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Mathematical Research Related to

Information Selection Systems

Alan J. Goldman (Project Manager), Bernice K. Bender,

John Edmonds, Karl Goldberg, and Rosalind B. Marimont

1 . INTRODUCTION

This report contains a description of work performed under NSF Grant

G-7579 during fiscal 1960 on mathematical research relevant to information

selection systems. We have considered three areas of mathematical problems

related to mechanization of the information retrieval process:

(1) Efficient Formulation of Search Questions,

(2) Rapid Classification of Incoming Documents on a Given One-Dimensional

Scale,

(3) Categorizing and Manipulating Documents and Their Relationships.

Work on the "search formulation" was carried out by Mrs. Bernice K. Bender

and Dr. Alan J. Goldman. This research is described in "medium detail" in

Section 2. The results were of two kinds. First , an algorithm for partial

simplification of Boolean functions was devised and translated into a digital

computer J code . This work was presented to the American Mathematical Society

(Notices AMS 1
_ (1960), p. 86), and its technical aspects are given in NBS

Report 6859 ("Computer Simplification of Boolean Functions") which has

already been submitted to the National Science Foundation; these aspects

are not repeated in the present report. A paper on this material has been

submitted to a technical journal, and is now being revised and enlarged.

Computer experimentation with the algorithm is being carried on under other
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auspices. Much of the analysis is also applicable to the more general task

of selecting a ’'minimum-cost” covering of a given set from a prescribed

family of subsets.

Second , solutions were found to two theoretical questions which had

appeared in the technical literature. This research is reported in detail

in Sections 3 and k, and is to be incorporated in a longer paper under

preparation. The material of Section 3 has been presented to the American

Mathematical Society (Notices AMS 1_ (I960), p. 715)) John Edmonds has

examined some of this material in a more general (graph-theoretic) setting,

and his investigation is set forth in Section 5 of this report.

In connection with the "rapid classification" problem. Dr. Karl Goldberg

investigated the efficacy of a proposed method for ordering a flow of

incoming data by monotonic chains. The results contradict previous

conjectures. A summary of this work appears in Section 6 below, while the

details are given in Section 7. The material is to be included in a longer

paper now being prepared.

As one aspect of our work on the "categorization” problem, it was

found appropriate to support in part the preparation of a paper on "Graph-

Theoretic and Boolean Method in Computer Programming." The reasons were

(a) that the mathematical techniques involved are relevant to the

"categorization and manipulation" problem, (b) that advanced programming

techniques will, almost surely be required for any sophisticated retrieval

system, and (c) that computer programs and flow charts themselves fora
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interesting and important information structures from which it is often

quite difficult (e.g.^ in debugging) to extract needed data. The paper

has been published (SIAM Review 1 (I960), p. 259), and reprints have been

submitted to the National Science Foundation^ its contents are therefore

not discussed in this report.

Brief examinations were made of several formulations of the

"categorization" problem. One version turns out to be of roughly the same

order of difficulty as the classical coloring problems of graph theory.

Another formulation leads to a "minimum-cost" covering problem, so that

the work mentioned above in connection with Boolean simplification is also

useful here. This material is too fragmentary to be reported. John Edmonds

observed that relationships between documents in a collection are frequently

intransitive^ since intransitive relations are considerably more difficult

to manipulate than transitive ones, he made a preliminary study of the

problem of approximating a given intransitive relation by a suitably-chosen

transitive relation. This study is reported in Section 8.

The duration of the project was too short for most of the investigators

to obtain results they considered sufficiently substantial and complete to

warrant separate publication. On the other hand, the grant provided an

essential initial stimulus for several promising lines of research which

are now being continued under other auspices and are proving quite fruitful.

(One example not mentioned above is the recent work of John Edmonds on

"minimum cost" covering problems^ cf. Notices AMS 8 (1961), p. 152). These

two factors explain the many references above to "longer papers being
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prepared" as compared with the single reference to a paper already

published. The factors also explain in part the tardiness of this

report, which was delayed in hopes of including the "completed story",

at least up to the "first publication" stage, of more of the research

supported by the grant. The press of the investigators' other duties

has prevented this, but of course the National Science Foundation will

be informed (and furnished reprints) of subsequent publications

resulting from the grant.
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2. EFFICIENT FORMULATION OF SEARCH QUESTIONS^

The activity reported below deals with efficient formulation of

search questions in cases in which the relevant data (about either

document topic or document content) can be characterized in terms of

n descriptors and all logical combinations of them. If for example

the descriptors in question are "cat" and "dog" (so that n=2), then

an illustrative situation would be one for which it sufficed to

classify documents as dealing with "cats and dogs'% or "cats but not

dogs'% or "dogs but not cats", or "neither dogs nor cats". In such

circumstances the description of a class of documents to be retrieved

is simply a Boolean function of n variables, and the problem of

efficiently representing such descriptions leads to the problem of

devising an algorithm for finding the simplest forms of Boolean

functions of many variables. We have been especially concerned with

methods applicable on small digital computers, or computers for which

use of external memory is impossible or particularly undesirable.

A digital computer technique requiring relatively little storage

and no external storage was devised for the partial simplification of

Boolean functions. Functions of as many as 14 variables have been

treated on the SEAC computer (2048-word internal memory, no external

memory, 44-bit word length) . The programming for SEAC and the actual

machine usage were supported in part by the Navy Department (Bureau of

Ordnance), and in part from the NSF funds for the NBS Research Infor-

mation Center and Advisory Service on Information Processing. All

other work reported below was supported under NSF Grant No. G-7579.

^^^The material of Sections 2-4 is due to Mrs. Bernice K, Bender and

Dr. Alan J. Goldman.
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We have found the "geometric" or "topological" approach to Boolean

functions to be far more useful than the "algebraic" formulation, though

perhaps this is due rather to the nature of our particular mathematical

intuitions than to any inherent superiority in the former method. In

the geometrical approach, the n variables of the Boolean function (each

of which can be either "true" or "false") become n coordinates (each of

which can take on either the value 1 or the value 0), so that the set

of all possible combinations of true-or-false values for the variables

becomes the set of 2^ vertices of the unit cube I in n-dimensional
n

space, A particular Boolean function can be identified with the col-

lection of those true-or-false combinations of the variables which

verify the function; thus geometrically a Boolean function of n variables

is simply a subset of the vertices of

If f is a fixed Boolean function, then a face of I whose vertices

all lie in f will be called a cell . A collection C of cells, such that

every vertex of f lies in at least one member of C, is called a covering

of f . Any such covering corresponds to a normal disjunctive form for f,

i.e., a disjunction of conjunctions of variables and their negatives,

each conjunction corresponding to a single cell of the covering. For

example, the covering made up of all the individual vertices in f

corresponds to the "completely expanded normal form".

In our work (as in that of many workers), the problem of "simpli-

fying" a Boolean function is restricted to the search for a "simplest"

normal disjunctive foim, which in the geometric language becomes the

task of finding a covering which is "minimal" in some prescribed sense.

Both on esthetic grounds and from the viewpoint of applications to

switching-circuit design, it is necessary that the definition of "minimal"
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be such as, roughly speaking, to encourage coverings with few cells,

and coverings with mostly cells of high dimension. To realize these

ends, we introduce an unspecified decreasing function g(d) as the

cost of a d-dimensional cell; the cost of a covering is the sum of

the costs of its cells, and a "minimal" covering is one with the least

possible cost. Thus we are concerned (as was Quine in his basic papers

in the field) with that part of the simplification process which is

valid independent of more precise specification of the cost function;

this is one aspect of what was meant above in speaking of a computer

program for partial simplification of Boolean functions.

A cell contained in no other cell is called basic ("maximal"

would be more in keeping with customary mathematical usage); such

cells correspond to what Quine calls prime impl leant

s

of the Boolean

function. Clearly a minimal covering is composed of basic cells only.

Furthermore, suppose some vertex in f lies in only one basic cell;

such a cell is necessarily in every covering by basic cells, hence

in every minimal covering, and so such cells are called essent ial .

Although the details of the computer program are of importance in

establishing the feasibility of the techniques for a small computer,

they will not be repeated here; a full description is given in NBS

Report 6859, (I960), a preprint of a paper "Computer Simplification

( 2)
of Boolean Functions" by B . K. Bender, A. J. Goldman and R. B. Thomas

which has been submitted to a technical journal. In summary. Phase 1

of the program determines all the essential cells of the Boolean

function. Note that no further effort need be made to ensure "covering"

72)
The last author is a member of the NBS Data Processing Systems Division.
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of the vertices in essential cells. Phase 2A determines, for each vertex

in f but not in an essential cell, the list of basic cells containing

that vertex. If x and y are two such vertices, and if every basic cell

which contains x also contains y, then y will automatically be "covered"

when a basic cell is selected to cover x in the course of forming a

minimal covering. Phase 2B of the program detects such vertices "y"

and removes them from the set of vertices requiring covering. Thus

Phases 1 and 2 together produce what amounts to Quine's "reduced table

of prime implicants" (Amer . Math. Monthly p. 528).

Phase 3 of the program applies certain decision rules to select

certain basic cells for inclusion in a minimal covering, and to

eliminate other basic cells from further consideration. The rules are

not repeated in this report, but three aspects of Phase 3 will

be noted here

.

First, the aim is that of determining just one minimal covering

instead of all such coverings; thus eliminations can be made more

freely

.

Second, at each stage of the algorithm one considers only the

basic cells containing some one vertex of f "remaining to be covered"

(i.e., only prime implicants implied by some one abscissa of the Quine

table) . This has the important advantage of avoiding the difficulty

(noted by Quine, Amer. Math. Monthly p. 758) of dealing with the

potentially enormous total number of basic cells of the Boolean

function; also, in such situations a cell can be specified by only

n binary digits. It therefore seems plausible to carry on the

simplification process as far as possible with such steps before

having recourse to other methods. In general, however, these
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single-vertex considerations do not lead all the way to a minimal covering

(this is another reason for our use of the phrase "partial simplification").

For the third pointy note first that our process is not one of

begining with some covering and "modifying it toward minimality"^ but

rather one of gradually building up a single minimal covering (by the

selections made in Phase 3) and its complement (by the eliminations made

in Phase 3) . In such a process it seems almost inevitable that one will

generally reach logical branchings at which further progress can be made

only by supposing that such-and-such a cell is to be accepted for or

rejected from the covering, and then tracing out the consequences of this

supposition, presumably encountering other branchings en route. A simple

example is given by the Boolean function f of three variables whose

vertices (i=l,2, . .
.
,6) are

( 0 ,
0

,
0 ), ( 1 ,

0
,
0), ( 1

,
0

,
1 ), ( 1 ,

1
,
1 ), ( 0 ,

1
,
1 ), ( 0 ,

1
,
0);

there are precisely two minimal coverings, one by the edges ^ 2 ’ ^3^4

and VcV,, and the other by the edges V„V„, V.V^, . Without a branch-
5 6^ ^ 2 d-’ 4 5^ 6 1

ing there seems no way to "get at" either covering, but a single branch-

ing very quickly leads to a minimal covering. In general, however, and

for functions of many variables, it seems clear that most of the paths

explored in this way will turn out to be false scents, and that the

number of such paths will be very great. It therefore seems imperative

to carry the simplification process as far as possible before making any

branchings, and Phase 3 can be viewed as an attempt in this direction.

Because the selection and elimination decisions made in Phase 3 are

irrevocable, the decision rules require careful justification (the

theorem is stated in op, cit.), and the necessary proofs turn out to

be distinctly non-trivial and interesting in their own right.



Our most recent work involved an examination of the effect of vary-

ing the order of the steps in Phase 3, and culminated in a proof of the

earlier conjecture that the effect is essentially nil^ so that there

are no problems of "search strategy". A precise statement and proof are

still to be detailed^ 40 the result is not absolutely established.

Because SEAC is very slow by modern standards and is not maintained

on a regular "production" has is
^
the computer time available to us

permitted little more than code -checking. Under the present NSF grant a

Starr has been made on recoding the program for the Bureau's IBM 704

computer j we hope in a subsequent phase of the project to complete the

recoding and to obtain a fair amount of computational experience.

Insight into the geometric structure of Boolean functions is very

desirable, both for intrinsic mathematical interest and for providing

a better foundation for applications. We feel that current under-

standing in this field is rather unsatisfactory, since it is based on

examination of functions of relatively few variables, whose typical

structure-types may be quite atypical in higher dimensions. For

example, in functions of few variables the core (the set of all vertices

lying in at least one essential cell) generally makes up a substantial part

of the function, so that workers in the field of Boolean function

simplification have stressed the importance of early location of the

core. We conjecture, however, that for functions of many variables

which contain many of the vertices of the cube, the core is generally

a negligible proportion of the function.

Our preliminary attempts to gain insight into the structure of

functions of many variables have led to solutions to two problems posed
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in the technical literature. First, we have obtained a simple proof

of the conjecture of E. W. Chittenden (Office of Ordnance Research,

Transactions of the Third Conference of Arsenal Mathematicians, p. 134)

n X
that a maximal isolated subset of the n-cube I has 2 vertices.

n

The proof is given in Section 3. To describe the second problem, call

a covering irredundant if it ceases to be a covering upon deletion of

any of its cells (clearly every minimal covering is irredundant) and

call a basic cell absolutely superfluous if it appears in no irre-

dundant covering. Quine (Amer . Math. Monthly 6̂ , pp . 758-9)

suggested that every absolutely superfluous basic cell lay in the

(3)
core. We have constructed a counterexample based on a method which

promises to be generally useful in constructing functions with pre-

scribed properties. This work is described in Section 4.

Besides classifying structures of Boolean functions, one would like

to know (especially for simplification-algorithm purposes) which

properties are typical or frequent . This idea has led us to the

identification of a number of nontrivial combinatorial-probability

problems concerning properties of "random” Boolean functions; for

example the "negligible core" conjecture of the next-to-last paragraph

leads to the problem of finding the average core size of a random

function. Formulations of some of these problems, together with some

partial results, are given in the paper "Computer Simplification of

Boolean Functions" mentioned above.

(3 )Professor Quine informed us that he had received several other counter-

examples .
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3. ON A CONJECTURE OF CHITTENDEN

Let I be the set of vertices of the unit cube in n-dimensional
n

space; that is, is the set of all binary sequences of length n.

A Boolean function of n variables is simply a subset of I .

T' n

Call two vertices of neighbors if they differ in precisely one

position. A Boolean function f is called connected if, given any two

vertices X, X' in f, there exists a sequence

X = X^, X
2 , X

3
, ..., X^_^, \ = X'

of members of f such that X. and X.., are neighbors for 1 < i < k-1.

It is easy to show that if f is not connected, then it has a unique

partition into maximal connected subsets called its components ; if

f ^ connected, the unique component consists of f itself.

The relevance of these concepts to the simplification of Boolean

functions is as follows. By a cell of a Boolean function f we mean

a face of I^ all of whose vertices lie. in f . A covering of f is a

collection C of cells such that each vertex of f lies in at least one

cell from C. Each cell is assigned a cost in a manner which need not

be described here, and the cost of a covering is defined to be the sum

of the costs of its cells. The problem of finding a minimum-cost

cover of f is then identical with that of finding a simplest "normal

disjunctive form" for f. From the fact that any cell lies entirely

in a single component of f, it follows that a covering of f is a

disjoint union of coverings of the components of f
;

in particular a

minimum-cost covering of f is a disjoint union of minimum-cost cover-

ings of the components of f. That is, the Boolean simplification

problem, for a function f which is not connected, can be split into
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independent "smaller" subproblems by splitting f into its components.

Such a decomposition is clearly likely to be helpful in attacking the

simplification problem.

In this context it is natural to ask how many components a Boolean

function of n variables can possible have. This question will be

answered below. We shall also investigate the structure of the maximally

disconnected functions of n variable^ i.e.^ those with the greatest

possible number of components,

A function will be called isolated if each of its components

consists of a single vertex^ i.e.^ if no two of its vertices are

neighbors. Our results include a proof of the conjecture by

E. W. Chittenden ("On the Minimal Representation of Boolean Functions"^

Transactions of the Tird Conference of Arsenal Mathematicians, U . S.

Army Office of Ordnance Research Rept . No. 58-2, p. 134) that a maximal

isolated function of n variables contains precisely half of the 2^

vertices of I .

n

LEMMA 1 . There is at least one maximally disconnected function

of n variables which is isolated .

To prove the lemma, observe first that because the number of

Boolean functions of n variables is finite, a maximally disconnected

function f must exist. Now form a function f' by deleting all but one

vertex from every component of f. Clearly f is isolated, and it must

be maximally disconnected since it has the same number of components

as does f

.

LEMMA 2
. ^ M^ is the maximal number of components of a

ri“ L
Boolean function of n variables, then M < 2

} _
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This is clear for n=l
;
assume it true for n=k and consider the case

n = k+1 . First let f be any function of k+1 variables; we define two

functions f^, f^ of k variables called the projections of f . The

function f^ is obtained by dropping the final 0 from all members of f

which end in 0, while f^ is obtained by dropping the final from all

members of f which end in 1^. If c, Cq, c^ denote the respective

cardinalities of f, f^, f^^ then c = c^ + c^. Now specialize f to be

a maximally disconnected function of k+I variables which is isolated;

the existence of such a function is guaranteed by Lemma 1. Then f^

and f, are also isolated, so that c^ < M, and c, < M, , and thus c < 2M, .

1 ^ 0— kl — k^ — k
k-1 k

Since < 2 by inductive hypothesis, we have ^ ^ ,
and the

inductive proof is complete.

For what follows it is convenient to define two special Boolean

functions of n variables; f(n) consists of those members of I with an

even number (possibly zero) of 1^' s among their entries, while g(n)

consists of those members of I with an odd number of I's as entries.
n —

THEOREM 1. The functions f(n) and g(n) which form a partition

of I^, are the only maximal isolated Boolean functions of n

variables. Furthermore, M = 2^ ^

.

f n

Part of the proof is trivial; it is clear that f(n) and g(n) are

isolated and together form a partition of Since f(n) and g(n) each

have 2^ ^ members, and thus the same number of components, we must have

n* 1
> 2 , from which the equality follows by Lemma 2.

It only remains to show that if h is any maximal isolated function

of n variables, then h is either f(n) or g(n) . This is clearly true

for n=l; suppose it true for n=k and consider the case n = k+1. The
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projections and of h are isolated functions of k variables, so

k-1
each has at most M, = 2 vertices: since the number of vertices of h

k —

(namely = 2 ) is the sum of the numbers in h^ and h^^, each projection

must have exactly vertices and is thus a maximal isolated function of

k variables. The Induction hypothesis leads to four possibilities:

h^ = f (k) and h^ = f (k)

,

= g(k) and h^ = g(k),

h^ = f(k) and h^ = g(k)

“ g(k) 3.nd h^ = f (k) .

The first two possibilities are incompatible with the fact that h is

isolated, the third yields h = f(k+l), and the fourth yields h = g(k+l)

.

Thus the inductive proof is complete.

One might conjecture that a maximally disconnected set is necessarily

isolated. A counter-example for n=l is provided by itself. The next

theorem shows that this is the only counter-example.

THEOREM 2 . For n > 1 ,
every maximally disconnected Boolean function

of n variables is isolated .

To prove this, let f be a maximally disconnected function of n

variables, where n > 1. As in the proof of Lemma 1, form f ' by deleting

all but one vertex from each component of f. Since f is isolated and

has the same number of components as f, it follows from Theorem 1 that

f is either f(n) or g(n) . Without loss of generality assume f' = f (n)

.

If f ^ f', then f includes at least one vertex Y of g(n) . One neighbor

of Y is obtained by changing just the first entry of Y, while a second

neighbor is obtained by changing just the second entry of Y. Since
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1 IS odd }•

and X
2

are in f(n) = f ‘ and thus in f, and both are neighbors of the

vertex Y of f, it follows that the vertices and X
2

of f lie in the

same component of f. This however contradicts the construction of f;

we conclude that f = so that f is isolated.

An even simpler proof of Lemma 2 and Theorem 1 can be given if we

take as known the existence of a Gray code , i.e., an ordering

X«, X , .... X (m=2^-l) of the vertices of I such that for 1 < i < m-1,

X, 1
and X,,- are neighbors of X. . From this it is obvious that an

1-1 1+1 ° 1

isolated set cannot contain both X. and X. , and therefore has at most
1 1+1

2^ ^ vertices^ and that the sets

F(n) = .^X^ji^ is even^ and G(n) =
•[ X^

are isolated then they are the only maximal isolated sets. But the

defining property of a Gray code makes it clear that the number of I's

in every member of F(n) has the same parity while the opposite parity

holds for all members of G(n). Thus either F(n) = f(n) and G(n) = g(n),

or F(n) = g(n) and G(n) = f(n); since f(n) and g(n) are easily seen to

be isolated, the proof is complete.

(John Edmonds has extended Theorems 1 and 2 to a wider class of

situations; his results appear as Section 5 in this report.)

A natural generalization of the notion of "isolated function” is

that of "cellular function”. A function will be called cellular if

each of its components is a cell; different components may be cells

of different dimensions. The functions f(n) and g(n) defined before

Theorem 1 are examples of cellular functions.

THEOREM 3. Let Fj be a d-dimensional face of I , 0 < d < n.
d n —

There exists a Boolean function fCn; F.) of n variables with
' ' III. ^ f ^ ' M
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,n-d-l
as a component , 2 components ,

and every component a

d-dimensional cell . The complement g(n; F^) = I^-f(n;F^)

of f(n; F^) also has 2^^ ^

cell

.

components , each a d

-

dimensional

These functions f(n; F^)
^ S(n; F^) can be regarded as the analogues,

for cellular functions, of the functions f(n) and g(n) for isolated

functions. For example our later results will imply as a very special

case that these functions (for various F^) give the only solutions

to the problem of constructing a cellular function with the maximal

number of components under the restriction that every component is a

d-dimensional cell.

We will prove the theorem by explicitly constructing f(n; F^) and

verifying its properties. For simplicity we assume F^ consists of

all vertices (x. , . . .
,x ) of I which satisfy

1 n n

^d+1 ^d+2
= X = 0;

n

any other d-dimensional face can be treated similarly. The cube I
n

can be written as a Cartesian product = I so that f

example F = ^ ^n d^ ’
where 0^ ^

is a sequence of n-d O's.

or

We

define

f(n; F^) Ztf(n-d)} .

That is, for each of the 2^ ^ ^ elements Z of f(n-d) (a function of

n-d variables), we form the Cartesian product
,
which is a

subset of I I ,
= I . The union of these subsets is taken asd/^ n-d n

f(n; Fj). F, itself is obtained as such a subset by choosing Z = 0^ ^ d d j to

Each subset, as the Cartesian product of a d-dimensional face by a
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single point, is again a d-dimensional face. To see that these faces

(which are each connected ) are in fact the components of their union

f(n; ^
it suffices to observe that since any two elements Z, Z*

of the isolated set f(n-d) differ in at least two entries, no

vertex of ^ >^Z^ can be a neighbor of any vertex in *

Since the complement
^

* f(n-d) of f(n-d) is the maximal

n~ci“ 1
isolated set g(n-d) which contains 2 vertices, it follows that

the complement of f(n; F^) is

g(n; F^) = - f(n; F^) = Z£g(n-d)'^
,

Ti* d 1.

whose 2 components are the individual d-dimensional faces

^ . Thus Theorem 3 is proved.

LEMMA 3. Let f^ and f^ be the projections of a cellular

function f o^ k+1 variables . Then

(a) the components of f^ are the projections h^ ( if non -

empty) of the components h o^ f

,

(b) the components of are the projections h^ ( if non -

empty ) of the components h o^ f,

(c) ^ h is a component of f, then either h^ is empty or

h]^ is empty or h^ = h^,

(d) f^ and if non-empty , are cellular
,
and

(e) if a component p of f^ meets a component q o£ f^, then

there is a component h o£ f such that p = q = hQ = h^

.

To begin the proof, let h be any component of f. Since f is

cellular, h is a cell of some dimension d. That is, there is a set

of k+l-d integers from among ^ 1, . .
.
,k,k+l'\

,
and a binary sequence

\^c^^i£S^^
, such that h consists of all vertices (x^, . .

.
,Xj^,x^_^_^)
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of which satisfy

X, == c . for all its,,
i 1 h

If k+l£,S^ and = 0, then h^^ is empty and h^ consists of all vertices

(Xj^,...,x^) of I which satisfy

X . = c . for all its, - { k+1 } ;
i 1 h ^ ^

thus h„ is a d-dimensional face. If k+1 t S, and c, ,
0 h k+1

1, then h^ is

empty and h^ consists of all vertices of I^ which satisfy

X ,
= c . for all i CS- { k+ll :

thus h, is a d-dimensional face. If k+1 is not an element of S, , then
1 h^

h is the disjoint union of the set of vertices of satisfying

\+l " \
and the set of vertices of satisfying

= 1, = Cl for all lEShJ

thus h^ = hj^ is the (d-1) -dimensional face of 1^ consisting of all

vertices (x^^...,x^) obeying x^ = c^ for all iLS^. This proves (c)

of the lemma, and shows that h_ and h, are faces of I, , and therefore
^ 0 1 k

cells of f^ and respectively.

To prove (a) of the lemma^ it now suffices to show that if h^ and

h* are non-empty projections of distinct components h^ h* of f, then

no vertex (Xj^,...^x^) of h^ is a neighbor of any vertex (x*,...^x*) of

h*. If such a "neighboring" occurred^ then the vertex (x^^, . . . ,x^,0)

of h would be a neighbor of the vertex (x*, . .
.
,x*,0) of h*, which is

impossible since h and h* are distinct components. Thus (a) of the

lemma holds; the proof of (b) is analogous^ and (d) follows directly

from (a)
^

(b)
^
and the fact (see the last paragraph) that the projections

of faces are again faces.
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Now suppose a component p of £q and a component q of f have a

vertex (x^,...,x^) in common. By what has already been proved, there

exist components h and h of f such that (h )„ = p and (h ), = q.pq pO q 1

Thus (x^, . .
.
,x^,0) is a vertex of h and (x^, . .

.
,x^,l) is a vertex

of h . Since these two vertices are neighbors, we must have

hp = h^ = h, say. Since neither h^ = p nor h^ = q is empty, it

follows by (c) that p = q . This completes the proof of the lemma

.

We can now generalize Theorems 1 and 2

:

THEOREM 4 . The maximum number of vertices in a cellular

Boolean function of n variables (except for itself)

is 2
n-1

For 0 < d < n and each d-dimensional face of

I^, f (n; F^) is the only cellular function with F^ as a

component which contains 2^ ^ vertices .

The statement is clearly true for n = 1 . We assume it true for

n = k, and complete the inductive proof by showing that it holds for

n = k+1 . Since a function of the form f (k+1 ; F^) has
2^^^ ^ ^ d-

dimensional cells (each with 2^ vertices) as components, we see that

the maximum number of vertices in a cellular Boolean function of k+1

Ic
variables is at least 2 . To prove the opposite inequality, let f

be any cellular function of k+1 variables (other than . If

either one of f ^ or f , is I, , then by (e) of Lemma 3 the other must
0 1 k’^

be empty, since otherwise we would have f_ = f, = I, and thus f = I, .

0 1k k+1

Thus if f^ = I, then f consists of all vertices of I, , obeying
0 k k+1

= 0, while if f
^

then f consists of all vertices obeying

Ic= Ij in either case f contains 2 vertices . If both f
^

and

are proper subsets of 1^^, then by the induct ive hypothesis and (d)
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k-1
of Letrana 3 we can conclude that and each contain at most 2 ;

the number of vertices in f is the sum of the number £q ^.nd the

number in f^^, so that f contains at most 2 vertices.

Now let Fj be a d-dimensional face of I, ,,, where 0 < d < k+1,
d k+1 —

and let f be a cellular Boolean function of k+1 variables with 2

vertices and with as a component. For simplicity we assume F^

is the set of vertices (x^ . . . .
,x, ,x, .) of I,

, ,
which satisfy

' l-^
^ k+1 k+1

=^d+i =w \ ' \+i

'

If f^ = then (see the previous paragraph) f would consist of all

vertices of obeying = 0^ and so f = f(k+lj F^) = f(k+l) F^)

If = I^, then (see the last paragraph) f^ would be empty, which

is impossible since contains the non-empty set Thus we

can assume that f^ and f^ are proper cellular functions of k

k-1
variables; thus by inductive hypothesis each contains at most 2

vertices, but since f contains 2 vertices each of f^, f^ must

n ok-1
contain exactly 2

By Lemma 3, f^ is a cellular function with (F^)q as a component.

It follows from the inductive hypothesis that f^ = f(k; (F^)p^). We
d^O'

will show in the next paragraph that f^^ is the complement (in 1^^)

of f^. Note that f is the union of (i) the set obtained by

adjoining a final 0 to each element of f^ = f(k;

the set obtained by adjoining a final to each element of

= g(k; • Since is d-dimensional (this follows from

the fact that is empty and from the proof of Lemma 3), we

see that the first set is obtained by adjoining a final 0 to each

element of
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<z"i| z Ef(k-d)'i ,

while the second is obtained by adjoining a final to each element of

\J ^ •

But adjoining a final 0^ to each element Z of f(k-d) and a final to

each element Z of g(k-d) simply yields f(k+l-d), and so we have

f= 5^1^ X ^ Z*\

I

Z*£ f(k+l-d)J = f(k+l; F^),

as was to be proved.

It remains to show that is the complement of f^. Since f^

k-1
and each contain 2 vertices^ it suffices to prove f^ a subset

of the complement of f^. Thus we must show that no component p of

f^ can meet a component q of fj^. If such a meeting occurred, then

by (e) of Lemma 3 there would be a component h of f such that

p = q = h^ = hj^, and by (b) and (c) of Lemma 3 it follows that p is

a component of as well as f^. But by inductive hypothesis f^

k-1
is the only cellular function of k variables with 2 vertices

having p as a component, and so we must have f^ = f^. Thus (F^)q

is a component of f^^ as well as f^. Thus the face of consist-

ing of all vertices (x^^ , . . . ,x^,x^_^^) obeying

^d+1 ^d+2 = \ = 0
,

which properly contains F^, would lie in f, contradicting the

hypothesis that F^ is a component of f. This completes the proof

of Theorem 4.

COROLLARY . A cellular Boolean function with the maximum

number of vertices has all its component cells of the same

dimension d, and its complement is again such a function
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(with the same "d") . There are 2(^) such functions for each

d < and thus in all there are 2(2^-l) cellular functions

of n variables with the maximum number of vertices.
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4. ON A CONJECTURE OF QUINE

The notation and terminology of the preceding section are also to

apply here. A cell of the Boolean function f is called basic ("maximal”

would be a better term) if it is not properly contained in any other cell

of f . In the "Boolean simplification" situations described earlier in

this report, "costs” are assigned to cells in such a way that a minimum-

cost covering necessarily consists only of basic cells.

A basic cell of f is called essential if some vertex of this cell lies

in no other basic cell of f . Clearly every covering of f by basic cells

(in particular, every minimum-cost covering) must include all the essential

cells. The union of all the essential cells of f will here be called

the core of f; some authors use this term, instead, to refer to the

collection of all essential cells of f.

A covering C of f is called redundant if some cell in C is contained

in the union of the other cells of C. If C is not redundant, it is called

irredundant . Clearly every minimum-cost covering is irredundant (assuming

the "cost" of every cell is positive). This motivates our calling a basic

cell absolutely superfluous if it appears in no irredundant covering of f

by basic cells .

A category of cells whose ”absolute superfluity" is especially clearly

seen is provided by those basic cells which are not themselves essential

(4)but are contained in the core of f
.

Quine^ asked whether all absolutely

—
W. Vo Quine, "On Cores and Prime Implicants of Truth Function#,” Amer.

Math. Monthly 66 (1959). See pp. 758-759.
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superfluous cells were of this type. We shall give a counter-example

for this conjecture.

A weaker version of the conjecture would be the assertion that every

weaker version would be the claim that if f has vacuous core (i.e.^ has

no essential cells) then it has no absolutely superfluous cells. We

shall also give counter-examples for these two conjectures. Of course a

counter-example for the weakest version serves to disprove all three, but

it is interesting to see how the complexity of counter-examples must

increase as the conjecture is progressively weakened. To justify this

phrase "must increase," we should prove that the number of variables in

each of our counter-examples is as small as possible. For the present we

leave this as a conjecture.

Each of the three counter-examples will be discussed in the same way.

The Boolean function will at first be described "abstractly", i.e. as a

collection of basic cells without regard to a specific "embedding" in a

discrete unit cube. The basic cells are assumed to have no intersections

other than those explicitly listed. Also, the function will be shown in

fact to provide a counter-example for the conjecture under discussion.

Finally, an embedding of the function in a discrete unit cube will be given

j

we must leave to the reader the verification that the Boolean function thus

specified is really the same one previously discussed abstractly.

The three Boolean functions (one for each counter-example) have the

following structure in common. Each has a basic 1-cell A, whose vertices

absolutely superfluous basic cell must A still
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will be denoted X and Y, and two basic 2-cells B and C, which intersect

in a 1-face having X as one vertex . The vertex other than X of this

1-face will be denoted Z. For each function to be constructed, Z will

lie in no basic cells other than B and C, so that for every covering,

the vertex X of A will lie in some cell of the covering (viz
. ,

either B

or C) other than A . The functions will also be constructed so that

for any covering by basic cells the other vertex, Y, of A lies in some

cell of the covering other than A. Thus A will be an absolutely superfluous

basic cell ; it turns out to be the only such cell for the examples to be

described below.

For the initial example, the "common structure" is supplemented in

two ways . First
,
a basic 1-cell A ' with Y as one vertex is adjoined

.

The vertex of A ' other than Y will lie in no bas ic cell except A'

;

therefore A ' will be an essential cell and for any covering by basic cells

Y will be in a cell of the covering (viz.. A') other than A. As noted

above, this will ensure that A is absolutely superfluous . Second, B and C

will be prevented from being essential cells in such a way that the vertex

X lies in no basic cells other than A, B, and C. Since the vertex X of

the absolutely superfluous cell A lies in no essential cell, we will indeed

have an example of an absolutely superfluous basic cell not contained in

the core . B is prevented from being essential by adjoining a basic 2-cell

B ' which intersects B in the 1-face opposite (X, Z) ,
while C is prevented

from being essential by adjoining a basic 2-cell C' which intersects C

in the 1-face opposite (X, Z)

.
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A realization of this example as a Boolean function of 5 variables

is given by the following list, in which for instance (OlxxO) denotes

the set of vertices (x^, x^, x^, x^, x^) of such that

Xj^ * x^ = 0; X
2

= 1; x^ and x^ unspecified;

A'; (000x1)

A : (OOOOx)

B': ,,^(01xx0)

B : ((OxxOO)

C : (xOxOO)

C; (lOxxO)

The second example retains the basic cells A, B, B', C, C' from the

first one. In addition, there are four new basic 2-cells D, D', E, E'

whose arrangement with respect to the vertex Y of A is just like the

arrangement of B, B', C, C with respect to the vertex X of A. Explicitly,

D and E intersect in a 1-face which has Y as one vertex (call its other

vertex W), D is prevented from being essential because it is intersected

by D' in the 1-face opposite (Y, W), and E is prevented from being essential

because it is intersected by E’ in the 1-face opposite (Y, W) . By the same

arguments used above for X (i.e., ”by symmetry"), Y (like X) lies in no

basic cell, and lies in some basic cell other than A of any covering by

basic cells. Since X and Y both have these properties, A is an example

of an absolutely superfluous basic cell which is disjoint from the core.

A realization of this example as a Boolean function of 7 variables

is given by the following list;
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A : (0000x00)

B ' : : (OlxxOOO)

B : ‘((OxxOOOO)

C : (xOxOOOO)

C: (lOxxOOO)

D': (OOxxllO)

D : (000x1x0)

E : (OOOxlOx)

E': (OOxxlOl)

The third example retains the cells k, B^ E of the second one.

As before^ Z lies in no basic cells other than B and C (so that every

covering by basic cells includes either B or C), and W lies in no basic

cells other than D and E (so that every covering by basic cells includes

either D or E); also as before^ this implies that A is absolutely superfluous.

Let X' and Z* be the vertices of the 1-face of B opposite to (X, Z), with

X' opposite X and Z' opposite Z, and let X” and Z" be the vertices of the

1-face of C opposite to (X, Z)

,

with X" opposite X and Z" opposite Z.

B and C are prevented from being essential by adjoining a chain

F^, F^^ F^, of basic 1-cells from X' to Z', and a chain

G^, G^ of basic 1-cells from X*' to Z"

.

Similarly^ let Y' and W' be the vertices of the 1-face of D opposite

to (Y, W), with Y* opposite Y and W' opposite W, and let Y" and W” be the

vertices of the 1-face of E opposite to (Y, W), with Y" opposite Y and

W** opposite W. D and E are prevented from being essential by adjoining a

chain of basic 1-cells from Y' to Y'% and a chain

^2^ '^
3 ^ *^

4 ^ *^5 basic 1-cells from W' to W*''. The resulting function
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has no essential cells, and so A is an example of an absolutely superfluous

basic cell in a Boolean function with vacuous core.

A realization of this example as a Boolean function of 8 variables

is given by the following list:

A : (00000x00)

B ; (OxxOOOOO)

: (001x0000)

: (0011x000)

; (0x111000)

F^ : (011x1000)

F^ : (0110x000)

C : (xxOOOOOO)

: (100x0000)

: (1001x000)

: (1x011000)

: (110x1000)

G^ : (1100x000)

D ; (000x01x0)

: (00x00110)

H2 : (0010x110)

: (001x1110)

: (00x11110)

: (0001x110)

E ; (OOOxOlOx)

: (00x00101)

: (0010x101)

: (001x1101)

: (00x11101)

: (0001x101).
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5. MAXIMAL ISOLATED SETS IN BIPARTITE GRAPHS

In this section^ some of the results of Section 5 ("On a conjecture

of Chittenden") will be examined in a more general setting.

A (finite, unoriented) graph is a finite nonempty set of elements

called vertices , together with a collection of unordered pairs of

distinct vertices. Each pair in the collection is called an edge , and

is said to join the two vertices composing it; each of the two vertices

forming an edge is said to meet the edge. A subgraph of a graph

consists of a subset of its vertices and a subcollection of its edges,

each in the subcollection joining two vertices of the subset.

A connected graph is one such that for every proper subset of the

vertices, there is at least one edge joining a vertex of the subset

and a vertex of its complement. Any graph can be uniquely partitioned

into connected subgraphs, the component

s

of the graph.

A path in a graph is an alternating sequence of vertices and edges,

beginning with a vertex and ending with a vertex, such that each edge

in the sequence joins the vertices immediately preceding and following

it in the sequence. The relation of being "joined by a path", i.e. of

being contained in a common path, is clearly an equivalence relation

on the set of vertices of the graph, and the resulting equivalence

classes can easily be shown to be the components of the graph.

A bipartition of a graph is a complementary pair of subsets S, S'

of the vertices, such that every edge joins a vertex of S to a vertex

of S'. A bipartite graph is a graph which admits a bipartition.

The material of this section is due to John Edmonds.
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Since a bipartition of a graph "induces" a bipartition of each subgraph,

it follows that every subgraph of a bipartite graph is also bipartite.

A connected bipartite graph has a unique bipartition. To see

this, suppose (S,S') and (T,T‘) are bipartitions such that S and T have

a common vertex v^- (This assumption involves no loss of generality.)

Each vertex v is the last vertex of a path whose first vertex is v^;

the vertices of this path are on the one hand alternately in S and in

S', and on the other hand alternately in T and in T', so that in

particular v is either in both S and T or in both S' and T'. Thus

S = T and S' = T', as was to be proved. The same idea can in principle

be used to test a given connected graph for bipart iteness} one places

a fixed vertex v^ in S, and joins to each other vertex v by a path

whose vertices are alternately placed in S and in S ' . The graph is

bipartite if and only if the classification of each vertex v (as being

in S or in S') is independent of the path from v^ to v employed in

obtaining the classification. It readily follows that a graph is

bipartite if and only if every circuit (a path beginning and ending

with the same vertex) has an even number of edges

,

A subset of the vertices of a graph is called isolated if no two

vertices of the subset are joined by an edge. For example, the sets

S, S' of a bipartition are each isolated. Berge^^^ has given an

'‘®'A bipartite graph with k components thus has 2 bipartitions, fomed

in an obvious way from the unique bipartitions of the components.

( 7)
C. Berge, "Two Theorems in Graph Theory", Proc. Nat. Acad. Sci. U.S.A.

« (1957), pp. 842-844.
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algorithm for finding a maximal isolated subset (i.e.^ one with a maximum

number of vertices) of any graph. A vertex-cover of a graph is a set

of vertices such that every edge meets at least one vertex of the set)

the complement of an isolated set is a vertex-cover and vice versa , so

that the complement of a maximal isolated set is a minimal vertex-cover

and vice versa . Therefore Berge's algorithm can be used to find a

minimal vertex-cover; Berge in fact formulates his problem in this way.

The cubic graph has as vertices the 2^ vertices of the unit cube

in n-dimensional space, and as edges the neighboring pairs of these

vertices. That is, a vertex of is a sequence of n numbers, each

either 0 or 1, and two vertices foi^ an edge if and only if they differ

in precisely one position. is a connected bipartite graph, whose

bipartition consists of the set S of vertices with an even number of

zeros and the set S' of vertices with an odd number of vertices.

Theorem 1 of Section 3 asserts that the only maximal isolated

sets of are the sets S, S' of its bipartition. This suggests

investigating what other connected bipartite graphs have the same

property. An obvious necessary condition is that S and S' have the

same number of vertices. That this condition is not sufficient can be

seen by taking S = ^
and S' = ^a’,b'^, with (a,a'), (b,b') and

(a,b') as edges; here S and S' are maximal isolated sets, but so is

£a',b^
.

For an example in which S and S' are not maximal isolated

sets, take S = £a,b,c^ and S' = £a',b',c'^
,
with edges (a,a'),

(a,b'), (a,c‘), (b,c') and (c,c'); here ^a',b',b,c"^ is a maximal

isolated set. It will be shown, however, that the class of connected

bipartite graphs with the property in question (viz .

,

that the bipartition
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sets S, S* are the only maximal isolated sets) contains many more than

the cubic graphs.

Since an equivalent property is that S and S' are the only minimal

vertex-covers, it is of interest to give an alternate characterization

of the cardinality of a minimal point-cover of a bipartite graph. For

this purpose, number the vertices of S and those of S'; then form a

matrix whose entry in the i-th row and j-th column is one of the i-th

vertex of S is joined to the j-th vertex of S', and is zero otherwise.

( 8 )A theorem of Konig' ' asserts that for a matrix of zeros and ones, the

( 9 )minimum number of lines that contain all the ones is equal to the

maximum number of ones J^ith no two on the same line. A set of lines

containing all the ones corresponds to a vertex-cover, while a set

of ones with no two on the same line corresponds to an isolated edge -

set (i.e., a set of edges no two of which are met by a common vertex).

Thus the cardinality of a minimal vertex-cover of a bipartite graph is

equal to that of a maximal isolated edge-set.

THEOREM 1. Suppose each set of a bipartition (S,S') of a

graph consists of m vertices . S and S ' are maximal isolated

sets if and only if there is a one-to-one correspondence

between them such that each pair of corresponding vertices

^ ( 10)IS an edge .
'

'“'D. Konig, Theorie der endlichen und unendlichen graphen , Chelsea,

New York (1950)

.

( 9 )A line of a matrix is either a row or a column.

^^^^This condition asserts that the rows of the matrix to which Konig 's

theorem was applied can be permuted to as to make the main diagonal consist

entirely of ones.
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Proof . S and S ' are maximal isolated sets if and only if they are

minimal vertex-covers, which by Konig’s theorem is true if and only if

there exists a maximal isolated edge-set E •••} with m

members. If such a set E exists, then for i = 1, 2, ..., m set

e, = (a^ , al) with a, in S and a! in S ' : because E is an isolated
1 i^ 1 1 i

edge-set, it follows that a^ 4 and a^ aj if ± 4 so that the

required one-to-one correspondence is obtained. Conversely, if such a

correspondence exists then the vertices of S and S' can be nijmbered

in such a way that e^ = (a^, a^ is an edge for i = 1, 2, ..., m. The

edges form an isolated edge-set E which need only be

proved maximal to complete the demonstration. If E were not maximal,

there would exist an isolated edge-set E* = ^
e*, ..., with m + 1

members. For i = 1, 2, .... m, let e* = (b., b*,) with b. in S and b' in

S' ; then b, b. and b'. b I
for L 4 so thatill!

Any other edge
^s^

would be met by b^ (which also meets e*)

and by b' (which also meets e*)

,

contradicting the assumption that E* is
s s

an isolated edge-set. This completes the proof of the theorem.

A theoretical solution to the problem can now be given. By the

preceding theorem one need only consider connected graphs with a bipar-

tition whose sets admit numberings

such that (a^, ap is an edge for i = 1, 2, ..., m. If there exists a

maximal isolated set T other than S and S
' ,

then by the theorem T con-

tains exactly m vertices, and a suitable simultaneous permutation of S
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and s' will make

for some integer k with 1 < k < m - 1. That is, if the matrix M to which

Konig's theorem was applied earlier is formed using the numberings (*)

,

then there would be an m x m permutation matrix P such that PMP' has a

k X (m - k) block of zeros in the upper right-hand corner. Therefore the

graph has the property in question if and only if no such permutation

exists. For large m it would be impracticable actually to test each of

the ml permutations, so that unless a more efficient algorithm can be

found the solution can only be regarded as a "theoretical” one.

A more concrete result will now be given. A regular graph of

degree d is a graph each of whose vertices meets precisely d edges.

For example, the cubic graph is a regular graph of degree n, so that

the following theorem has Theorem 1 of Section 4 as an immediate

corollary.

THEOREM 2. For a connected bipartite regular graph , the sets S and

S ' of the unique bipartition are the only maximal isolated sets .

Proof . Let S and S' contain m and m^ vertices respectively. Since

the graph is regular of some degree d, the number of edges is on the one

hand dm (because each vertex of S meets d edges) and on the other hand

dm'; hence m = m' . Using arbitrary numberings for the vertices of S and

S', form the matrix M to which Konig's theorem was applied earlier. M

contains precisely dm ones, with precisely d ones on each line; thus any

set of lines which cover all the ones must contain at least m lines, i.e.

every vertex-cover contains at least m vertices. Therefore S and S' are

minimal vertex-covers, and hence maximal isolated sets. If some other

maximal isolated set existed, then as noted earlier S and S' could be
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renumbered so that the matrix M assumed the partitioned form

A 0

B C

where ’’O” denotes a k x (m - k) matrix of zeros. Since each column of M

contains exactly d ones, the same holds for C, but each row of C can

contain at most d ones since each row of M contains exactly d ones.

Therefore each row of C contains precisely d ones, and so B = 0, an

(m - k) X k matrix of zeros. This, however, would imply that the first

k vertices of S and the first k vertices of S' are joined by edges only

to each other, and that the same holds for the last m - k vertices of S

and the last m - k vertices of S ' . Since this contradicts the hypothesis

that the graph is connected, the theorem is proved.

Theorem 2 does not describe all graphs with the desired property

(as will be clear from the following corollary)
,
but it does give many

more than the cubic graphs, since whenever 1 < d < m there exists a

connected bipartite graph with 2m vertices which is regular of degree d.

Such a graph can be constructed by taking S = ..., ^

^
,
and for i=l, 2, ...,m making (a^, a^) an edge

for j=i, i+1, ...,i+d-l (where j -values greater than m are read

modulo m)

.

COROLLARY . For a connected bipartite graph which has a connected

regular subgraph containing all its vertices , the sets S and S' of

the unique bipartition are the only maximal isolated subsets .

Proof. The unique bipartition of the original graph must be

identical with that of the subgraph, and any isolated subset of the

vertices of the original graph is also isolated when considered as a
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subset of the vertices of the subgraph. Thus the result follows from

Theorem 2

.

It would be interesting to know whether the corollary describes all

graphs with the desired property.
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6. ONE -DIMENSIONAL CATALOGING OF INCOMING MATERIAL

Suppose we have a one -dimensional method for classifying incoming

material. By this we mean something like the Dewey Decimal System;

each document is assigned a single number in some way, and a set of

documents is "organized" by rearranging it so that the corresponding

numbers are in increasing order. In what follows, we shall forget

about the documents themselves and the problem of deciding what numbers

to assign to them. Instead, we consider an idealized situation in

which the only problem is that of arranging an incoming stream of

numbers in ascending order.

It is assumed for simplicity that the probability of equality of

any two of the numbers is negligible. If there are n numbers in the

stream, then since only the order of their magnitudes (and not the

magnitudes themselves) are relevant in arranging them, the numbers can

be replaced by 1, 2, ..., n in some order. We suppose that the stream

of numbers is random in the sense that all of the nl possible orderings

of 1, 2, ..., n are equally likely.

Assume the stream of n numbers is being fed into a computer with

M fast-access memory cells (where n » M) and an unlimited slow-access

auxiliary memory. Clearly we wish to utilize the limited fast-access

memory optimally before restoring the data in the slow-access auxiliary

memory. One suggestion is to order the first M numbers monotonically

in the fast memory, put them in the auxiliary memory and keep a record

of the largest number found (call it N) . Then bring in M more nvimbers,

TTi)
^

~
^

"^The material of Sections 6 and 7 are due to Dr. Karl Goldberg.
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order those which are greater than N, add them to the previously stored

these chains must still be intertwined later, but at least seme progress

has been made toward arranging the numbers in increasing order. One mea-

sure of this prepress is given by the lengths of the chains, or more pre-

cisely by their expected lengths, as compared with the expected lengths in

the original stream (i. e. , the case M = 1, in which no use is made of the

fast memory). It is these standards of comparison, the expected chain-

lengths for M = 1, which are evaluated in the next section. The results

of this evaluation are summarized below.

If E^(n) denotes the expected length of the r-th chain, then the results

can be summarized as follows

t

(l^r^n, n^l)

E = lim E (a) = r ^ (r-k)
r n-*> 0D r * k!

k=0

E^ - 2 = o^p^l^'")

where p and p are the non-zero roots of e = 1 + z closest to the origin:

1 + p = 8.07556 .... The rapidity of the convergence E^ 2 is

illustrated by

(12 )

By a chain we mean an increasing sequence of numbers.
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E, =

= e

e-1

2

E. = e'

2e

2 3
3e + -e

E, = 4 3 2
e - 4e + 4e

5 . 4 ^ 15 2 ^ 5
e - 5e +

= 1.71828 18285

= 1.95249 24429

= 1.99579 13691

« 2.00003 88505

= 2.00005 75752

As an example of how E^(n) is calculated from its definition, take

n = 3 and let denote the lengths of the first, second and

third chains respectively

:

Arrangement

1, 2, 3

1, 3, 2

2, 1, 3

2, 3, 1

3, 1, 2

3, 2, 1

3

2 1

1 2

2 1

1 2

111
10 7 1

Since each arrangement has probability 1/6:

Ep) = 10/6, E^3}= 7/6, e|3)= 1/6,
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7. PROOFS OF THE RESULTS IN SECTION 6.

In this section we shall derive the results stated in the previous

section. We shall use a general approach both to emphasize the reasoning

behind the formulas, and because this generality is interesting in itself.

Finally, because this is not a mathematical note, we shall skip many details

of mechanical manipulation which the reader may want to fill in for himself.

Let x^, . . . ,
x^ be a sequence of distinct real numbers. If

13 a^ 1 1

then we say that the sequence begins with a chain of length a ^ . If the

remaining chain x'
,

x _,...,x begins with a chain of length a_,

and so on, we say that the sequence has a chain structure a^, ..., ^^)

•

Note that a chain structure is an ordered partition of the number of elements

in the sequence: a, + a., + . . .+ a, = n with each a, > 1.12 k 1 —

By letting 1 correspond to the smallest number in the sequence, 2

correspond to the next stnallest, and so on, the original sequence can be

represented as a pertnutation of the integers 1, 2, ..., n; every rearrangement

of the original sequence corresponds to exactly one permutation. We formulate

our problem exactly by asking: what is the expected length of the r-th chain

in a permutation of degree n? We denote this number by E^(n). We shall

show that lim E (n) exists for each r and denote this limit by E . It
n->oo r r

can be interpreted as the expected length of the r-th chain in an inf inite

sequence of random numbers. We shall show that lim E =2, and this is the—3 r-H» r ’
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expected length of any chain in such a sequence.

Let c^(a^, a^, denote the number of permutations of degree n

with chain structure (a^, a.^y For example, Cjj(n) = c^(l,l,. . . ,1)=!.

We proceed to find a recursion for these numbers.

Choose any a^ of the integers 1, 2, ...

,

n and arrange them in mono-

tonically increasing order. This can be done in ^ different ways.- Follow

this sequence with any sequence of the remaining n - a^ integers which has a

chain structure (a^, ..., a^). If the first element of this latter sequence

is less than the last element of the sequence with a^ members, then the

resulting combined sequence will have a chain stnacture (a^, a^j ..., a^).

Otherwise the chain structure will be (a^+a
2

, a^, ..., Since any permu-

tation of degree n with either of the latter two chain structures can be

obtained in this manner, we have the recursion

(a^°n-a^^*2^
“

°n^^l' ^2* **•’ ^3" '•*’

valid for k‘22, all n, and all a^.

Now let p(a^, a^j ... , a^^) denote the probability that a permutation of

degree a^ + a^ + ...+ a^ has a chain stnicture (a^, a^, ..., a^). For exai^le,

p(n) » l/nl In general:

p(a^, a
2

, ... , , aj^)/nl n — a^ + a
2 + ...+ a^

We can rewrite (1) in terms of these probabilities as

(2) p(a^}p(a2, ...,aj^) = p(a^, a2, ..., a^^) + p(a^+ a2, a^ ..., aj^}

We can also eaqiress E^(n) in these terms:

n
E^(n) = y "j a^(a^, a2j

k=r
(3 )
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where the symbols below the second summation sign indicate that the sum

is to be taken over all positive a^^ such that a^ + a^ + . . .+ a^

Instead of directly computing E^(n) in this case we shall divert our

attention to a somewhat more general discussion in which, however, the various

arguments are exactly the same as those we would need in the specific case.

We assume that for every vector (a^^, a^, ..., a^) with positive

integral entries we are given a complex number >

and that the set of such numbers satisfies (2). We know p(n)
,
for every n,

and we wish to compute E^(n) as defined by (3)

,

Using (2), it is easy to show by induction on k, that

k

(4) p(a^, a2,...,a^) = ^ '"“2 \ ‘ V+k> ‘

j=l 2k^=k

From this it is clear that

kj_^-U+...+ a^)

(5) p(a^, a^, ..., a^) = P(a^, ..., a^, a^^)

Equation (2) and induction on r also yields

(6) p(a^, . . .a^)p(a^^j^, ..., a^^) = p(a^, ..., a^)

which holds for k>2, for r*l, 2, ...,k-l, and for all a^, . .
. ,

a^ .

( 13 )Up to a point, to be reached later, the domain of the mapping p could be
any commutative ring, but such generality is not of interest here.
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¥e shall use (6) to find a fomula for E^(n). In doing so we will use

the following symbols:

'x^nP • • •' “k^
'

S(ia) =.^ "S p(*v • • • = ^ S^.(n)

k=l ai=n ^ ^ k=l
^

as well as

For example.

Er(P)

If we multiply on both sides of equation (6 ) by (j ) and sum over all

*1’ * * * ’ *k

(7) - SojSi,.;^(n),n*k>r#l
X»”" I*

1

If we sum this equation over values with a fixed k + J and alternating signs

we get

^ar.

( 8 ) + So^Sj^.^Ca).

n24c^r^l

where we have defined S^(a) = .

u un

Because S^'^TCn) = (^)p(n), when we set r = 1 in (8) we get
ij-t
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O) ^ (-1)^"^"^ ^(j+S-i-l)p(t)S^(n-t) +

For j = 0 this becomes

(10) Sj^(n) = ^(-1)^“^"^ S^k-i-i)p(t)S.Cn-t)
^ t=0

.

^

where we have defined p(0) = 1.

Let

F(x) = '^p(n)x^

Thea (10) is equivaleat to

(11)
ll

k
1 - X

y “ r-'xprci-xW

For X = 1 this becomes

1 + 2S(n)y“ = (1 - p^y)'^
n=l

P]_ = P(l)

In other words;

(12) S(a) S P(«T. . . .. a, ) = p"
k=lZa.=a ^ k 1

1

From (ll) we obtain

[{p(y)f
^“•{p(y) -

1]](13) 2A(n)y‘' -^^n=k n=0

(-y)^ d^

Note that S^^^(n) = p(l, . . . , 1) = S^(n) = E^(n). In (7) set j

and sura from k = r + 1 to k = n. ¥e get (using (12)):

= 0

(1J+) E (n) = (t)p!i^'
^ t^r ^

n-t
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Therefore

(15)
i¥=0 r=0

^ ^

1-x

1-xF( (l-x)y;

Either this, or (13) and (lU)j can be considered the solution to our problem.

It is worth noting that for j>l, if we sun (7) fron k=r + ltok=a,

we get

( 16 ) E^^‘*'^\a) + E^^^
r r

(n) =

t=r

j(j)
r,r

j>l

For example.

(17)
k=r ;[a.=n

1

, . . • ,

Because of (5)^ we have S^^\a) = S^'^T(n), so that we can compute from
I* ^ X* X* ^ Ji. X* ^ X*

(5).

Note that the 1. h. s. of (17) is the second monent of the random

2
variable a : the first mcment is = E (a), so that the variance

r 1 r 2 1

is easily ccraputable.

Now return to a consideration of (l5). If P(z) has a Taylor series

. (U) . -1
,

,

expansion at z = p^ then

E = lim_E (a)p-^
r r' '^1

exists for all r, and

(»)
At this point the dcmaia of F must be specified.
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( 18 )

1-x
F = _________

'T
Fran this we can conclude that, if this function has no other singularities

on the unit circle except at x = 1, and if P]_ then

(19) lim £ = —

—

r-^oo r

2

Pi

P1-P2

S^ ( Pi
p, I ^ ^l^^l

2 ^r V
f

2
i^*Pl-P2 J (Pi”

Pi(PiP2“P3)

P2)'

P2 = P(2)

P
3

= P(3)

Before retximing to our original question, we shall discuss seme aspects

of the question as to when P(z) has a Taylor series expansion at z = p^\

For the case of greatest interest, namely when all p(a^, . . ., a^)^0, it will

turn out that, unless p(n) = p^ for all n (in which case all other

p(a^, . . . , a^) = 0), P(z) always has such an expansion.

Suppose p(n) = ab^ for seme coiistants a, b and all n^l. Frcm (2) we

have p(a^, • . . ^a^^J = a(a-l) “d
; thus p(n) = b implies

2 ^1 —1
p(a^, . . . , a^) = 0 for k>l. Clearly a = P2P2 > 8 = P2P]_ • Therefore

P’(z) = 1 + p^z(l-p^^P2z) and P(z) has a Taylor series expansion at z = p^^

2 “Ij “1
if and only if |a

|
= /p^P2 f^l (^^ which case = a(a-l) ).

We fiow show that if p>0 and
1

p(l,l,n)^0, p(2,n)^0

n

n = 1,2, . .

then either P^ “ P2^ which case p(n) = p^, or p^>p^0 and P(z) has a

Taylor expansion at z = p^

Frean (6) we have

-1

( 20 )

(21 )

( 22 )

(23)

p(l,l,n) = p^p(l,n) - p(2,n)

p(l,l,n) = p(l,l)p(n) - p(l,n+l)

p(2,n) = p2p(n) - p(n+2)

p(l,n) = p^p(n) - p(n+l)



48

2
Suppose p(l,l) = p^ - p^

0.

Erom (20) we have p-j^p(l>a)^p(2,n^0 so that p(l,a)^0. Frm (21) we have

p(l,l)p(a)^p(l>a+l)^0 so that p(a)^0. From (23) we have p^>P2
and P

2
^P^P

3
*

From (22) we have P2P(a)^p(a+2). It follows, by induction on n, that

n-1
2

P1P2 P(n)^0

Then k-1 1

0^2 PiP2^ ^Pi"P2^ k = 0,1, . .

The coaveigence of the sum in this inequality for all k is equivalent to the

existance of a Taylor series for P( 2s) at z = p”^.

2
Now suppose p(l,l) = p^ - P2 = 0. From (21) we get p(l,l,a) = -p(l,n+l).

Since both p(l,l,n) and p(l,n+l) are non-negative both vanish. Then (23)

implies p(n+l) = p^p(n). It follows that p(n) = p^ for all n, and our argument

is complete.

We now return to our original problem in which p(n) = 1/nJ so that

P(x) = e^. Then (l5)> (I8 ), and (19) become

1

(l5‘) 2 ^ = 1^ * l-xeC-l^“x)y

n=0 r=o

( 18 «)

(1^‘)

^0 ^

X = 1-x
1-x

1-xe

2 , :^ (2-Ep = lt/3

From (15*) we have

(2W B (n) =

k=r
*
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Frcm (18‘) we have

(25) E „ (-1)^ ( 1
\k-l r-k

k=0

Now consider the integral function e‘‘

ization theorem we can write

- 1 - z. By the Hadamard factor-

( 26)
" e^ - 1 - a » ^

C, ^

where the product is taken over all non-zero roots p of e^ = 1 + z^^^^We

can write it in this form because (as it is easy to show) ^jpj ~ converges.

Taking the logarithmic derivatives of both sides of (26) we get

z

z . z
e -1-z

f 2 P(z-p)
|z|< min |p|

Thus a = 1/3 and

ze - — = ^ + (l+z)2
z n _ z 3 3 ^

e -1-z

Letting z = x - 1 we have

1-x

z

p(z-p)

2 _ 1-x = 1 + X + ^^ (l-x)
1-x ^ "p(i+p-x)

|z|< min |p|

Jxj<min jl+p|

From (l8') we see that the 1. h. s. is the generating function of

2 - E^. Computing the coefficients in the r. h. s. we have

(27) E - 2 » 2(1+P)"^ = 1+P^ p / 0; r = 2,3, . . .

P P

(JJ)This method is due to Professor L. Carlitz (correspondence).
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which implies 2^ “ 2 = 0( 11+Pq| as desired.

Another formulation of the solution in closed fom obtainable from the
i

generating function form is in terms of the coefficients of the powers of

P(y) -

^P(y) - 1?” =
r̂i=m

In these teims (ll) yields

(28) S^(n) =

Then (ll;) gives

(29) s U) =

- t=J,

from which we get

(30), S^ = 2P'i
t=r

When F(y) = e^ then where is the Stirling number

of the second kind.

Still another formulation is in terms of the Faber polynomials

generated by Q(y) = P(y) - 1. The generating function of tu^(t)/n is

(1 - tQ(y))“\ Therefore

(31) S (n)x^ = x(l-x) u»(x(l-x)“ )/n
r n

y
However, the special character of e makes the more natural Faber poly-

nomials, in the case P(y) = e^, those generated by ye y.- {v^(t)}.

In fact (25) is exactly the statement Ex* = Vp(e).
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Another possible interpretation of the expected length of the r~th chain

is the following: Assume that all sequences of "greater than" and "less than"

relations are equally probable. In other words:

p(a^, . . . , a^) = 2
•• • • • “Al

for all k, and all a^^ . . a^. It is easy to see that these values satisfy

(2 ).

Then our formulas yield

E (n) = 2^-"^ (g)
k=r

r^n*l j 2 ^ • •

and

E = 2
r

r = 1,2, . .

This latter shows remarkable agreement with (27) despite the naive approach.

The reader may wish to prove for himself the following results

:

1 . P(l^) =

?! ?2 ?3

1 P^_P2

1 P-i

n

n-1

1 p.

where p^ = p(n)

and 1^ means 1 repeated n times.

2. When p(n) = l/n!:

p(l*^,b +2, +2, . . b>2, =

bi bi b.
p(a.j^+l, 1 , a^+2 , 1 ,a^+2,. . . , a^+2,1 ^,a^^^+l)

for all a. , b.'^ 0.
1 i'
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3. When p(n) = l/nlt

a>l
X

2 'V®-i+r^’*i+2^
a.>l
1

\ •
• • > aj^)*

la-,
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APPENDIX I

= P(n)

n = 1

p(l) = Pi

n = 2

P(2) = P2
p(l,l) = p| “ P2

n = 5 (cont.

)

p(l,l> 2 ,l) = pJp2"^iP3"PiP2'^P2^3‘^

2PiP|^-p^

p(l,ljlA>l) = P§-Up^Pp+3p?p.+3p-|P|

'“2P2P3"2PiP4+P5

n = 3

p(3) = P
3

p(l, 2 ) = p^p^ - P
3

p(l,l,l) = P^ - 2p^p^ + P
3

n = U

p(li) =

p(l,3)

p( 2 , 2 )

p(l,l, 2 )
=

p(l, 2 ,l) =

p(l, 1 , 1 ,1)

n = 5

P1P3

= n2 _

fp2-p|-PiPo-Po-PiP3*^Pi^

pfp2-2PiP3^P|^

= Pj“3pJ+p|+2p3^P3-P|^
A

•pa.

n = 6

p(6) = p^

p(l,5) = P^P^-P^

p(2,i;) = P2Pi^“P6

p(3,3) = p^-p^

p(l,l,^) = PiPi^-PiP5"P2P]4'^P6

p(l,l;.l) = PiP|^-2PiP^-^^

p(l,2,3) = P3^P2P3“PiP^-P^+P^

p(l,3,2) = p^P2P3-PiP^“P2P|^+P5

p(2,1,3) = p^P
2
P
3
“P2P|^-P^-^P^

p(2,2,2) = P|-2P2P|^’^P^

p(l,l,l,3) = pJp3-p|p|^-2p3^P2P3+PiP^+

P2Plt*P^P6

p(l, 1,3,1) = P^3~2p2p^-p^P2P3+2p3^p^+

p(^) = Pc

p(l,W = PiP|^ - P^

p(2,3) = P
2
P
3

- P^

p(l,l,3) = p2p^-p3^p^-P2P3+P^

p(l,3,l) = p|p3-2p^P|^+p^

p(l, 2 , 2 ) = p^p
2
-p^p^-p^p3+p^

p(2,1,2) = PiP2~2P2P3'^P5

p(l,l,l, 2 ) = PiP2"PiP3"2PiP2‘^2p2P3+PiP|^-P5

P2Pi|-P6

p(l,l, 2 , 2 ) = PiP2"PiPi4‘'PiP2P3"P2'^iP5'^

2P2Pi|-P6

p( 1 , 2 , 1 , 2 ) = PiP2“^PiP2P3'*'PiP5'^P2Pi;'*'

.2 _

p(l, 2 , 2 ,l) = p
2p2-p2p _

3
-P6

PiP^-PiP^-2PiP2P3+2p^P^+

P^P6



52b

H = 6 (cont»

)

p(2,ljl.2) = p|p|-2pj^P2Pj-p|+2p2p, +p2-p^

p(X,X.X,2,X) =

p(X,X. 2.1.x) “ P^P2-2pJP3-2p^p|+3p|p(^+2p^P2P^+p|-2p^Pj-2p2P, +p^

p(X,X.l.1.1.1) = Pi-SpjfP2+4p^P3+6p2p2-3p2pj^-6pj^P2P^-p3+2p^Pj+2p^^+p2.p^

JPPEHDIX II

0 s 0.

o(2) = X

c(X,X) - X

0(3) = o(X,X,l) = 1

o(X.2) » 0(2,1) = 2

° -
°1;

0(W = o(X,X.X,X) = X

o(3.X) = o(X,3) = o(2,X.X) - o(X,X,2)=3

0(2,2) - o(X,2,X) - 5

o s Oj

o(S) = o(X,X,X,X,X) = X

o(l*,X)=o(X,l*)=o(2,X,X,X)=o(X,X,X,2)=li

o(3,X,X)=o(X,X,3)=6

o(3,2)=o(2,3)=o(X,2,X,X)=o(X,X,2,X)=9

c(X,3,X)=o(2,X,2)=XX

o(2,2,X)=o(X,2,2)=X6

o

c £ (cont.

}

c(5,1)=c(1,5)=c(2,1,1,1A)=c(1,1,1,1,2)=5

c(It,l,l)=cCl,l,il)=c(3,l,l,l)=c(l,l,l,3)=10

cU,2)=c(2,U=c(i,2,l,l,l)=c(l,l,l,2,l)=lii

c(3,3)=c(l,i;,l)=c(2,l,l,2)=c(l,l,2,l,l)=19

c(2,1,3)=c(3,1,2)=c(1,3,1,1)=c(1,1,3,1)=26

c(lj2 j3)=c(3>2 jl)=c(2 j2al>l)=c(ljlj2 j2}=35

c(l,3,2}=c(2,3,l)=c(2,l,2,l)=c(l,2,l,2)=i^0

c(2,2,2)=c(1,2,2,1)=61

cC7)=cC1,1j1Aj1j1>1)=1

c(6,l)=c(6,l}=c(2, 1,1,1, 1,2)

=6

cC3A,1)=c(1,1,5)=c(3,1,1,1,1)=c(1,1,1,1,3)

= 15

c(i+,l,l,l)=c(l,l,l,i^}=c(2,5)=c(5,2)=

c(1,2,1,1,1,1)=c(1,1,1,1,2,1)=20

c(1,5,1)=c(2,1,1,1,2)=2P

c(i+,3)=c(3,i4)=c(l,l,2,l,l,l)=c(l,l,l,2,l,l)

=3k

c(ii,l,2)=c(2,l,i^)=c(l,3,l,l,l)=c(l,l,l,3,l)

=50c(6) = c(l,l,l,l,l,l) = 1
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c 5 (cent, )

c(1,J4,1,1)=c(1,1A,1)=c(3,1,1>2)=c(2,1,1,3}=55

c(l,2,i;)=c(i;,2,l)=c(2,2,l,l,l)=c(l,l,l,2,2)=6i^

c(3,l,3)=c(l,l,3,l,l)=71

c(l,i4,2)=c(2,ii,l)=c(2,l,l>2,l)=c(l,2,l,l,2)=78

c(3,2,l,l)=c(l,l,2,3)=^0

c(3,3,1)=c(1,3,3)=c(2,1>2,1,1)=c(1,1,2,1,2)=^5^

c(3,1,2,1)=c(1,2,1,3)=c(2,3,1,1)=c(1,1,3,2)=111

c(2;^,3,l)=c(l,3,l,2)=132

c(3,2,2)=c(2,2,3)=c(1,2,2,1,1)=c(1,1,2,2A)=135

c(2,3,2)=c(1,2,1,2,1)=169

c(2,2,1,2)=c(2,1,2,2)=c(1,2,3,1)=c(1,3,2,1)=181

c(2,2,2,1)=c(1,2,2,2)=272
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8. APPROXIMATIONS OF FINITE SET STRUCTURES

If a symmetric relation on a set of elements is also transitive,

it is called an equivalence relation. (We assume all relations discussed

are reflexive.) An equivalence relation determines a partitioning of the

set into equivalence classes such that two elements are related if and only

if they are in the same class. We are interested here in how a general

symmetric relation (i„e. not necessarily transitive) can be used to define

a partition into approximate equivalence classes, in some suitable sense.

That is, we seek a partition corresponding to an equivalence relation

which "approximates” the given relation.

Given any symmetric relation R (which can be represented as a linear

graph with no circuits of one or two edges), and also a partition P of the

set on which R is defined (i.e., the vertex-set of the linear graph), let

Dp be the number of pairs of R-related pairs of elements which lie in

different sets of P, and let Sp be the number of R-unrelated pairs of

elements which lie in the ^ame set of P. An approximate partition. A,

for R would be one in which D. and S. are both small. In fact,
A A

D = S = 0 if and only if R is an equivalence relation and A is the
A A

partition into the equivalence classes of R. Hence a natural definition of

an approximate equivalence partition for R, is a partition P which minimizes

/ 1
'

''The preliminary study reported here, due to John Edmonds, has been

superseded by the author's later work.
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M(Dp, where M(D, S) is a decreasing function of D and S which

vanishes only when D=S=0. M=D+Sisof course the simplest.

To minimize Mp = one can begin with any partition and move

one element after another from one set to another (possibly empty) so

that each move decreases M (or least does not increase M) . Eventually

one reaches a relative minimum beyond which one cannot go by such moves.

Unfortunately, however, this relative minimum is not necessarily an

absolute minimum. For an example of this phenomenon, consider a set with

3n elements

:

^a^, b^, c^, a^, b^, a^, b^, c^J .

A symmetric relation R on this set is obtained by requiring that a^ and a^

be R-related for 1 < i, i < n, and that each two of a,, b,, c. be R-related

for 1 < i < n. First partition the set into the subsets ^a^, b^,
,
c^| .

Call this partition P) we have

Dp = %n(n-l), Sp = 0, Mp = %n(n-l)

Second, partition the set into ^a^, ..., a^j and the subsets
;

calling this partition Q, we have

“q = 2n, - 0, Mq = 2n

Thus Mp > Mq, so that P does not yield an absolute minimum, for n > 5.

P does however yield a relative minimum in the sense described above.

To see this, observe that (beginning with P and) moving any b^ or c^

to another set of the partition would increase Dp and not decrease Sp,

while moving any a^ to another set decreases Dp by no more than 1 but

increases Sp by 2.
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It would be interesting to know whether the following stronger types

of moves would always enable one to reach an absolute minimum:

1. Move a completely R-related set^^^^of elements to one of the

partition sets so that M is not increased.

2. Move a completely R-unrelated set of elements from one partition

set to another, so that M is not increased.

One can similarly define approximating partitions of the elements for

a general class C of sets of elements. Let M. . be the number of sets of C
ij

containing both elements i and and let be the number of sets of C

containing one but not both of these elements. For a partition P of the

elements we write "(i, j) in P” for distinct elements and j if and only

if they are in the same set of P. Then one kind of approximating partition

for C is a partition P which minimizes

Mg = *-(i^ j)not in p} j) P j ^

i.e. which (loosely speaking) avoids putting together elements which are

less frequently together in sets of C, and avoids separating elements

which are more frequently together in C. Note that M* = 0 only when

C = P (so that C is a partition)<:
^

A second kind of approximating partition for C is a partition P which

maximizes

set is called completely R-related if each two of its elements

are R-related.
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j) P] + :(i, j) not in P
j ,

i.e. which (loosely speaking) puts together elements which are more

frequently together in C, and separates elements which are less

frequently together in C. The partitions which minimize are in

'ic'k

general not the same as those which maximize . As a compromise,

•k ** k , kk
one might seek to minimize Mp - Mp , or Mp/Mp

Approximating a relation by a partition, as discussed above, is

not a special case of approximating a class of sets by a partition.

A symmetric relation R does of course give rise to a class of sets,

namely the class C(R)of R-related pairs . The aspect of R which we

approximate (in the previous discussion involving Mp) is however

not the same as that which we treat in approximating C(R). Hence

* kk
we should not expect and to be generalizations of + S„;t'

p p
a P P P'

the latter does generalize to

Mp = j) in p] 1 - :(i, j) in P
^ ,

whose minimization by suitable P defines a third kind of "approximate

partition" for a class C of sets.

We now describe two structures quite different from the relations

and classes already discussed. Because of their frequent use in

information storage, it might be of interest to find approximations

of one by the other more restricted one.
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The first structure we call a catalog because it is an abstraction

of a library subject catalog. A catalog consists of sets (corresponding

to subjects) and elements (corresponding to books) such that (1) any

set may contain as members other sets as well as elements and such that

(2) every element X contained in a set S is also contained in every set

member of S . Of course to avoid an infinite sequence of inclusions there

must be sets containing no sets. A set member R of a set S corresponds

to a sub-subject R of a subject S. An element of set S with set members

corresponds to a book X which treats to some extent the entire subject

S and not simply a portion of the sub-subjects S^.

By disregarding in a catalog every occurrence of an element X in a

set contained in a set containing X we obtain a structure which determines

uniquely the catalog from which it is derived. Structures like this are

such that (2a) no element X is a member of a member of . . .a member of a

set containing X. Any such structure determines uniquely a catalog

from which it is uniquely derived as above. We call these structures,

satisfying (1) and (2a), derived catalogs.

A derived catalog such that every element is contained in exactly

one set is called a file because of its correspondence with the manner

of actually grouping the books on shelves, there being only one copy of

each book.

A method often used by a library is to have a fairly natural card

cataloging by subjects, each element occurrence of which gives the

location of the corresponding book in the fairly artificial filing of
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the books. (A library also orders the elements in every set of a catalog

or file.) However, it is convenient for the browser if the filing

approximates the (derived) catalog. In most catalogs in actual use,

every element has a most important set occurrence and these occurrences

determine the approximating file. This is the method used for filing

patents in the Patent Office search room. However in the absence of a

ranking of occurrences, we might still ask how might we approximate a

catalog of elements by a file of these elements.
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