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On Stokes Flow About a Torus* 

by 

W. H. Pell and L. E. Payne** 

(National Bureau of Standards) 

Io Introductiono 

In previous papers [1,2], the authors have solved the Stokes flow 

problem for certain axially symmetric bodies, with the velocity at infinity 

uniform and parallel to the axis of symmetry. Each of the bodies con¬ 

sidered possessed the property that the meridional section intercepted a 

segment of the axis of symmetry. In the present paper this assumption is 

removed; in addition, we shall consider the particular case of the Stokes 

flow about a torus„ 

With the introduction of the Stokes stream function /\fJ , the Stokes 

flow (or "slow flow") problem becomes a boundary value problem for 'yjs in 

a meridional plane, and it is found that ^ must reduce to a constant 

(in general, different H. for different profiles) on each profile in the 

flow. But whereas in [1 &2] it was possible to determine a priori the 

value of X from the form of the stream function at infinity, in the case of 

profiles which nowhere intersect the axis of symmetry this is not longer 

the case. _ It will be shown below that the value of X for each profile 

can be determined by requiring that the pressure be single-valued in the 

flow. This requirement can be expressed in the form of an integral 

condition similar to that imposed in inviscid flows to render a motion 

acylic [7,3,4], or to that employed to eliminate dislocations in certain 

problems of elasticity [5,6], 

2„ Statement of the Problem; Determination of the Boundary Constants. 

We consider a collection of m bodies (m > 1), each of which has an 

axis of symmetry, and arranged collectively in such a way that the aggregate 

also has an axis of symmetry. Let this configuration be immersed in a 

uniform flow of a viscous fluid, the axis of symmetry of the configuration 

*This work was supported by the U.S. Air Force, through the Office of 

Scientific Research of the Air Research & Development Command. 

** Consultant for the National Bureau of Standards, Associate Professor in the 

Institute for Fluid Dynamics and Applied Mathematics, University of Maryland. 
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of bodies being taken parallel to the direction of the uniform flow. If we 

assume that U, the speed of the uniform flow, is so small that inertial effects 

of the motion are negligible in comparison with those of viscosity, then we 

obtain what is referred to as a Stokes flow [1], 

We introduce cylindrical coordinates x,r,0, where the x-axis is taken 

along the axis of symmetry with the positive x-direction the same as that of 

the uniform stream, r is radial distance from the x-axis, and 0 an azimuthal 

angle. We assume that the flow is axi-symmetric, in which case 0 plays no 

role in our problem, and we may restrict our attention to any meridional half¬ 

plane r > 0. The meridional cross-section of the configuration will consist 

of closed contours C\ , i = l,2,...,m, each lying entirely above the x-axis.(Fig.1) 

By a well-known procedure [1,7], the Stokes flow problem with axial 

symmetry outlined above is reduced to the determination of a stream function 

which satisfies in the region of flow the equation 

L-i2^ = °. (2.1) 

where 

2 2 

(2.2) 

and is such that 

on C., i = 1,2,...,m 
i 

(2.3) 

(2.4) 

and 

(2.5) 

In problems of classical hydrodynamics the values of the constants ^ 

are made determinate by a condition of irrotationality, but this procedure is 

not available to us. Their determination in the present instance is made in 

the following way. The equations of motion for a Stokes flow may be written 
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(div „ grad) = — grad Jo (2 o 6 ) 

where ^ is the velocity of flow, p the thermodynamic pressure, and is the 

coefficient of viscosity. In the present instance ^ = (ux>ur) and grad p 

= (9p/9x, 9p/^r). The vorticity is defined as ^ = curl and it is well 

known that in the case of axi-symmetric flow the only non-vanishing component 

is that normal to the meridian plane, so that we may deal solely with 

)£[ = ■£ » given by 

(2.7) 

It is easily verified by the use of (2.6) and (2.7) that 

1 Ip 
ar 

1 5 
:(r<), 

1 ^P 

H r 'F?(r^)’ 
(2.8) 

which have precisely the form of the Stokes Beltrami equations which relate 

the potential and stream functions in the classical potential flow theory [7]. 

From these it follows that we may write 

aP _ k 5) 
3cT r 3 n 

(r<) 

or, since [1,7 

< - * 7 ^ 

(2.9) 

(2.10) 

that 

Ip = _ A_ rL -d/ 1 
3cr r o> n -1' 

(2.11) 

The unit normals n and C~ defining the direction of the differentiations in 

(2.11) are related so that counterclockwise rotation of n through a right angle 

brings it into coincidence with G£ . Eq. (2.11) has precisely the form of 

the Stokes-Beltrami equations which relate the potential and stream functions 

in the classical potential flow theory [7]. On physical grounds it is 

reasonable to assume that Jo is a single-valued function of the coordinates 

(x,r), and the condition that this be so may be expressed in the integral form 
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(2.12) 

where C is any closed contour which lies entirely in the flow region. But 

(2.11) allows us to rewrite this condition of single-valuedness alternatively 

^7§7 d<r =0 (2.13) 

In particular, this condition must hold when C is chosen to be a C., hence 
l 

/ 7 h lh-^] ds = 0, i = 1. 2 , m, (2.14) 

It will be convenient to write the stream function in the form 

m 

1 „ 2 'V/=iur -'V" +z KiV'i 
i=l 

The boundary condition (2.5) is satisfied at once if we require that 

(2.15) 

lim ^grad^’ = 0, 

/o-> oo 

lim 

oO 

igrad *p^ - 0, 

Eq. (2.3) is satisfied if we require that 

1 = h Ur2 

‘ 1 

i = 1,2, . . . ,m 

on Ci, i=l,2 , . . . ,m, 

on C. 
l 

on all other profiles, 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

and (2.4) is satisfied provided that 

ay' a r 

n d n 

_ 
a n 

on , i=l,2,...,m. 

(2.20) 

0 (2.21) 
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2 , . 
Finally, we note that since L_1(r ) = 0 the functions '\fs' and must 

satisfy the same differential equation as 

‘■I'f' = 0 
(2.22) 

■». 
i = 1,2, . ,m. (2.23) 

We have now replaced the original problem for by m + 1 problems for 

•'Lyi/' and , i = 1,2, ... ,m as specified above, provided the ^ are known. 

If (2.15) is inserted in (2.14) we obtain 

i L , 
r <9 n -1 'i 

ds - 4“ L n 'ds r dn -1 » 

C 
k 

0, 

k = 1,2,...,m (2.24) 

This constitutes a set of m linear non-homogeneous equations for the 

determination of the m constants . . 
i 

It is interesting to note that if we leave the Zt ^ undetermined in (2.15), 

and demand that the rate of dissipation of energy of the flow calculated from 

this be a minimum, we obtain precisely the same . as are given by the 

condition that p be single-valued. 

The drag is given by 

P = ^ if r [L-l'V*']2 drdx 

D D 

for any axially symmetric configuration of bodies [1,7]^and it was shown in 

[1] that if the region of flow is simply connected then P has the representation 

p .. py' 
—— = lim -— 
8jt^C p^oo ^2 

(2.25) 

In the case at hand, bodies not intersecting r = 0 occur, so that the flow 

region is multiply connected, but by a slight alteration of the procedure of 



[1], Sect. 4, the result (2.25) can be shown to hold once more.* In [l], Eq. (4.4), 

the portion of the boundary integral in the right hand member which is evaluated 

on Ci(C^ in the notation of [1]) vanishes because of (2.13) and the conditions 

(2.3-.4). Thus (2.25) remains valid when the boundary of the flow region 

contains profiles of type C' and/or C.. 
i J 

We shall now consider a problem in which m=l, and the single profile 

C., which occurs is a circle; i.e., we consider the Stokes flow about a torus. 

3. The Flow About a Torus. 

In order to calculate the flow about a torus we introduce toroidal 

coordinates [8] ( ^ ) in a meridional (x,r) plane (Fig. 2) by the transformation 

b sin§ b sinh# 

X-s-t r_ s-t 

where 

s = cosh t = cos ^ 

(3.1) 

(3.2) 

The curves = const, in r > 0 are circles which nest about the point (0,b). 

Hence any curve ^ ^0 ~ const, defines the boundary (profile) of a toVus 

whose exterior is given by 

0 < | < 2* (3.3) 

We have here an instance of the general problem discussed in Sec. 2 in 

which m = 1. It is convenient to abandon the notation used there,and refer to 

the profile as C, and to the value must assume on C as X . Thus, in 

order that the velocity components be single-valued, we seek solutions of 

L?i 'V = 0 (3.4) 

which are periodic (of period 2n) in ^ , and which satisfy the conditions 

*The 'Y'1 of equation (2.25) is to^oe understood here in the sense in which it 

was used in [l], i.e., Y' = ^Ur “Y- It should not be confused with the 

Y'’ in equation (2.15). 
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on C (? = ?0> (3.5) 

where the constant X must now be chosen as outlined in Sec. 2.* We return 

to this point later. 

In accord with (2.15) we write 

^ = & Ur2 - y ' -I- (3.6) 

where '^f>' and give rise to zero velocity at infinity and by (2.18-2.19) 

satisfy on ^ Q the conditions 

'Xj/ = £ur2, 4^ = Ur 
d n dn 

(3.7) 

II 

>
 ^ . 0. 

<=) n 
(3.8) 

We first determine . To this end we choose to represent it in the 

following way (see Payne [9]) 

y* = + (/02 + b2)y3] 

where<^/ (x,r) represent any solution of 

( \ ^ 2y _i_ ^ 2v , k 9 v 

k ax2 ar2 r ar 

(3.9) 

(3.10) 

i *e • > 'xf> K is a generalized axially symmetric potential function in the 

k 1—k 2—k 
terminology of A. Weinstein [10]. From the relation 'Xj/ = r xf/ , 

due to Weinstein, we see that 

^f/ 3 = r-2^"1 (3.11) 

where 'Xjy ^ is the stream function of inviscid incompressible hydrodynamics. 

From [6] we then obtain as functions suitable for use in toroidal coordinates 

♦The flow about a torus was considered previously by S. Ghosh [11]. His solu¬ 

tion is for the case X = 0 and (see Sec. 2) consequently is not of physical 

interest. 



l £ 
= (s-t)2 / BP i(s)cos n£ 

Z— n n-5 -3 

v n=o 

and we have then the representation 

oo 

A P^1i (s)cos n 
n n-£ 

Ur2<S't)i 71 7 [A"S Pn-i(S> + Va-J 
(s)]cos nt= (3.12) 

where *2^_ indicates that the term for n = 0 is to be multiplied by 1/2, 

P(1i (s) = dP ./ds, and the A , B are undetermined coefficients. 
n-£ n~2 n n 

With the insertion of (3.12) the first of conditions (3.7) becomes 

oo 

= / [A s P(1J(s ) + B P ,(s )] cos n| (3.13) 
Z_ n o n-£ o n n-£ o ^ 

(s -t) 
o 

■i 

where s = cosh 07 . But (see [8], P* 443) 
o o o 

(s -t) ^ 5 Q i(s ) cos n| 
o n Z_ n-J o 

(3.14) 

and thus one is led to the condition 

,(1> 
t •=> A 1 V3 / \ U *T 1 > 
n o n-5 o n n-5 o 

3/2 
W 1 vs ; 

it n-£ o 
(3.15) 

to be satisfied by A and B if the first equation of (3.7) is to hold. The 
n n 

second condition (3.7), under the assumption that the first is satisfied 

and that 'j/ ' is given by (3.12), reduces to 

z d 

ds 
(A s P(1> 

n o n-4 
(s ) + B P ,(s )]cos n£ 

o n n-£ o => 
-j— (s -t)“* 
ds o 

o 

(3.16) 

The series (3.14) is now inserted on the right, and the permissible (in sq>1) 

interchange of operations made there, yielding the relation 



(s ) (3.17) A [s P(1> (s )] + B P(1i (s ) = — Q(1J 
n ds^ o n-f o n n-f o n n-f o 

to be satisfied if the second relation (3.7) is to hold. If we let 

F (s ) = s P(1^ (s ) 
no o n-f o 

G (s ) = P , (s ) 
n o n-f o 

H (s ) = ^ Q 1 (s ) 
no it n-f o 

then A and B are found from (3.15) and (3.17) to be given by 
n n 

A = -t—7-r [G (s )H'(s ) - G’(s )H (s )] 
n A (s ) n o n o nono 

n o 

1 
[F'(s )H (s ) - F (s )H1(s )] 

n A (s ) nono nono 
n o 

(3.18) 

(3.19) 

where 

A (s ) = F’(s )G (s ) - F (s )G’(s ) 
“no nono nono 

(3.20) 

and ( ) ’ = d ( )/ds. 
o 

By a rather lengthy procedure similar to that used in [2] we obtain the 

identities 

-7— [s P^i (s )] Q i(s ) - s P^i (s ) (s ) 
ds o n-f o n-f o o n-f o n-f o 

zf’c (2 ~) 

1 <^)Q 
2 n 2 

4— [s P(1l (s )]P ,(s ) - s [PU] (S )]2 
ds o n-f o n-f o o n-f o 

(3.21) 

S2 -1 J , 
o 1 

p(2i (ZT-)P i(tr)dr 
n-f n-f 

These relations, together with the well-known identity ([8],p.233), 

1 
Q 1 (s )P^1i (s ) - P i(s )Q^1i (s ) - 
n-f o n-f o n-f o n-f o 2 

s -1 
o 

(3.22) 
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yield as alternate representations to (3.19) 

/ s 

A 
n n 

p(2l (DP , (r) dr 
n-£ n-£ 

B = 2A 
n 

(3.23) 

s 

■r 
p(2i (z?/> Q i <r> n~2 n-5 

We turn now to the determination of l/s ^ • In this case we choose the 

representation 

2 ' 2 2 .3. i'l= ^2 1^1+ (/>2+ b2)^2] 

" 7Z^7-2 2_ ''V Pn-J <S) + Vn-J 
n=o 

1 3 
where /V/, and'Y7 are the same as and d/7 in (3.12), with A and B 

7 1 ' 1 T 1 7 3 n n 

rep.aced by Cn and Dn> respectively. If we substitute this expression into 

(s) ] cos n |r (3.24) 

tl first equation of (3.8) the result is 

°° / 

[C s P(1? (s ) + D P .(s )] cos m 
/__ m o m-£ o m m-J o 

m=o 

(s - cos % ) 
o_ 

S2 -1 
o 

3/2 

(3.25) 

If we multiply both members by cos n| and integrate with respect to ^ from 

0 to 2n, we find that C and D must satisfy 
n n 

it 

C s P^1, (s ) + D P i(s ) = -\- / (s -cos§ )3y/2cos nf: d£ 
n o n-i o n n-J o n(s2-i) J° 

O O 

(3.26) 

if the first equation (3.8) is to hold. Reference to [8],p. 248 shows, however, 

that 

n 

, J-D / 
3/2 a 2 (-1 )n P( 5/2) 

(So-cos|, cosn| d§ =_5_I7i^r- 

o 

i>pn M 
§, 3/2(^y 

(3.27) 
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If the right side of (3.26) is replaced by this and use made of Whipple's 

relation ([ 8] ,p.245.) , we obtain 

C s (s ) + D P ,(s ) = -75 Q 21(s ) 
n o n-f o n n-§ o nv^ n~2 ° 

(3.28) 

to be satisfied by C and D . 
n n 

The second condition (3.8) is handled in much the same way as (3.7), 

and leads finally to 

C„ X- (=„)] + <S„> = -XT <C?i <s„ > <3-29> n ds L o n-J oJ 
° n\T2 o 

ds n- 

to be satisfied by C and D . Now let F (s ) and G (s ) be defined as in 
n n no no 

(3.18) and let 

M (s ) = — Q_2i(s ) 

11 ° ^ ° 

(3.30) 

The solution of (3.28-029) for C and D then gives 
n n 

c = —^7-t|m '(s )G (s ) - M (s )G'(s )] 
n A(s)Ln ono nono 

(3.31) 

[M (s )F'(s ) - M'(s )F (s )] 
^n A (s ) L1“n v"Jo/i n v"Jo/ i“nv~oyinv~o'1 

^n o 

The repeated use of the differential equations satisfied by the Legendre 

functions which appear in (3.31) allows us to derive identitites similar to 

those of (3.21), and so finally to show that 

00 

3 
(h+^)(n+^) + 4 / P i(^)QV"( (T')dZ' 

2 J n-J n-J 

(2) 

- 3 y/j? 

n .2 9W 2 1, 
4 (n “ ^)(n - -) / • ’3 

(3.32) 

i (S') P A (ZT)dT 



(n+ —) + 2 
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(2 ) 

D = 
3 sf~2 

4(n2 - |) 
& 

/*« 
(2i >p i(^ )dr 

s n_i 

3 vT2 

Cn ,, 2 9W 2 1. 
4(n - -)(n - -) 

4 4 

4s 2 /”* o 

<n2-f )+77^'4J Pn-i(rWn-!<r)(ir 

S° 1 

/*•: 
(2) 

i (2r ) p i(zr )dr 
5 n 2 

3 vT2 So 

^ s 

v/'< 
(21 (r) Q A(r)dr 

5 n~5 

n 2(n2" f> 4 

/ ‘« 
(^) p i (^)dr 

n-i 

(3.33) 

Accordingly, the complete solution y/ is given by 

f °° / 
^(x,r) = £Ur2J l-(s-t)^ ^ [Ans P^ (s) + Bnpn £(s>Jcos n 

^ n=o 

_ oo 
2 j 

+ * -S-i 23 [c„. p£J(.) + DnPn.j(s|]cos n 

(3.34) 

(s-t) 
2 n=o 

where the A and B are given by (3.23) and the C and D by (3.33). 
n n n n 

4. The Calculation of K 

A scheme for the determination of the values taken on by the stream- 

function on the profiles in a flow was outlined in Sec. 2. For the particular 
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problem we are considering the value of the single constant (i.e.,>f ) is 

given by the single equation (2.24) obtained when m = k = 1. The use of that 

equation requires that ' and given by (3.12) and (3.24) respectively, 

be inserted therein, and the indicated integrations carried out. This is a 

formidable procedure, and one which, fortunately, need not be undertaken. 

We shall use an alternative method for determining X which makes use of the 

fact noted in Sec. 2 that the contour used in the integrations just mentioned 

may be any which encloses the body profile. We choose for this contour one 

composed of the segment of the x-axis -a < x < a and the semi-circle /O = a 

which joins its end points (+ a, 0) (where a is arbitrary save that the 

profile C must lie within the region enclosed by these arcs), and let a tend 

to infinity. Denoting these arcs by P and P respectively, (2.13) yields 

Jlh <L-l^)dS + frh <L-l^)dS " °- 

r, rz 

From (3.9) and (3.24), letting /= 2 X./b U, 

2 

n//=^ [i-y/1-(/o2+b2)^3] + /[^ + (/o2+b2)^3: 

(4.1) 

(4.2) 

and hence 

3^1 ^ 2 
-=r—-h r 

on rv 

(4.3) 

- (L .-«//) 
r ^ n -1 ' 

+2 

3 

2 . 1 

a N' 

(L_!^) ft 10 ^ ■4x 
x -J 

4x 

(4.4) 
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and if we insert this in (4.1), and note that it follows from the remarks of 

[1], Sec. 4 that the integral along p =a tends to zero as a —^ oo, we obtain 

1 3 
From the properties of '\fj (x,r) and 'xj/ (x,r) it follows that 

e> V/1 ,3 
lim -- = 0, lim (x']£;)= 0 

P~C0 B X p*a> r 
3 

(4.5) 

(4.6) 

us to write 

3 1 
These, and the fact that '\js and "^4 are even functions in x, permit 

dx = 0 (4.7) 

3 /r00 

= / (0,x)dx/ I 1(0,x)dx 

o / o 

(4.8) 

Th e integrands and are to be obtained from (3,12) and (3.24) respectively. 

(See the remarks preceding (3.12).) Inserting these in (4.8), and noting that 

dx = (l~t) ^d^ for r=0, the result is 

/* oo t 

(l-t)^X'' A p(^i (Dcos n§ d g 
n=o n 2 

o 

/n i oo , 

(l-t)42I Vn-4 <1,OOS 
n=o 2 
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> A <« - 7 L- n 4 
) J (1-cos t') cos nr df 

o 

oo t n 

C (n2- / (1-cosT)1 
- n 4 / 

n=o J 
cos n’C'dT’ 

(4.9) 

The integrals are easily evaluated. We find that 

I (1-cosD2cos nfdr 

n 

= sf2 ^ sin cos n^dr 

so that we have 

v/2(n2- 

(4.10) 

y a 
n 

and * 2 „ r «=» z 
2 

b U n=o 

7 A 
£— n 

(4.11) 

5. Determination of the Drag. 

Since in the present case^ ' of (2.25) is represented by the last two 

terms on the right of (2.15) , the drag P of the torus is given by 

s0lira 4 ^YV- (5a) 
r oo r 

The expressions (3.12) and (3.24) for ^f/' and ^ , respectively, are now 

substituted in this, as well as fO/r from (3.1). We then obtain 

1 /(A - tfc )(n2- i) + 2(B -^D )> (5.2) 
Inn 4 n n J 

n=o 

*As previously noted, ’ is used in different senses in [l] and the present 

paper. 
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where we have employed 

P(1! (1) = £(n2- 7), P i(l) = 1. 
n-J 4 n-£ 

6. The Normal Pressure. 

Once the function Y' of (2.15) has been found, the integration of (2.11) 

yields the normal pressure p. If p is desired at (x’, r'), we integrate (2.11) 

from the point at infinity along any curve joining it to (xf, r’), thus 

obtaining 
/ ' °o 

p(x',r') = Poo + p (6.1) 

^ (x*,r’) 

where p^ is the free stream pressure of the uniform flow, and cr is used to 

indicate arc-length. 

The integration is usually best carried out along coordinate curves. 

Thus, in the case of the torus, if ( ^ ) are the bipolar coordinates of 

(x',r'), the integration is taken along the x=axis from x = oo to the point 

T at which § = cuts the x-axis, and then along the curve % = ^ ' until 

' is reached.(Fig 2.) It is easy to show that (6.1) then becomes 

P(S'-H’) = Pco + 

r( f\0) 

(0,0) 
7 It <L-i^,d 

,0) 
d n -1' 

ArL 
sinh^ 

(6.2) 

The third term is not easy to evaluate, and since we have found the quantity 

of primary interest associated with the stresses, viz., the drag, we shall not 

carry (6.2) further for arbitray ( ^ * >$ ’) • On the x-axis, however, the 

expansion of p becomes fairly simple. Noting that [ 3( )/d u]r_Q-[ d ( )/dr]^_0 

(6.1) becomes 

p(CC,0) 

oo 

pco+/*f [t-f; L-l^r=0 
J x’ 

dx (6.3) 
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for 0 < OL < oo , where the arguments of p are now x and r. Now if we insert 

(4.4) for the integrand, and take into account (4.6), the result is 

, ® 

p(a,o) = Pqo - ^Uj4aT//3(o;,o) - -6J 3(} ,o)d>i 

a 

3 ^yi/^(a,o) r°° O 
- '/Uoc'if'* (a,0) - —-- 6J 'xp 3(^1 ,0)d>\j> (6.4) 

1 3 1/3 
Where , np , 'p ^are as given before. If we set OL - 0 in (6.4) it ii 

easy to show that 

co „oo 

p(0,0) - p +6 
oo 

( r r 1 
j 'ys2(*>o)d)\ Y/3()i,o)d>L 

In view of (4.8), however, the bracketed term vanishes, and we have the 

interesting result that 

p(0,0) = p » (6.5) 
CD 

Along the r-axis between the origin and the surface of the torus, (6.1) yields 

J -> co 

p(0,r) = p 

(6.6) 

We have just shown, however, that the last term of (6.6) vanishes. Moreover, 

the expressions fornp , etc., in ( ^ ,^?) coordinates are inserted in (4.4), it 

is found that every term of the integrand of the second term above contains 

either sin^ or sin n ^ . But ^ = jt on x = 0 (r b) , and hence it follows that 

[X/r'fc) (L_x )/an]x: ^=0 in the second term of (6.6). Accordingly, not only is 

p(Q,0) = p , but p retains this value on the segment 0 <7? <7) (%=jt) of the r-axis 
00 —6 — ^0 

i.e., at all points of the equatorial diaphragm across the "hole" of the torus. 

It is obvious that in fact p - p along the entire r-axis outside the torus. 
oo 

7. The Stress Components. 

In an axially symmetric flow referred to as x,r coordinate system in 

a meridional plane, the only stress components of interest 'are p , p , and 
xx rr 



-18- 

p = p That is to say, at each point of a meridional plane we need 
xr rx 

consider only the stress tensor associated with elements of fluid surface 

which are normal to this plane, and hence are determined by elements of arc 

lying in it. 

From [7], p. 518 and the expressions for the velocity components in terms 

of 'xU the stress components of the flow are 

P 

P 

P 

xx 

rr 

xr 

- P + ^ 
r / xr 

- p -Mnf/ 
r ' xr 

p 
rx r \ ' rr 

- r(L l^ 

- 7 V'r) 

2^xx) 

(7.1) 

For an arbitrary element of arc determined by its unit normal n = (n ,n ) 
—' x r 

(or by the unit tangent vector G~ oriented with respect to n as in Fig. 2) it 

is natural to define the stress vector on the element in terms of p and 
nn 

p j the normal and tangential components of stress, respectively. We may 
ns 

write 

= p n + p n 
nn xn x rn r 

= -p n + p n 
ns xn r rn x 

(7.2) 

where 

p = p n + p n 
xn xx x xr r 

p = p n + p n 
rn xr x rr r 

(7.3) 

Using (7.1) and (7.3), it is easy to show that 
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p = -pn + 
xn x •-iV' Vi 

p 
rn 

-pnr 
r d 'r 

(7.4) 

We are principally interested in p and p on the complete boundary C of a 
nn ns 

body in the flow — and hence on each boundary of type and CV of [l]. From 

(2,3) and (2.4) it follows that = 0 on C, and from this that 6(1^/ ^)/dcr = 0 

on C. Similarly, 'f*r = 0 on C, and it follows that d( 'XfJ /^.(T = 0 on C. When 

these results are applied to (7.4), we find that 

Un 

p = -pn H-- L \V 
xn x r -1 ~ 

Mnx 
p = -pn-L ^ 
rn r r -1 7 

(7.5) 

If the expression (6.1) for p is now introduced into (7.5), and the result 

inserted in (7.2), then the normal and tangential stress components on the 

element defined by n at a point (x,r) of the flow are found to be 

r00 J r in L-iY>/ 
°Cx,r) 

d<T 

7l-1V 

(7.6) 
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Fig. I. THE GENERAL CONFIGURATION 





Fi
g.
 
2

. 
T

H
E
 

T
O

R
U

S
 



1 



o X 

Fig. 3. PATH OF INTEGRATION 

FOR DETERMINING p 




