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MEAN MOTIONS IN CONDITIONALLY PERIODIC 

SEPARABLE SYSTEMS1 

by- 

John P. Vinti 

A search of the literature failed to disclose any general statement 

or proof of a theorem informally current among dynamical astronomers. 

The present paper gives a proof of the theorem, which states that, in any 

conditionally-periodic separable system, the mean frequency n of any 
JK 

separation coordinate q, is equal to t) =_ da /c)J . Here a is the 
k k — 1 k 1 

energy and J is the k'th action variable. The proof is carried out for 
K 

non-singular Staeckel systems, so that it is applicable to any non-polar 

orbit of an artificial satellite, when the potential leads to separability. 

1. Introduction 

Conditionally periodic separable systems are commonly illustrated 

in works on advanced dynamics by the motion of a particle under the joint 

action of harmonic oscillator forces at right angles. This happens to be 

a very special case, for which each rectangular coordinate q has a 
K 

constant frequency, equal to the corresponding "fundamental frequency" 

,V = c^X/dJ, , where a, is the energy and J, the corresponding action 
k 1 k 1 k 

variable. 

In a more general system of this type, each generalized coordinate 

q may have a variable frequency, but it appears to be generally believed 
K 

among dynamical astronomers that the mean frequency of q^ must be equal 

to V? f if the conditionally periodic system is separable. Needing to 

refer to such a theorem in solving a specific problem, I have searched 

the literature but have found no explicit statement or proof of it. The 

present paper is an attempt to furnish such a reference, with a proof 

sufficiently general to be applicable to all the separable problems that 

1. This work was supported by the U. S. Air Force, through the Office of 

Scientific Research of the Air Research and Development Command. 
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may arise in the gravitational theory of the orbit of a satellite of an 

oblate planet. 

Little of the analysis in this paper can claim to be really new. 

Much of the pertinent material in the literature, however, is discursive, 

relatively unavailable, and expressed in notations now unfamiliar to 

most mathematical physicists. Some of it is inadequate, if not incorrect, 

especially in the treatment of the periodicity of the q's as functions 

of the angle variables. Moreover, none of it seems to have been carried 

out in the shortest and most appropriate way to prove the theorem in 

question. The present paper attempts to give a concise and correct 

treatment that will serve this purpose. 

It is easy to see why such a theorem should have escaped formal 

statement and proof. Physicists have not been concerned with mean fre¬ 

quencies of this kind. Dynamical astronomers have been, but ordinarily 

for non-separable systems. Until 1957 their only separable problems 
2 

were the Kepler problem [2] for which the coordinate frequencies are 

all equal to the constant value i) = \) — ~, and the problem of two 
1 ^ O 

centers, which has remained a curiosity to be found in Charlier's famous 

book [l], but without application. Since 1957 various potentials have 

been suggested, by Sterne [3], by Garfinkel [4j, and by the author [5], 

for the gravitational field of an oblate planet, all of which lead to 

separability and to intermediary satellite orbits with i) ^ £ \) . 
1 2a o 

Since the solution for these orbits is greatly facilitated by knowledge 

of the mean coordinate frequencies, it now becames desirable to have a 

formal and general proof of the theorem. 

2. Figures in brackets indicate the literature references at the end of 

the paper. 
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It is now convenient to discuss briefly the general plan of the paper, 

without definitions. The difficulty in proving the theorem arises only 

when the fundamental frequencies /A ... j) are incommensurable. If 
1 n 

w, ... w are the angle variables, the plan is first to show that for a 
1 n 

conditionally periodic system there exist infinitely many values of the 

time, with no upper bound, at which the orbit in w-space passes arbitrarily 

closely to points separated from the initial point w.(0) ... w (0) by 
i n 

integer intervals Aw = m , k = 1 .t , n. This fact follows directly from 
HI K 

a theorem of Dirichlet, which is easy to understand and to apply. 

To convert this result to q-space, it is necessary to know that q is 
K 

a single-valued, continuous, periodic function of the w's. To show this 

the author restricts considerations to non-singular Staeckel systems, 

proving that for them each q^ is a single-valued differentiable function 

of v, = /dq,/p, and each v, of the angle variables wn ... w . With a 
k “ v/ k k k ^ 1 n 

careful use of the single-valuedness, the periodic property then follows. 

Application of these properties of the q's as functions of the w's 

shows that, at the values of the time mentioned above, the orbit in 

q-space then passes arbitrarily closely to points where each q would have 
JK 

gone through exactly m cycles. The proof of the theorem then follows. 
K • 

2.. Staeckel Systems. 

If q, ... q and p, ... p denote the generalized coordinates and 
lnln 

momenta of a dynamical system of n degrees of freedom, the system is said 

to be of the Staeckel type [l, 6, 7, 8, 9] if the Hamiltonian H is given 

by 

H “ * S,Vqi ••• qn)Pk + V<qi 
k=l 

q ) , A > 0, (k = 1 ... n) (1) 
n k 

and if there exist functions <£. .(q.), Tp.iq.), i, j = 1 ... n, such that 
X J 1 XI 

A = M / det ( (h . .) 
k kl *ij 

v = .2 VV V 

(2) 

(3) 

k=l 

M, , being the cofactor of d> . (q, ) in the determinant det ( <£ J .). 
kl * k1 k ~ i i kl k ij 

- 3 



Conditions (2) and (3) are necessary and sufficient for the separability 

of a system with such a Hamiltonian. 

If we next define the domain Q of the q’s as the totality of real 

2 
values of q, ... q for which p ^ 0, k = 1 ... n, we may then define a 

In k - 

non-singular Staeckel system as one for which tj/ (q ) and 
■ K K Kl K 

k = 1 ... n, exist and are single-valued and for which det (0 ) ^ 0 

anywhere in Q. If we put 

CD h (4. .(q.)) c > ij i 
(4) 

for the Staeckel matrix, then 0? 

Q; in particular 

-1 

= \ (k.i 

exists and is single-valued anywhere in 

. n) (5) 

all exist anywhere in Q. (This restriction thus rules out polar orbits 

from consideration if the right ascension cfi is one of the coordinates, 

since A0 then becomes infinite on the polar axis.) 

The momenta p are then given by 

o n 
Pk = "2^k(V +22 (k = 1 ... n) (6) 

i=l 

where the a's are separation constants, abeing the energy. (For 

satellite problems, where n = 3, 2a and 2a are usually denoted by 

2 2 3 
a and ao.) 

The Hamilton-Jacobi function W is then given by 

W 
pkdqk 

n 

2 (+) 
k=l 

qko 1=1 

(7) 

where the sign is + respectively as dq 
k 

> 
< 0. 



3. Conditionally Periodic Staeckel Systems. 

We call a Staeckel system conditionally periodic if each coordinate 

is either rotational or librational. A coordinate q is rotational if: 

2 * 

(i) it is an angle, (ii) with p = F, (q ) there exist positive real 
K —’ K K 

numbers c,, and c„, such that c„, > F, (q. ) > c„. >0 for all real values 
lk 2k 2k = k k = Ik 

of q , and (iii) if 
K 

Fk(qk + 2lf) = Fk(qk)' (8) 

Note that c > 0 rules out asymptotic motions and that the periodicity 
X K 

implied by (8) may reduce to simple constancy. The latter holds, e.g., 

when q is the right ascension (p of an artificial satellite, since there 
K 

does not exist any potential, depending on the right ascension , which 

3. 
both leads to separability and remains finite on the polar axis. For 

A \ 
such a rotational coordinate q either p > e,, for all q, or p < -c, , 

k k lk k k lk 

for all q . In either case 
K 

vv dqk/pk 
(9) 

is a single-valued function of q , with derivative dv /dq existing and 
K K K ' 

differing from zero for all values of q, . Thus q, is a single-valued 
. k k 

4 
differentiable function of v, . 

k 

3. See the tables in [9], pp. 656, 658, 660 

4. Hereafter abbreviated to "s.v.d." 
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c 
li’ 

A coordinate is librational if there exist real numbers 

and C_. and a real function G,(q.) such that 
2 i 11 

V 

ai) (t»i - qi)Gi taj.), (10.1) 

with 

C2i = VV = °li > ° (Qi = qi ^ bi) (10.2) 

and 

ai = qi(0) = bi* 
(10.3) 

q_, (0) being the initial value of qJ . If we again define vj by (9), then 
i i i 

i<V “ ± / 1 t<qi ' ai>(bi " qi)Gi<qi)]"idqi (ii) 

io 

> 
where the sign is + accordingly as dq^ < 0, respectively. Then 

v-/’1 °i“* dV (12) 

io 

where the uniformizing variable is defined by the equation 

2q. - a. + b. + (a - b ) cos EJ (13) 
i i i i i i 

and the requirement that E shall always increase as q varies. By (12) 
1 X 

and (10.2) v. is then a single-valued function of E , with derivative 
i i 

existing and non-vanishing for all E^, so that E^ must be a s.v.d. function 

of v.. By (13), however, q is a s.v.d. function of E , so that, finally, 
1 X X • 

q is a s.v.d. function of v . Thus in a conditionally periodic Staeckel 
i i 

system any coordinate q is a s.v.d. function of the corresponding,v . 
K K 
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4, The v, 's as Functions of the Angle-Variables w, . 
K “ 1,1 K 

If we now let an increase of 2jr be one cycle of a rotational 

coordinate and a single round trip from a to b be one cycle of a 
K K 

librational coordinate, we may define the action and angle variables 

and w^ by 

jks Adqk 
and 

J 
k 

(14) 

w = , 
k k 

(15) 

where W is now to be considered a function of the q's and the J's, 

rather than of the q's and the CH's. It is well known [10, 11] that J 

and w are canonically conjugate and that 
K 

W = cXX /d J. = 0. <■ 
k lk k 

If we also define the Jacobi variables by 

b, = aw/da, , 
1 1 

we obtain 

where 

“ ^ c>Jk “ 

.u;=l k k=l 

cj . = aj, /aa. 
ki k i 

Increments dw, ... dw then lead to 
1 n 

n 

dB. = 2 (dw, ) cJ . (i = 1 . . . n) 

1 k=i k kl 

But, by (7) and (17) 

n ap n ap 

dBi = .z. ST % = K z ST dqk/pk 
k=l i k=l i 

or 

dBi = z ^ki(qk)dV 
k=l 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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by (21), (6), and (9). Also, by (19), (14), (6), and (9) 

O) 
ki ki(qi)dvk • 

(23) 

If we now introduce the matrix , the matrix il = (of..), and the row 
K1 

matrices dv = (dv., ... dv ) and dw = (dw,, ... dw ), we find from (20) 
In In 

and (22) 

dv^Jj = dw£7 . 

5 ""1 
For a non-singular Staeckel system" 3T> § , and all exist at every 

point of Q, so that 

dv = dwilcji 

(24) 

(25) 

or 

&vi/a»k = we) 

Thus each derivative dv /dw exists and is single-valued everywhere in Q. 

Now the J's are all real, by (14). Thus, by (7) and (15), if the p's are 

all real, then W and the w's are all real; if some of the p's are non-real, 

then W is non-real and so are some of the w's. If all the w's are real, 

it then follows that all the p's are real, else we should have a 

contradiction. Thus the domain Q, corresponding to the totality of all 

real values of the q's for which the p's are all real, also corresponds 

exactly to the set of all possible real values for all the w's. It 

therefore follows that each derivative dv./dw exists and is single- 
1 K 

valued at any point in w-space. Thus each v must be a s.v.d. function of 
K 

w„ ... w . In Section 3, however, we showed that each q, is a s.v.d. 
In k 

function of the corresponding v . Thus for a conditionally periodic non- 
X 

singular Staeckel system each q, is a s.v.d. function f, (w, ... w ). 
k kin 

5. The Periodic Properties of q, = f (w, ... w ). 
-a--k-k—1-n— 

By (7) and (15) 

n dp. 

% = z, dqi 
i=l k 

(27) 

5. See Appendix for examples. 
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If now each coordinate goes through an integral number nu of cycles, 

then by a familiar argument 

n r n r 
Aw = 2 m. (f (dp./dJ. )dq. = v-r- Z m. <p p. dq. = m . (28) 

k . , 1 / i k l dJ, ..1/11 k 
i=l J k i=l 

Thus if each q goes through exactly m cycles, each w increases by the 
x\ x£ xC 

integer m . (Note, however, that such simultaneous increases are not always 
K 

physically possible: this section is thus concerned only with the 

mathematical properties of the functions f (w, ... w ).) 
kin 

But we are really interested in the inverse problem where each w^ 

has increased by an integer m and we ask what has happened to the q's. 
.K 

Now the q's are uniquely determined by the w's, because of the single¬ 

valued property. In the situation of the preceding paragraph where each 

librational coordinate returns to its initial value and each rotational 

coordinate q. increases by 2jtm. , each angle variable w increases by m . 
IX K K 

Since the w's determine the q's uniquely, this has the result that whenever 

Aw = m , k = 1 ... n, each librational coordinate returns to its initial 
K K 

value and each rotational coordinate q^ increases by 2-xm^. 

Thus, in the inverse problem, whenever we are given Aw = m , k = 1 ... n, 
' K. 

we find that each rotational coordinate q. must go through exactly m. cycles 

and that each librational coordinate q . must go through some integral number 

of cycles, T say. By (28), however, we then find 7*. = m.. Thus when- 
J J J 

ever the angle variables w are all increased by integer amounts Aw, = m , 
K 1C rC 

each of the functions q = f (w ... w ) must go through exactly m cycles. 
K K ± n K 

6 . Mean Motions . 

If in a time interval T the number of complete cycles passed through 

by any coordinate q is N , the corresponding mean frequency n is, by 
K K K 

definition 

n 
k 

lim 

T-* oo 
(Nfe/T), 

if the limit exists. We shall now prove that n, = i7, = c)QL /d J, , k 
k r k I k 

for any conditionally periodic non-singular Staeckel system. 

(29) 

1 . . . n f 
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To do so, note that if ... J are all commensurable, there exist 
1 n ’ 

a positive J and positive integers m, ... m such that 
o In 

= m *) , (k = 1 . . . n) (30) 
K k o 

where we may choose J to be the greatest common divisor of the J 's. 
° k 

Then, from (16) and (30), during the actual motion, 

w = w (0) + m, J t (k'= 1 ... n) (31) 
k k k o 

and in the time interval T = 1/ J we have 
~ o 

Aw = m (k = 1 ... n) (32) 

By Section (5) each q goes through exactly m cycles in this time, so that 
K K ' 

in this case the motion is truly periodic, with period 1/ J . The mean 
o 

frequency of q is thus 
K 

n. = m /T = m J 
k k k o 

(33) 

If the frequencies . . . •) are not all commensurable, we may let 
In ’ J 

fn V (k = 1 ... n) (34) 

and then at least one of the J 's will be irrational. Then by (16) and 

(34), during the actual motion 

w = w (0) + $ t) t . (35) 
k k k 1 

We now use a theorem of Dirichlet [12] , which states that if the set of 

real numbers £ ... ^ has at least one irrational member, then the system 

of inequalities 

1 

| - m /P| < P" 1 ~ n (k = 1 ... n) ■ (36) 

has an infinite number of integer solutions for P and the m's. Note that 

the solutions for P have no upper bound. 

- 10 - 



To apply this theorem, consider only those values of the time interval 

T such that k^T = P, where P is an integer that satisfies (36). In this 

time each w„ increases from its initial value w, (0) to a final value given 
k k 

by 

wk(T) ,wk(0) +Pjk, (37) 

by (35). But by (36) 

p5k = mk + 7k’ I 7kI < p 

so that 

(38) 

w^(T) = w^O) + mk + ^k* (39) 

As = P takes on those larger and larger integer values corresponding 

to solutions of (36), each ^^ approaches zero, by (38). Then, by (39), 

there exist infinitely many values of T, with no upper bound, at which the 

orbit in w-space passes arbitrarily closely to points where 

Aw = m , k = 1 . . . n, the m 's being solutions of (36). 
K K k 

If the initial q's are given by 

q (0) = f [w (0) , . ... w (0) ] , (k = 1 . . . n) (40) 
k k 1 n 

« 

then the values of the q's at any of these timesT are given by 

q (T) = f [w (0) + m + *7 , . „ . w (0) + m + ** ] (k = 1 . . . n) . (41) 
k k 1 1 Cl n n in 

As we let T = P/V assume those larger and larger values already referred 
T. 

to, the q’s then approach arbitrarily closely to the values 

q *(T) = f, [w.(0) + m. , ... w (0) + m ] (k = 1 ... n). (42) 
k k 1 1 n n 

This conclusion follows from (38) and the single-valuedness and 

differentiability of the functions f . 
J k 

-11 - 



Comparison of (40) and (42) then shows that the values q^*(T) 

correspond to Aw = m , k = 1 ... n, and are thus, by Section 5, the 
IV IV 

values that would be reached after each q had gone through exactly m 
K K 

cycles. Now, by the definition (29), it follows that the mean frequency 

n 
k 

lim 

T'+'OO 
(mk/T), (43) 

if the limit exists. But m/T = i) ,m /P and, as T->°°, lim(m /P) 
k 1 k k 

by (36). Thus 

3k' 

(44) 

by (43) and (34). 

Thus, for each coordinate q of a conditionally periodic non-singular 
K 

Staeckel system, the mean frequency n is equal to the corresponding 
IV 

fundamental frequency J = /<$J . 
K -L K 
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APPENDIX 

For theories of satellite orbits, appropriate coordinates are 

spherical or oblate spheroidal. The corresponding Staeckel matrices and 

their inverses are, if x = r sin^cos^, y = r sin^sin«^»,z= r cos 9 : 

Spherical 

-r 

1 

0 

-2 

° ) 

) 
2 „ 

-esc a 
-1 r 

-2 

1 

0 

-2 2. 
r esc & 

c.s<? 3 

. J 
or, if x = c[ ( ^ 2+l) (1- ]^cos<p , y = c[ (3 2+l) (1- ^ ] 2 sin , z ~ CS ^ 

.2 2 2 -1 
/c j (J+l) 

2 2,-, 2^"1 C (1- »7 ) 

\ 

Oblate Spheroidal 

( f+lf1 

(1- ) 

0 

2-1 2 -2 
" (I" ^ ) 

X / 

, , -2 . 2 v _2 2.-1 
-1 / c ( J +1 ) (^ ) 

22 22-1 
^ (J +1)(J + ^ ) 

-2 .. 2X/ 2, 2-1 -2, 2 , -1,, 2-1 
c (1~ ^ c (+1) (1” ) 

y2(i- \ •^2)“i (J2+ ^2)_1[^2(i- ^t2)'1 

+ ^2(i+32)_1] 

/ 

13 - 



For spherical coordinates ^ is most easily written down from the 

2 2 2 r . 
expressions for pr, Pq, and p in the Kepler problem [2J, with replacement 

of (^2 and Dig by 202 and 2Qig. For oblate spheroidal coordinates <£> may be 

found by comparing equations (53) and (59.1) of [5] with Eq. (6) of the 

present paper. 

Note that c£> or <£) could fail to exist only when sin 0 = 0 or when 

2 
^ =1. This could happen only when the satellite goes over a pole and 

thus only in a polar orbit. Such a singularity in a polar orbit, however, 

is to be expected, since non-singularity of a Staeckel system leads to the 

q's being differentiable functions of the w's and thus of the time. In a 

polar orbit, on the other hand, the right ascension q3 = is a discontinuous 

function of time, being constant except at polar crossings, where it changes 

by 7T . 

14 
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BUILDING RESEARCH. Structural Engineering. Fire Research. Mechanical Systems. Organic Building Ma¬ 

terials. Codes and Safety Standards. Heat Transfer. Inorganic Building Materials. 

APPLIED MATHEMATICS. Numerical Analysis. Computation. Statistical Engineering. Mathematical 

Physics. 

DATA PROCESSING SYSTEMS. Components and Techniques. Digital Circuitry. Digital Systems. Analog 

Systems. Applications Engineering. 

ATOMIC PHYSICS. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. 

Atomic Physics. 

INSTRUMENTATION. Engineering Electronics. Electron Devices. Electronic Instrumentation. Mechanical 

Instruments. Basic Instrumentation. 

Office of Weights and Measures. 

BOULDER, COLO. 

CRYOGENIC ENGINEERING. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas 

Liquefaction. 

IONOSPHERE RESEARCH AND PROPAGATION. Low Frequency and Very Low Frequency Research. Ion¬ 

osphere Research. Prediction Services. Sun-Earth Relationships. Field Engineering. Radio Warning Services. 

RADIO PROPAGATION ENGINEERING. Data Reduction Instrumentation. Radio Noise. Tropospheric Meas¬ 

urements. Tropospheric Analysis. Propagation-Terrain Effects. Radio-Meteorology. Lower Atmosphere Physics. 

RADIO STANDARDS. High frequency Electrical Standards. Radio Broadcast Service. Radio and Microwave 

Materials. Atomic Frequency and Time Standai'ds. Electronic Calibration Center. Millimeter-Wave Research. 

Microwave Circuit Standards. 

RADIO SYSTEMS. High Frequency and Very High Frequency Research. Modulation Research. Antenna Re¬ 

search. Navigation Systems. Space Telecommunications. 

UPPER ATMOSPHERE AND SPACE PHYSICS. Upper Atmosphere and Plasma Physics. Ionosphere and 

Exosphere Scatter. Airglow and Aurora. Ionospheric Radio Astronomy. 




