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PREFACE

The problem considered in this report is that of optimally selecting the

locations and employment of intermediate storage facilities (warehouses) in

the delivery of a single froaen-food commodity from a single supplier to a

group of Veterans Administration hospitals. The mathematical features of

tile problem are analyzed, the features rendering it more difficult than

standard transportation problems are identified, and related computation

techniques are cited. The assigned scope of this study includes neither

the development of new mathematical techniques nor the detailed adaptation

of exisisting ones for the purposes of the problem.
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A BRJKF SURVEY
OF MATHEMATICAL FOR MIFLA?IONS AND SOLUTION METHOOS

FOR O^IMAL BI.VTRiBUTION AND STORAGE
OF A FHOZSl-FOOD COMMODITY

FOR VET-'RANS ADMIN ISTUATION HOSPITALS

Lapibert S« Joel

I* Introduction , In fuiliXling its responsibility for supplying

frozen foods to hospitals uiider its jurisdiction^ the Veterans Administration

must maintain {i,e,, rent, pujfchase or build) su,fficient warehouse space to

store foods t-diich are purchased seasonaJ^ly and are requested periodica.lly

by the hospitals throughout the year. The transportation and storage costs

involved are in general subject to volume discounts*

The problem can be conveniently segmented for the purp’^ses of the

follovang discussion of di.fficul.ties and compiitatiorfal techniques.

Unfortunately this splitting of the problem into parts, though useful for

exposition, is not especially helpful In arriving at numerical solutions.

2, The Classical Transportaci of) In.itial.ly we wiii ignore

the possibility of economies of scale and assume that costs are linear
;
uhat

is, a constant ^ 0 is associated with each combination of a shipment

-

origin i,the i-th, say) and a shipment -destination (the j-th^ say), and the

cost of shipping the amount x . . from the i-th origin to the j-th destination

is simnly the product c.
ij II

(l

'

The "cias«i cal'* or Hitchcock ' transportation problem is that of finding

the optimal , ( cost minimizing^ pattern of shipments of a single commodity

stored at m fixed warehouses (the origins) to a set of hospitals (the

destinations) with knovni ’requirements. To formulate this problem algebraically



we set

2

= amount stored for shipment at the i-th warehouse, (i =1,2,

= amount required at the j-th hospital. ( j - 2,

.

,m)

c. . and X . are as defined above. The formulation is then given by:
1

J

m

(1 ) 2 X. .
= h

.

. , iJ J
1=1

(j -1,2, ...,n)

n

( 2 ) 2 X. .
= a.

j=l
"

(i = 1,2, . . .,m)

( 3 ) X. . >
ij ” (i -1,2,... ,m;

j= 1,2, ...,n)

m n

(M C = 2 2 c. . X.
.

i=l IJ
is to be minimized.

Here equations (l) state that the shipments (from all warehouses) to each hospital

add up to the hospital's requirement. The equations (2) assert that the shipments

(to all hospitals) from each warehouse add up to the amount stored at the warehouse

for shipment. Conditions ( 3 ) forbid shipments in the "wrong direction," since

Xi^ < 0 would correspond to a shipment from the j-th hoppltal to the i-th warehouse.;

Display (4 ) defines the objective function , i.e., the function whose minimization

is the objective in the solving of the problem. This minimization is to be attainel

by a proper selection of values for the shipment-variables x. ., among those sets
^ tJ

of values satisfying the "feasibility conditions" (l), (2) and (3).

It can be deduced from (l) and (2) above that

m
2

n
, a .

= 2 b .

,

i=d j=l ^

which expresses a perfect balance between total supply and total demand. If

S h
m
2 a. < _

1=0. ^ j=l ^

then the hospitals' requirements cannot be met. If there is an excess of total

supply over demand

m n
(i.e., j_2^a^ >

then a warehousi- need not ship all that it has on hand, so that (2) should really

be replaced by
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m
<2 ' a.

1

ii'itroduuirig n fictitious (n+l hospital whose fictitious requirencnu is

and shipments to the iictitious? uosfical are ignored in interpreting the

solution of the ^^eniarged” probiors.

Generally the commodity being shipped comes in certsan indivisible

units, and each shipment must corisist of an integral number of these units

(no fractions). Thus only a finite number of shipment patterns exist

'.diich, ‘satisfy the feasibility conditions, and in theory the problem could.

bo solved by enumerating these o-atberr.r one by ope and .fina 11 y selecting a

pattern whOvSe cost (the value of tne objective function C) is iovfest. The

t.ctal number of patterns is too .L^rgs, nowr-^ver, for this prc;cedn.re to be

possible in practice. This can be seen by examining the simplest type of

(

)

traj.ivSDOi'tation p.rob.lem, which is called the assignmen t problem . Here

the numbers of origins and destinations (i.e., warehou.se s and hospitals)

are equal, m = n, whij.e eacri origin has one unit to be shipped and each

destination requires one unit. Thus the pr''blem is simply that of selecting

a warehouse to ship to each ho.sp;ltal, i.e. ,
of pairing off warehouses and

hospitals so as to minimise total transportation costs. The number of

possible shipment -patterns is

exactly equal to the excess of total sur»piy over demand; zero tran sportation

cost.s are associated with this hospital,

ii -

nl = 1x2x3x

v-hicii for n = 10 is 5l8,l|00, Fxafldnation of a sungle patten) ?‘equiros iuii
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additions (one for each warehouse-hospital comhination in the pattern)

plus some "hookkeeping" operations, so that current medium speed digital

computers like the IBM 65O could examine roughly 400 patterns per second

and would therefore require about 20 minutes to examine all patterns when

n = 10. If n = 50, however, then even a hypothetical computer which could

examine 1,000,000 patterns per second would require more than 1051 years

to examine all patterns.' (A current estimate for the age of the earth is

10^*^ years. ) Thus even for the simplest type of transportation problem,

solution of a fairly large problem by examining all possibilities is totally

out of the question.

Before the development of linear programming and the growth of interest

in allocation problems by mathematicians and mathematical economists, all

practical schemes for solving transportation problems consisted essentially

of enumeration with "skips," i.e., rules of thumb for bypassing large

classes of patterns which obeyed the feasibility conditions (l)-(5) but

could reasonably be assumed to be nonoptimal; these rules of thumb were

refined by generally efficient methods of "scorekeeping. " It is a tribute

to the acumen of experienced but mathematically untrained personnel in

logistic organizations that these methods proved adequate so long as the

size of the problem (i.e., the niimbers of origins and destinations)

remained moderately small and there was no statutory or legal requirement

for attaining the minimum cost exactly.

For example, tests were made in 1952 to compare solution using tradition!

trial methods by experienced Quartermaster Corps personnel, with solution by

computer using precise mathematical methods. The problems involved 20-30

origins, roughly the same number of destinations and thousands of commodity-

poiinds; the computer used, the NBS SEAC, has a speed roughly comparable
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to tn.it 01* the IBM 6^?0, It was found that experienced personiiel could

generally (but not. invariab.l.y ) C'xrte vathin 0,1% of the true minimum cost

in only four or five hours more than the computer required to find the

exact sola i

i

an , ' ^

The application of geometry/ and algebra to logistics problems led to

the matnematicai theory of linear programrfdng and its most mdely used

computational technique, the simplex method of C. B* L^a,ntzig^'‘^^'^^'hich has

( c)
been subsequently developed fi.irther by se^^eral authors' , Most computer

programs for solving transportation problems are based on a modification of

the simplex method which takes advantage of the fact that these problems

are of a ''combinatorial'' nature permitting their sciution vjithout use of

multiplication or division. Recently an alternate m.ethod, a generalisation

? y i

of H, W, Kuhm*o application-''' of a theorem by the Hungarian mathematician

( 8 ) ( 9

)

%ervary'- ' to the assignment problem, has been developed^ and translated

into a computer program, terstefihaber* s "threshold m.ethod" should also be

10 '

menticred'' , The av'-’idance of multiplication and division is quite

desirable because these operations are s\3bstantiaiiy slovrer than addition,

or subtraction on a digital computer.

The salient characteristics of these thecreticai.ly -based computational

methods are

(i) "economy," in the sense that they include .formal rules for bypassing

huge subsets of the possib.le shipment patterns,

(ii) "progressive optimization," in the sense that the partial solution

n 1 )

at each stage in the computation is objectivel.y better ^ ‘ than that at the

preceding stage, and

(iii) "dependability," in that there is a rigorous guarantee that the

absolute minimum cost x^dil be reached plus an estimate (generally extremely
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conservative) of the greatest possible npinber of steps required to reach it.

In spite of the ingenuity of these methods, and of the current advances

in technology leading to substantially more rapid computers, there is a real

possibility that still more powerful methods will be required in order to

deal with the ever-longer transportation problems (i.e., more origins and/or

destinations) presented for solution Some sources of these enormous

problems will be mentioned below. Among recent work which may possibly
(12 ) (13 )

lead to the necessary imptrovements, we mention that of Rosen ^ ' and Warga
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3 . Linear Generalizations of the Traas^portation Problem

Thoughout this section, we continue to assume that costs are

linear i i*e, to consider only situations in which there are

no economies of scale.

One generalization of the classical transportation prob-

lem which frequently occurs in practice is know* as the trans -

shipment or multistage transportation problem . Here the

commodity need not ije shipped directly from an origin to a

destination, but instead passes through certain intermediate

points. The two-stage problem is fairly representative of

problems with more than two stages, and in addition represents

the particular situation described to us by the Veterans

Administration; therefore we will confine attention to this

case. Here we have "original sources” or suppliers , interme-

diate storage points (the warehouses), and final destinations

(the hospitalsX.r As in the previous section, we use the

notation

:

X. .

m

= amount shipped from i-th warehouse to j-th

hospital

,

ss cost of shipping a unit amount from i-th

warehouse to j-th hospital,

«= requirement at j-th hospital,

s the number of warehouses,

Fortunately we ueed not consider the two-stage transpor-

tation problem in full generality. In the particular situa-

tion under study here, all the suppliers happen to be located
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so close together that the transportation costs from any two

suppliers to the same warehouse are very nearly equal. We

can therefore conceptually lump the individual suppliers

together into ”one big supplier,” so that we are dealing with

a two-stage transportation problem with only one original

source . We use the notation

c = cost of shipping a unit amount from supplier
i

to i-th warehouse,

c*. .= cost of storing a unit amount at i-th warehouse

(14)for appropriate period ' associated with j-th hospital.

If we assume that everything shipped to a warehouse is

1

ultimately transmitted to the hospitals, then the amount

m
shipped to the i-th warehouse is simply the sum Z x . . of— j=l
amounts shipped from this warehouse to the various hospi-

tals. Thus the objective function (i.e., the total cost,

which is to be minimized) is no longer given by equation (4),

but rather by

m n m n m n

C=v(c zx)+z Z c*. , X. . + z z c. .

i=l 1 j=l ij i«l j=l i=l j=l ^

the first term representing the costs of suppld^er-to-ware-

liouse transportation, the second giving the storage costs,

while the third accounts for the warehouse-to-hospital

transportation costs. This expression can be rewritten as

n m
r ~ 2 z

j=i 1=1
(c. + c» . . + C . .) X. .

1 IJ

I
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(5)

(6 )

The problem can now be formulated algebraically as

m
Z X . .

= b
, (j=l f » 9 » fTi")

i«l J

X (x—lj2y*«*imj
ij

j—l»2j • • • >n)

n m
(7) C = ^ ^ (c. + c*. . + c. .) X. . is to be minimized,

j=l j=l
^ iJ ij ij

The explanations of conditions (5) and (6) are like those

for (1) and (3) in the preceding section. To use linear pro-

gramming techniques for this problem would be like using an

elephant gun to kill a mouse; purely elementary methods suf-

fice for the solution. The point is that the £ hospitals play

(15 )independent roles in the problem. Therefore for each hospi-

tal, say the j-th, it is only necessary to find a warehouse

for which the cost c. + c*. + c. of sending each unit of the

commodity through its supplier-to-warehouse-to hospital history

is smallest. The entire requirement b for the j-th hospital
j

is then shipped to this warehouse and thence to the hospital;

of course different hospitals may use the same warehouse.

The minimized cost is then

n

(8 ) mxn
Z b . min (c . + c *

. + c . . )

j=l J 1 <i< m ^

where the ”min,” standing for "minimum," recalls how the ware-

house associated with the j-th hospital was selected.

Before proceeding further, we must bring up a topic out-

side the assigned scope of this study. In this report we are

dealing solely with a single commodity. Any reasonably large
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warehouse can hold a year’s supply for all the hospitals

(actually eight in number) of this one commodity, and this

is one of the reasons why we were specifically permitted to

ignore possible restrictions imposed by the finite capacities

of the warehouses* A more complete analysis of the Veterans

Administration’s transportation and storage of goods for its

hospitals will necessarily have to take account of the many

different commodities involved, and of the almost inevitable

(16) ‘

interdepency of the shipment patterns for them. Commo-

dities may be treated independently if they reqire totally

separate warehouse facilities, but it may be found that foods

and other (e.g*, medical) supplies "compete” for the same

(limited) warehouse space* It is therefore of interest to

see how the preceding problem (defined by (5) through (7) ) is

affected if warehouse capacities are taken into account* The

answer is that a classical transportation problem (the type

described in the preceding sent ion) is obtained; if

= capacity of the i-th warehouse

then the algebraic formulation given by (1), (2’), (3), and

(4) of Section 2, with c. + c’ + c. replacing c. . in (4);
1 ij ij

the inequalities (2’) can be replaced with the equations (2)

by introducing a fictitious extra hospital as explained

earlier *
^ From now on we shall respect the restricted

/

scope of the study and ignore warehouse capacity restrictions;

the remaining difficulties are still formidable*
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So far the warehouse locations have been treated as fixed.

Actually, the selection of these locations is part of the prob-

lem faced by the Veterans Administration. The simplest case

of this problem is that in which a list of possible sites for

the warehouses is specified, and the actual warehouses to be

used must be selected from this list. Here one imagines that

a warehouse is available at each possible site and solves the

resulting problem; in the solution some of the warehouses will

prove to be unused (x. . =0 for j =1, 2,..., n) and the
^ J

remaining ones form an optimal selection from the list. This

method also yields the optimal pattern of shipments. For the

problem defined by (5) through (7) above, the computation

offers no difficulties. If there are additional complications,

however (e.g, volume discounts or warehouse capacity limita-

tions), and if the list of possible warehouses is much larger

than the actual number of warehouses to be selected, then the

number of (hypothetical) warehouses considered in this method

may be so great as to make the problem intractable to current
(18)

computational techniques. One would expect, though, that

an intelligently-selected list of "reasonable” possible sites

would not contain more than say double the number of warehouses

to be actually used.

If warehouses are not actually present at some of the

"possible sites” but might be built there, then appropriately-

amortized construction costs must be added to the storage costs.
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Here consideration of the proper capacities for these

new warehouses enters the problem; if relatively few capaci-

ties are to be considered, one approach would be to treat

these capacities as parameters and use the methods of para-

(19)
metric programming to explore systematically the

results of varying these parameters.

A different version of the ’’warehouse location” prob-

lem arises if the warehouse can be located ’’almost anywhere”;

i.e., if no finite list of possible sites is given in advance.

First, combinatorial methods are not applicable since the loca

tion of a given warehouse is a continuous variable (combina-

torial problems involved only variables restricted to a

discrete set of values). Second, the transportation cost

rates c^j and c^ become functions c^(L^) of the loca-

tion of- the i-th warehouse. These costs probably depend in

a fairly complicated way on the existing network of transporta

tion facilities, though in especially favorable cases they

might depend simply on the warehouse-hospital and supplier-

warehouse distances. For the situation described by (5) - (7)

the problem is apparently that of selecting the warehouse-

locations L- , . . .

,

L so as to minimize (cf.( 8 ))
1 m

(19a)
Such problems have appeared in the literature , but no

general computational methods are available; we believe, how-

ever, that developing a computation technique for minimizing
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the expression (9) is well within the current "state of the

art," Such a technique would be inadequate for the Veterans

Administration problem, however, both because of the addi-

tional complications (to be discussed later) of that problem

and because the number of warehouses (i.e,, the number of

variables in (9)) is itself a variable to be determined rather

than a dai:um.

Still another aspect of the problem ensues if the ware-

house sites are to be picked more or less permanently, but

the relative requirements at the hospitals may fluctuate in

the fnture in a not entirely predictable way. Since the

Veterans Administration has indicated that these fluctuations

are not expected to be xr£ significance in the hospital

subsistence program, we^will only remark that this area of

"stochastic programming" or "programming under uncertainty,"

which deals in part with the optimization of supply systems

whose demandsr are only predictable on a probabilistic basis,

(
20

)has only recently been studied intensively ; theoretical

understanding in this field seems inadequate for the creation

of fully satisfactory computation methods,

4, Nonlinearities , The greatest single difficulty in

determining the optimal system of warehouse locations and

shipments arises from the, nonlinearity of the costs, i.e,,

the volume discounts, A very simply example will illustrate

the nature of these complicai:ions , If John is selling apples

at 5 cent/lb, and Mary is selling them at 10 cents/lb., then
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(assuming all other things equal) one need make no calcula-

tion before deciding to do business with John. If Mary now

adopts a ’’nonlinear” price structure and offers to sell at

10 cents/lb. up to four pounds but at 3 cents/lb. thereafter,

then it is clear that (a) our optimal purchasing policy now

depends strongly on the size of our requirement, and (b) if

we want more than four pounds then our choice between the two

entrepeneurs involves enormously more analysis, relatively

speaking, than what was required before. The confusion is

evidently compounded as the number of apple-sellers and

the number of breakpoints in their prices, increases.

Strangely enough, it is only volume discounts that are

so troublesome. Adequate computational techniques exist for

problems whose nonlinearities arise only from volume penalties

(e.g., where a warehouse-owner cannot store an assigned quan-

tity without building an extra wing and therefore charges

more per unit for the overflow).

* Until recently no method at all existed for guaranteeing

a solution to a nonlinear optimization problem involving volume

(21 )discounts. In 1957 Markowitz and Manne presented a use-

ful reformulation of the problem, which avoided the nonlinear i-

I

ties at the price of a different kind of complication. First,

the problem was no longer of the multistage transportation

type, but rather of the more general linear programming type,

so that its solution would require the relatively slow opera-

tions of multiplication and division. Second, the reformulated
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problem is of mixed integer type; that is, some of its varia-

bles are restricted to be integers. The recent adaptation by

(22 )
Gomory of Dantzig*s simplex method to linear programming

problems involving such "integrality constraints" marks a

significant advance in this area of mathematics and provides

hope of achieving the computational technique needed to

implement the Markowitz-Mannes formulation .

^

Gomory *s method has not been tested on any large-scale

problems. Although its theoretical correctness has been

proved (i.e., it is guaranteed to arrive at the correct solu-

tion in finitely many steps), its computational usefulness

has not been tested on any large-scale problems and so it

cannot yet iie ueottsidered a dependable "packaged product"

like the simplex method. Furthermore, Gomory *s method applies

to pure integer problems (in which all variables are restricted

to integer values), and even less is known about its extensions

(23 )
(one by Gomory, one by Beale ) to the mixed-integer case

presented by the Markowitz-Manne problem.

In spite of these uncertainties, it is generally felt

that Gomory *s work will lead, in the next few years, to compu-

ter programs capable of dealing with moderately large mixed

integer linear programming problems. Upon applying the

Markowitz-Manne reformulation to the Veterans Administration

situation, however, we find that resulting problem is much

more than "moderately" large. The presence of seven break-

points in the shipping and storage cost rates leads, even
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with a fairly small number (say eig^ht) of possible ware-

house sites, to a problem so large as to defy solution in

a reasonable amount of time on present-day computers by

Gomory-type methods,

5. Conclusions Progress in mathematical knowledge, com-

putations! techniques and digital computer rapidity during

the past three years have moved the frontiers of the "state of

the art” enormously closer -to the point where the Veterans

Administration problem can be coped with, but that point has

not yet been reached. No neatly packaged computer program

for the complete solution of such problems now exists, and a

substantial research effort would be required before one could

be created. It may of course prove possible to devise a^ hoc

techniques which yield more or less satisfactory approximations

( 24 )

so long as the terms of the problem do not change appreciably.

In any case, we suggest that the problem is inherently so big

and so complicated as to require a larger faster computer than

the IBM 650 now available to the VA.
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