 1, 1959 (ASTIA Document AD 214587).
22. Gordon, J. S.,"Thermodynamics of High-Temperature Gas Mixtures and Application to Combustion Problems," WADC Technical Report 57-33, January, 1957 (ASTIA Document AD 110735).
23. Mickle, E. A., "Collected Thermodynamic Properties of Eighty-Eight Possible Products of Reaction," December 10, 1957 (ASTIA Document AD 153644).
24. Hildenbrand, D. L.,"Study of Metal Additives for Solid Propellants - Tables of Thermodynamic Data for Performance Calculations," Publication No. C-623, September 30, 1959 (ASTIA Document 233467).
25. Gordon, J. S., "Thermodynamic Data for Combustion Products," Report BMD 210-E3, January, 1960 (ASTIA Document AD 231995).
26. Henderson, C. Bes and Scheffee, R. S., Atlantic Research Corp., Alexandria, Va., unpublished communication, January, 1960.
27. Stull, D. R., Dow Chemical Co., Unpublished comunication, December 31, 1960.
28. Stull, D. R., Dow Chemical Co., Unpublished conmunication, March 31, 1961.
29. Evans, W. H., Wagman, D. D., and Prosen, E. J., NBS, unpublished communication, August 31, 1956.
30. Evans, W. H., Wagman, D. D., and Prosen, E. J., NBS, unpublished communication, December 15, 1958.
31. Evans, W. H., NBS, unpublished communication, January 1, 1961.
32. Douglas, T. B., Victor, A. C., and Beaudoin, A. R., NBS, unpublished communication, July 1, 1959.
33. Armstrong, G. T., Woolley, H. W., Wagman, D. D., Evans, W. H., Douglas, T. B., Lide, D. R., and Krieger, L. A., NBS, unpublished communication, January 1, 1959.
34. Armstrong, G. T., Woolley, H. W., Evans, W. H., and Krieger, L. A., NBS, unpublished communication, July 1, 1959.
35. Armstrong, G. T., and Krieger, L. A., NBS, unpublished communication, January 1, 1960.
36. Armstrong, G. T., and Krieger, L. A., NBS, unpublished communication, July 1, 1960.
37. Armstrong, G. T., Woolley, H. W., Evans, W. H., and Krieger, L. A., NBS, unpublished communication, July 1, 1960.
38. Kapustinskii, A. F., Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk 1948, 563-580.
39. Gross, P., Intern. Symposium Fluorine Chemistry, Birmingham, July, 1959.
40. Gross, P., Hayman, C., Levi, D. L., and Stuart, M. C., Fullmer Research Inst. Report R 146/4/23, Nov., 1960.
41. Greenberg, E., Settle, J. L., Feder, H. M., and Hubbard, W. N., Am. Chem. Soc., 138th National Meeting, New York, September 11-16, 1960.
42. Wise, S. S., Feder, H. M., Hubbard, W. N., and Margrave, J. L., Am. Chem. Soc., 139th National Meeting, St. Louis, March 21-30, 1961.
43. Hubbard, W. N., Bull. Chem. Thermodynamics No. 4, 3, (1961).
44. Skinner, H. A., Ed., Experimental Thermochemistry, Volume II (Interscience Publishers, Inc., London, 1961) (In preparation).
45. Armstrong, G. T., and Domalski, E. S., NBS, unpublished work.
46. Simmons, J., Unpublished data, Atlantic Research Corp., April 11, 1961.
47. Armstrong, G. T., Marantz, S., and Coyle, C. F., J. Am. Chem. Soc. 81, 3798 (1959).
48. Armstrong, G. T., and Jessup, R. S., J. Research Natl. Bur. Standards 64A, 49-59 (1960).
49. Scott, D. W., Good, W. D., and Waddington, G., J. Am. Chem. Soc. 77, 245-6 (1955).
50. Good, W. D., Scott, D. W., and Waddington, G., J. Phys. Chem. 60, 1080 (1956).
51. Wartenberg, H.V., and Schutza, H., Z. anorg. u. allgem. Chem. 206, 65-72 (1932).
52. Jessup, R. S., McCoskey, R. E., and Nelson, R. A., J. Am. Chem. Soc. 77, 244-5 (1955).
53. Neugebauer, C. A., and Margrave, J. L., J. Am. Chem. Soc. 79, 1338-40 (1957).
54. Wicke, E., Z. Elektrochem. 53, 212-216 (1949).
55. Caunt, A. D., and Barrow, R. F., Nature 164, 753-4 (1949).
56. Caunt, A. D., and Barrow, R. F., Trans. Faraday Soc. 46, 154-6 (1950).
57. Doescher, R. N., J. Chem. Phys. 19, 1070-1 (1951).
58. Franck, E. U., and Wicke, E., Z. Elektrochem. 55, 643-7 (1951).
59. Wicke, E., J. Phys. Chem. 56, 358-60 (1952).
60. Doescher, R. N., J. Chem. Phys. 20, 330-4 (1952).
61. Wise, H., J. Chem. Phys. 20, 927 (1952).
62. Wicke, E., and Friz, H., Z. Elektrochem. 57, 9-16 (1953).
63. Gilles, P. W., and Margrave, J. L., J. Chem. Phys. 21, 381-2 (1953).
64. Barrow, R. F., and Caunt, A. D., Proc. Roy. Soc. (London) A219, 120-40 (1953).
65. Wise, H., J. Phys. Chem. 58, 389-91 (1954).
66. Wray, K. L., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 13,194, 149 pp.; Dissertation Abstr. 15, 1328 (1955).
67. Wray, K. L., and Hornig, D. F., J. Chem. Phys. 24, 1271-2 (1956).
68. Margrave, J. L., Bull. Chem. Thermodynamics 1, 7 (1958).
69. Margrave, J. L., Private communication, March, 1958.
70. Margrave, J. L., Ann. N. Y. Acad. Sci. 67, 463-76 (1957).
71. Icskowski, E. P., and Margrave, J. L., J. Chem. Phys. 30, 403-5 (1959).
72. Brown, M. G., Trans. Faraday Soc. 55, 9-13 (1959).
73. Milne, T. A., and Gilles, P. W., J. Am. Chem. Soc. 81, 6115-20 (1959).
74. Rowlinson, H. C., and Barrow, R. F., Proc. Phys. Soc. (London) 66A, 437-46 (1953).
75. Potter, R. L., J. Chem. Phys. 17, 957-9 (1949).
76. Schumacher, H.J., Anales asoc. quim. argentina 38 , 113-16 (1950).
77. Evans, M. G., Warhurst, E., and Whittle, E., J. Chem. Soc. 1950, 1524-34.
78. Butkov, K. V., and Rozenbaum, R. B., Zhur. Fiz. Khim. 24, 706-13 (1950).
79. Szwarc, M., Chem. Revs. 47, 75-173 (1950).
80. Glockler, G., J. chim. phys. 46, 103-5 (1949).
81. Nathans, M. W., J. Chem. Phys. 18, 1122 (1950).
82. Johnston, R. H., J. Chem. Phys. 19, 1391-3 (1951).
83. Bernstein, R. B., J. Chem. Phys. 19, 1612 (1951).
84. Cole, L. C., Farber, M., and Elverum, G. W., Jr., J. Chem. Phys. 20, 586-90 (1952).
85. Goldfinger, P., Ind. chim. belg. 16, 659-65 (1951).
86. Sanderson, R. T., J. Chem. Phys. 22, 345-6 (1954).
87. Dinger, H., Arkiv. Fysik 8, 527-50 (1954).
88. Margrave, J. L., J. Chem. Phys. 24, 475-6 (1956).
89. Potter, R. L., J. Chem. Phys. 26, 394 (1957).
90. Kapustinskii, A. F., Trudy Moskov. Khim. - Technol. Inst. im. D. I. Mendeleeva 1956, No. 22, 17-20.
91. Hijikata, K., Bull. Am. Phys. Soc. 2, Sec. 2, 99 (1957).
92. Rees, A. L. G., J. Chem. Phys. 26, 1567 (1957).
93. Himpan, J., Z. Naturforsch. 13a, 239 (1958).
94. Jortner, J., Stein, G., and Treiner, A., J. Chem. Phys. 30, 1110-11 (1959).
95. Trotman-Dickenson, A. F., J. Chem. Soc. 1959, 3088-9.
96. Eve, J., Proc. Roy. Soc. (London) A 246, 582-9 (1958).
97. Kobe, K. A., and Long, E. G., Petrol. Refiner 29, No. 2, 124-8 (1950).
98. Wicke, E., Angew. Chem. A 60, 65 (1948).
99. Eucken, A. and Wicke, E., Naturwissenschaften 37, 233-4 (1950).
100. Ryss, I. G., Uspekhi Khim. 21, 857-67 (1952).
101. Wicke, E., and Franck, E. U., Angew. Chem. 66, 701-10 (1954).
102. Evans, W. H., Munson, T. R., and Wagman, D. D., J. Research Natl. Bur. Standards 55, 147-64 (1955) (Research Paper No. 2614).
103. Stamper, J. G., and Barrow, R. F., Trans. Faraday Soc. 54, 1592-4 (1958).
104. Szwarc, M., Proc. Roy. Soc. (London) A207, 5-13 (1951).
105. Hu, J. H., White, D., and Johnston, H. L., J. Am. Chem. Soc. 75, 1232-6 (1953).
106. Cunningham, B. B., Proc. Intern. Conf. Peaceful Uses Atomic Energy, Geneva, 1955 7, 225-30 (Pub. 1956).
107. Owe Berg, T. G., Acta Chem. Scand. 7, 1313-22(1953).
108. R. Smoluchowski, J.E. Mayer, and W.A. Weyl, Eds., Phase Transformations in Solids, (John Wiley and Sons, Inc., New York, 1951). pp 238-56.
109. Irmann, F., Helv. chim. Acta 33, 1449 (1950).
110. Barrow, R. F., Trans. Faraday Soc. 56, 952-8 (1960).

1ll. Witt, W. P., and Barrow, R. F., Trans. Faraday Soc. 55, 730-5 (1959).
112. Barrow, R. F., Johns, J. W. C., and Smith, F. J., Trans. Faraday Soc. 52, 913-16 (1956).
113. Buimakov, A. Yu., Trudy Leningrad. Politekh. Inst. im. M. I. Kalinina, Elektromet. Tsvetnykh. Metal. 1957, No. 188, 156-61.
114. Semenkovich, S. A., Zhur. Priklad. Khim. 32, 552-9 (1960).
115. Gross, P., Hayman, C., and Levi, D. L., Trans. Faraday Soc. 50, 477-80 (1954).
116. Gross, P., Hayman, C., and Levi, D. L., Intern. Symp. on the Phys. Chem. in Process Metallurgy, Pittsburgh, Pa., April, 1959.
117. Gross, P., Hayman, C., and Levi, D. L., Trans. Faraday Soc. 53, 1601 (1957).
118. Gross, P., Bull. Chem. Thermodynamics No. 2, 21 (1959).
119. Kolesov, V. P., Martinov, A. M., and Skuratov, S. M., Bull. Chem. Thermodynamics No. 4, 26 (1961).
120. Evseev, A. M., Pozharskaya, G. V., Nesmeyanov, A. N., and Gerasimov, Ya. I., Zhur. Neorg. Khim. 4, 2196-7 (1959).
121. Vetyukov, M. M., Blyushtein, M. L., and Poddymov, V. P., Izvest. Vysshikh Ucheb. Zavedenii, Tsvetnaya Met. 2, No. 6, 126-33 (1959).
122. Hildenbrand, D. L., and Theard, L. P., Ford Motor Co., Newport Beach, Calif., unpublished communication, June 15, 1961.
123. Witt, W. P., Thesis, Oxford Univ., 1959.
124. O'Brien, C. J., and Kelley, K. K., J. Am. Chem. Soc. 79, 5616-18 (1957).
125. Porter, R. F., and Zeller, E. E., J. Chem. Phys. 33, 858 (1960).
126. Carniglia, S. C., and Cunningham, B. B., Rev. Sci. Instr. 26, 485-8 (1955).
127. Carniglia, S. C., U. S. Atomic Energy Comm., UCRL 2389, 4-76 (1953).
128. Carniglia, S. C., and Cunningham, B. B., J. Am. Chem. Soc. 77, 1451-3 (1955).
129. Kolditz, L., Z. anorg. u. allgem. Chem. 289, 128-40 (1957).
130. Waddington, T. C., Trans. Faraday Soc. 55, 1531-5 (1959).
131. Woolf, A. A., J. Chem. Soc. 1954, 4694-5.
132. Skinner, H. A., and Smith, N. B., Trans. Faraday Soc. 51, 19 (1955).
133. Margrave, J. L., Private Comm., April 10, 1961.
134. Mackor, E. L., Hofstra, A., and van der Waals, J., Bull. Chem. Thermodynamics No. 1, 19 (1958).
135. Kostryukov, V. N., Samorukov, O. P., and Strelkov, P. G., Zhur. Fiz. Khim. 32, 1354-61 (1958).
136. Gunn, S. R., and Green, L. M., J. Phys. Chem. 65, 178 (1961).
137. Finch, A., and Schlesinger, H. I., J. Am. Chem. Soc. 80, 3573-4 (1958).
138. Kapustinski, A. F., and Golutvin, Y. M., Izvest. Akad. Nauk. S.S.S.R., Otdel. Khim. Nauk 1951, 3-12.
139. Bukhalova, G. A., and Bergman, A. G., Zhur. Obshchei Khim. 22, 23-31 (1952).
140. Petit, $G_{\text {, }}$, and Cremieu, A., Compt. rend. 243, 360-3 (1956).
141. Tatenskii, V. M., Tunitskii, L. N., and Novikov, M. M., Optika i Spektroskopia 5, 520-9 (1958).
142. Kolesov, V. P., Popov, M. M., and Skuratov, S. M., Zhur. Neorg. Khim. 4, 1233-6 (1959); J. Inorg. Chem. (U. S. S. R.) 4, 557 (1959)(English translation).
143. Novoselova, A. V., Simanov, Yu. P., and Yarembash, E. I., Zhur. Fiz. Khim. 26, 1244-58 (1952).
144. Novoselova, A. V., Muratov, F. Sh., Reshetnikova, L. P., and Gordeev, I. V., Vestnik Moskov. Univ., Ser. Mat., Mekhan., Astron., Fiz.i Khim. 13, No. 6, 181-90 (1958).
145. Khandamirova, N. E., Evseev, A. M., Pozharskaya, G. V., Borisov, E. A., Nesmeyanov, A. N., and Cerasimov, Ya. I., Zhur. Neorg. Khim. 4, 2192-5 (1959).
146. Sense, K. A., Snyder, M. J., and Clegg, I. W., J. Phys. Chem. 58, 223-4 (1954).
147. Sense, K. A., Stone, R. W., and Filbert, R. B., Jr., U. S. Atomic Energy Comm. BMI-1186, 30 pp . (1957).
148. Berger, R., and Gaumann, T., Helv. Chim. Acta 44, 1084-8 (1961).
149. Sense, K. A., and Stone, R. W., J. Phys. Chem. 62, 453-7 (1958).
150. Fischer, J., and Rudzitis, E., J. Am. Chem. Soc. 81, 6375-7 (1959).
151. Steunenberg, R. K., Vogel, R. C., and Fischer, J., J. Am. Chem. Soc. 79, 1320-3 (1957).
152. Broderson, P. H., and Schumacher, H. J., Anales asoc. quim. Argentina 38, 52-60 (1950).
153. Broderson, P. H., and Sicre, J. E., Z. Physik 141, 515-24 (1955).
154. Slutsky, L., and Bauer, S. H., J. Am. Chem. Soc. 76, 270-6 (1954).
155. Greenwood, N. N., Revs. Pure and Appl. Chem. (Australia) 1, 84-120 (1951).
156. Durie, R. A., and Gaydon, A. G., J. Phys. Chem. 56, 316-19 (1952).
157. Durie, R. A., Proc. Roy. Soc. (London) A207, 388-95 (1951).
158. Cole, L. G., and Elverum, G. W., Jr., J. Chem. Phys. 20, 1543-51 (1952).
159. Oliver, G. D., and Grisard, J. W., J. Am. Chem. Soc. 74, 2705-7 (1952).
160. Stephenson, C. V., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 3978, 93 pp.; Dissertation Abstr. 12, 667-8 (1952).
161. Liimatainen, R. C., U. S. Atomic Energy Comm. ANL-6003, 118 pp . (1959).
162. Rogers, M. T., and Spiers, J. L., J. Phys. Chem. 60, 1462-3 (1956).
163. Stein, L., J. Am. Chem. Soc. 81, 1273-76 (1959).
164. Rogers, M. T., Spiers, J. L., and Panish, M. B., J. Am. Chem. Soc. 78, 3288-9 (1956).
165. Margrave, J. L., J. Chem. Phys. 31, 1432 (1959).
166. Farmer, J. B., Henderson, I. H. S., Lossing, F. P., and Marsden, D. G. H., J. Chem. Phys. 24, 348-52 (1956).
167. Rabinovitch, B. S., and Reed, J. F., J. Chem. Phys. 22, 2092-3 (1954).
168. Pritchard, G. O., Pritchard, H. O., Schiff, H. I., and Trotman-Dickenson, A. F., Chem. \& Ind. (London) 1955, 896.
169. Reed, J. F., and Rabinovitch, B. S., J. Phys. Chem. 61, 598-605 (1957).
170. Wartenberg, H. V., and Riteris, G., Z. anorg. Chem. 258, 356-60 (1949).
171. Wartenberg, H. V., and Schiefer, J., Z. anorg. u. allgem. Chem. 278, 326-32 (1955).
172. Duus, H. C., Ind. Eng. Chem. 47, 1445-9 (1955).
173. Neugebauer, C. A., and Margrave, J. L., J. Phys. Chem. 60, 1318-21 (1956).
174. Kirkbride, F. W. and Davidson, F. G., Nature 174, 79-80 (1954).
175. Vorob'ev, A. F., and Skuratov, S. M., Zhur. Neorg. Khim. 5, 1398 (1960); J. Inorg. Chem. (U.S.S.R) 5, 679 (1960) (English translation).
176. Neugebauer, C. A., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 21224, 131 pp. Dissertation Abstr. 17, 1478-9 (1957).
177. Luft, N. W., J. Chem. Phys. 23, 973-4 (1955).
178. Koerber, G. G., and De Vries, T., J. Am. Chem. Soc. 74, 5008-11 (1952).
179. Akishin, P. A., Spiridonov, V. P., Naumov, V. A., and Rambidi, N. G., Zhur. Fiz. Khim. 30, 155-60 (1956).
180. King, E. Go, and Christensen, A. U., U. S. Bur. Mines, Rept. Invest. No. 5510, 7 pp. (1959).
181. Kury, J. W., U. S. Atomic Energy Comm., UCRI-2271, 64 pp. (1953).
182. Lippincott, E. R., J. Chem. Phys. 21, 2070-1 (1953).
183. Schumacher, H. J., Schmitz, H., and Broderson, P. H., Anales asoc. quim. argentina 38, 98-112 (1950).
184. Grisard, J. W., Bernhardt, H. A., and Oliver, G. D., J. Am. Chem. Soc. 73, 5725-7 (1951).
185. Weber, A., and Ferigle, S. M., J. Chem. Phys. 20, 1497 (1952).
186. Shishkov, Yu. D., and Opalovskii, A. A., Uspekhi Khim. 22, 760-73 (1960).
187. Schmitz, H., and Schumacher, H. J., Z. Naturforsch. 2a, 358-63 (1947).
188. Jessup, R. S., Brickwedde, F. G., and Wechsler, M. T., J. Research Natl. Bur. Standards 44, 457-62 (1950). (Research Paper No. 2092).
189. Schoonmaker, R. C., and Porter, R. F., J. Chem. Phys. 30, 283-5 (1959).
190. Eisenstadt, M., Rothberg, G. M., and Kusch, P., J. Chem. Phys. 29, 797-804 (1958).
191. Pugh, A. C., and Barrow, R. F., Trans. Faraday Soc. 54, 671-8 (1958).
192. Bredig, M. A., Bronstein, H. R., and Smith, W. T., Jr., J. Am. Chem. Soc. 77, 1454-8 (1955).
193. Dworkin, A. S., and Bredig, M. A., J. Phys. Chem. 64, 269-72 (1960).
194. Diogenov, G. G., Zhur. Obshchei Khim. 23, 20-4 (1953).
195. Mishchenko, K. P., Zhur. Fiz. Khim. 26, 1736-60 (1952).
196. Milne, T. A., and Cubicciotti, D. D., Jr., J. Chem. Phys. 30, 1625-6 (1959).
197. Welti, D., and Barrow, R. F., Proc. Phys. Soc. (London) 65A, 629-39 (1952).
198. Barrow, R. F., Dodsworth, P. G., and Zeeman, P. B., Proc. Phys. Soc. (London) 70A, 34-40 (1957).
199. Akers, L. K., and Jones, E. A., Phys. Rev. 21, 236 (1953).
200. Voelz, F. L., J. Chem. Phys. 20, 1662 (1952).
201. Evans, D. F., and Richards, R. E., J. Chem. Soc. 1952, 1292-4.
202. Gaspar, R., and Tamassy-Lentei, I., Acta Phys. Acad. Sci. Hung. 2, 105-13 (1958) (in English).
203. Page, F. M., and Sugden, T. M., Nature 183, 1672 (1959).
204. Alekseev, V. Z., Zhur. Fiz. Khim. 28, 945-56 (1954).
205. Johns, J. W. C., and Barrow, R. F., Proc. Roy. Soc. (London) A 251, 504-18.(1959).
206. Franck, E. U., and Meyer, F., Z. Elektrochem. 63, 571-82 (1959).
207. Spalthoff, W., and Franck, E. U., Z. Elektrochem. 61, 993-1000 (1957).
208. Kleiss, L. M., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 9526, 68 pp.; Dissertation Abstr. 14, 1562 (1954).
209. Jarry, R. L., and Davis, W., Jr., J. Phys. Chem. 57, 600-4 (1953).
210. Nikolaev, N. S., and Tananaev, I. V., Izvest. Sektora Fiz. Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. 20, 184-95 (1950).
211. Franck, E. U, and Spalthoff, W., Z. Elektrochem. 61, 348-57 (1957).
212. Higgins, T. L., Univ. Microfilms (Ann Arbor, Mich.), Publ. No, 21184, 98 pp.; Dissertation Abstr. 17, 1231-2 (1957).
213. Baines, A., and Davies, A., J. Appl. Chem. (London) 5, 242-4 (1955).
214. Knowles, C. H., and Langemann, R. T., Phys. Rev. 25, 306 (1954).
215. Smith, D. F., U. S. Atomic Energy Comm. K-1336 (1957).
216. Maslov, P. G., Izvest. Vysshykh Ucheb. Zavedenii, Khim. i Khim. Tekhnol. 2, No. 3, 335-9 (1959).
217. Blocher, J. M., Jr., and Hall, E. H., J. Phys. Chem. 63, 127-8 (1959).
218. Woolf, A. A., J. Chem. Soc. 1951, 231-2.
219. Rogers, M. T., Speirs, J. L., Thompson, H. B., and Panish, M. B., J. Am. Chem. Soc. 76, 4843-4 (1954).
220. Rogers, M. T., Speirs, J. L., Panish, M. B., and Thompson, H. B., J. Am. Chem. Soc. 78, 936-8 (1956).
221. Bernstein, R. B., and Katz, J. J., J. Phys. Chem. 56, 885-8 (1952).
222. Cady, G. H., and Hargreaves, G. B., J. Chem. Soc. 1961, 1563-8.
223. Smith, P., and Rao, C. N. R., Can. J. Chem. 36, 1174-80 (1958).
224. Hildenbrand, D. L., and Theard, L. P.,"An Experimental Program for Obtaining the Thermodynamic Properties of Propellant Combustion Products," Quarterly technical report No. 2, Dec. 15, 1960 (ASTIA Document AD-247640).
225. Evseev, A. M., Pozharskaya, G. V., Nesmeyanov, A. N., and Cerasimov, Ya. I., Zhur. Neorg. Khim. 4, 2189-91 (1959).
226. Akishin, P. A., Gorokhov, L. N., and Sidorov, L. N., Vestnik Moskov. Univ., Ser. Mat., Mekh., Astron., Fiz. i Khim. 1959, No. 6, 194-204.
227. Porter, R. F., and Schoonmaker, R. C., J. Chem. Phys. 29, 1070-4 (1959).
228. Sense, K. A., Stone, R. W., and Filbert, R. B. , Jr., U. S. Atomic Energy Comm. BMI-1192, 35 pp. (1957).
229. Sense, K. A., and Stone, R. W., J. Phys. Chem. 62, 1411-18 (1958).
230. Scheffee, R. S., and Margrave, J. L., J. Chem. Phys. 31, 1682-3 (1959).
231. Hildenbrand, D. L., "An Experimental Program for Obtaining the Thermodynamic Properties of Propellant Combustion Products," Quarterly technical report no. 1, Sept. 15, 1960 (ASTIA Document AD-243885).
232. Gibb, T. R. P., Jr., and Winnermann, A., J. Chem. Educ. 36, 46-8 (1959).
233. Kapustinskii, A. F., and Stakhanova, M. S., Trudy Moskov. Khim.Tekhnol. Inst. im. D. I. Mendeleeva 1956, No. 22, 21-9.
234. Haven, Y., Rec. trav. chim. 69, 1505-18 (1950).
235. Voskresenskaya, N. K., Sokolov, V. A., Banashek, E. I., and Shmidt, N. E., Izvest. Sektora Fiz. Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. 27, 233-8 (1956).
236. Douglas, T. B., and Dever, J. L., J. Am. Chem. Soc. 76, 4826-9 (1954).
237. Hildenbrand, D. L, and Theard, L. P., "An Experimental Program for Obtaining the Thermodynamic Properties of Propellant Combustion Products,"Quarterly technical report no. 3, March 15, 1961 (ASTIA Document AD-253233).
238. Gunther, K. G., Glastech. Ber. 31, 9-15 (1958).
239. Ryss, I. G., and Vitukhnovskaya, B. S., Zhur. Obshchei Khim. 25, 643-7 (1955); J. Gen. Chem. (U.S.S.R.) 25, 617-20 (1955) (English translation).
240. Cady, G. H., and Hargreaves, G. B., J. Chem. Soc. 1961, 1568-74.
241. Settle, J. L., Feder, H. M., and Hubbard, W. N., J. Phys. Chem. 65, 1337 (1961).
242. Brady, A. P., Myers, O. E., and Clauss, J. K., J. Phys. Chem. 64, 588-91 (1960).
243. Herron, J. T., and Dibeler, V. H., Unpub. data, N.B.S. April 10, 1961.
244. Colburn, C. B., and Johnson, F. A., J. Chem. Phys. 33, 1869 (1960).
245. Jarry, R. L., and Miller, H. C., J. Phys. Chem. 60, 1412-13 (1956).
246. Pierce, L., and Pace, E. L., J. Chem. Phys. 23, 551-5 (1955).
247. Armstrong, G. T., and Marantz, S., Unpublished data, National Bureau of Standards.
248. Colburn, C. B., Johnson, F. A., Kennedy, A., McCallum, K., Metzger, L. C., and Parker, C. O., J. Am. Chem. Soc. 81, 6397-8 (1959).
249. Herron, J. T., and Dibeler, V. H., J. Chem. Phys. 33, 1595 (1960).
250. Armstrong, G. T., Marantz, S., and Coyle, C. F., NBS, unpublished communication, October, 1959.
251. Colburn, C. B., and Kennedy, A., J. Am. Chem. Soc. 80, 5004 (1958).
252. Miller, R. C., and Kusch, P., J. Chem. Phys. 25, 860-76 (1956).
253. Sense, K. A., Alexander, C. Aь, Bowman, R. E., Stone, R. W., and Filbert, R. B., Jr., J. Phys. Chem. 61, 384 (1957).
254. Sutra, G., Compt. rend. 234, 1283-4 (1952).
255. Grjotheim, K., Kgl. Norske Videnskab. Selskabs, Skrifter 2, No. 5, 1-90 (1957).
256. Coughlin, J. P., J. Am. Chem. Soc. 80, 1802-4 (1958).
257. Voskrenskaya, N. K., and Bukhalova, G. A., Zhur. Obshchei Khim. 21, 1957-61 (1951); J. Gen. Chem. U.S.S.R. 21, 2171-5 (1951) (English translation).
258. Hepler, L. G., Jolly, W. L., and Latimer, W. M., J. Am. Chem. Soc. 75, 2809-10 (1953).
259. Ivanova, L. I., Izvest. Vysshikh Ucheb。Zavedenii, Tsvetnaya Met. 2, No. 1, 67-73 (1959).
260. Junkins, J. H., Farrar, R. L., Jr., Barber, E. J., and Bernhardt, H. A., J. Am. Chem. Soc. 74, 3464-6 (1952).
261. Fairbrother, F., and Frith, W. C., J. Chem. Soc. 1951, 3051-6.
262. Farber, M., Meyer, R. T., and Margrave, J. L., J. Phys. Chem. 62, 883-4 (1958).
263. Catalano, E., and Stout, J. W., J. Chem. Phys. 23, 1284-9 (1955).
264. Hood, G. C., and Woyski, M. M., J. Am. Chem. Soc. 73, 2738-41 (1951).
265. Weinstock, B., Weaver, E. E., and Malm, J. G., J. Inorg. and Nuclear Chem. 11, 104-14 (1959).
266. Weinstock, B., and Malm, J. G., Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva, 1958 28, 125-9.
267. Malm, J. G., Weinstock, B., and Weaver, E. E. , J. Phys. Chem. 62, 1506-8 (1958).
268. Dibeler, V. H., Reese, R.M., and Franklin, J.L., J. Chem. Phys. 27, 1296-7 (1957).
269. Aoki, Y., J. Phys. Soc. Japan 10, 503-11 (1955).
270. Schnizlein, J.G., Sheard, J.L., Toole, R.C., and O'Brien, T.D., J. Phys. Chem. 56, 233-4 (1952).
271. Brewer, L., and Rosenblatt, G. M., Chem. Revs. 61, 257-63 (1961).
272. Wagman, D. D., NBS, Private communication, May 15, 1961.
273. Kirshenbaum, A. D., Grosse, A. V., and Aston, J. G., J. Am. Chem. Soc. 81, 6398-6402 (1959).
274. Grosse, A. V., Streng, A. G., and Kirshenbaum, A. D., J. Am. Chem. Soc. 83, 1004 (1961).
275. Neal, E., and Williams, L. T. D., J. Chem. Soc. 1955, 2485.
276. Dupree, W., Sinke, G. C., and Stull, D. R., Bull. Chem. Thermodynamics No. 3, 5 (1960).
277. Sellers, P. A., Fried, S., Elson, R. E., and Zackareasen, W. H., J. Am. Chem. Soc. 76, 5935-8 (1954).
278. Barrow, R. F., Cheall, H. F. K., Thomas, P. M., and Zeeman, P. B., Proc. Phys. Soc. (London) 71, 128-30 (1958).
279. Wieland, K., and Newburgh, R., Helv. Phys. Acta 22, 590-1 (1949).
280. Nesmeyanov, A. N., and Iofa, B. Z., Zhur. Neorg. Khim. L, 486-8 (1959).
281. Blanc, M., and Petit, G., Compt. rend. 248, 1305-6 (1959).
282. Banashek, E. I., Patsukova, N. N., and Rassonskoya, I. S., Izvest. Sektora Fiz. Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. 27, 223-32 (1956).
283. Perros, T. P., Munson, T. R., and Naeser, C. R., J. Chem. Educ. 30, 402-3 (1953).
284. Weinstock, B., Claassen, H. H., and Malm, J. G., J. Am. Chem. Soc. 79, 5832 (1957).
285. Weinstock, B., Claassen, H. H., and Malm, J. G., J. Chem. Phys. 32, 181-5 (1960).
286. Phipps, T. E., Sears, G. W., Seifert, R. L., and Simpson, O. C., "The Vapor Pressure of Plutonium Halides:" Paper 6.1a, The Transuranium Elements, G. T. Seaborg, J. J. Katz, and W. M. Manning, Editors, (McGraw-Hill Book Company, Inc., New York, 1949).
287. Westrum, E. F., Jr., and Wallmann, J. C., J. Am. Chem. Soc. 73, 3530-1 (1951).
288. Westrum, E. F., Jr., and Eyring, L.,"The Heat of Formation of Plutonium Trifluoride." Paper 6.52, The Transuranium Elements, G. T. Seaborg, J. J. Katz, and W. M. Manning, Editors, (McGraw-Hill Book Company, Inc., New York, 1949).
289. Buyers, A. G., and Murbach, E. W., Nuclear Sci. Se Eng. 2, 679-86 (1957).
290. Dawson, J. K., Elliot, R. M., Hurst, R., and Truswell, A.E., J. Chem. Soc. 1954, 558-64.
291. Fried, S., and Davidson, N. R.,"Studies in the Dry Chemistry of Plutonium Fluorides." Paper 6.11, The Transuranium Elements, G. T. Seaborg, J. J. Katz, and W. M. Manning, Editors, (McGrawHill Book Company, Inc., New York, 1949).
292. Treverrow, L. E., Shinn, W. A., and Steunenberg, R. K., J. Phys. Chem. 65, 398 (1961).
293. Florin, A. E., Tannenbaum, I. R., and Lemons, J. F., J. Inorg. and Nuclear Chem. 2, 368-79 (1956).
294. Weinstock, B., and Malm, J. G., J. Inorg. and Nuclear Chem. 2, 380-94 (1956).
295. Mandleberg, C. J., Rae, H. K., Hurst, R., Long, G., Davies, D., and Francis, K. E., J. Inorg. and Nuclear Chem. 2, 358-67 (1956).
296. Kaylor, C. E., Walden, G. E., and Smith, D. F., J. Am. Chem. Soc. 81, 4172 (1959).
297. Malm, J. G., Selig, H., and Fried, S., J. Am. Chem. Soc. 82, 1510 (1960).
298. Vaughn, J. D., and Muetterties, E. L., J. Phys. Chem. 64, 1787 (1960).
299. Brown, F., and Robinson, P. L., J. Chem. Soc. 1955, 3147.
300. Cowen, H. C., Riding, F., and Warhurst, E., J. Chem. Soc. 1953, 4168-9.
301. Gross, P., Bull. Chem. Thermodynamics No. 2, 14 (1960).
302. Stern, G., and Brown, W. R., U. S. Atomic Energy Comm. GAT-244, 23 pp . (1959).
303. Clegg, H. P., Rowlinson, J. S., and Sutton, J. R., Trans. Faraday Soc. 51, 1327-33 (1955).
304. Otto, J., and Thomas, W., Z. physik. Chem. (Frankfurt) 23, 84-99 (1960).
305. Neudorffer, J., Compt. rend. 232, 2102-4 (1951).
306. Shair, R. C., and Schurig, W. F., Ind. Eng. Chem. 43, 1624-7 (1951).
307. Hoffman, C. J., and Jolly, W. L., J. Phys. Chem. 61, 1574-5 (1957).
308. Peacock, R. D., J. Chem. Soc. 1953, 3617-19.
309. Johns, J. W. C., and Barrow, R. F., Proc. Phys. Soc. (London) 71, 476-84 (1958).
310. Roth, W. A., and Troitzsch, H., Z. anorg. Chem. 260, 337-44 (1949).
311. Vorob'ev, A. F., Kolesov, V. P., and Skuratov, S. M., Zhur. Neorg. Khim. 5, 1402 (1960); J. Inorg. Chem. (USSSR.) 5, 681 (1960) (English translation).
312. Lenfesty, F. A., Farr, T. D., and Brosheer, J. C., Ind. Eng. Chem. 44, 1448-50 (1952).
313. Ivanova, L. I., Zhur. Obshchei Khim. 21, 444-52 (1952); J. Gen. Chem. (U.S.S.R.) 21, 491-9 (1951) (English translation).
314. Schumb, W. C., and Breck, D. W., J. Am. Chem. Soc. 74, 1754-60 (1952).
315. Zhuk, N. P., Zhur. Fiz. Khim. 28, 1523-7 (1954).
316. Junkins, J. H., Bernhardt, H. A., and Barber, E. J., J. Am. Chem. Soc. 74, 5749-51 (1952).
317. English, W. D., and Dale, J. W., J. Chem. Soc. 1953, 2498-9.
318. Darnell, A. J., U. S. Atomic Energy Comm. NAA-SR-4924, 9 pp. (1960).
319. Darnell, A. J, and Keneshea, F. J., Jr., J. Phys. Chem. 62, 1143-5 (1958); U. S. Atomic Energy Comm. NAA-SR-2710, 14 pp. (1958).
320. Hall, E. H., Blocher, J. M., Jr., and Campbell, I. E., J. Electrochem. Soc. 105, 275-8 (1958).
321. Barrow, R. F., Jeffries, E. A. N. S., and Swinstead, J. M., Trans. Faraday Soc. 51, 1650-6 (1955).
322. Lange, S., and Blankenship, F. F., J. Inorg. and Nuclear Chem. 14, 26-31 (1960).
323. Agron, P. A.,"Thermodynamics of Intermediate Uranium Fluorides from Measurements of Disproportionation Pressures." Paper 59, Chemistry of Uranium, J. J. Katz and E. Rabinowitch, Editors, (Office of Technical Services, U. S. Department of Commerce, Washịngton 25, D. C., 1958). U. S. Atomic Energy Comm. TID-5290.
324. O'Driscoll, W. Go, and Tee, P. A., U. K. Atomic Energy Authority, Ind. Group Hdq. R and $D B(c) T N-2,3$ pp. (1952) (Declassified 1958).
325. Fried, S., and Devidson, N. R.,"The Reaction of Uranium Tetrafluoride with Dry Oxygen: A New Synthesis of Uranium Hexafluoride." Paper 67, Chemistry of Uranium, J. J. Katz and E. Rabinowitch, Editors, (Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., 1958). U. S. Atomic Energy Comm. TID-5290.
326. Dawson, J. K., Ingram, D. W., and Bircumshaw, L. L., J. Chem. Soc. 1950, 1421-2.
327. Priest, H. F., "The Vapor Pressure of Uranium Hexafluoride in Equilibrium with Uranium Pentafluoride." Paper 74, Chemistry of Uranium, J. J. Katz and E. Rabinowitch, Editors, (Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., 1958). U. S. Atomic Energy Comm. TID-5290.
328. Burns, J. H., Osborne, D. W., and Westrum, E. F., Jr., Bull. Chem. Thermodynamics No. 3, 28 (1960).
329. Popov, M. M., Kostylev, F. A., and Zubova, N. V., Zhur. Neorg. Khim. 4, 1708-9 (1959).
330. Wolf, A. S., Posey, J. C., and Rapp, K. E., U. S. Atomic Energy Comm. K-1448, 21 pp . (1960).
331. Masi, J. F., J. Chem. Phys. 17, 755-8 (1949).
332. Oliver, G. D., Milton, H. T., and Grisard, J. W., J. Am. Chem. Soc. 75, 2827-9 (1953).
333. Llewellyn, D. R., J. Chem. Soc. 1953, 28-36.
334. Gaunt, J., Trans. Faraday Soc. 49, 1122-31 (1953).
335. De Witt, R., U. S. Atomic Energy Comm. GAT-280, 164 pp. (1960).
336. Brooks, A. A., and Wood, P., U. S. Atomic Energy Comm. K - 722, Addendum 1, 7 pp. (1957).
337. Kigoshi, K., Nippon Kagaku Zasshi 72, 57-9 (1951).
338. Kigoshi, K., Bull. Chem. Soc. Japan 23, 67-8 (1950).
339. Treverrow, L. E., Fischer, J., and Steunenberg, R. K., J. Am. Chem. Soc. 72, 5167-8 (1957).
340. Clark, H. C., and Emeleus, H. J., J. Chem Soc. 1957, 2119-22.
341. Barber, E. J., and Cady, G. H., J. Phys. Chem. 60, 505-6 (1956).
342. Sense, K. A., Snyder, M. J., and Filbert, R. B., Jr., J. Phys. Chem. 58, 995-6 (1954).
343. Sense, K. A., Snyder, M. J., and Clegg, J. W., U. S. Atomic Energy Comm. AECD-3708, 18 pp. (1953).
344. Frank, W. B., and Foster, L. M., J. Phys. Chem. 64, 95-8 (1960).
345. Howard, E. H., J. Am. Chem. Soc. 76, 2041-2 (1954).
346. Gunn, S. R., and Sanborn, R. H., J. Chem. Phys. 33, 955 (1960).
347. Higgins, T. H. S., Leisegang, E. C., Raw, C. J. G., and Rossouw, A. J., J. Chem. Phys. 23, 1544 (1955).
348. Nightingale, R. E., and Crawford, B. L., Jr., J. Chem. Phys. 22, 1468 (1954).
349. Ryss, I. G., and Khordas, I. S., Zhur. Neorg. Khim. 3, 1410-15 (1958).
350. Bills, J. L., and Cotton, F. A., J. Phys. Chem. 64, 1477 (1960).
351. Altshuller, A. P., J. Am. Chem. Soc. 77, 6187-8 (1955).
352. Seel, I. F., and Detmer, 0., Z. anorg. u. allgem. Chem. 301, 113-36 (1959).
353. Berkowitz, J., and Chupka, W. A., Ann. N. Y. Acad. Sci. 79, 1073-8 (1960).
354. Maslov, P. G., and Maslov, Yu. P., Khim. i Tekhnol. Topliv i Masel 2, No. 10, 50-5 (1958).
355. Badyl'kes, I. S., Congr. intern. froid, 9e, Paris, 1955, Compt. rend. trav. comm. III, 3040-50.
356. Waterman, H., Minnesota Mining and Manufacturing Co., U. S. Patent No. 2,531,372, Nov., 1950.
357. Marriott, J., and Craggs, J. D., J. Electronics 1, 405-20 (1956).
358. Szwarc, M., and Sehon, A. H., J. Chem. Phys. 18, 1685-6 (1950).
359. Sehon, A. H., and Szwarc, M., Proc. Roy. Soc. (London) Az09, 118-31 (1951).
360. Sheft, I., Martin, A. F., and Katz, J. J., J. Am. Chem. Soc. 78, 1557-9 (1956).
361. Kobe, K. A., and Kobe, D. H., Petrol. Refiner 38, No. 12, 117-20 (1959).
362. Decker, C. E., Meister, A. G., and Cleveland, F. F., Phys. Rev. 81, 301 (1951).
363. Albright, L. F., Univ. Microfilms, (Ann Arbor, Mich.), Pub. No. 2372, 222 pp.; Microfilm Abstracts 11, no. 2, 235-6 (1951).
364. Albright, L. F., and Martin, J。 J., Ind. Eng. Chem. 44, 188-98 (1952).
365. O'Hara, J. B., and Fahien, R.W., Ind. Eng. Chem. 43, 2924-5 (1951).
366. Kordes; E., Z. Elektrochem. 58, 424-31 (1954).
367. Glockler, G., J. Phys. Chem. 63, 828 (1959).
368. Pavlova, I. A., Kholodil'naya Tekh. Sbornik 1955, 42-58.
369. Gardy, H., Bachellier, J., and Roget, Jo, Compt. rend. Congr. soc. Savantes Paris et depts.gSect. sci. 78e Congr. Toulouse, 1953, 517-26.
370. Slepyan, E., Khodil'naya Tekh. 29, No. 1, 53-8 (1952).
371. Martin, J. J., Thermodynamic Transport Properties Gases, Liquids, Solids, Papers Symposium, Lúfayette, Indiana (McGraw-Híll. Book Co., New York, 1959), pp. 110-22.
372. Charlton, H. E., Manchester Assoc. Engrs. Trans. 1954-55, 371-408.
373. British Standards Inst., London S.W. 1 Brit. Standard 1725, (1951).
374. Masi, J. F., J.Am. Chem. Soc. 75, 2276-7 (1953).
375. Vedeneev, V. I。, and Purmal, A. P., Zhur. Fiz. Khim. 32, 1472-5 (1958).
376. Glew, D. N., and Moelwyn-Hughes, E. A., Discussions Faraday Soc. 1953, No. 15, 150-61.
377. Neugebauer, C. A., and Margrave, J. L., J. Phys. Chem. 62, 1043-8 (1958).
378. Ball, J. J., Mann, D. E., Thrush, B. A., Armstrong, G. T., Coyle, C. F., and Krieger, L. A., NBS, PB Rept. 151505, 69 pp. (1958); U. S. Govt. Research Reports 31, 228 (1959).
379. Hou, Yu Chun, Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 12589, 122 pp.; Dissertation Abstr. 15, 1579-80 (1955).
380. Emeleus, H. J., Bull. soc. chim. France 1953, 909-12; see also Fortschr. chem. Forsch. 2, 609-18 (1953).
381. Porter, R. F., and Cady, G. H., J. Am. Chem. Soc. 79, 5628-31 (1957).
382. Coates, G. E., Harris, J., and Sutcliffe, T., J. Chem. Soc. 1951, 2762-3.
383. Clifford, A. F., El-Shamy, H. K., Emeleus, H. J., and Hazeldine, R. N., J. Chem. Soc. 1953, 2372-5.
384. Dibeler, V. H., Reese, R. M., and Mann, D. E., J. Chem. Phys. 27, 176-9 (1957).
385. Gatti, R., Sicre, J. E., and Schumacher, H. J., Angew. Chem. 69, 638 (1957).
386. Engelbrecht, A., and Atzwanger, H., J. Inorg. and Nuclear Chem. 2, 348-57 (1956).
387. Bode, H., and Klesper, E., Z. anorg. u. allgem. Chem. 266, 275-80 (1951).
388. Koehler, J. K., and Giauque, W. F., J. Am. Chem. Soc. 80, 2659-62 (1958).
389. Jarry, R. L., J. Phys. Chem. 61, 498-9 (1957).
390. Zhuk, N. P., Zhur. Fiz. Khim. 28, 1690-7 (1954).
391. Petry, R. C., J. Am. Chem. Soc. 82, 2400-1 (1960).
392. Pemsler, J. P., and Smith, D. F., J. Chem. Phys. 22, 1834-6 (1954).
393. Smith, D. F., Proc. U. N. Intern. Conf. Peaceful Uses At. Energy, 2nd, Geneva 1958, 28, 130-8.
394. Leach, H. F., and Roberts, H. L., J. Chem. Soc. 1960, 4693-4.
395. Roberts, H. L., and Ray, N. H., J. Chem. Soc. 1960, 665-7.
396. Engelbrecht, A., and Grosse, A. V., J. Am. Chem. Soc. 74, 5262-4 (1952).
397. Sujishi, S., and Witz, S., J. Am. Chem. Soc. 79, 2447-50 (1957).
398. Luft, N. W., Ind. Chemist 31, 502-4 (1955).
399. Ladd, M. F. C., and Lee, W. H., J. Inorg. and Nuclear Chem. 13, 218-24 (1960).
400. Benjamins, E., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 11243, 76 pp.; Dissertation Abstr. 15, 715-16 (1955).
401. Engelbrecht, A., and Grosse, A. V., J. Am. Chem. Soc. 76, 2042-5 (1954).
402. Johnson, H. S., and Bertin, H. J., Jr., J. Am. Chem. Soc. 81, 6402-4 (.1959).
403. Glemser, 0., and Haeseler, H., Z. anorg. u. allgem. Chem. 287, 54-60 (1956).
404. Davis, M. L., and Westrum, E. F., Jr., J. Phys. Chem. 65, 338 (1961).
405. Myers, O. E., and Brady, A. P., J. Phys. Chem. 64, 591-4 (1960).
406. Westrum, E. F., Jr., and Burney, G. A., J. Phys. Chem. 65, 344 (1961).
407. Kennedy, A., and Colburn, C. B., J. Am. Chem. Soc. 81, 2906 (1959).
408. Fischer, J., J. Am. Chem. Soc. 79, 6363-4 (1957).
409. Burney, G. A., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 8281, 108 pp.; Dissertation Abstr. 14, 1027 (1954).
410. Schutza, H., Eucken, M., and Namsch, W., Z. anorg. u. allgem. Chem. 292, 293-7 (1957).
411. Bourlange, C., and Ziolkiewicz, S., Compt. rend. 249, 2170-1 (1959).
412. Glemser, O., Schroder, H., and Haeseler, H., Z. anorg. u. allgem. Chem. 279, 28-37 (1955).
413. Darnell, A. J., U. S. Atomic Energy Comm. NAA-SR-5045, 9 pp. (1960).
414. Reese, R. M., Dibeler, V. H., and Franklin, J. L., J. Chem. Phys. 29, 880-3 (1958).
415. Bockhoff, F. J., Petrella, R. V., and Pace, E. L., J. Chem. Phys. 32, 799-804 (1960).
416. Kenaga, E. E., J. Econ. Entomol. 50, 1-6 (1957).
417. Neudorffer, J., Compt. rend. 236, 706-7 (1953).
418. Engelbrecht, A., and Stoll, B., Z. anorg. u. allgem. Chem. 292, 20-4 (1957).
419. Popov, M. M., Kostylev, F. A., and Karpova, T. F., Zhur. Neorg. Khim. 2, 9-12 (1957).
420. Dudley, F. B., Cady, G. H., and Eggers, D. F., Jr., J. Am. Chem. Soc. 78, 290-2 (1956).
421. Dudley, F. B., and Cady, G. H., J. Am. Chem. Soc. 79, 513-14 (1957).
422. Roberts, J. E., and Cady, G. H., J. Am. Chem. Soc. 81, 4166-7 (1959).
423. Glemser, O, and Schroder, H., Z. anorg. u. allgem. Chem. 284, 97-100 (1956).
424. Parry, R. Wo, and Kodama, G., J. Inorg. and Nuclear Chem. 17, 125-29 (1961)。
425. Ziomek, J. S., Piotrowski, E. A., and Walsh, E. N., Phys. Rev. 98, 243-4 (1955).
426. Euler, R. D., and Westrum, E. F., Jr., J. Phys. Chem. 65, 1291-6 (1961).
427. Dudley, F. B., Cady, G. H., and Eggers, D. F., Jr., J. Am. Chem. Soc. 78, 1553-7 (1956).
428. Volkova, N. M, and Gaidukov, G. V., Izvest. Sibir. Otdel. Akad. Nauk S.S.S.R. 1959, No. 6, 70-7.
429. Seel, F., and Langer, J., Z. anorg. U. allgem. Chem. 295, 315-26 (1958).
430. Haber, C. P., and Uenishi, R. K., Chem and Eng. Data Ser. 3, 323-4 (1958).
431. Holmes, W. S., Bull. Chem. Thermodynamics No. 4,66 (1961).
432. Matveev, M. A., and Dyatlova, V. P., Zhur. Fiz. Khim. 28, 1713-19 (1954).
433. Cathers, G. I., Bennett, M. R., and Jolley, R. L., Ind. Eng. Chem. 50, 1709-10 (1958).
434. Wilkinson, Go, J.Am. Chem. Soc. 73, 5501-2 (1951).
435. Walaschewski, E. G., Chem. Ber. 86, 272-7 (1953).
436. Goubeau, Jo, and Rohwedder, K. H., Ann. 604, 168-78 (1958).
437. Holmes, R. R., J. Inorg, and Nuclear Chem. 12, 266-75 (1960).
438. Parry, R. W., and Bissot, T. C., J. Am. Chem. Soc. 78, 1524-7 (1956).
439. Smith, F. T., and Kistiakowsky, G. B., J. Chem. Phys. 31, 621-32 (1959).
440. Brown, H. C., and Johnson, S., J. Am. Chem. Soc. 76, 1978-9 (1954).
441. Klages, F., Meuresch, H., and Steppick, W., Ann. 592, 81-119 (1955).
442. Ryss, I. G., and Bogdanova, L. P., Zhur. Neorg. Khim.3, 1669-74 (1958).
443. Roberts, J. E., and Cady, G. H., J. Am. Chem. Soc. 82, 352-3 (1960).
444. Neilson, E. F., and White, D., J. Am. Chem. Soc. 79, 5618-21 (1957).
445. Reed, F. T., Chem. Specialties Mfrs. Assoc. Proc. 4lst Ann. Meeting, Dec. (1951). pp 37-41.
446. Chinworth, H. E., and Katz, D. L., Refrig. Eng. 54, 359-63 (1947).
447. Haszeldine, R. N., and Kidd, J. M., J. Chem. Soc. 1953, 3219-25.
448. Frazer, J. W., J. Inorg. and Nuclear Chem. 16, 63-6 (1960).
449. Dininny, R. E., and Pace, E. L., J. Chem. Phys. 32, 805-9 (1960).
450. Mason, J., and Dunderdale, J., J. Chem. Soc. 1956, 754-9.
451. Jander, J., and Haszeldine, R. N., J. Chem. Soc. 1954, 912-19.
452. Banus, J., J. Chem. Soc. 1953, 3755-61.
453. Jander, J., and Haszeldine, R. N., Naturwissenschaften 40, 579 (1953).
454. Gramstad, T., and Haszeldine, R. N., J. Chem. Soc. 1956, 173-80.
455. Montel, G., Compt. rend. Congres soc. Savantes Paris et depts., Sect. sci. 78e Congr. Toulouse, 1953, 415-19.
456. Gottschal, A. J., J. S. African Chem. Inst. 11, 45-52 (1958).
457. Engelbrecht, A., Z. anorg. u. allgem. Chem. 273, 269-71. (1953).
458. Schmitz-Dumont, O., and Weeg, A., Z. anorg. u. allgem. Chem. 265, 139 (1951).
459. Schmitz-Dumont, O., and Heckmann, I., Z. anorg. u. allgem. Chem. 267, 277 (1952).
460. Schmitz-Dumont, O., Bruns, I., and Heckmann, I., Z. anorg. u. allgem. Chem. 271, 347 (1953).
461. Woolf, A. A., J. Inorg. and Nuclear Chem. 14, 21-5 (1960).
462. Ryss, I. G., and Gubanova, T. A., Zhur. Neorg. Khim. 3, 1665-8 (1958).
463. Seel, F., and Massat, H., Z. anorg. u. allgem. Chem. 280, 186-96 (1955).
464. Nikolaev, N. S., and Opalovskii, A. A., Doklady Akad. Nauk S.S.S.R. 124, 830-3 (1959).
465. Schmitz-Dumont, O., and Opgenhoff, P., Z. anorg. u. allgem. Chem. 268, 57-68 (1952).
466. Gagarinskii, Yu. V., and Mashirev, V. P., Zhur. Neorg. Khim. L, 1246-52 (1959).
467. Popov, M. M., and Gagarinskii, Yu. V., Zhur. Neorg. Khim. 2, 3-8 (1957).
468. Miller, D. B., and Sisler, H. F., J. Am. Chem. Soc. 77, 4998-5000 (1955).
469. Gagarinskii, Yu. V., and Mashirev, V. P., Izvest. Sibir. Otdel. Akad. Nauk S. S. S. R. 1959, No. 11, 50-6.
470. Haendler, H. M., Wheeler, C. M., Jr., and Robinson, D. W., J. Am. Chem. Soc. 74, 2352-3 (1952).
471. Caglioti, V., and Silvestroni, P., Ricerca sci. 26, 2090-9 (1956).
472. Caglioti, V., Silvestroni, P., and Serreqi, J., Atti acad. nazl. Lincei, Rend., Classe sci. fis. mat. e nat. Series [8] 27, 168-77 (1959).
473. Goubeau, J., and Lucke, K. E., Ann. 575, 37-52 (1952).
474. Burg, A. B., and Kuljian, E. S., J. Am. ${ }^{\text {Chem. Soc. 72, }}$ 3103 (1950).
475. Ryss, I. Gos and El'kenbard, A. G., Doklady Akad. Nauk S. S. S. R. 21, 865-8 (1953).
476. Banks, W. P., Heston, B. O., and Blankenship, F. F., J. Phys. Chem. 58, 962-5 (1954).
477. Furukawa, G. T., Reilly, M. L., and Henning, J. M., Bull. Chem. Thermodynamics No. 4, 38 (1961); cf. No. 3, 36 (1960); No. 2,46 (1959); No. 1B, 9 (1958).
478. Martin, D. R., and Pizzolato, P. J., pp. 141-4 in Inorganic Synthesis Vol. IV, J.C. Bailar, Jr., Ed., (McGraw-Hill Book Co., Inc., New York, 1953).
479. Wittels, M., Am. Mineralogist 37, 28-36 (1952).
480. Kelley, K. K., Barany, R., King, E. G., and Christensen, A. U., U. S. Bur. Mines Rept. Invest. No. 5436, 16 pp. (1959).
481. Daimon, N., Horibe, T., Mukumoto, K., and Noda, T., Kogyo Kagaku Zasshi 55, 762-4 (1952).
482. Daimon, N., Kegyo Kagaku Zasshi 55, 764-5 (1952).
483. Burg, A. B., and Woodrow, H. W., J. Am. Chem. Soc. 76, 219-20 (1954).
484. Scott, P. C., Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. 59-3764, 121 pp.; Dissertation Abstr. 20, 2008-9 (1959).
485. Wartenberg, H. V., Z. anorg. u. allgem. Chem. 269, 76 (1952).
486. Juza, R., Wainoff, G., and Uphoff, W., Z. anorg. u. allgem. Chem. 296, 157-63 (1958).
487. Kanevskii, E. A., Zhur. Fiz. Khim. 25, 1092-7 (1951).
488. King, E. L., and Gallagher, P. K., J. Phys. Chem. 63, 1073-6 (1959).
489. Ryss, I. G., and Donskaya, D. B., Zhur. Fiz. Khim. 33, 107-11 (1959).
490. Connick, R. E., and Paul, A. D., J. Am. Chem. Soc. 80, 2069-71 (1958).
491. Hepler, L. G., U. S. Atomic Energy Comm. UCRL-2202, 60 pp. (May, 1953).
492. Watari, T., Denki-Kagaku Zasshi 19, 189-92 (1951).
493. Connick, R. E., and Tsao, M. S., J. Am. Chem. Soc. 76, 5311-14 (1954).
494. Paul, A. D., Thesis, Univ. Calif. Berkeley, 1955, UCRL-2926.
495. Kury, J. W., Paul, A. D., Hepler, I. G., and Connick, R. E., J. Am. Chem. Soc. 81, 4185-9 (1959).
496. Ryss, I. G., Zhur. Fiz. Khim. 25, 654-61 (1951).
497. Thomsen, S. M., J: Am. Chem. Soc. 74, 1690-3 (1952).
498. Schafer, H., and Kahlenberg, F., Z. anorg. u. allgem. Chem. 294, 242-53 (1958).
499. Paul, A. D., Gallo, L. S., and Van Camp, J. B., J. Phys. Chem. 65, 441 (1961).
500. Johnson, J. S., and Kraus, K. A., J. Am. Chem. Soc. 74, 4436-9 (1952).
501. Johnson, J. S., Kraus, K. A., and Young, T. F., J. Am. Chem. Soc. 76, 1436-43 (1954).
502. Kapustinskii, A. F., and Samplavskaya, K. K., Trudy Moskov. Khim. Tekhnol. Inst. im. D. I. Mendeleeva 1956, No. 22, 47-52.
503. Ryss, I. G., and Ust'yanova, P. V., Ukrain. Khem. Zhur. 21, 6-15 (1955).
504. Ryss, I. G., and Slutskaya, M. M., Zhur. Obshchei Khim. 22, 41-8 (1952).
505. Stein, L., Argonne Natl. Laboratory, Argonne, Ill., Private communication, July, 1961.
506. Mandleberg, C. J., and Davies, D., J. Chem. Soc. 1961, 2031-7.
507. Smith, D. F., J. Mol. Spectroscopy 3, 473-485 (1959).
508. Altman, D., and Farber, M., J. Chem. Phys. 21, 1118 (1953).
509. Nikolaev, N. S., Vlasov, S. V., Buslaev, Yu. A., and Opalovskii, A. A., Izvest. Sibir. Otdel. Akad. Naik S.S.S.R. 1960, No. 10, 47-56.
510. Gross, P., Campbell, C. S., Kent, P. J. C., and Levi, D. L., Discussions Faraday Soc. 1948, No. 4, 206-15.
51.1. Porter, R. F., J. Chem. Phys. 33, 951 (1960).
512. Schoonmaker, R. C., Thesis, Cornell Univ., 1960.
513. Shepp, A., and Bauer, S. H., J. Am. Chem. Soc. 76, 265-70 (1954).
514. Nozaki, H., J. Electrochem. Soc. Japan 16, 31-3 (1948).
515. Andrews, E. Be, and Barrow, R. F., Proc. Phys. Soc. (London) 63A, 185-9. (1950).
516. Formin, V. V.; Zhur. Fiz. Khim. 27, 689 (1953).
517. Formin, V. V., Zhur. Fiz. Khim. 28, 1896-1900 (1954).
518. Karapet'yants, M. K., Zhur. Fiz. Khim. 28 , 353 (1954).
519. Grahem, W. A. G., and Stone, F. G. A., J. Inorg. and Nuclear Chem. 2, 164 (1956).
520. Evans, W. H., Wagman, D. D., and Prosen, E. J. , NBS unpublished communication, December 3, 1957.
521. Cooke, B. A., and Mackenzie, H. A. E., J. S. African Chem. Inst. $6,4-7$ (1953).
522. Haendler, H. M., and Bernard, W. J., J. Am. Chem. Soc. 73, 5218-19 (1951).
523. Roy, D. M., Roy, R., and Osborn, E. F., J. Am. Ceram. Soc. 33, 85-90 (1950).
524. Fischer, J., Bingle, J., and Vogel, R. C., J. Am. Chem. Soc. 78, 902-4 (1956).
525. Claassen, H. H., Weinstock, B., and Malm, J. G., J. Chem. Phys. 28, 285 (1958) .
526. Andrews, E. B., and Barrow, R. F., Nature 165, 890 (1950).
527. Andrews, E. B., and Barrow, R. F., Proc. Phys. Soc. (London) 64A, 481 (1951).
528. Brewer, L., Margrave, J. L., Porter, R. F., and Wieland, K ., private communication to D. R. Stull, Dow Chemical Co., Midland, Mich., July, 1960.
529. Sinke, C. G., Dow Chemical Co., Midland, Mich., unpublished calculations.
530. Farlow, M. W., U. S. Patent 2,709,192, May 24, 1955.
531. Potocki, R. M., and Mann, D. E., NBS, unpublished communication, February 15, 1952.
532. Jacobson, A., Steigman, J., Strakna, R. A., and Friedland, S. S., J. Chem. Phys. 24, 637-8 (1956).
533. Potter, R. L., J. Chem. Phys. 31, 1100-2 (1959).
534. Scheer, M. D., J. Chem. Phys. 20, 924 (1952).
535. Banks, A. A., and Rudge, A. J., J. Chem. Soc. 1950, 191.
536. Caunt, A. D., and Barrow, R. F., Nature 164, 753 (1949).
537. Neugebauer, C. A., and Margrave, J. L., Univ. of Wisconsin, Private communication.
538. Kilpatrick, M., and Luborsky, F. E., J. Am. Chem. Soc. 76, 5863-5 (1954).
539. Kilpatrick, M., and Luborsky, F. E., J. Am. Chem. Soc. 76, 5865-8 (1954).
540. Thorburn, R., Proc. Phys. Soc. (London) A73, 122-6 (1959).
541. Shaffer, J. H., Grimes, W. R., and W atson, G. M., J. Phys. Chem. 63, 1999-2002 (1959).
542. Powers, W. D., and Blalock, G. C., U. S. Atomic Energy Comm. ORNL-1956 (Del.), 31 pp. (1958).
543. Berkowitz, J., and Chupka, W. A., J. Chem. Phys. 29, 653-7 (1958).
544. Morris, D. F. C., Acta. Cryst. 2, 197 (1956).
545. Owe-Berg, T. G., J. phys. radium 13, 245 (1952).
546. Milne, T. A., and Cubicciotti, D., J. Chem. Phys. 22, 846-51 (1958).
547. Margrave, J. L., J. Phys. Chem. 58, 258 (1954).
548. Brewer, L., and Mastick, D. F., J. Am. Chem. Soc. 73, 2045 (1951).
549. Rittner, E. S., J. Chem. Phys. 19, 1030 (1951).
550. Colburn, C. B., Rorm and Hasss Co, Huntsville, Ala., Private communication.
551. Reese, R. M., and Dibeler, V. H., J. Chem. Phys. 24, 1175-7 (1956).
552. Loughran, D., and Mader, C. L., J. Chem. Phys. 32, 1578-9 (1960).
553. Seyyedi, Ali, and Petit, G., Compt. rend. 249, 505-7 (1959).
554. Miller, R. C., and Kusch, P., J. Chem. Phys. 27, 981 (1957).
555. Brewer, L., Bromley, L., Gilles, P. W., and Lofgren, N. L.,"The Halides of Neptunium." Paper 15.7, The Transuranium Elements, G. T. Seaborg, J. J. Katz, and W. M. Manning, Editors, (McGraw-Hill Book Company, Inc., New York, 1949).
556. Glockler, G., J. Chem. Phys. 16, 604-8 (1948).
557. Brewer, L., Chem. Revs. 52, 1-76 (1953).
558. Glockler, G., and Dawson, J. W., Private Communication, June, 1957.
559. Wieland, K., and Newburgh, Ro, Helv. Phys. Acta. 25, 87-106 (1952).
560. Phipps, T. E., Sears, G. W., Seifert, R. L., and Simpson, O. C., J. Chem. Phys. 18, 713-723 (1950).
561. Buyers, A. G., U. S.Atomic Energy Comm. NAASR-1649, 16 pp. (1956).
562. Cunningham, B. B., "Preparation and Properties of the Compounds of Plutonium." Chapter 10, The Actinide Elements, G. T. Seaborg and J. J. Katz, Editors, (McGraw-Hill Book Company, Inc., New York, 1954).
563. Brewer, L., Bromley, L. A., Gilles, P. W., and Lofgren, N. L., U. S. Atomic Energy Comm. UCRL-633 (March 20, 1950).
564. Tullock, C.W., Fawcett, F. S., Smith, W. C., and Coffman, D. D., J. Am. Chem. Soc. 82, 539-42 (1960).
565. Aynsley, E. E., Peacock, R. D., and Robinson, P. L., J. Chem. Soc. 1952, 1231-4.
566. Neale, E., Williams, L. T. D., and Moores, V. T., J. Chem. Soc. 1956, 422-427.
567. Greenberg, E., Settle, J. L., Feder, H. M., and Hubbard, W. N., J. Phys. Chem. 65, 1168 (1961).
568. Gross, P., Hayman, C., and Levi, D. L., XVIIth Int. Congr. Pure and Applied Chem., Abstracts, 1, 405 (1959).
569. Brewer, L., Bromley, L. A., Gilles, P. W., and Lofgren, N. L. "Thermodynamic Properties and Equilibriums of Uranium Halides, Oxides, Nitrides, and Carbides at High Temperatures." Paper 33, Chemistry of Uranium, J. J. Katz and E. Rabinowitch, Editors, (Office of Technical Services, U. S. Department of Commerce, Washington 25, D. C., 1958).
570. Akishin, P. A., and Khodeev, Yu. S., Zhur. Fiz. Khim. 35, 1169 (1961).
571. Buyers, A. G., and McCarty, N., U. S. Atomic Energy Comm. NAA-SR-1157, 32 pp . (1955).
572. 0^{\prime} Driscoll, W. G., and Chalder, G. H., U. K. Atomic Energy Authority, Ind. Group Hdq. R and $D B(c) T N-3,5 \mathrm{pp}$. (1959).
573. Popov, M. M., Kostylev, F. A., and Karpova, T. F.,
U. K. Atomic Energy Authority, 2nd Group IGRL-T/CA-56, 8 pp . (1957).
574. Powers, W. D., and Blalock, G. C., U. S. Atomic Energy Comm. ORNL-1956 (Del.), $31 \mathrm{pp} .(1958)$.
575. Dečroly, C., and Gerard, J., ATB Met. 1, 105-9 (1957).
576. Tananaev, I. V., and Nekhamkina, M. A., Izvest. Sektora Fiz. Khim. Anal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. 20, 227-37 (1950).
577. Vajna, A., and Bacchiega, R., Met. ital. 52, 481-94 (1960).
578. Ryss, I. G., and Slutskaya, M. M., Doklady Akad. Nauk S.S.S.R. 57, 689-91 (1947).
579. 0'Hara, J. B., and Fahien, R. W., Am. Doc. Inst., Doc. 3327.
580. Margrave, J. L., J. Chem. Phys. 24, 476-7 (1956).
581. Warren, J. W., and Craggs, J. D., Mass Spectrometry, 1950, 36-46.
582. Bertin, H. J., Jr., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 23184, 99 pp.; Dissertation Abstr. 17, 2432 (1957).
583. Skiens, W. E., and Cady, G. H., J. Am. Chem. Soc. 80, 5640-5 (1958).
584. Skiens, W. E., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 22187, 79 pp.; Dissertation Abstr. 17, 1912-1913 (1957).
585. Davis, M. L., Univ. Microfilms (Ann Arbor, Mich.), Publ. No. 3487, 177 pp.j Dissertation Abstr. 12, 130-1 (1952).
586. Schmitz-Dumont, 0., and Heckman, I., Z. anorg. Chem. 260, 49-64 (1949).
587. Schmitz-Dumont, 0., and Schultz, A. H., Monatsh. 83, 638-49 (1952).
588. Simpson, E. A., and Glocker, E. M., J. Phys. Chem. 57, 529-30 (1953).
589. Yatsimirski, K. B., Izvest. Akad. Nauk S.S.S.R., Otdel. Khim. Nauk 1948, 398-405.
590. Savchenko, G. S., and Tananaev, I. V., Zhur. Obshchei Khim. 21, 2235-45 (1951).
591. Humphrey, G. L., and King, E. G., J. Am. Chem. Soc. 74, 2041-2 (1952).
592. Evstrop 'ev, K. S., and Skornyakov, M. M., Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, Akad. Nauk S.S.S.R. i Gosudarst. Opticheskii Inst., Sbornik Statei 1942, 174-181.
593. Evstrop'ev, K. S., and Skornyakov, M. M., Akad. Nauk S.S.S.R., Otdel. Khim. Nauk, Akad. Nauk S.S.S.R. i Gosudarst. Opticheskii Inst., Sbornik Statei 1949, 182-5.
594. Jeffes, J. H. E., Richardson, F. D., and Pearson, J., Trans. Faraday, Soc. 50, 364-70 (1954).
595. Neuvonen, K. J., Am. J. Sci., Bowen Vol. Pt. 2, 373-80 (1952).
596. King, E. G., J. Am. Chem. Soc. 73, 656-8 (1951).
597. Stevens, C. G., and Turkdogan, E. T., Trans. Faraday Soc. 51, 356-60 (1955).
598. Kroger, C., Janetzko, W., and Kreitlow, G., Z. anorg. u. allgem. Chem. 287, 33-44 (1956).
599. Hepler, L. G., and Hugus, Z. Z., Jr., J. Am. Chem. Soc. 74, 6115 (1952).
600. Mishchenko, K. P., and Sukhotin, A. M., Jzvest. Sektora Platiny i Drug. Blagorad Metal., Inst. Obshchei i Neorg. Khim., Akad. Nauk S.S.S.R. $\underline{1951}$ No. 26, 203-7.
601. Ruyven, B. H. V., Rec. trav. chim. 72, 739-62 (1953).
602. Talipov, Sh. T., and Khadeev, V. A., Zhur. Obshchei Khim. 20, 774-82 (1950); J. Gen. Chem. (U.S.S.R.) 20, 813-21 (1950)(English translation).
603. Talipov, Sh. T., and Khadeev, V. A., Zhur. Obshchei Khim. 20, 783-8 (1950); J. Gen. Chem. (U.S.S.R.) 20, 821-6 (1950) (English translation).
604. Brjnestad, J., Grjotheim, K., and Urnes, S., Z. Elektrochem. 63, 707-12 (1959).
605. Tananaev, I. V., Khim. Redkikh Elementov. Akad. Nauk S.S.S.R., Inst. Obshchei i Neorg. Khim. 1954, No. 1, 33-9.
606. Wray, K. L., and Hornig, D. F., U. S. Dept. Com., Office Tech. Serv., PB Rept. 138,329, $31 \mathrm{pp} .(1959)$.
607. Semenkovich, S. A., Trudy Vsesoyuz. Alyumin.- Magnievyi Inst. 1960, No. 44, 113-19.
608. Mashovets, V. P., and Novikova, N. A., Izvest. Vysshikh. Ucheb. Zavedenii, Tsvetnaya Met. 2, 83-7 (1959).
609. Sokolov, O. K., and Belyaev, A. I., Izvest. Vysshikh. Ucheb. Zavedenii, Tsvetnaya Met. 2, 72-8 (1960).
610. Krasnov, K. S., Izvest. Vysshikh. Ucheb. Zavedenii, Khim. i Khim. Tekhnol. 4, 38-44 (1961).
611. Chari, N. C. S., Univ. Microfilms (Ann Arbor, Mich.), L. C. Card No. Mic. 60-6850, 188 pp.; Dissertation Abstr. 21, 2220 (1961).
612. Hagenmuller, P., and Pape, R. de, Compt. rend. 251, 2032-4 (1960).
613. Cubicciotti, D. D., Jr., J. Chem. Phys. 23, 1579 (1960).
614. Krasnov, K. S., Radiokhimiya 2, 668-70 (1960).
615. Akishin, P. A., Gorokhov, L. N., and Sidorov, L. N., Zhur. Fiz. Khim. 33, 2822-3 (1959).
616. Ivanova, L. I., Izvest. Vysshikh Ucheb. Zavedenii, Khim. i Khim. Tekhnol. 3, 970-4 (1960).
617. Merrill, C. I., and Cady, G. H., J. Am. Chem. Soc. 83, 298-300 (1961).
618. Caglioti, V., Ciavatta, L., and Liberti, A., J. Inorg. and Nuclear Chem. 15, 115-24 (1960).
619. Azzam, A. M., Can. J. Chem. 38, 2203-16 (1960).
620. Sutra, G., Compt. rend. Congr. soc. Savantes Paris et depts. Sect. sci. 78 e Congr. Toulouse 1953, 59-63.
621. Woolf, A. A., J. Chem. Soc. 1954, 2840-3.
622. Kolesov, V. P., and Skuratov, S. M., Zinur. Neorg. Khim. 8, 1741-4 (1961).
623. Maslov, Yu. P., Zhur. Fiz. Khim. 35, 974-6 (1961).
624. Maslov, P. G., Zhur. Fiz. Khim. 35, 1551-7 (1961).
625. Skuratov, S. M., and Kolesov, V. P., Zhur. Fiz. Khim. 35, 1156-61 (1961).

IDEAL GAS THERMODYNAMIC FUNCTIONS
by
Joseph Hilsenrath and William H. Evans

The thermodynamic functions are given for the positive ions of the elements He^{+}through K^{+}; for $\mathrm{Ti}^{+}, \mathrm{Br}^{+}, \mathrm{Zr}^{+}, \mathrm{Mo}^{+}, \mathrm{I}^{+}, \mathrm{W}^{+}, \mathrm{Hg}^{+}$, and Pb^{+}; and for the molecules NF_{2} and $\mathrm{N}_{2} \mathrm{~F}_{4}$. The computations were performed on the IBM 704 using the fundamental constants of Cohen, Crowe, and Dumond [1]. The tables, which extend to $6,000 \circ \mathrm{~K}$ for the molecules and to 10,000 oK for the atomic ions, are given in units of calories (4.1840 abs. joules), gram moles, and oK. Conversion factors are given to other units.

The functions for the atomic ions were computed by a summation over energy levels given in Volume I (and as corrected in Volume III) of Atomic Energy Levels [2]. The functions for the polyatomic molecules were computed on the harmonic oscillator-rigid rotator approximation using the molecular data listed with the tables. The molecular constants for the polyatomic molecules are discussed in Chapter 2 of this report.

For the first 18 elements the table number agrees with the atomic number as in the earlier NBS Report 6928 with the addition of -1 to designate the first ion. For the other ions and for the polyatomic molecules the numbers are consecutive to the last table in the earlier report.

The tables for the atomic ions were computed in connection with work at the National Bureau of Standards directed at properties of highly ionized gases under a contract with the Air Force Special Weapons Center, Kirtland Air Force Base. They are included here as a convenience to ARPA contractors. The tables are in close agreement with those of Green, Poland, and Margrave [3]
[1] Cohen, E. R., Crowe, K. M., Dumond, J. W. M., "Fundamental Constants of Physics," Interscience Pub., N. Y. (1957).
[2] Moore, C. E., "Atomic Energy Levels," National Bureau of Standards Circular 467, Vol. I. (1949), Vol. III (1958), U. S. Government Printing Office, Washington, D. C.
[3] Green, J. W., Poland, D. E., and Margrave, J. L., J. Chem. Phys. 33, 35-39 (1960)

Table A－2－1 Thermodynamic Functions for He^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{O}_{\mathrm{K}} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	CO	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ} \mathrm{O}$
273．15	26.0996	4.9681	31．0678	4.9681	1357．1
298．15	26.5347	4.9681	31．5029	4.9681	1481．3
1000.	32．5470	4.9681	37.5151	4.9681	4968．1
1100.	33．0205	4.9681	37．9886	4.9681	5465．0
1200.	33.4528	4.9681	38.4209	4.9681	5961．8
1300.	33.8504	4.9681	38.8186	4.9681	6458．6
1400.	34.2186	4.9681	39．1868	4．968］	6955.4
1500.	34.5614	4.9681	39.5295	4.9681	$7452 \cdot 2$
1600.	34.8820	4.9681	39.8502	4.9681	7949.0
1700 。	35．1832	4.9681	40．1513	4.9681	8445．9
1800.	35.4672	4.9681	40.4353	4.9681	8942.7
1900 。	35.7358	4.9681	40.7039	4.9681	9439.5
วกロก。	35．0906	4.9681	40.9588	4.0681	9936.3
2100.	36.2330	4.9681	41.2012	4.9681	$10433 \cdot 1$
2200 －	36.4641	4.9681	41.4323	4.9681	10929．9
2300 。	36.6850	4.9681	41.6531	4.9681	11426.7
2400.	36.8964	4.9681	41.8646	4.9681	11923.6
$2500 \cdot$	37.0992	4.9681	42.0674	4.9681	12420.4
2600 。	37.2941	4．9681	42.2622	4.9681	12917.2
2700 。	37.4816	4.9681	42.4497	4.9681	13414.0
2800．	37.6623	4.9681	42.6304	4.9681	13910.8
2900．	37.9366	4.9681	42.8047	4.9681	$14407 \cdot 6$
3000 。	38．0050	4.9681	42.9732	4.9681	14004.4
3100 。	38．1679	4.9681	43.1361	4.9681	15401．3
3200 。	38.3257	4.9681	43.2938	4.9681	15898．1
3300 －	38.4785	4.9681	43.4467	4.9681	16394.9
3400.	38.6269	4.9581	43.5950	4.9681	16891．7
3500 。	38.7709	4.9681	43.7300	4.9681	17388.5
3600 。	38.9108	4.5681	43.8700	4．968］	17885．3
3700 －	39．0470	4.9681	44.0151	4.9681	18382.2
3800 。	39.1794	4.9681	44．1476	4.9681	18879．0
3900.	39．3085	4.9681	44.2766	4.9681	19375.8
4000 －	39.4343	4.9681	44.4024	4.9681	19872．6
4100.	39.5570	4.9681	44.5251	4.9681	20369.4
4200 。	39.6767	4.9681	44.6448	4.9681	？ 0866. ？
4300 。	39.7936	4.9681	44.7617	4.9681	71363.0
4400.	39.0078	4.9681	44.8759	4.0681	71859.9
4500.	40.0194	4.9681	44.9876	4.9681	22356.7
4600.	40．1286	4.9681	45．0968	4．9681	27853.5
4700.	40.2355	4.0681	45.2036	4.9581	23350.7
4800.	40.3401	4.9681	45.3082	4.9681	23847.1
4900.	40.4425	4.9681	45.4107	4.9681	24343.9
5000 －	40.5429	4.9681	45.5110	4.9681	24840.7
5100 。	40.6413	4.9681	45.6094	4.9681	25337.6
5200.	40.7377	4.9681	45.7059	4.9681	25834.4
5300.	40.8324	4.9681	45.8005	4.9681	26331.2
5400 。	40.9252	4.9681	45.8934	4.9681	26828．0
5500.	41．0164	4.9681	45.9845	4.9681	27324.8
5600 。	41.1059	4.9681	46．0741	4.9681	27821.6
5700.	41.1939	4.9681	46.1620	4.9681	78318.5
5800.	41.2803	4.9681	46.2484	4.9681	28815.3
5900.	41.3652	4.9681	46.3333	4.9681	20312．1
$6000 \cdot$	41.4487	4.9681	46.4168	4.9681	29808．9
6100.	41.5308	4.9681	46.4990	4.9681	30305.7
6200.	41.6116	4.9681	46.5797	4.9681	30802.5
6300 。	41．6911	4.9681	46.6592	4.9681	31299.3

The tables are in units of calories，moles and K ．See reverse side for
conversion factors to other units．The atomic weight $=4.0025$

Table A－2－1 Thermodynamic Functions for He^{+}－continued

$\begin{array}{r} \mathrm{T} \\ \mathrm{O} \end{array}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{\circ}\right)}{T}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
6400 。	41．7693	4.9681	46.7375	4.9681	31796.2
6500 。	41.8464	4.9681	46.8145	4.9681	32293.0
6600.	41．9222	4.9681	46.8904	4.9681	32789．8
6700 。	41.9969	4.9681	46.9651	4.9681	33286.6
6800.	42．0705	4.9681	47.0387	4.9681	33783.4
6900 。	42.1430	4.9681	47.1112	4.9681	34280.2
7000 。	42．2145	4.9681	47.1827	4．968？	34777．0
7100.	42.2850	4.9681	47.2532	4.9681	35273.9
7200 。	42.3545	4.9681	47.3226	4.9681	35770.7
7300 。	42.4230	4.9681	47.3912.	4.9681	36267.5
7400 。	42.4906	4.9681	47.4588	4.9681	36764.3
7500.	42.5573	4.9681	47.5254	4.9681	37261．1
7600 。	42.6231	4.9681	47.5913	4.9681	37757.9
7700.	42.6880	4.9681	47.6562	4.9681	38254.8
7800 。	42．7522	4.9681	47.7203	4.9681	38751．6
7900.	42.8154	4.9681	47.7836	4.9681	39248.4
8000	42.8779	4.9681	47.8461	4.9681	39745.2
8100	42.9397	4.9681	47.9078	4.9681	40242.0
8200.	43.0006	4.9681	47.9688	4.9681	40738.8
8300	43．0608	4．9681	48.0290	4.9681	41235.6
8400 。	43.1203	4.9681	48.0885	4．9681	41732.5
8500 。	43.1791	4．9681	$48 \cdot 1473$	4.9681	42229.3
8600.	43.2372	4.9681	48.2054	4.9681	42726.1
8700	43.2947	4.9681	48.2628	4.9681	43222.9
8800.	43.3515	4.9681	48．3196	4.9681	43719.7
8900.	43.4076	4.9681	48.3757	4．9681	44216.5
9000 。	43.4631	4.9681	48.4312	4.9681	44713.3
9100	43.5180	4.9681	48.4861	4.9681	45210.2
9200	43.5723	4.9681	48.5404	4.9681	45707.0
9300.	43.6260	4．9681	48.5942	4.9681	46203．8
9400 。	43.6791	4.9681	48.6473	4.9681	46700.6
9500.	43.7317	4.9681	48.6999	4.9681	47197.4
9600 －	43.7837	4.9681	48.7519	4.9681	47694．2
9700 。	43.8352	4.9681	48.8034	4.9681	48191.1
9800	43.8862	4.9681	48.8543	4.9681	48687．9
9900	43.9366	4.9681	48.9048	4．9681	49184.7
10000 。	43.9865	4.9681	48.9547	4.9681	49681.5
10100.	44.0360	4．9681	49.0041	4.9681	50178．3

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.24984
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}{ }^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	1.0453
Btu $1 b^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or ${ }^{\circ} \mathrm{F}^{-1}$ ）	0.24968

Table A－3－1 Thermodynamic Functions for Li^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(F^{\circ}-H_{O}^{O}\right)}{T}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	C_{p}	$\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}$
273.15	26.3626	4.9681	31.3307	4.9681	$1357 \cdot 1$
298．15	26.7977	4.9681	31.7658	4.9681	1481.3
$1000 \cdot$	32．8099	4.9681	37.7781	4．9681	4968．1
1100	33.2834	4.9681	38.2516	4.9681	5465．0
1200 。	33.7157	4.9681	38.6839	4.9681	5961．8
1300 ．	34．1134	4.9681	39.0815	4.9681	6458.6
1400.	34.4816	4.9681	39.4497	4.9681	6955．4
1500 。	34.8243	4.9681	39.7925	4．9681	$7452 \cdot 2$
1600.	35．1450	4.9681	40.1131	4.9681	7949.0
1700 ．	35.4462	4.9681	40.4143	4.9681	8445．9
1800	35.7301	4.9681	40.6983	4.9681	$8942 \cdot 7$
1900.	35.9987	4.9581	40.9669	4.9681	9439.5
2000．	36.2536	4.9681	41.2217	4.9681	9936.3
2100 。	36.4960	4．5681	41.4641	4.9681	10433.1
2200 。	36.7271	4.9681	41.6952	4.9681	10929．9
2300．	36.9479	4.9681	41.9161	4.9681	11426.7
2400．	37．1594	4.9681	42.1275	4.9681	11923.6
2500 。	37.3622	4.9681	42.3303	4.9681	12420.4
2600．	37.5570	4.9681	42.5252	4.9681	12917.2
2700.	37．7445	4.9681	42.7127	4.9681	13414.0
2800．	37.9252	4.9681	42.8934	4．9681	13910.8
2900 。	38.0996	4.9681	43.0677	4.9681	14407.6
3000 ．	38.2680	4.9681	43.2361	4.9681	14904.4
3100.	38.4309	4.9681	43.3990	4.9681	15401.3
3200.	38.5886	4.9681	43.5568	4.9681	15898.1
3300.	38.7415	4.9681	43.7096	4.9681	16394.9
3400.	38．8898	4.9681	43.8580	4.9681	16891.7
3500.	39．0338	4.9681	44.0020	4.9681	17388．5
3600.	39.1738	4.9681	44．1419	4.9681	17885．3
3700.	39．3099	4.9681	44.2781	4.9681	18382.2
3800.	39.4424	4.9681	44.4105	4.9681	18879．0
3900.	39.5714	4.9681	44.5396	4.9681	19375．8
$4000 \cdot$	39.6972	4.9681	44.6654	4.9681	19872．6
4100.	39.8199	4.9681	44.7881	4.9681	20369．4
4200.	39.9396	4.9681	44.9078	4.9681	20866．2
4300 。	40.0565	4.9681	45.0247	4.9681	21363.0
4400.	40.1707	4.9681	45．1389	4.9681	21859.9
$4500 \cdot$	40.2824	4.9681	45.2505	4.9681	22356.7
4600.	40.3916	4.9681	45.3597	4.9681	22853.5
4700.	40.4984	4.9681	45.4666	4.9681	23350．3
4800.	40.6030	4.9681	45.5712	4.9681	23847．1
4900 。	40.7055	4.9681	45.6736	4.9681	24343.9
5000.	40.8058	4.9681	45.7740	4.9681	24840.7
5100.	40.9042	4.9681	45.8724	4.9681	25337.6
5200 。	41.0007	4.9681	45．9688	4.9681	25834.4
5300.	41.0953	4.9681	46.0635	4.9681	26331．2
5400 。	41.1882	4.9681	46.1563	4．9681	26828．0
5500 。	41.2794	4.9681	46.2475	4．9681	27324．8
5600.	41.3689	4.9681	46.3370	4.9681	27821．6
5700.	41.4568	4.9681	46.4250	4.9681	28318.5
5800.	41.5432	4.9581	46.5114	4.9681	28815．3
5900.	41.6281	4.9681	46.5963	4．9681	29312．1
6000 ．	41.7116	4.9681	46.6798	4.9681	29808．9
6100.	41.7938	4.9681	46.7619	4．9681	30305.7
6200 。	41.8745	4.9681	46.8427	4．9681	30802．5
6300.	41.9540	4.9681	46.9222	4.9681	31299．3

The tables are in units of calories，moles and oK．See reverse side for conversion factors to other units．The atomic weight $=6.9395$

Table A－3－I Thermodynamic Functions for Li^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}=\mathrm{HO}_{0}$
6400 。	42.0323	4.9681	47.0004	4.9681	$31796 \cdot 2$
6500 。	42.1093	4.9681	47．0775	4.9681	32293.0
6600.	42．1852	4.9681	47.1533	4.9681	32789．8
6700 。	42．2599	4．9681	47．2280	4.9681	33286.6
6800.	42.3335	4．9681	47.3016	4.9681	33783.4
6900.	42.4060	4.9681	47.3741	4.9681	34280.2
7000 －	42.4775	4.9681	47.4456	4.9681	34777．0
7100 －	42.5480	4．9681	47.5161	4．9681	35273．9
7200 －	42.6174	4.9681	47.5856	4.9681	35770.7
7300 。	42.6860	4．9681	47.6541	4.9681	36267.5
7400 －	42.7536	4.9681	47.7217	4.9681	36764.3
7500 。	42.8202	4．9681	47.7884	4.9681	37261．1
7600.	42.8861	4.9681	47.8542	4．9681	37757．9
7700 。	42.9510	4.9681	47.9191	4．9681	38254.8
7800.	43.0151	4．9681	47.9833	4.9681	38751.6
7900.	43.0784	4．9681	48.0465	4.9681	39248．4
8000.	43.1409	4.9681	$48 \cdot 1090$	4.9681	39745．2
8100 。	43．2026	4．9681	48.1708	4.9681	40242．0
8200.	43.2636	4.9681	48.2317	4.9681	40738.8
8300 －	43.3238	4.9681	48.2919	4.9581	41235.6
8400 。	43.3833	4.9681	48.3514	4.9681	41732.5
8500 －	43.4421	4.9681	48.4102	4.9681	42229.3
8600.	43.5002	4.9681	48.4683	4．9681	42726．1
8700 －	43.5576	4.9681	48.5258	4.9681	43222．9
8800 －	43.6144	4．9681	48.5826	4.9681	43719.7
8900.	43.6705	4.9681	48.6387	4.9681	44216.5
9000.	43.7261	4．9681	48.6942	4.9681	44713.3
9100.	43.7809	4.9681	48.7491	4.9681	45210.2
9200 －	43.8352	4.9681	48.8034	4.9681	45707.0
9300.	43.8890	4.9681	48.8571	4.9681	46203．8
9400.	43.9421	4.9681	48.9102	4．9681	$46700 \cdot 6$
9500.	43.9947	4．9681	48.9628	4.9681	47197．4
9600.	44.0467	4.9681	49．0148	4.9681	47694．2
9700.	44.0982	4.9681	49.0663	4．9681	48191．1
9800.	44.1491	4.9681	$49 \cdot 1173$	4.9681	48687．9
9900.	44.1996	4.9681	49．1677	4.9681	49184.7
10000.	44.2495	4.9681	49.2176	4.9681	49681．5
10100 。	44.2989	4.9681	49.2671	4.9681	50178•3

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{C}^{-1}\right)$	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.14410
Btu $1 \mathrm{~b}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{F}^{-1}\right)$	0.60291

Table A－4－1 Thermodynamic Functions for Be^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{FO}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\mathrm{O}}-\mathrm{H}}{\mathrm{~T}}$	So	$\mathrm{Co}_{\mathrm{p}}^{\circ}$	Ho－ HO_{O}
273.15	28.5192	4．9681	33.4873	4.9681	1357 •1
298．15	28.9543	4.9681	33.9224	4.9681	1481．3
1000．	34.9665	4.9681	39.9347	4.9681	4968．1
1100.	35.4400	4.9681	40.4082	4.9681	5465．0
1200.	35.8723	4.9681	40.8405	4.9681	5961．8
1300.	36.2700	4.9681	41.2381	4.9681	6458.6
1400 。	36.6382	4.9681	41.6063	4.9681	6955.4
1500．	36.9809	4.9681	41.9491	4.9681	$7452 \cdot 2$
1600.	37.3016	4.9681	42.2697	4.9681	7949.0
1700.	37.6028	4.9681	42.5709	4.9681	8445.9
1800.	37.8867	4.9681	42.8549	4.9681	8942.7
1900 。	38．1554	4.9681	43.1235	4.9682	9439.5
2000 。	38.4102	4.9681	43.3783	4.9682	9936.3
2100 。	38.6526	4.9681	43.6207	4.9682	10433.1
2200 。	38.8837	4.9682	43.8519	4.9682	10929．9
2300 。	39.1045	4.9682	44.0727	4.9682	11426.7
2400 。	39.3160	4.9682	44.2841	4.9682	11923.6
2500 。	39.5188	4.9682	44.4869	4.9682	12420.4
2600.	39.7137	4.9682	44.6818	4.9682	12917.2
2700 。	39.9012	4.9682	44.8693	4.9682	13414.0
2800．	40.0818	4.9682	45.0500	4.9683	13910.8
2900．	40.2562	4.9682	45.2243	4.9683	14407.7
3000 。	40.4246	4.9682	45.3928	4.9685	14904.5
3100 。	40.5875	4.9682	45.5557	4.9686	15401.4
3200 。	40.7452	4.9682	45.7134	4.9689	15898．2
3300 。	40.8981	4.9682	45.8663	4.9692	16395．1
3400 －	41．0464	4.9683	46.0147	4.9696	16897．1
3500 。	41.1905	4.9683	46.1588	4.9702	17389．1
3600 。	41.3304	4.9684	46.2988	4.9709	17886.1
3700 。	41.4665	4.9684	46.4350	4.9719	18383.3
3800 －	41.5990	4.9686	46.5676	4.9730	18880.5
3900.	41．7281	4.9687	46.6968	4.9745	19377．9
4000.	41.8539	4.9689	46.8228	4.9762	19875．4
4100.	41.9766	4.9691	46.9457	4.9783	20373．1
4200.	42.0963	4.9693	47.0657	4.9808	20871．1
4300.	42.2133	4.9596	47．1829	4.9837	21369.3
4400.	42.3275	4.9700	47．2975	4.9871	21867.9
4500 。	42.4392	4．5704	47.4096	4.9910	22366.8
4600.	42.5485	4.9709	47.5194	4.9955	72866.1
4700.	42.6554	4.9715	47.6268	5.0005	23365.9
4800.	42．7601	4.9721	47．7322	5.0062	23856.2
4900．	42.8626	4.9729	47.8355	5．0125	24367．1
5000.	42.9631	4.9737	47.9368	5.0195	24868.7
5100 。	43.0616	4.9747	48.0363	5.0273	25371.1
5200.	43.1582	4.9758	$48 \cdot 1340$	5.0358	$\underline{2} 874.2$
5300 。	43.2530	4.9770	48.2300	5．0451	26378.2
5400 。	43.3460	4.9784	48.3244	5.0551	26883．2
5500 。	43.4374	4.9799	48.4172	5.0660	27389．3
5600.	43.5271	4.9815	48.5086	5.0777	27896．5
5700.	43.6152	4．9833	48.5986	5.0902	28404．9
5800．	43.7020	4.9853	48.6873	5.1036	28914.6
5000 －	43.7872	4.0874	48.7746	5.1178	29425．6
6000 －	43.8711	4.9897	48.8608	5.1329	29938．1
6100.	43.9536	4.9922	48.9457	5．1488	30452.2
6200 。	44．0348	4.9948	49．0296	5.1655	30967．9
6300 。	44.1147	4.9977	49．1124	5.1830	31485.3

The tables are in units of calories，moles and o_{K} ．See reverse side for conversion factors to other units．The atomic weight $=9.0125$

Table $\mathrm{A}-4$－1 Thermodynamic Functions for Be^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{o} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{T}$	$\frac{\mathrm{HO}^{-\mathrm{H}_{\mathrm{O}}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{HO}^{\circ}$
6400.	$44 \cdot 1934$	5.0007	49.1941	5.2014	$32004 \cdot 6$
6500.	44.2710	$5 \cdot 0039$	49．2749	5．2205	$37525 \cdot 6$
6600.	44.3474	5．0074	49.3548	5．2404	$33048 \cdot 7$
6700.	44.4227	5.0110	49.4337	5.2611	33573.8
6800.	44.4970	5．0148	49.5119	5.7825	34100.9
69กつ．	44.57 n？	5．0189	49.5891	5.3047	$34630 \cdot 3$
7 nno －	44.6425	5．0231	49.6656	5．3275	35161.9
7100.	44.7138	5．0276	49.7414	5.3510	35695．8
7200 。	44.7841	5．r．322	49.8164	5．3751	36232．1
7300.	44.2536	5．0371	49.8907	5.3998	36770．8
7400 。	44.0221	5.10422	49.9643	5.4250	$37312 \cdot 1$
7500.	44.9899	5．0474	50.0373	5.4508	37855.9
7600.	45.0567	5.0529	50.1097	5.4771	$38402 \cdot 2$
7700 －	45.1228	5．0586	50．1814	5.5039	38951.3
7800.	45.1881	5．0．045	50.2526	5.5311	39503.0
7900	45.2527	5．0706	50.3233	5.5586	40057.5
$80 \cap 0$	45.3165	5.0768	50.3934	5.5866	$40614 \cdot 8$
8100 －	45.3796	5.0833	50．462？	5.6149	41174.8
82 0．	$45.447 n$	5.7900	50.5320	5.6434	41737.8
8300.	45.5038	5.7968	50.6006	5.6723	42303.5
8400 。	45.5649	5.1038	50.6687	5.7013	$42872 \cdot 2$
8500.	45.6253	5.1110	50.7363	5.7305	43443.8
8600.	45.6851	5．1184	50.8035	5.7599	44018.3
87 「0．	45．7443	5.1260	$50.87 \cap 3$	5.7894	44595.8
88 กn．	45．8030	5.1337	50.9366	5.8190	45176.2
8900.	45.8610	5．1415	51.0025	5.8486	45759.6
9 のno．	45.9185	5.1495	51．0681	5.8783	46345.9
9100 －	45.0755	5.1577	51.1332	5.9080	46935．3
9200.	46.0319	5.1660	51．1979	5.9376	47527.5
9300	46．0878	5.1745	51．762？	5.9677	48127．8
9400 －	46.1432	5.1831	51.3267	5.9967	48721.0
9500 －	46.1981	5.1918	51.3890	6.0260	49322．1
9600.	$46.252^{\text {a }}$	5.2006	51.4531	6.0552	49926.2
97 กロ・	$46 \cdot 3 \cap 64$	5.2096	51.5160	6.0843	50533．1
$98 \cap$－	46.3599	5.2187	51.5786	6.1132	51143.0
9900.	46.4129	5.7279	51.6408	6.1418	51755．8
1ヵกロก。	46.4655	5.2371	51.7026	6.1702	52371．4
101 no．	46.5177	5．2465	51.764 ？	6.1984	52989．8

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or ${ }^{\circ} \mathrm{C}^{-1}$ ）	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.11096
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.{ }^{\circ} \mathrm{F}^{-1}\right)$	0.46426

Table A－5－1 Thermodynamic Functions for B^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{O} \end{gathered}$	$\frac{-\left(\mathrm{FO}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}}{\mathrm{T}}$	So	$\mathrm{C}_{\mathrm{p}}^{2}$	H°－ HO_{0}
273.15	27.6366	4.9681	32.6547	4.9681	$1357 \cdot 1$
298．15	28.1217	4.9681	33.0898	4.9681	1481.3
1000.	34.1339	4.9681	39．1021	4．9681	4968．1
1100 －	34.6074	4.9681	39.5755	4.9681	5465.0
1200 ．	35.0397	4.9681	40．0070	4.9681	5961.8
1300 －	35.4374	4.9681	40.4055	4.9681	$6458 \cdot 6$
140 n	35.8056	4.9681	40.7737	4．9681	6955.4
1500 －	36.148 ？	4.9681	41.1165	4．9681	$7452 \cdot 2$
1600.	36.4690	4.9681	41.4371	4．9681	7949.0
17 กロ＊	$36.77 n 2$	4.9681	41．738？	4.9681	8445．9
18 ก0．	37．754！	4.9681	42．0223	4.9681	$8942 \cdot 7$
$19 \cap 0$.	37.3227	4.9681	42.2900	4.9681	9439.5
2 กno．	37.5776	4.9681	42.5457	4.9681	$9936 \cdot 3$
2100 。	37.82 กn	4.9681	42.7881	4.9681	10433．1
2200 －	38.0511	4.9681	43.0192	4.9682	10929．9
2300 。	38.271°	4.9681	43.2401	4.9682	11426.7
7400 －	38.4834	4.9682	43.4515	4.9682	11923.6
2500.	38.6862	4.9682	43.6542	4.9682	12420.4
2500 。	38.8810	4.9682	43.849 ？	4.9682	12917．2
2700 －	39．0685	4.9682	44.0367	4.9682	13414.0
2800	39.2402	4.9382	44.2174	4.9682	13910.8
2900 －	39.4236	4.9682	44.3917	4.9682	14407.6
3000 。	39.592 C	4.5682	44.5601	4.9682	14904.5
3100 。	39.7540	4.9682	44．7231	4.9683	15401．3
3200 －	39.9126	4.9682	44.8808	4.9684	15898．1
3200 －	40.0655	4.9682	45.0337	4．9686	16395．0
3400 －	40.2138	4.9682	45.1820	4．9688	16891．8
3500 。	40.3578	4.9682	45．3260	4.9691	17388.7
3600 －	40.4978	4.9682	45.4660	4.9695	17885.7
3700 －	40.633°	4．968？	45.6022	4.9700	18382.6
3900 。	40.7664	4.9683	45.7348	4.9707	18879.7
3900.	40.8955	4.9684	45.8630	4.9717	19376.8
4000 －	41．0212	4.9685	45.9898	4.9729	19874.0
4100	41．1440	4.0686	46.1126	4.9744	20371．4
4200.	41.2637	4．9688	46.2325	4.9763	20868．9
4300.	41.3806	4.9690	46.3496	4.9786	21366.6
4400 。	41.4948	4.9692	46.4641	4.9814	21864.6
4500.	41.606^{5}	4.9695	46.5761	4.9848	22362.9
4600.	41.7157	4.9690	46.6857	4．9888	22861．0́
4700 －	41.8226	4.9704	46.7930	4.9935	23360.7
4800.	41.9273	4.9709	46.8982	4.9989	23860．3
4900.	42.0298	4.9715	47.0013	5.0053	24360.5
5000.	42.130 ？	4.9723	47.1025	5.0126	24861．4
5100.	42．228？	4.9732	47．2019	5.0208	25363.1
5200.	42．325 ${ }^{\text {a }}$	4.9742	47.2994	5.0302	25865．6
5300.	42.4200	4.9753	47.3954	5.0407	26369．2
5400.	42.5131	4.9766	47.4897	5.0525	26873．8
5500 。	42.6044	4.9781	47.5825	5.0656	27379．7
5600.	42.6941	4.9798	47.6739	5.0800	27887．0
5700 －	42.7823	4.9817	47.7640	5.0959	28395．8
5800.	42.868 ？	4.9838	47.8527	5.1133	28906．2
5900.	42.9541	4.9862	47.9403	5.1322	29418.5
6000.	43.0380	4.9888	48.0267	5.1528	29932．7
6100.	43.1204	4.9917	48.1121	5.1749	30449．1
6200 ．	43.2016	4.9948	48．1964	5.1988	30967．7
6300.	43.2816	4.9982	48．2798	5．2244	$31488 \cdot 9$

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for
conversion factors to other units．The atomic weight $=10.82$

Table A－5－1 Thermodynamic Functions for B^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{O} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{T}$	$\frac{\mathrm{HO}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	C_{p}°	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
6400.	43.3602	5．0n20	48.3623	5.2517	32012.7
6500.	43.4379	5.0060	48.4439	5.2808	32539.3
6600.	43.5144	5.0104	48.5248	5.3116	33068.9
6700 。	43．589？	5.0152	48.6040	5.3443	33601.7
6800 －	43.6641	5.0203	48.6844	5.3788	34137.8
6900 。	43.7374	5．025？	48.7631	5.4150	34677.5
7000.	43.8098	5.0316	48.8413	5.4531	35220.9
7100 －	43.8812	5．0378	48.9190	5.4929	35768.2
7200 －	43.0517	5.0444	48.9961	5.5344	36319.5
$730 n$ 。	44．0212	5.0514	49.0727	5.5777	36875.1
7400 。	44．0901	5.0588	49.1480	5.6227	37435．1
7500.	44.1580	5．0666	49.2247	5.6693	37999.7
7600.	$44.225 ?$	5． 1740	49．3001	5．7176	38569.0
7700.	44．291f	5．0．835	49．3751	5.7674	39143.2
7800.	44.357 .2	5.0926	49.4490	5.8187	39722.5
7900.	44．422？	5.1022	49.5244	5.8715	40307.0
8000.	44.4864	5．1121	49.5985	5.9257	40896.9
8100.	$44.550 n$	5.1225	49.6725	5.9813	41492．？
8200.	44.6120	5.1333	49.7462	6.0381	42093.2
8300.	44.6752	5.1446	49.8198	6.0962	42699．9
8400.	44.7360	5.1562	49．893？	6.1554	43312.5
8500.	44.7980	5.1684	49.9663	6.2157	43931.0
8600.	44.8585	5.1800	50．${ }^{\text {c }} 304$	6.2769	44555.6
8700.	44.9185	5.1938	50.1123	6.3391	45186.4
8800.	44．9779	5.2072	50.1851	6.4021	45823.5
89 00．	45.0368	5.2210	50.2578	6.4659	46466．9
9000.	45．095？	5.2352	50.3304	6.5303	47116.7
9100.	45.153 ？	5.2498	50.4030	6.5954	47773．0
$\bigcirc 200$.	45．2106	5.2648	50.4754	6.6609	48435.8
Q300．	45．2676	5.2801	50.5478	6.7269	49105.2
9400.	45．324？	5.2959	50.6201	6.7932	49781．2
9500.	$45.38 n^{3}$	5.3120	50.6923	6.8598	50463．8
9600.	$45.436 n$	5.3285	50.7645	6.9265	51153.1
9700.	45.4913	5.3453	50.8366	6.9934	51849.1
9800.	45．546？	5．3624	50.9087	7.0603	52551．8
9900．	$45.60 \cap 8$	5.3790	50.9807	7.1271	53261．2
10000	45.6547	5.3977	51.0526	7．1938	53977.2
10100.	45．7087	5.4158	51．1246	7.2602	54699.9

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.{ }^{\circ} \mathrm{C}^{-1}\right)$	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.092421
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right)$	0.38669

Table A－6－1 Thermodynamic Functions for C^{+}

$\begin{gathered} T \\ 0 K \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{T}$	So	Co_{P}	$\mathrm{H}^{\circ}=\mathrm{H}^{\circ}$
273.15	31.1378	5.3621	36.4999	5.0229	1464.7
298．15	31.6061	5.3333	36.9394	5.0138	1590.1
1000 －	37.8857	5.0863	42.9720	4.9720	$5086 \cdot 3$
1100 。	38.3697	5．0759	43.4459	4.9713	5583.5
1200 。	38.8117	5．0672	43.8784	4.9708	6080．6
1300 。	39.2165	5.0599	44.2763	4.9704	6577．7
1400 。	39.5912	5.0534	44.6445	4.9701	$7074 \cdot 7$
1500 －	39.9307	5.0478	44.9875	4.9698	7571.7
1600 。	40.2653	5．0429	45.308 ？	4.9696	8068．7
1700 －	40.5709	5．0386	45.6095	4.9695	$8565 \cdot 6$
1800 －	40.8583	5.0348	45.8936	4.9693	$9062 \cdot 6$
19nの。	41.1309	5.0313	46.1622	4.9692	9559.5
2000 －	41.3889	5.0282	46.4171	4.9691	10056.4
2100 。	41.6342	5.0254	46.6596	4.9690	10553.3
2200 。	41.8679	5.0228	46.8907	4.9689	11050.2
2300 －	42.0911	5．0205	47．1116	4.9689	11547.1
2400 －	42.3047	5.0183	47.3231	4.9688	12044.0
2500 －	42.5095	5.0163	47.5259	4.9688	12540.9
2600.	42.7063	$5 . \cap 145$	47.7208	4.9687	13037.7
2700 －	42.8955	5．c128	47.9083	4.9687	13534.6
2800 －	43．0777	5.0112	48.0890	4.9686	14031.5
2900 －	43.2536	5.0098	48.2633	4.9686	14528.3
3000 －	43.4234	5.0084	48.4318	4.9686	15025.2
3100 。	43.5876	5.0071	48.5947	4.9685	15522．0
3200 。	43.7465	5.0059	48.7524	4.9685	16018.9
3300.	43.9006	5.0048	48.9053	4.9685	16515.8
3400.	44.0500	5.0037	49.0537	4.9685	17012.6
$35 \cap 0$－	44.1950	5.00027	49.1977	4.9685	17509.5
3600 －	44.3350	5．0n17	49.3377	4.9685	18006．3
37 ก0．	44.4729	$5 \cdot 0$ กn9	49.4738	4.9685	$18503 \cdot 1$
3800 －	44.6063	5．0กกก	49.6063	4.9685	19000.0
3900 －	44.7362	4.9992	49.7353	4.9685	19496.8
4 กñ＊	44.8627	4.9984	49.8611	4.9686	19993.7
4100.	44.9861	4.9977	49.9839	4.9686	$20490 \cdot 6$
4200 。	$45 \cdot 1065$	4.9970	50.1036	4.9687	20987．4
4300 －	45.2241	4.9964	50.2205	4.9688	21484.3
4400 －	45.3390	4.9957	50.3347	4.9690	21981.2
4500 －	45.4512	4.9951	50.4464	4.9691	22478．1
$46 \cap 0 .$	45.5610	4.9946	50.5556	4.9694	27975.0
47 の0．	45.6684	4.9940	50.6625	4.9696	23472.0
4800 。	45.7736	4.9935	50.7671	4.9700	23969.0
4900 。	45.8765	4.9931	50.8696	4.9704	24466.0
5000 －	45.9774	4.0975	50.9700	4.9709	24963.0
5100 －	46.0763	4.9922	51.0684	4.9715	25460.2
5200 。	46.1732	4.9718	51.1650	4.9721	25957．3
5300 。	46.2633	4.9914	51.2597	4.9729	26454．6
5400 。	46.3616	4.5911	51.3527	4.9738	26951．9
5500 －	46.4532	4.9908	51.4439	4.9748	27449．3
5600.	46.5431	4.9905	51.5336	4.9760	27946.9
5700 －	46.6314	4.9903	51.6217	4.9773	28444.6
5800 。	46.7182	4.9901	51.7083	4.9788	28942.4
5900 －	46.8035	4.9899	51.7934	4.9805	29440．3
6000.	46.8874	4.9897	51.8771	4.9823	29938.5
6100 。	46.9698	4.9896	51.9595	4.9844	30436.8
6200 。	47.0510	4.9896	52.0405	4.9867	30935.4
6300 。	47.1303	4.9895	52.1203	4.9891	31434.1

The tables are in units of calories，moles and ok．See reverse side for conversion factors to other units．The atomic weight $=12.0105$

Table A-6-1. Thermodynamic Functions for C^{+}- continued

$\begin{gathered} \mathrm{T} \\ \mathrm{O}_{\mathrm{K}} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{0}\right)}{T}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	CO	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
6400 .	47.2094	4.9896	52.1989	4.9918	31933.2
6500.	47.2867	4.9896	52.2764	4.9948	32432.5
6600.	47.3629	4.9897	52.3526	4.9980	32932.2
6700.	47.4380	4.9899	52.4278	5.0015	33432.1
6800.	47.5119	4.9901	52.5019	5.0.052	33932.5
6900.	47.5847	4.9903	52.5750	5.0092	34433.2
7000 -	47.6565	4.9906	52.6471	5.0135	34934.3
7100.	47.7273	4.9910	52.7183	5.0180	35435.9
7200.	47.7971	4.9914	52.7885	5.0229	35937.9
7300.	47.8660	4.9918	52.8578	5.0281	36440.5
7400 .	47.9339	4.9924	52.9263	5.0336	36943.6
7500 -	48.0009	4.9930	52.9939	5.0394	37447.2
7600.	48.0671	4.9936	53.0607	5.0455	37951.4
7700	48.1323	4.9943	53.1267	5.0519	38456.3
7800 -	48.1968	4.9951	53.1919	5.0586	38961.8
7900 -	48.2604	4.9960	53.2564	5.0657	39468.0
8000	48.3233	4.9969	53.3201	5.0731	39975.0
8100.	48.3854	4.9979	53.383?	5.0808	40482.7
8200.	48.4467	4.9989	53.4456	5.0889	40991.2
8300 .	48.5073	5.0001	53.5073	5.0972	41500.5
8400.	48.5672	5.0013	53.5684	5.1059	42010.6
8500.	48.6264	5.0025	53.6287	5.1150	42521.7
8600.	48.6849	5.0039	53.6888	5.1243	43033.6
8700.	48.7427	5.0053	53.7481	5.1340	43546.5
8800.	48.8000	5.0069	53.8063	5.1440	44060.4
8900.	48.8565	5.0085	53.8650	5.1543	44575.3
9000.	48.9125	5.0101	53.9227	5.1649	45091.3
9100.	48.9679	5.0119	53.9798	5.1758	$45608 \cdot 3$
9200.	49.0227	5.0137	54.0364	5.1870	46126.5
9300.	49.0769	5.0157	54.0926	5.1985	46645.7
9400 。	49.1305	5.0177	54.1482	5.2103	47166.2
9500.	49.1836	5.0198	54.2034	5.2224	47687.8
9600.	49.2362	5.0219	54.2582	5.2347	48210.6
970 C.	49.2883	5.0242	54.3125	5. 2474	48734.7
9800	49.3398	5.0265	54.3664	5.2603	49260.1
9900 -	49.3909	5.0290	54.4198	5.2735	49786.8
10000	49.4414	5.0315	54.4729	5.2869	50314.8
10100	49.4915	5.0341	54.5256	$5 \cdot 3006$	$50844 \cdot 2$

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal g ${ }^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or ${ }^{\circ} \mathrm{C}^{-1}$)	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{C}^{-1}\right)$	0.083260
$\mathrm{Btu} \mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{F}^{-1}\right)$	0.34836

Table A－7－1 Thermodynamic Functions for N^{+}

$\begin{array}{r} T \\ \circ \\ \hline \end{array}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{HO}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	S°	Co_{p}	$\mathrm{H}^{\circ} \mathrm{-} \mathrm{HO}_{\mathrm{O}}$
273.15	31.9565	5.7640	37.7204	$5 \cdot 1113$	1574.4
298．15	32.4588	5.7082	38.1670	5.0880	1701.9
1000	39.0197	5.2135	44.2331	4.9784	5213.5
1100	39.5155	5．1920	44.7075	4.9766	5711.2
1200.	39．9665	5．174n	45.1405	4.9752	6208.8
1300 ．	40.3800	5.1587	45.5387	4.9742	$6706 \cdot 3$
1400 －	40.7618	5．1454	45.9073	4.9734	7203.6
1500 。	41．1164	5.1340	46.2504	4.9728	$7700 \cdot 9$
1600 ．	41.4474	5．1239	46.5713	4.9723	8198.2
1700	41.7578	5．1149	46.8727	4.9721	8695.4
1800．	42.0499	5.1070	47．1569	4.9721	9192.6
1900 。	42.3258	5． 0999	47.4258	4.9724	9689．8
2000 －	42.5873	5．0935	47.6808	4.9730	10187．1
2100 。	42.8356	5．0878	47.9235	4.9740	10684.4
2200.	43．0722	5.0827	48.1549	4.9754	11181.9
2300 。	43.2980	5．0781	48.3761	4.9774	11679.5
2400 。	43.5141	5．0．739	48.5880	4.9799	12177.4
2500 。	43.7211	5.0702	48.7913	4.9830	12675.5
2600 。	43.9199	5.0669	48.9868	4.9868	13174.0
2700 －	44．1111	5．0640	49.1751	4.9913	13672.9
2800．	44.2952	5.0615	49.3567	4.9964	14172．3
2900 －	44.4728	5.0594	49.5322	5.0023	14672.2
3000 －	44.6443	5.0576	49.7019	5.0089	15172.8
3100.	44．8101	5．0561	49.8662	5.0162	15674.0
3200 。	44.9706	5．0550	50.0256	5.0241	16176.0
3300.	45．1261	5．0542	50.1803	5.0327	16678.9
3400 。	45.2770.	5．0537	50.3307	5.0418	17182．6
3500 －	45.4235	5.0535	50.4770	5.0516	17687．3
3600.	45.5659	5.0536	50.6195	5.0618	18192.9
3700 －	45.7043	5．0540	50.7583	5.0725	18699.6
3800.	45.8391	5.0546	50.8937	5.0836	19207.4
3900 ．	45.9704	5．0555	51.0259	5.0951	19716.4
4000 ．	$46 \cdot 0984$	5.0566	51.1550	5.1069	20226.5
4100.	46.2233	5.0580	51.2813	5.1189	20737．8
4200 －	46.3452	5.0596	51.4048	5.1312	21250.3
4300.	46.4643	5．0614	51.5257	5.1436	21764.0
4400 。	46.5807	5．0634	51.6441	5.1562	22279.0
45 ก0．	46.6945	5.0656	51.7601	5.1688	22795．2
46 00 。	46.8058	5.0680	51.8738	5.1815	23312．8
4700.	46.9149	5．0705	51.9854	5.1942	23831.5
4800.	47．0216	5.0732	52.0949	5． 2068	24351．6
4900.	47.1263	5．c761	52.2024	5.2194	24872．9
5000.	47.2289	5.0791	52.3080	5.2319	25395.5
5100.	47.3295	5.0822	52.4117	5.2442	25919．3
5200 。	47.4282	5.0854	52.5136	5.2564	26444．3
5300.	47.5251	5．0888	52.6139	5.2685	26970.5
5400.	47.62 2	5.0922	52.7125	5.2803	27498．0
5500.	47.7137	5.0957	52.8095	5.2920	28026.6
5600.	47.8056	5.0994	52.9049	5．3034	28556.4
5700.	47.8959	5.1030	52.9989	5.3146	29087．3
5800.	47．9846	5.1068	53.0914	5.3256	29619．3
5900.	48．0720	5.1106	53.1825	5.3363	30152.4
6 กกก．	48.1579	5.1144	53.2723	5．3468	30686.6
6100.	48．2425	5.1183	53.3608	5.3570	31221.7
6200.	48.3257	5．1223	53.4480	5.3670	31758.0
6300 。	48.4077	5.1262	53.5339	5.3767	32295．1

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=14.0075$

Table A－7－1 Thermodynamic Functions for N^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{oK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{0}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}}{\mathrm{~T}}$	So	C°	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
6400．	48.4885	5．1302	53.6187	5．3861	$32833 \cdot 3$
6500 ．	48.5680	5．1342	53.7022	5.3953	$33372 \cdot 4$
6600.	48.6465	5.1382	53.7847	5.4042	$33912 \cdot 3$
6700 ．	48.7238	5.1423	53.8660	5.4129	34453.2
6800.	48.8000	5.1463	53.9463	5.4213	34994．9
6900.	48.8751	5.1504	54.0255	5.4294	35537.4
7000.	48.9493	5．1544	54.1037	5.4373	36080.8
7100.	49.0224	5.1584	54.1808	5.4449	36624.9
7200 。	49.0946	5．1625	54.2570	5.4524	37169．7
7300 。	49．1658	5．1665	54.3323	5.4595	$37715 \cdot 3$
7400 ．	49．2361	5．1705	54.4066	5.4665	38261.6
7500.	49.3056	5.1745	54.4801	5.4732	$38808 \cdot 6$
7600 。	49．3741	5.1785	54.5526	5.4797	39356.3
7700 ．	49.4419	5.1824	54.6243	5.4860	$39904 \cdot 6$
7800.	49.5087	5.1863	54.6951	5.4921	40453.5
7900.	49.5748	5.1903	54．7651	5.4980	41003.0
8000 －	49.6402	5.1941	54.8343	5.5038	41553.1
8100	49．7047	5.1980	54.9027	5.5093	42103.7
8200 。	49.7685	5.2018	54.9703	5.5147	42654.9
8300 。	49.8316	5.2056	55.0372	5.5108	43206.7
8400 －	49.8939	5．2094	55.1033	5.5249	43758.9
8500 。	49.9556	5.2131	55．1688	5.5297	$44311 \cdot 6$
8600.	50.0166	5．＜1168	55.2335	5.5344	44864.8
8700 －	50.0769	5.2205	55.2975	5.5390	45418.5
8800 ．	50.1366	5.2242	55.3608	5.5434	45972.6
8900 －	50．1957	5.2278	55.4235	5.5477	46527．2
9000 －	50.2541	5.2314	55.4855	5.5519	47082．2
9100.	50.3119	5.2349	55.5468	5.5560	47637．6
9200 －	50.3692	5.2384	55.6076	5.5599	48193.4
9300.	50.4258	5.2419	55.6677	5.5637	48749.6
9400 。	50.4819	5.2453	55.7272	5.5674	49306.1
9500.	50.5374	5.2487	55.7862	5.5710	49863.0
9600 －	50.5924	5． 2521	55.8445	5.5745	50420.3
9700 －	50.6468	5． 2555	55.9023	5.5779	50977．9
9800.	50.7008	5．2588	55.9595	5.5813	51535.9
9900 －	50.7542	5.2620	56.0162	5.5845	52094．2
10000 。	50.8071	5.2653	56.0724	5.5877	52652．8
10100 。	50.8595	5.2685	56．1280	5.5908	$53211 \cdot 7$

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal g ${ }^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.071390
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\mathrm{or}^{\circ} \mathrm{C}^{-1}\right)$	0.29870
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right)$	0.071343

Table A－8－1 Thermodynamic Functions for O^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}}{\mathrm{~T}}$	S°	C_{p}	$\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}$
273.15	31.6076	4．9681	36.5758	4.9681	$1357 \cdot 1$
298．15	32.0427	4.9681	37.0109	4.9681	$1481 \cdot 3$
1000	38.0549	4.9681	43．0231	4.9681	4968．1
1100.	38.5285	4.9681	43.4966	4.9681	5465.0
1200.	38.9608	4.9681	43.9289	4.9681	5961．8
1300.	39.3584	4.9681	44.3266	4.9681	$6458 \cdot 6$
1400.	39.7266	4.9681	44.6947	4.9681	6955.4
1500.	$40 \cdot 0694$	4.9681	45.0375	4.9681	$7452 \cdot 2$
1600.	40.3900	4.9681	45.3581	4.9682	7949.0
1700 ．	40.6912	4.9681	45.6593	4.9682	$8445 \cdot 9$
1800.	40.9752	4.9681	45.9433	4.9682	8942.7
1900 －	41.2438	4.9682	46.2119	4.9682	9429.5
2000 －	41.4986	4.9682	46.4668	4.9682	9926.3
2100.	41.7410	4.9682	46.7092	4.9682	$10433 \cdot 1$
2200 。	41.9771	4.968 ？	46.9403	4.9682	10929．9
2300.	42.1930	4.9682	47.1611	4.9682	11426.8
2400.	42.4044	4.9682	47.3726	4.9683	11923.6
2500．	42.6072	4.9682	47.5754	4.9684	12420.4
2600．	42.8021	4.9682	47.7703	4.9685	12917．${ }^{\text {a }}$
2700.	42.9896	4.9682	47.9578	4.9688	13414.1
2800.	43.1703	4.9682	48.1385	4.9691	13911.0
2900.	43.3446	4.9683	48.3129	4.9696	14408.0
3 กnก。	43.5130	4.9583	48.4813	4.9703	14904.9
3100.	43.6759	4.9684	48.6443	4.9712	15402．0
32 no．	43.8337	4.5685	48.8022	4.9724	15890.2
3300.	43.9866	4.9686	48.9552	4.9738	16396.5
3400.	44.1349	4.9688	49.1037	4.9757	16894.0
3500.	44.2789	4.9690	49．2480	4.9780	17391.7
3600．	44.4189	4.9693	49.3883	4.9809	17889.6
37 n 0.	44.5551	4.9697	49.5248	4.9842	18387.9
3800.	44.6876	4.9701	49.6578	4.9982	18886.5
3900.	44.8167	4.9706	49.7874	4.9929	19385.5
4000.	44.9426	4.9713	49.9139	4.9983	19885．1
4100.	45.0654	4.9720	50.0374	5．0046	20385．2
4200 。	45.1852	4.9729	50.1580	5.0116	20886.0
4300 －	45．3022	4.9739	50.7761	$5 \cdot 0196$	21387.4
4400.	45.4166	4.9750	50.3916	5．0284	21890.0
4500.	45.5284	4.9763	50.5047	5.0383	22393．3
4600.	45.6378	4.9778	50.6155	5.0491	22897．7
4700.	45.7448	4.9794	50.7242	5.0610	23403．2
4800.	45.8497	4.9812	50.8309	5.0740	23909.9
49 กn．	45.9524	4.9833	50.9357	5.0880	24418．0
5000.	46.0531	4.9855	51.0386	5．1031	24927.5
5100.	46.1519	4.9880	51.1398	5.1193	25438.7
5200.	46．2487	4.9907	51.2394	5.1367	25951．4
5300.	46.3438	4.9936	51． 3374	5．1551	26468．0
54 n 0 。	46.4372	4.9968	51.4340	5．1746	26987．5
5500.	46.5289	5．0ก02	51.5291	5.1951	27501．0
5600.	46.6191	5．0039	51.6229	5．2168	28021.6
57 ก0．	46.7077	$5 \cdot 0078$	51.7154	5.2395	28544.4
5800.	46.7948	5.0120	51.8068	5．2632	29069.5
59 กn－	46.8805	$5 \cdot 0164$	51.8969	5．2879	29597．0
$6000 \cdot$	46.9649	5.0212	51.9860	5.3135	30127．1
61 ก0．	47.0479	5.0262	52.0741	5．3401	30659．8
6200.	47.1297	5．0315	52.1611	5：3676	31195.1
6300.	47.2102	5.0370	52．2472	5.3959	31733.3

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=15.9995$

Table A-8-1 Thermodynamic Functions for 0^{+}. - continued

$\begin{gathered} \mathrm{T} \\ \mathrm{O}_{\mathrm{K}} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{T}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}$
6400.	47.2896	5.0429	52.3324	5.4250	32.274 .4
6500 -	47.3678	5.0 .490	57.4168	5.4550	270,18.3
6600 。	47.4449	5.0554	52.5003	5.4856	33365.4
6700 -	47.521n	5.0;620	52.5830	5.5160	33915.5
68 n .	47.5961	5.0689	52.6650	5.5489	3446R. 8
6900 -	47.6701	5.0761	52.7467	5.5814	350.5.3
7 7nก。	47.7432	5.0836	52.8268	5.6145	35585.1
7100	47.8154	5.0913	52.9067	5.6481	$36148 \cdot 2$
7200.	47.8866	5.0993	52.9859	5.6821	36714.7
7300.	47.9570	5.1075	53.0645	5.7165	37284.6
7400.	48.0266	5.1159	53.1425	5.7513	37858.0
7500.	48.0953	5.1747	53.2200	5.7863	38434.9
7600.	48.163 ?	5.1336	53.2968	5.8216	30015.3
7700.	48.2304	5.1428	53.2732	5.857 .1	39599.2
7800.	48.2968	5.1521	53.4490	5.9928	40186.7
7900	48.3625	5.1617	53.5243	5.9285	4ก777.8.
$80 \cap 0$.	48.4275	5.1716	53.5991	5.9644	41377 •4
81 n .	48.4918	5.1816	53.6734	6.0002	41970.7
82 n .	48.5555	5.1918	53.7472	6.0360	4757 ?.5
8300.	48.6184	5.2022	53.8206	6.0717	43177.9
8400.	48.6808	5.2127	53.8935	6.1074	43786.8
8500 -	48.7426	5.2234	53.9660	6.1428	44399.3
8600.	48.8037	5.2343	54.0381	6.1781	45015.4
8700 .	48.8643	5. 2454	54.1097	6.2132	45634.9
8800 -	48.9243	5.2566	54.1809	6.2480	46258.0
89, 0 -	48.9838	5. 2679	54.2517	6.2825	46884.5
9000 -	49.0477	5.2794	54.3221	6.3166	47514.5
9100.	49.ln 11	5.2910	54.3921	6.3504	48147.8
9200 -	49.1590	$5 \cdot 3 \cap 27$	54.4617	6.3838	48784.6
9300 -	49.2164	5.3145	54.5308	6.4168	49424.6
9400 -	49.2733	5.3264	54.5997	6.4494	50067.9
9500 -	49.3297	5.3384	54.6681	6.4814	50714.4
$9600 \cdot$	49.3857	$5 \cdot 35 \cap^{4}$	54.7361	6.5130	59364. ?
9700.	49.4412	5.3626	54.8038	6.5441	52017.0
9800.	49.4962	5.3748	54.8710	6.5746	52673.0
9900.	49.5509	5.3871	54.9379	6.6045	53331.9
$10 ก 00$ -	49.6051	5.3994	55.0045	6.6339	53993.9
10100	49.6589	5.4118	55.0706	6.6627	54658.7

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.{ }^{\circ} \mathrm{C}^{-1}\right)$	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.062502
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.{ }^{\circ} \mathrm{F}^{-1}\right)$	0.26151

Table A－9－1 Thermodynamic Functions for F^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{FO}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}}{\mathrm{~T}}$	So	Cop	$\mathrm{H}^{\circ}=\mathrm{H}^{\circ}$
273．15	32.7783	5.3560	38.1343	5.6453	1463．0
298．15	73．2484	5.3792	38.6275	5.6169	1603.8
1 กno．	39．77n4	5．3073	45．0777	5.0973	5307.3
1100	40.2753	5.2873	45.5625	5.0771	5816.0
1200.	40.7345	5.2691	46.0036	5.0613	6322.9
1300 －	41.1556	5.2526	46.4082	5.0486	6828．3
1400 。	41.5443	5.2376	46.7820	5.0383	7332.7
$1500 \cdot$	41.9052	5.2240	47.1293	5.0298	$7836 \cdot 1$
1600 。	42.2420	5.2117	47.4536	5.0228	8338.7
1700 －	42.5576	$5 \cdot 2004$	47.7580	5.0169	9840.7
18 n 0	42.8545	5．19n起	$48 \cdot 0.446$	5.0119	0342.1
$1900 \cdot$	43.1349	5.1806	$48 \cdot 3154$	$5 \cdot 0076$	－843．1
2000 －	43.4004	5.1718	48.5722	5.0040	10343.6
21 nno	43.6525	5.1637	48.8163	5.0009	10843.9
2200．	43.8926	5.1563	49.0488	4.9982	$11343 \cdot 8$
23 ก0．	44.1216	5.1494	49.2710	4.9959	11843.5
2400．	$44 \cdot 3406$	5.1429	49.4836	4.9940	12343.0
2500.	44.5505	5.1369	49.6874	4.9925	12842．3
2600．	44.7518	5.1314	49.8832	4.9912	13341.5
2700．	44.0454	$5 \cdot 1261$	50.0715	4.9904	13840.6
2800 －	45.1317	5.1213	50.2530	4.9898	14339.6
2900.	45.3112	5.1167	50.4281	4.9896	14838．6
3 n 0 －	45.4847	5.1125	50.5973	4.9898	15337.5
3100 。	45.6523	5.1086	50.7609	4.9003	15836.5
3200.	45.8144	5.1049	50.9193	4.9012	16335.6
3300.	45.9715	5.1015	51.0729	4.9925	16834.8
3400 。	46.1237	5．0983	51.2220	4.9942	17334．1
3500.	46.2715	5.0953	51.3668	4.9963	17833．6
3500 。	46.4150	5.0926	51.5076	4.9988	18333.4
3700 。	46.5545	5.0901	51.6446	5.0018	18833.4
3800 －	46.6902	5.0878	51.7780	5.0051	19333.8
39 ก0．	46.8223	5.0858	51.9081	5.0089	19834.5
4000 －	46.9510	5.0839	52.0349	5.0131	20335.6
4100.	47.0766	5.0822	52.1588	5.0177	20837．1
4200.	47.1990	5．0807	52．2798	5.0227	71339.1
4300 －	47.3186	5.0795	52.3980	5．n281	21841.6
4400.	47.4353	5.0783	52.5137	5.0338	22344.7
4500 －	47.5494	5.0774	52.6269	5.0399	22848．4
4600.	47.6610	5.0767	52.7377	5.0464	23352．7
4700 －	$47.77 \cap 2$	5.0761	52.8463	5.0531	23857.7
4800 －	47.8771	5．0757	52.9528	5.0602	24363.4
4900.	47.9817	5．0755	53.0572	5.0676	24869.7
5000.	48.0842	5． 0754	53.1596	5．0752	25376.9
5100.	48.1847	5.0755	53.2602	5.0831	25884．8
5200.	48.2833	5.0757	53.3590	5.0911	26393．5
5300.	48.38 กn	5.0760	53.4560	5.0994	26903．0
5400.	48.4749	5．0766	53.5514	5.1079	27413.4
5500.	48.5680	5．0772	53.6452	$5 \cdot 1165$	27924．6
5600.	48.6595	5.0780	53.7375	5.1253	28436.7
5700.	48.7494	5.0789	53.8283	5．1341	28949.7
5800.	48.8378	5.0799	53.9177	5．1431	29463.5
5900.	48.9246	5.0811	54.0057	5．1522	29978．3
6000 ．	49.0100	5.0823	54.0923	5．1613	30494．0
6100.	49.0940	5.0837	54.1777	5．1704	31010.6
6200.	49.1767	5.0852	54.2619.	5.1796	31528．1
6300.	49.2581	5．0867	54．3448	5．1888	32046.5

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=19.00$

Table A－9－1 Thermodynamic Functions for F^{+}－continued

6400.	49.338 ？	5．0884	54.4255	5.1990	32565．8
6500.	40.4171	5．0902	54.5077	5.2072	33086.1
6600 ．	49.4948	5．n92？	54.5858	5.7153	$23607 \cdot 3$
67 ก0．	49.5714	5.0939	54.6653	5．2254	34129.3
6800 。	49.6469	5.0959	54.7428	5． 3344	34652.3
6900 －	49.7213	5.0980	54.8193	5．2434	35176.2
7 700．	49.7947	5.1001	54.8948	5.2522	35701.0
7100.	49.8670	5．1023	54.9694	5．2610	36226.7
7200.	49.9384	5．1046	55．0430	5.2697	36753.2
7300.	50.0098	5．1069	55.1158	5.2783	37280.6
7400 －	50.0783	5.1093	55.1876	5．2968	37808.8
75 n0．	50.1469	5.1117	55.2587	5.2951	38337.9
7600 －	50.2147	5.1142	55.3289	5.3033	38867．9
$77 \cap$－	50.2815	5.1167	55.3092	5.3114	39398.6
$78 \cap$－	50.3476	5.1192	55.4659	5.3194	39930.1
$79 \cap$－	50.4128	5.1218	55.5346	5.727 ？	40462.5
$8 \cap \cap 0$.	50.4772	5.1244	55.6017	5.3348	40095．6
8100 －	50.5409	5.1271	55.6680	5.3423	41529.4
8200 。	50.5038	5.1298	55.7336	5.3497	$42064 \cdot 0$
8300 。	50.6660	5.1325	55.7985	5．3569	42599.4
$84 \cap 0$.	50.7275	5.1352	55.8627	5.3639	43135.4
8500.	50.7883	5.1379	55.9262	5．3708	43572.2
$86 \cap$ ？	50.8484	$5 \cdot 1406$	55.9891	5.3775	44209.6
$87 \cap 0$－	50.9079	5.1434	56．05？3	5.2841	44747 ．
88กก•	50.9667	5．1462	56.1128	5．2005	45.86 .4
89 กก•	51．02．48	5．1490	56.1738	5.3967	$45825 \cdot 8$
9 กnก。	$51 \cdot 0824$	5.1517	56.2341	5.4028	46365.7
91 ก0．	51.1393	5．1545	56.2939	5.4087	46906.3
92 กロ。	51.1957	5.1573	56.3530	5.4145	$47447 \cdot 5$
$93 \cap 0$.	51.2514	5.1601	56.4116	5.4200	47989.2
3400 －	$51 \cdot 3 \cap 66$	5.1629	56.4696	5.4255	48531.5
95 ก0．	51.3613	5.1657	56.5270	5.4307	49074．3
9600.	51.4154	5.1685	56.5839	5.4358	49617.6
97 ก0．	51.4690	5.1713	56.6403	5.4408	50161.4
$98 \cap 0$	51.5220	5．1741	56.6951	5．4455	50705．8
99กロ。	51.5746	5.1768	56.7514	5.4502	51250.5
10กกก。	51.6266	5.1796	56．806？	5.4546	51795.8
101 ก0．	51．6782	$5 \cdot 1323$	56.8605	5.4590	52341.5

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}$（or ${ }^{\circ} \mathrm{C}^{-1}$ ）	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	0.052632
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $^{\circ} \mathrm{F}^{-1}$ ）	0.22021

Table A－10－1 Thermodynamic Functions for Ne^{+}

$\begin{array}{r} T \\ \circ_{K} \end{array}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{HO}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}}{T}$	So	Co	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
273.15	32.3150	5． 1342	27.3501	5.2379	1375．1
298．15	32.7575	5.0533	37.8109	5.2858	！506．6
1nno．	39．0461	5.2804	44．3265	5．2704	5280.4
1100.	39.5493	5.2779	44.8272	5． 2367	5805.7
1200 ．	4ก．0093	5.2732	45.2815	5． 2074	6327．9
1300 －	40.430 ？	5． 2672	45.6973	5.1819	6847．3
$1400 \cdot$	$4 \cap .2$ ？ 3 ？	5.260 ？	$46 \cdot 0.805$	5.1600	$7364 \cdot 4$
1500．	41.1829	5.2520	46.4359	5.1410	$7870 \cdot 4$
1600.	41．5217	5.2454	46.7671	5.1244	8302.5
17 n 0 。	41.8395	5.2379	47．0773	5.1100	8904.7
18 ก\％．	42.1386	5．23n4	47．3690	5．1075	9414.7
1900．	47.4212	5.2231	47.6443	5.0884	9923.9
2000.	42.6800	5.2160	47.0050	5.0767	10437.0
2100.	42.0472	5．2092	48.1525	5.0681	10939.3
2200.	43.1855	5． $2 \cap 26$	48.3881	5.0404	11445.7
2300.	43.4166	5．1962	48.6129	5.0535	11951.4
2400.	43.6376	5.1702	48.8278	5．0474	17456.4
2500 。	43.8494	5.1844	49.0337	5．0419	1 7960.0
2600．	44.0526	5.1788	49.7314	5．0370	13464.9
7700 －	44.2470	5.1734	49.4214	5．0375	12968．${ }^{\text {a }}$
フ80ก。	44.4360	5．1683	$49 \cdot 6 \cap 43$	5．n784	14471．${ }^{\text {2 }}$
$29 \cap 0$.	44.6173	5．1634	$49.78 \cap 7$	$5 \cdot \wedge 247$	？ 4974. ？
3 กnก。	44.7972	5．1588	49.9510	5．0214	？5476．3
3100 。	44.9613	5．1543	50.1155	5.0183	！ 5078.3
3200 －	45.1249	5.1500	50.2749	5．0154	16479．0
33 no．	45.7833	5.1459	5 C .429 ？	5．0129	16981．4
3400 －	45.4369	5．1419	50.5788	5． 1105	17482.5
$35 \cap 0$ 。	45.5859	5.1381	50.72 .40	5．1083	17983．5
3600 －	$45.73 n 6$	5.1345	50.8651	5.0067	18484.2
3700.	45.8712	5.1310	51．0ก22	5．0n43	18984.7
3800 －	46.0080	5.1276	51.1356	5．0026	19495．？
$39 \cap$－	46.1411	5.1244	51．7656	5．0ก00	19985．2
4 กnの＊	46.2708	5.1712	$5] .3921$	4.9994	2＾485．2
41 กn•	46.2973	5.1183	51.5155	4.9090	2ヘ085．］
42 no．	$46.52 n 6$	5.1154	51.6360	4.0067	21484．9
$43 \cap$ \％	46.6409	5.1127	51.7536	4.9955	21984.5
44 n 0	46.7584	5.1100	51.8684	4.0943	22483．9
4500.	46.8732	5.1074	51.9806	4．99．3？	22983．3
4600 。	46.9854	5.1049	52.0904	4.9927	23482．6
$47 \cap$－	47．0952	5.1025	52.1977	4.9912	23981．8
4800 －	47．2026	5.1002	57.3028	4.9903	24480．8
$49 \cap$－	47．3077	5．0979	52.4057	4.9895	24979．8
5000 －	47．4107	5．0957	57．5065	4.0887	25478．7
5100 －	47.5116	5.0936	52．605？	4.0879	25977．6
52 ก0．	47.6105	5．0916	$52.702 ?$	4.0877	75476.3
5300.	47.7075	5.0896	52.7971	4.0855	フ5？75．0
$54 \cap 0$.	47．8ก26	5.0877	52.8903	4.9850	27473.6
5500 －	47.8959	$5 \cdot 0859$	52.9818	4.9853	27077.2
5600 －	47.9875	$5 \cdot 084 n$	53．0716	4.0847	79.470 .7
5700 －	$48 \cdot 0775$	5．0823	53.1598	4．9847	29069．？
$58 \cap 0$－	48.1659	$5 . \cap 806$	53.2465	4.9836	29467．5
$59 \cap 0$－	48.2577	5．n790	53.3317	4．983？	79065．8
6000 －	48.3381	5．n774	53.4154	4.9826	30464.1
6100.	48.4220	5．0758	53.4978	4.9822	30962．4
$62 \cap 0$ 。	48.5045	5.0743	53.5788	4.9817	31460.6
6300.	48.5857	5．0728	53.6585	4.9813	31858.7

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=20.1825$

Table A-10-1 Thermodynamic Functions for Ne^{+}- continued

$\begin{gathered} \mathrm{T} \\ \circ \mathrm{~K} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}}{\mathrm{~T}}$	So	C_{p}	H° - HO^{O}
6400.	48.6656	5.0714	53.7369	4.9809	32456.8
6500.	48.7442	5.0700	53.8142	4.9806	32954.9
6600.	48.8216	5.0686	53.8902	4.9802	33459.0
6700.	48.8978	5.0673	53.9651	4.9799	33950. ?
6800.	48.9728	5.0660	54.0389	4.9795	34448.9
6900 -	49.0468	5.0648	54.1115	4.9792	34946.8
7000 -	49.1197	5.0635	54.1832	4.9789	35444.7
7100	49.1915	5.0623	54.2538	4.9786	$35942 \cdot 6$
7200.	49.2623	5.C612	54.3234	4.9783°	36440.5
7300.	49.3321	5. 1600	54.3921	4.9781	36938.3
7400 -	49.4009	5.0589	54.4598	4.9778	37436.1
7500 -	49.4688	5.0578	54.5267	4.9776	37933.9
7600.	49.5358	5.0568	54.5926	4.9773	38431.6
7700 -	49.6019	5.0558	54.6576	4.9771	38929.3
7800	49.6671	5.0547	54.7219	4.9769	39427.0
7900.	49.7315	5.0538	54.7853	4.9767	39924.7
8000 -	49.7951	5.0528	54.8479	4.9764	40422.3
8100.	49.8578	5.0518	54.9097	4.9763	40920.0
8200.	49.9198	5.0509	54.9707	4.9761	41417.6
8300.	49.9810	5.0500	55.0311	4.9759	41915.2
8400 .	50.0415	5.0491	55.0906	4.9757	42412.8
8500 .	50.1013	5.0483	55.1495	4.9755	42910.3
8600 .	50.1603	5.0474	55.2077	4.9754	43407.9
8700 -	50.2186	5.0466	55.2652	4.9752	43905.4
8800 -	50.2763	$5 \cdot 0458$	55.3221	4.9750	44402.9
8900 -	50.3333	$5 \cdot 0450$	55.3783	4.9749	$44900 \cdot 4$
9000 -	50.3897	5.0442	55.4339	4.9747	$45397 \cdot 9$
9100.	50.4454	5.0434	55.4889	4.9746	45895.4
9200 -	50.5005	5.0427	55.5432	4.9745	46392.8
9300 -	50.5550	5.0420	55.5970	4.9743	46890.3
9400 。	50.6090	5.0412	55.6502	4.9742	47387.7
9500.	50.6623	5.0405	55.7029	4.9741	47885.1
9600.	50.7151	5.0398	55.7549	4.9740	48382.5
9700.	50.767 .3	5.0392	55.8065	4.9738	48879.9
9800	50.8190	$5 \cdot 1,385$	55.8575	4.9737	49377.3
9900 -	50.8701	5.0378	55.9080	4.9736	49874.6
10000	50.9208	5.0372	55.9580	4.9735	50377.0
10100	50.9709	5.0366	56.0075	4.9734	50869.3

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.049548
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.20731
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{F}^{-1}\right)$	0.049516

Table A－11－1 Thermodynamic Functions for Na^{+}

$\begin{gathered} T \\ 0 K \end{gathered}$	$\frac{-\left(\mathrm{FO}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}}{\mathrm{~T}}$	S°	Cr_{p}	$\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}$
273.15	29.9332	4.9681	34.9014	4.9681	1357．1
298．15	30.3683	4.9681	35.3365	4.9681	1481.3
1000	36.3806	4.9681	41.3487	4.9681	4968．1
1100	36.8541	4.9681	41.8222	4.9681	5465.0
12 ก0．	37.2864	4．9681	42.2545	4.9681	5961.8
$1300 \cdot$	37.6840	4.9681	42.6522	4.9681	$6458 \cdot 6$
14 ก0．	38.0522	4.9681	43．0204	4.9681	6955.4
$1500 \cdot$	38.3950	4.9681	43.3631	4.9681	7452.2
1600.	38.7156	4.9681	43.6838	4.9681	7949．0
1700	39.0168	4.9681	43.9850	4.9681	$8445 \cdot 9$
1800.	39．3008	4.9681	44.2689	4.9681	8942.7
1900.	39.5694	4.9681	44.5375	4.9681	9439.5
2000.	39.8242	4.9681	44.7924	4.9681	9936.3
2100.	40.0666	4.9581	45.0348	4.9681	10433．1
2200.	40.2977	4.9681	45.2659	4.9681	10929．9
2300.	40.5186	4.9681	45.4867	4.9681	11426.7
2400．	40.7300	4.9681	45.6982	4.9681	11923.6
250n．	40.9328	4.9681	45.9010	4.9681	12420.4
2600.	41.1277	4.9681	46.0958	4.9681	12917． 2
2700.	41.3152	4.9681	46.2833	4.9681	13414.0
2800.	41.4959	4.9681	46.4640	4.9681	13910.8
2900．	41.6702	4.9681	46.6384	4.9681	14407.6
3000 。	41.8386	4.9681	46.8068	4.9681	14904．4
3100.	42.0915	4.9681	46.9697	4.9681	15401．3
3200.	42.1593	4.9681	47．1274	4.9681	15898．1
3300.	42.3122	4.9681	47.2803	4.9681	16394.9
34 ก0．	42.4605	4.0681	47.4286	4.9681	16891．7
3500.	42.6045	4．9681	47.5726	4.9681	17388．5
3600.	42.7444	4.9681	47.7126	4.9681	17885.3
3700.	42.8806	4.9681	47.8487	4.9681	18382．2
3800.	43.0131	4.9681	47.9812	4.9681	18879.0
$39 \cap 0$.	43.1421	4.9681	48.1103	4.9681	19375.8
4nก0．	43.2679	4.9681	48.2360	4.9681	19872.6
4100.	43.3906	4.9681	48.3587	4.9681	20369．4
42 00．	43.5103	4.9681	48.4784	4.9681	20866．2
4300.	43.6272	4.9681	48.5953	4．9681	21363.0
4400.	43.7414	4.9681	48.7096	4.9681	2．1859．？
45 ก0．	43.8531	4.9681	48.8212	4．9681	22356.7
4600.	43.9622	4.9681	48.9304	4.9681	22853.5
47 ก0．	44.0691	4.9681	49.0372	4．9681	23350.3
4800.	44.1737	4.9681	49．1418	4.9681	23847．1
4900.	44.2761	4.9681	49.2443	4．9681	24343.9
5000.	44.3765	4.9681	49.3447	4.9681	24840.7
5100.	44.4749	4.9681	49.4430	4.9681	25337.6
5200.	44.5714	4.9681	49.5395	4.9681	25834.4
5300.	44.6660	4.9681	49.6341	4．9681	26331．2
5400.	44.7589	4.9681	49.7270	4．9681	26828．0
5500.	44.8500	4.9681	49.8182	4．9681	27324．8
5600.	44.9395	4.9681	49.9077	4．9681	27821.6
5700.	45.0275	4.9681	49.9956	4．9681	28318.5
5800.	45.1139	4.9681	50.0820	4．9681	28815.3
5900.	45.1988	4.9681	50.1670	4．9681	29312.1
6000 。	45.2823	4.9581	50.2505	4.9681	29808．9
6100 －	45.3644	4.9681	50.3326	4.9681	30305.7
6200 。	45.4452	4.9681	50.4134	4．9681	30802．5
6300.	45.5247	4.9681	50.4928	4．9681	31299.3

The tables are in units of calories，moles and o_{K} ．See reverse side for conversion factors to other units．The atomic weight $=22.9905$

Table A－1l－1 Thermodynamic Functions for Na^{+}－continued

$\stackrel{T}{\mathrm{~T}}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{\circ}\right)}{T}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
6400.	45.6029	4.9681	50.5711	4.9681	31796.2
6500 －	45.6800	4.9681	50.6481	4.9681	32293.0
6600 －	45.7558	4.9681	50.7240	4.9681	32789．8
6700.	45.8305	4.9681	50.7987	4.9681	33286.6
6800 －	45.9041	4.9681	50.8723	4.9681	33783.4
6900.	45.9767	4.9681	50.9448	4.9681	34280.2
7000 －	46.0481	4．9681	51.0163	4.9681	34777．0
7100.	46.1186	4.9681	51.0868	4.9681	35273.9
7200 。	46.1881	4.9681	51．1563	4.9681	35770.7
7300 。	46.2566	4.9681	51．2248	4.9681	36267.5
7400.	46.3242	4.9681	51．2924	4.9681	36764.3
7500 －	46.3909	4.9681	51.3591	4.9681	37261．1
7600.	46.4567	4.9681	51.4249	4．9681	37757．9
7700	46.5217	4.9681	51.4898	4．9681	38254.8
7800.	46.5858	4.9681	51.5539	4.9681	38751.6
7900.	46.6491	4.9681	51.6172	4．9681	39248.4
$8000 \cdot$	46.7115	4.9681	51.5797	4．9681	39745．2
8100.	46.7733	4.9681	51.7414	4．9681	40242．0
8200.	46.8342	4.9681	51.8024	4.9681	40738．8
8300.	46.8944	4.9681	51.8626	4.9681	41235.6
8400.	46.9539	4.9681	51.9221	4.9681	41732.5
8500 －	$47 \cdot 0127$	4.9581	51.9809	4.9681	42229.3
8600.	$47 \cdot 0708$	4.9581	52.0390	4.9681	42726.1
8700	47.128 .3	4.9581	52.0964	4.9681	43222.9
8800.	47.1851	4.9681	52.1532	4.9681	43719.7
8900 －	47．241？	4.9681	52.2094	4．9681	44216.5
9000 －	47.2967	4.9681	52.2649	4.9681	44713.3
9100.	47.3516	4.9681	52.3198	4.9681	45210.2
9200.	47.4059	4.9681	52.3741	4.9681	45707.0
9300.	47.4596	4.9581	52.4278	4.9681	46203.8
9400.	47.5128	4.9681	52.4809	4.9681	$46700 \cdot 6$
9500.	47.5652	4.9581	52.5335	4.9681	47197.4
9600.	47.6174	4．9681	52.5855	4．9681	47694．2
9700	47.6688	4．5681	52.6370	4．9681	48191.1
9800	47.7198	4.9681	52.6879	4．9681	48687.9
9900.	47.7702	4.9681	52.7384	4.9681	49184.7
10000 －	47.8202	4.9681	52.7883	4.9681	49681．5
10100 。	47.8696	4.9681	52.8377	4.9681	$50178 \cdot 3$

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal g${ }^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	0.043496
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.18199
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{F}^{-1}\right)$	0.043468

Table A－12－1 Thermodynamic Functions for Mg^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}$
273.15	31.4783	4.9581	36.4464	4.9681	$1357 \cdot 1$
298．15	31.9134	4.9681	36.8815	4.9681	1481．3
1000	37.9256	4.9681	42.8938	4．9681	$4968 \cdot 1$
1100	38.3991	4.9681	43.3673	4.9681	$5465 \cdot 0$
12 ก0．	38.8314	4.9681	43.7996	4.9681	$5961 \cdot 8$
13 กn．	39.2291	4.9681	44.1977	4.9681	$6458 \cdot 6$
1400	39.5972	4.0681	44.5654	4.9681	$6955 \cdot 4$
1500	39.0400	4.0681	44.9087	4.9681	$7452 \cdot 2$
1600	40.2607	4.9681	45.2288	4.9681	$7949 \cdot 0$
1700	40.5610	4.9681	45.5300	4.9681	8445.9
18.00	40.8458	4．9681	45.8140	4.9681	8942.7
1900	41.1144	4.9681	$46 \cdot 0826$	4．9681	9439.5
2000	41.3693	4.0681	46.3374	4.9681	$9936 \cdot 3$
2100	41.6117	4.0681	46.5798	4.9682	$10433 \cdot 1$
2200	41.8428	4.0681	46.8109	4.9682	10929.9
2300	42.0636	4．0681	$47 \cdot 0318$	4.9682	11426.7
2400	42.2751	4.9682	47.2432	4.9682	11923.6
2500	42.477°	4.9682	47.4460	4.9682	12420．4
2600	42.6727	4.9682	47.6409	4.9682	12917.2
2700	42．9602	4.9682	47．R284	4.968 ？	1341400
2800	43.040^{9}	4.9682	48.0091	4.9682	13910.8
2900	43.215 ？	4.9682	$48 \cdot 1834$	4.9682	$14407 \cdot 6$
3000	43.3837	4.9682	48．3518	4.9682	$14904 \cdot 5$
31 ก0．	43.5466	4.9682	48.5147	4.9683	$15401 \cdot 3$
32 ก0．	43.7043	4.9682	48.6725	4.9683	$15898 \cdot 1$
3300.	43.8572	4.9682	48.8254	4.9684	16394.9
3400 。	$44 \cdot 0055$	4.9682	48.9737	4.9685	16891.8
3500 －	$44 \cdot 1495$	4.9682	49.1177	4.9687	$17388 \cdot 7$
3600	44.2895	4.9682	49.2577	4.9689	17885.5
3700	44.4256	4.9682	49.3938	4.9692	18382.4
3800 －	44.5581	4.9683	49.5264	4.9696	18879.4
3900	44.6877	4.9683	49.6555	4.9701	19376.4
4 ก00．	44.812°	4.9684	49.7813	4.9707	19873.4
4100	44.9356	4.9684	49.9041	4.9715	20370.5
4200.	45．0554	4.9685	50.0239	4.9725	$20867 \cdot 7$
$42 \cap 0$ 。	45.1723	4.9686	50.1400	4.9736	21365.0
4400	45．2865	4.9687	50．255？	4.9750	21862.4
$45 \cap 0$.	45.3982	4.9589	50.3671	4.9767	．22360．0
4600 。	45．5074	4.9691	50.4765	4.9786	22857.8
4700	45.514 ？	4.5693	50.5836	4.9808	23355.8
4800.	45.7180	4.9696	$5 \cap .6884$	4.9834	23854.0
4900	45.821^{2}	4.9690	50.7912	4.9864	$24352 \cdot 4$
$5 \cap 00$	45.9217	$4.97 \square^{3}$	50.8920	4.9897	24851．3
5100	46．020？	4.9707	50.9909	4.9935	25350.4
$52 \cap 0$.	46.1167	4.9711	51.0879	4.9978	25850.0
5300.	$46 \cdot 2114$	4.9717	51.1831	5.0025	26350.0
5400	$46.3 n 43$	4.9723	51.2767	5.0078	26850．5
5500 。	46.3956	4.9730	51．3686	5.0136	27351.6
5600	46.4857	4.9738	51．4590	5.0200	27853.2
5700.	46.573 ？	4.9747	51.5479	5．0269	28355.6
58 ¢0．	46.6509	4.0756	51.6354	5.0344	28858.6
$59 \cap$－	46.744°	4．9767	51.7715	5．0426	29362.5
6 กno．	46.9285	4.9779	$51.906 ?$	5.0514	$29867 \cdot 2$
6100	46.9109	4.9791	51.8899	5.0608	30372.8
62 0．	46.9917	4.9805	51.972 .3	5．0710	30879.4
6300 。	47•071／2	4.9871	$52 \cdot 0535$	$5 \cdot ก 817$	21387.0

The tables are in units of calories，moles and ok．See reverse side for conversion factors to other units．The atomic weight $=24.32$

$$
\text { Table A-12-1 Thermodynamic Functions for } \mathrm{Mg}^{+} \text {- continued }
$$

T	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}}{\mathrm{T}}$	S°	$\mathrm{CO}_{\mathrm{p}}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}$

64 n0．	47．1499	4.9837	52.1336	5.0932	31895.7
65 ก0．	47.2272	4.9855	52.2127	5.1054	32405.7
6600 。	47.3033	4.9974	52.2907	5.1182	32916.8
6700.	47．3783	4.9895	52.3678	5.1317	33429.3
6800 －	47．452？	4.9916	52.4430	5.1460	33943．2
6900 －	47.5252	4.9940	52.5192	5.1609	34458.5
$70 \cap$－	47.5970	4.9965	52.5935	5.1765	34975．4
7100.	47.6677	4.9991	52.6671	5．1928	35493．9
7200 －	47.737°	5．0019	52.7398	5.2098	36014．0
7300 －	47.806°	5．0ก4？	52.8118	5．2275	36535.9
7400 －	47.8750	5.0080	$52.883 n$	5．2458	37059．5
75 n 。	47．942？	5.0113	52.9536	5． 2648	37585．0
760 －	48.0086	5.0148	53.0235	5．2845	38112.5
$77 \cap$ \％	48．074？	5.0184	53.0927	5．3048	38642.0
7800.	48.1390	5． 1222	53.1612	5.3257	39173.5
7900 －	48.2030	5.0262	53.2292	5.3473	39707．1
8000	$48.266^{\text {？}}$	$5 \cdot 1.3 \cap 4$	53.2966	5．3694	40243.0
8100	48.3288	5.0347	53.3635	5.3922	40781.0
82 n －	48.3906	5．0392	53.4298	5.4156	41321.4
8300	48.4517	5.0439	53.4956	5.4395	41864.2
8400 －	48.5121	5.0487	53.5609	5.4640	42409.3
8500.	48.5719	5.0538	53．625？	5.4890	42957.0
860 －	48.6310	5．050n	53.69 ก	5.5146	43507.2
87 ก0．	48.6896	5．0644	53.7539	5.5407	44059.9
$88 \cap 0$.	48.7475	5．0699	53.8174	5.5673	44615.3
89 ก0．	48.8048	5．0757	53.8805	5.5944	45173.4
9 9กロ．	48.8615	5.0816	53.9431	5.6220	45734．2
9100.	48.9177	5.0877	54.0054	5.6501	46297.8
9200	48.9734	5.0939	54.0673	5.6787	46864.2
9300.	49.0285	5.1004	54．1288	5.7077	47433.6
94 กn．	49.0820	5.1070	54.1900	5.7372	48005．8
95 n 0.	49.1371	5.1138	54.2500	5.7672	48581.0
9600.	49.1907	$5 \cdot 1208$	54.3115	5.7975	49159.3
97 ¢0．	49.2438	5．1279	54．3717	5.8284	49740.5
98 nos	49.2964	5．1352	54.4316	5.8597	50324.9
99 ก0．	49.3486	5.1427	54.4913	5.8914	50912.5
10 กno．	$49.4 n ก 3$	5．15 3	54.5507	5.9235	51503．2
101 nn．	49.4516	5．1581	54．6098	5.9561	52097．2

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\mathrm{or}^{\circ} \mathrm{C}^{-1}\right)$	0.041118
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\mathrm{or}^{\circ} \mathrm{C}^{-1}\right)$	0.17204
$\mathrm{Btu} \mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right)$	0.041091

Table A－13－1 Thermodynamic Functions for $A 1^{+}$

T				
\circ	$\frac{-\left(F^{\circ}-H O\right)}{T}$	$\frac{H^{\circ}-H_{O}}{T}$	SO	$\mathrm{C}_{\mathrm{O}}^{\circ}$

273．15	30.4102	4.9681	35.3784	4．9681	1357.1
298．15	30.8453	4.9681	35.8135	4．9681	1481．3
$10 \cap 0$.	36．8576	4.9681	41.8257	4.9681	4968．1
1100.	37.3311	4.9681	42.2992	4．9681	5465．0
1200.	37．7634	4.9681	42.7315	4.9681	5961．8
1300.	38.1610	4.9681	43.1292	4.9681	6458.6
1400.	28．529？	4.9681	43.4974	4.9681	6955.4
1500 ．	38.8720	4.9681	43.8401	4．9681	7452．2
1600.	39.1975	4.0681	44.1608	4.9681	7949.0
1700.	39.4938	4．5681	44.4619	4.9681	8445．9
$18 \cap 0$.	39.7778	4.9681	44.7459	4．9681	$8942 \cdot 7$
1900 －	40.0464	4.9681	45.0145	4.9681	9439.5
2000.	40.3012	4.9681	45.2694	4.9681	9936.3
2100.	40.5435	4.9681	45.5118	4．9681	10433．1
2200.	40.7747	4.9681	45.7429	4.9682	10929．9
2300.	40.9956	4.9681	45.9637	4.9682	11426.7
2400 －	41.2079	4.9682	46.1752	4.9682	11923.6
2500 －	41.4098	4.9682	46.3780	4.9682	12420.4
2600.	41.6047	4.968 ？	46.5728	4.9682	12917．2
2700.	41.7922	4.968 ？	46.7603	4.9682	13414.0
2800.	41.9729	4．968？	46.9410	4.9682	13910.8
$29 \cap 0$.	$42.147 ?$	4.9682	47.1154	4.9682	14407.6
3 ก0\％	42.3155	4.9682	47.2838	4.9682	14904.5
3100 －	42.4785	4.9682	47.4467	4.9683	15401．3
32 nc．	42.6363	4.9682	47.6044	4.9684	15898．1
3300 －	42.7801	4.9682	47.7573	4．9685	16395.0
3400 －	42.9375	4.9682	47.9055	4.9687	16891．8
3500 －	43.0815	4.9682	48.0497	4.9690	17388.7
3600 －	43.2214	4.9682	48.1897	4.9694	17885.6
3700 －	43.3576	4.9683	48.3258	4.9699	18382.6
3800 －	43.4901	4.9683	48.4584	4.9706	18879.6
3900 －	43.6191	4.9684	48.5875	4.9715	19376.7
4 กกก。	43.7449	4.9685	48.7134	4.9726	19873．9
41 n －	42．8676	4.9685	48.8362	4.9741	20371．3
4200 －	43.9873	4．9588	48.9561	4.9759	20868．8
4300.	44.1042	4.9689	49.073 ？	4.978 ］	21366.5
4400.	44.2185	4.5692	49.1877	4.9808	21864.4
4500.	44.3302	4.9695	49.2996	4.9840	22362.6
4600.	44.4394	4.9698	49.4092	4.9879	22861．2
4700.	44.5463	4.9703	49.5165	4.9924	23360．2
4800 －	44.6509	4.9708	49.6217	4.9977	23859．7
4900 。	44.7534	4.9714	49.7248	5.0039	24359.8
5000.	44.8539	4.9721	49.8260	5.0109	24860.5
5100.	44.9523	4.9729	49.9253	5.0189	25362.0
5200.	45.0489	4.9739	50.0228	5.0280	25864.4
5300.	45.1437	4.9750	50.1187	5.0383	26367 •7
5400 。	45.2367	4.9763	50.2130	5.0497	26872．1
5500.	45.3280	4.0778	50.3057	5.0625	27377．7
5600.	45.4177	4.9794	50.3971	5.0766	27884．6
5700 －	45.5058	4.9812	50.4871	5.0921	28393.0
5800 。	45.5925	4.9833	50.5758	5.1091	28903.1
5900.	45.6777	4.9856	50.6633	5.1276	29414.9
6000 －	45.7615	4.9881	50.7496	5.1478	29928.6
6100.	45.8440	4.9909	50.8349	5.1695	30444.5
6200 －	45.9252	4.9940	50.9191	5.1930	30962．6
6300 －	46.0051	4.9973	51.0024	5.2182	31483.2

The tables are in wilts of calories，moles and ok．See reverse side for conversion factors to other units．The atomic weight $=26.98$

Table A-13-1 Thermodynamic Functions for Al^{+}- continued

| T | $\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}\right)}{\mathrm{T}}$ | $\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}}{\mathrm{T}}$ | S° | $\mathrm{C}_{\mathrm{O}}^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | $\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}$

64 no.	46.0838	$5 \cdot 0 \cap 10$	51.0848	5. 2451	$32006 \cdot 3$
6500 -	46.1614	5.0050	51.1663	5.2739	32532.2
6600 -	46.2378	$5 \cdot 0093$	51.2471	5.3044	33061.1
67 no 。	46.3132	5.0139	51.3271	5.3367	33593.2
6800.	46.3875	5.0189	51.4064	5.3709	34128.6
6900 -	46.46n8	5.0243	51.4851	5.4069	34667.4
7000	46.5332	5.0300	51.5632	5.4448	35210.0
7100.	46.6045	5.0361	51.6407	5.4844	35756.4
7200.	46.6750	5.0426	51.7177	5.5259	36306.9
7300.	46.7445	5.0495	51.7942	5.5692	36861.7
7400.	46.8134	5.0569	51.8702	5.6142	37420.8
7500 -	46.8813	5.0646	51.9459	5.6610	37984.6
7600.	46.9424	5.0728	52.0212	5.7095	38553.1
7700.	47.0149	5.0 .314	52.0062	5.7596	39126.5
78 ก0.	$47 \cdot 0804$	5.0904	52.1703	5.8114	39705.1
7900.	47.1453	5.0999	52.2452	5.8648	40288.9
8 กกก.	47.2095	5.1098	52.3193	5.9196	40878.1
8100.	47.2731	$5 \cdot 1201$	52.3032	5.9760	41472.9
82 O.	47.3360	5.1309	52.4669	6.0338	42073.3
8300.	47.3982	5.1421	52.5404	6.0930	42679.7
84 กn.	47.4599	5.1538	52.6137	6.1534	43292.0
8500.	47.5210	5.1659	52.6869	6.2151	43910.4
86 n 0.	47.5815	5.1785	52.7599	6.2779	44535.0
8700.	47.6414	5.1915	52.8329	6.3419	45166.0
8800.	47.7008	5.2049	52.9057	6.4068	45803.4
8900.	47.7597	5.2188	52.9785	6.4727	46447.4
9 ก 0 -	47.8181	5.2331	53.0512	6.5395	47098.0
9100.	47.8760	5.2478	53.1238	6.6071	47755.3
9200.	47.9334	5.2630	53.1964	6.6755	48419.5
$93 \cap 0$.	47.9904	5.2785	53.2690	6.7445	49090.4
9400.	48.0469	5.2945	53.3415	6.8140	49768.4
9500.	48.1031	5.3109	53.4139	6.8841	50453.3
9600.	48.1588	5.3276	53.4864	6.9546	51145.2
9700.	48.2141	5.3448	53.5589	7.0255	51844.2
9800.	48.2690	5.3623	53.6312	7.0967	52550.3
99 ก0.	48.3235	5.3802	53.7037	7.1681	53263.6
100 ก0.	48.3777	5.3984	53.7761	7.2396	53983.9
10100.	48.4315	5.4170	53.8484	7.3112	54711.5

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	
joules $\mathrm{g}^{-1} \circ \mathrm{~K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.037064
Btu $\mathrm{lb}^{-1} \circ \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{F}^{-1}\right)$	0.15508

Table A－14－1 Thermodynamic Functions for Si^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{O}_{\mathrm{K}} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	Co_{p}	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
273.15	32.6325	5.8876	38.5201	5.9349	1608.2
298．15	33.1481	5．8865	39.0346	5.8177	1755．1
1000	40.0298	5．436？	45.4660	5.0515	$5436 \cdot 2$
1100	40.5462	5.4005	45.9467	5.0366	5940.5
1200 。	41.0148	5.3697	46.3844	5.0254	6443.6
1300.	41.4435	5．2429	46.7863	5.0167	6945.7
1400 。	41.8385	5．3193	47.1579	5.0098	7447．0
1500.	42.2048	5.2985	47.5033	5.0043	7947．7
1600.	42.5467	5． 2799	47.8261	4.9998	8447.9
1700 。	42.8658	5.2634	48.1291	4.9961	8947.7
1800.	43.1662	5.2484	48.4146	4.9930	9447.2
1900.	43.4496	5.2349	48.6845	4.9904	9946.3
2000 ．	43.7178	5.2226	48.9404	4.9882	10445．3
2100 。	43.9723	5.2114	49.1837	4.9863	10944.0
2200 。	44.2145	$5 \cdot 2011$	49.4157	4.9846	11442.5
2300.	44.4455	5.1917	49.6372	4.9832	11940.9
2400.	44.6663	5.1830	49.8493	4.9819	12439．2
2500.	44.8777	5.1749	50.0526	4.9808	12937．3
2600．	45．08ก5	5.1674	50.2479	4.0799	$13435 \cdot 3$
27 no．	45.2754	5.1605	50.4359	4.9790	13933．3
$28 \cap 0$.	45.4629	5．1540	50.6169	4.9782	14431．1
2900.	45.6437	5.1479	50.7916	4.9775	14928．9
3000 。	45.8181	5.1422	50.9603	4.9769	15426.7
3100.	45.9866	5.1369	51.1235	4.9763	15924.3
3200.	46.1497	5.1319	51.2815	4.9758	16421．9
3300 。	46．3075	5.1271	51.4346	4.9754	16919.5
3400.	46.4605	5.1226	51.5831	4.9750	17417．0
3500.	46.6089	5.1184	51.7273	4.9746	17914.5
3600.	46．7531	5.1144	51.8675	4.9742	18411.9
3700.	46.8931	5.1106	52.1038	4.9739	18909．3
3800.	47．0294	5.1070	52．1364	4.9737	19406.7
39 กก．	47.1620	5.1 ． 36	52.2656	4.9734	19904．1
4000.	47.2912	5.1003	52.3915	4.9732	20401．4
4100.	47.4171	5.0972	52.5143	4.9731	20898．7
4200 。	47.5309	5．0943	52.5341	4.9729	21396.0
4300.	47.6597	5.0915	52.7512	4.9729	21893.3
4400 。	47.7767	5．0888	52.8655	4.9728	22390．6
4500.	47.8910	5.0862	52.9772	4.9729	22887．9
4600.	48.0028	5.0837	$53 . \cap 865$	4.9729	23385.1
4700 。	48.1121	5.0814	53.1935	4.9731	23882．4
4800.	48.2101	5.0791	53.2982	4.9733	24379．8
4900.	48.3238	5.0770	53.4007	4.9736	24877．1
5000 －	48.4263	5．0749	53.5012	4.9741	25374.5
5100.	48.5268	5.0729	53.5907	4.9746	25871．9
5200.	48.6253	5．071＾	53.6963	4.9752	26369.4
5300.	48.7219	5．c602	53.7911	4.9760	26867．0
5400.	48.8166	5．0675	53.8841	4.9769	27364．6
5500.	48.90 .96	5．0659	53.9755	4.9779	27867．4
5600 。	49．0008	5．0643	54.0652	4.9791	28360．2
5700.	49.0905	5.0628	54.1533	4.9805	28858．2
5800.	49.1785	5．0614	54.2399	4.9821	29356．3
5900.	49.2650	5．0601	54.3251	4.9839	29854．6
6000.	49.3500	5.0589	54.4089	4.9860	30353.1
6100.	49.4337	5．0577	54.4913	4．9882	30851．8
6200.	49.5159	5.0566	54.5725	4.9907	31350.8
6300.	49.5968	5.0556	54.6523	4.9935	31850.0

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=28.09$

Table A－14－1 Thermodynamic Functions for Si^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\mathrm{o}}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}$
6400.	49.6764	5．0546	54.7310	4.9966	32349.5
$6500 \cdot$	49.7548	5.0537	54.8085	4.9999	$32849 \cdot 3$
66 n 0 。	49.3319	5.0529	54.8849	5.0036	33349.5
6700 －	49.9079	5.0522	54.9601	5.0076	33850.0
$68 \cap$－	49.9827	5.0516	55.0343	5.0119	34351.0
6900．	50.0565	5.0511	55．1075	5.0165	34852.4
7กกロ。	50.1291	$5 \cdot 0506$	55.1798	5.0215	$35354 \cdot 3$
7100 －	50.2008	5.0502	55.2510	5.0269	35856.7
7200 －	50.2714	5．0500	55.3214	5.0327	36359.7
7300 。	50.3411	5.0498	55.3908	5.0388	36863.3
74 กn。	50.4008	5．0．407	55.4594	5.0454	37367.5
7500。	50.4776	5.0496	55.5272	5.0524	37872.4
7600 。	50.5444	5.0497	55.5942	5.0597	38378.0
7700	50.6105	5．0499	55.6604	5.0676	38884．3
7800 －	50.6756	5.0502	55.7258	5.0758	39391．5
7900 。	50.7400	5.0506	55.7905	5.0845	39899．5
$80 \cap$－	50.8035	5．0511	55.8545	5.0936	40408．4
8100 。	50.8662	5.0516	55.9179	5.1032	40918．2
8200 。	50.9282	5.0523	55.9806	5.1133	41429.1
8300 －	50.9895	5.0531.	56.0426	5.1238	41940.9
8400 。	51.0500	5.0540	56.1040	5.1348	42453．8
8500.	51．1098	5.0550	56.1649	5.1462	42967．9
8600.	51.1689	5．0562	56.2251	5.1581	43483．1
8700 －	51.2274	5．0574	56.2848	5.1705	43999．5
$88 \cap 0$.	51.2852	5．0．588	56.344π	5．1834	44517.2
$89 \cap$－	51.3424	5.0603	56.4026	5．1968	45036.2
9 900．	51.3989	5．0618	56.4608	5.2106	45556.6
91 กo．	51.4549	5.0636	56．5184	5.2249	46078.4
9200.	51.510 ？	5．0654	56.5756	5.2397	46601．6
$9300 \cdot$	51.5650	5.0673	56.6323	5.2550	47126.3
0400 。	51.6102	5.0604	56.6886	5.2707	47652．6
9500 －	51.6729	5.0716	56.7445	5.2869	48180.5
9600.	51.7260	5.0740	56.7999	5.3036	48710.0
9700.	51.7786	5.0764	56.8550	5.3208	49241．2
$98 \cap$ 。	$51.83 \cap 6$	5.0700	56.9096	5.3384	49774．2
99 ก0．	51.8822	5.0817	56.9639	5.3565	$50308 \cdot 9$
10000 －	51.9333	$5 \cdot 0845$	$57 \cdot 0179$	5.3750	$5 \cap 845.5$
10100.	51.9839	5.0875	$57 \cdot 0714$	5.3940	51383.9

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal g ${ }^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{C}^{-1}\right)$	0.035600
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ}{ }^{\circ} \mathrm{F}^{-1}\right)$	0.14895

Table A－15－1 Thermodynamic Functions for P^{+}

T	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}}{\mathrm{T}}$	So $\quad \mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}$

273．15	32．7714	6.5587	39．3301	6.3306	1791.5
298．15	33.3447	6.5335	39.8782	6.1883	1948.0
1000 －	40.7971	5.7378	46.5349	5.1084	5737.8
1100 －	41.34 .17	5.6794	47.0206	5.0851	6247.4
12 no	41.8332	5.6297	47.4624	5.0687	6755．0
1300 －	42.2820	5.5856	47.8676	5.0577	7261.3
14 ก0．	42.6945	5.5477	48.7427	5.0515	7766.7
1500 －	43.0761	5.5145	48.5906	$5 \cdot 0495$	8271.8
1600	43.4310	5.4855	48.9165	$5 \cdot 0514$	8776.8
1700 －	43.7628	5.4601	49.2229	5.0567	9282．］
18 กก•	44.0743	5.4379	49.5122	5.065 ？	9788．？
19 ก0．	44.3678	5.4186	49.7863	5.0765	10295．3
2 กロロ＊	44.6452	5．4n18	50.0471	5.0902	10803.6
2100	44．90．84	5.3873	50.2958	5.1060	11313.4
2200 －	45.1588	5.3749	50.5337	5.1234	11824.9
2300 。	45.3975	5．3644	50.7619	5.1422	$12338 \cdot 1$
2400 。	4.5 .6256	5．3556	50.9811	5.1618	12853．3
2500 。	45．8440	5．3482	51.1922	5.1822	13370.5
2600．	46.0537	5.3422	51.3959	5.2029	13889.8
77 กn．	46.2557	5．3374	51.5926	5.7237	14411.1
$28 \cap$ 。	46.4492	5.3327	51.7830	5.2444	$14934 \cdot 5$
29nn．	46.6354	5.3310	51.9674	5.2647	15460.0
3000 。	46.8171	5.3291	52.1462	5.2846	15987．4
3100.	46.9918	5.3280	52.3198	5.3040	16516.9
3200 。	47.1609	5.3276	52.4885	5.3226	17048．2
3300.	47.3249	5.3277	52.6526	5.3404	17581.4
3400 。	47.4839	5.3283	52.8122	5.3574	18116.2
3 ¢ 0 。	47.6384	5.3294	52.9678	5.3735	18652．8
3600 。	47.7885	5.3308	53.1194	5.3886	19190.9
$37 \cap 0$	47.9346	5．3226	53.7672	5.4029	10730.5
380 －	48.0759	5． 3346	53.4115	5.416 ？	70271．5
39のก。	48.2155	5． 3358	53.5573	5.4286	20813.7
4 กกก．	48．35n6	5.3393	53.6899	5.4401	21357.1
41 no．	48.4825	5.3419	53.8244	5.4507	21901.7
42 กn．	48.6117	5．3446	53.9558	5.4604	$22447 \cdot 2$
43 n0．	48.7370	5.3474	54.0844	5．4697	22993．7
44 ก0．	48.8600	5.3502	54.2102	5.4773	23541．1
4500．	48.9803	5.3531	54.3334	5.4846	24089．2
4600.	49．0980	5．3561	54.4540	5.4917	24638．0
4700．	49.2132	5.3590	$54.57 \geq 2$	5.4970	25187.4
48 ก0．	$4^{\circ} \cdot 3260$	5．3619	54.6880	5.5022	25737．3
4900.	40.4366	5.3649	54.8015	5.5068	26287．8
50 On＊	49.5450	5.3677	54.9128	5.5108	26838.7
5100.	49.6514	$5.37 \cap 6$	55.0219	5.5142	27389.9
5200.	40．7557	5.3734	55.1290	5.5171	27941．5
5300.	40．8581	5.3751	55．234？	5.5195	28493．3
5400.	49.9596	5.3788	55.3373	5.5215	29045．4
5500.	50.0573	5.3814	55.4387	5.5230	29597．6
56 のn．	50.1543	5.3839	55.5382	5.5242	30150.0
5700.	50.2496	5.3964	55.6360	5.5250	30702.4
$58 \cap 0$.	50.3433	5.3988	55.7321	5.5255	31255.0
5900.	50.4354	5．3911	55.8265	5.5257	31807．5
6nก0．	50.5261	5.3933	55.9194	5.5256	32360．1
610 －	50.6152	5.2055	56.0107	5.5252	32912.6
6200.	50.7030	5.3976	$56 \cdot 1006$	5.5246	$33465 \cdot 1$
6300.	50.7894	5.3796	56.1890	5.5239	34017.6

The tables are in units of calories，moles and ok．See reverse side for conversion factors to other units．The atomic weight $=30.9745$

Table A－15－1 Thermodynamic Functions for P^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(F^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{T}$	$\frac{\mathrm{HO}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{Co}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\mathrm{O}}$
6400.	50.8744	5.4015	56.2759	5.5229	34569．9
6500.	50.9582	5.4034	56.3616	5.5218	35122．1
6600.	51．0407	5.4052	56.4459	5.5205	35674．2
6700.	51.1220	5.4069	56.5289	5.5191	36226.2
6800.	51.2021	5.4085	56．6106	5.5176	36778．1
6900.	51．2811	5.4101	56.6912	5.5161	37329．7
70ワ0．	51.3589	5.4116	56.7705	5．5144	37881.3
7100	51.4357	5.4130	56.8487	5.5127	38432.6
7200．	51.5114	5.4744	56.9258	5.5110	39983.8
73nn。	51.5861	5.4157	$57 . n \cap 18$	5.5092	39534.8
7400 。	51.6598	$5.417 n$	57.0768	5.5074	40085．7
7500	51.7375	5.4182	57．1507	5.5056	40636.3
7600.	51.8043	5.4193	57.2236	5.5039	41186.8
7700	5］．8751	5.4204	57．2955	5.5021	41737.1
78 ก0。	51.9451	5.4214	57.3665	5.5004	42287.2
79 ก0．	52.0141	5.4224	57.4366	5.4987	42837.2
8 กกロ。	52.0824	5.4234	57.5057	5.4971	43386.9
81 ก0．	52.1497	5.4243	57.5740	5.4955	43936.6
8200 －	52.2163	5.4251	57.6414	5.4940	44486.0
8300 －	52.2821	5.4259	57.7080	5.4926	45035.4
8400.	$52.347 n$	5.4267	57.7738	5.4912	45584.6
850% 。	52.4113	5.4275	57.8388	5.4900	46133.6
86 กn．	52.4748	5.428 ？	57.9030	5.4889	46682.6
87 ก0．	52.5375	5.4289	57.9664	5.4878	47231．4
88 กก。	52.5906	5.4296	58．0291	5.4869	47780.1
8900 －	52.6609	5.4302	58.0911	5.4861	48328.8
9 กก0．	52.7216	5.4308	58.1524	5.4854	48877.4
91 no．	52.7816	5.4314	58.2130	5.4849	49425.9
92000	52.8410	5.4320	58.2730	5.4845	49974．3
9300.	52.8997	5.4326	58.3323	5.4843	50522.8
9400 。	52.9578	5.4331	58.3909	5.4842	51071.2
9500.	53.0153	5.4336	58.4489	5.4842	51619.6
9600.	¢3．072？	5.4342	58.5064	5.4844	52168.0
9700.	53.1295	5.4347	58.5632	5.4848	52716.5
98 n －	53.1843	5.4352	58.6195	5.4853	53265.0
9900.	53.2394	5.4357	58.6752	5.4861	53813.6
10000 －	53.2941	5.4362	58.7303	5.4869	54362.2
10100 。	53.3492	5.4367	58.7849	5.4880	54911.0

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ}{ }^{\circ} \mathrm{C}^{-1}$ ） joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ） Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}$（or ${ }^{\circ} \mathrm{F}^{-1}$ ）	0.032285

Table A－16－1 Thermodynamic Functions for S^{+}

273．15	33.6799	4.9681	38.6481	4.9681	1357 ．1
298．15	34.1150	4.9681	39.0831	4.9681	1481．3
1000	4 n ． 1272	4.9681	45．0954	4.9682	4968．1
1100	40.6008	4.9682	45.5689	4.9682	5465.0
1200 －	41.0330	4.9682	46.0012	4.9682	5961．8
1300.	$41.43 n 7$	4.9682	46.3989	4.9682	6458.6
1400.	41.7989	4.9682	46.7671	4.9684	$6955 \cdot 4$
1500.	42．1417	4.9682	47.1099	4.9688	$7452 \cdot 3$
1600.	42.4623	4.9683	47.4306	4.9695	7949．2
1700.	42.7635	4.9684	47.7319	4.9708	8446.2
1800 －	43.0475	4.9686	48.0160	4.9730	8943.4
1900．	43.3161	4.9689	48.2850	4.9763	9440.9
2000．	43.5710	4.9694	48.5404	4.9810	$9938 \cdot 7$
2100 。	43.8135	4.9701	48.7835	4.9876	10437.1
2200.	44.0447	4.9710	49．0158	4.9963	10936.3
2300 。	44.2657	4.5724	49.2381	5.0075	11436.5
2400 。	44.4774	4.9741	49.4515	5.0214	11937.9
2500.	44.6805	4.9763	49.6568	5.0384	12440．8
2600.	44.8757	4.9791	49.8548	5.0585	12945.7
2700．	45.0637	4.9825	50.0461	5.0819	13452.7
2800 －	45.2449	4.9865	50.2314	5.1087	13962．2
2900	45.4200	4.9912	50.4112	5．1389	14474.5
3ペロ。	45.5893	4.9067	50.5860	5.1725	14990．1
3100	45.7537	5．0ก29	50.7562	5.2094	15509．1
3200.	45．912？	$5 \cdot 01$ ก	50.9222	5． 2494	16032．0
3300 。	46.0655	5．0179	51.0844	5． 2925	16559．1
3400 。	46.2164	5．r267	51.2431	5．3385	17090.6
3500.	$46.362 ?$	5．C．363	51.3985	5.3870	17626.9
3600 。	46.5043	5．0467	51.5510	5.4380	18168.1
37 กn．	46.6427	5.0580	51.7007	5.4912	18714.6
3800 －	46.7777	5.0701	51.8478	5.5462	19266.4
39 ก0．	46.9096	5.0830	51.9926	5.6029	19823.9
4กกロ。	47.0385	5.0968	52.1252	5.6610	20387．0
4100.	47.1645	5.1112	52.2757	5.7201	20956．1
4200 －	47.2878	5.1265	52.4143	5．7801	21531．1
4300 －	47.4087	5.1424	52.5510	5.8407	22112．1
4400.	47．5271	5.1589	52.6860	5.9017	22．699．3
4500 。	47.6432	5．1761	52.8193	5.9627	23292．5
4600 －	47.7572	5.1939	52.9510	6.0236	23891．8
4700 －	47.8690	5.2122	53.0812	6.0842	24497．2
48 ○0．	47.9790	5.2310	53.2099	6.1442	25108.6
49 ก0．	48.0870	$5 \cdot 2502$	53.3272	6.2034	25726.0
$50 \cap 0$.	48.1933	5.2699	53.4632	6.2617	26349．3
51 ก0．	48.2979	5.2899	53.5877	6.3189	26978．3
52 0．	$48.40 \cap 8$	$5 \cdot 3102$	53.7110	6.3749	27613.0
5300.	48.5021	5.3308	53.8329	6.4295	28253.2
5400 －	48．6n2n	5.3516	53.9536	6.4826	28898．9
55 nn ．	48．7nก3	5.3727	54.0730	6.5341	29549．7
5600 －	48.7973	5.3939	54.1912	6.5839	30205．6
5700.	48.8930	5.4152	54.3082	6.6320	30866．4
5800.	48.9874	5.4365	54.4239	6.678 ？	31532.0
5900.	49．08～5	5.4580	54.5384	6.7224	32202.0
6000.	49.1724	5.4794	54.6518	6.7648	32876.4
6100.	49.2631	5.5008	54.7639	6.8051	33554.9
62 0．	49.3528	5．5．222	54.8749	6.8435	34237.3
6300 －	49.4413	5.5434	54.9847	6.8798	34923.5

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for
conversion factors to other units．The atomic weight $=32.0655$

Table A－16－1 Thermodynamic Functions for S^{+}－continued

$\begin{gathered} \mathrm{T} \\ \circ \mathrm{~K} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}\right)}{T}$	$\frac{\mathrm{HO}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	S°	$\mathrm{Co}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}$
6400.	49.5287	5.5646	55.0933	6.9141	35613．2
650n．	49.6152	5.5856	55.7008	6.9464	$36306 \cdot 3$
6600 。	49．70n6	5.6064	55.3071	6.9766	37002．5
67n0．	49.7851	5.6271	55.4122	7．0049	37701．5
58 O －	49.8686	5.6476	55.5162	7.0312	38403.4
6900.	49.951 .2	5.6678	55．619n	7.0555	39107.7
7nのn．	50.0329	5．6878	55.7207	7.0779	39814.4
7100 －	50.1137	5.7075	55.8212	7.0984	40523.2
7200 －	50.1937	5.7269	55.9206	7．1171	41234.0
7300 。	50.2728	5.7461	56.0189	7.1340	41946.6
74 の0．	50.3511	5.7650	56.1161	$7 \cdot 1492$	42660.8
75 n －	50.4286	5.7835	56.2121	7.1626	43376.4
7600．	50.5053	$5.8 \cap 17$	56．3n71	7．1744	44093.2
77 กn。	50.5813	5.8196	56.4009	7．1846	44811.2
78 กก．	50.6565	5.8272	56.4937	7.1933	45530.1
7900 －	50.7310	5.8544	56.5854	7.2005	46249.8
タกกロ・	50.8047	5.8713	56.6760	7.2062	$46970 \cdot 2$
$81 \cap 0$	50．8778	5.8878	56.7655	7.2106	47691.0
82 no．	50.9501	5.9039	56.8540	7.2137	48412.2
8300 －	51.0218	5.9197	56.9415	7.2155	49133.7
84 กロ・	$51.0{ }^{\circ} 28$	5.9352	57．02．79	7.2161	49855．3
85 no．	51.1631	5.9502	57.1133	7．2155	50576.9
8600 －	51.2328	5.9649	57．1077	7．2139	51298.4
87 O\％	$51 \cdot 3018$	5.9793	57.2811	7.2112	52019.6
8800 －	$51.37 \cap 2$	5.9932	$57 \cdot 3635$	7.2076	52740.6
89 กロ・	51.428 C	6．0ก69	57.4449	7.2030	$53461 \cdot 1$
9 O 0 －	51.5052	6．0201	57.5253	7．1975	$54181 \cdot 1$
9100.	51.5718	6.0330	57.6048	7.1912	54900.6
9200 －	51.6378	6．0456	57.6834	7．1841	55619．3
9300.	51.7032	6.0 .578	57.7610	7．1763	56337.4
9400.	51.7581	6.0696	57.8377	7．1678	57054.6
950 －	51.8324	6．0．311	57.9135	7．1586	57770.9
9600.	51.8961	6.0923	57.9884	7.1489	58486.3
970 －	51.9593	6.1032	58.0625	7．1386	$59200 \cdot 7$
9800.	52．0220	6.1137	58.1356	7．1278	59914.0
9900.	52．0841	6.1230	58.2079	7．1165	60626．2
10 กロก。	52.1457	6.1337	58.2794	$7 \cdot 1047$	61337.3
10100 。	$52 \cdot 2067$	6.1433	58.3500	7.0926	62047．1

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	0.031186
$\mathrm{Btu} \mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $^{\circ} \mathrm{F}^{-1}$ ）	0.13048

Table A－17－1 Thermodynamic Functions for Cl^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}\right)}{T}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{HO}^{\circ}-\mathrm{HO}_{0}$
273.15	34.4552	5．0885	39.5437	5.4199	1389.9
298．15	34.9021	5.1192	40.0213	5.4868	$1526 \cdot 3$
1000 －	41.3419	5.4213	46.7632	5.3654	$5421 \cdot 3$
1100	41.8583	5.4140	47.2723	5.3171	5955.4
1200 －	42.3290	$5.4 \cap 42$	47.7331	5.2761	6485.0
1300 －	42.7611	5.3929	48.1540	5.2414	7010.8
1400.	43.1603	5.3810	48.5414	5．2123	7533.5
1500.	43.5312	5.3690	$48.90 \cap 1$	5．1879	8053.4
1600.	43.8773	5．3570	49.2343	5．1678	8571．2
1700.	44.2017	5．3454	49.5471	5.1515	9087．1
1800.	44.5069	5．3342	49.8411	5.1386	9601.6
1900.	44.7950	5.3237	50.1187	5.1290	10114.9
20100	45.0678	5.3137	50.3816	5.1224	10627.5
2100 －	45.3269	5.3045	50.6314	5.1185	11139.5
2200 。	45.5734	5．2960	50.8695	5.1171	11651.3
2300.	45.8087	5.2883	51.0970	5.1181	12163.0
2400 。	46.0336	5.2812	51.3148	5.1212	12675.0
2500.	46.2491	5.2749	$51.524 n$	5.1263	13187.3
2600．	46.4558	5.2693	51.7252	5.1331	17700.3
2700.	46.6546	5． 2644	51.9191	5．1414	14214.0
2800	46.8460	5.2602	52.1062	5.1511	14728.6
2900．	47.0305	5．2566	52.2871	5.1619	？ 5244.2
3000 －	47.2087	5.2537	52.4623	5.1737	15761．0
3100 －	47.3809	5.2513	52.6322	5.1862	16279.0
32 n 。	47.5476	5.2495	52.7970	5.1995	16798.3
3300.	47．7091	5.2482	52.9573	5.2132	17318.9
3400.	47.8658	5.2473	53.1131	5.2272	17840.9
3500.	48.0179	5.2470	53.2648	5.2415	18364.4
3600.	48.1657	5.2470	53.4127	5.2559	18889．2
37 n 0 。	48.3004	5.2474	52.5569	5.2703	19415.5
3800.	48.4494	5.2482	53.6976	5.2846	19943.3
39ヵก．	48.5857	5.2403	53.8351	5.2987	20472．4
4000 －	48.7186	5． 2507	53.9694	5.3126	21003.0
4100.	48.8483	5．2524	54.1007	5.3262	21534.9
4200.	48.9749	5.2543	54.2293	5.3395	22068．2
4300 。	49．0986	5．2565	54.3551	5.3524	22602．8
4400.	49.2194	5.2588	54.4782	5.3649	23138.7
4500.	49.3377	5．2613	54.5989	5.3769	23675．8
4600 ．	49.4533	5.2639	54.7172	5.3885	24214．1
47 ก0．	49.5666	5.2667	54.8333	5.3996	24753.5
4800.	49.6775	5.2696	54.9470	5.4102	25294．0
4900.	49.7862	5.2725	55.0587	5.4203	25835.5
5 n ก	49.8927	5.2756	$55 \cdot 1683$	5.4299	26378．0
5100.	49.9972	5.2787	55.2759	5.4390	26921．4
5200 。	50.0997	5.2819	55.3816	5.4475	27465．8
5300.	$50.20 \cap 4$	5.2851	55.4855	5.4556	28010．9
5400.	50.2992	5.2883	55.5875	5.4632	28556.9
55 n0．	50.3963	5.2916	55.6878	5.4704	29103.6
5600.	50.4916	5.2948	55.7865	5.4770	29650．9
5700.	50.5854	5.2781	55.8834	5.4832	30199．0
5800.	50.6776	5.3013	55.9789	5.4890	30747．6
5900.	50.7682	5.3045	56.0727	5.4943	31296.7
6000.	50.8574	5.3077	56．1651	5．499？	31846.4
6100.	50.9451	5．31ก9	56.2561	5.5037	32396.6
6200.	51.0315	5．3141	56.3456	5.5079	3）947．2
6300 。	51.1166	5.3172	56.4337	5.5116	33498．1

The tables are in units of calories，moles and oK．See reverse side for conversion factors to other units．The atomic weight $=35.4565$

Table A-17-1 Thermodynamic Functions for Cl^{+}- continued

$\begin{array}{r} \mathrm{T} \\ \mathrm{OK} \end{array}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{D}}^{\circ}}{\mathrm{T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{0}$	$\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}$
6400.	51.2003	5.3202	56.5706	5.5150	34049.5
$6500{ }^{\circ}$	51.7829	5.3232	56.6061	5.5180	34601.1
6600.	51.3641	5.2 263	56.6904	$5 \cdot 5207$	35153.1
6700 .	51.4443	5.3291	56.7734	5.5231	$35705 \cdot 3$
68 ก0.	51.5232	5.3320	56.8552	5.5252	35257.7
6900.	51.6011	5.3348	56.9359	5.5270	36810.3
7000 -	51.6779	5.3375	57.0155	5.5285	37363.1
7100 -	51.7536	5.3403	57.0939	5.5297	37916.0
72 00.	51.8283	5.3429	57.1712	5.5307	38469.0
7300 -	51.9020	5.3455	57.7475	5.5315	39022.1
7400 -	51.9748	5.348	57.3228	5.532 n	$39575 \cdot 3$
7500.	52.0466	5.3505	57.3971	5.5323	40128.5
7600 -	52.1175	5.3529	57.4703	5.5324	4^681.7
7700.	52.1875	5.3552	57.5426	5.5323	$41235 \cdot 0$
7800.	52.2566	5.3575	57.6140	5.5321	41788.2
7900 -	52.3248	5.3597	57.6845	5.5316	42.341 .4
8 ก00.	52.3923	5.3618	57.7541	5.5310	42894.5
81 ก๐.	52.4589	5.3639	57.8228	5.5303	$43447 \cdot 5$
8200 -	52.5247	5.3659	57.8906	5.5294	$44000 \cdot 5$
8300 -	52.5898	5.3679	57.9577	5.5283	44553.5
84 กก.	52.6541	5.3698	$58 \cdot \cap 739$	5.5271	451060 ?
$8500 \cdot$	52.7176	5.3716	$58 \cdot 0893$	5.5258	45658.9
86 กก•	52.7805	5.3734	58.1539	5.5244	$462110^{\prime} 4$
87 กก•	52.8426	5.3751	58.2177	5.5229	45763.9
88 กก.	52.9040	5.3768	58.2809	5.5213	47316.0
8900 -	52.9648	5.3784	58.3437	5.5196	47868.0
$90 \cap 0$	53.0249	5.3800	58.4049	5.5178	48419.9
9100	53.0844	5.3815	58.4659	5.5159	48971.6
9200 -	53.1432	$5 \cdot 3329$	58.5261	5.5139	49523.1
9300 -	53.2014	5.3843	58.5857	5.5119	50074.3
9400 -	53.2590	5.3857	58.6447	5.5008	$50625 \cdot 4$
9500 -	53.3160	5.3879	$58.703 n$	5.5077	$51176 \cdot 3$
9600 -	53.3724	5.388 ?	58.7605	5.5055	51727.0
9700 -	53.4282	5.3894	58.8177	5.5022	57277 -4
9800.	53.4835	5.3905	58.8741	5.5009	52827.6
9900.	53.5383	5.3917	58.9299	5.4986	53377 . 5
10000 -	53.5924	5.3927	58.9852	5.4962	53927.3
10100 。	53.6461	5.3937	59.0399	5.4938	54476.8

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$)	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$)	0.028204
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{F}^{-1}\right)$	0.11800

Table A－18－1 Thermodynamic Functions for Ar^{+}

$\begin{gathered} \mathrm{T} \\ \circ \mathrm{~K} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}} \mathrm{O}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}}{\mathrm{T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}=\mathrm{H}_{0}^{\circ}$
273.15	34.3353	4.9721	39.3074	4.9981	$1358 \cdot 1$
298．15	34．77n8	4.9750	39.7458	5.0154	$1483 \cdot 3$
1000.	40.9048	5．2134	46.1182	5.4431	5213.4
1100	41.4027	5.2337	46.6364	5.4301	$5757 \cdot 1$
120n．	41.8588	5． 2493	47.1081	5.4111	6299．2
1300.	42.2795	5．2609	47.5404	5.3890	6839．2
1400.	42.6697	5． 2692	47.9389	5．3657	$7376 \cdot 9$
1500.	43．0334	5.2749	48．3083	5.3421	7912．3
1600.	43.3740	5.2784	48.6523	5.3197	8445.4
1700.	43.6940	5． 2001	48．9741	5.2973	8976．？
1800.	43.9958	$5.28 \cap 5$	49.2763	5.2766	9504.0
19 กn．	44.2813	5.2798	49.5611	5.2572	10031.6
2 กロロ・	44.5521	5.2782	49.8303	5.2392	10556.4
2100.	44．8096	5．2759	50.0855	5.2225	11079.5
2200 －	45.0549	5.2731	50.3281	5.2070	$11600 \cdot$ ？
2300.	45.2893	5． 2699	50.5592	5.1927	12120.9
2400 。	45.5135	5．2665	50.7799	5.1795	12639．5
2500.	45.7284	5.2627	50.9911	5.1673	13156.8
2600．	45.9347	5．2．588	51.1936	5．1560	13673.0
270% 。	46.1331	5.2548	51.388 ก	5．1456	14188.0
2800 。	46.3242	5.2508	51.5749	5.1359	$14702 \cdot 1$
2900.	46.5083	5.2466	51.7550	5.1270	15215.2
$30 \cap 0$.	46.6861	5.2425	51.9287	5.1187	15777．5
3100.	46.8580	5.2384	52.0964	5.1110	16239.0
3200 －	47.0242	5.2343	52.2585	5.1039	16749.7
$3300 \cdot$	47.1852	5.2302	52.4155	5.0972	17259．8
3400 －	47.3413	5．2267	52.5675	5.0910	17769．2
3500.	47.4978	5.2223	52.7150	5.0853	18278.0
3600.	47.6398	5.2184	52.8582	5．0709	18786.3
37 n －	47.7877	5． 2146	52.0973	5.0748	19204.0
3800.	47.9218	5.2109	53.1326	5.0701	19801．2
39 ก0．	48.0571	$5 \cdot 2072$	53．2642	5.0657	20308.0
4 กก0．	48.1888	$5 \cdot 2 \cap 36$	53.3924	5.0615	20814.4
41 ก0．	48.3173	5.2001	53.5174	5.0576	21320.3
$4200 \cdot$	48.4426	5.1966	53.6392	5.0540	21825.0
4300 －	48.5648	5.1933	53.7581	5.0505	22331.1
4400 。	48.6842	5.1900	53.8742	5.0473	22836.0
4500 －	48.8008	5.1868	53.9876	5.0442	$23340 \cdot 6$
460 －	48.9147	5.1837	54.0984	5.0413	23844.9
47 กก。	49．0262	5.1806	54.2068	5.0386	24348.9
48 กn•	49.1352	5.1776	54.3128	5.0360	24852．6
49 ก0•	49.2419	5.1747	54.4166	5.0335	25356．1
5 ก0ก•	49.3465	5.1719	54.5183	5.7312	25859．3
5100 －	49.4498	5.1691	54.5179	5.0290	26352．${ }^{\text {2 }}$
5200 －	49.5492	5．1664	54.7156	5.0269	26865．1
5300.	49.6476	5.1637	54.8113	5.0249	27367．7
5400 。	49．7441	5.1511	54.9052	5.0230	27870．1
5500.	49.8387	5.1586	54.9974	5.0212	28377．3
5600.	49.9317	5．1561	55.0878	5.0195	28874.4
5700.	50.0229	5.1537	55.1766	5.0179	29376.2
5800 －	50.1125	5．1514	55.2639	5.0163	29877．9
5900 －	50.2006	5.1491	55.3496	5.0149	30379.5
6000 －	50.2871	5.1468	55.4339	5.0134	30880.9
6100.	50.3771	5.1446	55．5168	5.0121	31387.2
62 ก．	50.4558	5．1425	55.5983	5.0108	3） 883.3
6300.	50.5380	5．1404	55．6784	5． 0095	32384．3

The tables are in units of calories，moles and ok．See reverse side for conversion factors to other units．The atomic weight $=39.9435$

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{HO}^{\circ}-\mathrm{HO}_{\mathrm{O}}$
6400.	50.6170	5.1383	55.7573	5．0084	32885．2
6500．	50.6986	5.1363	55.8349	$5.007 ?$	33386.0
6600.	50.7770	5.1343	55.9114	5.0061	33896.7
67 กn．	50.8542	5.1324	55.9867	5．005．1	34387.2
$68 \cap 0$.	50.9303	5．1305	56.0608	5.0041	34887．7
6900.	51．0051	5.1787	56．1338	5.0031	35388．1
7 กกก。	51.0789	5.1269	56．2058	5.0022	35888．3
710 \％．	51.1516	5.1751	56.2768	5．0013	36388.5
7200.	51.2232	5.1734	56.2467	5． $0 \sim \cap 5$	36888．
7300 ．	51.7940	5．1217	56.4157	4.9996	37388.6
74 กn．	51.3636	5.1201	56.4837	4.9988	37888．5
750 －	51.4323	5．1184	56．5508	4.0981	38388.4
7600 －	51.5001	5．1169	56．6170	4.9973	38888．1
7700 －	51.5670	5.1153	56．6823	4.9966	39387.8
7800 －	51.6330	5.1138	56.7468	4.9959	39887.5
790 －	51.6981	5：1123	56.8104	4.0953	40387.0
8 80ロ・	51.7624	5.110^{8}	56.8733	4.9947	40886.5
8100 －	51.8250	5.1094	56.935 ？	4.9940	41386.0
82 ก0．	51.8886	$5 \cdot 1 \cap 80$	56.9966	4.9934	41885.3
83 ก0．	51.9505	$5 \cdot 1 n 66$	57.0571	4.9929	42384.6
84 ก0．	52．0117	5.1052	57．1169	4.9923	42882.9
8500.	52.0721	5.1039	57．1760	4.9918	43383.1
8600.	52.1318	$5 \cdot \ln 26$	57．？343	4.9913	43882.3
87 กロ・	52.1907	5.1013	57.2920	4.9908	44381.4
$88 \cap$ ก．	52.2490	5．10nก	57.3491	4.9903	44880.4
8900.	52．3067	5．r．788	57.4055	4.9898	45379.4
9 900．	52.3636	5.0976	57.4612	4.0894	45878.4
9100.	52.4199	5．0964	57.5163	4.9889	46377．3
92 O．	52.4756	5.0952	57.5709	4.9885	46876.2
9300.	52.5307	5.0941	57.6248	4.9881	47375.0
9400.	52.5852	5.0930	57.6781	4.0877	47873.8
9500.	52．6391	5．0918	57．7309	4.9873	48372.5
960 \％．	52.5924	5．0908	57.7831	4.9869	48871．2
9700.	52.7451	5.0897	57.8348	4.0866	49369.9
9800 －	52.7973	5． 1886	57.8860	4.9862	49868.6
990ก．	52.8490	5．0876	57.9366	4.9859	50367．2
1000 －	52.9001	5.0866	57.9867	4.9856	50865.7
10100.	52.9507	5． 0856	58.0363	4.9852	51364.3

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\mathrm{or}^{\circ} \mathrm{C}^{-1}\right)$	0.025035
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\mathrm{or}^{\circ} \mathrm{C}^{-1}\right)$	0.10475
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right)$	0.025019

Table．A－70 Thermodynamic Functions for NF_{2}

T	$-\left(\mathrm{F}^{0}-\mathrm{H}_{0}^{\mathrm{O}}\right)$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$	S^{0}	$\mathrm{H}^{\circ}-\mathrm{H}$	C_{p}^{0}
${ }^{\circ} \mathrm{K}$	T	T			
50.	36.387	7．943	44.830	397．1	$7 \cdot 949$
75.	40.108	7．946	48.054	595．9	7.960
100.	42.395	7.955	50.350	795.5	8.019
125.	44.172	7.980	52.153	997.5	8．149
150.	45.631	8.023	53.654	1203.5	8.338
175.	46.872	8.084	54.956	1414.8	8.568
200.	47．956	8．161	56.117	1632.1	$8 \cdot 825$
225.	48.923	8.250	57.172	1856.1	$9 \cdot 100$
250 。	49.797	8.349	$58 \cdot 146$	2087.2	$9 \cdot 383$
275.	50.598	8.456	59.053	2325.3	9.668
300 。	51.338	8.568	59.906	2570.5	9.947
325.	52.028	8.685	60.713	2822.6	$10 \cdot 216$
350.	52.676	8.803	61.480	3081.2	10.473
375.	53.288	8.923	62.211	3346.1	10.714
400.	53.868	9.042	62.909	3616.8	10.938
425.	54.419	9.160	63.579	3892.8	11.146
450 ．	54.946	9.275	64.222	4173.9	11.339
475.	55.451	9.389	64.839	4459.6	11.516
500.	55.935	9.499	65.434	4749.6	11.678
550.	56.850	9.711	66.561	5340.8	11.963
600.	57.704	9.909	67.613	5945.2	$12 \cdot 204$
650.	58.504	10.093	68.598	6560.6	12.406
700.	59.259	10.265	69．523	7185.2	12.577
750.	59.972	10.424	70.396	7817.8	12.722
800.	60.650	10.571	71.221	8457．1	12.846
850.	61.295	10.708	72.003	9102．1	12.953
900.	61.911	10.836	72.746	9752.1	13.044
950.	62.500	10.954	73.454	10406.4	13.124
1000.	63.065	11.064	74.129	11064.4	13.194
1050.	63.607	11.167	74.774	11725.6	13.255
1100.	64.129	11.263	75.392	12389.7	13.309
1150.	64.631	11.353	75.985	13056.4	13.356
1200.	65.116	11.438	76.554	13725.3	13.399
1250 ．	65.585	11.517	$77 \cdot 102$	14396．2	13.436
1300 •	66.038	11.591	77.629	15068．9	13.470
1350 ．	66.477	11.662	78.138	15743．2	13.501
1400.	66.902	11．728	78.630	16418．9	13.528
1450 ．	67.315	11.790	79.105	17095．9	13.553
1500 ．	67.715	11.849	79.565	17774.1	13.575
1550 －	$68 \cdot 105$	11.905	80.010	18453.4	13.596
1600.	68.484	11.959	80.442	19133.7	13.614
1650.	68.852	12.009	80.861	19814.8	13.631
1700 ．	69.212	12.057	81.269	20496.8	13.647
1750 ．	69.562	$12 \cdot 10^{3}$	81.664	21179.5	13.661
1800.	69.903	12.146	82.049	21862.9	13.675
1850.	70.237	12．188	82.424	22546.9	13.687
1900.	70.562	12.227	82.789	23231.6	13.698
1950	$70 \cdot 880$	$12 \cdot 265$	83.145	23916.8	13.709
2000 。	71.191	12.301	83.493	24602.4	13.718
2050 。	71.496	12.336	83.832	25288．6	13.728

MW 52．0＿ELECTRONIC	LTIPLICITY 2.	ROTATIONAL SYMMETRY	
MOMENTS OF INERTIA IGM	CM＊＊2＊EXP－39）		
IA 1．203700 IB	7.374800	I C	8.570200
CENTRIFUGAL STRETCHING	CONSTANT 0．		
NO OF FREQUENCIES 3	FREQUENGIES IN	CM－1	
1075．00000 510．00000	940．00000		
DEGENERACIES			
1.0 1．0	1.0		

The tables are in units of calories moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．

Table A－70 Thermodynamic Functions for NF_{2}－continued

$\begin{gathered} \mathrm{T} \\ { }^{\circ} \mathrm{K} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathbf{H}^{\mathrm{O}}-\mathrm{H}_{0}^{\circ}}{\mathrm{T}}$	s^{0}	$\mathrm{H}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}$	C_{p}°
2100.	71.793	12.369	84.162	25975．2	13.736
2150.	72.085	12.401	34.486	26662．2	13.744
2200.	72.370	12.432	04.302	27349．6	13.751
2250.	72.650	12.461	85．111	28037.3	13.758
2300.	72.924	12.489	85.413	28725．4	13.765
2350 。	73.193	12.516	85.709	29413.7	13.771
2400．	73.457	12.543	85.999	30102.4	13.776
2450 ．	73.716	12.568	86.284	30791.4	13.782
2500．	73.970	12.592	86.562	31400.6	13.787
2600．	74.463	12.638	87.103	$3<8 ら 9.7$	13.796
2700 ．	74.942	12.681	87.624	34134．7	13.804
2800.	75.404	12.722	88.126	33620.5	13.812
2900 ．	75.851	12．759	88.611	37002．0	13.818
3000.	76.285	12.795	89.079	38334.1	13.824
3100.	76.705	12.828	89.533	39766.8	13.830
3200 ．	$77 \cdot 112$	12.859	89.972	41150.0	13.835
3300.	77.509	12.889	90.398	42533.7	13.839
3400 ．	77.894	$12 \cdot 917$	90.811	43917.8	13.843
3500.	78.269	12.944	91.212	45302．3	13.847
3600.	78.634	12.969	91.602	46667.2	13.850
3700.	78．989	12.993	91.982	48072.4	13.654
3800 。	79.336	13.015	92.351	49457．9	i3．857
3900.	79.674	13.037	92.711	50843.7	13.359
4000.	$80 \cdot 005$	13.057	93.062	52229.8	$13 \cdot 862$
4100.	80.327	13.077	93.404	53616.1	13.304
4200.	80.643	13.096	93.739	55002.6	12.066
4300.	80.951	13.114	94.065	56389.4	13.863
4400.	81.253	13.131	$94 \cdot 384$	57776.3	13.870
4500.	81.548	13.147	94.695	－9163．4	13.872
4600.	81.837	13.163	95.000	60550.7	13.874
4700 ．	82.120	13.178	95.299	61938.2	13.875
4800.	82.398	13.193	95.591	63325.8	13.877
4900.	82.670	13.207	95.877	64713.5	13.878
5000.	82.937	13.220	96.157	66101.4	13.879
5100.	83.199	13.233	96.432	67489.4	13.881
5200.	83.456	13.246	96.702	68877．5	13.882
5300.	83.709	13.258	96.966	70265．8	13.883
5400.	83.956	13.269	97.226	71654.1	13.884
5500.	84.200	13.280	97.481	73042.5	13.885
5600.	84.439	13.291	97.731	74431.1	13.886
5700.	84.675	13.302	97.976	75819.7	13.887
5800.	84.906	13.312	98．218	77208．4	13.887
5900.	85．134	13.322	98.455	78597.2	13.888
6000 ．	85.358	13.331	98.689	79986.0	13.889
273.15	50.540	8.448	58.988	2307.4	9.647
298.15	51.285	8.560	59.845	2552．1	9.927

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	.0192308
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$.0804617
$\mathrm{Btu} 1 \mathrm{~b}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{F}^{-1}\right)$.0192182

Table A-71 Thermodynamic Functions for $\mathrm{N}_{2} \mathrm{~F}_{4}$

T	$-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right)$	$\mathrm{H}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{o}}$	s^{0}	$\mathrm{H}^{\mathbf{O}}-\mathrm{H}_{\mathrm{O}}^{\mathbf{O}}$	C_{p}^{0}
${ }^{\circ} \mathrm{K}$	T	T			
50.	42.698	8. 293	50.991	414.7	9.029
75.	46.130	8.662	54.792	649.6	9.773
100.	48.674	9.046	57.720	904.6	10.661
125.	50.737	9.476	60.214	1184.5	11.767
150.	52.507	9.961	62.469	1494.2	13.025
175.	54.082	10.494	64.576	1836.4	14.354
200.	55.520	11.060	66.580	2212.0	15.690
225.	56.857	11.647	68.503	2620.5	16.988
250.	58.114	12.243	70.358	3060.8	18.220
275.	57.309	12.839	72.149	3530.9	19.370
300.	60.452	13.428	73.880	4028.5	20.429
325.	61.550	14.005	75.554	4551.5	21.396
350.	62.608	14.564	77.173	5097.6	22.274
375.	63.631	15.105	78.737	5664.5	23.067
400.	64.623	15.626	80.249	6250.3	23.782
425.	65.585	16.125	81.710	6853.0	24.426
450.	66.521	16.602	83.123	7471.0	25.005
475.	67.431	17.058	84.489	8102.8	25.526
500.	68.317	17.494	85.811	8746.9	25.996
550.	70.023	18.305	88.327	10067.6	26.803
600.	71.648	19.041	90.689	11424.8	27.464
650.	73.199	19.711	92.909	12812.0	28.009
700.	74.682	20.320	95.002	14224.1	28.462
750.	76.103	20.876	96.979	15657.0	28.842
800.	77.467	21.384	98.851	17107.3	29.163
850.	78.777	21.850	100.627	18572.5	29.435
900.	$80 \cdot 039$	22. 278	102.317	20050.2	29.669
950.	81.254	22.672	103.926	21538.8	29.871
1000.	82.426	23.037	105.463	23036.9	30.046
1050.	83.558	23.374	106.933	24543.0	30.198
1100.	84.653	23.688	108.341	26056.4	30.332
1150.	85.713	23.979	109.692	27576.0	30.450
1200 .	86.739	24.251	110.990	29101.2	30.555
1250.	87.734	24.505	112.239	30631.3	30.648
1300 .	88.700	24.743	113.443	32165.8	30.731
1350 -	89.638	24.966	114.604	33704.2	$30 \cdot 805$
1400 -	90.550	25.176	115.726	35246.2	30.872
1450 .	91.437	25.373	116.810	36791.3	30.933
1500 .	92.300	25.560	117.860	38339.4	30.988
1550.	93.141	25.735	118.877	$39890 . \mathrm{C}$	31.037
1600.	93.961	25.902	119.863	41443.0	31.083
1650.	94.760	26.060	120.820	42998. 2	31.124
1700 .	95.540	26.209	121.750	44555.4	31.162
1750 .	96.302	26.351	122.653	46114.4	31.197
1800.	$97 \cdot 047$	26.486	123.533	47675.1	31.229
1850.	97.774	26.615	124.389	49237.3	31.259
1900.	98.485	26.737	125.223	50800.9	31.286
1950.	99.181	26.854	126.036	52365.9	31.312
2000.	99.863	26.966	126.829	53932.0	31.335
2050 -	$100 \cdot 530$	27-073	127.603	55499.4	31.357

The tables are in units of calories, moles and oK. See reverse side for conversion factors to other units.

Table A-71 Thermodynamic Functions for $\mathrm{N}_{2} \mathrm{~F}_{4}$ - continued

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$)	.0096154
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$)	.0402308
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $^{\circ} \mathrm{F}^{-1}$)	.00960911

Table A－72－1 Thermodynamic Functions for Ti^{+}

$\stackrel{T}{\mathrm{~T}}{ }_{\mathrm{K}}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{P}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}$
273．15	36.9693	6.3385	43.3078	6.2670	1731.4
298．15	37.5241	6.3321	43.8562	6.2577	1887.9
1000．	45.0941	6.0885	51.1826	5.6337	$6088 \cdot 5$
1100.	45.6723	6.0443	51.7166	5.5734	$6648 \cdot 7$
1200.	46.1964	6.0031	52.1996	5.5296	7203．8
1300.	46.6754	5.9655	52.6409	5.4998	7755．1
1400.	47.1162	5.9315	53.0478	5.4820	8304.1
1500.	47.5244	5.9012	53.4257	5.4744	8851.9
1600.	47.9044	5.8746	53.7790	5.4756	9399.3
1700.	48.2598	5.8513	54.1111	5.4844	9947．2
1800.	48.5937	5.8313	54.4250	5.5000	10496.4
1900.	48.9085	5.8144	54.7230	5.5214	11047.4
2000．	49．2064	5.8004	55.0068	5.5479	$11600 \cdot 9$
2100.	49.4891	5.7891	55.2782	5.5787	12157.2
2200 。	49.7582	5.7803	55.5385	5.6132	12716.7
2300 。	50.0150	5.7739	55.7889	5.6505	13279.9
2400 。	50.2606	5.7695	56.0302	5.6902	13846.9
2500 。	50.4961	5.7672	56.2633	5.7317	14418．0
2600．	50.7223	5.7666	56.4889	5.7743	14993．3
2700 。	50.9399	5.7677	56.7077	5.8177	15572.9
2800．	51.1497	5.7703	56.9200	5.8612	16156.8
2900．	51.3523	5.7742	57.1265	5.9047	16745．1
3000 。	51.5481	5.7792	57.3274	5.9476	17337.7
3100.	51.7377	5.7854	57.5231	5.9897	17934.6
3200.	51.9215	5.7924	57.7139	6.0308	18535.7
3300.	52.0999	5.8002	57.9001	6.0706	$19140 \cdot 7$
3400 。	52.2732	5.8087	58.0819	6.1089	19749．7
3500.	52.4417	5.8178	58.2595	6.1457	20362．5
3600．	52.6057	5.8274	58.4331	6.1807	20978．8
3700.	52.7655	5.8374	58.6029	6.2140	21598．6
3800.	52.9213	5.8478	58.7691	6.2456	22221．6
3900.	53.0733	5.8584	58.9317	6.2753	22847.6
4000．	53.2218	5.8691	59.0909	6.3032	23476.5
4100.	53.3669	5.8800	59.2469	6.3293	24108.2
4200.	53.5087	5.8910	59.3997	6.3537	24742．3
4300 。	53.6474	5.9021	59.5495	6.3764	25378．9
4400 。	53.7832	5.9131	59.6963	6.3975	26017．6
4500 。	53.9162	5.9241	59.8403	6.4170	26658．3
4600 。	54.0466	5.9350	59.9816	6.4351	27300．9
4700 。	54.1743	5.9458	60.1201	6.4517	27945．3
4800.	54.2996	5.9565	60.2561	6.4671	28591.2
4900 ．	54.4225	5.9671	60.3896	6.4812	29238.6
5000 ．	54.5432	5.9775	60.5207	6.4942	29887.4
5100.	54.6617	5.9877	60.6494	6.5062	30537.5
5200.	54.7780	5.9978	30.7759	6.5171	31188.6
5300.	54.8924	6.0077	60.9001	6.5272	31840.9
5400.	55.0048	6.0174	61.0222	6.5365	32494．1
5500.	55.1153	6.0269	61.1422	6.5451	33148.1
5600.	55.2240	6.0363	61.2602	6.5530	33803.0
5700.	55.3309	6.0454	61.3763	6.5603	34458.7
5800.	55.4361	6.0543	61.4904	6.5671	35115.1
5900.	55.5397	6.0631	61.6027	6.5734	35772．1
6000.	55.6416	6.0716	61.7133	6.5793	36429.7
6100.	55.7421	6.0800	61.8221	6.5848	37087.9
6200 。	55.8410	6.0882	61.9292	6.5900	37746.7
6300 。	55.9385	6.0962	62.0347	6.5950	38405.9

The tables are in units of calories，moles and o_{K} ．See reverse side for conversion factors to other units．The atomic weight $=-47.90$

Table A－72－1 Thermodynamic Functions for Ti^{+}－continued

\begin{tabular}{|c|c|c|c|c|c|}
\hline $$
\begin{gathered}
\mathrm{T} \\
\mathrm{O}_{\mathrm{K}}
\end{gathered}
$$ \& $$
\frac{-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}
$$ \& $$
\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}}{\mathrm{T}}
$$ \& So \& Co

p \& $\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$

\hline 6400. \& 56.0345 \& 6.1040 \& 62．1385 \& 6.5997 \& 39065．7

\hline 6500. \& 56.1292 \& 6.1117 \& 62.2409 \& 6.6043 \& 39725．9

\hline 6600 ． \& 56.2226 \& 6.1192 \& 62.3418 \& 6.6087 \& 40386.5

\hline 6700. \& 56.3147 \& 6.1265 \& 62.4412 \& 6.6129 \& 41047.6

\hline 6800. \& 56.4055 \& 6.1337 \& 62.5392 \& 6.6171 \& 41709.1

\hline 6900 ． \& 56.4951 \& 6.1407 \& 62.6358 \& 6.6212 \& 42371．0

\hline 7000 。 \& 56.5835 \& 6.1476 \& 62.7311 \& 6.6253 \& 43033.4

\hline 7100. \& 56.6707 \& 6.1544 \& 62.8251 \& 6.6294 \& 43696.1

\hline 7200 。 \& 56.7569 \& 6.1610 \& 62.9179 \& 6.6334 \& 44359．2

\hline 7300 。 \& 56.8419 \& 6.1675 \& 63.0094 \& 6.6375 \& 45022．8

\hline 7400 。 \& 56.9259 \& 6.1739 \& 63.0997 \& 6.6415 \& 45686.7

\hline 7500. \& 57.0088 \& 6.1801 \& 63.1889 \& 6.6457 \& 46351.1

\hline 7600 。 \& 57.0907 \& 6.1863 \& 63.2770 \& 6.6498 \& 47015.9

\hline 7700. \& 57.1716 \& 6.1923 \& 63.3639 \& 6.6540 \& 47681.1

\hline 7800. \& 57.2515 \& 6.1983 \& 63.4498 \& 6.6583 \& 48346.7

\hline 7900. \& 57.3305 \& 6.2041 \& 63.5346 \& 6.6626 \& 49012.7

\hline 8000. \& 57.4086 \& 6.2099 \& 63.6185 \& 6.6670 \& 49679．2

\hline 8100. \& 57.4858 \& 6.2156 \& 63.7013 \& 6.6715 \& 50346.1

\hline 8200. \& 57.5621 \& 6.2212 \& 63.7832 \& 6.6760 \& 51013.5

\hline 8300. \& 57.6375 \& 6.2267 \& 63.8642 \& 6.6807 \& 51681.3

\hline 8400 ． \& 57.7121 \& 6.2321 \& 63.9442 \& 6.6854 \& 52349.6

\hline 8500. \& 57.7859 \& 6.2375 \& 64.0234 \& 6.6901 \& 53018.4

\hline 8600. \& 57.8589 \& 6.2428 \& 64．1016 \& 6.6950 \& 53687.7

\hline 8700. \& 57.9311 \& 6.2480 \& 64．1791 \& 6.6999 \& 54357.4

\hline 8800. \& 58.0025 \& 6.2531 \& 64.2557 \& 6.7049 \& 55027.6

\hline 8900. \& 58.0732 \& 6.2582 \& 64.3314 \& 6.7100 \& 55698.4

\hline 9000. \& 58.1432 \& 6.2633 \& 64.4065 \& 6.7151 \& 56369.6

\hline 9100. \& 58.2124 \& 6.2683 \& 64.4807 \& 6.7203 \& 57041.4

\hline 9200 。 \& 58.2809 \& 6.2732 \& 64.5542 \& 6.7256 \& 57713.7

\hline 9300. \& 58.3488 \& 6.2781 \& 64.6269 \& 6.7309 \& 58386.5

\hline 9400 ． \& 58.4159 \& 6.2830 \& 64.6989 \& 6.7362 \& 59059．9

\hline 9500. \& 58.4825 \& 6.2878 \& 64.7702 \& 6.7416 \& 59733．8

\hline 9600. \& 58.5483 \& 6.2925 \& 64.8408 \& 6.7471 \& 60408．2

\hline 9700. \& 58.6136 \& 6． 2972 \& 64.9108 \& 6.7526 \& 61083．2

\hline 9800. \& 58.6782 \& 6.3019 \& 64.9801 \& 6.7581 \& 61758.7

\hline 9900. \& 58.7422 \& 6.3065 \& 65.0487 \& 6.7637 \& 62434.8

\hline 10000. \& 58.8056 \& 6.3111 \& 65.1167 \& 6.7692 \& 63111.5

\hline 10100. \& 58.8684 \& 6.3157 \& $65 \cdot 1841$ \& 6.7748° \& 63788.7

\hline
\end{tabular}

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.020877
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}$（ or ${ }^{\circ} \mathrm{C}^{-1}$ ）	0.087349
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}$（ or ${ }^{\circ} \mathrm{F}^{-1}$ ）	0.020863

Table A－73－1 Thermodynamic Functions for Br^{+}

$\begin{aligned} & \mathrm{T} \\ & \mathrm{oK} \end{aligned}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	So	Co	$\mathrm{H}^{\circ}=\mathrm{H}_{0}$
273.15	36.8455	4.9682	41.8136	4.9682	1357．1
298．15	37．2806	4.9682	42.2487	4.9682	1481．3
1000	43．3074	5.0353	48.3426	5． 2778	5035．3
1100	43.7885	5．0609	48.8494	5.3568	$5567 \cdot 0$
1200 －	44.2300	5.0887	49.3187	5.4300	6106.4
1300.	44.6384	5.1175	49.7550	5.4948	$6652 \cdot 7$
1400	45.0187	5.1465	$50 \cdot 2652$	5.5502	$7205 \cdot 1$
1500.	45.3748	5.1750	50.5498	5.5962	7762.5
1600	45.7097	$5 \cdot 2025$	50.9122	5.6334	8324.0
1700	46.0259	5.2288	51.2546	5．6628	8888．9
1800	46.3254	5.2535	51.579 C	5.6856	9456.4
1900	46.6101	5． 2768	51.8860	5.7030	10025.8
2000 。	46.8813	5.2984	52.1797	5.7162	10596．8
2100.	47.1403	5.3186	52.4589	5.7260	11169.0
2200	47.3882	5.3373	52.7254	5.7334	11742.0
2300 。	47.6258	5.3546	52.9804	5．7391	12315.6
2400.	47.8541	5.3707	53.2248	5.7436	12889.7
2500	$48 \cdot \cap 736$	5.3857	53.4593	5.7473	13464．3
2600 。	48.2851	5.3997	53.6848	5.7506	14039.2
2700 。	48.4892	5.4127	53.9019	5.7536	14614.4
2800 。	48.6862	5.4250	54.1112	5．7565	15189．9
2900.	48.8768	5.4364	54.3132	5.7594	15765．7
3000.	49.0613	5.4473	54.5086	5．7624	16341．8
3100.	49．2401	5.4575	54.6975	5.7654	16918．2
3200 。	49.4135	5.4671	54.88 .06	5.7684	17494．9
3300.	49.5819	5.4763	55.0582	5.7714	18071．9
34 กn．	49.7455	5.4850	55.2305	5.7743	18649．1
3500 。	49．9046	5.4933	55.3979	5.7772	10226.7
3600.	50.0595	5.5013	55.5607	5.7799	19804.6
3700 －	50.2103	5.5088	55.7191	5.7825	20382．7
38 กn．	50.3573	5.5161	55.8734	5.7848	20961．1
3900.	50.5007	5.5230	56．0237	5.7869	21539.7
4000.	50.6406	5.5296	56.1702	5.7887	22118.5
4100.	50.7772	5.5360	56.3132	5.7902	22697．4
4200 －	50.9107	5.5420	56.4527	5.7914	23276.5
4300 。	51.0412	5.5478	56.5890	5.7922	23855．7
4400 。	51.1688	5.5534	56.7222	5.7926	24434．9
4500 －	51.2936	5.5587	56.8523	5．7926	25014．2
4600 。	51.4159	5.5638	56.9796	5.7923	25593.4
4700 －	51.5356	5.5686	57.1042	5.7916	26172.6
4800	51.6529	5.5733	57.2261	5.7905	26751．7
4900.	51.7678	5.5777	57.3455	5.7890	27330.7
5000	51.8805	5.5819	57.4625	5.7872	27909．5
5100.	51.9911	5.5859	57.5770	5.7850	28488．1
5200.	52.0996	5.5897	57.6893	5.7825	29066．5
5300.	52.2061	5.5933	57.7995	5.7796	29644.6
5400 －	52.3107	5.5967	57.9075	5.7764	30227．4
5500.	52.4134	5.6000	58.0134	5.7729	30799．9
5600.	52.5144	5.6030	58．1174	5．7691	31377．0
5700.	52.6136	5.6059	58.2195	5．7652	31953.7
5800.	52.7111	5.6086	58.3197	5．7607	32530.0
5900.	52.8070	5.6112	58.4182	5．7562	33105.9
6000 ．	52.9013	5.6135	58.5149	5．7514	33681．2
6100.	52.9941	5.6158	58.6099	5．7464	34256.1
6200.	53.0855	5.6178	58.7033	5．7412	34830.5
6300.	53.1754	5.6197	58．7951	5.7358	35404．3

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=79.9155$

Table A－73－1 Thermodynamic Functions for Br^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{HO}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{S}_{\mathrm{p}}^{0}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\mathrm{O}}$
6400	53.2639	5.6215	58.8854	5.7302	$35977 \cdot 6$
6500 ．	53.3510	5.6231	58.9742	5.7245	36550.4
6600.	53.4369	5.6246	59.0615	5.7187	37122.5
6700 ．	53.5215	5.6260	59.1475	5．7127	37694．1
6800.	53.6049	5.6272	59.2321	5.7066	38265．1
6900.	53.6870	$5 \cdot 6283$	59.3153	5.7004	$38835 \cdot 4$
7 O 0 －	53.7680	5.6293	59.3973	5.6941	39405．2
7100 。	53.8479	5.6302	59.4780	5.6878	39974．2
7200 ．	53.9266	5.6309	59.5575	5.6813	$40542 \cdot 7$
7300 。	54.0043	5.6316	59.6359	5.6748	41110.5
74 00．	54.0809	5.6321	59.7130	5.6683	41677.7
7500 。	54．1565	5.6326	59.7891	5.6617	4224402
7600.	54.2311	5.6329	59.8640	5.6551	42810.0
7700 ．	54.3048	5.6331	59.9379	5.6485	$43375 \cdot 2$
7800 －	54.3774	5.6333	60.0107	5.6418	43939.7
7900.	54.4492	5.6334	60.0826	5.6352	$44503 \cdot 6$
8000 。	54.5201	5.6333	60.1534	5.6285	$45066 \cdot 7$
8100.	54.5901	5.6332	60.2233	5.6219	$45629 \cdot 3$
8200 。	54.6592	5.6331	60.2922	5.6152	46191．1
8300.	54.7274	5.6328	60.3603	5．6086	46752．3
84 00．	54.7949	5.6325	50.4274	5.6020	47312.8
8500.	54.8616	5.6321	60.4936	5.5954	47872.7
8600.	54.9274	5.6316	60.5590	5.5888	48431.9
8700 －	54.9925	5.6311	60.6236	5.5823	48990.5
8800 －	55．0569	5.6305	60.6874	5.5758	49548.4
8900.	55．1205	5.6298	60.7504	5.5694	50105．6
9000	55.1834	5.6291	60.8125	5.5630	50662．2
9100.	55.2456	5.6284	60.8740	5.5566	51218.2
9200 。	55．3971	5.6276	60.9347	5.5503	51773.6
9300.	55．3679	5.6267	60.9946	5.5441	$52328 \cdot 3$
9400 －	55.42 el	5.6258	61.0539	5.5379	$52882 \cdot 4$
9500.	55.4876	5.6248	61.1125	5.5318	53435.9
9600.	55.5465	5.6238	61.1704	5.5257	53988.7
9700.	55．6048	5.6228	61.2276	5.5197	$54541 \cdot 0$
9800 －	55.6625	5.6217	61.2842	5.5138	$55092 \cdot 7$
99 ก0．	55.7195	5.6206	61.3401	5.5079	55643.8
10000 ．	55.7760	5.6194	61.3955	5.5021	56194.3
10100 。	55.8319	5.6182	61.4502	5.4964	$56744 \cdot 2$

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}$（or ${ }^{\circ} \mathrm{C}^{-1}$ ）	0.012513
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.052354
Btu $1 b^{-1}{ }^{\circ} \mathrm{R}^{-1}$（ or ${ }^{\circ} \mathrm{F}^{-1}$ ）	0.012505

Table A－74－1 Thermodynamic Functions for W^{+}

$\begin{array}{r} \mathrm{T} \\ \mathrm{o}_{\mathrm{K}} \end{array}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}^{\circ}\right)}{\mathrm{T}}$	$\frac{\mathrm{HO}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}$
273．15	37．5096	4．9788	42．4884	5.0534	1360.0
298．15	37．9459	4.9873	42.9332	5.1082	1487.0
1000.	44.4172	6.0268	50.4439	7.5535	$6026 \cdot 8$
1100.	44.9986	6.1739	51.1725	7.7314	6791．3
1200.	45.5417	6.3100	51.8517	7.8769	7572．0
1300.	46.0518	6.4352	52.4869	7.9929	8365.7
1400.	46.5329	6.5498	53.0827	8.0818	9169.7
1500.	46.9884	6.6542	53.6426	8.1462	$9981 \cdot 3$
1600.	47.4209	6.7489	54．1698	8．1888	10798．2
1700.	47.8327	6.8344	54.6671	8.2131	11618.4
1800.	48.2256	6.9113	55.1368	8.2224	12440.3
1900.	48.6011	6.9803	55.5814	8.2203	13262.5
2000 。	48.9608	7.0420	56.0028	8.2103	14084．1
2100.	49.3057	7.0973	56.4030	8． 1954	14904.4
2200 。	49.6370	7．1469	56.7839	$8 \cdot 1.785$	15723．1
2300 。	49.9557	7．1913	57．1471	8．1618	16540．1
2400 。	50.2627	7.2315	57.4941	8.1472	17355.5
2500.	50.5586	7.2679	57.8265	8． 1362	18169.7
2600 。	50.8443	7.3011	58．1454	8.1297	18982.9
2700.	51．1204	7.3318	58.4522	8.1283	19795.8
2800 。	51.3876	7.3603	58.7479	8． 1326	20608．8
2900 。	51.6464	7.3871	59.0334	8.1424	21422.5
3000.	51.8972	7.4125	59.3097	8.1576	22237.4
3100 。	52.1407	7.4368	59.5775	8.1780	23054.2
3200 。	52.3772	7.4604	59.8375	8.2030	23873.2
3300 。	52.6071	7.4833	60.0904	8.2320	24694．9
3400 。	52.8308	7.5058	60.3366	8.2645	25519.7
3500．	53.0487	7.5280	60.5767	8.2998	26347．9
3600.	53.2611	7.5499	60.8110	8.3372	2717．9．7
3700.	53.4682	7.5717	61.0400	8.3759	28015.4
3800 。	53.6705	7.5934	61.2639	8.4154	28854.9
3900.	53.8680	7.6150	61.4830	8.4550	29698．5
4000 ．	54.0610	7.6365	61.6975	8.4941	30545．9
4100.	54.2499	7.6579	61.9077	8.5322	31397.2
4200 。	54.4347	7.6791	62.1138	8.5687	32252．3
4300 。	54.6156	7.7002	62.3158	8.6034	33110.9
4400.	54.7929	7.7211	62.5140	8.6357	33972．9
4500 。	54.9666	7.7418	62．7084	8.6654	34838．0
4600．	55.1370	7．7621	62.8991	8.6923	35705．9
4700.	55．3041	7.7822	63.0863	8.7161	36576．3
4800 。	55.4682	7.8019	63.2701	8.7367	37449.0
4900.	55.6293	7.8211	63.4504	8.7540	38323.6
5000 ．	55.7875	7.8399	63.6274	8.7680	39199.7
5100.	55.9429	7.8582	63.8011	8.7786	40077．1
5200.	56.0957	7.8760	63.9717	8.7859	40955.3
5300.	56.2458	7.8932	64.1391	8.7899	41834.1
5400 。	56.3935	7.9098	64.3034	8.7907	42713.2
5500.	56.5388	7.9258	54.4647	8.7885	43592．2
5600.	56.6818	7.9412	64.6230	8.7833	44470.8
5700.	56.8225	7.9559	64.7784	8.7753	45348.7
5800.	56.9610	7.9700	64.9309	8.7646	46225.8
5900.	57.0973	7.9833	65.0806	8.7515	47101.6
6000 ．	57.2316	7.9960	65.2276	8.7360	47976.0
6100.	57.3639	8.0080	65.3718	8.7184	48848.7
6200 。	57.4942	8.0193	65.5135	8.6989	49719.6
6300.	57.6226	8.0299	65.6525	8.6776	50588．4

The tables are in units of calories，moles and oK．See reverse side for conversion factors to other units．The atomic weight $=183.86$

Table A-74-1 Thermodynamic Functions for W^{+}- continued

$\begin{gathered} \mathrm{T} \\ \mathrm{oK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{0}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\mathrm{O}}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	S°	C_{p}	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\mathrm{O}}$
				-	
6400.	57.7491	8.0399	65.7890	8.6547	51455.1
6500.	57.8738	8.0491	65.9230	8.6303	52319.3
6600.	57.9968	8.0577	66.0545	8.6047	53181.1
6700.	58.1180	8.0657	66.1837	8.5780	54040.2
6800.	58.2376	8.0730	66.3106	8.5504	54896.7
6900.	58.3555	8.0798	66.4352	8.5220	55750.3
7000.	58.4718	8.0859	66.5576	8.4929	56601.0
7100.	58.5865	8.0914	66.6779	8.4633	57448.8
7200.	58.6997	8.0963	66.7961	8.4333	58293.7
7300.	58.8114	8.1008	66.9122	8.4031	59135.5
7400.	58.9217	8.1046	67.0263	8.3727	59974.3
7500.	59.0305	8.1080	67.1385	8.3423	60810.0
7600.	59.1379	8.1109	67.2488	8.3119	61642.7
7700.	59.2439	8.1133	67.3572	8.2816	62472.4
7800.	59.3486	8.1153	67.4639	8.2515	63299.1
7900.	59.4520	8.1168	67.5688	8.2217	64122.7
8000.	52.5541	8.1179	67.6721	8.1923	64943.4
8100.	59.6550	8.1187	67.7736	8.1632	65761.2
8200.	59.7546	8.1190	67.8736	8.1346	66576.1
-8300.	59.8530	8.1191	67.9721	8.106う	67388.1
8400 .	59.9502	8.1187	68.0690	8.0789	68197.4
8500 .	60.0463	$8 \cdot 1181$	68.1644	8.0519	69003.9
8600.	60.1413	8.1172	68.2584	8.0254	69807.8
8700.	60.2351	8.1160	68.3511	7.9996	70609.0
8800.	60.3278	8.1145	68.4424	7.9745	71407.7
8900.	60.4195	8.1128	68.5323	7.9500	72204.0
9000.	60.5102	8.1109	ง8.6210	7.9262	72997.8
9100.	60.5998	8.1087	68.7085	7.9030	73789.2
9200.	60.6884	8.1063	68.7947	7.8805	74578.4
9300.	60.7760	8.1038	68.8798	7.8588	75365.3
9400 。	60.8627	8.1011	68.9637	7.8377	76150.2
9500.	60.9484	8.0982	69.0466	7.8173	76932.9
9600.	61.0332	8.0952	69.1283	7.7975	77713.6
9700.	61.1170	8.0920	69.2090	7.7785	78492.4
9800.	61.2000	8.0887	69.2887	7.7601	79269.3
9900.	61.2821	8.0853	69.3674	7.7423	80044.5
10000.	61.3634	8.0818	69.4451	7.7253	80817.8
10100.	61.4438	8.0782	69.5219	7.7088	81589.5

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$. 0054389
joules $\mathrm{g}^{-1} \circ \mathrm{~K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$. 022756
Btu $1 b^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right)$. 0054354

Table A－75－1 Thermodynamic Functions for Zr^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK}_{\mathrm{K}} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}^{\circ}\right)}{T}$	$\frac{\mathrm{HO}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}$
273．15	37.3543	5.9205	43.2748	6.7330	1617.2
298．15	37.8759	5.9898	43.8657	6.7598	1785．9
1000	45.4762	6.4167	51.8929	6.5387	6416.7
1100.	46.0884	6.4295	52.5179	6.5767	7072.5
1200 。	46.6484	6.4435	53.0919	6.6171	7732.2
1300.	47.1647	6.4583	53.6231	6.6561	8395.8
1400.	47.6439	6.4738	54．1177	6.6918	9063.3
1500.	48.0911	6.4894	54.5805	6.7231	9734.0
1600.	48.5104	6.5048	55.0152	6.7501	10407.7
1700	48.9052	6.5200	55.4252	6.7726	11083.9
1800.	49.2783	6.5345	55.8128	6.7912	11762.1
1900.	49.6320	6．5484	56．1804	6.8061	12442.0
2000.	49.9682	6.5616	56.5298	6.8177	13123.2
2100	50.2887	6.5740	56.8627	6.8265	13805.5
2200.	50.5947	6.5857	$57 \cdot 1804$	6.8328	14488.5
2300.	50.8877	6.5965	57.4842	6.8369	15172.0
2400.	51.1687	6.6066	57.7753	6.8392	15855．8
2500.	51.4386	6.6159	58．0545	6.8397	16539.7
2600．	51.6982	6.6245	58.3227	6.8389	17223．7
2700.	51.9484	6.6324	58.5808	6.8367	17907．5
2800.	52.1897	6.6396	58.8294	6.8334	18591．0
2900．	52.4228	6.6462	59.0691	6.8291	19274．1
3000 。	52.6483	6.6523	59．3005	6.8239	19956．8
3100.	52.8665	6.6577	59.5242	6.8180	20638．9
3200．	53.0779	6.6626	59．7405	6.8113	21320．3
3300 。	53.2830	6.6670	59.9500	6.8040	22001．1
3400 。	53.4821	6.6709	$60 \cdot 1530$	6.7961	22681．1
3500 。	53.6755	6.6744	60.3499	6.7878	23360．3
3600 －	53.8636	6.6774	60.5410	6.7790	24038．7
3700.	54.0466	6.6800	60.7266	6.7699	24716．1
3800.	54.2248	6.6823	60.9070	6.7606	25392．7
3900．	54.3984	6.6842	61.0825	6.7510	26068．2
4000.	54.5676	6.6857	61.2533	6.7412	26742．8
4100.	54.7377	6.6869	61.4197	6.7314	27416．5
4200 。	54.8939	6.6879	61.5818	6.7215	28089．1
4300 。	55.0512	6.6886	61.7398	6.7116	28760．8
4400 －	55．2050	6.6890	61.8940	6.7018	29431．4
4500.	55.3553	6.6891	62.0445	6.6922	30101．1
$4600 \cdot$	55.5024	6.6991	62.1915	6.6827	30769．9
4700 －	55.6462	6.6989	62.3351	6.6734	31437.7
48 n ．	55.7870	6.6885	62.4755	6.6645	32104.6
4900.	55.9249	6.6879	62.6128	6.6558	32770.6
5000 －	56.0600	6.6871	62.7472	6.6475	33435.7
5100.	56.1925	6.6863	62.8788	6.6396	$34100 \cdot 1$
5200 －	56.3223	6.6853	63.1076	6.6321	34763.7
5300.	56.4496	6.68 .43	63.1339	6.6251	35426．5
5400.	56.5746	6.6831	63.2576	6.6185	36088．7
5500.	56.6972	6.6819	63.3790	6.6124	36750.2
5600.	56.8176	6.6806	63.4981	6.6068	37411．2
5700.	56.9358	6.6792	63.6150	6.6017	38071．6
5800.	57.0519	6.6779	63.7298	6.5972	38731.6
5900.	57.1661	6.6765	63.8425	6.5932	39391．1
6000.	57.2783	6.6750	63.9533	6.5898	40050．2
6100.	57.3886	6.6736	64．0622	6.5869	40709．1
6200 。	57.4971	6.6722	64.1693	6.5845	41367.6
6300.	57.6039	6.6708	64.2746	6.5827	42026．0

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverise side for conversion factors to other units．The atomic weight $=91.22$

Table A－75－1 Thermodynamic Frunctions for Zr^{+}－continued

$\begin{gathered} \mathrm{T} \\ \mathrm{oK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{HO}_{0}$
6400.	57.7089	6.6694	64．3783	6.5814	42684．2
6500.	57.8123	6.6680	64.4803	6.5806	43342.3
6600.	57.9141	6.6667	64．5808	6.5803	$44000 \cdot 3$
6700.	58.0143	6.6654	64.6798	6.5806	44658．4
6800．	58．1131	6.6642	64.7772	6.5813	45316.5
6900.	58.2103	6.6630	64.8733	6.5825	45974.6
7 n の	$58.306 ?$	6.6619	64.9681	6.5842	46633．0
71 00．	58.4007	6.6608	65.0615	6.5863	47291.5
72 no．	58.4930	6.6598	$6.5 \cdot 1536$	6.5888	47950．2
7300 。	58.5857	6.6588	65.2445	6.5918	48609.3
7400 －	58.6763	6.6579	65.3342	6.5951	49268．6
7500	58.7657	6.6571	65.4228	6.5988	49928．3
760 \％	58.8538	6.5564	65.5102	6.6028	50588．4
7700 －	58.9408	6.6557	65.5965	6.6072	51248.9
78 ก0．	59.0267	6.6551	65.6818	6.6118	51909.8
79 00．	59.1115	6.6546	65.7661	6.6168	52571．2
8000.	59.1952	6.6541	65．8493	6.6220	53233.2
8100.	59.2779	6.5538	65.9316	6.6275	53895.7
82 0．	59.3505	6.6535	66.0130	6.633 .2	54558.7
8300.	59.4401	6.6533	66.0934	6.6391	55222．3
84 no．	59.5198	6.6532	66．1730	6.6452	55886.5
85 no．	59.5986	6.6531	66.2517	6.6515	56551．4
8670.	59.6764	6.6531	66.3295	6.6579	57216．8
8700	59.7533	6.6532	66.4065	6.6645	57882．9
8800.	59.8293	6.6534	66.4827	6.6712	58549.7
89 00．	59.9045	6.6536	66.5581	6.6780	59217．2
9ากロ．	59.9789	6.6539	66.6328	6.6848	59885.3
9100.	60.0524	6.6543	66.7067	6.6918	60554．1
9200.	60.1251	6.6547	66.7799	6.6988	61223.7
9300.	60.1971	6.6553	66.8523	6.7058	61893.9
94 ？ 0 。	60.2682	6.6558	66.9241	6.7129	62564．8
9500.	60.3387	6.6565	66.9951	6.7200	63236．5
9600.	60.4084	6.5572	67.0655	6.7270	63908．8
9700.	60.4774	6.6579	67.1353	6.7341	64581．9
9800.	60.5457	6.6587	67.2044	6.7411	65255.7
99 ก0．	60.6133	6.6596	67．2729	6.7482	65．930．1
1กกาก。	50.6807	6.5605	67.3407	6.7551	66605.3
10100	60.7465	6.6615	67．4080	6.7620	67281．1

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal g ${ }^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	0.010962
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.045865
Btu $\mathrm{lb}^{-1} \circ \mathrm{R}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{F}^{-1}\right)$	0.010955

244

Table A－76－1 Thermodynamic Functions for Mo^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}}{\mathrm{T}}$	So	$\mathrm{Co}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}=\mathrm{H}^{\circ}$
273．15	37.7529	4.9681	42.7210	4.9681	1357.1
298．15	38.1880	4.9681	43.1561	4.9681	1481.3
1000.	44.2002	4．9682	＋9．1684	4.9682	4968．2
1100.	44.6737	4.9682	49.6419	4.9683	5465.0
1200.	45.1060	4.9682	50.0742	4.9688	5961．8
1300.	45.5037	4.9683	50.4720	$4.970{ }^{-}$	6458.8
1400 ．	45.8719	4．9685	50.8403	4.9725	6955．9
1500.	46.2147	4.9689	51.1836	4.9773	$7453 \cdot 3$
1600.	46.5354	4.9697	51.5050	4.9857	7951.4
1700.	46.8367	4.9710	51.8077	4.9994	8450.7
1800．	47.1209	4.9731	52.0940	5.0201	8951.6
1900.	47.3898	4.9763	52.3662	5.0500	9455.0
2000.	47.6452	4.9810	52.6262	5.0909	9961.9
2100.	47.8884	4.9874	52.8758	5.1451	10473.6
2200．	48.1206	4.9961	53.1167	5.2144	10991．4
2300 。	48.3429	5.0074	53.3503	5.3005	$11517 \cdot 0$
2400 。	48.5563	5.0217	53.5780	5.4048	12052．2
2500 。	48.7617	5.0395	53.8011	5.5286	12598．7
2600 。	48.9597	5.0610	54.0207	5.6726	13158.5
2700.	49.1512	5.0866	54.2378	5.8371	13733．9
2800 。	49.3367	5.1167	54.4534	6.0223	14326.7
2900 。	49.5168	5.1514	54.6682	6.2277	14939．0
3000 。	49.6921	5.1910	54.8831	6.4527	15572．9
3100 。	49.8631	5.2355	55.0986	6.6963	16230．2
3200 。	50.0301	5.2852	55.3153	6.9569	16912.7
3300 。	50.1935	5.3400	55.5335	7.2330	17622．1
3400 。	50.3538	5.3999	55.7537	7.5225	18359．7
3500 。	50.5113	5.4648	55.9761	7.8235	19126.9
3600 ．	50.6662	5.5346	56.2008	$8 \cdot 1334$	19924.7
3700.	50.8188	5.6091	56.4280	8.4499	20753．8
3800 ．	50.9695	5.6881	56.6576	8.7704	21614.8
3900.	51.1183	5.7713	56.8895	9.0922	22508，0
4000 。	51.2655	5.8583	57.1238	9.4129	23433.2
4100.	51.4112	5.9489	57.3601	9.7298	24390.4
4200.	51.5557	6.0426	57.5983	10.0405	25379．0
4300.	51.6990	6.1391	57.8381	10.3428	26398．2
4400 ．	51.8413	6.2380	58.0793	10.6345	27447．2
4500 ．	51.9826	6.3388	58.3214	10.9136	28524.7
4600 ．	52.1230	6.4412	58.5642	11.1785	29629.4
4700.	52.2627	6.5447	58.8073	11.4277	30759.9
4800.	52.4015	6.6488	59.0504	11.6599	31914.4
4900.	52.5397	6.7533	59.2930	11.8742	33091.3
5000 ．	52.6772	6.8577	59.5349	12.0698	34288.6
5100.	52.8140	6.9617	59.7757	12.2464	35504.6
5200.	52.9502	7.0649	60.0151	12.4036	36737.3
5300.	53.0858	7.1669	60.2527	12.5414	37984.7
5400 ．	53.2207	7.2676	60.4882	12.6601	39244.9
5500.	53.3549	7.3666	60.7215	12.7599	$40516 \cdot 1$
5600.	53.4885	7.4636	60.9522	12.8413	41796.3
5700.	53.6215	7.5585	61.1800	12.9051	43083.7
5800.	53.7537	7.6512	61.4049	12.9519	44376.7
5900.	53.8853	7．7413	61.6266	12.9826	45673.6
6000.	54.0161	7.8288	61.8449	12.9982	46972.7
6100.	54.1463	7.9136	62.0598	12.9996	48272.7
6200.	54.2756	7.9955	62.2711	12.9877	49572．2
6300.	54.4042	8.0746	62.4788	12.9638	50869．9

The tables are in units of calories，moles and ${ }^{\circ} \mathrm{K}$ ．See reverse side for conversion factors to other units．The atomic weight $=95.95$

Table A-76-1 Thermodynamic Functions for Mo^{+}

- continued

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{FO}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{CP}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}$
6400.	54.5319	8.1507	62.6826	12.9286	52164.6
6500.	54.6589	8.2239	62.8828	12.8833	53455.3
6600.	54.7850	8.2941	63.0791	12.8288	54740.9
6700.	54.9102	8.3613	63.2715	12.7662	56020.8
6800.	55.0346	8.4256	63.4601	12.6962	57293.9
6900.	55.1580	8.4869	63.6449	12.6199	58559.6
7000.	55.2805	8.5454	63.8259	12.5379	59817.7
7100.	55.4022	8.6010	64.0032	12.4512	61067.2
7200.	55.5228	8.6539	$64 \cdot 1767$	12.3605	62307.8
7300.	55.6425	8.7040	64.3465	12.2663	63539.2
7400.	55.7613	8.7515	64.5128	12.1695	64761.0
7500.	55.8791	8.7964	64.6755	12.0705	65973.0
7600.	55.9959	8.8388	64.8347	11.9698	67175.0
7700.	56.1117	8.8788	64.9905	11.8681	68366.9
7800.	56.2265	8.9165	65.1430	11.7656	69548.6
7900.	56.3403	8.9519	65.2922	11.6629	70720.1
8000 .	56.4531	8.9852	65.4383	11.5602	71881.2
8100.	56.5649	9.0163	65.5812	11.4579	73032.1
8200.	56.6757	9.0455	65.7212	11.3563	74172.8
8300.	56.7855	9.0727	65.8582	11.2556	75303.4
8400 .	56.8943	9.0981	55.9924	11.1560	76424.0
8500 .	57.0022	9.1217	66.1239	11.0578	77534.6
8600 .	57.1090	9.1437	66. 2526	10.9610	78635.6
8700 .	57.2143	9.1640	66.3788	10.8659	79726.9
8800.	57.3196	9.1828	66.5025	10.7725	80808.8
8900.	57.4235	9.2002	66.6237	10.6809	81881.4
9000.	57.5264	9.2161	66.7425	10.5912	82945.0
9100.	57.6283	9.2307	66.8591	10.5036	83999.8
9200.	57.7293	9.2441	66.9734	10.4179	85045.8
9300.	57.8293	9.2563	67.0856	10.3344	86083.4
9400.	57.9283	9.2673	67.1956	10.2529	87112.8
9500.	58.0265	9.2773	67.3037	10.1735	88134.1
9600.	58.1236	9.2862	67.4098	10.0962	89147.5
9700.	58.2199	9.2942	67.5141	10.0211	90153.4
9800.	58.3153	9.3012	67.6165	9.9480	91151.8
9900.	58.4097	9.3074	67.7171	9.8770	$92143 \cdot 1$
10000 .	58.5033	9.3127	67.8160	9.8080	93127.3
10100.	58.5960	9.3173	67.9133	9.7411	94104.7

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or ${ }^{\circ} \mathrm{C}^{-1}$)	0.010422
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$)	0.043606
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}$ (or ${ }^{\circ} \mathrm{F}^{-1}$)	0.010415

Table A－77－1 Thermodynamic Functions for I^{+}

$\begin{gathered} \mathrm{T} \\ \circ \mathrm{~K} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{0}\right)}{\mathrm{T}}$	$\frac{\mathrm{HO}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	$\mathrm{Co}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
273．15	38.2242	4.9681	43.1923	4.9681	$1357 \cdot 1$
298．15	38.6592	4.9681	43.6274	4.9681	1481．3
1000．	44.6716	4.9689	49．6405	4.9759	$4968 \cdot 9$
1100	45.1452	4.9699	50.1151	4.9839	5466．9
1200 。	45.5777	4.9716	50.5493	4.9961	5965．9
1300	45.0757	4.9741	50.9498	5.0130	$6466 \cdot 3$
1400	46.3445	4.9776	51.3221	5.0348	6968．6
1500 。	46.6880	4.9823	51.6703	5.0612.	$7473 \cdot 4$
1600 。	47．0098	4.9881	51.9979	5.0920	7981.0
1700 －	47．3124	4.9952	52.3076	5.1266	8491.9
1800 －	47.5981	5．0036	52.6017	5.1643	$9006 \cdot 4$
1900.	47.8689	5.0131	52.8820	5.2045	9524.9
$2000 \cdot$	48.1263	5.0237	53.1500	5.2466	10047.4
$2100 \cdot$	48.2717	5．0353	53.4070	5.2900	10574.2
2200 －	48.6062	5.0479	53.6542	5．3343	11105.4
2300 。	48.8309	5.0613	53.8923	5.3790	11641．1
2400 。	49.0466	5.0755	54.1221	5.4236	12181．2
2500 。	49．2541	5.0903	54.3444	5.4680	12725.8
26 n0．	49.4541	5.1057	54.5598	5.5117	13274.8
2700 。	49.6470	5．1215	54.7686	5．5546	13828．1
2800．	49.8336	5．1377	54.9713	5.5965	14385.7
2900．	50.0142	5．1543	55．1684	5.6372	14947.4
3000 －	50.1892	5.1710	55．3602	5.6766	15513.1
3100.	50.3590	5.1880	55.5470	5.7145	16082．7
3200.	50.5240	5.2050	55.7290	5.7509	16655．
3300.	50.6844	5.2221	55.9065	5．7857	17232．8
3400 。	50.8406	5.2391	56.0797	5.8189	17813.0
3500.	50.9927	5．2561	56.2488	5.8504	18396.5
3600.	51.1410	5.2731	56.4141	5.8802	18983．1
3700 。	51.2857	5.2899	56.5756	5.9083	19572．5
3800.	51.4270	5．3065	56.7335	5.9347	20164．7
3900 。	51.5651	5.3229	56.8880	5.9593	20759．4
4000 。	51.7000	5.3391	57.0391	5.9823	21356.5
4100.	51.8321	5． 2551	57.1871	6.0036	21955．8
4200.	51.9613	5.3707	57.3320	6.0232	22557．1
4300.	52.0878	5.3861	57.4740	6.0413	23160.4
4400 。	52．2118	5.4012	57.6131	6.0578	23765.4
4500.	52.3334	5.4160	57.7494	6.0728	24371．9
4600.	52.4526	5.4304	57.8830	6.0863	24979．9
4700 。	52.5695	5.4445	58．0140	6.0983	25589．1
4800.	52.6843	5.4582	58.1425	6.1091	26199．5
4900 。	52.7970	5.4716	58．2686	6.1185	26810．9
5000 。	52．9076	5.4846	58．3923	6.1266	27423．1
5100.	53.0164	5.4973	58.5137	6.1336	28036．1
5200.	53.1233	5.5096	58．6328	6.1394	28649．8
5300 。	53.2283	5.5215	58.7498	6.1441	29264.0
5400.	53.3316	5.5331	58.8647	6.1478	29878．6
5500 ．	53.4333	5.5443	58.9775	6.1505	30493.5
5600 。	53.5333	5.5551	59.0884	6.1522	31108．6
$5700 \cdot$	53.6317	5.5656	59.1973	6.1532	31723.9
5800 －	53.7286	5.5757	59.3043	6.1533	32339.2
5900 －	53.8240	5．5855	59.4095	6.1526	32954．5
6000 。	53.9179	5.5950	59.5129	6.1512	33569．7
$6100 \cdot$	54.0105	5.6041	59.6145	6.1491	34184．8
6200 。	54.1017	5.6128	59.7145	6． 1464	34799.5
6300 。	54.1915	5.6213	59.8128	6.1431	35414.0

The tables are in units of calories，moles and ok．See reverse side for conversion factors to other units．The atomic weight $=126.91$

Table A-77-1 Thermodynamic Functions for I^{+}- continued

$\begin{aligned} & \mathrm{T} \\ & \mathrm{OK} \end{aligned}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}}{\mathrm{~T}}$	S°	$\mathrm{Co}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}$
6400.	54.2801	5.6294	59.9095	6.1393	36028.2
6500	54.3675	5.6372	60.0047	6.1350	36641.9
6600.	54.4536	5.6447	60.0983	6.1302	37255.1
67 ก0.	54.5385	5.6519	60.1905	6.1250	37867.9
6800.	54.6223	5.6588	60.2812	6.1193	$38480 \cdot 1$
6900.	54.7050	5.6655	50.3704	6.1134	39091.8
7000.	54.7865	5.6718	60.4584	6.1071	39702.8
7100.	54.8670	5.6779	60.5449	6.1004	40313.2
7200.	54.9465	5.6837	60.6302	6.0936	40922.9
7300.	55.0249	5.6893	60.7142	6.0864	41531.9
7400 。	55.1024	5.6946	60.7970	6.0791	42140.1
7500.	55.1788	5.6997	60.8785	6.0716	42747.7
7600.	55.2544	5.7045	60.9589	6.0638	43354.4
7700 。	55.3290	5.7091	61.0381	6.0560	43960.4
7800 -	55.4027	5.7135	61.1162	6.0480	44565.6
7900.	55.4755	5.7177	61.1932	6.0399	45170.0
8000 .	55.5474	5.7217	61.2691	6.0317	45773.6
8100.	55.6185	5.7255	61.3440	6.02.34	46376.4
8200 .	55.6888	5.7291	61.4179	6.0151	46978.3
8300.	55.7583	5.7325	61.4907	6.0068	47579.4
8400 .	55.8269	5.7357	61.5626	5.9984	48179.7
8500.	55.8948	5.7387	61.6335	5.9900	48779.1
8600.	55.9620	5.7416	61.7036	5.9816	49377.7
8700.	56.0284	5.7443	61.7727	5.9733	49975.4
8800 .	56.0940	5.7469	61.8409	5.9650	50572.3
$8900 \cdot$	56.1590	5.7493	61.9082	5.9567	51168.4
9000	56.2232	5.7515	61.9747	5.9485	51763.7
9100 -	56.2868	5.7536	62.0404	5.9404	52358.1
9200	56.3497	5.7556	62.1053	5.9323	52951.7
9300	56.4119	5.7575	62.1694	5.9244	53544.6
9400.	56.4735	5.7592	62.2327	5.9165	54136.6
9500.	56.5345	5.7608	62.2953	5.9088	54727.9
9600.	56.5948	5.7623	62.3571	5.9012	55318.4
9700.	56.6545	5.7637	62.4182	5.8937	55908.1
9800.	56.7136	5.7650	62.4786	5.8864	56497.1
9900.	56.7722	5.7662	62.5384	5.8793	57085.4
10000.	56.8301	5.7673	62.5974	5.8723	57673.0
10100	56.8875	5.7683	62.6558	5.8656	58259.9

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.0078796
${\text { Btu } \mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\text { or }^{\circ} \mathrm{F}^{-1}\right)}$0.032968	0.0078744

Table A－78－1 Thermodynamic Functions for K^{+}

$\begin{gathered} \mathrm{T} \\ \text { OK } \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	S°	Co	H°－ 4_{0}°
273．15	31.5162	4.9681	36.4843	4.9681	$1357 \cdot 1$
298．15	21.9513	4.9681	36.9194	4.9681	1481.3
1000 －	37.9635	4.9681	42.9317	4.9681	4968．1
1100	38.4370	4.9681	43.4052	4.9681	5465.0
1200.	38.8693	4.9581	43.8375	4.9681	5961.8
1300 。	39.2670	4.9681	44.2351	4.9681	6458.6
1400 －	39.6352	4．5681	44.6033	4.9681	6955.4
1500 。	39.9779	4.9681	44.9461	4.9681	7452.2
1600 。	40.2986	4.9681	45.2667	4.9681	7949．0
1700 －	40.5998	4.9681	45.5679	4.9681	$8445 \cdot 9$
1800 ．	40.8837	4.9681	45.8519	4.9681	8942.7
1900	41.1523	4.9681	46.1205	4.9681	9439.5
2000	41.4072	4.9681	46.3753	4.9681	9936.3
2100 。	41.6496	4.9681	46.6177	4.9681	10433．1
2200	$41.88 \cap 7$	4.9681	46.8488	4.9681	10929.9
2300 。	42.1015	4.9681	47.0697	4.9681	11426.7
2400 －	42.3130	4.9681	47.2811	4.9681	11923.6
2500 －	42.5158	4.0681	47.4839	4.9681	12420.4
2600．	42.7106	4.9681	47.6788	4．9681	12917.2
2700 －	42.8981	4.9681	47.8663	4.9681	13414.0
2800 －	43.0788	4.9681	48.0470	4.9681	13910.8
2900．	43.2532	4.9681	48.2213	4.9681	14407.6
3000 －	43.4216	4.9681	48.3897	4.9681	14904.4
31 กn．	43.5845	4.9681	48.5526	4.9681	15401．3
3200 －	43.7422	4.9681	48.7104	4.9681	15898．1
3300 。	43.8951	4.9681	48.8632	4.9681	15394.0
3400 。	44.0434	4.9681	$49 \cdot 0116$	4.9681	16891．7
3500.	44．1874	4.9681	49.1556	4.9681	17388.5
3600 －	44.3274	4.9681	49.2955	4.9681	17885.3
$37 \cap 0$	44.4635	4.9681	49.4317	4.9681	18382.2
3800 －	44.5960	4.9681	49.5641	4.9681	18879.0
3900 －	44.7250	4.9681	49.6932	4.9681	19375．8
4000 。	44.8508	4.9681	49.8190	4.9681	19872．6
4100 －	44.9735	4.9681	49.9417	4.9681	20369.4
42000	45.0932	4.9681	50.0614	4.9681	20866．2
4300 。	45．2101	4.9681	50.1783	4.9681	21363.0
4400 －	45.3243	4.9681	$50 \cdot 2925$	4.9681	21859.9
4500 －	45.4360	4.9681	50.4041	4.9681	22356.7
4600.	45.5452	4.9681	50.5133	4.9681	22853.5
4700.	45.5520	4.9681	50.6202	4.9681	23350.3
4800．	45.7566	4.9681	50.7248	4.9681	23847．1
4900．	45.8591	4.9681	50.8272	4.9681	24343.9
5000.	45.9594	4.9681	50.9276	4.9681	24840.7
5100.	46．0578	4.9581	51.0260	4.9681	25337.6
5200.	46.1543	4.9681	$51 \cdot 1224$	4．9681	25834.4
5300.	46.2489	4.5681	51.2171	4.9681	26331.2
5400.	46.3418	4.9681	51.3099	4.9681	26828.0
5500.	46.4330	4.9681	51.4011	4.9681	27324.8
5600.	46.5225	4.9681	51.4906	4.9681	27821.6
5700.	46.5104	4.9681	51.5786	4.9681	28318.5
5800.	46.6968	4.9681	51.6650	4.9681	28815．3
5900.	46.7817	4.9681	51.7499	4.9681	29312．1
6000.	46.8652	4.9681	51.8334	4.9681	29808．9
6100.	46.9474	4.9681	51.9155	4．9681	30305.7
6200 。	47．0281	4.9681	51.9963	4.9681	30802.5
6300.	47．1076	4.9681	52.0758	4.9681	31299．3

The tables are in units of calories，moles and oK．See reverse side for
conversion factors to other units．The atomic weight $=39.0995$

$\begin{gathered} \mathrm{T} \\ \mathrm{o}_{\mathrm{K}} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}}{\mathrm{~T}}$	So	Co_{p}	$\mathrm{H}^{\circ}-\mathrm{HO}_{0}$
6400.	47.1859	4.9681	52.154 C	4.9681	31796.2
6500.	47.2629	4.9681	52.2311	4.9681	$32293 \cdot 0$
6600.	47.3388	4.9681	52.3069	4.9681	32789.8
6700.	47.4135	4.9681	52.3816	4.9681	33286.6
68 กn.	47.4871	4.9681	52.4552	4.9681	33783.4
6900 -	47.5506	4.9681	52.5277	4.9681	34280.2
7000.	47.6311	4.9681	52.5992	4.9681	34777.0
7100.	47.7016	4.9681	57.6697	4.9681	35273.9
7200 -	47.7710	4.9681	57.7392	4.9681	35770.7
7300.	47.8396	4.9681	52.8077	4.9681	36267.5
7400 -	47.9072	4.9681	52.8753	4.9681	36764.3
7500.	47.9739	4.9681	52.9420	4.9681	37261•1
7600.	48.0397	4.9681	53.0078	4.9681	37757.9
7700.	$48 \cdot 1046$	4.9681	53.0727	4.9681	3825408
78 ก0.	$48 \cdot 1687$	4.9681	53.1369	4.9681	38751.6
7900	48.2320	4.9681	53.2001	4.9681	39748.4
$80 \cap 0$ -	48.2945	4.9681	53.7626	4.9681	30745.?
8100.	48.3567	4.9681	53.3244	4.9681	40747.0
8200.	48.4172	4.9681	53.3853	4.9681	40738.8
8300.	48.4774	4.9681	53.4455	4.9681	41235.6
8400 -	48.5369	4.9681	53.5050	4.9681	41732.5
8500.	48.5957	4.9681	53.5638	4.9681	42229.3
8600	48.6538	4.9581	53.6219	4.9681	42726.1
8700.	48.7112	4.9681	53.6794	4.9681	43222.9
8800.	48.7680	4.5681	53.7362	4.9681	43719.7
8900.	48.8241	4.9681	53.7923	4.9681	44216.5
9 กロロ・	48.8797	4.9681	53.8478	4.9681	44713.3
9100.	48.9345	4.9681	53.9027	4.9681	45210.2
9200.	48.9888	4.9681	53.9570	4.9681	45707.0
9300.	49.0426	4.9681	$54.01 \cap 7$	4.9681	46203.8
9400.	49.0957	4.9681	54.0638	4.9682	$46700 \cdot 6$
9500.	49.1483	4.9681	54.1164	4.9682	47197.4
9600.	49.2003	4.9681	54.1684	4.9682	47694.2
9700.	49.2518	4.9681	54.2199	4.9682	48191.1
9800.	49.3027	4.9681	54.2709	4.9682	48687.9
9900	49.3532	4.0682	54.3213	4.9682	49184.7
100 กn.	49.4031	4.9682	54.3712	4.9682	49681.5
10100.	49.4525	4.9682	54.4207	4.9682	$50178 \cdot 3$

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ}{ }^{\circ} \mathrm{C}^{-1}$)	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ}{ }^{\circ} \mathrm{C}^{-1}$)	0.025576
$\mathrm{Btu} \mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $^{\circ}{ }^{\circ} \mathrm{F}^{-1}$)	0.10701

Table A－79－1 Thermodynamic Functions for Pb^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(F^{\circ}-\mathrm{H}_{\mathrm{O}}\right)}{T}$	$\frac{\mathrm{H}^{\circ}-\mathrm{Hg}}{T}$	S°	$\mathrm{co}_{\mathrm{p}}^{0}$	$\mathrm{HO}^{\circ}-\mathrm{H}^{\circ}$
273．15	3.7 .8646	4.9681	42.8328	4．9681	1357.1
298．15	38.2997	4.9681	43.2679	4.9681	1481.3
1000.	44.3120	4.9682	49．2801	4.9682	$4968 \cdot 2$
1100.	44.7855	4.9682	49.7536	4.9682	5465.0
1200．	45.2178	4.9682	50．1829	4.9682	$5961 \cdot 8$
1300.	45.6154	4.9682	50.5836	4.9683	$6458 \cdot 6$
1400 。	45.9836	4.9692	50.9518	4.9686	6955.5
1500 。	46.3264	4.9682	51.2946	＋．9691	$7452 \cdot 3$
1600.	46.6470	4.9683	51.6153	4.9702	7949.3
1700.	46.9482	4.9685	51.9167	4.9719	8446.4
1800.	47.2322	4.9587	52.2010	4.9747	8943.7
1900.	47.5009	4.9691	52.4700	4.9787	9441.4
2000．	47.7558	4.9698	52.7235	4.9844	9939.5
2100 。	47.9983	4.9706	52.9689	4.9920	10438.3
2200．	48.2295	4.9718	53.2014	5.0019	10938.0
2300 。	48.4506	4.9734	53.4240	5.0142	11438.8
2400 。	48.6623	4.9754	53.6377	5.0292	11940.9
2500 。	48.8654	4.9779	53.8433	5.0470	12444.7
2600 。	49.0607	4.9807	54.0417	5.0676	$12950 \cdot 4$
2700．	49.2488	4.9846	54.2334	5.0912	13458.3
2800.	49.4301	4.9888	54.4190	5.1176	13968.7
2900 。	49.5053	4.9938	54.5991	5.1468	14482．0
3000 。	49.7747	4.9994	54.7741	2.1787	14998．2
3100.	49.9397	5.0057	54.9444	5.2131	15517.8
3200.	50.0977	5.0128	55.1105	5.2497	16040.9
3300 。	50.2521	5.0205	55.2727	5.2884	16567.8
3400 。	50.4021	5.0290	55.4311	5.3290	17098．6
3500 。	50.5480	5.0382	55.5862	5.3711	17633.6
3600.	50.6901	5.0480	55.7381	5.4145	18172.9
3700 ．	50.8285	5.0585	55.8871	5.4589	18716.6
3800 。	50.9636	5.0697	56.0333	5.5042	19264.7
3900 ．	51.0954	5.0814	56.1768	5.5499	19817.4
4000 ．	51.2242	5.0937	56.3179	5.5960	20374.7
4100.	51.3502	5.1065	56.4567	5.6421	20936.6
4200 ．	51.4734	5.1198	56.5932	5.6881	21503．1
4300.	51.5940	5.1335	56.7275	5.7336	22074.2
4400 ．	51.7122	5．1477	56.8599	5.7786	22649．8
4500.	51.8280	5.1622	56.9902	5.8229	23229．9
4600 。	51.9417	5.1770	57.1187	5.8662	23814.4
4700.	52.0532	5.1922	57．2453	5.9085	24403．1
4800.	52.1626	5.2075	57．3701	5.9496	24996.0
4900 ．	52.2702	5.2231	57.4932	5.9895	25593．0
5000 。	52.3758	5.2388	57.6146	6.0279	26193．9
5100.	52.4797	5.2546	57.7344	6.0649	26798．5
5200.	52.5819	5.2705	57.8525	6.1004	27406．8
5300.	52.6825	5.2865	57.9690	6.1343	28018.6
5400 ．	52.7814	$5 \cdot 3025$	58.0840	6.1666	28633.6
5500.	52.878	5.3135	58.1974	6.1972	29251．8
5600 ．	52.9749	5.3345	58.3093	6.2262	29873.0
5700.	53.0694	5.3503	58.4198	6.2335	30457．0
5800.	53.1626	5.3651	58.5287	6.2791	31123.6
5900.	53.2545	5.3818	58.6353	6.3031	31752.8
6000 ．	53.3451	5.3974	58．7424	6.3255	32384.2
6100.	53.4344	5.4128	58．8471	6.3462	33017．8
6200.	53.5225	5.4280	58.9505	6.3654	33653.4
6300.	53.6095	5.4430	59.0525	6.3830	34290.8

The tables are in units of calories，moles and oK．See reverse side for conversion factors to other units．The atomic weight $=207.21$

Table A－79－1 Thermodynamic Functions for Pb^{+}
－continued

$\begin{gathered} T \\ \circ \\ \hline K \end{gathered}$	$\frac{-\left(\mathrm{F}^{\mathrm{O}}-\mathrm{H}_{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}}{\mathrm{T}}$	So	Co_{p}	$\mathrm{H}^{\circ}-\mathrm{H}_{0}$
6400.	53.6953	5.4578	59.1531	6.3991	34929.9
6500.	53.7801	5.4724	59.2525	6.4138	$35570 \cdot 6$
6600 ．	53.8637	5.4868	59.3505	6.4271	36212.7
6700.	53.9463	5.5009	59.4472	6.4390	36856.0
6800 ．	54.0279	5.5148	59.5427	6.4496	$37500 \cdot 4$
6900.	54.1085	5.5284	59.6369	6.4590	38145.8
7000 ．	54.1882	5.5417	59.7299	6.4671	38792.2
7100 。	54.2669	5.5548	59.8217	6.4742	39439．2
7200.	54.3447	5.5676	59.9123	6.4802	40087．0
7300 。	54.4216	5.5802	60.0017	6.4852	40735.2
7400 。	54.4976	5.5924	60.0900	6.4892	41384.0
7500.	54.5727	5.6044	60.1771	6.4924	$42033 \cdot 1$
7600.	54.6470	5.6161	60.2631	6.4947	42682.4
7700 ．	54.7205	5.6275	60.3480	6.4963	43332.0
7800.	54.7932	5.6387	60.4319	6.4972	43981.7
7900.	54.8651	5.6495	60.5146	6.4974	44631.4
8000.	54.9362	5.6601	60.5964	6.4971	45281.1
8100.	55.0066	5.6705	60.6771	6.4962	45930.8
8200.	55.0762	5.6805	60.7568	6.4949	46580.4
8300.	55.1452	5.6903	$60.83 b 5$	6.4932	47229.8
8400 ．	55.2134	5.6999	60.9132	6.4911	47879.0
8500.	55.2809	5.7092	60.9900	6.4887	48528.0
8600.	55.3477	5.7182	61.0659	6.4861	49176.7
8700.	55.4139	5.7270	51.1409	6.4833	49825.2
8800.	55.4794	5.7356	61.2150	6.4803	50473.4
8900.	55.5442	5.7440	61.2882	6.4773	51121.2
9000.	55.6084	5.7521	61.3605	6.4742	51768.8
9100.	55.6720	5.7600	61.4321	6.4712	52416.1
9200.	55.7350	5.7677	61.5028	6.4682	53063.1
9300 。	55.7974	5.7752	61.5727	6.4653	53709.7
9400 ．	55.8592	5.7826	61.6418	6.4625	54356.1
9500.	55.9205	5.7897	61.7102	6.4600	55002．2
9600.	55.9811	5.7967	61.7778	6.4577	55648．1
9700.	56.0412	5.8035	61.8447	6.4557	56293．8
9800.	56.1008	5.8101	61.9109	6.4540	$56939 \cdot 3$
9900.	56.1598	5.8166	61.9764	6.4527	57584.6
10000 。	56.2183	5.8230	62.0413	6.4518	58229.8
10100.	56.2763	5.8292	62.1055	6.4514	58875．0

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	
joules $\mathrm{g}^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $^{\circ} \mathrm{C}^{-1}$ ）	.0048260
Btu $\mathrm{lb}^{-1}{ }^{\circ} \mathrm{R}^{-1}\left(\right.$ or $^{\circ} \mathrm{F}^{-1}$ ）	.020192

Table A－80－1 Thermodynamic Functions for Hg^{+}

$\begin{gathered} \mathrm{T} \\ \mathrm{OK} \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{HO}_{0}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{HO}_{\mathrm{O}}}{\mathrm{~T}}$	So	Co_{p}	$\mathrm{H}^{\circ}-\mathrm{H}_{0}^{\circ}$
273.15	37．7681	4.9681	42.7363	4.9681	1357•1
298．15	38.2032	4.9681	43.1714	4.9681	1481．3
1000	44．2155	4.9681	49．1836	4．9681	$4968 \cdot 1$
1100 。	44.6890	4.9681	49.6571	4.9681	5465.0
1200 。	45.1213	4.9681	50.0894	4.9681	5961.8
1300 。	45.5189	4.9681	50.4871	4.9681	$6458 \cdot 6$
1400 。	45.8871	4.9681	50.8553	4.9681	6955.4
$1500 \cdot$	46.2299	4.9681	51.1980	4.9681	$7452 \cdot 2$
1600.	46.5505	4.9681	51.5187	4.9681	7949.0
1700 。	46.8517	4.9681	51.8199	4.9681	8445．9
1800.	47.1357	4.9681	52.1038	4.9681	8942.7
1900 。	47.4043	4.9681	52.3725	4.9681	9439.5
2000.	47.6591	4.9681	52.6273	4.9681	9936.3
2100 。	47．9015	4.9681	52.8697	4.9682	10433．1
2200.	48.1327	4.9681	53.1008	4.9682	10929．9
2300.	48.3535	4.9681	53.3217	4.968 ？	11426.7
2400 。	48.5649	4.9682	53.5331	4.9682	11923.6
2500.	48.7678	4.9582	53.7359	4.9682	12420.4
2600 。	48.9626	4.9682	53.9308	4.9682	12917.2
2700 。	49.1501	4．5682	54.1183	4.9682	13414.0
2800 －	49.3308	4.9682	54.2989	4.9682	13910.8
2900 。	49.5051	4.9682^{\prime}	54.4733	4.9682	14407.6
3000 。	49.6736	4.9682	54.6417	4.9682	14904.5
3100.	49.8365	4.9682	54.8046	4.9683	15401.3
3200.	49.9942	4.9682	54.9624	4.9683	15898．1
3300 。	50.1471	4.9682	55．1152	4.9684	16395.0
3400 。	50.2954	4.9682	55.2636	4.9686	16891．8
3500 。	50.4394	4.9682	55.4076	4.9687	17388.7
3600 。	50.5794	4.9682	55.5476	4.9690	17885．5
3700 －	50.7155	4.9682	55.6837	4.9693	18382.5
3800 －	50.8480	4.0583	55.8162	4.9697	1887．9．4
3900 。	50.9770	4.9683	55.9453	4.9703	19376.4
4000.	51.1028	4.9684	56.0712	4.9709	19873．5
4100.	51.2255	4.9684	56.1939	4.9718	20370.6
4200.	51.3452	4.9685	56.3138	4.9728	20867．8
4300.	51.4621	4.9686	56.4308	4.9740	21365.2
4400.	51.5764	4.9688	56.5452	4.9755	21862．6
4500.	51.6880	4.9691	56．6570	4.9773	22360.3
4600.	51.7972	4.9692	56.7664	4.9794	22858．1
4700.	51.9041	4.969 .4	56.8735	4.9818	23356.2
4800.	52.0087	4.9697	56.9784	4.9846	23854．5
4900.	52.1112	4.9700	57.0812	4.9878	24353．1
5000.	52.2116	4.9704	57.1820	4.9914	24852．1
5100.	52.3101	4.9709	57.2809	4.9956	25351．4
5200.	52.4066	4.9714	57.3780	5.0002	25851．2
5300.	52.5013	4.9720	57.4733	5.0054	26351.5
5400 。	52.5942	4.9726	57.5669	5.0111	26852．3
5500.	52.6855	4.9734	57.6589	5.0175	27353．7
5600.	52.7751	4.9743	57.7494	5.0245	27855．8
5700.	52.8632	4.9752	57.8384	5.0322	28358．6
5800.	52.9497	4.9763	57.9259	5.0406	28862．3
5900.	53.0348	4.9774	58．0122	5.0497	29366.8
6000.	53.1184	4.9787	58.0971	5.0595	29872．2
6100.	53.2007	4.9801	58．1809	5.0701	30378.7
6200 。	53.2817	4.9817	58．2634	5.0115	30886.3
6300.	53．3615	4.9833	50．3448	5.0938	31395.0

The tables are in units of calories，moles and o K ．See reverse side for conversion factors to other units．The atomic weight $=200.61$

Table A－80－1 Thermodynamic Functions for Hg^{+}－continued

$\begin{gathered} T \\ 0 K \end{gathered}$	$\frac{-\left(\mathrm{F}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\mathrm{O}}\right)}{\mathrm{T}}$	$\frac{\mathrm{H}^{\circ}-\mathrm{H}_{\mathrm{O}}^{\circ}}{\mathrm{T}}$	S°	$\mathrm{C}_{\mathrm{p}}^{\circ}$	$\mathrm{H}^{\circ}-\mathrm{H}^{\circ}$
6400.	53.4400	4.9852	58.4251	5.1068	31905.1
6500 ．	53.5173	4.9871	58.5044	5.1207	32416.4
6600 ．	53.5934	4.9893	58.5827	5.1355	32929．2
6700	53.6685	4.0916	58.6600	5.1511	$33443 \cdot 6$
6800 ．	53.7424	4．994	58.7365	5.1677	33959.5
6900.	53.8154	4.9967	58.8120	5．1851	34477．1
7000 －	53.8873	4.9995	58．8868	5.2034	34996.5
7100	53.9582	$5.0 \cap 25$	58.9607	5.2226	35517.8
7200.	54.0282	$5.0 \cap 57$	59.0330	5.2428	$36041 \cdot 1$
7300.	54.0973	5．0ก91	59.1064	5．2638	36566.4
7400.	54.1654	5．0．127	59.1781	5.2858	37093.9
7500.	54.2327	5．0165	59.2492	5.3087	37623.6
7600 －	54.2992	5.0205	59.3197	5.3324	$38155 \cdot 6$
7700 －	54.3649	5.0247	59.3896	5．3572	38690.1
7800 －	54.4297	5．0291	59.4580	5.3828	39227.1
7900	54.4938	5.7338	59.5276	5.4093	39766.7
8 กก0．	54.5572	5.0386	59.5958	5.4367	$40309 \cdot 0$
8100 －	54.6198	5.0437	59.6635	5.4650	40854．1
8200 ．	54.6817	5．0490	59.7308	5.4941	$41402 \cdot 0$
8300 －	54.7430	5.0546	59.7975	5.5242	41952.9
8400.	54.8035	5.0603	59.8639	5.5550	42506.9
8500 －	54.8635	5.0663	59.9298	5.5868	43064.0
8600 －	54.9227	5.0726	59.9953	5.6193	43624.3
8710	54.9814	5.0791	60.0605	5.6527	$44187 \cdot 9$
8800 －	55.0395	$5 \cdot 0858$	60．1253	5.6869	$44754 \cdot 8$
8900 －	55．0970	5.0927	60.1897	5.7219	$45325 \cdot 3$
9000 －	55.1540	5．0999	60.2539	5.7577	45899．2
9100 。	55.2104	5.1073	60.3177	5.7943	$46476 \cdot 8$
9200 －	55.2662	5.1150	60.3812	5.8316	47058．1
9300 。	55.3216	5.172 ？	60.4445	5.8696	$47643 \cdot 2$
9400.	55.3764	5．1311	60.5075	5.9084	48232．1
9500.	55.4307	5.1395	60.5702	5.9479	48824.9
9600 ．	55.4846	5．1481	60.6327	5.9881	49421.7
97 ก0．	55.5380	5．157C	60.6949	6.0290	$50022 \cdot 5$
9800 －	55.590 \％	5．1661	60.7570	6.0706	$50627 \cdot 5$
9900.	55.6434	5.1754	60.8188	$6 \cdot 1128$	$51236 \cdot 7$
10000 。	55.6955	5.1850	60.8805	$6 \cdot 1557$	$51850 \cdot 1$
10100.	55.7471	5．1948	60.9420	6.1992	52467．8

CONVERSION FACTORS

To Convert Tabulated Values to Quantities Having the Dimensions Indicated Below	Multiply By
cal g ${ }^{-1}{ }^{\circ} \mathrm{K}^{-1}\left(\right.$ or $\left.{ }^{\circ} \mathrm{C}^{-1}\right)$	0.0049848
joules $\mathrm{g}^{-1} \circ \mathrm{~K}^{-1}\left(\right.$ or $\left.^{\circ} \mathrm{C}^{-1}\right)$	0.020856
$\mathrm{Btu} \mathrm{lb}^{-1} \circ \mathrm{R}^{-1}\left(\mathrm{or}^{\circ} \mathrm{F}^{-1}\right)$	0.0049815

APPENDIX B
THERMODYNAMIC FUNCTIONS OF THE HYDRATES OF SODIUM,
POTASSIUM, AND AMMONIUM PENT ABORATES
by George T. Furukawa and Martin L. Reilly
As a part of an earlier program on experimental thermodynamic investigations of boron compounds, heat-capacity measurements were obtained on sodium pentaborate pentahydrate ($\mathrm{NaB}_{5} \mathrm{O}_{8} \cdot 5 \mathrm{H}_{2} \mathrm{O}$), potassium pentaborate tetrahydrate $\left(\mathrm{KB}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$, and ammonium pentaborate tetrahydrate ($\mathrm{NH}_{4} \mathrm{~B}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}$). These measurements have not as yet been published. Considering that these compounds should be of interest to the lightelements program, their thermodynamic functions from 0° to $370^{\circ} \mathrm{K}$ are herewith given. The gram-formula masses used for these compounds are one-half of those often used. The values for $\mathrm{NaB}_{5} \mathrm{O}_{8} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ are given only to $345^{\circ} \mathrm{K}$ because of a possible dehydration that was observed above this temperature.

The numbering of these tables is continuous with the tables given in the earlier NBS Reports 6928 and 7093. No table of this report replaces or duplicates a table of any previous report.

THERMODYNAMIC FUNCTIONS FOR SODIUM PENTABORATE PENTAHYDRATE（NA $B_{5} O_{8} \cdot 5 H_{2} O$ ）
SOLID PHASE
GRAM MOLECULAR WT．$=295.171$ GRAMS
T DEG $K=273.15+T$ DEG C

0.00	0.0000	0.0000	0.000	0.000	0.000	0.000
5.00	0.0061	0.0181	0.024	0.090	0.072	0.030
10.00	0.0482	0.1445	0.193	1.445	0.577	0.482
15.00	0.1615	0.4761	0.638	7.141	1.831	2．423
20.00	0.3703	1.0339	1．404	20．678	3.610	7.405
25.00	0.6749	1．7441	2.419	43.602	5.600	16.873
30.00	1.0642	2．5674	3.632	77.024	7.782	31.926
35.00	1.5271	3.4737	5.001	121．58	10.060	53.449
40.00	2.0535	4.4383	6.492	177.53	12.317	82．139
45.00	2.6336	5.4381	8.072	244.72	14.548	118.52
50.00	3.2593	6.4598	9.719	322．99	16.755	162.97
55.00	3.9238	7.4926	11.416	412.09	18.873	215.80
60.00	4.6200	8.5277	13.148	511.66	20.951	277.20
65.00	5.3435	9.5621	14.906	621.53	22.983	347.32
70.00	6.0899	10.588	16.678	741.20	24.859	426.29
75.00	6.8549	11.601	18.456	870.08	26.687	$514 \cdot 13$
80.00	7.6355	12.601	20.236	1008．1	28.504	610.85
85.00	8.4293	13.590	22．019	1155.2	30.327	716.49
90.00	9.2337	14.567	23.801	1311.0	32.008	831.05
95.00	10.047	15.526	25．574	1475.0	33.566	954.47
100.00	10.868	16.467	27.335	1646.7	35.112	1086.8
105.00	11.693	17.391	29.085	1826.1	36.644	1227.8
110.00	12.523	18.301	30.825	2013.1	38.162	1377.6
115.00	13.357	19.197	32.555	2207.7	39.668	1536.0
120.00	14.193	20.081	34.273	2409.7	41.142	1703.1.
125.00	15.030	20.953	35.982	2619．0	42.605	1878.8
130.00	15.869	21.814	37.682	2835.8	44.056	2062．9
135.00	16.708	22.664	39.371	3059.8	45.490	$2255 \cdot 6$
140.00	17.547	23.505	41.052	3290.6	46.910	2456.7
145.00	18.387	24.336	42.722	3528.7	48.315	$2666 \cdot 1$
150.00	19.226	25．158	44.383	3773.9	49.711	2883.8
155.00	20．064	25.973	46.037	4025.8	51.099	3109.9
160.00	20.901	26．781	47.682	4284.7	52.474	3344.2
165.00	21．738	27.579	49.316	4550.4	53.829	3586.8
170.00	22.573	28．370	50．944	4823.1	55.179	3837.2
175.00	23.406	29．156	52.562	$5102 \cdot 3$	56.532	4096.1
180.00	24．238	29.935	$54 \cdot 173$	5388.4	57.880	4363.0
185.00	25.069	30.710	55.779	5681.2	59.221	4637.9
190.00	25.899	31.477	57.376	$5980 \cdot 6$	60.614	4920.7
195.00	26.726	32．244	58.970	6287.5	62.101	5211.5
200.00	27.553	33.009	60.562	6601.6	63.602	5510.5
205.00	28.377	33.774	62.149	6923.5	65.100	5817.2
210.00	29．199	34.536	63.736	7252.4	66.491	6131.9
215.00	30.022	35.294	65.315	$7588 \cdot 4$	67.844	6454.6
220.00	30.841	36.049	66.891	7930.9	69.180	$6785 \cdot 1$
225.00	31.659	36.800	68.461	8280.1	70.516	7123.3
230.00	32.476	37.548	70.024	8636.0	71.843	7469.6
235.00	33.291	38.291	71.585	8398.6	$73 \cdot 164$	7823.6
240.00	34.106	39.032	73.138	$9367 \cdot 6$	74.479	8185.5
245.00	34.919	39．768	74.687	9743.3	75.786	8555.0
250.00	35.729	40.502	76.231	1.0125.	77.089	8932.4
255.00	36.539	41.233	77.770	10514.	78.384	9317.4
260.00	37.347	41.960	79.304	10909.	79.675	9710.1
265.00	38.152	42.682	80.834	11311.	80.958	10110.
270.00	38.958	43.403	82.361	11719.	82.235	10518.
273.15	39.462	43.855	83.320	11979.	83.035	10779.
275.00	39.761	44.120	83.881	12133.	83.506	10934.
280.00	40.562	44.835	85.397.	12554.	84.771	11357.
285.00	41.362	45.547	86.910	12981.	86.028	11788.
290.00	42.161	46.257	88.415	13414.	87.287	12226.
295．00	42.957	46.962	89.919	13854.	88.516	12672.
298．15	43.458	47.404	90.863	14134.	89.295	12957.
300.00	43.752	47.665	91.417	14299.	89.756	13125.

0.00	0.0000	0.0000	0.000	0.000	0.000	0.000
5.00	0.0061	0.0181	0.024	0.090	0.072	0.030
10.00	0.0482	0.1445	0.193	1.445	0.577	0.482
15.00	0.1615	0.4761	0.638	7.141	1.831	2.423
20.00	0.3703	1.0339	1.404	20.678	3.610	7.405
25.00	0.6749	1．7441	2.419	43.602	5.600	16.873
30.00	1.0642	2.5674	3.632	77.024	7.782	31.926
35.00	1.5271	3.4737	5.001	121．58	10.060	53.449
40.00	2.0535	4.4383	6.492	177.53	12.317	82.139
45.00	2.6336	5.4381	8.072	244.72	14.548	118.52
50.00	3.2593	6.4598	9.719	322．99	16.755	162.97
55.00	3.9238	7.4926	11.416	412.09	18.873	215．80
60.00	4.6200	8.5277	13.148	511.66	20.951	277.20
65.00	5.3435	9.5621	14.906	621.53	22.983	347.32
70.00	6.0899	10.588	16.678	741.20	24.859	426.29
75.00	6.8549	11.601	18.456	870.08	26.687	514.13
80.00	7.6355	12.601	20.236	1008．1	28.504	610.85
85.00	8.4293	13.590	22．019	1155.2	30.327	716.49
90.00	9.2337	14.567	23.801	1311.0	32.008	831.05
95.00	10.047	15.526	25．574	1475.0	33.566	954.47
100.00	10.868	16.467	27.335	1646.7	35．112	1086.8
105.00	11.693	17.391	29.085	1826.1	36.644	1227．8
110.00	12.523	18.301	30.825	2013.1	38.162	1377.6
115.00	13.357	19.197	32.555	2207．7	39.668	1536.0
120.00	14.193	20.081	34.273	2409.7	41.142	1703．J．
125.00	15.030	20.953	35.982	2619．0	42.605	1878.8
130.00	15.869	21.814	37.682	2835.8	44.056	2062．9
135.00	16.708	22.664	39．371	3059.8	45.490	2255．6
140.00	17.547	23.505	41.052	3290.6	46.910	2456.7
145.00	18.387	24.336	42.722	3528.7	48.315	2666．1
150.00	19.226	25．158	44．383	3773.9	49．711	2883．8
155.00	20.064	25.973	46.037	4025.8	51.099	3109.9
160.00	20.901	26.781	47.682	4284.7	52.474	3344.2
165.00	21.738	27．579	49.316	4550.4	53.829	3586．8
170.00	22.573	28.370	50.944	4823.1	55.179	3837.2
175.00	23.406	29．156	52.562	5102.3	56.532	4096．1
180.00	24.238	29.935	54．173	5388.4	57.880	4363.0
185.00	25.069	30.710	55.779	5681．2	59.221	4637.9
190.00	25.899	31.477	57.376	5980.6	60.614	4920.7
195.00	26.726	32.244	58.970	6287.5	62.101	5211.5
200.00	27.553	33.009	60.562	6601.6	63.602	5510.5
205.00	28.377	33．774	62.149	6923．5	65.100	5817.2
210.00	29.199	34.536	63.736	7252．4	66.491	6131.9
215.00	30.022	35.294	65.315	7588＊4	67.844	6454.6
220.00	30.841	36.049	66.891	7930．9	69.180	6785.1
225.00	31.659	36.800	68.461	8280.1	70.516	7123.3
230.00	32.476	37.548	70．024	8636.0	71.843	7469.6
235.00	33.291	38.291	71.585	8798.6	73.164	7823.6
240.00	34.106	39.032	73.138	9367.6	74.479	8185.5
245.00	34.919	39．768	74.687	9743.3	75.786	8555.0
250.00	35.729	40.502	76.231	1.0125.	77.089	8932.4
255.00	36.539	41.233	77.770	10514.	78.384	9317.4
260.00	37.347	41.960	79.304	10909.	79.675	$9710 \cdot 1$
265.00	38.152	42.682	80.834	11311.	80.958	10110.
270.00	38.958	43.403	82.361	11719.	82.235	10518.
273.15	39.462	43.855	83.320	11979.	83.035	10779 。
275.00	39.761	44.120	83.881	12133.	83.506	10934.
280.00	40.562	44.835	85.397.	12554.	84.771	11357.
285.00	41.362	45.547	86.910	12981.	86.028	11788.
290.00	42.161	46.257	88.415	13414.	87.287	12226.
295.00	42.957	46.962	89.919	13854 。	88.516	12672.
298.15	43.458	47.404	90.863	14134.	89.295	12957.
300.00	43.752	47.665	91.417	14299 。	89.756	13125.

$$
T \quad-\left(F_{T}^{0}-H_{0}^{0}\right) / T \quad\left(H_{T}^{0}-H_{0}^{0}\right) / T \quad\left(S_{T}^{0}-S_{0}^{0}\right)
$$

DEG K
$\bar{D} \bar{E} \bar{G} \bar{C} \bar{M} \bar{O} \bar{O} \bar{E}$
$\bar{D} \bar{E} \frac{C A}{G} \frac{L}{M O L}-\bar{E}$
$\bar{D}=\frac{C A L}{G}-\overline{M O L} \bar{E}$
$-\left(F_{T}^{0}-H_{0}^{0}\right)$
$\stackrel{C A L}{M O L E}$
H_{0}^{0} AND S_{0}^{0} APPLY TO THE REFERENCE STATE OF THE SOLID AT ZERO DEG K

THERMODYNAMIC FUNCTIONS FOR SODIUM PENTABORATE PENTAHYORATE (NA $\sigma_{5} O_{8} \cdot 5 H_{2} O$) SOLID PHASE

GRAM MOL	CULAR WT.	$\begin{gathered} 95.171 \text { GR } \\ \text { T DEG K } \end{gathered}$	273.15	DEG C	$1 C A L=$	1840 ABS J
T	$-\left(F_{T}^{0}-H_{0}^{0}\right) / T$	$\left(\mathrm{H}_{T}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right) / \mathrm{T}$	$\left(S_{T}^{0}-S_{0}^{0}\right)$	$\left(\mathrm{H}_{\mathrm{T}}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right)$	c_{p}^{0}	$-\left(F_{T}^{0}-H_{0}^{0}\right)$
DEG K	$\bar{D} \bar{E} \bar{G} \frac{A L}{M} \bar{O} \bar{L} \bar{E}$	$\bar{D} E \frac{C A L}{G}-\overline{M O L}$	$\bar{D} E \frac{C E}{G} \frac{L}{M O L} \bar{E}$	$\frac{C A L}{M U} \bar{L} \bar{E}$	$\bar{U} E \frac{C A}{G} \frac{L}{M} \bar{O} \bar{L} \bar{E}$	$\frac{C A L}{M O L E}$
300.00	43.752	47.665	91.417	14299.	89.756	13125.
305.00	44.546	48.365	92.911	14751 .	91.001	13586.
310.00	45.337	49.063	94.400	15209.	92.251	14054.
315.00	46.128	49.759	95.887	15674.	93.509	14530.
320.00	46.917	50.452	97.369	16145.	94.783	15013.
325.00	47.706	51.145	98.848	16622.	96.087	15504.
330.00	48.489	51.836	100.33	17105.	97.419	16002 .
335.00	49.276	52.526	101.80	17596.	98.786	16507.
340.00	50.057	53.217	103.27	18093.	100.17	17020.
345.00	50.841	53.905	104.75	18598.	101.54	. 17540.

H_{O}^{O} AND S_{0}^{C} APPLY TO THE REFERENCE STATE OF THE SOLID AT ZERO DEG K

TABLE B－56
THERMODYNAMIC FUNCTIONS FUR POTASSIUM PENTAGORATE TETRAHYURATE $\left(K \quad \mathrm{~B}_{5} \mathrm{O}_{8} .4 \mathrm{H}_{2} \mathrm{O}\right.$ ）
SOLID PHASE

GRAM MOLECULAR WT•＝293．264 GRAMS
T DEG $K=273.15+T$ DEG C

T	$-\left(F_{T}^{0}-H_{0}^{0}\right) / T$	$\left(H_{T}^{0}-H_{0}^{0}\right) / T$	$\left(S_{T}^{0}-S_{0}^{0}\right)$	$\left(H_{T}^{O}-H_{0}^{O}\right)$	c_{P}^{0}	$-\left(F_{T}^{0}-H_{0}^{0}\right)$
DEG K	$\bar{D} \bar{E} \frac{C A L}{G}-\overline{M O L}$	$\bar{D} \bar{C} G \frac{C}{A}-\overline{M O L}$	$\bar{D}-\frac{C A L}{G}=\frac{1}{M O L}-\bar{E}$	$\begin{aligned} & \subseteq A L_{-} \\ & M O L E \end{aligned}$	$\bar{D} \bar{E} \frac{C A L}{G}-\overline{M O L}$	$\frac{C A L}{M O L E}$
0.00	0.0000	0.0000	0.000	0.000	0.000	0.000
5.00	0.0062	0.0184	0.025	0.092	0.074	0.031
10.00	0.0492	0.1473	0.196	1.473	0.588	0.492
15.00	0.1648	0.4870	0.652	7.304	1.881	2.473
20.00	0.3793	1.0689	1.448	21.378	3.815	7.585
25.00	0.6973	1.8355	2.533	45.887	6.033	17.432
30.00	1.1097	2.7342	3.844	82.027	8.435	33.291
35.00	1.6047	3.7263	5.331	130.42	10.931	56．164
40.00	2.1706	4.7804	6.951	191.22	13.373	86.824
45.00	2.7961	5.8681	8.664	264.05	15.751	125.83
50.00	3.4716	6.9716	10.443	348.57	18.033	173.57
55.00	4.18 .79	8.0758	12.264	444.17	20．181	230.33
60.00	4.9376	9.1683	14.106	$550 \cdot 10$	22.172	296.25
65.00	5.7139	10.243	15.957	665.77	24.075	371.41
70.00	6.5117	11.293	17.804	790.46	25.782	455．81
75.00	7.3258	12.313	19.639	¢ 23.49	27.419	549.43
80.00	8.1522	13.307	21.460	1064.6	29.013	652．17
85.00	8.9883	14.278	23.266	1213.6	30.576	764．01
90.00	9.8313	15.223	25.055	1370.1	31.981	884.82
95.00	10.679	16.140	26.819	1533.3	33.322	1014.5
100.00	11.530	17.032	28.561	1703.2	34.634	1153.0
105.00	12.382	17.901	30.282	1879.6	35.923	1300.1
110.00	13.234	18.749	31.984	2062.4	37.187	1455.8
115.00	14.086	19.578	33.664	2251.5	38.425	1619.9
120.00	14.936	20.389	35.325	2446.7	39.641	1792.4
125.00	15.785	21.183	36.967	2647.9	40.848	1973．1
130.00	16.631	21.962	38.592	2855.2	42.046	2162.0
135.00	17.474	22.728	40.203	3068.4	43.239	2359.0
140.00	18.315	23.482	41.797	3287.5	44.424	2564．1
145.00	19.152	24.226	43.375	3512.7	45.607	2777．0
150.00	19.985	24.957	44.943	3743.5	46.778	2997．8
155.00	20.815	25.679	46.494	3980.4	47.942	3226.3
160.00	21.642	26.393	48.035	4223.0	49.097	3462.7
165.00	22.465	27.098	49.563	4471.3	50.246	3706．7
170.00	23.284	27.796	51.080	4725.4	51.384	3958.4
175.00	24.099	28.487	52.586	4985.2	52.517	4217.5
180.00	24.912	29.171	54.082	5250.5	53.638	4484.2
185.00	25.719	29.847	55.566	5521.5	54.754	4758.4
190.00	26.525	30.516	57.041	5798.0	55.860	5039.7
195.00	27.326	31.181	58.506	6080．1	56.965	5328.6
200．00	28.124	31.838	59.962	6367.6	58.064	5624.8
205.00	28.917	32.490	61.410	$6660 \cdot 9$	59.166	5928.3
210.00	29.708	33.141	62.849	6959.4	60.270	6239.0
215.00	30.497	33.783	64.281	7263.4	61.374	6556.6
220.00	31.281	34.424	65.703	7573．1	62.474	6881．7
225.00	32.060	35.057	67．120	7888．1	63.568	7213.7
230.00	32.839	35.691	68.528	8208.7	64.658	7552．8
235.00	33.614	36.317	69.931	8534.7	65.746	7899．1
240.00	34.383	36.943	71.326	8866.2	66.826	8252.2
245.00	35.153	37.562	72.715	9202.9	67.902	8612.3
250.00	35.918	38.181	74.099	9545.2	68.972	8979.4
255.00	36.680	38.795	75.473	9892.7	70.036	9353.3
260.00	37.438	39.405	76.845	10245.	71.095	9734.0
265.00	38.196	40.014	78.210	10604 ．	72.149	10122.
270.00	38.948	40.619	79.567	$10 ¢ 67$.	73.198	10516.
273．15	39.422	40.999	80.421	11199.	73.855	10768 。
275.00	39.699	41.221	80.922	11336.	74.240	10917 ．
280.00	40.447	41.819	82.266	11709 。	75.277	11325.
285.00	41.193	42.416	83.609	12088.	76.310	11740.
290.00	41.936	43.009	84.945	12473.	77.337	12161.
295.00	42.677	43.599	86.276	12862.	78.358	12589 。
298.15	43.141	43.970	87.110	13109.	78.999	12863.
300.00	43.413	44.187	87.600	13256.	79.376	13024.

H_{0}^{0} AND
APPLY TO THE REFERFNCE STATE OF THE SOLID AT ZERO DEG K

THERMODYNAMIC FUNCTIONS FOR POTASSIUM PENTABORATE TETRAHYURATE $\left(K \mathrm{o}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right)$ SOLID PHASE

T	$-\left(F_{T}^{0}-H_{0}^{0}\right) / T$	$\left(H_{T}^{0}-H_{0}^{0}\right) / T$	$\left(S_{T}^{0}-S_{0}^{0}\right)$	$\left(\mathrm{H}_{\mathrm{T}}^{\mathrm{O}}-\mathrm{H}_{0}^{0}\right)$	c_{p}^{0}	$-\left(F_{T}^{0}-H_{0}^{0}\right)$
DEG K	$\bar{D} \bar{E} \frac{C A L}{G}-\overline{M O L} \bar{E}$	$\overline{D E G} G M O L$	$\overline{D E G} \frac{C A L}{M O L E}$	$\begin{aligned} & C A L_{-} \\ & M O L E \end{aligned}$	$\overline{U E G} \frac{C A}{M} \frac{L}{M U L E}$	$\begin{aligned} & C A L \\ & M O L E \end{aligned}$
300.00	43.413	44.187	87.600	13:56.	79.376	13024.
305.00	44.149	44.773	88.922	13655.	80.387	13465.
310.00	44.883	45.354	90.237	14.960.	81.396	13913.
315.00	45.612	45.935	91.546	14'469.	82.400	14368 。
320.00	46.341	46.513	92.851	14884.	83.399	14829.
325.00	47.065	47.087	94.154	15303.	84.391	15296.
330.00	47.789	47.660	95.449	15728.	85.378	15770 。
335.00	48.511	48.231	96.740	16157.	86.360	16251.
340.00	49.228	48.798	98.020	16591.	87.335	16738.
345.00	49.945	49.364	99.309	17031.	88.305	17231.
350.00	50.560	49.926	100.59	17474.	89.271	17731.
355.00	51.372	50.488	101.86	17923.	90.232	18237 .
360.00	52.082	51.047	103.13	18377.	91.185	18749.
365.00	52.789	51.604	104.39	18835.	92.134	19268.
370.00	53.494	52.156	105.65	19298.	93.076	15793.

[^7]TABLE B－5．7
THERMODYNAMIC FUNCTIONS FOR AMMONIUM PENTABGRATE TETRAHYDRATE $\left(\mathrm{N}_{4} \mathrm{H}_{4} \mathrm{H}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right.$ ） SOLID PHASE

GRAM MOLECULAR WT• $=272.204$ GRAMS
T DEG K $=273.15+T$ DEG C

T	$-\left(F_{T}^{0}-H_{0}^{0}\right) / T$	$\left(H_{T}^{0}-H_{0}^{0}\right) / T$	$\left(S_{T}^{0}-S_{0}^{0}\right)$	$\left(\mathrm{H}_{\mathrm{T}}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right)$	c_{p}^{0}	$-\left(F_{T}^{0}-H_{0}^{0}\right)$
DEG K	$\bar{D}-\frac{C A L}{G} \frac{L}{M O L}-\bar{E}$	$\overline{D E G}=\frac{C A L}{M O L E}$	$\overline{D E G} \mathrm{CA}-\overline{\mathrm{C}}$	$\frac{C A L}{M O L E}$	$\overline{D E G} \overline{C A}=-\overline{M O L E}$	$\underset{\mathrm{CAOL}}{\mathrm{CA}}$
0.00	0.0000	0.0000	0.000	0.000	0.000	0.000
5.00	0.0062	0.0193	0.026	0.097	0.078	0.031
10.00	0.0517	0.1561	0.208	1.561	0.623	0.517
25.00	C． 1740	0.5134	0.687	7.701	1.966	2.610
20.00	0.3987	1.1136	1.512	22.272	3.917	7.974
25.00	0.7277	1.8866	2.614	47.165	6.099	18.191
30.00	1．1497	2.7892	3.939	83.678	8.536	34.491
35.00	1.6538	3.7913	5.445	132.70	11.085	57．88＜
40.00	2.2294	4.8633	7.093	194.53	13.634	89.178
45.00	2.8662	5.9766	8.843	268.95	16.121	128.98
50.00	3.5545	7.1123	10.667	355.62	18.530	177.73
55.00	4.2861.	8.2557	12.542	454．06	20.828	235.73
60.00	5.0533	9.3951	14.448	563.70	23.012	303.20
65.00	5.8499	10.524	16.374	684.06	25.103	380.23
70.00	6.6707	11.632	18.303	814.27	26.950	466.93
75.00	7.5103	12.713	20.223	953.49	28.736	563．26
80.00	8.3645	13.771	22.136	1101.7	30.543	669.17
85.00	9.2306	14.807	24.037	1258.6	32.204	734．61
90.00	10.106	15.820	25.925	1423.8	33.853	909.51
95.00	10.988	16.810	27.796	1596.9	35.397	1043.8
100.00	11.875	17.776	29．651	1777.6	36.891	1187.5
105.00	12.765	18.722	31.487	1965.8	38.358	1340.3
110.00	13.657	19.647	33.305	2161.2	39.804	1502．3
115.00	14.551	20.554	35.105	2363.8	41.219	1673.3
120.00	15.444	21.445	36.888	2！ 73.4	42.615	1853.3
125.00	16.337	22.319	38.657	2789．9	43.996	2042．2
130.00	17.230	23．179	40.409	3213.4	45.363	2235.9
135.00	18.120	24.025	42.146	3243.5	46.716	2446.2
140.00	19.009	24.859	43.870	3480.4	48.052	2661.3
145.00	19.896	25.684	45.578	3723.9	49.376	2885.0
150.00	20.780	26.494	47.275	3974.2	50.684	3117.1
155.00	21.662	27.294	48.958	$4230 \cdot 9$	51.981	3357.6
160.00	22.541	28.088	50.629	4494.0	53.265	3606.6
165.00	23.418	28.870	52.287	4763.4	54.534	3864.0
170.00	24.290	29.641	53.934	5039.2	55.762	4129.5
175.00	25.163	30.406	55.569	5321.2	57.039	4403.2
180.00	26.028	31.164	57．192	5609．5	58.272	4685.2
185.00	26.893	31.912	58.805	5903.9	59.491	4975.1
190.00	27.753	32.655	60.409	6204.3	60.700	b273．2
195.00	28.611	33.389	62.000	6510.8	61.895	らち79．1
200.00	29.465	34.116	63.583	6823.4	63.078	5893.2
205.00	30.318	34.837	65.155	7141.7	64.254	$6 \dddot{315.1}$
210.00	31.166	35.552	66.716	7465.8	65.416	6544．7
215.00	32.010	36.260	68.270	7795．7	66.587	6882.2
220.00	32.851	36.962	69.814	8131.7	67．756	7227.3
225.00	33.690	37.660	71.350	8473.5	68.924	7580.3
230.00	34.524	38.351	72.878	3821.0	70.088	7941.0
235.00	35.359	39.039	74.398	9174.2	71.248	8309.0
240.00	36.188	39.723	75.908	9533.5	72.402	8684.8
245.00	37.012	40.402	77.414	9898.2	73.487	9068.1
250.00	37.835	41.076	78.310	10269.	74.694	9458.9
255.00	38.657	41.745	80.402	10645.	75.829	9857.3
260.00	39.472	42.412	81.886	11027.	76.960	10263.
265.00	40.287	43.074	83.363	11415 。	78.081	10676.
270.00	41.099	43.733	84.833	11808.	79.197	11097.
273.15	41.609	44.147	85.755	12059.	79.894	11365.
275.00	41.907	44.388	86.295	12207.	80.306	11524.
280.00	42.713	45.038	87．751	12611.	81.408	11959.
285.00	43.516	45.686	89.202	13021.	82.502	12402 。
290．00	44.316	46.331	90.648	13436.	83.592	12852.
295.00	45.112	46.972	92.084	13857 ．	84.677	13308.
298.15	45.614	47.373	92.988	14125.	85.356	13600.
300.00	45.908	47.610	93.518	14283 ．	85．753	13772.

H_{0}^{0} AND S_{C}^{0} APPLY TO THE REFERE＇GCE STATE OF THE SULID AT ZERO DEGK

TABLE B－57（CONT•）
THERMODYNAMIC FUNCTIONS FOR AMMONIUM PENTABORATE TETRAHYORATE（N $\mathrm{H}_{4} \mathrm{~B}_{5} \mathrm{O}_{8} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ ）
SOLID PHASE

RAM MOLECULAR WT＊ 272.204 GRAMS						
T	$-\left(F_{T}^{0}-H_{0}^{0}\right) / T$	$\left(H_{T}^{0}-H_{0}^{0}\right) / T$	$\left(S_{T}^{0}-S_{0}^{0}\right)$	$\left(\mathrm{H}^{\mathrm{O}}-\mathrm{H}_{0}^{\mathrm{O}}\right.$ ）	c_{P}^{0}	－（ $F_{.}^{0}-\mathrm{H}_{0}^{0}$ ）
DEG K	$\bar{D} \bar{E} \bar{G} \frac{C A L}{M O L} \bar{E}$	$\bar{D} \bar{E} \bar{G} \frac{C}{G}-\frac{L}{M O} \bar{E}$	$\bar{D} \bar{E} \bar{C} \frac{C}{G}-\frac{L}{M O}-\bar{L} \bar{E}$	$\begin{aligned} & C A L \\ & M O L \\ & \hline \end{aligned}$	$\bar{D} \bar{E} \bar{C} \bar{G}-\frac{L}{M O L} \bar{E}$	$\begin{aligned} & C A L \\ & M O L E \end{aligned}$
300.00	45.908	47.610	93.518	14283.	85.753	13772.
305.00	46.699	48.243	94.943	14714 。	86.824	14244.
310.00	47.490	48.874	96.365	15151 。	87.890	14722.
315.00	48.277	49.503	97.780	15593.	88.946	15207.
320.00	49.061	50.127	99.187	16040 ．	90.000	15700 。
325.00	49.842	50.748	100.59	16493.	91.047	16199.
330.00	50.621	51.367	101.99	16951.	92.086	16706.
335.00	51.401	51.981	103.38	17414 。	93.129	17219.
340.00	52.175	52.596	104.77	17882.	94.161	17739.
345.00	52.947	53.205	106.15	18556.	95.194	18266.
350.00	53.717	53.812	107.53	18834.	96.226	18801.
355.00	54.484	54.417	108.90	19318.	97.259	19342.
360.00	55.249	55.019	110.27	19307 。	98.301	19890.
365.00	56.013	55.619	111.63	20301.	99.360	20445 ．
370.00	56.773	56.217	112.99	20800 ．	100.45	21006 。

Ho ANO SO APPLY TO THE REFERENCE STATE OF THE SOLID AT ZERO DEG K

[^0]: *T. B. Douglas and W. H. Payne, "New Apparatus for the Precise Measurement of Heat Content and Heat Capacity from 0° to $1500^{\circ} \mathrm{C}$ " (in National Bureau of Standards Handbook 77, "Precision Measurement and Calibration. Vol. II: Selected Papers on Heat and Mechanics," U. S. Government Printing Office, Washington, D. C., Feb. 1, 1961, pp. 241-276). (Most of this report was originally published as "Wright Air Development Center Technical Report 57-374, Part I.")

[^1]: *C. Beusman, "Activities in the $\mathrm{KCl}-\mathrm{FeCl} \boldsymbol{l}_{2}$ and $\mathrm{LiC} \ell-\mathrm{FeCl}_{2}$ Systems", Oak Ridge National Laboratory, ORNL-2323 (1957).

[^2]: a. These diagrams were reproduced by permission from Constitution of Binary Alloys, second edition, by Max Hansen. Copyright 1958 by McGraw-Hil1 Book Co., Inc.

[^3]: ${ }^{a} \triangle \mathrm{Hf}$

[^4]: * Apparently an error.

[^5]: ${ }^{a}$ Value based upon $\mathrm{Br}_{2}(\mathrm{~g})$ as the standard state.

[^6]: ${ }^{\text {a }}$ Value based upon $I_{2}(g)$ as the standard state.

[^7]: AND SO APPLY TO THE REFERENCE STATE OF THE SCLID AT ZERO DEG K

