NATIONAL BUREAU OF STANDARDS REPORT

6158

INTERLABORATORY INTERCOMPARISONS

OF

500-WATT TUNGSTEN-FILAMENT STANDARDS

OF LUMINOUS FLUX

by

Velma I. Burns

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

Functions and Activities

The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau's work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover.

Reports and Publications

The results of the Burcau's work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Burcau's own series of publications or in the journals of professional and scientific societies. The Burcau itself publishes three monthly periodicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations: the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Mathematics Series, Circulars, Handbooks, Building Materials and Structures Reports, and Miscellaneous Publications.

Information on the Bureau's publications can be found in NBS Circular 460, Publications of the National Bureau of Standards (\$1.25) and its Supplement (\$0.75), available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C.

Inquiries regarding the Bureau's reports should be addressed to the Office of Technical Information, National Bureau of Standards. Washington 25. D. C.

NATIONAL BUREAU OF STANDARDS REPORT

NBS PROJECT

0201-20-0205

October 1958

NBS REPORT

6158

INTERLABORATORY INTERCOMPARISONS

of

500-Watt Tungsten-Filament Standards

of Luminous Flux

by

Velma I. Burns Photometry and Colorimetry Section Optics and Metrology Division

IMPORTANT NOTICE

NATIONAL BUREAU OF ST intended for use within the to additional evaluation and listing of this Report, either the Office of the Director, N however, by the Government to reproduce additional cop.

Approved for public release by the director of the National Institute of Standards and Technology (NIST) on October 9, 2015 progress accounting documents ormally published it is subjected g, reproduction, or open-literature lesion is obtained in writing from Such permission is not needed, iy prepared if that agency wishes

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

and the second second

Interlaboratory Intercomparisons of 500-watt Tungsten-Filament Standards of Luminous Flux

by Velma I. Burns

Abstract

A group of six inside-frosted and seven clear 500-watt lamps were measured by eight laboratories. The average luminous flux was 9647 lumens for the frosted lamps and 9544 lumens for the clear lamps. The average of the percent deviations from the overall average for the eight laboratories was .39% in the case of the inside frosted lamps and .34% in the case of the clear lamps.

I. Introduction

This intercomparison was undertaken to determine the uniformity of measurements of luminous flux for these types of lamps at the participating laboratories. The laboratories participating and the order of reading are as follows:

I.	Champion Lamp Works
II(a).	Sylvania Electric Products, Inc. (using 60 in. sphere 3 runs)
II(b).	Sylvania Electric Products, Inc. (using 100 in. sphere 2 runs)
III.	Electrical Testing Laboratories, Inc.
IV.	Westinghouse Lamp Division
٧.	Duro Test Corporation
VI.	General Electric Company
VII.	National Bureau of Standards
VIII.	Electrical Testing Laboratories, Inc.
IX.	Sylvania Electric Products, Inc.
X.	Interlectric Corporation
XT.	Champion Lamp Works

The order in which the laboratories made their readings was chosen to reduce shipment of the lamps as much as possible. Each laboratory followed its own customary procedure in making the measurements. The Electrical Testing Laboratories Inc., Sylvania Electric Products Inc., and Champion Lamp Works measured the lamps more than once and all values reported are listed in the tables which follow. Only the first values reported by these laboratories, however, were used in calculating averages for all laboratories.

II. Results of Measurements

The values of current reported by each laboratory are given in Table I. The values of luminous flux are given in Table II. For all measurements the lamps were operated at 120 volts.

The range of the average values in percent are shown below.

Lamp Type	Current Range	Luminous Flux Range
Frosted Clear	0.53%	1.61%

An analysis of the results was made as follows:

Let

F = Luminous flux measured value.

- F_{La} = Luminous flux measured by a given laboratory, L, for a given lamp, a.
 - \overline{F} = Average of all luminous flux measurements made by all the laboratories for one type of lamp.
- \overline{F}_{L} = Average luminous flux for all the lamps of a given type measured at a given laboratory.
- \overline{F}_a = Average of luminous flux measurements made on a given lamp at all the laboratories.
 - $\Delta = deviations$
- $\Delta_{L} = \overline{F}_{L} \overline{F}$ $\Delta_{a} = \overline{F}_{a} \overline{F}$

The residual error, \lor , for each lamp measured at each laboratory, was found by the following formula

$$\mathbf{V} = \mathbf{F}_{La} - \overline{\mathbf{F}} - \boldsymbol{\Delta}_{L} - \boldsymbol{\Delta}_{a}$$

The probable error in the average value, F_L , is given by the expression

$$PE = \frac{0.8453 \Sigma}{n \sqrt{n-1}}$$

where n is the number of observations.

•

The huge error in \overline{F}_{L} is

 $HE = 4.9 \times PE$

The huge error for each laboratory is a measure of how closely the average reported by that laboratory (F_L) represents measurements made at that laboratory. The huge error for each laboratory in percent of \overline{F} is shown in Table II. It can be shown that laboratories having $\#\Delta_L$ larger than %HE may be on a basis of measurement different from that of the other laboratories.

III. Discussion

There is fair agreement between the participating laboratories on values of current and luminous flux. The range in the average values of current reported for frosted lamps is 0.53% of the average values reported by all laboratories. For the clear lamps the range is 0.72%. The range in the average values of luminous flux reported for the frosted lamps is 1.61% of the average of values reported by all laboratories and for the clear lamps the range is 1.54%.

By treating the average values reported by each of the eight laboratories as a series of eight measurements and by using the formula $HE = 4.9 \qquad \frac{0.8453\Sigma^{\Delta}L}{n\sqrt{n-1}}$

the huge error in the average for all the laboratories (\overline{F}) was found to be 0.61% for the frosted lamps and 0.53% for the clear lamps. Then by using the same series of measurements and the formula

$$HE = 4.9 \frac{0.8453 \Delta L}{\sqrt{n(n-1)}}$$

the huge error in the average reported by any one laboratory was found to be 1.71% for the frosted lamps and 1.51% for the clear lamps.

The average percent deviation in luminous flux values reported (Δ_{τ}) is 0.39% for the frosted lamps and 0.34% for the clear lamps.

Interlaboratory Intercomparisons of Current in Amperes of 500-Watt Lamps Operated at 120 volts

Table I

Inside Frosted

	XI	4.048 4.145 4.145 4.153 4.153 4.135	4.131 009 22	4.138 4.138 4.138 4.138 4.138 4.138 4.138
2	-The	4.056 4.146 4.146 4.149 4.158 4.140	4.132 008 19	4.108 4.131 4.131 4.094 4.116 4.116 4.136 4.136
TOWER	IIIA	4.150 4.150 4.150 4.150 4.150 4.150 4.150	4.135 005 12	4.110 4.110 4.120 4.120 4.140 4.140 4.127
	A VE	4.060 4.153 4.152 4.162 4.165 4.165	0/11-1	4.115 4.147 4.128 4.128 4.157 4.157 4.157 4.1100 4.133
Tnt	X	4.05 4.14 4.14 4.15 4.15 4.15 4.15 4.15	4.130 010 24	4.10 4.14 4.12 4.12 4.15 4.15 4.15 4.13
NR C	IIA	4.056 4.149 4.149 4.155 4.155 4.162 4.144	4.136 004 10	4.112 4.137 4.137 4.137 4.138 4.138 4.134
۳۵	5	4.06 4.15 4.15 4.16 4.16	4.137 003 07	4.11 4.14 4.12 4.12 4.11 4.13 4.14 4.12 4.126
Duro	Δ	4.07 4.16 4.16 4.18 4.17 4.17	4.148 +.008 +.19	4.12 4.11 4.11 4.15 4.15 4.15 4.15 4.15 4.15
Maet	IV	4.05 4.14 4.14 4.15 4.15 4.13	4.127 013 31	4.10 4.13 4.08 4.08 4.13 4.13 4.13 4.13
Roter .	III	4.155 4.155 4.155 4.155 4.165	4.142 +.002 +.05	4.135 4.135 4.135 4.135 4.145 4.145 4.134 4.134
Sv1.	II	4.167 4.167 4.161 4.170 4.170 4.170	74L.4 +.007 +.17	4.127 4.160 4.136 4.158 4.158 4.153 4.147 4.147
Champ	I	4.07 4.16 4.165 4.165 4.165 4.185 4.185	4.149 +.009 +.22	4.135 4.16 4.16 4.17 4.17 4.17 4.16 4.155 4.16 4.16 4.16 4.16 4.16 4.16
Tomn No	Order of reading	NB S 4265 NB S 4265 NB S 4267 NB S 4267 NB S 4269 NB S 4269 NB S 4270	Ave of 6 g A Clear	NBS4271 NBS4272 NBS4273 NBS4273 NBS4275 NBS4275 NBS4276 NBS4277 AVE of 7

Table II

Interlaboratory Intercomparisons of Luminous Flux in Lumens, $F_{{\bf L}a}$ of 500-Watt Lamps Operated at 120 Volts

Inside Frosted

Champ. XI	9760 9536 9748 9656 9884 9624 +54 +54 +56 -256	9584 9574 9574 9576 9566 9566 9566 9566 9566 9566 9566
syl. IX	9745 9537 9537 9622 9860 9649 +19 +19 +51	9579 9663 9501 9565 9555 9555 9555 9555 9555 9555 955
ETL VIII	9810 9670 9770 9620 9900 9900 9900 9738 +91 +91 +04	9570 9660 9550 9550 9566 9560 9560 9560 956
Syl. 100 in sphere II(b)	9683 9496 9545 9545 9806 9532 9616 -31 -32 -33	9450 9450 9450 9461 9461 9461 87 9461 87 87
Δ_{a} $(F_{a} - F)$	+ -151 - 565 - 566 - 509 - 59	+ 1 + 262 - 69 - 166 - 253
Ave Fa	9712 94,96 9668 9591 9828 9588 964,7 = F	9545 9806 94,75 91,98 92,91 92,91 9544 = F
Int. X	9728 94,91 96,64 95,84 97,40 95,84 95,84 95,84 95,00 -29 -29 -30	9528 9636 9533 9533 9533 9544
NBS	9680 9479 9672 9672 9672 9622 9622 5 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	9512 9747 9470 9470 9514 9514 -30 -30
GE VI	9734 9502 9696 9616 9616 9616 9616 9616 9616 961	9557 9802 9693 9583 9583 9581 +37 +37 +37 +339 -10
Duro. V	9703 9503 9643 9643 9670 9670 +-24 +-24 -45	9583 9787 9515 9515 9515 9515 9515 9515 9512 9512
West. IV	9744 9508 9674 9673 9673 9673 9673 9595 + 26 + 26 + 26 + 26	9586 9634 9447 9523 9523 9523 9519 9519 9519 9518 44 44
ETL	9790 9550 9760 9680 9840 9725 +-81 +-81 -59	9570 9890 9160 9596 9596 +•54 +•54
Syl. II(a)	9682 9506 9521 9521 9521 9521 9513 9513 9513 9513 9510 -37 -38	9451 9782 9586 9396 9184 9164 - 84 - 84
Champ. I	9634 94,31 9602 94,42 9813 9813 9570 -77 -80 -54	9572 9666 9461 9255 9255 -19 -19 -20
Lab (L) Order of reading Lamp No.	NBS4265 NBS4266 NBS4266 NBS4268 NBS4268 NBS4269 NBS4269 NBS4270 NBS4270	Clear NBS4271 NBS4272 NBS4272 NBS4273 NBS4273 NBS4275 NBS4275 NBS4275 NBS4277 NBS4277 NBS4277 SHE

- 10 H & L

U. S. DEPARTMENT OF COMMERCE Sinclair Weeks, Secretary

NATIONAL BUREAU OF STANDARDS A. V. Astin, Director

THE NATIONAL BUREAU OF STANDARDS

The scope of activities of the National Bureau of Standards at its headquarters in Washington, D. C., and its major laboratories in Boulder, Colo., is suggested in the following listing of the divisions and sections engaged in technical work. In general, each section carries out specialized research, development, and engineering in the field indicated by its title. A brief description of the activities, and of the resultant publications, appears on the inside front cover.

WASHINGTON, D. C.

Electricity and Electronics. Resistance and Reactance. Electron Devices. Electrical Instruments. Magnetic Measurements. Dielectrics. Engineering Electronics. Electronic Instrumentation. Electrochemistry.

Optics and Metrology. Photometry and Colorimetry. Optical Instruments. Photographic Technology. Length. Engineering Metrology.

Heat. Temperature Physics. Thermodynamics. Cryogenic Physics. Rheology. Engine Fuels. Free Radicals Research.

Atomic and Radiation Physics. Spectroscopy. Radiometry. Mass Spectrometry. Solid State Physics. Electron Physics. Atomic Physics. Neutron Physics. Nuclear Physics. Radioactivity. X-rays. Betatron. Nucleonic Instrumentation. Radiological Equipment.

Chemistry. Organic Coatings. Surface Chemistry. Organic Chemistry. Analytical Chemistry. Inorganic Chemistry. Electrodeposition. Molecular Structure and Properties of Gases. Physical Chemistry. Thermochemistry. Spectrochemistry. Pure Substances.

Mechanics. Sound. Mechanical Instruments. Fluid Mechanics. Engineering Mechanics. Mass and Scale. Capacity, Density, and Fluid Meters. Combustion Controls.

Organic and Fibrous Materials. Rubber. Textiles. Paper. Leather. Testing and Specifications. Polymer Structure. Plastics. Dental Research.

Metallurgy. Thermal Metallurgy. Chemical Metallurgy. Mechanical Metallurgy. Corrosion. Metal Physics.

Mineral Products. Engineering Ceramics. Glass. Refractories. Enameled Metals. Concreting Materials. Constitution and Microstructure.

Building Technology. Structural Engineering. Fire Protection. Air Conditioning, Heating, and Refrigeration. Floor, Roof, and Wall Coverings. Codes and Safety Standards. Heat Transfer.

Applied Mathematics. Numerical Analysis. Computation. Statistical Engineering. Mathematical Physics.

Data Processing Systems. SEAC Engineering Group. Components and Techniques. Digital Circuitry. Digital Systems. Analog Systems. Application Engineering.

• Office of Basic Instrumentation. • Office of Weights and Measures.

BOULDER, COLORADO

Cryogenic Engineering. Cryogenic Equipment. Cryogenic Processes. Properties of Materials. Gas Liquefaction.

Radio Propagation Physics. Upper Atmosphere Research. Ionospheric Research. Regular Propagation Services. Sun-Earth Relationships. VHF Research.

Radio Propagation Engineering. Data Reduction Instrumentation. Modulation Systems. Navigation Systems. Radio Noise. Tropospheric Measuremente. Tropospheric Analysis. Radio Systems Application Engineering. Radio Meteorology.

Radio Standards. High Frequency Electrical Standards. Radio Broadoust Service. High Frequency Impedance Standards. Calibration Center. Microwave Physics. Microwave Circuit Standards.

