NATIONAL BUREAU OF STANDARDS REPORT AUG 8 1960

6900

PROPERTY OF SOUTHWEST RE EARCH INSTITUTE LIBRARY SAN A. ONIO. TEXAS

EVALUATION OF RESISTANCE STRAIN GAGES AT ELEVATED TEMPERATURES

Progress Report No. 9

by

R. L. Bloss, C. H. Melton and J. T. Trumbo

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of meaus and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and, technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Ebergy Continission. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Reports and Publications

The results of the Burcau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basie Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Inquiries regarding the Bureau's reports should be addressed to the Office of Technical Information, National Bureau of Standards, Washington 25, D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

0604-20-06441

July 1960

NBS REPORT

6900

EVALUATION OF RESISTANCE STRAIN GAGES AT ELEVATED TEMPERATURES

Progress Report No. 9

by

R. L. Bloss, C. H. Melton and J. T. Trumbo

Engineering Mechanics Section Division of Mechanics

Technical Report to Bureau of Naval Weapons Wright Air Development Division

Order No. NAer 01985

IMPORTANT NOTICE

to additional evaluation and review the Stillee of the Director, National October 9, 2015. cowever, by the Government agenc to reproduce additional copies for

NATIONAL BUREAU OF STANDA Approved for public release by the intended for use within the Gover Director of the National Institute of listing of this Report, either in who Standards and Technology (NIST) on

iss accounting documents r published it is subjected duction, or open-literature 3 obtained in writing from permission is not needed, red if that agency wishes

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

FOREWORD

In recent years the use of structures at elevated temperatures has increased greatly. If the safe design and efficient use of structural materials are to be assured, a knowledge of the properties of materials and of structural configurations is essential. In determining these properties, the measurement of strains and deformations is important. Strain gages to measure these quantities must be capable of operating satisfactorily over a wide temperature range.

In order to determine the characteristics of strain gages which are available for use at elevated temperatures, the Department of the Navy and the Department of the Air Force have sponsored a program for the evaluation of these gages. This report is one of a series giving the results of these evaluation tests.

There is a continuing effort on the part of manufacturers and research organizations to develop improved strain gages for use at elevated temperatures. Therefore the results given in this report would not necessarily show the performance of similar gages which may differ in characteristics due to differences in materials, treatments, or methods of fabrication.

> L. K. Irwin Chief, Engineering Mechanics Section

B. L. Wilson Chief, Mechanics Division

II

CONTENTS

FOR	EWORD)	II		
SYN	OPSIS		1		
1.	INTRODUCTION				
2.	GAGES				
3.	TEST EQUIPMENT AND METHODS				
4.	RESULTS				
	4.1	Strain Sensitivity	2		
	4.2	Drift	3		
	4.3	Temperature Sensitivity	3		
	4.4	Transient Heating	4		
	4.5	High Strains	4		
	4.6	Resistance to Ground	4		
	4.7	Gages Destroyed	4		
5.	CONC	LUSIONS	5		
6.	RECOMMENDATIONS				
7.	REFERENCES				

EVALUATION OF RESISTANCE STRAIN GAGES AT ELEVATED TEMPERATURES

Progress Report No. 9

by

R. L. Bloss, C. H. Melton and J. T. Trumbo

SYNOPSIS

Resistance strain gages of the HT-1200 series, manufactured by High Temperature Instruments Corporation, were evaluated at elevated temperatures. The characteristics determined were (1) gage factor at room temperature, (2) variation of gage factor with increasing temperature, (3) drift, (4) resistancetemperature relationship, (5) behavior under transient heating conditions, and (6) behavior when subjected to large strains. The results of these tests indicate that these gages, when attached to stainless steel, have a high but somewhat erratic gage factor, low drift at temperatures up to 700° F, and a high but stable temperature coefficient of resistance.

1. INTRODUCTION

In the continuing evaluation of resistance strain gages designed for use at elevated temperatures, gages manufactured by the High Temperature Instruments Corporation were subjected to evaluation tests. The gages tested were type HT-1200. The gages were subjected to tests to determine the following characteristics:

- (1) Gage factor at about 75° F,
- (2) Variation of gage factor with increasing temperature,
- (3) Relative change of resistance with time,
- (4) Resistance-temperature relationship,
- (5) Behavior under transient heating conditions, and
- (6) Behavior when subjected to large strains.

The results of previous evaluations of other gage types are given in references 1 through 8.

٨.,

2. GAGES

The gages which are reported on herein were purchased from the High Temperature Instruments Corporation. A drawing of the gage is shown in figure 1. The active element is a grid of platinum base alloy. The ends of the grid wire have been inserted into fine tubing which is swaged onto the wire to make a mechanical and electrical joint. The remainder of the tubing has been flattened to become the leads of the gage. A fine Chromel-Alumel thermocouple was furnished as a part of each gage. This thermocouple was installed in the cement with the gage in an attempt to obtain a more accurate measurement of the temperature of the grid material.

The gages were attached to stainless steel test strips with Allen PBX cement, also purchased from the High Temperature Instruments Corporation. The instructions furnished by the manufacturer were followed.

3. TEST EQUIPMENT AND METHODS

The equipment and methods used for the evaluation tests are described in references 5, 8, and 9.

4. RESULTS

The number of gages subjected to the various tests is shown in table 1. The results of the evaluation tests are given in tables 2 and 3 and figures 2 through 26.

4.1 Strain Sensitivity

Gage factor values were obtained at about 75° F from six gages for a maximum strain of about 0.001 in tension and compression. These values are given in table 2 where

 K_u = gage factor for increasing load K_d = gage factor for decreasing load \overline{K} = average gage factor value.

Gages $4.1200-A_3$, A_5 and A_8 were tested in tension before being tested in compression. Gages $4.1200-A_4$, A_7 and A_9 were tested in compression before being tested in tension.

An examination of the data of table 2 shows that there is a much greater variation of gage factor values between gages than between the various tests

on one gage. This would indicate that these gages are sensitive to variations in installation which are not readily controllable under laboratory conditions, or that there were significant differences between gages. Further examination of table 2 shows that the gage factor values for increasing load, K_u , for each gage are generally smaller and have significantly larger variations than the values for decreasing load, K_d . In all but one case (gage 4.1200-A₄ in compression) the value of K_u for the first run is lower than for subsequent runs. This could indicate that the cement is not transmitting strain to the wire properly, perhaps due to poor bonding to the gage wire.

The variation of gage factor with increasing temperature is shown in figures 2 through 5. Each curve of figures 2 through 4 represents the average change of gage factor of two gages which were mounted on opposite sides of a beam and connected in adjacent arms of a bridge circuit. These figures show considerable variation between different test runs on the same set of gages. The results for the first test run seem to be more regular than for subsequent runs, but these do not provide sufficient information for forming definite conclusions. Figure 5 shows the average of all gage factor variation tests and the envelope which would just include all of the test results. The number of test results averaged for each portion of the curve is also shown.

4.2 Drift

The drift behaviors of individual gages at each test temperature are shown in figures 6 through 18. Each curve of figure 19 represents the average of results for two gages for temperatures as high as 1200° F and the results for one gage for temperatures exceeding 1200° F. At temperatures as high as 500° F, drift trends were masked by the scatter of data due to resistance changes caused by small temperature fluctuations. At temperatures of 600° F and above a negative drift was shown. This drift was small at temperatures as high as 700° F but became quite large at temperatures of 1200° F and above.

4.3 Temperature Sensitivity

The temperature coefficient values obtained for two gages are shown in figure 20. At temperatures up to 1200° F, each point of figure 20 is the average obtained from four test runs. For temperatures exceeding 1200° F, each point is the average of two test runs. The difference between the average values obtained for the two gages and the difference between the values obtained for different test runs of one gage are generally less than the experimental error of the determinations. The high value of the temperature coefficient would necessitate accurate temperature measurements or an adequate means of compensation if large errors are to be avoided.

4.4 Transient Heating

The results of tests in which the temperature of the test strip to which the gage was attached was changed at about 60° F per second are shown in figures 21 through 23. Figures 21 and 22 show the response of one gage when subjected to three series of transient heating cycles. Each heating series consisted of five heating cycles from room temperature to a maximum temperature and back to room temperature. The maximum temperatures were about 600° F, 800° F, 1000° F, 1200° F, and 1500° F in that order. (The temperature changes were about 500° F to 1400° F.) These figures show that the change of resistance is large, but that the response is repeatable, especially after the first heating series.

Figure 23 compares the response of two gages for the second heating series. Comparison of this graph with figures 21 and 22 indicates that the repeatability of one gage for a number of heating cycles is somewhat better than the repeatability from gage to gage, even after the first heating series.

4.5 High Strains

The results of tests in which gages were subjected to tensile strains greater than those used for gage factor determinations are shown in figures 24 and 25. The gage factor values used to determine the strain indicated by the resistance gages, ϵ_{ind} , were determined for each gage just prior to the test. The gage factor values used are shown in the figures.

4.6 Resistance to Ground

The average resistance between the gage and the test strip for two gages is shown in figure 26. The resistance measurements were made with ... a Triplett vacuum tube volt-ohm meter, Model 650, using the scale range marked x 1 meg \bigwedge . The common terminal of the instrument was connected to the test strip. The readings were taken within a few minutes after the test strip had reached the test temperature. The values shown can be considered as only a qualitative indication of the insulating property of the cement since ceramic type cements would not be expected to follow Ohm's law⁽¹⁰⁾.

4.7 Gages Destroyed

During the course of this evaluation, sixteen gages were either destroyed or the intended information was unobtainable from them. A list of the gages lost and the reason for the loss is given in table 3.

5. CONCLUSIONS

The data obtained from the evaluation tests covered by this report indicate that:

- (1) The type HT-1200 gages have a high gage factor. The gage factor is, however, somewhat erratic, possibly due to poor bonding of the cement to the gage wire.
- (2) The high temperature coefficient of resistance of these gages would probably limit the use of these gages to stable temperature conditions or dynamic tests where the strain rate is high compared to the rate of temperature change.

6. RECOMMENDATIONS

Because of the need for strain measurements for a variety of conditions at elevated temperatures, the exploitation of the desirable properties of all strain gage materials is needed. The results obtained from these gages show that the strain sensitive element has a high gage factor and a well defined, repeatable resistance-temperature relationship. The alloy would be expected to be corrosion resistant. It would therefore seem that additional development of this gage type is warranted. In particular, it is recommended that an effort be made to improve the bonding of the cement to the gage wire and to reduce the drift. These improvements might be accomplished by mechanical or thermal treatment of the cement, wire, or both.

Washington, D. C. March 1960

7. REFERENCES

- (1) R. L. Bloss and C. H. Melton, An Evaluation of Two Types of Resistance Strain Gages at Temperatures up to 600° F, NBS Report No. 4676, May 1956 (ASTIA No. AD 94696).
- (2) R. L. Bloss and C. H. Melton, An Evaluation of One Type of Resistance Strain Gage at Temperatures up to 600° F, NBS Report No. 4747, July 1956 (ASTIA No. AD 101079).
- (3) R. L. Bloss and C. H. Melton, An Evaluation of Two Types of Resistance Strain Gages at Temperatures up to 600° F, NBS Report No. 4843, September 1956 (ASTIA No. AD 107662).
- (4) R. L. Bloss and C. H. Melton, An Evaluation of Strain Gages Designed for Use at Elevated Temperatures -- Preliminary Tests for Temperatures up to 1000° F, NBS Report No. 5286, May 1957 (ASTIA No. AD 135050).
- (5) R. L. Bloss and C. H. Melton, Evaluation of Resistance Strain Gages at Elevated Temperatures (Progress Report No. 5), NBS Report No. 6117, August 1958 (ASTIA No. AD 202419).
- (6) R. L. Bloss, C. H. Melton, and M. L. Seman, Evaluation of Resistance Strain Gages at Elevated Temperatures (Progress Report No. 6), NBS Report No. 6245, December 1958, (ASTIA No. AD 211391).
- (7) R. L. Bloss, C. H. Melton, and J. T. Trumbo, Evaluation of Resistance Strain Gages at Elevated Temperatures (Progress Report No. 7) NBS Report No. 6395, April 1959, (ASTIA No. AD 217651).
- (8) R. L. Bloss, C. H. Melton, and J. T. Trumbo, Evaluation of Resistance Strain Gages at Elevated Temperatures (Progress Report No. 8) NBS Report No. 6526, August 1959, (ASTIA No. AD 227197).
- (9) R. L. Bloss, A Facility for the Evaluation of Resistance Strain Gages at Elevated Temperatures, Symposium on Elevated Temperature Strain Gages, ASTM Special Technical Publication No. 230, pp. 57-66.
- (10) J. W. Pitts, E. Buzzard, and D. G. Moore, Resistance Measurement of Ceramic-Type Strain-Gage Cements, Symposium on Elevated Temperature Strain Gages, ASTM Special Technical Publication No. 230, pp 67-75.

	Number	of		
Type of Test	gages tes	ted		
Gage factor determination	6	des de ser sen se		
Gage factor variation with temperature	6			
Drift	2			
Temperature sensitivity	2			
Transient heating				
High strain	5			

Table 1 - Number of Gages Subjected to Tests

Table 2 - Gage Factor Values at About 75° F

	Run			Gage Fact	or Values		
Gage			Tension		С	ompressio	n
No.	No 。	Ku	К _d	K	К _и	К _d	ĸ
	1	2,590	2,707	2,649	2,745	2,958	2,852
4.1200-A.	2	2,726	2,776	2,751	2,914	2,940	2,927
	3	2.731	2.770	2.750	2.859	2.901	2.880
	Average	2.682	2.751	2.717	2.839	2.933	2.886
	1	3.556	3.597	3.576	3.670	3.667	3.668
4.1200-A ₄	2	3.598	3.626	3.612	3.607	3.625	3.616
-4	3	3.602	3.630	3.616	3.610	3.599	3.604
	Average	3.585	3.618	3.601	3.629	3.630	3.629
	1	3.012	3.129	3.070	3.434	3.633	3.534
4.1200-Ar	2	3.228	3.598	3.413	3.680	3.633	3.656
5	3	3.419	3.483	3.451	3.643	3.617	3.630
	Average	3.220	3.403	3.311	3.586	3.628	3.607
	1	2,935	3.113	3.024	2.919	3.351	3.135
4.1200-A ₇	2	3.066	3.096	3.081	3.274	3.312	3.293
/	3	3.058	3.100	3.079	3.312	3.298	3.305
	Average	3.020	3.103	3.061	3.168	3.320	3 . 244
	1	3.647	3.696	3.671	3.430	3.673	3.552
4.1200-A.	2	3.680	3.695	3.688	3.664	3.502	3.583
0	3	3.676	3.692	3,684	4.000	3.651	3.825
	Average	3.668	3.694	3.681	3.698	3.609	3.653
	1	2.838	3.436	3.137	2.865	3.483	3.174
4.1200-A	2	2.994	3.305	3.149	3.549	3.585	3.567
9	3	3.071	3.271	3.171	3.550	3.534	3.542
	Average	2.968	3.337	3.152	3.321	3.534	3.428
Grand	Average	3.190	3.318	3.254	3.374	3.442	3.408

Table 3 - Gages Lost Before Completing Tests

Number of gages lost	Remarks			
3	Gage leads were broken during gage installation			
4	Gage grids were damaged during gage installation			
2	Gages shorted to test strip			
1	Gage failed during preload prior to high strain test			
6	Small vibratory strains produced large output signals from the gage circuits. The cause was not determined. One test involved 4 gages and another test involved 2 gages. All gages were considered lost even though it is very possible that only one gage was faulty for each test.			

Fig. 2 Variation of gage factor with temperature

Variation of gage factor with temperature Fig. 3

Change of gage factor, percent

Fig. 4

Variation of gage factor with temperature

Drift behavior at 500° F Fig. 8

Drift behavior at 600° F Fig. 9

Fig. 10 Drift behavior at 700° F

Fig. 11 Drift behavior at 800°F

Fig. 12 - Drift behavior at 900° F

÷

Fig. 13 Drift behavior at 1000° F

Fig. 14 Drift behavior at 1100° F

Fig. 15 Drift behavior at 1200 °F

Drift, <u>∆R</u> × 10⁶

Fig. 16 Drift behavior at 1300°.F

Fig. 20 Temperature coefficient of two gages

Response of gage 4.1200-R2 with transient heating Fig. 22

Response of two gages with transient heating. Second heating series. Fig. 23

Fig. 24 Gage behavior at high strains at 75° F

Fig. 26 Resistance between gage and test strip. Average values for two gages.

DISTRIBUTION LIST

U. S. Government Agencies

Chief, Bureau of Naval Weapons (RAAD-232)		U. S. Atomic Energy Commission Technical Information Service	
Washington 25, D. C.	4	P. O. Box 62	
		Oak Ridge, Tennessee	1
Commander, Wright Air Develop-			
ment Division (WWFESS)		U. S. Department of Agriculture	
Wright-Patterson Air Force Base,		Madison Branch	
Ohio	6	Forest Products Laboratory	
		Madison 5, Wisconsin	1
Commander, Wright Air Develop-			
ment Division (MCPHCA)		Chief, Bureau of Ships (Code 548)	
Wright-Patterson Air Force Base,		Washington 25, D. C.	3
Ohio	1		
		Commanding Officer, Naval Air	
Commander, Wright Air Develop-		Material Center (ASL)	
ment Division (WCRTL-4)		Philadelphia 12, Pennsylvania	
Wright-Patterson Air Force Base,		Attn: Mr. D. Weiss	2
Ohio	1		
		Office of Naval Research	
Director, National Aeronautics		(Mechanics Branch Code 438)	
and Space Administration		Washington 25, D. C.	2
1520 H Street, N. W.			
Washington 25. D. C.	5	Naval Boiler and Turbine	
		Laboratory	
Director, National Aeronautics		Philadelphia Naval Base	
and Space Administration		Philadelphia 12. Pennsylvania	
Langley Research Center		Attn: Mr. Murdock, Instrumen-	
Langley Field, Virginia		tation Division	1
Attn: Mr. J. Munick	1		-
	-	Naval Research Laboratory	
Director, National Aeronautics		Anacostia. D. C.	2
and Space Administration			_
Lewis Research Cepter		Oak Ridge National Laboratory	
Cleveland 11 Obio	1	Oak Ridge Tennessee	
dieverand ii, onio	-	Attn: Mr. H. I. Metz	
Commanding Coneral		Instrument Department	1
Aberdeen Proving Ground Maryland		institument Department	T
Attp: Toobpical Library	1	Commanding Constal Rodatons	
Recht. rechtical Library	T	Arconal	
Commander Air Besearch and		Risellal Ilun tauilla Alabama	
Development Commend		Atta Tashaisal Library	0
Andreas Air Barris Dese Marsha	0	Attn: Technical Library	2
Allorews All Force Base, Maryland	2	Common how Arrival Common	
Common din a Offi		Commander, Armed Services	
Aim Bonne Blickt Back Control		Leconical Information Agency	
All Force Flight Test Center		Attn: TIPCK	
Attn: FTUTL		Arlington Hall Station	10
Lowards Air Force Base, Calif.	I	Arlington 12, Virginia	10

Springfield Armory Federal Street Springfield, Massachusetts Attn: Mr. Salame National Bureau of Standards Enameled Metals Section Washington 25, D. C.

1

Other Agencies

Aerolab Development Company, Inc.		Atomic Instrument Company	
330 W. Holly Street		84 Massachusetts Avenue	
Pasadena 3, California	1	Cambridge 39, Massachusetts	1
Aeronutronics Systems, Inc.		Atomics International	
1234 Air Way		A Division of North American	
Glendale, California		Aviation, Inc.	
Attn: G. J. Pastor	1	P. O. Box 309 Canoga Park, California	1
AIResearch Manufacturing Company			
of Arizona		Atomic Power Development	
402 S. 36th Street		Associates, Inc.	
Phoenix, Arizona	1	1911 First Street	
		Detroit 26, Michigan	
Allied Research Associates, Inc. 43 Leon Street		Attn: Mr. F. R. Beyer	1
Boston 15 Massachusetts		Baldwin-Lima-Hamilton Corp.	
Attn: Mr. D. Franklin	1	Electronics and Instrumentation	
	-	Division	
Allison Division		42 Fourth Avenue	
General Motors Corp.		Waltham 54, Massachusetts	1
Indianapolis 6, Indiana	1		
		Beach Aircraft Corporation	
American Instrument Company		Wichita, Kansas	1
Silver Spring, Maryland	1		
		Bell Aircraft Corporation	
A. O. Smith Corporation		Niagara Falls, New York	1
Milwaukee 1, Wisconsin			
Attn: Research Library	1	Bell Aircraft Corporation	
		Fort Worth, Texas	1
Armour Research Foundation			
Illinois Institute of Technology		Bendix Products Division -	
Technology Center		Missiles	
Chicago 16, Illinois		Bendix Aviation Corporation	
Attn: Mr. W. Graft	1	Mishawaka, Indiana	
		Attn: George T. Cramer	1
ARO, Inc.			
Tullahoma, Tennessee		Benson-Lehner Corporation	
Attn: Mr. H. K. Matt	1	West Los Angeles, California	1
		- /	

B. J. Electronics P. O. Box 1679		Cook Research Laboratories	
Santa Ana California	1	Morton Grove Illinois	1
ballea Mila, balliornia	-		-
Boeing Airplane Company		Cornell Aeronautical Laboratory.	
Seattle. Washington	1	Inc.	
		Structural Laboratory Section	
Boeing Airplane Company		Buffalo 21. New York	
Wichita, Kansas	1	Attn: Mr. J. E. Carpenter	1
,			
Bulova Research & Development		Curtiss-Wright Corporation	
Laboratories, Inc.		Test Instrumentation & Equipment	
62-10 Woodside Avenue		Division	
Woodside 77, New York	1	Wood-Ridge, New Jersey	
		Attn: Mr. Neil Eisen	1
Cessna Aircraft Company			
Wichita, Kansas	1	Curtiss-Wright Corporation	
		Propeller Division	
Chance Vought Aircraft, Inc.		Caldwell, New Jersey	1
Dallas, Texas	1		
		Douglas Aircraft Company, Inc.	
Columbia Research Laboratories		Santa Monica, California	1
MacDade Blvd. and Bullens Lane			
Woodlyn, Pennsylvania	1	Douglas Aircraft Company, Inc.	
		El Segundo, California	1
Combustion Engineering, Inc.			
Chattanooga Division		Douglas Aircraft Company, Inc.	
Chatanooga 1, Tennessee	1	Long Beach, California	1
Generalideted Engineering		Free Breesewah and Engineering Co	
Companyation		B O Par 9	
200 N. Sieme Medre Ville		r. U. DOX O	
Pagadona 15 California	1	Atta: Decies Encine Division	1
rasadena 15, California	T	Attn: Design Engineering Division	T
Consolidated Electrodynamics		Fairchild Aircraft Division	
Corporation		Fairchild Engine and Airplane	
Strain Gage Products Transducer		Corporation	
Division		Hagerstown, Maryland	1
1400 South Shamrock Avenue			-
Monrovia, California		Fairchild Engine Division	
Attn: Robert E. Stanaway	1	Fairchild Engine and Airplane	
		Corporation	
Convair, A Division of General		Deer Park, Long Island, New York	1
Dynamics Corporation		, , ,	
San Diego, California	1	Fielden Instrument Division	
		Robert Shaw-Fulton Controls Co.	
Convair, A Division of General		2920 N. 4th Street	
Dynamics Corporation		Philadelphia 33, Pennsylvania	1
Fort Worth, Texas	1		

54 - 1 - 1A

Fluor Products Company P. O. Box 510		HITEMP Wires, Inc. 26 Windsor Avenue	
Whittier, California	1	Mineola, New York	1
Foster Wheeler Corporation		J. T. Hill Company	
165 Broadway		420 S. Pine Street	_
New York 6, New York	1	San Gabriel, California	1
General Electric Company		Hughes Aircraft Company	
ANP Department		Florence and Teale Sts.	
Cincinnati 15, Ohio	1	Culver City, California Attn: Mr. Philip O. Vulliet	
General Electric Company		Mail Station A-2004, Bldg 6	1
General Engineering Laboratory			
Schenectady, New York		Lockheed Aircraft Corporation	
Attn: Mr. D. DeMichele	1	Burbank, California	
	-	Attn: Mr. W. Brewer, Research	
General Electric Company		Dent.	1
Aircraft Cas Turbine Division		ъсрея	-
Cincipnati 15 Obio	1	Lockheed Aircraft Corporation	
cincinnaci 15, onio	T	Coorgin Division	
Companyal Electric Company		Georgia Division	
General Electric Company		Atta From Tech Librow	1
Special Products Division		Alth: Engr. lech. Library	T
SUCh and Walnut Streets			
Philadelphia, Pennsylvania		Lockheed Aircraft Corporation	
Attn: Mr. M. Bennon	T	Missiles Systems Division	_
		Van Nuys, California	1
General Electric Company			
Missile and Ordnance Systems		Lycoming Division	
Department		AVCO Manufacturing Corporation	
3198 Chestnut Street		Stratford, Connecticut	
Philadelphia 4, Pennsylvania	1	Attn: Mr. R. Hohenberg	1
Gilmore Technical Associates		Magnavox Research Laboratories	
Cleveland, Ohio	1	Los Angeles, California	
		Attn: Mr. J. Francis	1
Goodyear Aircraft Corporation			
Akron 15, Ohio	1	Marquardt Corporation	
		16555 Saticoy Street	
Grumman Aircraft Engineering		Van Nuys, California	
Corporation		Attn: Engineering Library	
Bethpage, Long Island, New York		Mr. Leslie Bermann	
Attn: Engineering Library		Structures Development Lab.	1
Plant 5			
		Massachusetts Institute of	
High Temperature Instruments		Technology	
Corp.		Laboratory for Insulation Research	
225 West Lehigh		Cambridge 39. Massachusetts	1
Philadelphia, Pennsylvania			-

McDonnell Aircraft Corporation		Radiation Incorporated	
St. Louis, Missouri	1	Instrumentation Division	
		P. O. Box 2040, Pine Castle Branch	
Mr. Given A. Brewer		Orlando, Florida	
Consulting Engineer		Attn: Mr. U. R. Barnett	1
Marion, Massachusetts	1		
		Republic Aviation Company	
Micro-Test, Inc.		Farmingdale, Long Island,	
657 N. Spaulding Avenue		New York	1
Los Angeles, California	1		
		Research, Incorporated	
Mithra Engineering Company		115 N. Buchanan Avenue	
P. O. Box 1294		Hopkins, Minnesota	
Beverly Hills, California	1	Attn: Mr. F. G. Anderson	1
National Electronics Laboratories,		Ryan Aeronautical Company	
Inc.		San Diego, California	1
1713 Kalorama Road, N. W.			
Washington '9, D. C.	1	Solar Aircraft Company	
		2200 Pacific Highway	
North American Aviation, Inc.		San Diego 12, California	1
Structures Engineering Depart-			
ment		Southwest Research Institute	
Inglewood, California	1	8500 Culebra Road	
		San Antonio 6, Texas	1
North American Aviation, Inc.			
Columbus, Ohio	1	Statham Laboratories, Inc.	
		12401 W. Olympic Blvd.	
Northrop Aircraft, Inc.		Los Angeles 64, California	1
Hawthorne, California	1		
		Stratos Division	
Pennsylvania State College		Fairchild Engine and Airplane	
University Park, Pennsylvania	1	Corporation	-
		Bay Shore, L. I., New York	1
Polytechnic Institute of Brooklyn			
99 Livingston Street		Systems Research Laboratories,	
Brooklyn I, New York	1		
Attn: Mr. N. J. Hoff	1	300 Woods Drive	
		Dayton 32, Ohio	-
Research Librarian		Attn: R. A. Johnson	1
Fortland Cement Association			
5420 Old Orchard Road	1	Temco Aircraft Corporation	-
Skokie, Illinois	1	Dallas, Texas	1
Pratt and Whitney Aircraft		The Martin Company	
Division		Baltimore Maryland	1
United Aircraft Corporation		bartinore, maryranu	1
East Hartford Connecticut		The Martin Company	
Attno Mr C E Boardeloy Ir.	1	Denver 1 Colorado	1
accus mes de Le Dealustey, Jis	T	Denver 1, Cororado	1

The Society for Experimental Stress Analysis Central Square Station P. O. Box 168 Cambridge 39, Massachusetts 1 The Tatnall Measuring Systems Co. P. O. Box 235 Phoenixville, Pennsylvania Attn: Mr. Frank Tatnall 1 Thiokol Chemical Corporation Utah Division Brigham City, Utah Attn: Instrumentation Engineering 1 Unit Trans-Sonics, Inc. P. O. Box 328 Lexington 73, Massachusetts 1 University of Colorado Boulder, Colorado Attn: Prof. F. C. Walz 1 University of Dayton Research Institute Special Projects Division Dayton 9, Ohio Attn: E. A. Young 1 University of New Mexico Engineering Experiment Station Albuquerque, New Mexico 1 Waldale Research Company, Inc. 362 West Colorado Blvd Pasadena, California Attn: Mr. F. N. Singdale, Pres. 1 Westinghouse Electric Corporation Atomic Power Division Pittsburgh, Pennsylvania 1 Westinghouse Electric Corp., AGT Engineering Library P. O. Box 288 Kansas City, Missouri 1

Professor H. H. Bleich (NR 064-417) Department of Civil Engineering Columbia University Broadway at 117 Street New York 27, New York Professor D. C. Drucker (NR 064-424) Division of Engineering Brown University Providence 12, Rhode Island Professor N. J. Hoff (NR 064-425) Division of Aeronautical Engineering Stanford University Stanford, California Professor Joseph Kempner (NR 064-433) Department of Aeronautical Engineering and Applied Mechanics Polytechnic Institute of Brooklyn 333 Jay Street Brooklyn 1, New York Mr. Peter Stein 5602 E. Monte Rosa Phoenix, Arizona Bristol Aircraft Limited Electronic and Vibration Laboratory - E. D. L. Filton House Bristol, England Westinghouse Electric Corportion Materials Engineering Department K-70, Performance Laboratory East Pittsburgh, Pennsylvania Armour Research Foundation

1

1

1

1

1

1

1

1

Armour Research Foundation Illinois Institute of Technology Chicago 16, Illinois Attn: Mr. H. L. Rechter

U.S. DEPARTMENT OF COMMERCE Frederick H. Mueller, Secretary

NATIONAL BUREAU OF STANDARDS

A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its major laboratories in Washington, D.C., and Boulder, Colorado, is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside of the front eover.

WASHINGTON, D.C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Photographic Technology, Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Molecular Kinetics. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Radiation Theory. Radioactivity. X-rays. High Energy Radiation. Nucleonic Instrumentation. Radiological Equipment.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties of Gases. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Constitution and Mierostructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Ileat Transfer. Concreting Materials.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Application Engineering.

• Office of Basic Instrumentation.

· Office of Weights and Measures. .

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships. VIIF Research. Radio Warning Services. Airglow and Aurora. Radio Astronomy and Arctic Propagation.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Research. Radio Noise. Tropospheric Measurements. Tropospheric Analysis. Propagation Obstacles Eugineering. Radio-Meteorology. Lower Atmosphere Physics.

Radio Standards. High Frequency Electrical Standards. Radio Broadcast Service. High Frequency Inpedance Standards. Electronic Calibration Center. Microwave Physics. Microwave Circuit Standards.

Radio Communication and Systems. Low Frequency and Very Low Frequency Research. High Frequency and Very High Frequency Research. Ultra High Frequency and Super High Frequency Research. Modulation Research. Antenna Research. Navigation Systems. Systems Analysis. Field Operations.

