NATIONAL BUREAU OF STANDARDS REPORT
 NBS PROJECT
 1103-40-11625
 14 July 1959
 6514

SOME PROPERTIES OF THE "ARRAY
CORRELATION" PRCCEDURE
by

Statistical Engineering Laboratory

Technical Report No. 2
 to

Water Resources Division
U. S. Geological Survey

Department of Interior
IMPORTANT NOTICE
NATIONAL BUREAU OF STAN Intended for use within the Go to additional evaluation and rev listing of this' Report, either in the Office of the Director, Natic however, by the Government ag to reproduce additional copies .

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015
gress accounting documents lly published it is subjected sroduction, or open-literature n is obtained in writing from ich permission is not needed, spared if that agency wishes

U. S. DEPARTMENT OF COMMERCE
 NATIONAL BUREAU OF STANDARDS

Some Properties of the "Array Correlation" Procedure

Joan Raup Rosenblatt National Bureau of Standards

1. Introduction

The expression "array correlation" refers to a proposed procedure for the construction of "synthetic records" of the type discussed in Technical Note No. 1. The essential feature of the array correlation procedure is that "synthetic" values of discharge are obtained by a transformation relating the marginal distribution of discharge for one stream to that for the other stream. The procedure described in Technical Note No. 1 uses a regression relation which explicitly takes advantage of the correlation in the bivariate distribution.
2. Assumptions and Description of Procedure

The assumptions concerning distribution of discharge are stated on page 2 of Technical Note No. 1. The notation of that note will be used.

In practice, the "array correlation" procedure is understood to be as follows.

From the paired observations

$$
\left(X_{1}, Y_{1}\right), \ldots, \quad\left(X_{n_{1}}, Y_{n_{1}}\right)
$$

are obtained the paired order statistics

$$
\left.\left(X_{(1)}, Y_{(1)}\right), \cdots, X_{\left(n_{1}\right)}, Y_{\left(n_{1}\right)}\right)
$$

where

$$
\begin{aligned}
& X_{(1)} \leq \cdots \leq X_{\left(n_{1}\right)} \\
& Y_{(1)} \leq \cdots \leq Y_{\left(n_{1}\right)}
\end{aligned}
$$

These points are plotted and are found to determine a straight line which is used for calculating values of Y from values of X.

For purposes of analysis, it is assumed that the slope of this line is

$$
\mathrm{S}_{\mathrm{yl}} / \mathrm{s}_{\mathrm{xl}}
$$

.
where

$$
\begin{aligned}
& S_{y l}^{2}=\sum_{i=1}^{n_{l}}\left(Y_{i}-\bar{Y}_{l}\right)^{2}, \\
& S_{x l}^{2}=\sum_{i=1}^{n_{l}}\left(X_{i}-\bar{X}_{l}\right)^{2} .
\end{aligned}
$$

Thus, the mean μ_{y} may be estimated by the average of observed and calculated values,
(2.1)

$$
v=\bar{y}_{1}+\frac{n_{2}}{n_{1}+n_{2}} \frac{s_{y l}}{s_{x 1}}\left(\bar{x}_{2}-\bar{x}_{1}\right)
$$

This is an unbiased estimator. The remaining sections of this note give the variance of V, an estimator for σ_{y}^{2}, and comparisons with the estimators treated in Technical Note No. 1.
3. Variance of V

For the ratio $S_{y l} / S_{x l}$, we have
(3.1)

$$
E \frac{S_{y 1}^{2}}{S_{x 1}^{2}}=\frac{\sigma_{y}^{2}}{\sigma_{x}^{2}}\left[1+\frac{2\left(1-p^{2}\right)}{n_{1}-3}\right]
$$

(3.2) $E \frac{S_{y l}}{S_{x l}}=\frac{\sigma_{y}}{\sigma_{x}}\left[1+\frac{1-\rho^{2}}{2 n_{1}}-\frac{3\left(1-\rho^{2}\right)}{2 n_{1}{ }^{2}}\right]+0\left(1 / n_{1}^{3}\right)$.

Equation (3.2) is the only one in which an approximation is required. Accordingly, we have
(3.3) $\operatorname{var}(V)=\frac{\sigma^{2}}{n_{1}}\left[1+\frac{n_{2}}{N}(1-2 \rho)\right]$

$$
\begin{aligned}
& +\frac{\sigma_{y}^{2}}{\mathrm{n}_{1}^{2}} \frac{\mathrm{n}_{2}}{\mathrm{~N}}(2-\rho)\left(1-\rho^{2}\right) \\
& +\quad o\left(1 / n_{1}^{3}\right) .
\end{aligned}
$$

Similarly expressed, the regression estimator U has the variance
$\operatorname{var}(U)=\frac{\sigma_{y}^{2}}{n_{1}}\left[1-\frac{n_{2}}{N} \quad \rho^{2}\right]$

$$
+\frac{\sigma_{y}^{2}}{n_{1}^{2}} \frac{n_{2}}{N}\left(1-\rho^{2}\right)+o\left(1 / n_{1}^{3}\right)
$$

Evidently,

$$
\operatorname{Var}(\mathrm{V}) \geq \operatorname{Var}(\mathrm{U})
$$

Moreover, if $\rho \leq 1 / 2$,
(3.5) $\operatorname{Var}(\mathrm{V}) \geq \sigma_{\mathrm{y}}^{2} / \mathrm{n}_{1}$.
4. Estimation of σ_{y}^{2}

Consider the function
(4.1) $S^{2}=\sum_{i=1}^{n_{1}}\left(Y_{i}-V\right)^{2}+\sum_{j=1}^{n_{2}}\left(Y_{n_{1}}^{*}+j-V\right)^{2}$,
where for $j=1,2, \ldots, n_{2}$,
(4.2) $\quad Y_{n_{1}+j}^{*}=\bar{Y}_{1}+\frac{S_{y l}}{S_{x l}}\left(X_{n_{1}+j}-\bar{X}_{1}\right)$.

This is analogous to the function S_{3}^{2}, equation (3.3) of Tech. Note No. 1. The "natural" estimator for σ_{y}^{2} would be
(4.3)

$$
T=S^{2} /(N-1)
$$

The estimator T tends to over-estimate $\sigma_{y}^{2} ;$ its expected value is
(4.4)

$$
E T=\sigma_{y}^{2}+\frac{2}{n_{1}-3} \frac{n_{2}}{N-1}\left(1-\rho^{2}\right) \sigma_{y}^{2} .
$$

The mean-squared-error of T is
(4.5)

$$
\begin{aligned}
\operatorname{MSE}(T)= & \operatorname{Var}\left(T_{1}\right)+\frac{n_{2}}{(N-1)^{2}} \sigma_{y}^{4}[2 D \\
& +\left(n_{2}+2\right) F-4 \frac{N-1}{n_{1}-3}\left(1-\rho^{2}\right) \\
& \left.-\frac{n_{1}+1}{n_{1}-1}\left(2 n_{1}+n_{2}-2\right)\right],
\end{aligned}
$$

where
(4.6)

$$
\left(n_{1}-3\right) D=\left(n_{1}^{2}-1\right)-4\left(n_{1}+1\right) \rho^{2}+8 \rho^{4}
$$

$$
\left(n_{1}-3\right)\left(n_{1}-5\right) F=\left(n_{1}^{2}-1\right)-8\left(n_{1}+1\right) \rho^{2}+24 \rho^{4}
$$

and (cf. Tech. Note No. 1),

$$
\left(\mathrm{n}_{1}-1\right) \mathrm{T}_{1}=\mathrm{s}_{\mathrm{y} 1}^{2}
$$

Now, let the "information ratio" be
(4.8)

$$
I^{*}\left(\rho, n_{1}, n_{2}\right)=\operatorname{Var}\left(T_{1}\right) / \operatorname{MSE}(T)
$$

The following properties hold.
(4.9)

$$
I^{*}\left(1, n_{1}, n_{2}\right)=1+n_{2} /\left(n_{1}-1\right)
$$

exactly as in (4.2) of Tech. Note No. 1.
(4.10)
$I^{*}\left(0, n_{1}, n_{2}\right)<1$ for all n_{1}, n_{2}.
(4.11)

$$
I^{*}\left(0, n_{1}, n_{2}\right) \sim N /\left(N+n_{2}\right) \text { as } n_{1} \rightarrow \infty
$$

with the ratio n_{1} / n_{2} held fixed.

$$
\text { If } n_{2} / n_{1}=\alpha>0, \text { then }
$$

(4.12)

$$
p_{0}^{*} \rightarrow \frac{8+\alpha(1+\alpha)}{8(1+\alpha)(2+3 \alpha)} \quad \text { as } \quad n_{1} \longrightarrow \infty
$$

where ρ_{0}^{*} is the solution of $I^{*}\left(\rho, n_{1}, n_{2}\right)=1$. For example, with $\alpha=1\left(n_{1}=n_{2}\right), \rho_{0} \longrightarrow 1 / 8$. For $n_{1}=n_{2}=15$ or 20, one finds $\rho_{0}=0.8$ (from the exact equation).

