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FOREWORD 

In recent years the use of structures at elevated temperatures has 

increased greatly. If the safe design and efficient use of structural 

materials are to be assured, a knowledge of the properties of materials 

and of structural configurations is essential. In determining these 

properties, the measurement of strains and deformations is important. 

Strain gages to measure these quantities must be capable of operating 

satisfactorily over a wide temperature range. 

In order to determine the characteristics of strain gages which 

are available for use at elevated temperatures, the Department of the 

Navy and the Department of the Air Force have sponsored a program for 

the evaluation of these gages. This report is one of a series giving 

the results of these evaluation tests. 

There is a continuing effort on the part of manufacturers and 

research organizations to develop improved strain gages for use at 

elevated temperatures. Therefore the results given in this report 

would not necessarily show the performance of similar gages which 

may differ in characteristics due to differences in materials, treat¬ 

ments, or methods of fabrication. 

L. K. Irwin 
Chief, Engineering Mechanics 

Division 

B. L. Wilson 

Chief, Mechanics Division 

II 
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Evaluation of Resistance Strain Gages 

at Elevated Temperatures 

Progress Report No. 8 

by 

R. L. Bloss, C. H. Melton and J„ T. Trumbo 

SYNOPSIS 

Resistance strain gages of the SS-E-4D-A series, 

manufactured by Micro-Test, Inc., were evaluated at 

elevated temperatures. The characteristics determined 

were (1) gage factor at room temperature, (2) variation 

of gage factor with increasing temperature, (3) drift, 

(4) res istance-temperature relationship, (5) behavior 

under transient heating conditions, and (6) behavior 

when subjected to large strains. The results of these 

tests indicate that these gages, when attached to 

stainless steel, have repeatable gage factor character¬ 

istics, a very low temperature coefficient of resis¬ 

tance, low drift at temperatures up to 700° F, and the 

ability to withstand large tensile strains without 

failure. 

1. INTRODUCTION 

In the continuing evaluation of resistance strain gages designed for 

use at elevated temperatures, gages manufactured by Micro-Test, Inc. were 

subjected to evaluation tests. The gages tested were type SS-E-4D-A. The 

gages were subjected to tests to determine the following characteristics: 

(1) Gage factor at about 75° F, 

(2) Variation of gage factor with increasing temperature, 

(3) Relative change of resistance with time (drift), 

(4) Resistance-temperature relationship, 

(5) Behavior under transient heating conditions, and 

(6) Behavior when subjected to large strain. 

The manufacturer does not recommend these gages for static strain 

measurements at temperatures above 850° F. 
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The results of previous evaluations of other gage types are given in 

references 1 through 7. 

2. GAGES 

The gages which are reported on herein were purchased from Micro-Test, 

Inc. The active element is made by etching the center section of a 0.007 

inch diameter wire to a diameter of 0.001 inch. The unreduced ends form 

the leads of the gage, thereby producing a gage element with no internal 

joints. This filament is imbedded in an insulating material within a metal 

tube. The metal tube is welded to a thin sheet which, in turn, is attached 

to a structure or test specimen, usually by spotwelding. The gages tested 

were made from two of these elements as shown in figure 1. 

The gages were attached to stainless steel test strips by spotwelding. 

In most cases the spotwelding was done with the hand tweezer assembly of a 

Unitek Model 1015 spotwelder. A small number of gages were attached with 

a Rollectrode,r attachment for the Unitek Model 1015 spotwelder. The 

installation instructions of the manufacturer were followed* 

3. TEST EQUIPMENT AND METHODS 

The equipment and methods used for all evaluation tests except those 

for determining the variation of gage factor with increasing temperature 

are described in references 5 and 8* 

The variation of gage factor with temperature was determined from 

tests with the equipment shown schematically in figures 2 and 3. Two 

gages are mounted on each side of a constant strength cantilever beam 

near its fixed end. The four gages are then connected to form a complete 

bridge circuit. The free end of the beam is attached to an electro¬ 

mechanical vibrator by a rigid connecting rod. The power to the radiant 

heaters is controlled so that the temperature of the beam is increased at 

a nearly uniform rate. A low temperature gradient is maintained over the 

beam length by controlling the power to heating elements in the clamping 

fixture. 

The open circuit output voltage of a bridge circuit made up of iden¬ 

tical gages in all four arms with all gages subjected to strain of the 

same magnitude, two gages in tension and two gages in compression and 

arranged for maximum bridge unbalance, is approximately 

E0 = 

Micro-Test, Inc. 

EiKe 
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where = the input voltage 

K = gage factor of the gages 

e = strain (magnitude) to which the gages are subjected. 

If the strain is periodic and the other two factors are constant or vary 

slowly, the output signal will be an alternating voltage of the same 

frequency as the vibration of the beam. Variations in the amplitude of 

this alternating voltage during a test in which the input voltage and 

vibration amplitude are constant will be due to changes in the gage fac¬ 

tor and changes in the strain magnitude resulting from thermal expansion 

of the beam. Changes in the output signal due to lack of compensation 

for drift and for temperature coefficient of resistance will be slow 

compared to the frequency of vibration. These slowly varying signals 

will be rejected by suitable circuitry. The effect of the thermal expan¬ 

sion of the beam can be readily computed from beam theory and the data 

adjusted to correct for this effect* 

In order to obtain sufficient sensitivity to show small changes of 

gage factor, the small output signal ( a few millivolts) is amplified, 

rectified, and suppressed so that a change of bridge circuit output 

voltage of about 20 percent of its nominal value will produce full 

Y-scale deflection of an X-Y recorder* 

Just prior to starting a test, the sensitivity of the Y-axis of the 

recorder is determined in the following manner: 

(1) The amplitude of vibration is adjusted to the desired 

level,. 

(2) The input voltage is set at its nominal value. 

(3) The amplifier gain is adjusted to give the desired signal 

level as indicated by the recorder. 

(4) The signal to the recorder is completely suppressed. 

(5) The recorder sensitivity (Y-axis) is increased so that a 

10 percent change of signal level will produce about 

one-half of full scale deflection. 

(6) The input voltage to the bridge circuit is varied from about 

90 percent to about 110 percent of its nominal value. 

(7) The Y-scale is marked in convenient steps. Each step usually 

corresponds to a change of 2 percent of the nominal input 

voltage,. 
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The temperature, amplitude of vibration, and gage factor are assumed to be 

constant during this time. The effect of the input voltage changes is the 

same as would be produced by equal percentage changes of gage factor with 

constant input voltage and strain level. Although both gage factor and 

strain level usually change during a test, the combined effects of these 

changes can be considered to be the sum of the individual effects provided 

each is small. 

After the Y-axis sensitivity is adjusted and calibrated, the input 

voltage is returned to its nominal value. The temperature of the beam is 

increased at about 20° F per minute while the input voltage and vibration 

amplitude are kept constant. As the temperature increases, the variation 

of bridge cir.cyit output voltage is recorded as a function of temperature. 

The recorded data are adjusted to correct for the effect of thermal expan¬ 

sion of the beam giving a record of the variation of gage factor with in¬ 

creasing temperature. 

4. RESULTS 

The number of gages subjected to the various tests is shown in table 1. 

The results c^f the evaluation tests are given in table 2 and figures 4 

through 31. 

4*1 Strain Sensitivity 

Gage factor values were obtained at about 75° F from three gages for 

a maximum stnain of about 0.001 in tension and compression. These values 

are given in table 2 where 

Ku = gage factor for increasing load 

= gage factor for decreasing load 

K = average gage factor value. 

Gages 6.4-A^ and 6.4-A^ were tested in tension before being tested in com¬ 

pression. Gagd 6^4-Ag was tested in compression before being tested in 

tension. All of the gage factor values obtained were within the range 

specified by the manufacturer, 1*8 ± 5 percent. The average of all values 

obtained was within 1-1/2 percent of the manufacturer's nominal value. For 

any one gage, no value differed from the average for that gage by as much 

as 2-1/2 percent. 

The variation of gage factor with increasing temperature is shown in 

figures 4 through 7. Each of the curves of figures 4 through 6 show the 

average change of gage factor for the four gages which were mounted on a 
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beam and connected into a bridge circuit. Each curve of figure 7 represents 

the average result for four tests of one set of four gages. At temperatures 

up to 800° F, gage factor values indicated for only two test runs differ 

from the average for all runs by more than 3 percent of the room temperature 

value. These differences exceed 3 percent only at temperatures above 780° F. 

4.2 Drift 

The drift behavior of individual gages at each test temperature is 

shown in figures 8 through 17. Each curve of figure 18 represents the 

average of the results for two gages. The drift values at temperatures as 

high as 700° F were small. At temperatures of 800° F and above, the drift 

was much greater, and considerable difference was found between the values 

obtained for two gages. The greatest drifts were obtained at 1000° F and 

1100° F with a much lower drift being shown at 1200° F. Since the gages 

were tested at each test temperature in ascending order, the lower drift 

shown at 1200° F might not be representative of a gage which had not been 

held at lower temperatures. At all test temperatures from 800° F to 1200° F 

the drift was too high to permit a complete evaluation of the gages for sta¬ 

tic strain conditions. 

4.3 Temperature Sensitivity 

The temperature coefficient values obtained for two gages are shown in 

figure 19. The values plotted are the slopes of lines drawn tangent to 

recorded curves of relative change of resistance as a function of tempera¬ 

ture. The values obtained for the first run of each gage are somewhat 

different than those obtained on subsequent runs. The values obtained for 

the second and third run were nearly the same for both gages. In all cases 

the temperature coefficient was small. It should also be noted that the 

temperature coefficient values passed through zero so that the total resis¬ 

tance change for a large temperature change might be very small. 

Figures 20 through 22 show the relative change of resistance of three 

gages for five heating cycles to about 600° F followed by five heating 

cycles to about 800° F. The average heating rate was 5° F/sec to 10° F/sec. 

The behaviors of two of the gages (6.4-T^ and 6.4-T^) were nearly the same, 

and, after the first heating cycle to each temperature, the behavior of each 

of these gages was repeatable. The third gage (6.4-T5) did not become 

repeatable until after the first heating to 800° F. The response of this 

gage was also somewhat different from that of the other two gages. In all 

cases, the apparent strain due to temperature changes was small. 
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4°4 Transient Heating 

The results of tests in which the temperature of the test strip to 

which the gage was attached was changed at about 60° F per second are shown 

in figures 23 through 29. Figures 23 through 25 show the response of one 

gage when subjected to three series of transient heating cycles. Each 

heating series consisted of five heating cycles from room temperature to a 

maximum temperature and back to room temperature. The maximum temperatures 

were about 600° F, 800° F, 1000° F, 1200° F, and 1500° F, in that order. 

Figures 23 and 24 show that the temperature coefficient of resistance of the 

installed gage was quite different after the first heating series. Figure 

25 shows that a gage response is repeatable within close limits for the 

second and third heating series although the temperature coefficient of 

resistance is fairly large. 

Figures 26 and 27 compare the response of two gages for the first and 

second heating series to maximum temperatures of 600° F and 1000° F. 

Although the curves for the two gages have the same general shape, the 

agreement between the two gages is not comparable to the repetition of one 

gage for two test runs as shown in figures 28 and 29. The curves of figures 

28 and 29 show the maximum spread for ten heating cycles to 800° F followed 

by ten heating cycles to 1500° F for two gages. Except for the response 

during the first heating to 1500° F, the behavior of each gage was repeat- 

able within close limits. The different behavior during the first heating 

to 1500° F was expected from the results shown in figure 24. 

4.5 High Strains 

The results of tests in which gages were subjected to tensile strains 

greater than those used for gage factor determination are shown in figure 

30. The gage factor values used to determine the strain indicated by the 

resistance gage, £ind^ were obtained from the average of values obtained 

for tensile strains at room temperature, table 2, and the average variation 

of gage factor with temperature, figure 7. The actual strain, e, was 

measured with an optical strain gage0 

The differences between the actual strain and the strain indicated by 

the resistance gages were only slightly greater than 5 percent of the indi¬ 

cated strain at any point for gages tested at room temperature. These 

differences were less than 5 percent of the indicated strain for gages 

tested at 600° F. Errors of this magnitude would be expected since the 

gage factor tolerance given by the manufacturer is ± 5 percent. 

The gages tested at 600° F were subjected to strains slightly more 

than 0,01. The gages tested at room temperature were subjected to strains 

of about 0,02 and 0,015. All tests were discontinued before failure of 

the resistance gage occurred. Errors for gages strained beyond the values 
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shown in figure 30 did not exceed the maximum shown for that gage in 

figure 30, 

The results of similar tests on four other gages are not given in this 

report since a possible error in experimental procedure makes the validity 

of the results obtained doubtful. The maximum strain levels for the tests 

of these gages were about the same as for the gages reported except for one 

gage which was subjected to a strain greater than 0.037 at room temperature 

None of these gages failed during the tests. 

Two of the gages, 6.4-H^ and 6,4-Hy, were attached with standard 

welder attachments. The other two gages, 6.4-H5 and 6.4-Hg, were attached 

with the Rollectrode attachment. It is felt that the differences shown in 

figure 30 are not due to differences in the method of attachment. 

4„6 Resistance to Ground 

It has been reported that ceramic type cements do not follow Ohm's 

law and that polarization effects are encountered, at least at higher 

temperatures. It is expected that this would also be true for the 

insulation which forms a part of the gages tested for this report. The 

resistance values shown in figure 31 should therefore be considered as 

qualitative values only. The values were obtained during drift tests with 

a Triplett vacuum tube volt-ohm meter, Model 650, using the scale range 

marked x 1 meg-n_. The common terminal of the instrument was connected to 

the test strip. The values shown in figure 31 are average values for two 

gages. The readings were taken within a few minutes after the test strip 

had reached the test temperature. 

4.7 Gages Destroyed 

During the course of this evaluation, four gages were destroyed 

before the intended information was obtained. Leads of two of these 

gages were broken while attaching the external lead wires, one gage wire 

broke just inside the metal tubing during the first transient heating cycle 

and a lead of the other gage was accidently cut with the Rollectrode while 

attaching the gage to the test strip. The first three of these failures 

were probably due to bending of the gage leads. This indicates that these 

leads are fragile and must be handled carefully. The manufacturer warns 

against excessive bending of the leads. 
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5, CONCLUSIONS 

The data obtained from the evaluation tests covered by this report 

indicate that: 

(1) Gage factor values for gage type SS-E-4D-A can be expected 

to be within the manufacturer's stated limits at room tem¬ 

perature, The decrease of gage factor with increasing 

temperature is approximately linear, at least up to 800° F, 

and repeatable from gage to sgage, 

(2) These gages may be useful for static strain measurements 

at temperatures as high as 700° F, At temperatures of 

800° F and higher, the drift characteristics will probably 

preclude their use for many static measurements. 

(3) These gages have a very low temperature coefficient of 

resistance when attached to stainless steel provided the 

gages are not heated to temperatures above about 850° F, 

The temperature coefficient becomes very repeatable after 

the first temperature cycle. If the gages are heated to 

about 1500° F, the temperature coefficient becomes quite 

high, but it is repeatable, 

(4) The gages will indicate tensile strains as high as 0,02 

with an accuracy of about 5 percent. The gages will with¬ 

stand very high strains without failure. 

(5) The gages are very easily installed and require no thermal 

curing provided installation can be made by spotwelding. 

(6) The agreement between the predicted and actual strains 

indicated by the resistance gages for high strains at 

600° F confirms the validity of the method used to de¬ 

termine the variation of gage factor with temperature. 

Washington, D. C. 

August 1959 
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Table 1 - Number of Gages Subjected to Tests 

Type of Tests 
Number of 

gages tested 

Gage factor 3 

Gage factor variation 

*
 O

J 
r—

4 

Drift 2 

Temperature sensitivity 

Transient heating 

High strain 4 

Three sets of four gages. 

Three gages were subjected to transient heating 

tests after temperature sensitivity tests were 

completed. 
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Table 2 - Gage Factor Values at About 75° F 

Gage 

No. 

Run 

No. 

Gage Factor Values 

Tension Compression 

Ku Kd K Ku Kd K 

1 1.842 1.845 1.843 1.865 1.864 1.864 

6,4-Ai 2 1.854 1.844 1.849 1.874 1.878 1.876 

3 1.843 1.848 1.846 1.876 1.878 1.877 

Average 1.846 1.846 1.846 1.872 1.873 1.872 

1 1.780 1.833 1.807 1.831 1.834 1.832 

6.4-Ag 2 1.788 1.851 1.819 1.825 ' 1.830 1.828 

3 1.806 1.823 1.814 1.831 1.844 1.837 

Average 1.791 1.836 1.813 1,829 1.836 1.832 

1 1.783 1.797 10 790 1.773 1.823 1.798 

6.4- A^ 2 1.775 1.786 1.780 1.813 1.826 1.819 

3 1.777 1.786 1.781 1.807 1.819 1.813 

Average 1.778 1.790 1.784 1.798 1.823 1.810 

Grand Average 1.805 1.824 1.814 1.833 1.844 1.838 

USCOMM-NBS-DC 
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Fig. 19 Temperature coefficient of two gages 
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