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EXPERIMENTS ON THE BURNING OF CROSS-PILES OF WOOD

by

D. Gross

ABSTRACT

Experiments have been performed in which
geometrically-scaled, unenclosed cross-piles of
wood have been burned under controlled conditions.
For a range of stick sizes from 1/16 to 3°6 in.
in cross section, the typical weight-time curve
illustrated the three characteristic stages of
ignition, active combustion, and glowing embers.
For the active combustion stage, the maximum rate
of burning (rate of weight loss) has been deter-
mined and all the test data correlated in terms
of a porosity factor involving the vent area of •

the pile and the total exposed surface area of
the sticks. The correlation between the scaled
rate of burning and the porosity factor may be
simply considered in terms of three regions:

(a) diffusion-limited
,

in which the scaled rate
of burning is very nearly proportional to
the porosity factor,

(b) n on diffusion-limited
,
in which the scaled

rate of burning is independent of the
porosity factor, and

(c) nonsustained combustion, in which the open-
ness of the pile prevents the establishment
of sustained combustion.

1. Introduction

The lack of basic knowledge on the growth and propaga-
tion of fires in building structures has hampered efforts
to evaluate quantitatively the importance of the interior
finish or lining material. The costs involved in performing
an extensive number of full-scale tests of room and building
size are considerable, and, in addition, are usually performed
in the open where they are subject to uncontrollable weather
conditions. Although full-scale tests are indeed necessary,
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it appears likely that a basic understanding of the mechanism
involved in fire spread can be achieved through experimenta-
tion on a reduced geometric scale.*

In using the model-study approach to research on fire
growth, it is possible to achieve a systematic compilation
of results based on varying the physical, chemical and
geometrical properties of combustible and surroundings under
more readily reproducible conditions. Of even more signifi-
cance is the opportunity for analyzing and understanding
those processes which control the burning of combustible
material and their relation to the modelling parameters.
Although the ultimate goal is the use of models for analysis
in enclosed rooms and building structures, the initial tests
were limited to simple, symmetrical, unenclosed piles of
sticks o

The purpose of this paper is twofold: first, to present
some experimental results on the fundamental burning charac-
teristics of geometrically-scaled cross-piles of wood, and
secondly, to attempt to analyze and correlate these results
in terms of the important parameters which govern its behavior.

2. Experimental Details

The wood used for the majority of these experiments was
Douglas Fir, D grade, clear, kiln-dried lumber. The mean
density was approximately 30 lt> per cu ft (0.48 gm/cc) although
considerable density variation was observed. The wood was
cut to size and conditioned to equilibrium in an atmosphere
maintained at 73°F and 50% rh yielding an equilibrium moisture
content of 9-2 ± 1.5 % based on the oven-dry weight. Several
experiments were also performed using mahogany, ash and balsa
woods to explore the effects of density and thermal properties
on the maximum rates of burning.

The sticks were of square cross section and had a
length L equal to ten times the width b. The construction of
the pile was identical to that employed by Folk [l] and con-
sisted of N layers (usually 10) each containing n sticks, with
alternate layers laid crosswise to the adjacent layers. A
pile configuration was designated by the thickness of the
stick in inches, the number of sticks per layer and the num-
ber of layers, or b-n-N. The range explored is listed in
Table 1.

*The importance of this problem was emphasized at the Fourth Session
(Fire Research and Fire Models) of the First Fire Research Correlation
Conference sponsored by the National Academy of Sciences-National
Research Council, November 1956.
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The pile was ignited by burning normal heptane in a
square fuel pan centered a distance equal to b beneath the
pileo See Figure 1. In several experiments, alcohol was
used In place of normal heptane. Wo appreciable difference
in the results was noted for the two fuel types nor of the
quantity of fuel supplied as long as there was sufficient
fuel to Initiate burning of the pile. For almost all tests,
the size of the pan was scaled according to the pile size
and contained a quantity of fuel corresponding to 8 per cent
or less of the Initial pile weight. With this percentage,
the fuel was completely exhausted before any appreciable
weight loss of the pile occurred.

For sizes up to ^/b in.
,

a dynamometer of the strain
gage type was used for obtaining a continuous weight record.
The dynamometer was arranged to operate in either of two
ways: (a) directly supporting a suspended wire gage basket
containing the pile, or (b) mounted within a ring supporting
the pile on a platform, the deflection of the ring being
transmitted to the internally mounted dynamometer. The type
of mounting had no effect upon the results except that
shielding the dynamometer unit from radiation was much simpler
with the platform support. For sizes 3A- in. and larger, con-
ventional balance scales were used. In some tests, measure-
ments were made of the time for balance after removing one
of several small weight increments while in other tests, the
pile weight was read directly from a calibrated dial.

All tests were conducted within essentially closed
rooms to minimize effects of wind and draft. Figure 2 shows
the active combustion stage of a pile of 3 ° 6 in. thick wood
arranged seven pieces per layer. The similarity to an actual
building fire Is evident.

3 . Results

Typical weight-time curves are shown In Figure 3? fnom
which three characteristic stages may be noted: (a) the
ignition stage corresponding to a gradually decreasing weight
of pile, (b) the active combustion stage corresponding to a
maximum and relatively uniform rate of weight loss, and (c)

the glowing stage corresponding to the deceleration of the
burning and ultimate extinction. The maximum rate of burning
is taken as the slope of the weight-time curve at its maximum
value

.
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Investigation of the effects of some conditions external
to the pile was limited to one pile configuration, 1/2-7-10.
It was found that:

(a) A horizontal floor shield, up to 5 times the pile
size on a side, placed at the base level or 1/2 in. below
the base of the pile had no appreciable effect upon the mode
or maximum rate of burning compared with a completely op,en

pile. For uniformity, however, a square floor shield was
used in most tests, its size being 2 to 5 times the pile size
on a side.

(b) A vertical convection shield placed so as to restrict
air from the sides of the pile reduced the maximum burning
rate over 50 per cent. The shield consisted of a square-
cornered tube made from iron sheet two times the height of the
pile and providing 3

_ in » clearance on all sides of the pile.
It was placed in position after Ignition of the pile was
established

.

(c) There was no appreciable difference in the maximum
rate of burning when a highly reflective aluminum foil sheet
or a highly absorptive (carbon-blacked) floor shield was placed
at the base of the pile.

Flame Height : Visual measurements were made of the maxi-
mum height of the flames measured above the base of the pile.
The data are given in Table 1. In Figure 4 the ratio of this
flame height 6 to the height of the pile has been plotted
against the maximum rate of burning per unit of projected pile
area. The direct proportionality is similar to results found
by Thomas [2] from model experiments with cross-piles of sticks
within an enclosure, only one side of which was open. From
the data shown in Figure 4, it appears that the proportionality
is not entirely independent of scale size.

Temperature : Measurements of the temperatures in and
around the pile were made with chromel-alumel thermocouples
(0.020 in. dia. wire) for a number of tests. The maximum tem-
peratures along the central axis within the pile were of the
order of 800, 1000 and 1200°C for piles composed of 1/2, 1 and
3=6 in. sticks respectively, although the maximum temperatures
for a given size stick appeared to be somewhat dependent upon
the structure of the pile.
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Radiant Energy : Measurements were also made of the
radiant flux from the pile incident on a single receiver

.

The radiometer consisted of a multiple- junction total radia-
tion thermopile with a thin mica window and a wide-angle field
of view. Taken from a commercial radiation pyrometer, it was
of moderate response speed ( 98% within 2 seconds) and was tempe-
rature compensated by means of a nickel coil for ambient tempe-
ratures up to 250°F. It was horizontally mounted and arranged
to view the pile plus the entire area of flaming according to
the scheme in, Figure 1. The results are summarized in Table 1.

Figure 5 is a plot on logarithmic coordinates of the maximum
radiant intensity as a function of the maximum rate of burning

.

The ordinate was calculated on the basis of the inverse square
law (considering the flame as a point source) and refers to a
unit solid angle for the orientation of the radiometer shown
in Figure 1. The error introduced by the inverse square law
assumption was considered negligible when the radiometer to
source distance was three or more times the maximum flame
dimension. A straight line of unit slope (direct proportion-
ality) yields a good fit to the data. It appears, however,
that the maximum energy radiated may be slightly affected by
the porosity of the pile.

Air Velocity : These measurements were limited to explora-
tory tests using both titanium tetrachloride smoke (for visual
demonstration) and heated thermocouple anemometers. More work
in this area is planned.

b. Discussion

Experiments conducted by Bryan [ 3 ] led him to the conclu-
sion that the fundamental law governing the combustions of his
wood cribs was the dependence of mass and heat emission upon
the 3/2 power of the scale size. Measurements of heat conduc-
tion in bodies subjected to standard fire exposure tests [t-]

have shown that the time for a certain temperature to be reached
is approximately dependent upon the 1.6 power of the thickness.
This has also been verified by means of measurements on electri-
cal models arranged to represent the analogous thermal situation
[5? 6]. Whereas the rate of burning of a stick of square cross
section should properly be considered a two-dimensional system,
this 1.6 power relation is based upon one-dimensional heat flow.
However, in the actual burning, all sides are not equally affec-
ted by the exposing fire and a nearly one-dimensional heat flow
predominates. Since the rate of burning depends upon the absorp-
tion of heat within a body with resultant release of combustible
decomposition products, it is not unreasonable to expect the
rate of burning to approximate this 1.6 power relationship.
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This may be shown as follows:

If t - b^"^ then db/dt - k2 b

When sufficient air is present, the analysis for one
stick is identical to that for the entire pile. We define R
as the maximum per cent combustion per unit time, or

R = dM/dt
x 100

Here, dM/dt equals the maximum rate of weight change and MQ
is the initial weight. If it is assumed that during the
burning, the density p remains constant and the volume V
varies, then

Since M0 = pv

dM/dt = p dV/dt = 30pb 2 db/dt

= ,10pb3

then R _ dM/dt _ 30pb2 db/dt _ 3db/dt
100 M0 10pb3 b

3
k2 b ~°-6

b
= k

3
b
-1.6

where kq
,
k2 ,

k^ are constants of proportionality

.

In Figure 6 the "scaled" rate of burning R b^^, is
plotted for three configurations against the pile size, 10 b.

For those pile sizes and stick spacings which do not limit
the air available for maximum burning, it is seen that the
scaled rate of burning has the same value of 8A per cent per
minute

.

For other pile sizes and stick spacings, sufficient air
is not available for burning at this maximum rate. Under
these conditions, the rate of burning is determined by the
rate at which the air can flow into (or gases flow out of)
the pile. We may define a porosity factor, cp, in terms of
the ratio of the actual to the theoretical air flow rates.
The actual air flow rate will be proportional to the product
of the mean air (or gas) velocity and the vent or open area
of the pile. The theoretical air flow rate will be propor-
tional to the rate of volume (or weight) change and therefore
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to A
s
b *6. If it is further assumed that the mean air or

gas velocity is proportional to the square root of the height
of the pile, we may write

Vh A
V

b
-0 * 6

A,
or tp = N° ' ^ b

1 ' 1 Av/A s

Here, is the total exposed surface area of the sticks, or

A
s

= 2nt> [N(21-n) + n]

The vent area of the pile, A ,
may be considered the area

of the vertical shafts only or of
v
some unknown fraction of the

.total vent area comprising the top, four sides and bottom of
the pi^e. For simplicity, the open area of the vertical shafts,
A
v = b ilO-n)

,
has been taken.

It was evident from visual observations that significant
flaming issued from many of the side openings as well as from
the top. Several experiments may be suggested to investigate
this point, e.g., using a solid slab roof as the top layer,
offsetting sticks in alternate layers to obstruct the fuel
effect, setting the pile directly on the floor after ignition,
closing off all or part of the side openings, etc. In prelimi-
nary investigation of the solid slab roof, a 20% reduction,
approximately, in the maximum rate of burning was obtained and
this suggests that the area of the vertical shafts was only
partially limiting.

All the data, including that of Folk [l]
,
have been plot-

ted in Figure 7 as a function of porosity factor cp. To take
into account the effect of thermal properties in the tests
with mahogany, ash and balsa woods, the scaled rate of burning
ordinate, R bl*°, has been multiplied by a factor F which is
the ratio of the thermal diffusivity of Douglas fir to the
wood under test. For these data points, the greater scatter
probably results from lack of appropriate information on the
thermal properties of the different woods.

The weight-time curves of Figure 3 may be considered in
idealized form as starting at the initial pile weight and
decreasing linearly at the maximum rate of burning. This
approximation permits the following generalizations to be
made with respect to tx ?

the time at which the pile weight
has dropped to x% of its initial value:



.
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(a) For pile configurations for which the
hi • 6

of burning is diffusion-limited, t^cc ——

(b) For pile configurations for which the maximum rate

of burning is not diffusion-limited, t ocb^* 0

Because of the complexity of the problem, no attempt has
been made here to reduce to dimensionless coordinates. It is
realized that other variations or interpretations of the
abscissa grouping might yield equally satisfactory correlation
However, the abscissa grouping chosen serves as a useful means
fo gaging the effect of the porosity or openness of the pile
and, on this basis, the plot is considered to consist of essen
tially three regions:

(a) diffusion-limited, in which the scaled rate of burn-
ing is very nearly proportional to the porosity factor cp,

(b) riondiffusion-limited
,

in which the scaled rate of
burning is independent of the porosity factor, and

(c) nonsustained combustion, in which the openness of
the pile prevents the establishment of sustained combustion.

Mention might be made here of a few supplementary tests
in which the specimens consisted of five vertical slabs each
of dimensions b by 10 b by 10 b. The thickness range investi-
gated was b = 1/b, 1/2 and 1 inch. It was observed that only
the inner three slabs were involved in active flaming during
the period when the maximum rate of burning was recorded. By
computing the per cent rate of burning on the basis of three
slabs only, it was found that these data also plotted along
with the general population of Figure 7»

5- Summary

This report describes experiments performed over a period
of several years to obtain fundamental information on the burn
ing characteristics of cross-piles of wood. This is one of
the initial steps in an overall investigation of the applica-
bility of model techniques to the study of the development and
growth of fires in buildings.



.
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From the results of the experiments to date, it has been
found that weight-time records can be considered in terms of
three characteristic stages*. ignition, active combustion and
glowing. For the active combustion stage, the maximum rate
of burning data have been found to correlate in terms of a po
rosity factor involving the vent area of the pile and the
total exposed area of the sticks. This correlation may be
simply considered in terms of three regions on the porosity
scale: diffusion-limited, nondiffusion-limited and nonsus-
tained combustion.

Future work is planned in which attention will be direc-
ted toward the study of the growth of fires in model struc-
tures*, in particular, the effect of the interior lining
material on the rapidity of fire spread and measurement of
the velocity and distribution of air flow in openings will be
studied

.
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FIG. 2 -ACTIVE COMBUSTION STAGE IN BURNING

OF CROSS-PILE OF WOOD. 3.6 IN. THICK WOOD,
7 STICKS PER LAYER, 10 LAYERS HIGH.
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